NO744 Template Motions for Monterey 1

Bill Gibbons, John Spicer, Erwin Unruh
1. Issues from 95-0101/N701 accepted without change

Working paper changes for issue 2.24:
Add to 14.6 [temp.class.spec] paragraph 4:

A partial specialization must be declared before any point at which it would be used were it
declared.

Working paper changes for issue 2.27:
Change 14.12 [temp.friend] paragraph 2:

A friend template may be defined within a class.

class A {
tenplate <class T> friend class B{ /* ... */ }; [l ok
tenplate <class T> friend void f(T){ /* ... */ } I/ ok
b

Working paper changes for issues 3.24, 3.25, 3.26, and 3.27:

Add before 14.10.2 [temp.deduct] paragraph 7:

Note: the template type parameter cannot be deduced from the type of a nontype template
argument.

Replace paragraph 9 with:

[Note: amajor array bound is not part of afunction parameter type, except for reference types,
so it can’'t be deduced from an argument:

(update example as follows: )
tenplate <int 1> void f3(int (&)J[I1]);

.(i.n.function 0)

int n[5];

f3(n); [/ ok
Replace paragraph 10 with:

If anontype parameter is used in an expression in the function declaration, template argument
deduction fails. The type of the function template-parameter shall match the type of the
template argument type exactly, except that a template parameter deduced from an array bound
may be any integral type.

Add to 14.10.3 [temp.over] paragraph 1:

If, for a given function template, argument deduction fails, no function is added to the set of
candidate functions for that template.



NO744 Template Motions for Monterey 2

Working paper changes for issue 4.11:
Add 14.6.3:

14.6.3 Member functions of class template specializations

A member function of a class template specialization has atemplate parameter list that
matches the template parameter list of the class template specialization and atemplate
argument list that matches the template argument list of the class template specialization. A
class template specialization is adistinct template. The members of the class template
specialization are unrelated to the members of the primary template. Class template
specialization membersthat are used in away that requires a definition must be defined; the
definitions of members of the primary template will never be used to provide definitions for
members of a class template specialization. An explicit specialization of a member of aclass
template specialization is declared in the same way as an explicit specialization of the primary
template.

/1l Primary tenplate

tenplate <class T, int |I> struct A {
void f();

s

tenplate <class T, int I> void A<T,I>:f(){}

/1 Class tenplate specialization
tenpl ate <class T> struct A<T, 2> {
void f();
void g();
void h();
s

/1 Menber of class tenplate specialization
tenplate <class T> void A<T, 2>::9g(){}

/1l Explicit specialization

voi d A<char, 2>::h(){}

int main()
{
A<char, 0> a0;
A<char, 2> a2;
ao.f(); /1 ok
a2.9(); /1 ok
a2.h(); /1 ok
a2.f();.../1/ Error A<T,2>::f is not defined
/'l A<char,2>::f cannot be instantiated
/1l primary tenplate is not used.

Wording changes for issue 7.3.2:
Replace 14.3.2 [temp.point] paragraph 8 with:
If atemplate for which adefinition isin scopeis used in away that involves overload

resolution, conversion to a base class, or pointer to member conversion, the definition of a
template speciadization is generated if the template is defined.



NO744 Template Motions for Monterey 3

2.

Issues from 95-0101/NO701 accepted with

modifications

Wording changes for issue 2.25:
Modify section 14.3.2 [temp.point] paragraph 4, last sentence to read:

An implementation shall not instantiate a function, member function, class, or member class
that does not require instantiation.

Add anew paragraph after paragraph 5:

A member class of a class template may be defined after the class template which declaresit
just as with nontemplate classes ([class.nest]). Such amember class must be defined before
the first use which requires generation of a specialization.

tenpl ate <class T> struct A {
cl ass B;
b
A<int>::B *bl; // requires Ato be defined, but not A :B
tenpl ate <class T> class A<T>::B {};
A<int>::B b2; // requires A':B to be defined

Wording changes for issue 2.26:
Add to 14.12 [temp.friend] after paragraph 2:

A member of aclass template may be declared to be afriend.

tenpl ate <class T> struct A {

struct B {};
void f();
b
class C{
tenplate <class T> friend struct A<T>::B;
tenplate <class T> friend void A<T>::f();
b

Wording changes for issue 7.2 and 7.6:
Add to 14.10.2 [temp.deduct] paragraph 2,, sentence 4:

or if for any parameter/argument pair the deduction leads to more than one possible set of
deduced values,

Wording changes for issue 7.5:
Add to 14.10.2 [temp.deduct] paragraph 7, before example:

and if the set of overloaded functions does not contain template functions

add to example:

tenplate <class T> void foo(int, T);



NO744 Template Motions for Monterey

f(& o00); // type deduction fails: foo is a tenplate



