Doc: WG&E21/ NO860=X3J16/ 96- 0042

Project: C++ Standard Library

Date: Jan 1996

Reply to: Nathan Mers
<ncm@antri p. org>

Local e Architecture

* Copyright 1996 by Nathan C. Myers. *

Most people (nyself included!) would prefer to ignore |ocal es.

The C++ | ocal e design supports this preference, but that support
is in danger. To continue safely to ignore |ocales you will need,
unfortunately, to pay attention to this issue.

In Tokyo, a proposal that canme dangerously close to passing would
have elim nated the encapsul ation designed into the C ause 22 |ocal e

conponents, naking themessentially unusable as objects. | expect
that proposal may surface again in Santa Cruz. This paper explains
the reasoni ng behind the design of the |ocale conponents. | hope it

wi Il then become obvious why the change woul d be so destructive.
Thi s docunent al so proposes sone non-destructive alternatives.

Hi story

The story begins | ong ago, during C standardization. Plauger
describes the origin of Cs <locale.h> header

This particul ar header popped up about five years after work
began on the C Standard. ... About then, we learned that a
nunber of Europeans were unhappy ... [They] took it for granted
that an |1 SO standard for C must differ fromthe ANSI C Standard.
So we asked the Europeans to show us their shopping Iist of

changes. ... The nmachinery eventually adopted is remarkably cl ose
to the original proposal. ... Many of the objections to ANSI C
were derailed. ... WGlL4 is still working on additions to the

exi sting C Standard.

The standard C library's locale facilities were proposed | ate and
hastily adopted under threat fromoutside the commttee, but were
still unsatisfactory. How does this affect us today?

The fact is that the Clocale is used very rarely, and where it is
used, it is used very shallowy, even in Europe where it should have
been nost useful. It is used so little that many, even in Europe,
have cone to believe that standardized |locale facilities are
necessarily unusabl e.

Yet foreign markets are recognized as strategically inportant.
Hence, each |l arge conpany has a few internationalization experts
who attend internationalization conferences, and evangelize | ocale
use anong others in their conpany. Those others recognize the
subj ect as quicksand, and avoid it nuch as possible. (Don’'t you?)

One belief common (but not universal) anong these experts is that a
fundanental |esson of software devel opment -- "Encapsul ati on good,

gl obal data evil" -- doesn't apply where internationalization is

i nvol ved. The standard C library |ocale conponents are relentlessly
gl obal, so al nbst everyone who has coded internationalization in C
has experience only with global |ocales. Many have cone, through
famliarity, to believe that it is a reasonabl e approach.

The C++ Local e

The |1 SO ANSI C++ Standard effort offered an opportunity to start
afresh, and create sonething usable. W had several advantages:

TABLE 1
o W& have the benefit of hindsight;
o W have a core | anguage of far greater expressive power than C;

o0 Because we had a mandate fromthe begi nning, we can afford
to think architecturally and design carefully;

o W are inherently suspicious of argunents agai nst encapsul ati on
and in favor of dependence on gl obal data;

o0 Because we are not touching the Clocale, anything we do cannot
fail to satisfy those who (for whatever reason) actually prefer
the C locale.

To begin a fresh design, we need a "shopping list" not of changes
fromC, but of basic requirements. Here are sone of the goals the
C++ locale is designed to neet, in order of inportance:

TABLE 2

Encapsul at ed
The C++ | ocal e nmust be ignorable by anyone who doesn’'t want to
use it. Use of it in one part of a program nust not require
know edge of that use in other parts of the program

Ext ensi bl e:
Any standard list of locale facilities (nunber fornmats, date
formats, tine zone rules) is necessarily far from conplete,
so | ocal es must be extensible in several dinensions by end
users w thout comprom sing type safety or systemintegrity.

Saf e:
Local es objects must nanage their own nmenory. The interface to
| ocal e conmponents nust not offer easy opportunities for undetectable
user errors, or require casts.

Conveni ent :
Use of one feature of a |ocale nust not require |earning about
and operating other parts. Use of |ocale conponents nust be easily
hi dden behi nd hi gher-1evel interfaces.

nj ect - based:
Locales will be used in distributed prograns, where the "l oca
preferences"” vary fromone part of the programto another; also,
even single users often have reason to use nore than one format
or encoding. Hence, it rmust be practical and easy to use two,
or many, |ocal es sinultaneously.

Re-entrant:
Locales will be used in multi-threaded prograns, so the design
nmust contain no interfaces that preclude efficient re-entrant
i mpl enent ati on.

| socapabl e:
The C++ | ocale nust not |ack features found in the C | ocale.

(However, bugs in the C local e design nust be |eft behind.)
It nust not depend on nore environnental resources than the C
l'ibrary.

Non- mul ti byt e:
Mul ti byte character encodi ngs are sonetimes prohibitively hard to
use, so the C++ locale nust nmake it easy to convert to fixed-size
characters at the boundaries of a system

The nost demandi ng requirenent, by far, is encapsulation. |t affects
everyt hing about the design, often subtly. Extensibility has a nore
visible effect. The remaining requirements are not difficult once the
first two are satisfied.

We begin, of course, with an object. For safety and conveni ence,
| ocal e objects are values -- we can copy them cheaply, compare them
for equality, store themcompactly -- the usual nice properties.

A local e object resenbles a container, a map, but indexed by type, at
conpile time. The indexing operator, therefore, is not operator[],
but rather the tenplate operator <> The objects contained, Facets,
are all derived fromclass |ocale::facet, which both manages nenory
and hel ps ensure type safety. (Standard facets, too, are extensible,
by derivation, but this paper focuses on the core semantics of |ocale
objects.) The result is that access to a facet of type Tinmezone in
locale loc is accessed using the syntax:

use_facet <Ti mezone>(1 oc)

This resenbles a (newstyle) cast both in syntax and semantics.
The result is a reference to a Tinmezone object, so Tinezone nmenber
functions may be call ed:

use_f acet <Ti nezone>(1l oc) . i sdayl i ght (now) ;

Returning a reference to internal data seens dangerous, and w thout
careful |y designed guarantees it would be intolerable. An interface
that generates dangling references woul d be everybody’'s ni ghtmare.

Bef ore exploring these guarantees, let us consider alternatives.
The tenpl ate use facet<>() need not have returned a reference; it
could have returned sonething |like a smart pointer. This approach
i gnores, however, that facets in a |locale are interdependent --
formats depend on the choice of character encoding, for instance.
Facets cannot be used, practically, in isolation fromtheir |ocale.

Anot her alternative was to throw caution to the wi nd; provide no
guarantees to the user of the |locale facet, and place all the
responsibility on the | ocal e provider not to change anything
that m ght be depended on. This, however, creates an inpossible
restriction on the provider of the |ocale, because it requires
know edge of how all other parts of the programare using the
locale. It breaks encapsul ation, just |ike gl obal data.

What guarantees are necessary to nake internal references safe?

The nost inportant requirement on the guarantees is that they be
easy for the user of a locale to understand. The sinplest approach
istotiethelifetime of the reference to the lifetime of (copies
of) the locale value it was extracted from This requires, then
that it be easy to track the lifetinme of the |ocale value. The

sinplest way to ensure this is nmake | ocal es i mutable. Thus, you
can create a | ocale object, and assign it, but all other operations
are const; then the only operation to watch out for is assignment.

To make all this nore concrete, imagine a user function that uses

a local e obtained froman unknown source. It extracts references

to various facets, and calls nenber functions of those facets to
construct | ocal context. (For exanple, it mght convert the source
character set digits 0..9 to corresponding characters in the preferred
encodi ng, and construct a state machine to use in parsing.)

If these references were to becone invalid because the |ocal e changed
wi thout notice, then even if a reference were not stored the saved
results woul d becone obsol ete, and probably inconsistent with the
rest of the locale. This kind of inconsistency |eads to program
crashes. Thus, lifetime of references returned is a shorthand for
lifetime of valid results fromnenbers called on those references.

The Local e I nvari ant

The above reasoning | eads us to the Locale Invariant: use_facet<F>(Ioc)
for sonme *F* and any copy of *loc* always returns the sanme reference.
This protects agai nst dangling references, and agai nst inconsistency
bet ween references obtained for two facets F1 and F2 call ed at
different times.

The invariant can be satisfied in many ways, and sone are outlined
in the open issue 22-037 of the C ause 22 Issues List. The sinplest
is to say that any facet requested that is not found in the |ocale
is not provided, and an exception is thrown. (I now believe this
woul d be the best approach.)

A less strict approach woul d be to say that any facet found in the
gl obal locale at the tine a locale is constructed, and not represented
in that locale, is "adopted", and becones part of the locale. This
is an easy way to propagate user-defined facets safely around a system

A third approach, which is the statusquo, is to say that if the facet
is not present when requested, it is at that point "adopted"” fromthe
gl obal locale. This is what has been called "caching", and which

all parties have agreed is undesirable.

An Unwi se Attenpt at Conpromni se

This third approach was proposed as part of an attenpt at a conprom se
with users of who prefer |ocal es based on gl obal data. Another part

of this conpromi se was the provision for a special "transparent" |ocale
for which the invariant is utterly violated. For this conpronise to

be tolerable to users of |ocale objects, it was necessary to restrict
these broken "transparent” | ocal es from anywhere they can do harm such
as in iostream

The attenpt at conpromise failed, in that those it was intended to
satisfy have wholly rejected it, and attacked the Local e I nvariant
itself. It would substantially sinplify locale to elinminate the
conprom se, and (if necessary) pursue some other approach. That is:
strike the transparent |ocale and strike the "adoption" semanti cs.

As we have National Body comrents describing the status quo as
unacceptabl e, we have cause to proceed with this sinmplification. |If

a different conprom se can be proposed by those who prefer C semantics
but are dissatisfied with the Clocale, it can be proposed and
considered on its own nerits.

What, then, shall we say to those who want to inbue "transparent"”

or "partially transparent" locales into iostreans, regardless of

the consequences? They argue that conpatibility with "past practice"
requi res some concession. Past practice, however, is the Standard

C Library. It remains untouched, and it remains exactly as usable
as ever.

Concl usi on

The reader should notice that none of the arguments above depend on
references to multithreading, or to performance of or convenience in
i npl enenting the Standard Library. Wile such argunents present
useful exanples, the issue is nore fundanental, and concerns al
potential users of |ocales, even those who want to know not hi ng
about the subject.

If the Locale Invariant were to be broken for the sake of "simplicity",
we could gain far greater sinplicity at idential cost in expressive
power usability sinply by elimnating |ocale objects entirely, and
returning to a single global Iocale.

Proposed Resol uti on:

One of:
1. Elimnate the Fail ed Conprom se

Sinplify the semantics of |ocal e nenbers, and of |ocale use by striking
out the static nenber locale::transparent(), and all nention of it.
Change the description of use facet<> as foll ows:

templ ate <cl ass Facet >
const Facet & use_facet(const |ocal e& | oc);

Get a reference to a facet of a |ocale.

Returns: a reference to the corresponding facet of loc, if present.

Throws: bad_cast if the facet is not present.

Notes: the reference returned remains valid at |east as |ong as any
copy of |oc exists.

This results in the cleanest, sinplest possible semantics, and
el i m nates "caching".
2. Patch the Fail ed Conprom se

If (1) is considered too radical, then adopt the WP changes above,
with the addition of:

At the beginning of [lib.locale.cons],

For all constructors except |ocal e(const |ocale&, any facet found
in the current global locale at the time of construction, and not
ot herwi se specified by argunents, is added to the constructed

| ocal e.

This elimnates the objected-to "caching" behavior, but retains a safe
nmeasure of a convenient substitute for transparency, at no objectionable
cost in conplexity.

3. Adopt the M ni num Reasonabl e Change, Regardl ess of Useful ness

Retain |l ocale::transparent() and all its special cases and
restrictions on its use. Add the paragraph from(2), repl ace

the Throws: portion of the description of use facet<>() as
fol |l ows:

Throws: bad_cast if has_facet<Facet>(*this) is false. Throws other
unspeci fi ed objects catchable as exception on failure.

and strike the Effects: portion
This has the effect of elimnating the universally objected-to

"cachi ng" behavior, w thout violating the design invariant or
i ntroduci ng ot herw se-unnecessary changes.

* * *

The three alternatives above elinminate the objected-to "caching
behavior" while retaining the necessary object senmantics of |ocales.

