
1

Construction and Destruction of Statics in the WATCOM
C++ Compiler

James W. Welch

WATCOM International Corp.

jww@watcom.on.ca

Document No.: X3J16/96-0053 WG21/N0871

Overview
Once upon a time, I went to Tokyo where I met with a most˝interesting group of people. While discussing
earth-shattering topics, such as the construction and˝destruction of static variables, I put my foot in my
mouth and volunteered to write a paper giving an overview of˝how the WATCOM C++ compiler
accomplishes this remarkable feat.

This paper accomplishes that commitment. It proposes˝nothing. Its only purpose is exposition. I don’t
consider anything that we do to be particularly novel. The˝other compilers with which we compete in the
marketplace also manage to accomplish the same tasks in a˝similar manner.

Compiler Platforms
The compiler produces code for INTEL and Digital Alpha˝platforms. The code and associated run-time
libraries run on the Microsoft (DOS, Windows, Windows 95,˝Windows NT) , IBM (OS/2) , and Quantum
(QNX) operating systems. Some of these platforms involve˝multi-threaded capabilities and dynamically-
linked libraries (DLLs).

For discussion purposes, the term image will be used to refer to either a program (contains the˝mainline)
or a dynamic library (contains routines and data which are˝accessed by other images). The term global
static means a static variable that is not contained within a˝function.

The main discussion will ignore the complications that arise˝in multi-threaded environments. These will
be discussed in a later section.

Global statics are constructed when an image is loaded. For˝a program, this is when the program starts,
before control has been passed to the mainline. DLLs can be˝created to have a unique data area for each
program that accesses them, or to have one data area that˝remains usable until no more programs access
that DLL. Global statics are initialized in DLLs whenever a˝new copy of the data is acquired. Global
statics are destructed when an image is unloaded.

2

Initialization of Statics
During the compilation process, if the contents of a global˝static is determined to be constant values, the
static is initialized at compilation time to have those˝values. Otherwise, code is emitted to perform the
initialization. This code is placed within a˝compiler-generated initialization function on a per-module
basis. For each global static which requires destruction, an˝entry

{ address of variable, address of destructor }

is pushed upon a stack (stacks exist on a per-image basis)˝once the variable has been constructed (or at the
place such code would exist if compile-time initialization had˝not been used). This stack will be called the
static-destruction stack.

For each module in which a compiler-generated initialization˝function exists, an entry

{ priority, address of initialization routine }

is generated into the object file. These entries are˝collected together by the linker and placed in a
contiguous data area. The initialization of global statics˝is accomplished by calling all the initialization
routines in that area, in increasing order of priority.

The system uses 256 different priority levels with˝conventions for reserved initialization (0-31), library
initialization (32-63), and program initialization˝(64-255). Priorities can be set using a #pragma
statement, giving users a crude way to control order of˝initialization.

Static variables within functions are initialized the first˝time flow of control passes through the
declaration of the data item. For such items, two flags are˝defined. The first indicates if that item has
been initialized while the second indicates that the item is˝being initialized. Code is emitted to skip
initialization when the first flag is set. Otherwise, the˝second flag is set, the initialization code is
executed, a static-destruction entry is pushed on the˝static-destruction stack as with global statics, the first
flag is set, and the second flag is reset. The compiler uses˝compile-time initialization if possible and
pushes a destruction entry only if required. If no code is˝generated, then the flags are unnecessary and are
eliminated.

When the static occurs within an inline function, the data˝item and associated flags are stored using a
“common-data” convention so that multiple copies from˝separate compilations will end up as one copy
after linking.

Destruction of Statics
Destruction of statics is performed on a per-image basis. It˝is accomplished by a loop which terminates
when the static-destruction stack for the image is empty.˝ The body of the loop pops the top entry and calls
the appropriate destructor for the data item referenced in˝the popped entry.

During the destruction process, new items may be pushed on˝the stack when a function containing a
destructable static item is called for the first time.

There has been no attempt to prevent or detect the situation˝which arises when a destructed item is again
initialized. This is considered to be a “user-beware”˝area. Things seem to work when the initialization
does not rely on the memory contents of the item being˝re-initialized. WATCOM provides no guarantees
that such behaviour would be supported in the future.

3

Multi-thread Considerations
The compiler requires a command-line switch to indicate that˝code is being compiled for a multi-threaded
situation. This is because the run-time data structure must˝be protected against an interleaved update
from more than one thread of execution. Consequently,˝semaphores must be used to protect the pushing
and popping of static-destruction stack for an image.˝ Similarly, the initialization of a static within a
function must be protected.

A single thread is used to execute the construction of global˝statics and the destruction of statics. Since the
construction or destruction of items could cause new execution˝threads to be created, the protection
mechanism is not relaxed when these functions are active

The compiler does not provide any automatic protection against˝interleaved update of user-defined data
items. It is the programmer’s responsibility to ensure˝that such protection is in place when required.

Conclusions
The success enjoyed by the WATCOM C++ compiler in the˝marketplace is one measure that the
engineered schemes outline above are practicable. As a˝developer, I have received little feedback in
regard to this area and so have concluded that either what is˝done is sufficient or that the development
community doesn’t care.

The lack of a standard method to specify order of˝initialization does offend me personally as a computer
scientist. However, the lack of user feedback must mean that˝users are not too concerned about this area.
There are work-arounds (using functions) which have been˝discussed by other committee members.

Statics are destructed in reverse order of construction on a˝per-image, not a per-program basis. This is the
only practicable method known to the developers. DLLs are˝considered to be extensions to the language.
Within an image, statics are destructed in reverse order of˝the time of their construction, without
consideration to individual threads of execution which might˝have constructed them. Again, multi-
threaded capabilities are viewed as extensions.

The atexit changes voted into the language in Tokyo have not yet been˝implemented. It is anticipated
that each exit routine will be treated as if it was a˝destructor. An entry will be pushed on the static-
destruction stack each time the function is invoked.

