
WG21/N0833
X3J16/96-0015

Proposed Iterators Changes

David Dodgson

dsd@tr.unisys.com
UNISYS

Introduction
The open issues regarding iterators can be grouped together under several larger subjects. The following
groupings discuss the general issues involved and give proposed WP changes. See the “Clause 24 Issues
List (Rev. 2)” for a list of the individual issues. The following table gives a cross-reference between the
general topic and the individual issues.

Topic Issue
const in member functions 3, 13, 28
operator->* in iterators 24
distance 30, 36
pre-defined iterators 31,32,34
stream iterators 15, 17, 18, 21, 23, 26, 27, 29
iterator categories 33
operator+ in iterators 12
editorial 35

1. Const in Member Functions
The member functions base(), operator*(), operator->(), and operator[]() specified
in the reverse and reverse_bidirectional iterators should be uniformly const or not const. Originally the
const-ness of the functions was not specified. We have agreed (motion 34 in Monterey, see N0740) to
make these functions const. There should be a uniform treatment of these member functions.

In editorial boxes 108, 109, and 110, Sean Corfield suggests that a const member function returning a
reference to non-const T is wrong. An alternative to what is in the WP is to have separate classes
const_reverse_bidirectional_iterator and const_reverse_iterator.
Specification of const in the template parameters of the current templates provides the same basic
functionality but additional classes would make this clearer.

A further consideration (see issue 28) is whether the Iterator requirement tables should specify which
operations require const. In other words, should we specify which operations must be available for const
iterators?

The proposed changes make the changes for the operator functions uniformly const. Any new classes may
be separately proposed.

WG21-N0833 Proposed Iterator Changes 2 of 9
X3J16/96-0015

Section Changes
24.3.1.2.2 [lib.reverse.bidir.iter.conv] through
24.3.1.2.4 [lib.reverse.bidir.iter.opref]

should be const

24.3.1.3 [lib.reverse.iterator] functions base, operator*,
and operator-> should be
const

24.3.1.4.2 [lib.reverse.iter.conv] through
24.3.1.4.4 [lib.reverse.iter.opref]

should be const

24.4.3 [lib.istreambuf.iterator] and 24.4.3.3
[lib.istreambuf.iterator::op*]

operator* should be const

Table 1 - Changes for const member functions

2. Operator->* in Iterators
Motion 32 accepted in Monterey added operator-> for iterators. Since we have decided to allow
operator-> why not allow operator->* ? (See N0738 for the previous changes).

The table defining forward iterator (24.1.3) would be updated as with a->m . There is an outstanding
issue asking whether a->m should be allowed for input iterators (24.1.1) since an input iterator may
return an rvalue. If so, that table should also be updated.

Changes would be required to add the operator function in reverse iterators, 24.3.1. However the new
code would differ from the code for operator-> because operator-> is treated like a unary overloading
(see 13.5.6 [over.ref]). operator->* is strictly a binary op and would require the type of the second
operand to be considered. The change could be done with a member template function:

template< class U >
U operator->*(U T::* p) { return &(operator*()).*p; };

Although this template works with data members I am unsure what changes would be needed for pointer-
to-member functions.

Section Changes
24.1.1 [lib.input.iterators] add a->*m similarly to a->m
24.1.3 [lib.forward.iterators] add a->*m similarly to a->m
24.3.1.1 [lib.reverse.bidir.iter] and
24.3.1.3 [lib.reverse.iter]

after operator-> add:
template< class U >
U operator->*(U T::* p)

In 24.3.1.2
[lib.reverse.bidir.iter.ops] and
24.3.1.4 [lib.reverse.iter.ops]

add a section for the description of the
function:
template< class U >
U operator->*(U T::* p)
Effects:
return &(operator*()).*p;

Table 2A - Changes for operator->*

If the proposal to change operator->* in N0831/96-0013 passes, the changes in the iterators will be
simplified.

Section Changes
24.1.1 [lib.input.iterators] add a->*m similarly to a->m
24.1.3 [lib.forward.iterators] add a->*m similarly to a->m

WG21-N0833 Proposed Iterator Changes 3 of 9
X3J16/96-0015

Section Changes
24.3.1.1 [lib.reverse.bidir.iter] and
24.3.1.3 [lib.reverse.iter]

after operator-> add:
Pointer operator->*() const

In 24.3.1.2
[lib.reverse.bidir.iter.ops] and
24.3.1.4 [lib.reverse.iter.ops]

add a section for the description of the
function:
Pointer operator->*() const
Effects:
return &(operator*());

Table 2B - Changes for operator->* if N0831 passes

3. Distance in Iterators
The distance function in 24.2.6 does not have a requirement constraining last to be reachable from
first . (Issue 30)

Section Changes
24.2.6
[lib.iterator.operations]

Add the following for distance :
Requires: last must be reachable from first

Table 3A - Changes for iterator operations

Input iterators are written to require a distance type. Since input iterators do not represent a sequence
there is no distance between instances. The distance could be used to count the number of increments
which have been done on an iterator, but it is not a reproducable distance. Removing the distance type
from input iterators would make this similarity with output iterators clearer. If removed, should the
advance function still be defined to work with input iterators (and output iterators)?

The proposed changes remove the distance class for input iterators.

Section Changes
24.1
[lib.iterator.requirements]
paragraph 1

The last sentence should change “for which equality is defined” to
“which defines a reproducible sequence”

Header <iterator>
synopsis

Change to:
template <class T> struct input_iterator {};

template <class T> input_iterator_tag
iterator_category (const input_iterator<T>&);

template <class T> t* value_type (const
input_iterator<T>&);

Remove distance_type for input iterator;

Change InputIterator to ForwardIterator for
advance and distance;

Change istream_iterator to remove Distance

WG21-N0833 Proposed Iterator Changes 4 of 9
X3J16/96-0015

Section Changes
24.2.2 [lib.basic.iterators],
24.2.3
[lib.iterator.category], and
24.2.5 [lib.distance.type]

Remove the Distance template parameter for
input_iterator

24.2.6
[lib.iterator.operations

Replace the references to InputIterator with
ForwardIterator

24.4.1
[lib.istream.iterator]

Remove all uses of the Distance parameter

Table 3B - Changes to remove distance from input iterators

4. Pre-Defined Iterators
The following are miscellaneous small changes in the reverse and input iterators.

Section Changes
24.3.1 [lib.reverse.iterators] Update paragraph 3 as suggested in Box 107
24.3.2.3 [lib.front.insert.iterator] The template class should not have a Returns

clause
24.3.2.6.1 [lib.insert.iter.cons] Type Iterator should be typename

Container::iterator
24.3.2.6.5 [lib.inserter] The template should have a second parameter,

Inserter , (see 24.3.2.5) and the function
should have a second parameter: Inserter i .

Table 4 - Changes to pre-defined iterators

5. Stream Iterators

There are a substantial number of issues regarding the stream iterators in 24.4. Some changes to the input
iterators are needed to conform to the input iterator resolution passed in Tokyo. There have been a
number of proposed changes to the iterators, some of which are conflicting. The following proposals are
an attempt to provide a consistent structure.

Character-Orientation of Istream and Ostream
Editorial box 111 states that the istream_iterator and ostream_iterator classes are defined
only for the char -oriented streams. They should be usable by any stream.

Section Changes
Header <iterator>
synopsis

Add template parameters as below for istream_iterator
and ostream_iterator

24.4.1
[lib.istream.iterator]

Add template parameters:
charT, class traits = ios_traits<charT>

Add:
typedef basic_istream<charT,traits>
istream_type;

WG21-N0833 Proposed Iterator Changes 5 of 9
X3J16/96-0015

Section Changes
Use istream_type in the appropriate constructor

24.4.2
[lib.ostream.iterator]

Add template parameters:
charT, class traits = ios_traits<charT>

Add:
typedef basic_ostream<charT,traits>
ostream_type;
Use ostream_type in the appropriate constructors

Change 2 parameter constructor to use:
const charT* delimiter

Table 5A - Changes for character orientation

Error Reporting
The streambuf iterators should be able to report errors directly. One possibility is to throw an exception.
However, this is not normally done for I/O. Better is to have a bool member function which reports if the
operation failed.

Section Changes
24.4.3 [lib.istreambuf.iterator] and
24.4.4 [lib.ostreambuf.iterator]

Add the member function:
bool fail() const;

Add to 24.4.3 istreambuf_iterator::fail
bool fail() const;
Returns: true if an operation using the
iterator has failed; otherwise, false

Add to 24.4.4 ostreambuf_iterator::fail
bool fail() const;
Returns: true if an operation using the
iterator has failed; otherwise, false

Table 5B - Changes for error reporting

Small Changes
There are several small changes required to maintain consistency and correct small errors.

Section Changes
24.4.3 [lib.istreambuf.iterator] Publicly derive from

input_iterator<charT>
24.4.3 [lib.istreambuf.iterator] and
24.4.4 [lib.ostreambuf.iterator

Change the typedefs streambuf , istream , and
ostream to streambuf_type ,
istream_type , and ostream_type .

24.4.3.1
[lib.istreambuf.iterator::proxy]

Change istream_iterator on line 3 to
istreambuf_iterator

24.4.3.2 [lib.istreambuf.iterator.cons] Line 4 should read:
Constructs the istreambuf_iterator
pointing to the basic_streambuf object
*(s.rdbuf()) if not null; otherwise the end-of-

WG21-N0833 Proposed Iterator Changes 6 of 9
X3J16/96-0015

Section Changes
stream iterator.

Add: istreambuf_iterator(
basic_streambuf<charT, traits> s);
Effects: Constructs the
istreambuf_iterator pointing to the
basic_streambuf object s. An end-of-stream
iterator is constructed if s is null.

24.4.3.6 [lib.iterator.category.i] Remove this section.
Header <iterator> synopsis and
24.4.3.7
[lib.istreambuf.iterator::op==]

Template operator== should not have default
template parameters and the function parameters
should be const

Header <iterator> synopsis and
24.4.3.8 [lib.istreambuf.iterator::op!=]

This operator is ambiguous with operator!=(const
T&, const T&) and should be removed.

24.4.4 [lib.ostreambuf.iterator] Publicly derive from output_iterator
Header <iterator> synopsis, 24.4.4
[lib.ostreambuf.iterator], 24.4.4.2
[lib.ostreambuf.iter.ops], and 24.4.4.3
[lib.ostreambuf.iterator.nonmembers]

Member function equal, operator== and
operator != are not used for output iterators
and should be removed.

24.4.4 [lib.ostreambuf.iterator] and
24.4.4.1 [lib.ostreambuf.iter.cons]

Remove constructor ostreambuf_iterator()

24.4.4.4.1 [lib.ostreambuf.iter.cons] The constructor for streambuf should add:
Requires: s shall not be null

24.4.3.3 [lib.istreambuf.iterator::op*] Replace the word “Extract” with “Returns” and add
“as if calling sbuf_->sgetc()”.

24.4.3.4
[lib.istreambuf.iterator::op++]

Add “as if calling sbuf_->snextc()”.

24.4.3.5
[lib.istreambuf.iterator::equal]

Returns: true if both iterators are at end-of-
stream, or if neither is at end-of-stream, regardless
of what stream they iterate over.

Table 5C - Small changes

Remove proxy class
A streambuf iterator may be constructed which conforms to input iterator semantics but does not require a
proxy class. It should not be mandatory that a proxy class be used.

Section Changes
24.4.3 [lib.istreambuf.iterator]
and 24.4.3.2
[lib.istreambuf.iterator.cons]

Remove constructor for class proxy

24.4.3 [lib.istreambuf.iterator]
and 24.4.3.4
[lib.istreambuf.iterator::op++]

Change return type of operator++(int) to
istreambuf_iterator<charT,traits>

Change to:
Effects: {
istreambuf_iterator<charT,traits>
tmp = *this;
++(*this);

WG21-N0833 Proposed Iterator Changes 7 of 9
X3J16/96-0015

Section Changes
return tmp; }

24.4.3.1
[lib.istreambuf.iterator::proxy]

Remove this section

Table 5D - Changes to remove proxy class

Remove stream iterators from <iterators>

The stream iterators require the inclusion of the headers iosfwd, ios, and streambuf . This is a
large amount of material. Any time the iterators header is used to define an iterator will bring in the
I/O headers. It should be possible, even desirable, to use the iterators header whenever a new iterator
is defined. It is, however, almost certain that the I/O headers will be needed when using the stream
iterators. Therefore the stream iterators could be moved into the I/O headers in clause 27.

Section Changes
Header <iterator> synopsis Remove inclusion of iosfwd, ios, and

streambuf

Move definition of istream_iterator to
<istream> .

Move definition of ostream_iterator to
<ostream> .

Move definitions of istreambuf_iterator and
ostreambuf_iterator to <streambuf>.

24.4.1 [lib.istream.iterator] Move to 27.6.1 [lib.input.streams]
24.4.2 [lib.ostream.iterator] Move to 27.6.2 [lib.output.streams]
24.4.3 [lib.istreambuf.iterator]
and 24.4.4
[lib.ostreambuf.iterator]

Move to 27.5 [lib.stream.buffers]

27.2 [lib.iostream.forward] Include:
template<class charT> class
istreambuf_iterator;
template <class charT> class
ostreambuf_iterator;
template <class T, class charT>
class istream_iterator;
template <class T, class charT>
class ostream_iterator;

27.5 [lib.stream.buffers] and
27.6 [lib.iostream.format]

#include <iterator>

Table 5E - Changes to move stream iterators

6. Iterator Categories
The various iterator categories as currently defined are distinct. However, a random access iterator is a
bidirectional iterator, and a bidirectional iterator is a forward iterator. The iterator tags and base classes
for these iterators could be related through inheritance. This could make the definition of algorithms
easier. For example, an algorithm that tested for an iterator category of forward could be passed a random

WG21-N0833 Proposed Iterator Changes 8 of 9
X3J16/96-0015

access iterator without problem. It may also be desirable to provide a mechanism to indicate whether an
iterator is constant or mutable (see issue 33). No such mechanism is proposed here.

Section Changes
24.2.1 [lib.std.iterator.tags] bidirectional_iterator_tag should inherit

from forward_iterator_tag and
random_access_iterator_tag should inherit
from bidirectional_iterator_tag

24.2.2 [lib.basic.iterators] bidirectional_iterator should inherit from
forward_iterator and
random_access_iterator should inherit from
bidirectional_iterator

Table 6 - Changes for iterator categories

7. Addition and Subtraction in Iterators
Forward iterators use increment to move through the sequence. It is possible to define operator+ to
perform a sequence of increments to move through the sequence (i.e. use the advance function). It is
also possible to use operator- in bidirectional iterators to move backward through the sequence. Defining
these operators would make it simpler to update operators to move through the sequence. It would,
however, remove the assurance that an operation on an iterator is performed in constant time.

Section Changes
24.1
[lib.iterator.requirements]
para. 8

Change the first sentence to include, “except addition
operators for forward iterator and addition and
subtraction operators for bidirectional iterator”.

24.1.3
[lib.forward.iterators]

r += n X& { advance(r,n);
 return r; }
__
a + n X { X tmp = a;

return tmp += n; }
n + a a + n == n + a.
__
a [n] Convertible *(a + n)

to T

24.1.4
[lib.bidirectional.iterators]

r -= n X& return r += -n;
__
a - n X { X tmp = a;

return tmp -= n;}

24.1.5
[lib.random.access.iterators]

Remove first four rows

24.2.6
[lib.iterator.operations]

Change the first sentence to, “The library provides two
template functions advance and distance.”

Table 7 - Changes for addition and subtraction

WG21-N0833 Proposed Iterator Changes 9 of 9
X3J16/96-0015

8. Editorial Changes
These are typographical errors or simple editorial changes.

Section Changes
24.1.6 [lib.iterator.tags]
para. 11

The synopsis should not be part of this section. It
should be a separate section.

24.3.1.4.15
[lib.reverse.iter.opsum]

The heading should be operator+= .

Table 8 - Editorial changes

