
Doc No: X3J16/96-0051
WG21/N0869

Author: Roland Hartinger
Date: 06.03.1996

Siemens Nixdorf Informationssysteme AG page: 1
SU BS2000 SD224

2. German public review comments

No. Comment Author incoming
Date

WP
chapter

DIN WG
Topic
leader

related
Document

German
WG vote

must,shall,nice
,apposed,
abstain

Re-
commen-
dation for
ISO/ANSI

[status]
1 Derived Classes comments Ulrich

Eisenecker
26.6.1995 10 Eisenecker Email: 26.6.95

X3J16: edit-561
not voted on yes,

[open]
2 Numerics Library Ulrich

Eisenecker
26.6.1995 26 Eisenecker Email:26.6.95

X3J16: edit-564
not voted on yes,

[open]
3 class auto_ptr: the copy ctor

should be private to forbid
parameter passing of
auto_ptr per value.

Uli Breymann 30.6.1995 20.4.5 Bormann,
Breymann

Email: 21.5.95
X3J16: edit-566

not voted on yes,
[open]

4 What is „m“ ? Uli Breymann 30.6.1995 23.3.1
p. 23-32

Bormann,
Breymann

Email: 21.5.95
X3J16: edit-568

not voted on yes,
[open]

5 Logic error: replace !(*i > *j)
with !(*i < *j)

Uli Breymann 30.6.1995 25.3.2
p. 25-20

Bormann,
Breymann

Email:21.5.95
X3J16:lib-3822

not voted on yes,
[open]

6 Findings in chapter
20,23,24,25

Carsten Bormann 30.6.95 20 Bormann,
Breymann

Fax: 30.6.95
X3J16: edit-579
 lib-3829

not voted on yes,
[open]

7 Layout compatible types Manfred
Lichtmannegger

30.6.95 3.9 Unruh X3J16: edit-576 not voted on yes,
[arrays still

open]
8 pop() should return a value Nicolai Josuttis 6.12.95 23.2.4.1

23.2.4.2
23.2.4.3

Kiefer X3J16: lib-4496 pop_value() yes
[open]

9 Mandate for bad_alloc Ulrich Eisenecker 7.12.95 26.3 Kiefer X3J16: lib-? not voted on yes
[open]

10 Can the class instantiated by
the user ?

Ulrich Eisenecker 7.12.95 26.3.2.4
footnote

219

Kiefer X3J16: lib-? not voted on yes
[open]

11 Design of basic_istream and
basic_ostream

Udo Mueller 8.12.95 27 Kiefer,
Lichtmann-
egger

X3J16: lib-? note that op
<< with int

is not
possible

yes
[open]

12 Editorial issues Udo Mueller 8.12.95 20.3.6.1
20.4.1.1
20.4.1.3

Kiefer X3J16: lib-? not voted on yes
[open]

13 Editorial issues Udo Mueller 8.12.95 27 Kiefer X3J16: lib-? not voted on yes
[open]

14 Wrong Specifications for
Logical Iterator Conditions

Ulrich Breymann 6.1.96 25.3.3.1 Kiefer X3J16: lib-? not voted on yes
[open]

15 Missing iterator parameter Ulrich Breymann 24.1.96 24.3.2.6.5 Kiefer X3J16: edit-? not voted on yes
[open]

16 Instantiation of virtual
functions in templates

Udo Müller 13.2.96 14.3.2, §6 Unruh apposed
(4:1)

no

17 Minor Typos Nicolai Josuttis 8.12.95 21.1.1.8.3
21.1.1.9.1

23.2.1
23.2.1.2

Kiefer X3j16: edit-624 not voted on yes
[open]

18 Remove find_first, rfind and
find_last

Nicolai Josuttis 8.12.95 21.1.1.9.3
21.1.1.9.4

Kiefer X3j16: edit-624 WG
recommends

an
informative

vote

yes
[open]

19 Introduce const &
bitset::operator[] () const

Nicolai Josuttis 8.12.95 23.2.1 Kiefer X3J16: lib-4496 not voted on yes
[open]

20 Specify #include <iterator>
for containers

Nicolai Josuttis 24.1.96 21.1
23.2
23.3

Kiefer X3J16: lib-4496 not voted on yes
[open]

21 capacity() and reserve() Nicolai Josuttis 24.1.96 21.1.1.6
23.2.5.4

Kiefer X3j16: lib-4496 not voted on yes
[open]

22 Move min(), max() swap()
into utility part

Nicolai Josuttis 24.1.96 25 -> utility Kiefer X3j16: lib-4496 not voted on yes
[open]

23 Move bitset section Nicolai Josuttis 19.2.96 23.4 Kiefer X3J16: edit-624 not voted on yes
[open]

Doc No: X3J16/96-0051
WG21/N0869

Author: Roland Hartinger
Date: 06.03.1996

Siemens Nixdorf Informationssysteme AG page: 2
SU BS2000 SD224

24 Distance n=0 Ulrich Breymann 19.2.96 24.1.6 Kiefer X3J16: edit-? not voted on yes
[open]

25 Access to Exception Object’s
Type Information

Roland Hartinger 6.3.96 5.2.7
15.5.4
18.5.3

Hartinger X3J16/96-0052
WG21/N0870
core-6404

not voted on yes
[open]

Doc No: X3J16/96-0051
WG21/N0869

Author: Roland Hartinger
Date: 06.03.1996

Siemens Nixdorf Informationssysteme AG page: 3
SU BS2000 SD224

1) Comment from the German WG member Ulrich Eisenecker:

10.3, paragraph 5:

The first sentence is much too long and needs to be
cut in at least to or more sentences.

General comment:
I missed a hint in this chapter, that a pure virtual
function may be fully implemented.
--
2) Comment from the German WG member Ulrich Eisenecker:

26 Numeric Library:
First sentence: IMO "seminumerical" operations is a
very unhappy expression.
It should be better turned into "numerical".

26.2.5
"template<class T>

 istream& operator>>(istream& is, complex<T>& x);"

require: ... (which _may_ throw ios::failure)

How is the user instructed about the specific behavior ?
It is not described, how that is done, nor that it must done.
Of minor importance may be the aspect of portability (but I
criticized that already earlier). I critized as well, that I
miss any exception specifications in the functions, even such
ones, that the function will throw no exceptions. (Old stuff,
I know and I don't want to continue repeating it.)

26.2.6, 6th line:
For what stands the abbrivation TBS ?

26.3, 4th line:
for what stands the abbrivation BLAS-like ?

26.3.2.3, paragraph 2:
There is a superfluous dot in the "a..max()".

26.3.3, first paragraph:
Again: what means the abbrivation BLAS-like ?
--
3) Comment from the German WG member Uli Breymann:

Error report/Comment to CD 20.4.5 Template class auto_ptr
The copy c'tor is wrong. Consider:

int f(auto_ptr<myType> Ptr) // copy c'tor called
{
 return Ptr->getSomeInfo();
} // Error: Ptr goes out of scope and deletes object

int main()
{ auto_ptr<myType> myAutoPtr(new myType);

 cout << "Info:"
 << f(myAutoPtr); // oops!

 myAutoPtr->doSomeThing(); // Error: Objekt doesn't exist any ˝more

Doc No: X3J16/96-0051
WG21/N0869

Author: Roland Hartinger
Date: 06.03.1996

Siemens Nixdorf Informationssysteme AG page: 4
SU BS2000 SD224

}

The copy c'tor should be private to forbid its use, so that ˝parameter
passing of auto_ptrs per value is not possible. Auto_ptr objects
should be passed only by reference. Of course, the concept of ˝strict
ownership (page 20-16, bottom) has to be modified: Ownership ˝cannot be
transferred as in operator=().

Proposal
========

public:
 void operator=(const X*); is public and allowed if the auto_ptr
 is equal NULL, otherwise runtime error
private:
 auto_ptr(auto_ptr&); // copy c'tor : use is not allowed
 void operator=(const auto_ptr&); // private: use is not allowed

New semantic of 'strict ownership':
If an auto_ptr P once has got ownership of an object, it
can get rid of it only by calling P.release() or
by going out of scope (i.e. destroying the object).

As the public operator=(const X*) is defined in this proposal, ˝there
is no need any more for the method reset(X* p=0).
--
4) Comment from the German WG member Uli Breymann:

Error report/Comment to CD 23.3.1 Containers Library, p. 23-32

The last line on p. 23-32 is wrong and does not explain anything.
1. What is "m"? It was not mentioned before.
2. Does access with operator[] always mean to add an element
 constructed with T() if the key x cannot be found? (If x ˝is
 already there, the insert-operation is a no-op, anyway)
Proposal
========
What is meant is clear by definition of a map, but it should be
written down exactly.
--
5) Comment from the German WG member Uli Breymann:

Error report/Comment to CD 25.3.2 Algorithms, p. 25-20
Logic error in last line.
Replace !(*i > *j)
with !(*i < *j)
--
6) Comments from the German WG member Carsten Bormann to Chapter ˝20, 23, 24, 25:

1. 20.1

This subclause is not consistent with the new kind of allocator ˝with a
types<t> member type (see 20.4).

2. 20.1-Table 33

Define ``reference''.

3. 20.3.5-1

Change the first ``Returns:'' to ``operator() returns''.

4. 20.3.6.4-1

Doc No: X3J16/96-0051
WG21/N0869

Author: Roland Hartinger
Date: 06.03.1996

Siemens Nixdorf Informationssysteme AG page: 5
SU BS2000 SD224

Change ``not greater'' to ``less'' in the example.

5. 20.4.1

Explain ``for use as the this value in a constructor or ˝destructor''.

6. 20.4.1-Note 169

Change ``In'' to ``An''.

7. 20.4.1.1

The semantics given for allocate() are clearly wrong, as no ˝construction
takes place.

8. 20.4.1.2

Fix font of .allocate<char,void>.

9. 20.4.3.1-Note 170

This will, in general, not be possible for memory models with the ˝same
distance type. Alternatively, change the example to say ˝``...allo-
cate(long long n, T huge *)'' and change the text accordingly.

10. 20.4.3.5

Explain the role of the second parameter of ̋ return_temporary_buffer().

11. 20.4.5.2

Explain ``->m'' notation.

12. 20.4.5.2

What does release() return?

13. 20.4.5.2

What does reset() return? Does a reset imply a release or is ˝the old
contents destroyed?

14. 23: lib.containers

Various types of calls to constructors member functions are ˝ambiguous
for the case that the element of the container is a size_type: as ˝long
as C++ does not have constraints, the templates on InputIterator ˝may
conflict with the size/value methods. A note should be added to ˝explain
how to disambiguate the constructors (do not default the ˝allocator argu-
ment). A solution (possibly involving a defaultable dummy ˝argument?)
should be found for assign() and insert().

15. 23.1-Table 50

For (&a)->~X(), it is strange to call a method in the ˝definition of a
postcondition.

16. 23.1-4

It would be useful to define that begin() returns an iterator ˝that can
be used to enumerate all elements of the container in sequence and˝that
is equal to end() if incremented beyond the last element (or if˝the con-

Doc No: X3J16/96-0051
WG21/N0869

Author: Roland Hartinger
Date: 06.03.1996

Siemens Nixdorf Informationssysteme AG page: 6
SU BS2000 SD224

tainer is empty).

17. 23.1.1-6-Table 53

For a.back(), change *a.end() to *--a.end().

18. 23.1.1-6-Table 53

Add at().

19. 23.1.2-7-Table 54

Explain that the complexity of a.key_comp() and a.value_comp() ˝is *by
definition* constant (this is not a statement about their ˝complexity,
but a statement about what constant complexity means here).

20. 23.1.2-7-Table 54

a.insert(t) should be a_eq.insert(t).

21. 23.1.2-7-Table 54

Explain why a.insert(p,t) does not return a pair.

22. 23.1.2-7-Table 54

Explain that and when a.lower_bound() and a.upper_bound() can ˝return
a.end().

23. 23.2

<bitset> Synopsis: Why include stdexcept?

24. 23.2.1

Add a const_reference type and associated methods.

25. 23.2.1-1

The comments for operator~(), operator bool() and flip() are˝misaligned.

26. 23.2.1

Bitsets should have at(i) methods. Bitsets should be consistent˝to
other containers with respect to checked and unchecked member ˝access.

27. 23.2.1.2

Define the semantics of operator[].

28. 23.2.2

The typedef for iterator and const_iterator, if taken seriously, ˝would
disallow common implementation techniques.

29. 23.2.2.1

Subclause is empty.

30. 23.2.2.3

Subclause is empty.

Doc No: X3J16/96-0051
WG21/N0869

Author: Roland Hartinger
Date: 06.03.1996

Siemens Nixdorf Informationssysteme AG page: 7
SU BS2000 SD224

31. 23.2.2.4

While the standard generally does not have the right tools to talk ˝about
memory consumption, it would be useful to know whether a ˝resize(0) is
supposed to free storage or not (cf. 23.2.5.4).

32. 23.2.2.5

Subclause is empty. This should, in particular, define the ˝difference
between a[i] and a.at(i).

33. 23.2.2.6

Change ``references to the deque'' to ``references to elements of ˝the
deque''.

34. 23.2.2.6

The complexity given for erase should be labelled as a worst case ˝com-
plexity.

35. 23.2.3

The typedefs for iterator and const_iterator do not make sense.

36. 23.2.3.1

Subclause is empty.

37. 23.2.3.2

Define semantics of constructors and assignment (e.g., by ˝reference to
sequence requirements).

38. 23.2.3.3

Subclause is empty.

39. 23.2.3.7-2

splice(pos, x, i): change ``unchanged is'' to ``unchanged if''.

40. 23.2.3.7-2

remove/remove_if: Explain ``the list iterator i''.

41. 23.2.3.7-2

sort: Explain ``the operator<''.

42. 23.2.4.3-2

Define operator<.

43. 23.2.5

The typedef for iterator and const_iterator, if taken seriously, ˝would
disallow some alternative implementation techniques.

44. 23.2.5.1

Subclause is empty.

Doc No: X3J16/96-0051
WG21/N0869

Author: Roland Hartinger
Date: 06.03.1996

Siemens Nixdorf Informationssysteme AG page: 8
SU BS2000 SD224

45. 23.2.5.3

Subclause is empty.

46. 23.2.5.6

The promise about the complexity if insert(p,i,j) is not ˝compatible with
the last sentence of note 192. Change that last sentence to allow ˝for
copying the elements of the range before insertion.

47. 23.2.6

The typedefs for iterator and const_iterator do not make sense.

48. 23.2.6

Say explicitly that the specialization is intended to have the ˝same
semantics as the general case.

49. 23.3.1, 23.3.2, 23.3.3, 23.3.4

The typedefs for iterator and const_iterator do not make sense.

50. 23.3.1.1-23.3.1.4

Subclause is empty.

51. 23.2.1.5

Explain m.

52. 23.3.1.6-23.3.1.8

Subclause is empty.

53. 23.3.3.1-23.3.3.7

Subclause is empty.

54. 24.1.4-Table 60

Explain ``--r == --r implies r == s''.

55. 24.1.6-2

``can be defined'', i.e., it is the user's responsibility? ˝Explain that
this is part of <iterator>.

56. 24.1.6-5

``may define''? Repeat language from 20, ``for all memory models,˝...''

57. 24.1.6-11

Header <iterator>: Drawing iostream into an implementation that ˝just
needs iterators is most unfortunate. The contents of the header ˝<itera-
tor> should be confined to those operations that do not need ˝iostream;
the rest should be put into a separate header.

58. 24.4

This should be part of the iostream library clause. In this ˝context, it

Doc No: X3J16/96-0051
WG21/N0869

Author: Roland Hartinger
Date: 06.03.1996

Siemens Nixdorf Informationssysteme AG page: 9
SU BS2000 SD224

should be decided whether this subclause needs to be templatized
together with the rest of iostream.

59. 24.3.1.2.5

Returns: *this

60. 24.3.1.2.6

Returns: x.base() == y.base(); (There is no conversion from a ˝reverse
iterator to its base.)

61. 24.3.1.3-1

The note seems misplaced, but does also apply here analogously.

62. 24.3.1.4.5

Returns: *this

63. 24.4.3.5

Change ``iterator over'' to ``iterate over''.

64. 25-5, 25-6

Predicate and BinaryPredicate are type parameters, not classes.

65. 25-5, 25-6

Predicate and BinaryPredicate are not constrained to return a ˝Boolean
value. Unfortunately, most of the descriptions that follow use ˝pseudo-
code such as ``pred(*i) == true''. This does not have identical˝seman-
tics with the description here that the predicate is used in an ˝if(){}
context. Change all further occurrences of ``== true'' into ``!=
false''.

66. 25-7

Explain X and Distance.

67. 25.1.3, 25.1.4

Align names of find_end and find_first_of.

68. 25.1.4

Returns: Change pred(i, first2+n) to pred(*i, *(first2+n)).

69. 25.1.4

Complexity: explain how a forward iterator can be used as a ˝measure for
the number of applications.

70. 25.1.5

Explain ``value''.

71. 25.1.9

Explain why variant 3 uses a ``const T&'' while variant 4 uses a ˝``T''
as its third parameter.

Doc No: X3J16/96-0051
WG21/N0869

Author: Roland Hartinger
Date: 06.03.1996

Siemens Nixdorf Informationssysteme AG page: 10
SU BS2000 SD224

72. 25.2.7, 25.2.8

Explain assignment complexity of remove, remove_if, unique (i.e., ˝whene-
ver the term ``Eliminates'' is used).

73. 25.2.8

Explain that *(first-1) is not accessed.

74. 25.2.9, 25.2.10

Correctly indent the assignment under Effects of X_copy.

75. 25.3.2-1

Change ``comp(*i, *j)'' to ``comp(*j, *i)''.

76. 25.3.3

Add the assumption that the sequences are sorted.

77. 25.3.3.3

Add ``without violating the ordering'' to the first sentence of ˝effects.

78. 25.3.5.4, 25.3.5.5

Define the terms ``difference'' and ``symmetric difference'' ˝unambi-
guously.

79. 25.3.8

Unambiguously define ``lexicographically less than''.

80. 25.4

A mandate (``shall'') cannot be in a note.
--
7) Comment from the German WG member Manfred Lichtmannegger:

Layout-Compatible Types
=======================

Chapter [basic.types] 3.9 Type paragraph 10 defines ̋ layout-compatibility

 If two types T1 and T2 are the same type, then T1 and T2 are ˝layout-compatible
 types. [Note: layout-compatible enumerations are described in ˝7.2.
 layout-compatible POD-structs and POD-unions are described in ˝9.2.]

I am not sure about cv-qualifier with respect to "T1 and T2 are ˝the same type",
but I would have expected that pointer types to layout-compatible ˝types would
be layout-compatible and that array types of layout-compatible ˝types with
the same number (!) of elements would be layout-compatible. But ˝as there is
no such definition these types are only layout-compatible when ˝they are
exactly the same types.
--
8) Comment from the German WG member Nicolai Josuttis ˝(nico@bredex.de):

 Introduce pop_value() for container adaptors

 Introduction:
Due to time penalties, the STL container
adaptor classes have no function
that removes the next element AND returns it.

Doc No: X3J16/96-0051
WG21/N0869

Author: Roland Hartinger
Date: 06.03.1996

Siemens Nixdorf Informationssysteme AG page: 11
SU BS2000 SD224

Instead two different functions top() and pop()
have to get called.
As the normal interaction with stacks and queues
is to process the next element I suggest
to introduce as add on a function pop_value() that
does the job.

 Proposed Changes:
Insert into class definition of
queue (23.2.4.1):
 value_type pop_value() {
 T tmp(front());
 pop();
 return tmp;
 }

Insert into class definition of
priority_queue (23.2.4.2):
 value_type pop_value() {
 T tmp(top());
 pop();
 return tmp;
 }

Insert into class definition of
stack (23.2.4.3):
 value_type pop_value() {
 T tmp(top());
 pop();
 return tmp;
 }

--
9) Comment from the German WG member Ulrich Eisenecker:

26.3, paragraph 3:
Note that the bad_alloc exception is not mandated.

--
10) Comment from the German WG member Ulrich Eisenecker:

26.3.2.4, footnote 7:
If this class can be instantiated from the programmer, then it
should be explicitly mentioned in the text of that paragraph.

--
11) Comment from the German WG member Udo Mueller

Design of basic_istream and basic_ostream

Problem:
If my understanding of typedef in the draft is correct (namely
that a member typedef in a template still only defines an
alias for a type rather than a type), it is not possible
to instantiate a basic_istream or a basic_ostream with an int
data type, or more general any elementary type other than char.
I do not like that, e.g. on my machine wide characters are ˝typedefed
to int.
This "feature" may be intended, as there are requirements for the
default constructor of the character container. If so, there ˝should
at least be a remark about this in the introduction.

Solution:
If the problem exists and the need for having int wide characters
(without a class wrapper) is accepted, there are several ˝solutions, e.g.

Doc No: X3J16/96-0051
WG21/N0869

Author: Roland Hartinger
Date: 06.03.1996

Siemens Nixdorf Informationssysteme AG page: 12
SU BS2000 SD224

- removing the shift operator for the parameter itself. As this
 has to be a specialization anyway, it should not be too
 much additional work, to define it as a global operator.
- making all the shift operators for the elementary types
 global. May be a good thing anyway, to reduce the differences
 between the shift operators for elementary types and
 classes.

--
12) Comment from the German WG member Udo Mueller

Editorial issues chapter 20

20.3.6.1 ff; p. 20-11
Why is the protected section the first section int the
declaration of class binderlist ? Would it not be better
to generally start with the public section?

20.4.1.1; p. 20-15;
The argument "hint" in the description of the allocator
member function is not explained. In the meantime a box has
been added, which at least gives an idea, and the name
has disappeared from 20.4.1.1, but still is present in 20.4.1.

In the former version there was a difference between n==1 and ˝n>1,
which fortunately has disappeared. Nevertheless this function
should also be allowed to use new[] to allocate an array.

20.4.1.3; p. 20-16;
class heap_allocator is not declared correctly.
--
12) Comment from the German WG member Udo Mueller

Editorial issues chapter 27

27.1.2.6; p. 27-3
What does the word "compatible" mean in this context? It might
help to give a complete definition.

27.2; p. 27-4
The forward declaration of basic_ios, basic_istream and ˝basic_ostream
leaves out the second template argument, namely the traits.
In my understanding of template default arguments this is an
error. If my understanding is wrong, this is at least bad style.

27.3.1, p. 27-5
What does the term "associate" mean? The relation between cin, ˝cout,
etc. and the corresponding stdio should be defined more ˝precisely.

27.3.1, p. 27-5, footnote 224
Just for the sake of completeness, would a rewording like
the following not be better?

Constructors and destructors for static objects can access these
objects to read from cin and stdio or write to cout, cerr, clog,
stdout and stderr.

27.4; p. 27-6

The forward declaration of ios_traits seems wrong to me:
It has the form of the forward declaration of a specialization.

Doc No: X3J16/96-0051
WG21/N0869

Author: Roland Hartinger
Date: 06.03.1996

Siemens Nixdorf Informationssysteme AG page: 13
SU BS2000 SD224

27.4.2; p. 27-8
If streampos has been moved to Annex D, why not wstreampos also?
Anyway Box 125 states a more important inconsistency: A deprecated
feature used throughout the standard.

27.4.2.3; p. 27-10
The return value of get_pos is pos_type(pos); I guess it might
say fpos. But what is the meaning of the argument state?

27.4.3; p. 27-10
The meaning of T1...T4 should be explained in a similar way as in ˝the
iomanip synopsis in 27.6

27.4.3.3; p. 27-17
It might help understandability to add a reference to 22.1.1.5 for
the term classic "C" locale.

27.4.3.4; p. 27-17
The explanation of xalloc is very short and uses the term index,
which was only explained in note 27.4.3 as: for the sake of
exposition. It should be made clear, that this is
also used to define the semantics of this function
(and the following two functions), so the word
exposition may not be appropriate.

27.4.3.4; p. 27-17
Footnote 226 is dangling

27.4.2.5; p. 27-18
There seems to be one auxiliary too much in the description of ˝the
effects of the constructor ios_base().

27.4.4; p. 27-18
The operators bool and ! have no semicolon at the end of the
line; the same applies to their description in 27.4.4.3.

27.4.4.1; p. 27-19
Why must the members be initialized using init? Would it not be
better to leave the place of the initialization to the i̋mplementor:

Default constructor and a call to init must have the same
postcondition as the constructor taking an argument.

27.4.4.2;p. 27-20
The term "synchronized with" used to explain "tied to" does
still not seem to be precise enough to me. It may be worth
explicitly defining the "syncronisation of an input and an
output sequence". There is a definition of that term in ˝27.5.2.4.2
on page 27-31, which still is incomplete(c.f. the box).

27.4.5.3; p. 27-24
Footnote 229 is dangling.

27.5.2.3.1; p. 27-30
If in gbump we have xnext>xend-n+1, the result of gbump may
be undefined with the straight forward implementation.
It seems worth to me, to state that explicitly.

27.6.1.1; p. 27-35
The first two shift operator >> in the "Formatted input" section
have no semicolon at the end; the same applies to the first
operator in 27.6.1.2.2

Doc No: X3J16/96-0051
WG21/N0869

Author: Roland Hartinger
Date: 06.03.1996

Siemens Nixdorf Informationssysteme AG page: 14
SU BS2000 SD224

What will happen, if char_type == int? Or more general, any sort
of typedef to an elementary type?
As far as my understanding goes the code will break. See problem
above.

The declaration of the last shift operator is not consistent with
the explanation in 27.6.1. The header uses

basic_istream<charT,traits>& operator>>
 (basic_streambuf<char_type,traits>* sb);

while the explanations uses

basic_istream<charT,traits>& operator>>
 (basic_streambuf<charT,traits>* sb);

27.8.1.5; p. 27-70
The openmode in the headers should be iosbase::openmode,
shouldn't it? The same applies to the explication in 27.8.1.6
--
14) Comment from the German WG member Ulrich Breymann

Wrong Specifications for Logical Iterator Conditions

25.3.3.1 "lower_bound"

To be corrected:
1. The case i == first leads to a contradiction. (range [first, ˝i) ?)
2. i == last is not specified.
Answer to Box 116: yes! or to be more exact:

Proposal:
========
lower_bound returns either
a) first, such that for any iterator j in the range (first, ˝last) the
 following conditions hold:
 (value <= *j) // '<=' introduced for readability
 resp. if only T=LessThanComparable is required:
 (value < *j) || !(*j < value)
 or
 comp(value, *j) || !comp(*j, value)
 or

b) last, such that for any iterator j in the range [first, last)˝the
 following conditions hold:
 (*j < value) or comp(*j, value) == true
 or

c) the furthermost iterator in the range (first, last) such ˝that for
 any iterator j in the range (first, i) the following.... " ˝etc.
 (rest as before)

BETTER Proposal:
================
The specifications of logical conditions have been proved as ˝error
prone. The statement:
 "Effects: lower_bound returns the first position into which ˝value
 can be inserted without violating the ordering"
is clear, sufficient, and easy to understand. Therefore the
specifications for logical iterator conditions should simply be
deleted. They do not contain any new infomation and bloat the ˝standard
document unnecessarily.

Doc No: X3J16/96-0051
WG21/N0869

Author: Roland Hartinger
Date: 06.03.1996

Siemens Nixdorf Informationssysteme AG page: 15
SU BS2000 SD224

25.3.3.2 "upper_bound"

To be corrected:
1. The case i == first leads to a contradiction. (range [first, ˝i) ?)
2. The case i == last is not specified, but must be allowed!

Answer to Box 117: yes!

In addition, the conditions specified are too weak and could be ˝more
precise.

Proposal:
========

 upper_bound returns either

a) first, such that for any iterator j in the range (first, ˝last) the
 following conditions hold:
 (value < *j) or comp(value, *j) == true
 or

b) last, such that for any iterator j in the range [first, last)˝the
 following conditions hold:
 (*j <= value) // '<=' introduced for readability
 resp. if only T=LessThanComparable is required:
 (*j < value) || !(value < *j)
 or
 comp(*j, value) || !comp(value, *j)
 or

c) the furthermost iterator i in the range
 (first, last) such that for any iterator j in the range (i,˝last)
 the following corresponding conditions hold:
 (*j > value) // '>' introduced for readability
 resp. if only T=LessThanComparable is required:
 !(*j < value) && (value < *j)
 or
 !comp(*j, value) && comp(value, *j)

BETTER Proposal:
================
The specifications of logical conditions have been proven as ˝error
prone. The statement:
 "Effects: upper_bound returns the furthermost position into ˝which
 value can be inserted without violating the ordering"
is clear, sufficient, and easy to understand. Therefore the
specifications for logical iterator conditions should simply be
deleted. They do not contain any new infomation and bloat the ˝standard
document unnecessarily.

Ref: WP Draft of Sept 26th, 1995
Subject: Wrong Table
20.1.1 Equality Comparison, p. 20-1
 'post-condition' is not suitable here as headline. Because ˝the
 statement does not imply any change, there is no need to
 differentiate between pre- and post-condition
 Proposal: replace 'post-condition' by 'comment'
This is true for a lot of other tables, too, e.g. Table 40, p. ˝20-2,
where sometimes the meanings of column items are 'post-condition'
and somtimes rather 'comment'

20.1.2 Less than comparison

Doc No: X3J16/96-0051
WG21/N0869

Author: Roland Hartinger
Date: 06.03.1996

Siemens Nixdorf Informationssysteme AG page: 16
SU BS2000 SD224

1. see 20.1.1
2. replace '==' by '<'
--
15) Comment from the German WG member Ulrich Breymann

Missing iterator parameter

24.3.2.6.5 inserter (p. 24-23) (editorial)
Missing iterator parameter
correct writing see 24.3.2.5 on the same page.

--
16) not given to ANSI/ISO since the German WG were apposed.
--
17) Comment from the German WG member Nicolai Josuttis ˝(nico@bredex.de):

Minor typos

21.1.1.8.3
 > basic_string<charT,traits,Allocator>& assign(const charT* ˝s);
 >
 > Returns: assign(basic_string(s)).

 it should return: ̋ "assign(basic_string<charT,traits,Allocator>(s))"

21.1.1.9.1
 > Returns: ̋ find(basic_string<charT,traits,Allocator>(s,n)pos);

"," is missing between "(s,n)" and "pos"

23.2.1
 in the declaration of the string constructor for bitsets,
 the template format of the definition later on is missing ˝(typo)

23.2.1.2
 > bool operator == ...
 and
 > bool operator != ...
 both:
 > Returns: "A nonzero value if ..."

 should be: Returns: "true if ..."
--
18) Comment from the German WG member Nicolai Josuttis ˝(nico@bredex.de):

Editorial note on find_first_of()/find_last_of() instead of ˝find()/rfind()

 Introduction:
string::find_first_of(charT,size_type=0)
and find(charT,size_type=0)
do exaclty the same.
Same for find_last_of(charT,size_type=0)
and rfind(charT,size_type=0).
So I propose to introduce a editorial hint
about that.

 Proposed Changes:
Introduce in 21.1.1.9.3 after the return statement of
find_first_of(charT,size_type=0):
 Notes: find(c) and find(c,pos) do exactly the same.
Introduce in 21.1.1.9.4 after the return statement of
find_last_of(charT,size_type=0):
 Notes: rfind(c) and rfind(c,pos) do exactly the same.

19) Comment from the German WG member Nicolai Josuttis ˝(nico@bredex.de):

Introduce const reference bitset::operator[] () const

Doc No: X3J16/96-0051
WG21/N0869

Author: Roland Hartinger
Date: 06.03.1996

Siemens Nixdorf Informationssysteme AG page: 17
SU BS2000 SD224

 Introduction:
For constant bitsets a possibility to use operator[]
for element acces is missing.
So I propose to introduce one.

 Proposed Changes:
Insert into class definition of
bitset (23.2.1):
 const reference operator[](size_t pos) const; // for b[i];

--
20) Comment from the German WG member Nicolai Josuttis ˝(nico@bredex.de):

Specify "#include <iterator>"

 Introduction:
For all container their header synopsis specifies which
additional header files get included.
E.g. in 23.3:
 > Header <map> synopsis
 >
 > #include <memory> // for allocator
 > ...
As all container work with iterators, they should also
include <iterator>.

So I propose for all container headers which use iterators
to specify:
 #include <iterator> // for iterators

This belongs to:
 21.1: Header <string> synopsis
 23.2: Header <deque> synopsis
 23.2: Header <list> synopsis
 23.2: Header <queue> synopsis
 23.3: Header <map> synopsis
 23.3: Header <set> synopsis

---˝
21) Comment from the German WG member Nicolai Josuttis ˝(nico@bredex.de):

capacity() and reserve()

 Introduction:
In the C++ library exist two "container" which have the member
functions cpacity() and reserve(), namely string and vector.
Their meaning is unclear described or even not
senseful described:
 - capacity() returns
 "the size of allocated storage"
 - reserve() enlarges capacity if necessary and ensures that
 "It is guaranteed that no reallocation takes place during
 the insertion that happend after reserve() til the time
 when the size of the string/vector reaches the size
 spezified by reserve".

The meaning seems not to be quite clear:
 - What does the return value of capacity() and the parameter

 for reserve() mean ? Is it the size of the storage or the
 logical number of elements/chars ?
 - If it is the size of the storage, does it include eos for ˝strings ?
 - What does "reaches the size" mean? This seems not to be exact,

 because it has to become greater than the specified ˝size
 for reserve().
So i propose to describe exactly what is meant.

Doc No: X3J16/96-0051
WG21/N0869

Author: Roland Hartinger
Date: 06.03.1996

Siemens Nixdorf Informationssysteme AG page: 18
SU BS2000 SD224

 Proposed Changes:
Change the return value description for capacity()
into the following:
For string (21.1.1.6):
 Returns:

 the number of char-like objects in the string,
 for which the size of the allocated storage is enough for.
For vector (23.2.5.4):
 Returns:

 the number of elements in the vector,
 for which the size of the allocated storage is enough for.

Change the last sentence of the description for reserve()
as follows:
For string (21.1.1.6):
 It is guaranteed that no reallocation during a insertion

 that happens after reserve() takes place until the ˝time
 when the size of the string becames greater than the size
 specified by reserve().
For vector (23.2.5.4):
 It is guaranteed that no reallocation during a insertion

 that happens after reserve() takes place until the ˝time
 when the size of the vector becames greater than the size
 specified by reserve().

--
22) Comment from the German WG member Nicolai Josuttis ˝(nico@bredex.de):

move min(), max(), swap() into utility part

 Introduction:
STL did introduce some utility functions
for maximum, minimum, and swapping.
As this functions are not algorithms but
"only" general helpful functions,
I propose to move them to into the proper places.

 Proposed Changes:
Move
 template<class T> const T& min(const T& a, const T& b);

 template<class T, class Compare>
 const T& min(const T& a, const T& b, Compare comp);
 template<class T> const T& max(const T& a, const T& ˝b);
 template<class T, class Compare>
 const T& max(const T& a, const T& b, Compare comp);

from 25 into the utility section.

Move
 template<class T> void swap(T& a, T& b);
from 25 into the utility section.

Move
 template<class ForwardIterator1, class ForwardIterator2>

 void iter_swap(ForwardIterator1 a, ForwardIterator2 ˝b);
from 25 into the iterator section.

--
23) Comment from the German WG member Nicolai Josuttis ˝(nico@bredex.de):

 Move bitset section

 Introduction and Proposed Changes:
The bitset section is placed in the manual inside
the sequences section. This seems to say that it
is a sequenceable STL container.
As it is not a STL container I suggest to move the section
after all other containers as section number 23.4.

Doc No: X3J16/96-0051
WG21/N0869

Author: Roland Hartinger
Date: 06.03.1996

Siemens Nixdorf Informationssysteme AG page: 19
SU BS2000 SD224

--
24) Comment from the German WG member Ulrich Breymann:
Ref: WP Draft of 26th January 1996
Subject: Wrong Example / Editorial issue

24.1.6 Iterator tags,
implementation of function __reverse (top of page 24-7)

wrong:
 Distance n;

Proposal:
 Distance n=0;

Reason: n is *undefined* in the example, because
 distance(first, last, n) *adds* something to n
--
25) Proposal from the German WG member Roland Hartinger

Access to Exception Object's Type Information
see Doc No: X3J16/96-0052, WG21/N0870, core-6404

--

