Docunment Nunber:

WG21/ NO817
X3J16/ 95- 0217

Date: 30 January 1996
Project: Programm ng Language C++
Reply to: Dan Saks

dsaks@ni tt enber g. edu

X3J16 Meeting No. 19
WE21 Meeting No. 14
5 - 10 Novenber 1995

Ki kai - Shi nko- Kai kan Bl dg.

Tokyo,

1

1

1

1

1

1

1

2

3

5

Japan
Opening activities

Cl amage convened the neeting as chair at 09:20 (JST) on Monday, 6 Novem
ber 1995. Lajoie was the vice-chair, and Corfield was the secretary.

| BM Japan (represented by Kami mura) hosted the neeting.
Openi ng conment s
I nt roductions

Cl amage said that applications for chair of X3J16 can be submitted unti
Fri day.

Corfield circulated an attendance |ist each day, which is attached as
Appendi x A of these minutes. Lajoie circulated a copy of the nmenbership
list (SD-2) for nenbers to make corrections.

Menber ship, voting rights, and procedures for the neeting

Lajoie noted that X3J16 had only two menbers above quorum She asked
voting nmenbers to be sure to be present on Friday. Lajoie also ex-

pl ai ned that STR and Obj ect Consultancy Services did not have voting
ri ghts because this was their first neeting.

Distribution of position papers,
t he week,

WG progress reports, W5 work plans for
and ot her docunents not distributed before the neeting

Ki efer said he brought a new version of a proposa
integral types to C++. Plauger brought a new version of the library

i ssues. Ohers had revised issues lists for other Wss. Lajoi e brought
a paper on programstart and termnation issues. Harbison provided a
paper sunmarizing the CD Ballot votes.

to add 'l ong | ong’

Pl um sai d he woul d have a paper on extended identifiers.

Approval of the m nutes of the previous neeting
Corfield submtted the mnutes fromthe previous neeting (N0734 =
95-0134) for approval with the follow ng corrections (posted to the -al
refl ector by Saks):
-- Under item 1.6, paragraph 1, add a new second sentence:
The agenda was not avail able electronically and so sone (possibly
many) of those present had not seen the agenda yet.
-- Under

item6.1 "Core (Adantzyk)", after the paragraph

Plumrecal l ed that we earlier proposed to disallow references in

uni ons, but Skaller objected because it would preclude an extension
he wanted to propose. But we didn't approve that proposal

Insert the foll owi ng new paragraph:

Corfield said it was the UK that objected to the previous attenpt to
di sal |l ow references in unions; they objected on the grounds of con-
sistency. He also pointed out that the notion was defeated by W1
in San Diego (3 yes, 4 no, 1 abstain) and that it was politically
unsound to retake the vote in Mnterey when three of the four NBs
that voted 'no’ were not present.

-- Under item®6.1 "Core (Lajoie)", under ingredient 5 of Schwarz’s
presentation on the ODR, fix the following errors in the exanple:

/Il in one file

class B {
B(int);
B(int, int);
i
B(int =0) { } <- replace 'B with 'B::B
class D: public B{ }
D di;

/!l in another file

class B {
B(int);
B(int, int);
b
B(int =0, int =0) { } <- replace "B with 'B.:B
class D: public B { }
D di;

and fix the same error two exanples later:

class B {
B(int);
B(int, int);
};
B(int =0) { } /] forbid this <- replace 'B with "B::B
class D: public B{ }
D di;

-- Under item 11, paragraph 2, sentence 2, change two-rul e to

""two-week" rul e’

-- Under item 11.2, under the action itens for "Core W5 (Lajoie)"
change "d assborough" to "d assbor ow

Moti on by Laj oi e/ Bruck:

Move we approve NO734 = 95-0134 as the m nutes of the previous
neeting with these corrections.

Moti on passed X3J16: lots yes, 0 no, 0 abstain
Moti on passed W&1: 6 yes, 0 no, O abstain

Agenda revi ew and approva
Cl amage submitted the proposed agenda (NO712 = 95-0112) for approval.
Koeni g asked if we should hold a technical session on input iterators.

The nmenbers agreed to deal with this as part of the Library WG (working
group) di scussions.

1

Moti on by Dawes/ Runsby:
Move we accept NO712 = 95-0112 as the agenda for this meeting.

Moti on passed X3J16: lots yes, 0 no, O abstain
Moti on passed W&1: 6 yes, 0 no, O abstain

Report on the W&1 Sunday neeting

Har bi son summari zed his report. The CD ballot vote was: 10 yes, 6 no
with comments. Harbison explained that the comments included the var-
ious WG i ssues |ists and he has asked the various NBs (national bodies)
to track their own issues so that he can formulate the disposition of
conments after the Scotts Valley neeting. He also reported that SC22
approved our revised schedule with a second CD ballot and a two neeting
turnaround for the disposition of comments (as in NO755 = 95-0155).

Har bi son expl ai ned SC22’ s concern that W1 changed the draft during the
ball oting. He also explained that, for the Stockhol mneeting (July
"96), we should not take any official votes that would change the draft
but rather continue to work on issues and resol ve problens. Lajoie said
we agreed to take straw votes and nodify the WP (Working Paper) accord-
ingly, but delay any formal vote(s) on changes until the neeting in
Hawai i (Novermber '96). Harbison said he'd draft proposed procedures for
the Stockhol m neeti ng.

Koeni g wondered if he should produce a revised WP for mailing after the
St ockhol m neeting. He suggested two alternatives: 1) He coul d produce
an unofficial WP with a cover sheet explaining that it only represents
the project editor’s working notes, or 2) he could not publish a W at
all and send out a machi ne-readabl e copy of his |atest version on re-
guest. Plumand Stroustrup preferred the latter. In any event, Koenig
felt we needed some docunent to work fromin Hawaii. Harbison suggested
dropping this discussion this until he has spoken further with Bil

Ri nehul s of SC22.

Pl um sai d SC22 was not convi nced that we shoul d even hold a neeting
during the balloting, but Harbison had persuaded themthat we could do
useful work. Plumalso noted that NBs that submit comments early shoul d
not get favored treatnment over NBs that submit their comments |ater.

Stroustrup supported Koenig' s suggestion not to produce an official W,
but he wanted to have an internal docunment that incorporates changes
made at the Stockhol mneeting. G bbons expressed sone concern that we
woul d revisit issues from Stockholmat the Hawaii meeting if we do not
have an approved WP. Plauger said there is clearly a tradeoff between
getting work done and following the rules. W can't officially close

i ssues at the Stockhol mneeting; we nust risk that issues seemingly
resolved in Stockholmw Il come up again in Hawaii

Koeni g enphasi zed the need for a "feature freeze" in order to be able to
fix and inmprove the wording. He suggested that the appropriate point
for that is when we vote to submit the final CD. After that the com
mttee shoul d be prepared to work on editorial issues only. Bruck felt
there was al ready consensus on this issue.

Laj oi e was concerned that, if we give the inpression that we can't do
any "real” work in Stockholm nenbers may be reluctant to attend, even
though we certainly need people there. Harbison said we should al ready
be in the frane of mind where we are dealing only with NB conments.
Stroustrup agreed, but said that sonetinmes the best fix is to nake a

wi der change which may al so fix other acknow edged probl ens.

Wel ch asked if we had to go through NB channels to fix a clear error
Pl auger said no, but we cannot invent new stuff.

1

1

8.

1

Har bi son expl ai ned that 1SO rejected the proposed JTCL DI S procedures.
The effect is that we are allowed to edit the draft during DIS ballot to
resol ve NB conments. Moreover, if we fail that ballot, we will be able
to stage another DI S ballot without falling back to another CD ball ot.
However, he recommended that we proceed under the assunption that we
intend to produce a canera-ready DI S anyway.

Li ai son reports
WG14+X3J11 (O

Pl um reported that WGL4+X3J11 nmet in Nashua, NH, USA from 16-20 Cctober
1995. They are working on the five-year revision of C, known infornmally
as "Cox".

Pl um conveyed WGl4's request that the inplicit int "ban" should not
all ow const and volatile as the only type-specifiers. That is,

const N = 9;
void f(const i);

shoul d be invalid.

Koeni g asked Pl um about WGl4's stance on 'int main’, and Plumsaid he
wasn’'t sure.

Plumsaid C9x is nmoving toward tag conpatibility of structures across
translation units, and generally tightening up the linkage rules. Plum
said he’s urged the C conmittees to adopt the C++ treatnment of tagless
structs.

Pl um enphasi zed that we should view this as a bidirectional conpatibil -
ity effort. Koenig wondered if there is a danger of producing a C++
standard that’s conpatible with C features that C9x has renoved.

Pl um said W514 has starting voting on changes to C9x. The prelimnary

results indicate sentinent to add the foll ow ng features:

-- designated initializers

-- the keyword 'restrict’

-- classes with nenmber functions, single inheritance, virtua
functions, access restrictions

Plum said W14 intends this subset to be conmpatible with C++. It

appears that C will not have constructors and destructors (see bel ow),

but will require operator new to create pol ynorphic objects.

Pl auger said the C conmittee is advancing very slowy and these pre-
limnary votes are not necessarily representative of what the committee
will eventually do. Stroustrup enphasized the inportance of renaining
conpatible in both directions, but noted that not adopting constructors
and destructors may |lead to noticeably different styles of programm ng
in the otherwi se common subset of both | anguages. Plumsaid he felt
that C++ and C9x differ in that C++ was designed as a | eadi ng edge
experiment while C9x is building on an established | anguage.

Plumreported that the C conmittees are al so considering adding:
-- bool, true, false (as a typedef/nacro in a separate header)
-- tag conpatibility requirements

-- variable length arrays (as in Cray and gcc)

-- inline

-- compl ex

-- extended identifiers and extended literals

-- [/ conments

and have al ready rejected:

-- overl oadi ng

-- constructors and destructors

1

1

1

1

8.

9

10

11

G bbons asked about the nunerical extensions that have been proposed.
Pl um was unsure where they stood.

W20 (internationalization)

Kung is not the official liaison, but he offered a report. He said W=0
is considering internationalization issues for |anguage design and Uni -
code support. Both of these are probably too |ate for C++ but wll
likely be proposed for C9x.

New busi ness requiring actions by the commttee

None.

Drafting committee

Corfield said he’d manage the techni cal aspects of the drafting commt-
tee and Runsby agreed to nmanage the administrative aspects. Corfield
asked the Was to prepare their notions on Tuesday evening so that the
drafting commttee can sinply nerge and edit them Corfield asked for
additional volunteers for the drafting conmittee on Wednesday eveni ng.
Organi zati on of WGs

The W&R21+X3J16 prepared to break in WGs.

Koeni g volunteered to give a talk about input iterators from17:30 to
around 18: 30 on Monday ni ght.

The commttees recessed to Wes at 11:25 and reconvened on Wdnesday at 9:10.

2

3

21

WG sessi ons

Techni cal session

WG sessi ons

Wor ki ng Paper for Draft Proposed Standard
Changes in the Wrking Paper

Koeni g presented the project editor’s report (N0811 = 95-0211). He

t hanked the volunteers who hel ped edit the draft at the end of the
Monterey neeting and in the weeks thereafter. He observed that the
changes in the WP (both the nunber of lines touched and the nunber of
separ at e changes) has decreased substantially over the |ast few WPs
This sign of progress is "good news".

He said he did not nmake one of the changes approved in Mnterey. |ssue
21-0646 (fromthe clause 21 issues list) called for changing some return
types frombasic_string& to basic_string<charT, traits, Allocator>& In
this context the types are equivalent, so the change wasn’t necessary.

Koeni g summari zed sone general editorial changes he nade, including

-- changing "processor" to "inplenentation", and

-- adding text to explain that apparent requirenents on prograns are
abbreviated forns of requirements on inplenentations.

He al so made sone "bol d changes" -- changes that were editorial propos-

als appearing in editorial boxes (see NO811 = 95-0211 for the list of

changes).

Koenig said he intends to nake the follow ng bold changes in the next

draft:

-- Add specializations of the swap tenplate for each container that has
a 'swap’ nenber. Currently 'swap(a, b)’ works for all containers

21

but may be inefficient. This proposal uses specializations of the
gl obal 'swap’ tenplate to call the 'swap’ nenber of the standard
cont ai ners.

-- Reinstate <iostream h> which includes <iostreanr and contains the
appropriate code to match other '.h" headers.

Pl auger noted that the WP specifies in detail what the .h headers
actually do for the C conpatibility headers, but not for the other .h
headers. Koeni g suggested this should be a Library W5 i ssue.

Koenig said he intends to nake a careful editorial pass through the
| anguage cl auses over the next year. He asked for volunteers to do the
sanme for the library clauses.

Straw Vote: Who approves NO785 = 95-0185 as the current WP? |ots yes, O
no.

(See Motion 1.)
General session
Core Language WG
==== Adantzyk ====

Adantzyk di scussed a proposal to allow declarations of operator void()
in tenplates, but not allow calls to such functions (NO720 = 95-0120).
He explained that there is precedent for allow ng declarations of unus-
able entities such as derived-cl ass-to-base-cl ass conversi on operators.

Adantzyk said the subgroup agreed to allow declarations and definitions
of operator void() everywhere. They also agreed that such operators can
be called only using explicit operator call notation such as x.operator
void(). They cannot be called inplicitly. Stroustrup asked for assur-
ance that (T)x, where T is void, would not invoke an operator void(),

whi ch he got.

Straw Vote: Who favors this proposal? lots yes, 0 no.
(See Motion 2 for the formal wording.)

Adantzyk presented proposed resolutions to issues regarding function
typedefs (NO792 = 95-0192). The subgroup agreed to all points in the
paper, but G bbons had objections to the |ast issue (regarding const in
a function typedef). G bbons and Schrei ber (author of N0792 = 95-0192)
proposed to resolve the issue as per the followi ng exanpl e:

typedef void);
typedef void F() const;

struct X {
const Gg; [/ ill-formed
F f; /1 well-forned
3

(See Motion 5.)

Stroustrup expressed surprise that a nmenber function can be declared
using a typedef. G bbons said we had previously decided that this would
not be valid inside a tenpl ate.

G bbons expl ai ned the point of the proposal nore-or-less as follows: |If
you want a cv-qualifier to apply to a function type, you nust wite it
in the function declarator for that type, as in the declaration of F
above. You can’'t declare a cv-qualified function type by conmbining a
cv-qualifier with a function type in the decl-specifier-seq of a later
decl ar ati on.

Koeni g said he supported this decision. He has observed a bug/extension
in Cfront which pernmits declaring typedefs for nenber function types.
Thi s proposal does not preserve that bug.

Straw Vote: W favors this proposal? lots yes, 0 no

Adantzyk recomrended clarifying initialization of call-by-value objects
(as per NO780 = 95-0180). Specifically,
-- access checking is performed on the caller side not the callee side,
-- the lifetime of a parameter is well-defined and it is destroyed

i medi ately at the end of the function
(See Motion 3.)

Adantzyk explained that in an expression such as f(x) + f(y), "tenpo-
rari es" generated to pass x and y by value to f are in fact paraneters,
so the destruction of those paraneters occurs i mediately after each
call, prior to the addition

Koeni g asked Adantzyk to ensure that the fornal wording for the W
acknow edges the "Schwarz" optinization (allow ng elision of copy
constructor calls). Expanding on this issue, Adantzyk noted that the
lifetime of the copied parameter is likely to be shorter than the
lifetime of any tenporaries introduced.

Straw Vote: Wo favors this proposal? |lots yes, 0 no.

Adantzyk said the subgroup | ooked a proposal to allow cv-qualified con-
structors (NO798 = 95-0198), but rejected it because it’s an extension

Adantzyk presented a proposal to refine the Ws definitions for "scal ar

type" and "fundanental type" (NO774 = 95-0174). The substance of the

proposal is to change:

-- scalar type to include pointer-to-nenber

-- reclassify enunmerated types as conmpound types (instead of as
fundanent al types).

Adantzyk said the subgroup agreed to accept this as editorial

Bruck asked if enunerated types are PODs. Koenig and Lajoie said yes.
Cl anage wanted to be sure there are no semantic changes inplied. Kiefer
asked for a vote on the proposal as a formal notion, which he got (see
Motion 4).

Unruh noted that the paper inplies that C++ would have to allow bitwi se
copying (e.g., using nencpy) of pointers-to-menbers. This interacts
wi th an upcomi ng proposal on pointer-to-nenber casts.

Adantzyk presented a proposal to clarify howthe initialization order of
non-1 ocal objects depends on whether initialization is static or dynamc
(item 555 of NO802 = 95-0202). He summarized the proposal as foll ows.
By the time a non-local object is conpletely initialized:

-- all preceding non-local objects are also conpletely initialized

-- followi ng non-local objects may have been initialized statically.
This is a relaxation of the current ordering. (See Mdtion 6.)

Adantzyk used the follow ng exanple to clarify the proposal

struct A {
float x;

.. A(float p) @ x(p) { }
e%tern A b;

extern A a(b.x);

A b(1.0);

He said this is the sort of programthat "should not be witten" so it’s

is defined. The current

unspeci fied whether b’ is initialized when "a
WP guarantees that 'b’ is zero-initialized prior to initializing

a

He went on to explain that all static initialization is done first. The
dynamic initialization is done in the canonical order. This proposa

rel axes requirenents to allow an inplenmentation to turn some the dynamc
initializations into static initializations. This can produce unspeci-
fied behavior (as in the exanpl e above).

G bbons said this proposal mght break the "as if" rule, but he favored
it nonethel ess. Adantzyk agreed that this could happen for the initial-
i zations involving forward references, which depend on unspecified beha-
vior. O amage was concerned that the proposal would change the behavi or
of well-formed prograns. Stroustrup felt the optim zation potential was
nore i nmportant than the behavi or of exanples such as the one above.

Unruh asked if an inplenentation can optim ze the initialization of a
class object by initializing parts of the object statically and other
parts of the sane object dynamcally. Lajoie said the proposed rule did
not address this, but nothing in the draft prevented it either

Straw Vote: Wo favors this proposal? lots yes, 0 no.
==== Laj ol e ====

Lajoi e said her Core subgroup discussed issues regardi ng program start
and term nation (from N0802 = 95-0202). |In the follow ng, nunbers in ()
are core issue nunbers.

Laj oi e began with (551). The W5 recommended that all C++ progranms nust
have a main function, including those produced by freestandi ng i npl enen-
tations.

Stroustrup wanted to consider requirements for C++ libraries called from
ot her | anguages. Unruh suggested an alternative wherein a freestanding

i npl enentati on need not require "main’. Koenig agreed that the standard
could say the only portable way to provide "main’ is to wite it explic-
itly, but inplenentations could provide an alternative as an extension
Stroustrup said it was inmportant not to exclude m xed-|anguage pro-
grans. Lajoie agreed to try rephrasing this part of the proposal to
satisfy Unruh’s and Stroustrup’s concerns.

Lajoie said that, for (462), the W5 recommended that calling "exit’

during destruction of an object with static storage duration has un-
defined behavior. Also, for (429), they recommended that reference
initialization is part of static initialization

Laj oi e presented new term nol ogy for expressing initialization senman-
tics. The new term"reference constant expression" neans "an |val ue
desi gnating an object with static storage duration". Further details
appear in N0802 = 95-0202.

Stroustrup asked if "reference initialization is part of static initial-
ization" is a requirenent on inplenentations. Lajoie said yes. Runshy
asked if there’s an interaction between reference constant expressions
and operator& Lajoie said no. Stroustrup expressed concerned that
this can’t be inplenmented. Adanctzyk expl ained that the proposed wording
directly parallels the words in the C standard about address expression
initialization.

Lajoie said that, for (430), the W5 recommended that objects with static
storage duration are destroyed in the reverse of the order that their
constructors conpleted. This is true for _all_ such objects in a pro-
gram including |local static objects.

Cl amage asked about dynamic libraries. Lajoie explained that dynamc

libraries are already outside the scope of the WP (they’'re an extension)
so it doesn't nmatter if dynamic libraries cannot follow the proposed
rul e.

Cl amage asked if this inplies that an inplenentation nmust keep track of
the exact order of all constructions in order to satisfy this require-
nment. Lajoie said yes, the inplenentors present in the subgroup did not
feel this was too onerous. She added that the inplenmentation needs to
track the construction only for "outernost" objects. That is, statics
in an aggregate will be destroyed only after the whole object is de-
stroyed. Unruh asked if "conpletion of construction" applies to each
array el enent separately or to the array as a whole. Lajoie replied
that it applies to the array as a whole. Therefore, another object con-
structed within the constructor of an array element will be destroyed
after the entire array is destroyed.

Soneone asked what happens if a local static is constructed during the
destruction of objects with static storage duration. Lajoie explained
that it gets constructed, and then it gets destroyed i mediately after
the "current" destruction conpletes; however, if the local static object
i n question had al ready been destroyed, the behavior is undefined. Cor-
field asked if this covers a |local static that's being constructed for
the first time. Lajoie was not sure. Corfield pointed out that this is
one of the issues that concerns the UK. Wl ch said that the subgroup

i ntended to cover only |ocal objects that had al ready been destroyed.

Clamage felt this proposal attenpts to provide too nany guarant ees.
Lajoi e said the proposal covers only what several inplenentations al-
ready do. Cl amage said that may just indicate that those inplenenta-
tions have not been exercised heavily enough

Unruh expressed concern about the destructor for an object that is
initialized statically. Destructors execute in reverse order of the
constructors. But there’s no point in tinme when the constructor for
that object executes, so when does the destructor execute? Lajoie said
it was a good question but a separate issue.

Lajoie said the, for (484), the W5 recomended that destructor calls
should interleave with calls to the atexit functions. Using this
exanpl e:

void f() { static T t1(1); }
void g() { static T t2(2); }
mai n() {

atexit(f);

atexit(g);

f();

exit(0);

she expl ained that, by this proposal, the steps at exit would be:

g() called
t2 destroyed
f() called
t1l destroyed

PoNE

Unruh asked whet her destruction was guaranteed to occur between calls to
regi stered functions. Lajoie said that order of construction was the
determning factor. Unruh said this inplies that the inplenentation
nmust track atexit functions as well as static object construction

Lajoie said yes.

Wel ch stepped through the exanpl e above showi ng what the inplenmentation
must track. He said that the order was not, in fact, as given above.
Actually t1 is destroyed before_g is called, so the call to f fromthe

atexit chain causes undefined behavior. Schreiber suggested noving the
call to f ahead of the atexit(f) call to show a well-defined ordering:

mai n() {
Q)
atexit(f);
atexit(g);
exit(0);

}

In this case the process at exit would be:

call f and construct t1

regi ster f

register g

call exit, which calls g and constructs t2
destroy t2

call f

destroy t1

NoOohkwNE

G bbons was surprised that atexit affects destruction ordering in this
way. Welch confirmed that the WG intended this. G bbons asked if this
means atexit calls look a lot like constructor calls. Wlch said yes,
you can sinmulate this process by using static objects that register a
function on construction and call it on destruction. Sonmeone suggested
deprecating atexit.

(Mtion 7 formalizes the recommendati ons above.)

Lajoie said the working group agreed that the following are editoria

corrections (from NO802 = 95-0202):

-- (UK 38): The standard should not say that exit's argunment is
returned to the program s environment.

-- (552) Confirmthat calling exit may not destroy objects with
automatic storage duration

-- (527) Confirmthat nonlocal objects with static storage duration
need not be initialized before entering main

-- The WP should state explicitly that main's return type is int (NO772
= 95-0172).

Lajoie said the Ws rejected an as extension a proposal to specify the
initialization order for global objects (NO717 = 95-0117).

Laj oi e explained that NO772 = 95-0172 sinply prohibits non-int return
types for "nmain’. Koenig said he wanted an exenption to allow an im
plicit int return type for 'main’. Lajoie said this is a separate

i ssue. Spicer agreed with the proposal, but asked for a formal vote
instead of treating it as editorial. He wanted to make it clear that we
consciously decided that 'void main()’ is ill-forned.

Lajoi e said her Core subgroup discussed the followi ng nenory nodel
i ssues (from NO803 = 95-0203). Again, nunbers in () are core issue
nunbers.

Laj oi e explained that, for (554), the WG recommended that if a program
attenpts to construct an object in storage once occupi ed by a const
object that’s been destroyed, the program s behavior is undefined.

Thus, an inplenentati on may place const objects in readonly nmenory even
when those obj ects have constructors.

G bbons asked how this applies to dynam cally-allocated objects. He
poi nted out two additional cases not yet covered:

1. wusing newto create a const object, and

2. using new with placement to construct a const object.

Lajoie said she’d add issues for these.

Lajoie said that, for (UK 611), the W5 recommended that a program may
use menmmove to copy objects that do not overlap. (The WP already all ows
a program copy objects using nmencpy.)

Unruh asked if an explicit |oop that copies objects byte-by-byte as
unsi gned chars woul d al so work. Lajoie said no. Plauger explained the
problemas follows. Sone nent functions in the Clibrary have parane-
ters of type char * instead of unsigned char *. On a machine that uses
sign-magnitude arithmetic and uses a signed representation for plain
char, "value collapse" could occur. That is, copying bytes as signed
char m ght convert -0 to +0, thus changing bit patterns as it copies.
So nmencpy is special because it promises a "transparent”™ copy (one that
preserves the bit pattern) regardl ess of val ue coll apse.

Lajoie agreed to add an issue for noving objects byte-by-byte as
unsi gned chars.

The next issue was (417). The WG recommended that, if an operand of [],
++, --, 4+, -, +=, or -=, has static type T * a dynami c type that is not
T *, the behavior is undefined. This restriction does not apply to

ot her operators, such as indirection, relational operators, and equality
operators. Hence, these operators may apply to an operand of type T *,
where T is an abstract base cl ass.

Lajoie then presented (597). The WG recomended that adding zero to a
nul | pointer produces a null pointer; subtracting two null pointers
produces zero. Koenig explained that this allows a programto use two
null pointers to represent an enpty range. Unruh asked if this applies
at run-tinme, for exanple, when adding a pointer variable and an integer
variable. Lajoie said that was the intent. C anage asked Lajoie to
nmake the words clear that "zero" need not be just an integral constant
expression. She agreed.

Lajoie said that, for (513), the WG reconmended that pointer comparisons
not described as "well-defined" should have unspecified behavi or, not
undefi ned behavior. Such conparisons will yield some sort of truth

val ue rather than a possible nachi ne exception. Unruh asked if repeated
conparisons could yield different results. Lajoie said yes, the result
is unspecified. Corfield asked whether the subgroup had consi dered
architectures where avoiding a machine fault m ght be expensive. Lajoie
said no one seenmed to think this was likely.

(Motion 8 formalizes the recommendati ons above.)

Lajoie said the working group agreed that the following are editoria

corrections (from NO803 = 95-0203):

-- (UK 382) Change the term "unusabl e value" to "indeterninate val ue".

-- (UK 388) Change the term"valid storage” to "allocated storage".

-- (557a) Renpbve the term "well-defined copy operation"” because it’'s
nmeani ngl ess.

-- (557b) Preserve the term"value representation", but define it
better.

-- (471.2 and 471.3) darify when a program can access the operand of a
del et e- expressi on

-- (93) The behavior of 'delete this’ in a nenber function is
undefined. (It need not be diagnosed.)

-- (596) Carify the neaning of a relational operator when only one
operand is the null pointer.

-- (476) Carify that accessing an object with indeterm nate val ue
causes undefined behavi or.

Lajoie said her Core subgroup discussed the followi ng object nodel
i ssues (from NO804 = 95-0204). Again, nunbers in () are core issue
nunbers.

Regardi ng (569), Lajoie said the WG reconmended that, in the storage

mappi ng for objects, the order of nenbers separated by access specifiers
is unspecified rather than inplenentation-defined. Unruh said an

i mpl enent ati on-defined ordering mght be useful. C anmage said the
standard shoul d not prescribe an ABI (an "application binary
interface"). Adantzyk said the subgroup did not want to require

i mpl enentati ons to docunent sonething that mght be very difficult to
formul ate.

Laj oi e then discussed (529). The WG recomended that zero-sized base
cl asses are allowed, but no pair of pointers to base class subobjects
can conpare equal

Ki ef er asked how a subobject can have zero size. Adantzyk expl ai ned
that sizeof always returns a non-negative value, even for an object with
no nmenbers. Thus, the size of an object may be | ess than the sum of
"sizeof’ applied to each of its nenbers and subobjects.

The next issue was (589). The WG reconmended that the relationship
between the return types of overriding functions nust be known at
conpile time, i.e., the return types nust be pointers or references to
conplete types for derived classes. Lajoie gave this exanple to
illustrate the proposal

cl ass A
cl ass B;
class C{
virtual A& f();
b
class D: C{
virtual B& f(); // ill-forned; A and B are inconplete
b

(Mtion 9 formalizes the recommendati ons above.)

Lajoie said the working group agreed that the following are editoria
corrections (from NO804 = 95-0204):

-- (0OBl) Refine the definition of "object".

-- (533) An anonynous union is neither an object nor a type.

Laj oi e said her Core subgroup discussed the follow ng special nenber
function issues (from NO806 = 95-0206). Again, nunbers in () are core
i ssue nunbers.

Lajoie said that, for (575), the WG recommended that a program can refer
explicitly to inplicitly-declared special nmenber functions.

Unruh asked if these functions can be declared as friends. Lajoie said
it’s possible, but probably useless. Corfield asked if the subgroup had
| ooked at his recommendation that such functions should be callable and
addressabl e (NO718 = 95-0118). The paper al so suggests that inplicitly-
decl ared functions should be callable and addressable for arbitrary
types in tenplates. Lajoie said the subgroup had not |ooked at this.
Corfield said this issue needs to be addressed.

Lajoie said the group discussed (379) regarding destructor names. They
agreed that the declaration for a destructor cannot use a typedef nane,
but an explicit call to a destructor can use a typedef nane. Also, the
obj ect expression in an explicit destructor call nust have the sane type
as the destructor’s class type or (for virtual calls) nust have a type
derived fromthe destructor’s class type.

Lajoie used this exanple to illustrate the proposal
struct B {
virtual ~B(); /1 must use B

b

B::~B() { } /1 must use B

B* p;

typedef B B _ali as;

p->~B alias(); /1 okay to use B alias

Unruh observed that ~B() can be parsed as a destructor call, or as the ~
operator applied to a constructor call. He said we could resolve the

ambi guity by prohibiting unqualified destructor. G bbons said the WP
al ready does.

Spi cer asked how the nane | ookup was actually perfornmed after B::

Lajoie said this remains an open issue. Wlch said Pennello has a whole
list of issues like this which need to be resolved. G bbons suggested
that the | ookup should be the sane as for B::operator B().

Laj oi e explained that, for (95), the WG reconmended that a user-decl ared
constructor for T taking volatile T& is a copy constructor. A user-

decl ared assi gnnent operator for T taking volatile T& is a copy assign-
nment operator. Generated constructors and assi gnnent operators in de-
rived classes will call these. Generated constructors and assi gnnent
operators are never inplicitly declared to take volatile references.

Unruh asked if witing
T.:T(volatile T&);

for class T suppresses the usual copy constructor. Lajoie said yes.
Wel ch said a programthat does this for a class T will probably have
many errors because it |acks the usual copy constructor.

The next issue was (574). The WG recommended that, if a class has a
const or reference nmenber, that nmenber nust be initialized either by a
ctor-initializer list or by a brace-enclosed initializer |ist.

G bbons said this means an inplicitly-generated default constructor wll
be ill-forned (and the generation will fail). Adanczyk enphasi zed that
this retains the existing inconpatibility with C wherein C++ _requires_
initialization of const scal ars.

Laj oie presented two nore issues. For (478), the WG recommended that a
uni on constructor shall initialize only one nenber of the union. For
(534), the WG recomrended that nmenbers of a nested anonynous uni on may
be initialized by a constructor for its enclosing class.

Corfield asked if the constructor of the enclosing class can only ini-
tialize one menber of the nested anonynmous union. Lajoie said yes.
Corfield said this affects the proposed WP wordi ng. G bbons asked if a
const menber of a union can be set only during initialization. Lajoie
said sje’d take it as a Core issue.

(Motion 10 fornmalizes the recommendati ons above.)

Laj oie said her Core subgroup agreed that the following are editoria

corrections (from NO806 = 95-0206):

-- (22) A programis ill-fornmed if it uses a special nenber function
that's inaccessible at the point of use.

-- (576) const and volatile semantics never apply to an object during
the execution of a constructor or destructor; const/volatile senan-
tics apply to const/volatile objects only after their initialization
has completed and only until their destruction starts.

-- (562) A copy constructor is a conversion function. An inplicitly-
decl ared copy constructor is not an explicit conversion constructor;
it can be used for inplicit type conversion

Laj oie said the group considered a proposal to add a 'long long int’
type to C++ (NO715R1 = 95-0115). They recommended rejecting it until we

know what WGL4+X3J11 does about this issue. This means it will not
appear in this standard but should be considered for the next revision
of C++.

Ki efer was concerned that C would adopt this and C++ would not. Lajoie
said that menbers of W21+X3J16 who are concerned about this should

| obby WG14+X3J11. Harbison said we could urge our liaison to encourage
the C conmittee to adopt this. Plauger said he’'d be glad to present the
results of our straw vote on this to WGL4+X3J16. Unruh requested a
formal vote to indicate our support. C anmage preferred a straw vote.
Laj oi e suggested discussing this in a later session

==== G bbons ====

G bbons reported that his Core subgroup discussed | ookup for friend
decl arations. They proposed to ignore scopes outside the nearest
encl osi ng nanespace when | ooking for a nane referred to in a friend
declaration. This is to ensure that friends inject into the sane
nanespace that they would be found in.

G bbons expl ai ned the proposal with this exanple:

nanespace A {
void f();
nanespace B {
class C{
friend void f(); Il refers to A :f
friend void f(int); // injects A :B::f
H

}

According to the current WP, the two declarations of f do not overl oad
because the first friend refers to A::f but the second is injected as
A :B::f. Under this proposal, both f() and f(int) inject into A:B, so
the f’s declared in A :B::C becone overloaded in A::B

Stroustrup favored the proposal. Plauger expressed sone concern about
the possible inpact on the library. G bbons said a friend declaration
can explicitly specify the nanmespace in which the name should be de-
clared (i.e., looked up) by using qualified nanes.

G bbons then proposed that a friend declaration containing a qualified
nane shall not be a definition. He also presented a proposal to change
the inplied neaning of an unnamed nanespace from

nanespace UN QUE {
/1 body
}

usi ng nanespace UNI QUE
to:

nanespace UNI QUE { }
usi ng nanmespace UNI QUE

nanespace UNI QUE {
/1 body
}

The effect is the name x declared in the unnaned nanespace can be
referenced inside the nanmespace using ::x as well as just x.

G bbons then presented a proposal to prohibit usel ess using-decl ara-
tions. Under this proposal, the following will be ill-formed:

nanespace A {

typedef int Int;

}
nanespace A {

using A :lnt; /1 previously allowed as harm ess
}

Next, G bbons explained that a constructor does not have a nanme so it

cannot appear in a using-declaration. The W5 proposed to prohibit

usi ng-decl arati ons that nane destructors. Lajoie pointed out that the
proposal on destructors from her Core subgroup nakes this prohibition

unnecessary. G bbons said it may as well be added for clarity.

G bbons presented a proposal to change the C++ grammar to all ow unary ::
(as in ::nanme) in all declarator-ids. He said this does not introduce
any new syntactic anmbiguities into C++. (There already is an anmbiguity
for pointer-to-nmenber declarations that is resolved by a "maxi mal munch"
parse and therefore may require parentheses to di sanbiguate.) G bbons
said the WG saw no reason to |limt this change to friend decl arations,
so the proposal augnents the grammar to allow a | eading :: wherever it
allows a qualified-nane.

G bbons then presented a proposal to consider only namespace names when
| ooki ng up nanes in a namespace-alias-declaration or using-directive.

G bbons cl ai ned that hidi ng nanespace nanes makes no sense in these
contexts. Stroustrup commented that this concept already holds for
class nanes (in |ookup for el aborated-type-specifiers). @G bbons agreed
that this proposal sinply extends the principle to nanespace nanes.

Next, G bbons said his Core subgroup di scussed the semantics of unnamed
nanespaces. He said the WP currently enploys the concept of "unique
nane", but this is a kludge. He proposed to change the |inkage of nanes
declared in an unnanmed nanespace to "non-external"

Koeni g opposed this proposal, arguing that it prevents using private
types with library tenplates. Stroustrup agreed with Koenig that we
shouldn’t prevent this. G bbons said you could always use an "inpl emen-
tation" nanmespace to wap the private types. Camge felt that was a
bit drastic if the intent was sinply to prevent the uni que nane from
"escaping". G bbons said that unique nanmes are, in fact, a fiction --
they are hard to generate and not really guaranteed to be unique.

After a bit nore controversy, G bbons agreed to take this issue back to
the Core WG

No one objected to the other proposals regardi ng nanespaces. (See
Motion 11.)

G bbons proposed the following mnor clarifications for typeid issues:

-- typeid ignores top-level cv-qualifiers in its argunent.

-- typeid cannot have an argunent with an inconplete class type.

-- type_info is an inconplete type unless <typeinfo> is included (and
the name type_info is not visible).

-- when appearing as an argunment to typeid, array and function types do
not decay.

-- type_info objects have static storage duration

G bbons presented revised text for all of clause 5.2.7 [expr.typeid].

He pointed out that the replacenent text renoves the discussion of
"typeid(p[N])’', which is inline with the Core W5 s proposal to prohibit
subscripting of pointers to pol ynorphic types when the static and
dynam c type differ.

Cl amage asked why typeid should ignore the top-level cv-qualifier inits
argument. G bbons expl ai ned that otherw se prograns nust retain cv-
qualifier information at run-time, and the W5 t hought this would incur
too much run-time overhead.

.2

Pl um asked if the nane std::type_info is available on demand. @G bbons
said no. Camage asked if this was |like size_t. G bbons replied no,
because size_t is not a new type name, only a synonym

G bbons then introduced a proposal regarding pointer-to-nenber casts.
He said the WG agreed on this proposal in Mnterey (July '95) but did
not submt it for a fornmal vote. |In sunmary, the proposal

-- disallows casts of pointers-to-nenbers across virtual inheritance,
-- allow upcasts beyond the original nenber’s class.

(See Motion 13 for details.)

G bbons used the following exanple to illustrate the proposal
class A { };
class B : public A {
publi c:
virtual void f();
b
void g() {
B* b = new B;
void (B::*pf)() = &B::f;
(b->*pf)();
A* a = b;
void (A:*pg)() = (void(A:*)())pf; /1 1
(a->*pg) (); 12
}
According to the current WP, the cast on // 1 has undefined behavi or
Thi s proposal sanctions the cast. 1In the dereference a->*pg on // 2,
a' points to an object whose static type, A, that does not contain
the nmenber addressed by pointer-to-nmenber 'pg’. However, 'a' points to

an obj ect whose dynanmic type, 'B, does contain that nmenber. This pro-
posal requires that a pointer-to-menber carry enough information to nake
this work.

Unruh argued that there is an inplenentation technique that cannot allow
poi nter-to-nmenber dereferencing unless the static type of the object
contains the actual menber. G bbons replied that existing conmercial
conpil ers already have support for the dereference, but currently per-
formoptimzations that | ose some of the necessary information. He

| ater explained that the dereference is well-behaved only when the
dynam c type of the object pointed to is actually a type derived from
its static type

Wel ch opposed the prohibition on conversions across virtual inherit-
ance. G bbons said no vendors that failed to inplenent this had users
conpl ain about it.

Straw vote: Who favors this proposal? lots yes, 2 no, sone abstain
Li brary WG
==== Dawes ====

Dawes presented the WG s proposals to resolve clause 17 [library intro-
duction] issues (from N0O801 = 95-0201). He began with issue 17-001,
using the foll owi ng exanpl e:

#i ncl ude <string>

usi ng nanmespace std;

int main() {
cout << "Portable C++ code?" << endl
return O;

The programrefers to nanes declared in <ostreanp, but does not include
<ostreanp. <string> might include <ostrean», or it might not; the WP
does not say. Plauger pointed out the programis not portable but sone
i mpl ement ati ons m ght successfully translate and execute it. The WG
recommended that the WP shoul d specify that headers cannot include other
headers, or rather that they nmake visible only those nanes that they are
specified to declare. (See Mdtion 15.)

Dawes then di scussed issue 17-002, which raised a concern that the W
currently says "A C++ program shall not extend the namespace std." How
ever, a C++ program nust be allowed to extend the nanespace std, if only
to specialize class numeric_limts. The W5 recomended addi ng "unl ess
ot herwi se specified" to the prohibition on extendi ng nanmespace std.

This is specifically to allow specializations for nuneric limts.

Dawes said he’'d add traits for the string and streamcl asses to the
library issues list for review. Mers suggested adding the algorithns
tenplates to the list. Dawes said there are tenplates in nanespace std
that users nmight want to specialize. Specializations nust be in the
sanme nanmespace as the original tenplate, so user can't wite such spe-
cializations unless that can extend nanespace std.

Unruh asked whether the WP would provide an explicit list of allowable
extensions. Dawes said the W5 decided to use the "unl ess ot herw se
specified" formand that additional forms were up to the editor.

G bbons asked about the is_specialized nmenber of nuneric_ limts.

Pl auger expl ained that the is_specialized flag is always set true in any
specialization. Only the tenmplate sets this flag false to warn that it

i s probably not supplying any useful information

Spi cer asked whether the prohibition on extending nanespace std is diag-
nosabl e. Runsby said the WG i ntended so. Spicer said there doesn’t
seemto be a distinction between user source and library source (naking
di agnosi s harder). Plauger pointed out that library source was an

i mpl enentation detail and so, in effect, it does have special status.

Unruh said this could be an expensive check for inplenentations. Koenig
said an inplenentation could use "nmagic". Plauger said that naking this
di agnosabl e pretty much requires conpilers to check all the nanes.
Koeni g responded that broken inplenentations are not required to diag-
nose thensel ves.

Dawes said that "shall not" has been in clause 17 for a long tinme; he
suggested adding an issue to the list and then noving on. Plauger said
the proposal reads as if inplenmentations cannot extend their own head-
ers. Rumsby said the "shall not" refers to C++ prograns, not to the

i mpl enentation itself. Koenig said this is the same situation as
attenpts by the user to extend the library in C prograns.

Straw Vote: Who agrees with this proposal? Ilots yes, 0 no.

Spicer said the definition of "extending the namespace"” needs to be very
clear. He asked why adding a specialization is an extension; it doesn't
add any new nanes. Runsby said we should just |og the i ssue and nove
on.

Dawes went on the the next issue, that the WP does not describe the
effect of a programthat violates a library "Requires" paragraph. Dawes
said the W reconmended that the effect is "undefi ned behavi or unl ess

ot herwi se specified".

(See Motion 16 for the formal wording of the previous proposals.)

Dawes said the W5 agreed to resol ve issue 18-013 by accepting the recom
mendation fromthe issues list (NO784R2 = 95-0174R2). Specifically, the

recomendation is that deleting a pointer obtained by nothrow operator
new has wel | - defined behavi or.

Corfield asked if there is a library issue asking if the form of nothrow
oper at or new shoul d be:

new (nothrow) T

or:

new (nothrow()) T

Dawes said yes. Mers said it was too late to change this.

Dawes proposed to resolve issue 18-014 by accepting the reconmendati on
fromthe issues list (NO784R2 = 95-0174R2). The reconmendati on speci -
fies a corresponding delete for the nothrow operator new. Dawes ex-

pl ai ned that we need this to account for an exception thrown during a
not hr ow new expr essi on.

(See Motion 17 for the formal wording of the previous proposals.)

Dawes proposed accepting the recomendation for issue 20-018 (from
NO789R2 = 95-0189R2). The proposal specifies the semantics of
auto_ptr<>.reset ().

Dawes then presented the WG s proposal to resolve issue 20-021 (from
NO789R2 = 95-0189R2) by specifying a default constructor for pair<>.
The paper offered alternative recomendati ons; the W proposed t he
latter after cleaning it up a little. They intended the specification
to conformto HP s inplenentation of the STL

Dawes said the WG recommended cl osing the foll owi ng issues (from NO789R2
= 95-0189R2) with no action:

-- 20-014: add an allocator tenplate

-- 20-017: add an inplicit_cast tenplate

-- 20-019: add default constructors to many library classes

-- 20-020: renove nmake pair

-- 20-022: add unary_conpose and bi nary_conpose

Corfield asked if this neans we wi |l keep make_pair, and not add
unary_conpose and bi nary_conmpose. Dawes said yes.

(See Motion 18 for the formal wordi ng of the previous proposals.)

Dawes said the W5 agreed to accept the recommendati on for the follow ng

clause 25 [al gorithms] issues (from NO793 = 95-0193):

-- 25-001: change the behavior of find_end so it can be inpl enented

-- 25-002: change the behavior of find first of so it can be
i mpl enent ed

-- 25-003: change the behavior of adjacent_find, mn_elenment, and
max_el enent so they can be inpl enmented

-- 25-005: renmove an extraneous footnote fromclause 25.1.9

-- 25-007: add a constraint agai nst overl appi ng ranges for copying
al gorithns

-- 25-009: revise effects of partial _sort to say remaining elenents are
in unspecified (not undefined) order

-- 25-010: describe effects of set_difference nore precisely

-- 25-011: describe effects of set_symmretric_difference nore precisely

They al so reconmended closing the follow ng issues with no action

-- 25-006: state explicitly that 'copy’ requires forward copying

-- 25-008: change return type for stable partition

(See Motion 19.)

==== WQrS ====

Myers sunmmari zed the WG s proposal s regardi ng various clause 22 [l ocal €]
i ssues (from NO788R1 = 95-0188R1). The first proposal addressed issue
22-009. The WG reconmended divorcing the global Clocale fromthe gl o-
bal C++ locale. That is, calls to setlocale() should not affect the C++
library functions, but calls to |locale::global() _may_affect the C

| ocale. (See Mdtion 26, which includes other recommendations.) This
all ows the C++ locale machinery to be |ayered on top of the Clocale
nmachi nery.

Pl um asked how the C++ | ocal e machinery affects the C locale. Plauger
expl ai ned that using only naned locales in C++ will keep the Clocale in
step; however, if you use other features of the C++ locale, all bets are
of f.

Myers el aborated the second | ocal e proposal, which cleans up facet put
and get error handling (as per issues 22-017, 22-044, 22-063, 22-064,
22-065 from NO788R1 = 95-0188R1, and per NO791 = 95-0191):
-- clean up streanmbuf iterators
-- add failed() to ostreanbuf iterator
-- cleanup argunent lists to provide comuni cation of errors via an
i 0s_base::iostate& argunent.
(See Motions 20 through 23.)

Myers presented details of the third proposal, to extend the codecvt

facet to support filebuf extensions (as per issues 22-042 and 22-043):

-- define length() anal ogous to nbl en()

-- define max_I| ength() anal ogous to MB_CUR _MAX

-- add do_al ways_noconv() to indicate vacuity (to do with run-tinme
optim zations)

-- clarify the nmeaning of do_convert "partial" result

(See Motion 26, which includes other reconmendations.)

Myers then presented a few nore specific proposals regarding |ocales,
nonetary representation, and input/output. (See Mtions 24, 25, 27, 28
and 29.)

Straw vote: Who agrees with these recommendations? |ots yes, 0 no.
==== P| auger ====

Pl auger presented a proposal to rempve the caching semantics from
use_facet. He explained that the changes allow streanms to be i nbued
with transparent locales in a way that the global locale still "shows
through" so that parts of the | ocale can be nodified independently.
(See Motion 30.)

Dawes asked how strongly the Library subgroup supported this. Plum said
it was 9 for and 2 against. Mers said he recalled that the support was
for Plauger to wite the proposal, not the proposal itself. C amage
said the vote was to assess support for the principle in order to see
whether it was worth witing a proposal

Plum said this proposal matches the recomendati on made in Pl auger’s
i ssue list which has been available for sonme tine. Mers said he
objected to the proposal because it renbves protection agai nst sone
problens. He also conplained that it is a sweeping change to the
architecture of |ocale that breaks an invariant. He said he has an
alternative proposal to renove the caching behavi or w thout breaking
this invariant.

Cl amage asked whether the WG shoul d take the issue back. Plauger felt
that the straw vote indicated that it's ready for a commttee vote.

Pl um agreed. Dawes said that the proposal includes a | ot of new wording
that we haven't seen. Corfield said we rarely see detail ed wording
until meetings; if the issue has been on an issues list for a long tine,
and if the WG s straw vote favored the proposal, then we should nove

forward. Welch and Stroustrup also spoke in favor of nmoving to a vote.

Mers tried to invoke the two-week rule (X3's rule that a conmittee
menber may object to voting on an issue not presented to nenbers at

| east two weeks before the nmeeting). Plumsaid he would rephrase the
proposal in terns of a paper that satisfies the two-week rule. A sone-
what tart exchange ensued. Plauger said his recomendati on has been on
record since March ' 95

Straw Vote: Should we proceed on this issue: lots yes, 1 no.
Straw Vote: Who favors this proposal: 10 yes, 1 no, 11 abstain
Wel ch requested separate W&1 and X3J16 votes.

Straw Vote: Who favors this proposal
W=221: 2 yes, 0 no, 3 abstain
X3J16: 9 yes, 1 np, 12 abstain.

Stroustrup asked the abstaining votes to think carefully about the issue
before the formal vote. Plumasked if we are going to open a debate in
full commttee. Harbison said the |arge nunber of abstentions indicates
that people just want to read the proposal. C amage suggested novi ng
forward with a vote on this issue on Friday.

Myers wanted to continue debating the issue, preferably on the refl ec-
tor. Koenig said we have a paper on the table, we should read it and
vote. Bruck said he abstained because he has not had a careful | ook at
the issue until just now.

==== Koeni g ====

Koeni g presented a proposal for inproving the description of input
iterators. He noted that this will probably cause editorial ripples
through parts of the descriptions of other iterators. (See Mtion 31.)

Stroustrup asked if anyone who had studied the i ssue objected. Koenig
said all four participants in the discussion now agree. C anmage pointed
out that these four did not agree initially, so this represents a step

f orward.

Myers recommended a "bol d change” for the other iterators. Dawes sug-
gested that these other changes be made sooner rather than later. Unruh
asked whi ch nbpdel the proposal represents. Koenig explained that, under
this proposal, ++ invalidates all copies of the iterator.

==== W/| hel m ====

W hel m presented a proposal to resolve various basic_string issues (as
per the recomendati ons in NOBOORL = 95-0200R1). He provided details on
sone of the issues. (See Motion 32 for the full list of issues.)

W hel m expl ai ned that the recomendations for the follow ng issues
clean up string_char_traits: 002, 018, 024, 030, 060, and 067.
Stroustrup asked if this unifies the string and streamchar _traits.
Wl helmsaid the unification is a separate issue that needs further
di scussi on.

Unruh asked whether eos can return different values on different calls.
Wl helmreplied that this behavior is not specifically prohibited.
Unruh asked that this be added to an issue list. W!]Ihel magreed.

Pl auger asked whether the additional functions in string_char_traits
provide the nenchr and fill functionality. WIhelmsaid yes.

W hel m expl ai ned that the issue 077 addresses the problemthat the

second argunent to the append nenber is sonetines a position and ot her
times a length. He gave this exanple:

string s = "123";
s. append(string("abc"), 2); /] 2 is a position, s = "123c"
s. append("abc", 2); /1 2 is alength, s = "123ab"

The WG recomrended naking the first call an error by requiring both the
position and | ength argunments in the call, as in

s.append(string("abc"), 2, 1); [/ s = "123c"

W hel m expl ai ned that the WG considered it better to make the previous
use an error instead of silently changing the neaning of the call

G bbons asked if the WG consi dered switching the order of the length and
position argunents. W/ helmsaid the W5 deci ded that woul d confuse
peopl e even nore.

Wl helmlisted the remai ning open issues that were not addressed at this
neeting:
-- 014: fix argunent order for copy out to charT
-- 059: unify of string_and stream_ char _traits
-- 062: add requirenents on charT
-- 080: allow tenplate specializations for basic_string and
string_char _traits
-- 081: renove redundant descriptions

Straw vote: Who agrees with these recommendations? |ots yes, 0 no.
==== Podnol i k ====

Podnol i k presented a proposal to resolve various container issues (as
per the reconmendations in NO781R2 = 95-0181R2). He listed the specific
i ssues:

-- 23-010: requirenments for type T closed with no action

-- 23-024: fix copy constructors with respect to allocators by renoving
the signature that includes the allocator

-- 23-030: update descriptions of deque operations

-- 23-031: specialize 'swap’ for containers

Pl auger asked whether the specializations are packed with the containers
or with "swap’. Podnplik said they’'re with the containers.

-- 23-032: affirmthat priority_queue does not require a non-const
top()

-- 23-033: clean up resize() effects for deque, list and vector

-- 23-034: reverse iterator types for list by changing the nane of the
adaptor to reflect that list has a bidirectional iterator

-- 23-035: correct argunent list to vector<bool >::insert

-- 23-036: add semantics for at() for deque/vector

-- 23-037: add semantics for a.back() in sequence requirements

-- 23-038: specify iterator properties for clauses 21 and 23 -- they
provide bidirectional iterators

-- 23-039: specify that erase(iterator) returns an iterator pointing
just past the erased el enent(s)

-- 23-040: add typedefs for map and multimap T type

Koeni g observed that map and nmultimap store a {key, value} pair, and
there’s no conveni ent typedef name for the value part. Podnolik said
the WG did not feel strongly about any particul ar nane.

Myers asked sonet hing about the get _allocator() nmenber. Podnolik said
this is an editorial correction to add a line missing fromthe table.

Myers pointed out the priority_queue tenplate has an incorrect default

6.

3

21

1

contai ner type. (Apparently, this nade it into Mdtion 33.)

Podnol i k said two issues renmai n open
-- renove enpty sections in the WP
-- fix problems with insert() argunent lists

Straw vote: Who agrees with these recommendations? |ots yes, 0 no.
ANSI C conpatibility W5

Pl um presented a proposal to allow extended identifiers and literals in
C++ source prograns (NO808 = 95-0208). The proposal introduces a nota-
tion somewhat sinmlar to trigraphs for representing characters froml SO
10646 sets with encodings |arger than eight bits. For exanple, ??u05D0
represents the 16-bit character whose code is x05D0.

Pl um expl ai ned numerous details of the proposal. C amage asked whet her
this proposal was in the mailing. Plumsaid no. The comrmittee dis-
cussed nore technical issues. A few nenbers expressed uneasi ness about
voting on the proposal. Bruck requested the foll ow ng straw vote.

Straw Vote: Who supports extended characters in identifiers and the
intent of the proposal? lots yes, 1 no.

Koshi da asked that we not hold a fornmal vote on this.
Core (revisited)
==== G bbons ====

G bbons expl ai ned that a proposal clarifying "point of instantiation"
was accidentally omtted fromthe fornal notions at the previous neet-
ing. Inasnuch as the committee had accepted the proposal by straw vote,
G bbons and others nanaged to get the proposal into the WP along with an
editorial box (nunber 56) that explained what happened. G bbons asked
that we sinply ratify this change (and then we can renove the editoria
box) .

Straw vote: Who favors this proposal? 1ots yes, 0 no.
(See Motion 14.)

WG sessions (if any time is left)

Di stribution of formal notions

The conmittee di scussed Mdtion 15 (concerning |library header inclu-
sion). Koenig said he would not nmove the notion because of problens
found during the drafting session. He said he had not yet found a
wor ki ng alternative

Pl auger expl ai ned that the WP spells out which headers a header nay
include. Unfortunately, it’'s inpossible to inplenent the headers as
specified. Until recently it didn't matter, because those parts of the
WP weren’t normative. However, a recent editorial change nade them
normative. Therefore Plauger was concerned that, w thout this notion,
it would be inpossible to conply with the draft in its present form

CGeneral session |1

Core Language WG

G bbons sumarized the recent work of his Core subgroup. He said the
group agreed with NO779 = 95-0179 in reconmendi ng editorial changes

regardi ng exception handling, and they will forward themto the editor.
He said they were working on the tenplate conpilation nodel but had no

9.4

firmrecommendation(s).

G bbons sai d the subgroup has been | ooking at friend nanme injection
The group rejected G bbons’ original suggestion, and were working on an
alternative simlar to the operator nane | ookup rules.

Stroustrup said we rmust try to preserve certain well-published program
m ng techniques, but at the same tinme address all the horrible probl enms
that general injection causes. G bbons said that, in order to keep in-
jection but tame it, we might have to introduce a reconsideration rule
that covers the entire translation unit. So the group is trying to find
an alternative. Laughter. Plauger asked what our objection was to com
piling everything twice. Mre |aughter.

G bbons said he and Ki efer discussed a canonical nanme format for the
string returned by type_info::nane. This needs further discussion wth-
in the subgroup. Plauger suggested that this mght be a good subject
for a Technical Report. He explained that TRs have to go through an
approval process, but they are a good approach for difficult issues
where we need gui dance.

Laj oi e di scussed ongoi ng work in the other Core subgroups. She said the
"Schwarz" optimzation as currently worded is too widely applicable --

al | owi ng copied objects to be omtted in too many situations -- and it
breaks certain resource acquisition techniques. Koenig said a discus-
sion on the reflector suggested that the optim zation should be all owed
for local automatics and named variables. Mirphy was concerned that
this would cause portability problens across platforms.

Li brary WG

Dawes outlined the Library WG plans. They intend to work on the
detail ed issues arising fromNB comments and issues |ists.

ANSI C compatibility W5

Plum said the C Conpatibility Wowill continue to work on the issue of
extended identifiers since this received a favorable response fromthe
commttee. Plum asked interested parties to contact Koenig if they want
to be added to the -compat reflector. Corfield explained that, although
the committee’s straw vote showed support for the concept, we agreed not
to take a formal vote on extended identifiers at this neeting.

Edit WG and ot her general session business

Cl amage asked Koenig if there would be an editing session follow ng the
nmeeting. Koenig said that there would not be an organi zed session, but
anyone who wants to work on the WP is wel cone to do so. Koenig asked
that each nmotion have an "owner" who can be contacted about the exact
intent of the wording. Plumsaid that the proposer should be considered
as the owner. C amage agreed, and announced that the proposer wll be
treated as the owner for issues noved at this meeting.

Cl amage announced that he has produced a PDF version of the WP with
bookmar ks.

Cl amage said a few peopl e had expressed concern over sonme of the notions
so he woul d discuss themissues offline today. Corfield asked whet her
we should reconvene at the end of the day to hear the results of any
such di scussions. C anmage agreed to reconvene the commttee at 16: 00.

The conmittee recessed into working groups at 9:45 and reconvened at 16: 05.

Cl amage said we are very close to quorumon X3J16 and asked everyone to
make sure they are present for formal votes. Plum explained that the
X3J16 votes are to establish a position for the US W&R21 representati ve,

SO a quorumis not strictly necessary unless a specific X3J16 busi ness

i ssue arises. Plauger said the danger is that, if X3J16 did not have a
quorum it would open the conmittee to criticismin terns of how repre-
sentative the decisions were.

Cl amage took a count of X3J16 voting nmembers: 22. This is a quorum..
just.

Cl amage asked i f any subgroups wanted to change any notions coni ng up
for a vote

Podmol i k expl ai ned a change to notion 33 which adds the resolution of a
new i ssue, 23-042, added at this neeting. The issue fixes an editoria
error in the default argunent of the priority queue adaptor tenplate.

Myers said the Library subgroup had deci ded a whol e bunch of iostream
i ssues which will come up for a vote at the next neeting.

The comm ttee di scussed Motion 30. During the day, the Library W5 voted
to defer this nmotion. C amage called for a another straw vote of the
whol e conmittee on Motion 30. Unruh asked for a three-way vote, with
the option to defer the issue to a later neeting. Harbison said that if
the nmotion should fail tomorrow, nore work will be done and some vari ant
of the proposal will return at a future neeting. He urged a sinple

yes/ no vote.

Straw vot e:
Who woul d vote YES on the notion tonmorrow? 5
Who woul d vote NO on the notion tonprrow? 0O
Who wants to defer the vote to a future neeting? lots

Lajoie said her Core subgroup discussed the 'long | ong’ proposal from
the C conmittee. The subgroup agreed to ask W514+X3J11 to resol ve the
i ssue, and present the solution in the formof a technical report. She
wanted to know i f WE21+X3J16 agreed with this position

G bbons said we could take either of two approaches. W could say to

the C comittee:

1) please address the issue

2) we want |onger integers; please add them

He said it’s inmportant to phrase this properly. Lajoie said the sub-

group decided on (2). G bbons wanted to ensure that the conmttee had
the option to decide which approach they wanted.

Stroustrup felt that asking the C conmittee to add an extensi on was nore
serious than sinmply adding it oursel ves.

Plumrelated the C conmittee’s approach to this issue. They have

expl ored two directions:

1. a practical, market-oriented approach to add the type 'long |ong

2. a new way of describing integer types wherein the program specifies
the nunber of bits required, whether a larger integer is acceptable,
and so on

Pl um sai d he has argued that replacing the current sinple nuneric type

systemwith a very fine granularity would be very bad for a | anguage

like C++ with overloading. He argued that for conpatibility reasons, C

shoul d pursue the 'long long solution

Stroustrup supported Plumis position on this. However, he still felt
that this | ooks |ike "extension by the back door"™ and he was rel uctant
to support another extension. Koenig thought that whatever the C com
nmttee decided would cone too late for this C++ standard. Stroustrup
said we that if we send a strong nessage to the C committee, we will be
obliged to adopt Cs solution -- whatever it is. Wlch said users are
concerned that 'long long’ is not a | ong-term sol ution

10

Straw Vote: Who wants to...
di scourage 'long long'? 7
nonitor the 'long long" proposal? 6
encourage 'long long ? 12

Pl um asked if we should discuss this on the reflector. He al so asked
the ' discourage’ votes to explain their reasons.

Schrei ber said 'long long’ is too restrictive; it provides only one nore
type to solve this one problem He preferred a general solution nore

li ke FORTRAN s width specifiers. G bbons said it won't be |long before
we need nore than 64 bits, but the question should be "do we need | onger
integers for pointer arithnetic". E ther way, 'long long’ is a stop-gap
sol uti on.

Stroustrup said he has had requests for |onger doubles, |onger pointers
and | onger characters. W have not | ooked at how it would inpact the
conversion and overl oading rules, so pushing another commttee to add
this is dangerous.

Pl um asked i f anyone strongly opposed 'long long'. Koenig said that if
C adopts 'long long’, C++ conpilers will add it anyway. The straw vote
showed four people were strongly opposed. Stroustrup said he was very
unhappy that, having deci ded not to add extensions ourselves, we are
consi deri ng encouragi ng soneone else to do it.

Pl um sai d SC22 has expressed the position several tines that C++ should
stay reasonably conpatible with C. Koenig said that there will be other
features that C9x will adopt and those will also have an inpact on us.

Pl um said we adopted by reference parts of the Clibrary. Koenig said
we agreed not to change the C subset of our library without a vote even
i f C changed.

Har bi son announced he wi |l discuss the mid-Ballot procedures (to cover

the Stockhol mneeting) on Friday. He also asked NB representatives to

consi der the progress made on their issues in time for the post-neeting
mai | i ng.

WG sessions (if any time is left)

The conmittee recessed at 17: 00 and reconvened Friday at 9:00.

11

11.

Revi ew of the neeting

Cl amage called roll because there appeared to be nany nenbers nissing.
He confirmed that all 22 voting nenbers were present.

Cl amage said the working groups have nmade good progress and the neeting
has gone snoot hly.

Pl um announced that he has assuned ownership of the |locale issues |ist.
Myers thanked him

Cl amage noted that the proposer of each nmotion will be recorded as the
owner of that nmotion. X3J16 votes will be taken first followed by W21
votes. The abbreviated formof X3J16 voting will be used -- only votes
against will be counted unless otherw se requested.

Formal notions
1) Mtion (to accept the WP) by Dawes/ Bruck
Move we accept NO785 = 95-0185 as the current W,

Moti on passed X3J16: lots yes, 0O no.
Moti on passed W&1: 6 yes, 0 no, 0 abstain

==== presented by Adanctzyk ====

2)

Mot i
Mot i

3)

Mot i
Mot i

4)

Mot i
Mot i

5)

Motion (to reinstate operator void()) by Lajoie/Adantzyk:
Move we anmend the WP as foll ows:
Del ete the | ast sentence of 12.3.2 [class.conv.fct], paragraph
1, and replace the period at the end of the precedi ng sentence
Wt h:
, or to (possibly cv-qualified) void.

on passed X3J16: lots yes, 0 no.
on passed W&R1: 6 yes, 0 no, 0 abstain

Motion (to define semantics of call-by-value argunent initializa-
tion) by Adantzyk/ Laj oi e:

Move we anend the WP as described in NO780 = 95-0180.

on passed X3J16: lots yes, 0 no.
on passed WX1: 6 yes, 0 no, 0 abstain

Motion (to adjust the definition of scalar and fundanental type) by
G bbons/ Unr uh

Move we anend the WP as described in NO774 = 95-0174.

on passed X3J16: lots yes, 0 no.
on passed W&R1: 6 yes, 0 no, 0 abstain

Motion (to clarify uses of function typedefs for nenmber functions)
by Schrei ber/ Adanczyk:

Move we anend the WP as described in N0O813 = 95-0213.

Corfield asked if operators can be declared using function typedefs. No

one

Mot i
Mot i

6)

seened sure. Lajoie agreed to take this as a Core issue.

on passed X3J16: lots yes, 0 no.
on passed WX1: 6 yes, 0 no, O abstain

Motion (to allow sonme dynanmic initializations to be done statically)
by Laj oi e/ Runsby:

Move we anend the WP as foll ows:

-- add to 3.6.2 [basic.start.init], paragraph 1, at the end of the
sentence "hjects with static storage duration initialized with
constant expressions...":

; see also _dcl.init.aggr_ for additional initialization cases
for which initialization nust be done statically.

-- add to 3.6.2 [basic.start.init], after paragraph 1, as a new
par agr aph:

An inmplenentation is pernitted to performan initialization of a
nonl ocal object with static storage duration as a static ini-
tialization even when such initialization is not required to be
done statically, provided that (a) the dynam c version of the
initialization would not cause the value of any other nonl oca
object with static storage duration to change prior to their
initialization, and (b) the static version of the initialization
produces the sane value in the initialized object as would be

produced if all initializations not required to be done static-
ally were done dynamically. [Note: as a consequence, it is
unspeci fied whether a reference, in an initialization, to a
variabl e potentially requiring dynanmic initialization, and
defined later in that conpilation unit, will obtain the val ue
fully initialized or nerely zero-initialized. Exanple:

struct A {
float x;

. A(float p) : x(p) {}

extern A b;
A a(b.x); /1 unspecified forward reference to b.x
A b(1.0);

-- end not €]
-- add to 8.5.1 [dcl.init.aggr], at the end of paragraph 13:

If all of the menber initializer expressions are constant
expressions, and the aggregate is a POD type, the initialization
is done during the static phase of initialization

Moti on passed X3J16: lots yes, O no.
Moti on passed W&1: 6 yes, 0 no, O abstain

==== presented by Lajoie ====
7) Mtion (to resolve start and termination issues) by Lajoie/ Adantzyk:
Move we amend the WP as foll ows:

-- adopt the proposed resolutions for issue 429 from N0802 =
95- 0202.

-- add to 3.6.1 [basic.start.main], paragraph 4:

If "exit’ is called to end a program during the destruction of
an object with static storage duration, the program has
undefi ned behavi or

-- replace 3.6.1 [basic.start.min], paragraph 1, first sentence
with:

A C++ program shall contain a global function called main, which
is the designated start of the program It is inplenentation-
defi ned whether a programin a freestandi ng environnent is
required to define a main function. [Note: in a freestanding
environnent start-up and ternination is inplenmentation-defined;
start-up contains the execution of constructors for nonl oca
objects with static storage duration; ternination contains the
execution of destructors for objects with static storage
duration.]

-- replace 3.6.3 [basic.start.tern] paragraph 1, sentences 2-4
with:

hjects with static storage duration (declared at bl ock scope or
at namespace scope) are destroyed in the reverse order of the
conpl etion of the execution of their constructors. For an
object of array or class type, all subobjects of that object are
destroyed before any | ocal object with static storage duration
initialized as a side-effect of constructing the subobjects is
destroyed.

If a function contains a |ocal object of static storage duration

that has been destroyed and the function is called during the
destruction of an object with static storage duration, the
program has undefi ned behavior if the flow of control would pass
through the definition of the previously destroyed object.

If a function is registered with atexit then follow ng the cal
to exit, any objects with static storage duration initialized
prior to the registration of that function will not be destroyed
as part of the term nation process until execution of the

regi stered function has conpl et ed.

If an object with static storage duration is constructed then
following the call to exit, any functions registered with atexit
prior to conpletion of the construction of that object wll not
be called as part of the term nation process until execution of
that object’s destructor has conpl et ed.

-- adopt the proposed resolution from NO772 = 95-0172.

G bbons asked if the subgroup had considered the inpact of the fourth
bullet of the notion on a nulti-threaded environnent. Lajoie said no.
G bbons said the resolution would require process |ocks on initializa-
tion. Welch said an inplenentation nmust do this already for |oca
statics and he believed there were optimzations for the global case.
Plum said nulti-threading was beyond the scope of the standard and we
shoul d di scuss it separately.

G bbons said historically the static initialization process was a |arge
fraction of the startup cost. This resolution would increase it, pos-
sibly to where it may be unacceptable for some applications. Plumsaid
he agreed with G bbons’ concerns, but maybe the way to resolve this is
to say that these words do not apply to multi-threading. Bruck did not
want to bl ock the proposal, yet he didn't want to nake difficulties for
i mpl ementations in multi-threadi ng environment.

G bbons asked that an editorial box be added to indicate there was con-
tention regarding nmulti-threading. Coha asked to vote on the fourth
bull eted item separately.

Motion to amend by Coha/ G bbons:
Move we renmove the fourth bulleted itemfromthe notion.

Spicer said the WP already contains words on initialization which inply
what ever restrictions on nulti-threading G bbons is concerned about.

Pl um spoke agai nst the anendnent on the grounds that we m ght be under-
m ni ng the consi stency of the subgroup’s work. Lajoie said it would be
fine to split the notion -- the other bullets remain consistent. Bruck
said he was in favor of the bullets 1, 2, 3 and 5 of the notion but had
a problemw th bullet 4.

Motion to amend passed X3J16: lots yes, 4 no, 0 abstain
Motion to amend passed WXR1: 5 yes, 0 no, 1 abstain

Motion (as amended) passed X3J16: lots yes, 0 no.
Motion (as amended) passed W&1: 6 yes, 0 no, 0 abstain

7b) Motion (to specify order of destruction for objects with static
storage duration) by Lajoie/\Welch

Move we anmend the WP as specified in the original fourth bulleted
itemof Mdtion 7.

Wl ch noted that his inplementation handles nulti-threading and shared
libraries that are dynam cally | oaded and unl oaded without noticeable
performance overheads. Mers asked if Watcom i npl emented | ocking during

initialization. Wlch said yes.

Wel ch agreed to wite a paper for the reflector on how Watcom i npl enent s
 ocking during initialization.

Moti on passed X3J16: lots yes, 4 no.
Moti on passed W&1: 4 yes, 0 no, 2 abstain

8) Mdtion (to resolve nenory nodel issues) by Lajoie/ Adantzyk:
Move we amend the WP as foll ows:

-- adopt the proposed resolution for issue 554 from NO803 =
95- 0203.

-- change 3.9 [basic.types], paragraph 2 both occurrences from
mencpy library function
to:
mencpy or nemove |ibrary functions

xX add to 5.2.1 [expr.sub], 5.2.5 [expr.post.incr], 5.3.2
[expr.pre.incr]:

If the operand is a pointer to T and the object pointed to by
the pointer is not an object of type T, the program has unde-
fi ned behavi or.

xXx add to 5.3.1 [expr.unary.op] paragraph 1:

If the operand is a pointer to T and the object pointed to by
the pointer is not an object of type T or an object of a type
derived from T, the program has undefi ned behavi or

++ add to 5.9 [expr.rel] and 5.10 [expr.eq]:

If the operands are of type pointer to T and the pointers do not
refer to objects of type T or to objects of a type derived from
T, the program has undefined behavi or

xXx add to 5.17 [expr.ass]:

In a conpound assignnment (+=, -=), if the left operand is a
pointer to T and the object pointed to is not an object of type
T, the program has undefined behavi or

-- add to 5.7, after paragraph 6, the foll ow ng new paragraph:

If the value 0 is added to or substracted froma pointer val ue,
the result conpares equal to the original pointer value. If two
poi nters point to the same object or function or both point one
past the end of the sanme array or both are null, and the two
pointers are subtracted, the result conmpares equal to the val ue
0 converted to the type ptrdiff _t.

xx change 5.9 [expr.rel], paragraph 2, last bullet to:
-- Oher pointer conparisons are unspecified.

Lajoie wanted to anend the notion to renove the changes to 5.2.1, 5.3.1,
and 5.9 since it would be nore appropriate to nake these changes to the
| val ue/ rval ue section. She said she’d add a Core issue regarding the
changes to |values and rval ues. Koenig asked Lajoie if she should re-
nove the proposed changes to 5.2.5 and 5.3.2 as well as 5.2.1. Lajoie

sai d yes.

G bbons said the |val ue/rval ue conversion issue was inmportant. Unruh
suggested al so renovi ng the changes to 5.17, because ++p is is defined
to be the sane as p += 1. Lajoie agreed to renove themas well.

[Not e:

Apparently, there was a procedural |apse here; | have no record of a
notion to amend. However, it seems that no one conplained that they did
not know what they were voting on. | have used different "bullets" in

the notion above to indicate what | understand to be the accunul at ed
effect of this free-for-all

-- neans keep the bullet itemthis as is
++ neans delete the reference to clause 5.9 fromthis bullet item
XX means delete this entire bullet item

: DS]

Moti on passed X3J16: lots yes, 0O no.
Moti on passed W&1: 6 yes, 0 no, 0 abstain

9) Mtion (to resolve object nodel issues) by Lajoie/Runsby:
Move we anmend the WP as foll ows:
-- change 9.2 [class.nen, paragraph 11 to:

The order of allocation of nonstatic data nenbers separated by
an access-specifier is unspecified.

-- change the first two sentences of 9 [class], paragraph 3 to:
A class with an enpty sequence of nenbers and base cl ass objects
is an enpty class. Conplete objects and nenber subobjects of an
enpty class type shall have a nonzero size

-- add to 10 [derived], after paragraph 3:
A base cl ass subobj ect can be of zero size; however, two base
cl ass subobjects of the same class type that belong to the sane
conpl ete object shall not be allocated at the same address.

-- add to 10.3 [class.virtual], after paragraph 5:
The return type of the overriding virtual function shall not be
an inconplete class type if it differs fromthe return type of

the overridden function

Moti on passed X3J16: lots yes, 0 no.
Moti on passed W&1: 6 yes, 0 no, 0 abstain

10) Motion (to resolve special nenber function issues) by Lajoie/
Corfield:

Move we amend the WP as foll ows:
-- delete 12 [special], paragraph 1, sentence 2.
-- add to 12 [special], at the begi nning of paragraph 1:

The default constructor, copy constructor, copy assignnent
operator and destructor are special nenber functions. The

i mpl enentation will inplicitly declare these nmenber functions
for a class type when the program does not explicitly declare
them except as noted in _class.ctor_. Progranms may explicitly

refer to inplicitly declared special menber functions.

[Exampl e:

struct A{ }; [l inmplicitly-declared A::operator=
struct B: A {

B& operator=(const B &;
3

B& B: :operator=(const B& s) {
this->A :operator=(s); [// well-formed
}

-- end exanpl €]
change 12.4 [class.dtor], paragraph 1, first sentence to:

A destructor of a class is declared with a ~ followed by the
class name followed by an enpty parameter |ist.

add to 12.4 [class.dtor], before paragraph 12:

In an explicit destructor call, the destructor name appears as a
~ followed by a type-nane that nanes the class type. The object
expression in an explicit destructor call shall be of the same
class type as the destructor’s class type or shall be of a class
type derived fromthe destructor’s class type. [Exanple:

struct B {
virtual ~B() { }
b

struct D: B {
~o() {}

1

D D object;

typedef B B_ali as;

B* B ptr = &D object;

D object.B::~B(); /1 calls B s destructor
B ptr->~B(); /1l calls Ds destructor
B ptr->~B alias(); // calls D's destructor

-- end exanpl €]

change 12.8 [cl ass.copy], paragraph 2, first sentence to:

A constructor for class Xis a copy constructor if its first
paranmeter is of type X& const X& volatile X& or const volatile
X& and either there are no other paraneters or else all other
pararmet ers have default argunents (_dcl.fct.default).

change 12.8 [cl ass. copy], paragraph 5 to:

The inmplicitly-declared copy constructor for a class X will have
the form

X X(const X&)

i f

-- each direct or virtual base class B of X has a copy
constructor whose first paraneter is of type const B& or
const volatile B& and

-- for all the nonstatic data nenbers of X that are of a class
type M (or array thereof), each such class type has a copy
constructor whose first paraneter is of type const M or
const volatile M

O herwise, the inplicitly declared copy constructor will have

the form

Xt X(X&)

-- change 12.8 [cl ass.copy], paragraph 9, first sentence to:
A user-decl ared copy assignnent operator X :operator=is a
non-static menber function of class X with exactly one paraneter
of type X, X& const X& volatile X& or const volatile X&

-- change 12.8 [cl ass.copy], paragraph 10 to:
If a class definition does not explicitly declare a copy
assi gnment operator, one is declared inplicitly. The
inmplicitly-declared copy assignnent operator for a class X will
have the form

X& X::operator=(const X&)

i f

-- each direct base class B of X has a copy assi gnnent operator
whose paraneter is of type const B& or const volatile B& and

-- for all the nonstatic data nenbers of X that are of class
type M (or array thereof), each such class type has a copy
assi gnment operator of type const M& or const volatile M.

QO herwise, the inplicitly declared copy constructor will have

the form

X& X::operat or =(X&)

-- replace 12.6.2 [class.base.init], paragraph 2, |ast sentence
with:

If a ctor-initializer specifies nore than one meminitializer
for the same nenber, same base or for multiple nenbers of the
same union, the ctor-initializer is ill-formed. A ctor-initial-
izer can initialize a nmenber of an anonynous union defined in
the constructor’s class nmenber 1|ist.

-- change 12.6.2 [class.base.init], paragraph 4, |ast sentence to:
If a class X has a nonstatic data nenber that is of reference
type or of a const type that is not eligible for default
initialization (_dcl.init_) and there is a constructor for class
X whi ch does not specify that nenber in its meminitializer, the
programis ill-formed.

Moti on passed X3J16: lots yes, O no.
Moti on passed W&1: 6 yes, 0 no, O abstain

==== presented by G bbons ====

11) Motion (to accept proposed resolutions to various namespace issues)
by Spi cer/ Bruck:

Move we anend the WP as described in 95-0212 = N0812.

Moti on passed X3J16: |lots yes, 0 no.
Moti on passed W&21: 6 yes, 0 no, O abstain

12) Motion (to accept proposed resolutions to various typeid issues) by
Adantzyk/ G bbons:

Move we anend the WP as foll ows:

-- replace 5.2.7 [expr.typeid] with the follow ng:

The result of a typeid expression is an |value of type const
std::type_info (_lib.type.info_), whose lifetinme extends to the
end of the program \Wether or not the destructor for the
type_info object is called at the end of the programis
unspeci fi ed.

When typeid is applied to a type-id, the result is a type_info
obj ect representing the type of the type-id. If that type is a
reference type, the result is a type_info object for the
referenced type. In both cases, if the type for which the
type_info is returned is a class, that type shall be conpletely
def i ned.

When typeid is applied to an |val ue expressi on whose type is a
pol ymorphic class type, the result is a type_info object for the
type of the conplete object (_intro.object_) that contains the
value. If that expression is the result of applying unary * to
a pointer [Footnote: If p is an expression with pointer type,
then *p, (*p), (*(p)), and so on all neet this requirenment.] and
the pointer is a null pointer value (_conv.ptr_), the typeid
expression throws the bad_typeid exception (_lib.bad.typeid_).

VWen typeid is applied to an expression other than an |val ue of
a polynmorphic class type, the result is a type_info object for
the (static) type of the expression. The expression is not
eval uat ed

Lval ue-to-rvalue (_conv.lval), array-to-pointer (_conv.array_),
and function-to-pointer (_conv.func_) conversions are not
applied to the expression. |If the type for which the type_ info
is returned is a class type, that type shall be conpletely
def i ned.

In all cases, typeid ignores the top-level cv-qualifiers of the
type for which the type_info object is returned. [Exanple:

class D{ ... };

D di;

const D d2;

typei d(dl) == typeid(d2); /1 yields true
typeid(D) == typeid(const D); [/ yields true
typei d(D) == typeid(d2); /1 yields true
typei d(D) == typeid(const D&); // yields true

-- end exanple] [Note: C ause _class.cdtor_ describes the
behavi or of typeid applied to an object under construction or
destruction.]

If <typeinfo> (_lib.type.info_) has not been included prior to a
use of typeid, typeid returns an |value of type const
std::type_info, but the class std::type_info is considered

i nconpl etely defined and is not visible by name at that point.

Moti on passed X3J16: lots yes, 0 no.
Moti on passed W&1: 6 yes, 0 no, 0 abstain

13) Motion (to accept proposed nodifications to the rules for casting
poi nters to nmenbers) by G bbons/Laj oi e:

Move we amend the WP as foll ows:
-- change 5.2.8 [expr.static.cast], paragraph 9 from

...can be converted to...where Bis a base class of D..

to:

...can be converted to...where Bis a nonvirtual base cl ass of
D. ..

-- change 5.2.8 [expr.static.cast], paragraph 9 from

If class B contains or inherits the original nenber,
Q herwi se ...

to:

If class Bis neither a base nor derived class of the class
containing the original menmber, the behavior of the cast is
undef i ned.

-- add to 5.5 [expr.nptr.oper], after paragraph 3:

If the dynanic type of the object does not contain the nenber to
whi ch the pointer refers, the behavior is undefined.

-- add to 4.11 [conv.nen], after "or ambiguous (10.2)":
or virtual (_class.m)

Moti on passed X3J16: lots yes, 0 no.
Moti on passed W&21: 6 yes, 0 no, 0O abstain

14) Motion (to ratify the point of instantiation) by Unruh/Corfield:

Move we ratify the working paper changes referred to by editoria
box 56 in 14.3.2 [tenp.point] paragraph 1, and renove the editoria
box.

Moti on passed X3J16: lots yes, O no.
Moti on passed W&1: 6 yes, 0 no, 0 abstain

==== presented by Dawes ====
15) Motion (to clarify library header inclusion):
Move we amend the WP as fol |l ows:

-- change 17.3.4.1 [lib.res.on. headers], paragraph 2 and footnote
138 to:

Except for nanes reserved to the inplenmentation
[1ib.global.nanes], the C++ headers in Table 21 shall declare or
define exactly those nanes required by their descriptions.
[Footnote: It is an inplenmentation conveni ence for headers to

i ncl ude each other. Despite the restriction, that convenience

i s avail abl e by havi ng headers define everything needed for

i mpl enentation in a nanmespace called, say, _Inplenentation, and
then sel ectively nmaking those nanes avail abl e t hrough

usi ng-decl arations.]

-- throughout the WP, in any Synopsis clause that clains a header
i ncl udes other headers, delete the text mmking such a claim

This notion was not noved. An editorial box will be added about this
i ssue.
16) Mdtion (to resolve several library issues fromclause 17 issues

list) by Dawes/Runsby:

Move we anmend the WP as described in the proposed resol utions for
i ssues 001 through 003 from N0801 = 95-0201 Version 2.

Moti on passed X3J16: |lots yes, 0 no.
Moti on passed W&1: 6 yes, 0 no, O abstain

17) Motion (to resolve several library issues fromclause 18 issues
list) by Dawes/Rumsby:

Move we amend the WP as described in the proposed resol utions for
i ssues 013 and 014 from NO784 = 95-0184 Version 3.

Moti on passed X3J16: lots yes, 0O no.
Moti on passed W&1: 6 yes, 0 no, 0 abstain

18) Mdtion (to resolve several library issues fromclause 20 issues
list) by Myers/Dawes:

Move we anmend the WP as described in the proposed resol ution for
i ssue 018 (alternative 2) from NO789 = 95-0189 Revision 2, and cl ose
wi t hout taking any action issues 014, 017, 019, 020, and 022 from
NO789 = 95-0189 Revision 2, and resolve issue 021 from NO789 =
95-0189 Revision 2 as foll ows:
-- add to 20.2.2 [lib.pairs], the constructor declaration

pair();
-- add to 20.2.2 [lib.pairs] the follow ng Effects:

Effects: it initializes its nenbers as if inmpenented:

pair::pair() : first(T1()), second(T2()) { }

Moti on passed X3J16: lots yes, 0O no.
Moti on passed W&21: 6 yes, 0 no, 0O abstain

19) Motion (to resolve several library issues fromclause 25 issues
list) by Dawes/ Myers:

Move we anmend the WP as described in the proposed resol utions for

i ssues 001, 003, 005, 007, 009, 010 and 011 from NO793 = 95-0193,
and cl ose wi thout taking any action issues 006 and 008 from NO793 =
95-0193, and anmend the WP as described in the proposed resol ution

i ssue 002 from NO793 = 95-0193 with the foll owi ng change:

-- the conplexity specification is:

At nost (lastl - firstl) * (last2 - first2) applications of the
correspondi ng predicate.

Moti on passed X3J16: |lots yes, 0 no.
Moti on passed W&21: 6 yes, 0 no, O abstain

==== presented by Myers and C amage ====

20) Mdtion (to change the ios and | ocale paraneters in facets) by
Myer s/ Runsby:

Move we anend the WP as foll ows:

-- adopt the proposed resolution for 22-044 from NO788Rl =
95- 0188R1.

-- throughout 22 [lib.localization], renmove the "const | ocal e&"
paraneter fromevery facet menber function that takes an

Mot i
Mot i

21)

Mot i
Mot i

22)

Mot i
Mot i

23)

Mot i
Mot i

24)

Mot i
Mot i

25)

Mot i
Mot i

26)

Mot i

i os_type& [now i os_base&] argunent.

on passed X3J16: lots yes, 0 no.
on passed W&1: 6 yes, 0 no, 0 abstain

Motion (to cleanup streanmbuf iterator semantics) by Myers/Runsby:
Move we amend the WP as described in NO791 = 95-0191.

on passed X3J16: lots yes, 0 no.
on passed WX1: 6 yes, 0 no, 0 abstain

Motion (to sinplify the error handling of the facet get nmenbers) by
Myer s/ Runsby:

Move we anend the WP as described in NO788R1L = 95-0188R1, issue
22-065.

on passed X3J16: lots yes, 0 no.
on passed W&R1: 6 yes, 0 no, 0 abstain

Motion (to make error handling consistent for reading all nuneric
types in facets) by Myers/ Dawes:

Move we anend the WP as described in NO788R1L = 95-0188R1, issue
22-063.

on passed X3J16: lots yes, 0 no.
on passed WX1: 6 yes, 0 no, 0 abstain

Motion (to make nmpbneypunct <> and numpunct <> consi stent) by
Mer s/ Dawes:

Move we anend the WP as described in NO788R1L = 95-0188R1, issue
22-048, resolution 1.

on passed X3J16: lots yes, 0 no.
on passed W&R1: 6 yes, 0 no, 0 abstain

Motion (to clarify the semantics of internal padding for all numeric
formats) by Myers/ Dawes:

Move we anend the WP as described in NO788R1L = 95-0188R1, issue
22-053, resolution 2.

on passed X3J16: lots yes, 0 no.
on passed WX1: 6 yes, 0 no, 0 abstain

Motion (to resolve various |ocal e issues) by Mers/ Dawes:
Move we anmend the WP as foll ows:

-- adopt the proposed resolutions fromNO788RlL = 95-0188R1 for the
follow ng | ocal e issues:

22-009, 22-019, 22-022, 22-035, 22-042, 22-043, 22-045, 22-049,
22-059, 22-066.

-- add to 22.2.6.3.2 [lib.local e.moneypunct.virtuals], in the
description of nobneypunct<>::do_pos_format() and
noneypunct <>::do_neg _format ():

The base class inplenmentation returns an object of type pattern
initialized to { synbol, sign, value, none }.

on passed X3J16: lots yes, 0 no.

Moti on passed W&1: 6 yes, 0 no, O abstain

27) Motion (to clarify how nonetary val ues are parsed by nobneypunct<>)
by Myer s/ Dawes:

Move we anend the WP as described in NO788R1 = 95-0188R1, issue
22- 055, resolution 2.

Moti on passed X3J16: lots yes, 0 no.
Moti on passed W&21: 6 yes, 0 no, O abstain

28) Motion (to resolve various iostreamissues) by Myers/ Dawes:
Move we amend the WP as foll ows:

-- adopt the proposed resolutions fromN0794 = 95-0194 for the
foll owi ng issues:

27-003, 27-202, 27-302.
-- change 27.4.1 [lib.streamtypes], before paragraph 2:
typedef INT_T streansize
to:
typedef SZ T streansize

Moti on passed X3J16: lots yes, 0O no.
Moti on passed W&21: 6 yes, 0 no, 0O abstain

29) Mdtion (to renpve the exceptions fromsetstate() and clear()) by
Myer s/ Runsby:

Move we amend the WP to resol ve i ssue 27-201 from NO794 = 95-0194)
as follows:

-- throughout clause 27 [lib.input.output], delete the exception
specifications fromthe nenber functions setstate and cl ear

Moti on passed X3J16: lots yes, 0O no.
Moti on passed W&1: 6 yes, 0 no, 0 abstain

==== presented by Plauger ====
30) Mdtion (to renove the caching semantics for locales fromuse facet):
Move we anmend the WP as foll ows:
-- delete 22.1.1 [lib.locale] paragraphs 6-8.
-- change 22.1.1.5 [lib.locale.statics], the description of
| ocal e: :transparent, change paragraph 3, Returns, and Notes
from
static |l ocale transparent();

3 The continuously updated gl obal |ocale.

Returns: A locale which inplenments semantics that vary
dynam cally as the global |ocale is changed.

Notes: The effect of inbuing this locale into an iostreans
conponent is unspecified (_lib.ios.menmbers).

to:

static |l ocale transparent();
3 An enmpty | ocal e
Returns: A |locale that has no facets.

-- change 22.1.2 [lib.locale.global.tenplates], the description of
use_facet, Effects, Notes, Returns, and Notes from

tenpl ate <cl ass Facet >
const Facet & use_facet(const |ocale& |oc);

1 Cet a reference to a facet of a | ocale.

Effects: If the requested Facet is not present in |oc, but
is present in the current global |ocale, returns the gl oba

| ocal e’ s instance of Facet. Because |ocale objects are

i mut abl e, subsequent calls to use facet<Facet>(loc) return
the sane object, regardl ess of subsequent calls to setlocale
or | ocal e:: gl obal

Not es: The only exception to this rule is for the locale
returned by locale::transparent(); it always returns the
facet found in the global locale at the tine of each call

Throws: bad_cast if (has_facet<Facet>(loc) |
has_f acet <Facet>(locale())) is false.

Returns: A reference to the requested facet.

Notes: The result is guaranteed by |ocale’'s val ue senantics
to last as long as the value of |oc.

to:

tenpl ate <cl ass Facet >
const Facet & use_facet(const |ocal e& |oc);

1 Cet a reference to a facet of a | ocale.

Throws: bad_cast if (has_facet<Facet>(loc) |
has_facet <Facet>(locale())) is false.

Returns: |If the requested Facet is present in loc, returns a
reference to that instance of Facet. Qherwise, if the
requested Facet is present in the current global |ocale,
returns a reference to the global |ocale’ s instance of

Facet .

-- delete 22.1.2 [lib.locale.global.tenplates], in the description
of has facet, Returns, the sentence:

If use_facet<Facet>(loc) has already been called successfully,
returns true

-- delete 22.1.1.5 [lib.locale.statics], in the description of
| ocal e: : gl obal

If loc is (a copy of) the value returned by
| ocal e::transparent (), throws runtime_error

[This last change will not be noved if notion 26 does not pass.]

Thi s nption was not noved.

==== presented by Koenig ====

31) Mdtion (to clarify the requirenments on input iterators) by
Koeni g/ Myers:

Move we anmend the WP by replacing 24.1.1 [lib.input.iterators],
table 3 and the followi ng paragraph with:

Qperation Type Semantics, pre/post conditions

X u(a); X Post: u is a copy of a
Note: a destructor is assuned to
be present and accessi bl e.

u = a; X& Result: u
Post: u is a copy of a

==b convertabl e to bool == is an equival ence relation
over its donmin

al =b convertabl e to bool bool (a==b) != bool (a!=b) over
the domain of ==

*a T Pre: a is dereferenceable
If a ==Db, and both a and b are in
the domain of ==, then *a is
equivalent to *b

a->m Pre: (*a).mis well-defined.
Equivalent to (*a). m

++r X& Pre: r is dereferenceable
Result: r
Post: r is dereferenceable or
past the end
Post: any copies of the previous
val ue of r are no |onger required
either to be dereferenceabl e or
to be in the domain of ==

(void)r++ Equi val ent to (void) ++r

*r++ T { Ttnp = *r; ++r; return tnp; }
The term"the domain of ==" is used in the ordinary nmathenatica
sense to denote the set of values over which == is (required to be)
defined. This set can change over tinme. Each algorithm places
addi ti onal requirements on the domain of == for the iterator val ues
it uses. These requirenents can be inferred fromthe uses that

al gorithm makes of == and !'=. [Exanple: the call find(a,b,x) is
defined only if applying ++ zero or nore tines to a eventually
yields a value i such that i==b or *i==x.]

Sayi ng that an expression el that nmentions a is equivalent to an
expression e2 that mentions b neans that every expression that does
not nmention b and nmentions a only in the context of el has the sane
neaning if every occurrence of el is replaced by e2. Every
expression that does not nention a and nentions b only in the
context of e2 has the same neaning if every occurrence of e2 is
repl aced by el.

If ais acopy of b and a or b is in the domain of == then a==b
However, a==b does not require that a is a copy of b.

Moti on passed X3J16: lots yes, 0 no.
Moti on passed W&1: 6 yes, 0 no, O abstain

==== presented by WI hel m ====

32) Motion (to resolve issues with basic_string tenplate) by
Dawes/ Ki ef er:

Move we anend the WP as described in the recommended resol utions
from NOBOORL = 95-0200R1 for the follow ng issue nunbers: 2, 13, 17,

11.

11.

18, 24, 25, 26, 27, 28, 29, 30, 31, 34, 34a, 37, 60, 61, 63, 67, 68,
74, 76, 77, 78, 79.

Moti on passed X3J16: |lots yes, 0 no.
Moti on passed W&1: 6 yes, 0 no, O abstain

==== presented by Podnolik ====

33) Motion (to resolve issues with the containers library) by
Dawes/ Myer s:

Move we anmend the WP as foll ows

-- adopt the the recomended resolutions from NO781R2 = 95-00181R2
for the followi ng i ssue nunbers: 10, 24, 30, 31, 32, 33, 34, 35,
36, 37, 38, 39, 40.

-- change the declaration of priority_queue in 23.2.4.2 from

tenmpl ate<cl ass T, class Container = deque<T>,

cl ass Conpare = | ess<Contai ner::val ue_type>,
class All ocator = all ocator>
class priority_queue { ... };

to:

templ ate<cl ass T, class Container = vector<T>,

cl ass Conpare = | ess<Contai ner::val ue_type>,
class All ocator = all ocator>
class priority_queue { ... };

Myers explained that this sinply changes 'deque’ to 'vector’ (on the
first line of the declaration). This corrects an error that occurred
while transcribing the STL specification to the W

Moti on passed X3J16: lots yes, O no.
Moti on passed W&1: 6 yes, 0 no, 0 abstain

Koeni g asked a procedural question about voting rights for nmenbers
representing conpanies that split into separate companies. C amage
asked Koenig to ask himoffline.

34) Mdtion (to thank our host for their hospitality) by Harbison/
Cl amage.

Mot i on passed by accl amati on.

Revi ew of action itens, decisions nmade, and docunents approved by the
commi ttee

Cl amage reni nded nenbers that those who proposed notions are responsible
for comuni cating with Koeni g regardi ng wordi ng changes to the Wp.

Dawes said that each library clause owner is responsible for producing
an updated version of that clause’s issue list. Lajoie said the sane
applied to the Core subgoups.

| ssues del ayed until Friday

Har bi son expl ai ned the procedures for md-ballot neeting (Stockholm

July "96):

-- Wirk at the neeting will address issues that we expect to be raised
in National Body coments on the ballot.

-- W will not take any official votes changing the Wrking Draft;
however, we may take straw votes on changes. The secretary wll
record the results of any straw votes in the nmeeting m nutes.

12

12.

12.

12.

13

-- At the first neeting after the Summary of Voting becones avail abl e,
we will present any mid-ballot straw votes for ratification in |ight
of the ballot coments.

-- The project editor nmay issue a md-ballot WD that reflects the
i npact of straw votes, but he will be able to renove any changes
that we don't ratify later.

Sone nenbers questi oned whether the | ast point was appropriate. Plum
and others said they felt it would be acceptable to SC22.

Pl ans for the future

Clamage said that future work will focus on resolving issues fromthe
various Wes’' issue lists.

Har bi son said that, for the next meeting, we are scheduled to finish
resol ving CD Ball ot comments and vote out the second and final CD

Cl amage said we should try to clear the issues |ists between now and t he
next neeting. Harbison said the issues |lists do not have to be com
pletely clear in order to vote out the CD, but we certainly don’t want
to goto athird CD. Several people expressed agreenent.

Lajoie said the Core issue lists do not have very many open issues

remai ning -- perhaps 50. The only nmmjor issue remaining is the tenplate
conpil ati on nodel, and she thought we'd have a resolution for that in
time for the next meeting.

Har bi son asked NB representatives to conmunicate with their SC22-1eve
representatives to establish what they require to vote YES on the second
CD Ballot. He asked that NB representatives let himknow within the
next few weeks their NB' s opinion of the progress nade at this neeting
on their issue lists.

Next neeting

No one from Borland was present to confirmthe arrangenents for the next
neeti ng.

Mai | i ngs
Lajoie said the deadline for the post-Tokyo mailing is Decenber 1

WR21+X3J16 generally agreed that electronic distribution of the mailings
is working well and shoul d continue.

Fol | owi ng neeti ngs

Har bi son listed the dates and | ocations for the upconi ng neetings:

-- 10-15 March 1996 in Santa Cruz, USA hosted by Borl and

-- 7-12 July 1996 in Stockholm Sweden, hosted by Ericsson

-- 10-15 Novenber 1996, Kona, Hawaii, USA hosted by Pl um Hal

-- 9-14 March 1997 (Il ocation and host to be determ ned)

-- 13-18 July 1997, somewhere in the UK, hosted by Programm ng Research
-- 9-14 Novenber 1997 (location and host to be determ ned)

Adj our nrrent

Cl amage asked if there was any ot her business.

Spi cer thanked Corfield for standing in as secretary and Crowf oot for
taki ng backup notes. Appl ause.

Motion by Wl ch/ Myers:

Move to adjourn.

Moti on passed W&1+X3J16: lots yes, 0 no.

The neeting adjourned at 10:50 on Fri day.

Appendi x A - Attendance

Name Affiliation St at M Tu W Th
Koeni g, Andrew AT&T Bel | Labs A vV V V V
Stroustrup, Bjarne AT&T Bel | Labs A A A A A
Bruck, Dag Dynasi m AB P vV V V V
Adantzyk, Steve Edi son Design G oup P vV V V V
Spi cer, John Edi son Design G oup A A A A A
Jonsson, Fredrik Eri csson P vV V V V
Urekawa, Ryui chi Fujitsu 0] A A A A
Coha, Joseph Hewl et t - Packard A vV V V V
Mur phy, M chael | BM A A A A A
Laj oi e, Josee | BM (Canada) P vV V V V
Kam nura, Tom | BM (Japan) o A A A
Sawat ani, Yuriko | BM (Japan) @] A
Ander sson, Per | pso Object Software P vV V V V
St uessel, Marc | ST GrBH P vV V V V
Schrei ber, Ben M crosoft P vV V V V
Adachi, Taka M wa Systens 0] A A A
Nagao, Masahi ko NTT Data Comm Systens O A

Corfield, Sean nj ect Consult Services A A A A A
Nakano, Kazut oshi i Electric @] A A A A
Beni to, John Per enni al P vV V V V
Plum Tom Pl um Hal | P vV V V V
Sout hwort h, Mark Progranm ng Research P vV V V V
Myers, Nat han Rogue Wave Software P vV V V V
Smi t hey, Randy Rogue Wave Software A A A A A
Wengl er, Christian SET Software Consulting P vV V V V
Kumagai, Norihiro Shar p @] A

Ki ef er, Konrad Si enens AG P vV V V V
Unruh, Erwin Si emens N xdor f A vV V V V
Kung, M chael Silicon G aphics P A A A
Podrmol i k, Larry STR P A A A A
W1l helm Richard STR A A A A A
Cl amage, Steve Sun M crosyst ens A vV V V V
Feng, Yinsun Tal i gent A A A A A
G bbons, Bill Tal i gent P vV V V V
Har bi son, Sam Tart an P vV V V V
Koshida, lchiro Tokyo Engr Univ @] A A A
Nakamura, Akira Toshi ba @] A

Yamada, Asahiro Toshi ba O A

Runsby, Steve UK A A A A A
Wel ch, Jim WAt com A vV V V V
Crowf oot, Norm Xer ox P vV V V V
Dawes, Beman P v V V V
Pl auger, P. J. 0] A A A A
Total Attendance 42 37 35 39
Total Votes 22 22 22 22

Stat (Menmbership Status): P = principal; A = alternate; O = observer
Under M- F. V = Voting; A = attending

T

<KLz <>2L<<<>ErL

<< <rP<>>r

<

<<

>L<L<<>

