COMMENTS ON LOCALE OBJECTS
X3J16/ 96- 0037
WE21/ NO855

P.J. Pl auger

[At Tom Plum s suggestion, | reproduce here several postings | nmade
to the ad hoc | ocales reflector Tom established after Tokyo.]

I think it’s tinme to revisit the business of caching |ocale facets,
gi ven the recent discussion of codecvt facets in particular. Here
is a brief sunmary of the rel evant issues.

Local es are used widely throughout iostreanms, to encapsul ate
culture-specific information. In the vast mgjority of uses, a
function calls use_facet(getloc(), Facet) to obtain a const
reference to a facet of type Facet. The tenplate function

use _facet looks first in the | ocale object delivered up by
getloc() (the object inbued into the streamj. Only if it can't
find such a facet there does it then look in the global |ocale
(the object returned by the default constructor locale()).

If neither object contains the facet, use_facet throws

bad cast. Otherw se, use facet returns the reference, the
calling function uses it as necessary, then it discards the
reference when its work i s done.

Ref erences into an object, const or otherw se, can be peril ous.

The user wants assurances that the reference will not be

di scredited by a change to the object while the reference is
active. The current draft attenpts to aneliorate this peri

by adopting a sinple caching rule -- if use_facet ever successfully
returns a facet for a given locale object, it will henceforth

al ways succeed for a simlar call on that object. To enforce this

i nvari ant:

o] The programmer has no way to change the facets that constitute
a locale object, once it has been constructed.

o] use_facet *does* change the object as needed, by copying a
facet found in the gl obal object into the |ocal e object
first inspected on a use _facet call

While this invariant has a certain surface appeal, | naintain
that it is neither necessary nor sufficient to provide for safety
of references. Miyreover, it leads to several forms of undesirable
behavior. That’'s why | have repeatedly argued to elimnate the
caching requirenent from use facet.

The invariant is sinply not necessary in the vast majority of
cases. An iostreans nenber function calls use facet, uses the result,
then returns. Nowhere in this sequence does an opportunity exist
for the programto change either the inbued or the global |ocale
objects. In fact, the only place in the entire library where an
opportunity exists is in basic_filebuf. At some point, the object
nmust fixate upon two facets, codecvt<char, traits::char_type,
traits::state_type> and codecvt<traits::char_type, char
traits::state_type> which it uses for subsequent conversions
between the internal sequence of traits::char_type el ements and
the external sequence of char elenents. As control passes in and
out of the basic filebuf nenber functions, anple opportunity
exists for the programto change both the inbued | ocale and the
gl obal I ocale.

The current draft attenpts to deal with changes in the inbued

| ocale. Every call to inbue for the streamcalls pubi nbue for
the basic_streambuf, which calls the virtual inmbue for the
basi c_streanbuf. Presumably, basic _fil ebuf supplies its own
definition of inbue, which can check for a change of codecvt
facets and act accordingly. As we have discussed earlier
however :

o] It is easy to mstake an apparently innocuous call to inbue
(fromthe programmer’s perspective) for a demand that the
basi c_fil ebuf abandon one codecvt discipline for another
with potentially surprising and disastrous results.

o] It is not possible, in the general case, to reliably switch
codecvt disciplines in nmd stream

That’'s why | used the term*‘‘fixate’’ earlier. My experience is
that the only safe way to wite basic_filebuf is to have it
determ ne its codecvt discipline early on, then stick with it.

It is an easy matter to construct a |ocal e object, contained
within basic filebuf, that assimlates the two codecvt facets
for the life of the basic _filebuf object. Once this assinilation
is performed, both the |ocal e object inbued in the stream and
the global locale are free to change, with no fear that the
codecvt references are conprom sed.

Put sinply, caching is not necessary for nost calls to use facet
within iostreans. Wiere it is arguably necessary, for one style
of ensuring the reliability of facet references, it is not
sufficient. Wrse, caching has undesirabl e behavi or

o] Just when a facet is cached depends critically on the pattern
of calls to use facet. A programthat changes the global |ocale
object can be surprised to find that a newy introduced facet
is ignored by sonme streamnms but emnbraced by others.

o] Programs that want to deal in transparent, or sem -transparent
| ocales, are actively thwarted. In particular, the EX STING
PRACTI CE of having streans affected by a changi ng gl obal |ocale
cannot be reproduced.

It is worth repeating that caching never occurs for the conmonest
uses of the library. The current draft nakes it inpossible for a
conformng programto inbue a locale into any of the predefined
streans that |acks any facets used by the library. To set up a
situation where caching m ght nake a difference, a program woul d
have to:

o] speci alize a streamon sone el enment type other than char or
wchar _t

0 explicitly specialize the two relevant flavors of codecvt

o] create a |l ocal e object that contains these two facets and

make it the global |ocale

Havi ng done this nmore than once, | can affirmthat it takes
consi derabl e sophistication to pull off successfully.

But even if we nake transparent |ocales nmore w dely avail abl e,
which is also ny earnest desire, | see no problens introduced
by elimnating caching fromuse facet. Quite the contrary, the
library becones sinpler and nore usabl e. The caching requirenent
for use_facet should be struck.

In earlier postings, |I've discussed why | think caching should be
renoved fromuse facet. | concur, however, that caching of facets
is still at tinmes desirable. What follows is a list of such
situations, and how caching can be properly tailored to the job
at hand.

First let ne repeat that caching is not strictly necessary for

the vast mpjority of calls to use facet within iostreans, which

is the principal client for locale facets within the draft Standard
C++ library. Between the use_facet call and the end of the scope
that uses the facet reference, no calls can intervene that m ght
invalidate the facet reference. Since caching within the |ocale
object itself leads to surprising and undesirable semantics, it

is better to elimnate caching within use facet conpletely.

The only place within the current draft where facet references
shoul d endure, as | have al so observed, is the two codecvt
facets used by each basic_filebuf to performI1/O conversions.
In this case, you can capture each facet reference in a locale
object private to each basic _fil ebuf object. Thus, given nmenber
objects of the form

I nfacet *inptr;
Qut facet *out put;
| ocal e nyl oc;

you can stabilize the facet references by witing:

inptr = (Infacet *)&use_facet<lnfacet>(getloc());
outptr = (Qutfacet *)&use_facet<CQutfacet>(getloc());
nyl oc = | ocal e(l ocal e(getloc(), inptr), outptr);

Subsequent changes to either the gl obal or the inmbued |ocale
cannot invalidate the facets pointed to by inptr and output.

So much for the strict requirenents. In practice, other
considerations intrude. One is a desire for good perfornmance.
The need to consult multiple facets while performng I/0O | eads
to sone inevitable and unfortunate | oss of perfornmance over
well tuned C-style I/O That nakes it all the nmore desirable
to elimnate inefficiencies where possible.

One prospect often nmentioned is the caching of |ocale references
within an iostream object between calls. The idea is to at |east
elimnate nost calls to use facet during I/O processing. So
within ipfx, for exanple, you might replace:

const ctype<charT>& fac = use_facet <ctype<charT> >(getloc());
with:

if (ctyptr == 0)
ctyptr = (ctype<charT> *)&use_facet <ctype<charT> >(getloc());

Subsequent references to fac then get replaced by *ctyptr. You
have to set the menber ctyptr to a null pointer at construction
time and on each call to inmbue. The payoff is that you typically
elimnate all but one call to use facet.

This particular code relies on the caching of the facet
ctype<charT>, within the inbued locale, on the first call to
use facet. (It is currently inpossible to cause such caching
behavior to actually occur for ctype<char> or ctype<wchar _t>,
but the situation *can* arise, even with the status quo.)
Only a call to inmbue can endanger the validity of ctyptr --
thus the need to clear the pointer within inbue. But what if

we renove that guarantee? The code above can change to:

if (ctyptr !'=0)
facptr = ctyptr;
el se
{facptr = (ctype<charT> *)&use_f acet <ctype<charT> >(getl oc());
i f (has_facet<ctype<charT> >(getloc()))
ctyptr = facptr; }

Subsequent references to fac then get replaced by *facptr. This
code adapts just as readily to the very common case of a facet

in the inbued locale, with essentially the same perfornmance

i mprovenent. If the programinbues a | ocale transparent to
ctype<charT>, however, it picks up the facet fromthe current

gl obal locale on each call -- the desired behavior. | naintain
that this code is not materially harder to wite than the earlier
version, yet it supports several desirable ways to use locales in
a program

Two quick comrents in passing. | acknow edge that the first exanple
can be nade slightly faster. You can put all calls to use_facet in

constructors and inbue, thereby saving the test for a null pointer.
| also nmust observe that use facet can inline quite efficiently.

It is questionable, to nme at |east, whether this formof caching

is even worth the bother. Neverthel ess, programers should be

aware of their inplenentation options.

Caching of facet references can be considered inportant for a
slightly different performance reason. Many inpl ementations these
days nust worry about nulti-threading environnents. Wthin the
library, that nmeans you have to identify and protect critica
sections -- execution intervals over which it is inadvisable to

| et another thread assune control. While such matters are beyond
the scope of the Standard, we certainly don’t want to introduce
gratuitous inpedinents within the draft to decent inplementation
of thread safety in |library code

otaining a reference into an object clearly introduces such a
critical section. Fromthe tinme you get such a reference to the
time you dispose of it, you don't want to pernit another thread
to discredit the reference. The current schenme of caching within
use_facet mnimzes the dangers of changi ng the global |ocale
object. It reduces the nunber of critical sections in library
code, or at |east shortens sone of them But it doesn’'t solve
the whol e probl em of dangling references. The library nust stil
worry about calls to inbue, within another thread, discrediting
a reference in the current thread.

(As an inportant aside, it is clearly difficult to get sensible
behavior in a programthat has two threads poundi ng away at the
sane stream object. About all a library can typically do is
ensure that the behavior stays sane, if not always sensible.

I’d rather not go off on a tangent about whether a program
shoul d be doing some of the things we nust neverthel ess protect
agai nst.)

This is why, in Tokyo, | characterized caching as a perfornmance
issue in a nulti-threading environment. Any tinme you inplenent

a library for such an environment, you have to design in critica
sections. The conservative approach is to block thread sw tching
freely and often. But such conservatismoften |eads to | ockouts
that are both unnecessary and undesirable. The result can be the
| oss of significant processing overlap, for which the threads
were introduced in the first place. Gven that an inplenmentation
al ways has to do *sonethi ng*, nost design discussions devol ve
into argunments about the relative performance costs.

Various schenes exist for mnimzing the nunber, length, and

i mpact of critical sections. That is an essay unto itself.

Suffice it to say here that protecting individual facet references
is often nore desirable than | ocking out thread swi tching during
great stretches of 1/O And the nmachinery for doing so already
exists, by and large. The essential trick is to create an auto
object, private to a thread, which ensures that a reference
remai ns stable while it is being used.

Say you want to be sure that the reference to facet ctype<charT>
remai ns stabl e during execution of ipfx, but you don't want to
prevent all task switching. A sinple variant of the trick I
showed earlier for basic filebuf can do the job. Wthin a
critical section you wite:

| ocal e | oc(getloc(),
(ctype<char T> *) &use_f acet <ct ype<char T> >(getloc());

The facet then survives as |long as the dynam c object |oc does.

Unfortunately, creating a |ocale object this way is not very
cheap. It may be acceptable each tine you construct a new
basic_fil ebuf, but not each tine you then read fromthe stream
I find a sinple extension nore appealing. Have a vari ant

of use facet return a smart pointer to the desired facet. The
smart pointer asserts ownership when it is constructed by upping
the ref count stored in the facet. It lets go by downing the
ref count when it is destroyed. Wiile alive, the smart pointer
grants ready access to the facet pointer by overl oadi ng
operator* (and operator->). Critical sections are largely
confined to the revised use facet and the nmenber functions of
the smart pointer.

We could add this machinery to the draft, but | see no conpelling
need to do so. It is the sort of thing you concoct when addi ng
code to handle nulti-thread support. No need to standardize
everyt hi ng.

In sunmary, | believe that the current draft offers numerous --

and better -- alternatives to caching facets within use_facet.

It is easy to fear the unknown dangers of a change in specification
froma paper design. Once you've witten the code, however, the
dangers can be seen to lie nore clearly in the original design
itself. Luckily, it is not that hard to debug.

Nat han Myers writes:

bytes of a multibyte character. Cdearly, if one changes the codeset
after these bytes have been swall owed, then they nust be coughed
back up, and reinterpreted under the new codeset. This is no

harder than doi ng seeks, however.

> > |'ve done a bit nore analysis, having witten any nunber of

> > code converters over the years, and nore than a few codecvt

> > facets this past year. The probl em ext ends beyond | ocki ng

> > shift states, because a code converter often stores the *parse*
> > state as well as the shift state in its nbstate t (or equival ent)
> > object.

>

> | assume that by "parse state" Bill neans swallowing the first few
>

>

>

>

Thereby reducing to an al ready unsol ved probl en? The draft gives no
hi nt about the neani ng of streanpos objects obtained froma stream
that has been translated with multiple codecvt facets. Even assum ng

we solve this problem (and it isn't an easy one to solve), we nust
notice that there are seeks and there are seeks. Specifically, the
only absolutely portable, reliable seeks are back to a place you've
already visited and nenorized in a streanpos object. Relative seeks
aren’t guaranteed to work. Nor is nore than one character of
pushback.

Wiy does this matter? Because popul ar coding rules exist that allow
an indefinite number of shift codes at the beginning of a character.
Sone allow multiple ways to encode the sane character. So the
codecvt facet can’t, in general, just look at its renmenbered parse
state and deduce the character sequence that got it there. If it
tried to save the raw characters, in a basic_string object for
exanple, it mght have to squirrel away a sequence of unbounded
length. Even if it can determ ne what characters to ‘‘cough back,’
it can’'t depend on pushback to do the job

The next best prospect is to count the nunmber of characters consuned
since the last delivered character, but that is a useful value only

for streans that support relative seeks. People fortunate enough to
work only under UNI X, and a few systens heavily influenced thereby,

will see this as no problem Those of us who have dealt with the

| arger world of C inplenentations for the past quarter century know
better. W want to define the C++ Standard, and supply working

i npl enentations, that a broad range of custoners will find

sati sfactory.

The only thing I know that ‘‘works’’ -- in the sense that it neets
the semantic requirements -- is to have basic_fil ebuf::ufl ow
effectively performan ftell at the begi nning of each character
parse. The vast mpjority of these calls are wasted, but you have
to have done one for the nost recent character to successfully
pul | off an arbitrary change of codecvt facets in md stream
Much nonsense is witten about performance, but it is well
docunented that any file I/O operation that must occur on a
per-character basis is going to cause a significant performance
hit for many prograns. | maintain that this is a high price to
pay, for *all* prograns, to satisfy the needs of an esoteric few
who indul ge in nid-streamfacet switching.

> In analyzing this issue, we should be careful not to describe
> things as ridiculously difficult if they are equivalent to
> operations we already do, such as seeking.

We should be equally careful not to view the world through
rose-col ored gl asses.

> | question whether all this machinery is worth adding, to
> performan operation that is esoteric at best. Better to
> | eave codecvt switching in md stream an undefi ned operation

VVVYVYV

Let’s not beg the question. Better for whon?

Qovi ously, a sinpler mechanismis better for inplenmentors,
because they have |l ess work to do. It is also better for users,
absent any other factors, because they will |ikely get code
that has fewer bugs. But that is just one of my concerns.

want semantics sinple and obvi ous enough that producers and
consunmers will understand it, and not inadvertently proliferate
i nconpati bl e dial ects because of varying interpretations. And

I want semantics that can be inplenented efficiently and
portably in any environnent that supports Standard C. O herwi se,
we will find our clever standard ignored by significant chunks
of the user comunity.

> |f inplenmentors "get it right", nobody else will have to worry

about it. If inplementors welch, then everybody else will have to
worry. The Japanese, in particular, will be westling with codeset
conversion for a long time, and they are counting on us to get it
ri ght and not |eave themin the cold.

V V VYV

Not hi ng I have described so far can be construed as | eaving the
Japanese ‘‘in the cold.”” | probably supplied the first C compiler
with Kanji support, alnpst fifteen years ago. | continue to assi st
Japanese conpanies with both C and C++ conpiler and library needs.
My goal is to supply themw th something that denmponstrably works,
preferably conformng to the C++ Standard. |If the C++ Standard

is overly anbitious, however, then it becones | ess relevant to ny
customers. (They pointedly told me so, again, just a few weeks ago
in Tokyo.)

BTW if you're really intent on reading streanms that
identify their encoding in a prefix, you should probably supply a
speci al codecvt that reads and adapts. (It can al so have added nenber
functions that the programcan call to report a safe switch of
encodi ngs.)

VVYVYVYV
VVYVYVYV

Enmbeddi ng codeset tags invisibly in a streamis a very specialized
way to communi cate. One can hardly pretend that it is general enough
for uses where codeset information cones from many pl aces, and

where coeecvt<> inplenentations are prorietary.

VVVVVVYVYVYVYV

| wasn’'t describing enbedded codeset tags as a general solution. Quite
the contrary, | chose it as one of an open-ended set of very specific,
and controlled, ways that soneone m ght supply a *well defined* way to
switch code conversions in md stream Qher *well defined* ways m ght
require calls to the added nenber functions of a bespoke codecvt facet,
as | suggested above. Even proprietary codecvt facets can come with a
set of guidelines for when it is safe to switch to and fromtheir
control. Leaving such swi tching undefined | eaves open the possibility
that such a mini market can devel op, wi thout saddling the nuch | arger
conmunity with the real and obvious costs of supporting this very
speci al i zed need.

If identifying problens and fixes necessarily nmeans "l ardi ng up",
then we might as well all go honme. The purpose of this discussion

is to determ ne how far we can go in supporting users who necessarily
work with multiple codesets. |If you ve never coded for Asian
markets, this may | ook frivolous to you; but it hel ps nobody to

keep sayi ng so.

VVVYVYVYV

| thought the purpose of this discussion was to determ ne how to
respond to public coments on the existing draft C++ Standard. Those
comments have identified a nunber of deficiencies -- nmany obvi ously
stemmng fromthe fact that designs have been adopted into the draft
before being inplenented. It is now our job to debug these current
desi gns, not el aborate them even further

> The question was: is a nmenber in codecvt<> that indicates whether
> the codeset has |ocking shift states sufficient to determ ne whet her
> changi ng codesets can be done safely?

And the answer is no.

Thi s menber woul d be equi val ent
to mblen(0,0) inthe Clibrary. A meaningful answer would detail a
case where the change could not be nade safely, even in the absence
of locking shift states.

V V VYV

See above for neani ngful answer.

P.J. Pl auger

