

 COMMENTS ON LOCALE OBJECTS
 X3J16/96-0037
 WG21/N0855

 P.J. Plauger

 [At Tom Plum’s suggestion, I reproduce here several postings I made
 to the ad hoc locales reflector Tom established after Tokyo.]

 I think it’s time to revisit the business of caching locale facets,
 given the recent discussion of codecvt facets in particular. Here
 is a brief summary of the relevant issues.

 Locales are used widely throughout iostreams, to encapsulate
 culture-specific information. In the vast majority of uses, a
 function calls use_facet(getloc(), Facet) to obtain a const
 reference to a facet of type Facet. The template function
 use_facet looks first in the locale object delivered up by
 getloc() (the object imbued into the stream). Only if it can’t
 find such a facet there does it then look in the global locale
 (the object returned by the default constructor locale()).
 If neither object contains the facet, use_facet throws
 bad_cast. Otherwise, use_facet returns the reference, the
 calling function uses it as necessary, then it discards the
 reference when its work is done.

 References into an object, const or otherwise, can be perilous.
 The user wants assurances that the reference will not be
 discredited by a change to the object while the reference is
 active. The current draft attempts to ameliorate this peril
 by adopting a simple caching rule -- if use_facet ever successfully
 returns a facet for a given locale object, it will henceforth
 always succeed for a similar call on that object. To enforce this
 invariant:

 o The programmer has no way to change the facets that constitute

a locale object, once it has been constructed.

 o use_facet *does* change the object as needed, by copying a

facet found in the global object into the locale object
first inspected on a use_facet call.

 While this invariant has a certain surface appeal, I maintain
 that it is neither necessary nor sufficient to provide for safety
 of references. Moreover, it leads to several forms of undesirable
 behavior. That’s why I have repeatedly argued to eliminate the
 caching requirement from use_facet.

 The invariant is simply not necessary in the vast majority of
 cases. An iostreams member function calls use_facet, uses the result,
 then returns. Nowhere in this sequence does an opportunity exist
 for the program to change either the imbued or the global locale
 objects. In fact, the only place in the entire library where an
 opportunity exists is in basic_filebuf. At some point, the object
 must fixate upon two facets, codecvt<char, traits::char_type,
 traits::state_type> and codecvt<traits::char_type, char,
 traits::state_type>, which it uses for subsequent conversions
 between the internal sequence of traits::char_type elements and
 the external sequence of char elements. As control passes in and
 out of the basic_filebuf member functions, ample opportunity
 exists for the program to change both the imbued locale and the
 global locale.

 The current draft attempts to deal with changes in the imbued

 locale. Every call to imbue for the stream calls pubimbue for
 the basic_streambuf, which calls the virtual imbue for the
 basic_streambuf. Presumably, basic_filebuf supplies its own
 definition of imbue, which can check for a change of codecvt
 facets and act accordingly. As we have discussed earlier,
 however:

 o It is easy to mistake an apparently innocuous call to imbue

(from the programmer’s perspective) for a demand that the
basic_filebuf abandon one codecvt discipline for another,
with potentially surprising and disastrous results.

 o It is not possible, in the general case, to reliably switch

codecvt disciplines in mid stream.

 That’s why I used the term ‘‘fixate’’ earlier. My experience is
 that the only safe way to write basic_filebuf is to have it
 determine its codecvt discipline early on, then stick with it.
 It is an easy matter to construct a locale object, contained
 within basic_filebuf, that assimilates the two codecvt facets
 for the life of the basic_filebuf object. Once this assimilation
 is performed, both the locale object imbued in the stream and
 the global locale are free to change, with no fear that the
 codecvt references are compromised.

 Put simply, caching is not necessary for most calls to use_facet
 within iostreams. Where it is arguably necessary, for one style
 of ensuring the reliability of facet references, it is not
 sufficient. Worse, caching has undesirable behavior:

 o Just when a facet is cached depends critically on the pattern

of calls to use_facet. A program that changes the global locale
object can be surprised to find that a newly introduced facet
is ignored by some streams but embraced by others.

 o Programs that want to deal in transparent, or semi-transparent

locales, are actively thwarted. In particular, the EXISTING
PRACTICE of having streams affected by a changing global locale
cannot be reproduced.

 It is worth repeating that caching never occurs for the commonest
 uses of the library. The current draft makes it impossible for a
 conforming program to imbue a locale into any of the predefined
 streams that lacks any facets used by the library. To set up a
 situation where caching might make a difference, a program would
 have to:

 o specialize a stream on some element type other than char or

wchar_t

 o explicitly specialize the two relevant flavors of codecvt

 o create a locale object that contains these two facets and

make it the global locale

 Having done this more than once, I can affirm that it takes
 considerable sophistication to pull off successfully.

 But even if we make transparent locales more widely available,
 which is also my earnest desire, I see no problems introduced
 by eliminating caching from use_facet. Quite the contrary, the
 library becomes simpler and more usable. The caching requirement
 for use_facet should be struck.

 In earlier postings, I’ve discussed why I think caching should be
 removed from use_facet. I concur, however, that caching of facets
 is still at times desirable. What follows is a list of such
 situations, and how caching can be properly tailored to the job
 at hand.

 First let me repeat that caching is not strictly necessary for
 the vast majority of calls to use_facet within iostreams, which
 is the principal client for locale facets within the draft Standard
 C++ library. Between the use_facet call and the end of the scope
 that uses the facet reference, no calls can intervene that might
 invalidate the facet reference. Since caching within the locale
 object itself leads to surprising and undesirable semantics, it
 is better to eliminate caching within use_facet completely.

 The only place within the current draft where facet references
 should endure, as I have also observed, is the two codecvt
 facets used by each basic_filebuf to perform I/O conversions.
 In this case, you can capture each facet reference in a locale
 object private to each basic_filebuf object. Thus, given member
 objects of the form:

 Infacet *inptr;
 Outfacet *output;
 locale myloc;

 you can stabilize the facet references by writing:

 inptr = (Infacet *)&use_facet<Infacet>(getloc());
 outptr = (Outfacet *)&use_facet<Outfacet>(getloc());
 myloc = locale(locale(getloc(), inptr), outptr);

 Subsequent changes to either the global or the imbued locale
 cannot invalidate the facets pointed to by inptr and output.

 So much for the strict requirements. In practice, other
 considerations intrude. One is a desire for good performance.
 The need to consult multiple facets while performing I/O leads
 to some inevitable and unfortunate loss of performance over
 well tuned C-style I/O. That makes it all the more desirable
 to eliminate inefficiencies where possible.

 One prospect often mentioned is the caching of locale references
 within an iostream object between calls. The idea is to at least
 eliminate most calls to use_facet during I/O processing. So
 within ipfx, for example, you might replace:

 const ctype<charT>& fac = use_facet<ctype<charT> >(getloc());

 with:

 if (ctyptr == 0)

ctyptr = (ctype<charT> *)&use_facet<ctype<charT> >(getloc());

 Subsequent references to fac then get replaced by *ctyptr. You
 have to set the member ctyptr to a null pointer at construction
 time and on each call to imbue. The payoff is that you typically
 eliminate all but one call to use_facet.

 This particular code relies on the caching of the facet
 ctype<charT>, within the imbued locale, on the first call to
 use_facet. (It is currently impossible to cause such caching
 behavior to actually occur for ctype<char> or ctype<wchar_t>,
 but the situation *can* arise, even with the status quo.)
 Only a call to imbue can endanger the validity of ctyptr --
 thus the need to clear the pointer within imbue. But what if

 we remove that guarantee? The code above can change to:

 if (ctyptr != 0)

facptr = ctyptr;
 else

{facptr = (ctype<charT> *)&use_facet<ctype<charT> >(getloc());
if (has_facet<ctype<charT> >(getloc()))

ctyptr = facptr; }

 Subsequent references to fac then get replaced by *facptr. This
 code adapts just as readily to the very common case of a facet
 in the imbued locale, with essentially the same performance
 improvement. If the program imbues a locale transparent to
 ctype<charT>, however, it picks up the facet from the current
 global locale on each call -- the desired behavior. I maintain
 that this code is not materially harder to write than the earlier
 version, yet it supports several desirable ways to use locales in
 a program.

 Two quick comments in passing. I acknowledge that the first example
 can be made slightly faster. You can put all calls to use_facet in
 constructors and imbue, thereby saving the test for a null pointer.
 I also must observe that use_facet can inline quite efficiently.
 It is questionable, to me at least, whether this form of caching
 is even worth the bother. Nevertheless, programmers should be
 aware of their implementation options.

 Caching of facet references can be considered important for a
 slightly different performance reason. Many implementations these
 days must worry about multi-threading environments. Within the
 library, that means you have to identify and protect critical
 sections -- execution intervals over which it is inadvisable to
 let another thread assume control. While such matters are beyond
 the scope of the Standard, we certainly don’t want to introduce
 gratuitous impediments within the draft to decent implementation
 of thread safety in library code.

 Obtaining a reference into an object clearly introduces such a
 critical section. From the time you get such a reference to the
 time you dispose of it, you don’t want to permit another thread
 to discredit the reference. The current scheme of caching within
 use_facet minimizes the dangers of changing the global locale
 object. It reduces the number of critical sections in library
 code, or at least shortens some of them. But it doesn’t solve
 the whole problem of dangling references. The library must still
 worry about calls to imbue, within another thread, discrediting
 a reference in the current thread.

 (As an important aside, it is clearly difficult to get sensible
 behavior in a program that has two threads pounding away at the
 same stream object. About all a library can typically do is
 ensure that the behavior stays sane, if not always sensible.
 I’d rather not go off on a tangent about whether a program
 should be doing some of the things we must nevertheless protect
 against.)

 This is why, in Tokyo, I characterized caching as a performance
 issue in a multi-threading environment. Any time you implement
 a library for such an environment, you have to design in critical
 sections. The conservative approach is to block thread switching
 freely and often. But such conservatism often leads to lockouts
 that are both unnecessary and undesirable. The result can be the
 loss of significant processing overlap, for which the threads
 were introduced in the first place. Given that an implementation
 always has to do *something*, most design discussions devolve
 into arguments about the relative performance costs.

 Various schemes exist for minimizing the number, length, and
 impact of critical sections. That is an essay unto itself.
 Suffice it to say here that protecting individual facet references
 is often more desirable than locking out thread switching during
 great stretches of I/O. And the machinery for doing so already
 exists, by and large. The essential trick is to create an auto
 object, private to a thread, which ensures that a reference
 remains stable while it is being used.

 Say you want to be sure that the reference to facet ctype<charT>
 remains stable during execution of ipfx, but you don’t want to
 prevent all task switching. A simple variant of the trick I
 showed earlier for basic_filebuf can do the job. Within a
 critical section you write:

 locale loc(getloc(),

(ctype<charT> *)&use_facet<ctype<charT> >(getloc());

 The facet then survives as long as the dynamic object loc does.

 Unfortunately, creating a locale object this way is not very
 cheap. It may be acceptable each time you construct a new
 basic_filebuf, but not each time you then read from the stream.
 I find a simple extension more appealing. Have a variant
 of use_facet return a smart pointer to the desired facet. The
 smart pointer asserts ownership when it is constructed by upping
 the ref count stored in the facet. It lets go by downing the
 ref count when it is destroyed. While alive, the smart pointer
 grants ready access to the facet pointer by overloading
 operator* (and operator->). Critical sections are largely
 confined to the revised use_facet and the member functions of
 the smart pointer.

 We could add this machinery to the draft, but I see no compelling
 need to do so. It is the sort of thing you concoct when adding
 code to handle multi-thread support. No need to standardize
 everything.

 In summary, I believe that the current draft offers numerous --
 and better -- alternatives to caching facets within use_facet.
 It is easy to fear the unknown dangers of a change in specification
 from a paper design. Once you’ve written the code, however, the
 dangers can be seen to lie more clearly in the original design
 itself. Luckily, it is not that hard to debug.

 Nathan Myers writes:

 > > I’ve done a bit more analysis, having written any number of
 > > code converters over the years, and more than a few codecvt
 > > facets this past year. The problem extends beyond locking
 > > shift states, because a code converter often stores the *parse*
 > > state as well as the shift state in its mbstate_t (or equivalent)
 > > object.
 >
 > I assume that by "parse state" Bill means swallowing the first few
 > bytes of a multibyte character. Clearly, if one changes the codeset
 > after these bytes have been swallowed, then they must be coughed
 > back up, and reinterpreted under the new codeset. This is no
 > harder than doing seeks, however.

 Thereby reducing to an already unsolved problem? The draft gives no
 hint about the meaning of streampos objects obtained from a stream
 that has been translated with multiple codecvt facets. Even assuming

 we solve this problem (and it isn’t an easy one to solve), we must
 notice that there are seeks and there are seeks. Specifically, the
 only absolutely portable, reliable seeks are back to a place you’ve
 already visited and memorized in a streampos object. Relative seeks
 aren’t guaranteed to work. Nor is more than one character of
 pushback.

 Why does this matter? Because popular coding rules exist that allow
 an indefinite number of shift codes at the beginning of a character.
 Some allow multiple ways to encode the same character. So the
 codecvt facet can’t, in general, just look at its remembered parse
 state and deduce the character sequence that got it there. If it
 tried to save the raw characters, in a basic_string object for
 example, it might have to squirrel away a sequence of unbounded
 length. Even if it can determine what characters to ‘‘cough back,’’
 it can’t depend on pushback to do the job.

 The next best prospect is to count the number of characters consumed
 since the last delivered character, but that is a useful value only
 for streams that support relative seeks. People fortunate enough to
 work only under UNIX, and a few systems heavily influenced thereby,
 will see this as no problem. Those of us who have dealt with the
 larger world of C implementations for the past quarter century know
 better. We want to define the C++ Standard, and supply working
 implementations, that a broad range of customers will find
 satisfactory.

 The only thing I know that ‘‘works’’ -- in the sense that it meets
 the semantic requirements -- is to have basic_filebuf::uflow
 effectively perform an ftell at the beginning of each character
 parse. The vast majority of these calls are wasted, but you have
 to have done one for the most recent character to successfully
 pull off an arbitrary change of codecvt facets in mid stream.
 Much nonsense is written about performance, but it is well
 documented that any file I/O operation that must occur on a
 per-character basis is going to cause a significant performance
 hit for many programs. I maintain that this is a high price to
 pay, for *all* programs, to satisfy the needs of an esoteric few
 who indulge in mid-stream facet switching.

 > In analyzing this issue, we should be careful not to describe
 > things as ridiculously difficult if they are equivalent to
 > operations we already do, such as seeking.

 We should be equally careful not to view the world through
 rose-colored glasses.

 > > I question whether all this machinery is worth adding, to
 > > perform an operation that is esoteric at best. Better to
 > > leave codecvt switching in mid stream an undefined operation.
 >
 > Let’s not beg the question. Better for whom?

 Obviously, a simpler mechanism is better for implementors,
 because they have less work to do. It is also better for users,
 absent any other factors, because they will likely get code
 that has fewer bugs. But that is just one of my concerns. I
 want semantics simple and obvious enough that producers and
 consumers will understand it, and not inadvertently proliferate
 incompatible dialects because of varying interpretations. And
 I want semantics that can be implemented efficiently and
 portably in any environment that supports Standard C. Otherwise,
 we will find our clever standard ignored by significant chunks
 of the user community.

 > If implementors "get it right", nobody else will have to worry

 > about it. If implementors welch, then everybody else will have to
 > worry. The Japanese, in particular, will be wrestling with codeset
 > conversion for a long time, and they are counting on us to get it
 > right and not leave them in the cold.

 Nothing I have described so far can be construed as leaving the
 Japanese ‘‘in the cold.’’ I probably supplied the first C compiler
 with Kanji support, almost fifteen years ago. I continue to assist
 Japanese companies with both C and C++ compiler and library needs.
 My goal is to supply them with something that demonstrably works,
 preferably conforming to the C++ Standard. If the C++ Standard
 is overly ambitious, however, then it becomes less relevant to my
 customers. (They pointedly told me so, again, just a few weeks ago
 in Tokyo.)

BTW, if you’re really intent on reading streams that > > >
 > > > identify their encoding in a prefix, you should probably supply a
 > > > special codecvt that reads and adapts. (It can also have added member
 > > > functions that the program can call to report a safe switch of
 > > > encodings.)
 >
 > Embedding codeset tags invisibly in a stream is a very specialized
 > way to communicate. One can hardly pretend that it is general enough
 > for uses where codeset information comes from many places, and
 > where coeecvt<> implementations are prorietary.

 I wasn’t describing embedded codeset tags as a general solution. Quite
 the contrary, I chose it as one of an open-ended set of very specific,
 and controlled, ways that someone might supply a *well defined* way to
 switch code conversions in mid stream. Other *well defined* ways might
 require calls to the added member functions of a bespoke codecvt facet,
 as I suggested above. Even proprietary codecvt facets can come with a
 set of guidelines for when it is safe to switch to and from their
 control. Leaving such switching undefined leaves open the possibility
 that such a mini market can develop, without saddling the much larger
 community with the real and obvious costs of supporting this very
 specialized need.

 > If identifying problems and fixes necessarily means "larding up",
 > then we might as well all go home. The purpose of this discussion
 > is to determine how far we can go in supporting users who necessarily
 > work with multiple codesets. If you’ve never coded for Asian
 > markets, this may look frivolous to you; but it helps nobody to
 > keep saying so.

 I thought the purpose of this discussion was to determine how to
 respond to public comments on the existing draft C++ Standard. Those
 comments have identified a number of deficiencies -- many obviously
 stemming from the fact that designs have been adopted into the draft
 before being implemented. It is now our job to debug these current
 designs, not elaborate them even further.

 > The question was: is a member in codecvt<> that indicates whether
 > the codeset has locking shift states sufficient to determine whether
 > changing codesets can be done safely?

 And the answer is no.

This member would be equivalent >
 > to mblen(0,0) in the C library. A meaningful answer would detail a
 > case where the change could not be made safely, even in the absence
 > of locking shift states.

 See above for meaningful answer.

 P.J. Plauger

