
N0744 Template Motions for Monterey 1

Bill Gibbons, John Spicer, Erwin Unruh

1. Issues from 95-0101/N701 accepted without change

Working paper changes for issue 2.24:
Add to 14.6 [temp.class.spec] paragraph 4:

A partial specialization must be declared before any point at which it would be used were it
declared.

Working paper changes for issue 2.27:
Change 14.12 [temp.friend] paragraph 2:

A friend template may be defined within a class.

class A {
template <class T> friend class B { /* ... */ }; // ok
template <class T> friend void f(T){ /* ... */ } // ok

};

Working paper changes for issues 3.24, 3.25, 3.26, and 3.27:

Add before 14.10.2 [temp.deduct] paragraph 7:

Note: the template type parameter cannot be deduced from the type of a nontype template
argument.

Replace paragraph 9 with:

[Note: a major array bound is not part of a function parameter type, except for reference types,
so it can’t be deduced from an argument:

(update example as follows:)
template <int I> void f3(int (&a)[I]);
...
(in function g)
int n[5];
f3(n); // ok

Replace paragraph 10 with:

If a nontype parameter is used in an expression in the function declaration, template argument
deduction fails. The type of the function template-parameter shall match the type of the
template argument type exactly, except that a template parameter deduced from an array bound
may be any integral type.

Add to 14.10.3 [temp.over] paragraph 1:

If, for a given function template, argument deduction fails, no function is added to the set of
candidate functions for that template.

N0744 Template Motions for Monterey 2

Working paper changes for issue 4.11:
Add 14.6.3:

14.6.3 Member functions of class template specializations

A member function of a class template specialization has a template parameter list that
matches the template parameter list of the class template specialization and a template
argument list that matches the template argument list of the class template specialization. A
class template specialization is a distinct template. The members of the class template
specialization are unrelated to the members of the primary template. Class template
specialization members that are used in a way that requires a definition must be defined; the
definitions of members of the primary template will never be used to provide definitions for
members of a class template specialization. An explicit specialization of a member of a class
template specialization is declared in the same way as an explicit specialization of the primary
template.

// Primary template
template <class T, int I> struct A {

void f();
};

template <class T, int I> void A<T,I>::f(){}

// Class template specialization
template <class T> struct A<T, 2> {

void f();
void g();
void h();

};

// Member of class template specialization
template <class T> void A<T,2>::g(){}
// Explicit specialization
void A<char, 2>::h(){}

int main()
{

A<char, 0> a0;
A<char, 2> a2;
a0.f(); // ok
a2.g(); // ok
a2.h(); // ok
a2.f();...// Error A<T,2>::f is not defined

 // A<char,2>::f cannot be instantiated
 // primary template is not used.

}

Wording changes for issue 7.3.2:
Replace 14.3.2 [temp.point] paragraph 8 with:

If a template for which a definition is in scope is used in a way that involves overload
resolution, conversion to a base class, or pointer to member conversion, the definition of a
template specialization is generated if the template is defined.

N0744 Template Motions for Monterey 3

2. Issues from 95-0101/N0701 accepted with
modifications

Wording changes for issue 2.25:
Modify section 14.3.2 [temp.point] paragraph 4, last sentence to read:

An implementation shall not instantiate a function, member function, class, or member class
that does not require instantiation.

Add a new paragraph after paragraph 5:

A member class of a class template may be defined after the class template which declares it
just as with nontemplate classes ([class.nest]). Such a member class must be defined before
the first use which requires generation of a specialization.

template <class T> struct A {
class B;

};
A<int>::B *b1; // requires A to be defined, but not A::B
template <class T> class A<T>::B {};
A<int>::B b2; // requires A::B to be defined

Wording changes for issue 2.26:
Add to 14.12 [temp.friend] after paragraph 2:

A member of a class template may be declared to be a friend.

template <class T> struct A {
struct B {};
void f();

};

class C {
template <class T> friend struct A<T>::B;
template <class T> friend void A<T>::f();

};

Wording changes for issue 7.2 and 7.6:
Add to 14.10.2 [temp.deduct] paragraph 2,, sentence 4:

or if for any parameter/argument pair the deduction leads to more than one possible set of
deduced values,

Wording changes for issue 7.5:
Add to 14.10.2 [temp.deduct] paragraph 7, before example:

and if the set of overloaded functions does not contain template functions

add to example:

template <class T> void foo(int, T);

N0744 Template Motions for Monterey 4

f(&foo); // type deduction fails: foo is a template

