
Draft	Technical	Specification	–	June	23,	2019	 ISO/IEC	JTC	1/SC	22/WG	14	CFP	Working	Draft	

	
	

	

TECHNICAL	 	 	 	 	 	 	 	 	 	 	 	 	 	 ISO/IEC	TS	
SPECIFICATION		 	 	 	 	 	 	 	 	 	 	 	 18661-4a	

WG 14 N2401 
	

CFP	Working	Draft	
For	C2X	integration	

2019-06-23	

	

	

Information	technology	—	Programming	languages,	their	environments,	
and	system	software	interfaces	—	Floating-point	extensions	for	C	—		

Part	4:		
Supplementary	functions	

Technologies	 de	 l’information	 —	 Langages	 de	 programmation,	 leurs	 environnements	 et	 interfaces	 du	
logiciel	système	—	Extensions	à	virgule	flottante	pour	C	—		

Partie	4:	Fonctions	supplémentaires	

	

Reference	number	
ISO/IEC	TS	18661-4:2015(E)	



©	ISO/IEC	2016	





ISO/IEC	TS	18661-4:CFP	Working	Draft	 	

ii	 ©	ISO/IEC	2015	–	All	rights	reserved	
	

	

	

	

	

	5	

	

	

  
 
©	ISO/IEC	2015	 10	

All	rights	reserved.	Unless	otherwise	specified,	no	part	of	this	publication	may	be	reproduced	
or	utilized	otherwise	in	any	form	or	by	any	means,	electronic	or	mechanical,	including	
photocopying,	or	posting	on	the	internet	or	an	intranet,	without	prior	written	permission.	
Permission	can	be	requested	from	either	ISO	at	the	address	below	or	ISO’s	member	body	in	the	
country	of	the	requester.	 15	

ISO	copyright	office Case	postale	56	•	CH-1211	Geneva	20	Tel.	+	41	22	749	01	11 Fax	+	41	22	
749	09	47 E-mail	copyright@iso.org Web	www.iso.org	 

COPYRIGHT	PROTECTED	DOCUMENT 



	 		 	 			ISO/IEC	TS	18661-4:CFP	Working	Draft	

©	ISO/IEC	2015	–	All	rights	reserved	 iii	
	

Published	in	Switzerland	

Foreword	.................................................................................................................................................................	iv	
Introduction	............................................................................................................................................................	vi	
1	 Scope	...................................................................................................................................................................	1	
2	 Conformance	.....................................................................................................................................................	1	5	

3	 Normative	references	.....................................................................................................................................	1	
4	 Terms	and	definitions	....................................................................................................................................	2	
5	 C	standard	conformance	................................................................................................................................	2	
5.1	 Freestanding	implementations	................................................................................................................	2	
5.2	 Predefined	macros.......................................................................................................................................	2	10	
5.3	 Standard	headers	.......................................................................................	Error!	Bookmark	not	defined.	
6	 Operation	binding	...........................................................................................................................................	2	
7	 Mathematical	functions	in	<math.h>........................................................................................................	3	
8	 Reduction	functions	in	<math.h>	............................................................................................................	16	
9	 Future	directions	for	<complex.h>	........................................................................................................	16	15	

10	 Type-generic	macros	<tgmath.h>	........................................................................................................	17	
11	 Constant	rounding	modes	<fenv.h>	....................................................................................................	17	
Bibliography	..........................................................................................................................................................	20	
	

	 	20	



ISO/IEC	TS	18661-4:CFP	Working	Draft	 	

iv	 ©	ISO/IEC	2015	–	All	rights	reserved	
	

Foreword	
ISO	 (the	 International	 Organization	 for	 Standardization)	 and	 IEC	 (the	 International	 Electrotechnical	
Commission)	 form	 the	 specialized	 system	 for	 worldwide	 standardization.	 National	 bodies	 that	 are	
members	 of	 ISO	 or	 IEC	 participate	 in	 the	 development	 of	 International	 Standards	 through	 technical	
committees	established	by	the	respective	organization	to	deal	with	particular	fields	of	technical	activity.	5	
ISO	 and	 IEC	 technical	 committees	 collaborate	 in	 fields	 of	 mutual	 interest.	 Other	 international	
organizations,	governmental	and	non-governmental,	 in	 liaison	with	 ISO	and	 IEC,	also	 take	part	 in	 the	
work.	In	the	field	of	information	technology,	ISO	and	IEC	have	established	a	joint	technical	committee,	
ISO/IEC	JTC	1.	

The	 procedures	 used	 to	 develop	 this	 document	 and	 those	 intended	 for	 its	 further	maintenance	 are	10	
described	in	the	ISO/IEC	Directives,	Part	1.	In	particular	the	different	approval	criteria	needed	for	the	
different	 types	 of	 document	 should	 be	 noted.	 This	 document	 was	 drafted	 in	 accordance	 with	 the	
editorial	rules	of	the	ISO/IEC	Directives,	Part	2	(see	www.iso.org/directives).	

Attention	is	drawn	to	the	possibility	that	some	of	the	elements	of	this	document	may	be	the	subject	of	
patent	 rights.	 ISO	 and	 IEC	 shall	 not	 be	 held	 responsible	 for	 identifying	 any	 or	 all	 such	 patent	 rights.	15	
Details	 of	 any	 patent	 rights	 identified	 during	 the	 development	 of	 the	 document	 will	 be	 in	 the	
Introduction	and/or	on	the	ISO	list	of	patent	declarations	received	(see	www.iso.org/patents).	

Any	trade	name	used	in	this	document	is	information	given	for	the	convenience	of	users	and	does	not	
constitute	an	endorsement.	

For	 an	 explanation	 on	 the	 meaning	 of	 ISO	 specific	 terms	 and	 expressions	 related	 to	 conformity	20	
assessment,	 as	 well	 as	 information	 about	 ISO's	 adherence	 to	 the	 WTO	 principles	 in	 the	 Technical	
Barriers	to	Trade	(TBT)	see	the	following	URL:	Foreword	-	Supplementary	information	

The	committee	responsible	for	this	document	is	ISO/IEC	JTC	1,	Information	technology,	Subcommittee	
SC	22,	Programming	languages,	their	environments,	and	system	software	interfaces.	

ISO/IEC	 TS	 18661	 consists	 of	 the	 following	 parts,	 under	 the	 general	 title	 Information	 technology	—	25	
Programming	languages,	their	environments,	and	system	software	interfaces	—	Floating-point	extensions	
for	C:	

¾ Part	1:	Binary	floating-point	arithmetic	

¾ Part	2:	Decimal	floating-point	arithmetic	

¾ Part	3:	Interchange	and	extended	types	30	

¾ Part	4:	Supplementary	functions	

The	following	part	is	under	preparation:	

¾ Part	5:	Supplementary	attributes	

ISO/IEC	TS	18661-1	updates	ISO/IEC	9899:2011,	Information	technology	—	Programming	Language	C,	
annex	 F	 in	 particular,	 to	 support	 all	 required	 features	 of	 ISO/IEC/IEEE	 60559:2011,	 Information	35	
technology	—	Microprocessor	Systems	—	Floating-point	arithmetic.	
	
ISO/IEC	 TS	 18661-2	 supersedes	 ISO/IEC	 TR	 24732:2009,	 Information	 technology	 —	 Programming	
languages,	their	environments	and	system	software	interfaces	—	Extension	for	the	programming	language	
C	to	support	decimal	floating-point	arithmetic.	40	
	



	 		 	 			ISO/IEC	TS	18661-4:CFP	Working	Draft	

©	ISO/IEC	2015	–	All	rights	reserved	 v	
	

ISO/IEC	 TS	 18661-3,	 ISO/IEC	 TS	 18661-4,	 and	 ISO/IEC	 TS	 18661-5	 specify	 extensions	 to	 ISO/IEC	
9899:2011	for	features	recommended	in	ISO/IEC/IEEE	60559:201



ISO/IEC	TS	18661-4:CFP	Working	Draft	

vi	 ©	ISO/IEC	2015	–	All	rights	reserved	
	

Introduction	
Background	

IEC	60559	floating-point	standard	

The	 IEEE	 754-1985	 standard	 for	 binary	 floating-point	 arithmetic	 was	 motivated	 by	 an	 expanding	
diversity	 in	 floating-point	data	 representation	 and	 arithmetic,	which	made	writing	 robust	 programs,	5	
debugging,	 and	 moving	 programs	 between	 systems	 exceedingly	 difficult.	 Now	 the	 great	 majority	 of	
systems	 provide	 data	 formats	 and	 arithmetic	 operations	 according	 to	 this	 standard.	 The	 IEC	
60559:1989	 international	 standard	 was	 equivalent	 to	 the	 IEEE	 754-1985	 standard.	 Its	 stated	 goals	
were	the	following:	

1 Facilitate	movement	of	existing	programs	 from	diverse	computers	 to	those	 that	adhere	 to	10	
this	standard.	

2 Enhance	 the	 capabilities	 and	 safety	 available	 to	 programmers	who,	 though	 not	 expert	 in	
numerical	 methods,	 may	 well	 be	 attempting	 to	 produce	 numerically	 sophisticated	
programs.	However,	we	recognize	that	utility	and	safety	are	sometimes	antagonists.		

3 Encourage	experts	to	develop	and	distribute	robust	and	efficient	numerical	programs	that	15	
are	portable,	by	way	of	minor	editing	and	recompilation,	onto	any	computer	that	conforms	
to	this	standard	and	possesses	adequate	capacity.	When	restricted	to	a	declared	subset	of	
the	standard,	these	programs	should	produce	identical	results	on	all	conforming	systems.		

4 Provide	direct	support	for		

a. Execution-time	diagnosis	of	anomalies		20	

b. Smoother	handling	of	exceptions		

c. Interval	arithmetic	at	a	reasonable	cost		

5 Provide	for	development	of		

a. Standard	elementary	functions	such	as	exp	and	cos		

b. Very	high	precision	(multiword)	arithmetic		25	

c. Coupling	of	numerical	and	symbolic	algebraic	computation		

6 Enable	rather	than	preclude	further	refinements	and	extensions.		

To	these	ends,	the	standard	specified	a	floating-point	model	comprising	the	following:	

— formats	 –	 for	 binary	 floating-point	 data,	 including	 representations	 for	 Not-a-Number	 (NaN)	 and	
signed	infinities	and	zeros	30	

—	 operations	 –	 basic	 arithmetic	 operations	 (addition,	 multiplication,	 etc.)	 on	 the	 format	 data	 to	
compose	 a	 well-defined,	 closed	 arithmetic	 system;	 also	 specified	 conversions	 between	 floating-
point	formats	and	decimal	character	sequences,	and	a	few	auxiliary	operations	

—	 context	 –	 status	 flags	 for	 detecting	 exceptional	 conditions	 (invalid	 operation,	 division	 by	 zero,	
overflow,	underflow,	and	inexact)	and	controls	for	choosing	different	rounding	methods	35	



	 		 	 	ISO/IEC	TS	18661-4:CFP	Working	Draft	

©	ISO/IEC	2015	–	All	rights	reserved	 vii	
	

The	ISO/IEC/IEEE	60559:2011	international	standard	is	equivalent	to	the	IEEE	754-2008	standard	for	
floating-point	arithmetic,	which	is	a	major	revision	to	IEEE	754-1985.		

The	 revised	 standard	 specifies	more	 formats,	 including	 decimal	 as	well	 as	 binary.	 It	 adds	 a	 128-bit	
binary	 format	 to	 its	basic	 formats.	 It	defines	extended	 formats	 for	all	of	 its	basic	 formats.	 It	 specifies	
data	interchange	formats	(which	may	or	may	not	be	arithmetic),	including	a	16-bit	binary	format	and	an	5	
unbounded	tower	of	wider	formats.	To	conform	to	the	floating-point	standard,	an	implementation	must	
provide	at	least	one	of	the	basic	formats,	along	with	the	required	operations.	

The	revised	standard	specifies	more	operations.	New	requirements	include	–	among	others	–	arithmetic	
operations	 that	 round	their	 result	 to	 a	narrower	 format	 than	 the	operands	(with	 just	 one	 rounding),	
more	 conversions	with	 integer	 types,	more	 classifications	 and	 comparisons,	 and	more	operations	 for	10	
managing	flags	and	modes.	New	recommendations	include	an	extensive	set	of	mathematical	functions	
and	seven	reduction	functions	for	sums	and	scaled	products.	

The	 revised	 standard	 places	 more	 emphasis	 on	 reproducible	 results,	 which	 is	 reflected	 in	 its	
standardization	of	more	operations.	For	the	most	part,	behaviors	are	completely	specified.	The	standard	
requires	conversions	between	 floating-point	 formats	and	decimal	character	sequences	 to	be	correctly	15	
rounded	for	at	least	three	more	decimal	digits	than	is	required	to	distinguish	all	numbers	in	the	widest	
supported	 binary	 format;	 it	 fully	 specifies	 conversions	 involving	 any	 number	 of	 decimal	 digits.	 It	
recommends	that	transcendental	functions	be	correctly	rounded.	

The	 revised	 standard	 requires	 a	way	 to	 specify	 a	 constant	 rounding	 direction	 for	 a	 static	 portion	 of	
code,	 with	 details	 left	 to	 programming	 language	 standards.	 This	 feature	 potentially	 allows	 rounding	20	
control	without	incurring	the	overhead	of	runtime	access	to	a	global	(or	thread)	rounding	mode.	

Other	features	recommended	by	the	revised	standard	include	alternate	methods	for	exception	handling,	
controls	 for	 expression	 evaluation	 (allowing	 or	 disallowing	 various	 optimizations),	 support	 for	 fully	
reproducible	results,	and	support	for	program	debugging.	

The	revised	standard,	like	its	predecessor,	defines	its	model	of	floating-point	arithmetic	in	the	abstract.	25	
It	 neither	 defines	 the	 way	 in	 which	 operations	 are	 expressed	 (which	 might	 vary	 depending	 on	 the	
computer	 language	 or	 other	 interface	 being	 used),	 nor	 does	 it	 define	 the	 concrete	 representation	
(specific	 layout	 in	storage,	or	 in	a	processor's	register,	 for	example)	of	data	or	context,	except	 that	 it	
does	 define	 specific	 encodings	 that	 are	 to	 be	 used	 for	 the	 exchange	 of	 floating-point	 data	 between	
different	implementations	that	conform	to	the	specification.	30	

IEC	60559	does	not	include	bindings	of	its	floating-point	model	for	particular	programming	languages.	
However,	 the	 revised	 standard	 does	 include	 guidance	 for	 programming	 language	 standards,	 in	
recognition	 of	 the	 fact	 that	 features	 of	 the	 floating-point	 standard,	 even	 if	 well	 supported	 in	 the	
hardware,	are	not	available	to	users	unless	the	programming	language	provides	a	commensurate	level	
of	support.	The	implementation’s	combination	of	both	hardware	and	software	determines	conformance	35	
to	the	floating-point	standard.	

C	support	for	IEC	60559	

The	 C	 standard	 specifies	 floating-point	 arithmetic	 using	 an	 abstract	 model.	 The	 representation	 of	 a	
floating-point	 number	 is	 specified	 in	 an	 abstract	 form	 where	 the	 constituent	 components	 (sign,	
exponent,	significand)	of	the	representation	are	defined	but	not	the	internals	of	these	components.	In	40	
particular,	 the	 exponent	 range,	 significand	 size,	 and	 the	 base	 (or	 radix)	 are	 implementation-defined.	
This	allows	flexibility	for	an	implementation	to	take	advantage	of	its	underlying	hardware	architecture.	
Furthermore,	certain	behaviors	of	operations	are	also	implementation-defined,	for	example	in	the	area	
of	handling	of	special	numbers	and	in	exceptions.	



ISO/IEC	TS	18661-4:CFP	Working	Draft	

viii	 ©	ISO/IEC	2015	–	All	rights	reserved	
	

The	reason	for	this	approach	is	historical.	At	the	time	when	C	was	first	standardized,	before	the	floating-
point	 standard	 was	 established,	 there	 were	 various	 hardware	 implementations	 of	 floating-point	
arithmetic	in	common	use.	Specifying	the	exact	details	of	a	representation	would	have	made	most	of	the	
existing	implementations	at	the	time	not	conforming.	

Beginning	with	 ISO/IEC	9899:1999	(C99),	C	has	 included	an	optional	second	 level	of	specification	 for	5	
implementations	 supporting	 the	 floating-point	 standard.	 C99,	 in	 conditionally	 normative	 annex	 F,	
introduced	 nearly	 complete	 support	 for	 the	 IEC	 60559:1989	 standard	 for	 binary	 floating-point	
arithmetic.	 Also,	 C99’s	 informative	 annex	 G	 offered	 a	 specification	 of	 complex	 arithmetic	 that	 is	
compatible	with	IEC	60559:1989.	

ISO/IEC	9899:2011	(C11)	includes	refinements	to	the	C99	floating-point	specification,	though	it	is	still	10	
based	on	IEC	60559:1989.	C11	upgraded	annex	G	from	“informative”	to	“conditionally	normative”.	

ISO/IEC	 TR	 24732:2009	 introduced	 partial	 C	 support	 for	 the	 decimal	 floating-point	 arithmetic	 in	
ISO/IEC/IEEE	60559:2011.	ISO/IEC	TR	24732,	for	which	technical	content	was	completed	while	IEEE	
754-2008	was	still	 in	the	later	stages	of	development,	specifies	decimal	types	based	on	ISO/IEC/IEEE	
60559:2011	decimal	formats,	though	it	does	not	include	all	of	the	operations	required	by	ISO/IEC/IEEE	15	
60559:2011.	

Purpose	

The	purpose	 of	 ISO/IEC	TS	18661	 is	 to	provide	 a	C	 language	binding	 for	 ISO/IEC/IEEE	60559:2011,	
based	on	 the	C11	standard,	 that	delivers	 the	goals	of	 ISO/IEC/IEEE	60559	to	users	and	 is	 feasible	 to	
implement.	It	is	organized	into	five	parts.	20	

ISO/IEC	 TS	 18661-1	 provides	 changes	 to	 C11	 that	 cover	 all	 the	 requirements,	 plus	 some	 basic	
recommendations,	 of	 ISO/IEC/IEEE	 60559:2011	 for	 binary	 floating-point	 arithmetic.	 C	
implementations	 intending	 to	 support	 ISO/IEC/IEEE	 60559:2011	 are	 expected	 to	 conform	 to	
conditionally	normative	annex	F	as	enhanced	by	the	changes	in	ISO/IEC	TS	18661-1.	

ISO/IEC	 TS	 18661-2	 enhances	 ISO/IEC	 TR	 24732	 to	 cover	 all	 the	 requirements,	 plus	 some	 basic	25	
recommendations,	 of	 ISO/IEC/IEEE	 60559:2011	 for	 decimal	 floating-point	 arithmetic.	 C	
implementations	 intending	 to	 provide	 an	 extension	 for	 decimal	 floating-point	 arithmetic	 supporting	
ISO/IEC/IEEE	60559:2011	are	expected	to	conform	to	ISO/IEC	TS	18661-2.	

ISO/IEC	TS	18661-3	(Interchange	and	extended	types),	ISO/IEC	TS	18661-4	(Supplementary	functions),	
and	 ISO/IEC	 TS	 18661-5	 (Supplementary	 attributes)	 cover	 recommended	 features	 of	 ISO/IEC/IEEE	30	
60559:2011.	 C	 implementations	 intending	 to	 provide	 extensions	 for	 these	 features	 are	 expected	 to	
conform	to	the	corresponding	parts.	

Additional	background	on	supplementary	functions	

This	 document	 uses	 the	 term	 supplementary	 functions	 to	 refer	 to	 functions	 that	 provide	 operations	
recommended,	but	not	required,	by	IEC	60559.	35	

ISO/IEC/IEEE	60559:2011	specifies	and	recommends	a	more	extensive	set	of	mathematical	operations	
than	 C11	 provides.	 The	 IEC	 60559	 specification	 is	 generally	 consistent	 with	 C11,	 though	 it	 adds	
requirements	for	symmetry	and	antisymmetry.	This	part	of	ISO/IEC	TS	18661	extends	the	specification	
in	 Library	 subclause	 7.12	 Mathematics	 to	 include	 the	 complete	 set	 of	 IEC	 60559	 mathematical	
operations.	 For	 implementations	 conforming	 to	 annex	 F,	 it	 also	 requires	 full	 IEC	 60559	 semantics,	40	
including	symmetry	and	antisymmetry	properties.	



	 		 	 	ISO/IEC	TS	18661-4:CFP	Working	Draft	

©	ISO/IEC	2015	–	All	rights	reserved	 ix	
	

IEC	60559	requires	correct	rounding	for	its	required	operations	(squareRoot,	fusedMultiplyAdd,	etc.),	
and	recommends	correct	rounding	for	its	recommended	mathematical	operations.	This	part	of	ISO/IEC	
TS	 18661	 reserves	 identifiers,	with	cr	 prefixes,	 for	 C	 functions	 corresponding	 to	 correctly	 rounded	
versions	 of	 the	 IEC	 60559	 mathematical	 operations,	 which	 may	 be	 provided	 at	 the	 option	 of	 the	
implementation.	For	example,	 the	 identifier	crexp	 is	 reserved	 for	a	correctly	rounded	version	of	 the	5	
exp	function.	

IEC	 60559	 also	 specifies	 and	 recommends	 reduction	 operations,	 which	 operate	 on	 vector	 operands.	
These	operations,	which	compute	sums	and	products,	may	associate	in	any	order	and	may	evaluate	in	
any	wider	format.	Hence,	unlike	other	IEC	60559	operations,	they	do	not	have	unique	specified	results.	
This	 part	 of	 ISO/IEC	 TS	 18661	 extends	 the	 specification	 in	 Library	 subclause	 7.12	 Mathematics	 to	10	
include	 functions	 corresponding	 to	 the	 IEC	 60559	 reduction	 operations.	 For	 implementations	
conforming	to	annex	F,	it	also	requires	the	IEC	60559	specified	behavior	for	floating-point	exceptions.





TECHNICAL	SPECIFICATION	 ISO/IEC	TS	18661-4:CFP	Working	Draft	

	

©	ISO/IEC	2015	–	All	rights	reserved	 1	
	

Information	technology	—	Programming	languages,	their	
environments,	and	system	software	interfaces	—	Floating-point	
extensions	for	C	—	
	
Part	4:		5	
Supplementary	functions	

1	 Scope	

This	 part	 of	 ISO/IEC	 TS	18661	 extends	programming	 language	 C	 to	 include	 functions	 specified	 and	
recommended	in	ISO/IEC/IEEE	60559:2011.	

2	 Conformance	10	

An	implementation	conforms	to	this	part	of	ISO/IEC	TS	18661	if	

a) it	meets	the	requirements	for	a	conforming	implementation	of	C11	with	all	the	changes	to	C11	as	
specified	in	parts	1-4	of	ISO/IEC	TS	18661;	

	
b) it	conforms	to	ISO/IEC	TS	18661-1	or	ISO/IEC	TS	18661-2	(or	both);	and	15	
	
c) it	defines	__STDC_IEC_60559_FUNCS__	to	201506L.	

3	 Normative	references	

The	 following	documents,	 in	whole	or	 in	part,	are	normatively	 referenced	 in	 this	document	and	are	
indispensable	 for	 its	 application.	 For	 dated	 references,	 only	 the	 edition	 cited	 applies.	 For	 undated	20	
references,	the	latest	edition	of	the	referenced	document	(including	any	amendments)	applies.	

ISO/IEC	9899:2011,	Information	technology	—	Programming	languages	—	C	

ISO/IEC/IEEE	 60559:2011,	 Information	 technology	—	 Microprocessor	 Systems	—	 Floating-point	
arithmetic	

ISO/IEC	TS	18661-1:2014,	Information	technology	—	Programming	languages,	their	environments	and	25	
system	software	interfaces	—	Floating-point	extensions	for	C	—	Part	1:	Binary	floating-point	arithmetic	

ISO/IEC	TS	18661-2:2015,	Information	technology	—	Programming	languages,	their	environments	and	
system	software	interfaces	—	Floating-point	extensions	for	C	—	Part	2:	Decimal	floating-point	arithmetic	

ISO/IEC	TS	18661-3:2015,	Information	technology	—	Programming	languages,	their	environments	and	
system	software	interfaces	—	Floating-point	extensions	for	C	—	Part	3:	Interchange	and	extended	types	30	



ISO/IEC	TS	18661-4:CFP	Working	Draft	

2	 ©	ISO/IEC	2015	–	All	rights	reserved	
	

4	 Terms	and	definitions	

For	 the	 purposes	 of	 this	 document,	 the	 terms	 and	 definitions	 given	 in	 ISO/IEC	 9899:2011,	
ISO/IEC/IEEE	 60559:2011,	 ISO/IEC	 TS	 18661-1:2014,	 ISO/IEC	 TS	 18661-2:2015,	 ISO/IEC	
TS	18661-3:2015,	and	the	following	apply.	

4.1	5	

C11	
standard	ISO/IEC	9899:2011,	Information	technology	—	Programming	languages	C,	including	Technical	
Corrigendum	1	(ISO/IEC	9899:2011/Cor.	1:2012)	

5	 C	standard	conformance	

5.1	 Freestanding	implementations	10	

The	specification	in	C11	+	TS18661-1	+	TS18661-2	allows	freestanding	implementations	to	conform	to	
this	part	of	ISO/IEC	TS	18661.	

5.2	 Predefined	macros	

6	 Operation	binding	

The	 following	 change	 to	 C2X-20190607	 shows	 how	 functions	 in	 C11	 and	 in	 this	 Part	 of	 Technical	15	
Specification	18661	provide	operations	recommended	in	IEC	60559.	

Change	to	C2X-20190607:	

After	F.3#22,	add:	

[23]	The	C	functions	in	the	following	table	provide	operations	recommended	by	IEC	60559	and	
similar	 operations.	 Correct	 rounding,	 which	 IEC	 60559	 specifies	 for	 its	 operations,	 is	 not	20	
required	for	the	C	functions	in	the	table.	See	also	7.31.8.	

IEC	60559	operation	 C	function	 Clause	
exp	 exp 7.12.6.1,	F.10.3.1	
expm1	 expm1 7.12.6.3,	F.10.3.3	
exp2	 exp2 7.12.6.2,	F.10.3.2	
exp2m1	 exp2m1 7.12.6.14,	F.10.3.14	
exp10	 exp10 7.12.6.15,	F.10.3.15	
exp10m1	 exp10m1 7.12.6.16,	F.10.3.16	
log	 log 7.12.6.7,	F.10.3.7	
log2	 log2 7.12.6.10,	F.10.3.10	
log10	 log10	 7.12.6.8,	F.10.3.8	
logp1	 log1p,	logp1 7.12.6.9,	F.10.3.9	
log2p1	 log2p1 7.12.6.17,	F.10.3.17	
log10p1	 log10p1 7.12.6.18,	F.10.3.18	
hypot	 hypot 7.12.7.3,	F.10.4.3	
rSqrt	 rsqrt	 7.12.7.6,	F.10.4.6	
compound	 compoundn	 7.12.7.7,	F.10.4.7	
rootn	 rootn 7.12.7.8,	F.10.4.8	
pown	 pown 7.12.7.9,	F.10.4.9	
pow	 pow 7.12.7.4,	F.10.4.4	



	 		 	 	ISO/IEC	TS	18661-4:CFP	Working	Draft	

©	ISO/IEC	2015	–	All	rights	reserved	 3	
	

powr	 powr 7.12.7.10,	F.10.4.10	
sin	 sin 7.12.4.6,	F.10.1.6	
cos	 cos 7.12.4.5,	F.10.1.5	
tan	 tan	 7.12.4.7,	F.10.1.7	
sinPi	 sinpi	 7.12.4.13,	F.10.1.13	
cosPi	 cospi	 7.12.4.12,	F.10.1.12	
	 tanpi	 7.12.4.14,	F.10.1.14	
	 asinpi	 7.12.4.9,	F.10.1.9	
	 acospi	 7.12.4.8,	F.10.1.8	
atanPi	 atanpi	 7.12.4.10,	F.10.1.10	
atan2Pi	 atan2pi	 7.12.4.11,	F.10.1.11	
asin	 asin	 7.12.4.2,	F.10.1.2	
acos	 acos	 7.12.4.1,	F.10.1.1	
atan	 atan 7.12.4.3,	F.10.1.3	
atan2	 atan2	 7.12.4.4,	F.10.1.4	
sinh	 sinh	 7.12.5.5,	F.10.2.5	
cosh	 cosh	 7.12.5.4,	F.10.2.4	
tanh	 tanh	 7.12.5.6,	F.10.2.6	
asinh	 asinh	 7.12.5.2,	F.10.2.2	
acosh	 acosh 7.12.5.1,	F.10.2.1	
atanh	 atanh 7.12.5.3,	F.10.2.3	

	

7	 Mathematical	functions	in	<math.h>	

This	 clause	 specifies	 changes	 to	 C2X-20190607	 to	 include	 functions	 that	 support	 mathematical	
operations	recommended	by	IEC	60559.	The	changes	reserve	names	for	correctly	rounded	versions	of	
the	 functions.	 IEC	60559	recommends	support	 for	the	correctly	rounded	 functions.	The	changes	also	5	
support	 the	 symmetry	 and	 antisymmetry	 properties	 that	 IEC	 60559	 specifies	 for	 mathematical	
functions.	

Changes	to	C2X-20190607:	

	

After	7.12.4.7,	insert	the	following:	10	

7.12.4.8	The	acospi	functions	

Synopsis	

[1]	 #include <math.h> 
double acospi(double x); 
float acospif(float x); 15	
long double acospil(long double x); 
_Decimal32 acospid32(_Decimal32 x); 
_Decimal64 acospid64(_Decimal64 x); 
_Decimal128 acospid128(_Decimal128 x); 



ISO/IEC	TS	18661-4:CFP	Working	Draft	

4	 ©	ISO/IEC	2015	–	All	rights	reserved	
	

Description	

[2]	The	acospi	functions	compute	the	principal	value	of	the	arc	cosine	of	x,	divided	by	π,	thus	
measuring	 the	 angle	 in	 half-revolutions.	 A	 domain	 error	 occurs	 for	 arguments	 not	 in	 the	
interval	[−1,	+1].		

Returns	5	

[3]	The	acospi	functions	return	arccos(x)/π,	in	the	interval	[0,	1].		

7.12.4.9	The	asinpi	functions	

Synopsis	

[1]	 #include <math.h> 
double asinpi(double x); 10	
float asinpif(float x); 
long double asinpil(long double x); 
_Decimal32 asinpid32(_Decimal32 x); 
_Decimal64 asinpid64(_Decimal64 x); 
_Decimal128 asinpid128(_Decimal128 x); 15	

Description	

[2]	The	asinpi	functions	compute	the	principal	value	of	the	arc	sine	of	x,	divided	by	π,	thus	
measuring	 the	 angle	 in	 half-revolutions.	 A	 domain	 error	 occurs	 for	 arguments	 not	 in	 the	
interval	[−1,	+1].	A	range	error	occurs	if	the	magnitude	of	nonzero	x	is	too	small.	

Returns	20	

[3]	The	asinpi	functions	return	arcsin(x)	/	π,	in	the	interval	[−1/2,	+1/2].		

7.12.4.10	The	atanpi	functions	

Synopsis	

[1]	 #include <math.h> 
double atanpi(double x); 25	
float atanpif(float x); 
long double atanpil(long double x); 
_Decimal32 atanpid32(_Decimal32 x); 
_Decimal64 atanpid64(_Decimal64 x); 
_Decimal128 atanpid128(_Decimal128 x); 30	

Description	

[2]	The	atanpi	 functions	compute	 the	principal	value	of	 the	arc	 tangent	of	x,	divided	by	π,	
thus	measuring	the	angle	in	half-revolutions.	A	range	error	occurs	if	the	magnitude	of	nonzero	
x	is	too	small.	

Returns	35	

[3]	The	atanpi	functions	return	arctan(x)	/	π,	in	the	interval	[−1/2,	+1/2].		



	 		 	 	ISO/IEC	TS	18661-4:CFP	Working	Draft	

©	ISO/IEC	2015	–	All	rights	reserved	 5	
	

7.12.4.11	The	atan2pi	functions	

Synopsis	

[1]	 #include <math.h> 
double atan2pi(double y, double x); 
float atan2pif(float y, float x); 5	
long double atan2pil(long double y, long double x); 
_Decimal32 atan2pid32(_Decimal32 y, _Decimal32 x); 
_Decimal64 atan2pid64(_Decimal64 y, _Decimal64 x); 
_Decimal128 atan2pid128(_Decimal128 y, _Decimal128 x); 

 10	
Description	

[2]	The	atan2pi	functions	compute	the	angle,	measured	in	half-revolutions,	subtended	at	the	
origin	by	the	point	(x,	y)	and	the	positive	x-axis.	Thus,	atan2pi	computes	arctan(y/x)	/	π,	in	
the	range	[−1,	+1].	A	domain	error	may	occur	if	both	arguments	are	zero.	A	range	error	occurs	
if	x	is	positive	and	the	magnitude	of	nonzero	y/x	is	too	small.	15	

Returns	

[3]	The	atan2pi	functions	return	the	computed	angle,	in	the	interval	[−1,	+1].		

7.12.4.12	The	cospi	functions	

Synopsis	

[1]	 #include <math.h> 20	
double cospi(double x); 
float cospif(float x); 
long double cospil(long double x); 
_Decimal32 cospid32(_Decimal32 x); 
_Decimal64 cospid64(_Decimal64 x); 25	
_Decimal128 cospid128(_Decimal128 x); 

Description	

[2]	The	cospi	 functions	compute	the	cosine	of	π	×	x,	 thus	regarding	x	as	a	measurement	in	
half-revolutions.	

Returns	30	

[3]	The	cospi	functions	return	cos(π	×	x).	



ISO/IEC	TS	18661-4:CFP	Working	Draft	

6	 ©	ISO/IEC	2015	–	All	rights	reserved	
	

7.12.4.13	The	sinpi	functions	

Synopsis	

[1]	 #include <math.h> 
double sinpi(double x); 
float sinpif(float x); 5	
long double sinpil(long double x); 
_Decimal32 sinpid32(_Decimal32 x); 
_Decimal64 sinpid64(_Decimal64 x); 
_Decimal128 sinpid128(_Decimal128 x); 

 10	
Description	

[2]	The	sinpi	functions	compute	the	sine	of	π	×	x,	thus	regarding	x	as	a	measurement	in	half-
revolutions.	

Returns	

[3]	The	sinpi	functions	return	sin(π	×	x).	15	

7.12.4.14	The	tanpi	functions	

Synopsis	

[1]	 #include <math.h> 
double tanpi(double x); 
float tanpif(float x); 20	
long double tanpil(long double x); 
_Decimal32 tanpid32(_Decimal32 x); 
_Decimal64 tanpid64(_Decimal64 x); 
_Decimal128 tanpid128(_Decimal128 x); 

 25	
Description	

[2]	The	tanpi	functions	compute	the	tangent	of	π	×	x,	thus	regarding	x	as	a	measurement	in	
half-revolutions.	A	pole	error	may	occur	for	arguments	n	+	1/2,	for	integers	n.		

Returns	

[3]	The	tanpi	functions	return	tan(π	×	x).	30	

In	7.12.6.10,	replace	the	subclause	title:	

7.12.6.10	The	log1p	functions	



	 		 	 	ISO/IEC	TS	18661-4:CFP	Working	Draft	

©	ISO/IEC	2015	–	All	rights	reserved	 7	
	

with:	

7.12.6.10	The	log1p	and	logp1	functions	

In	7.12.6.10#1,	append	to	the	Synopsis: 

double logp1(double x); 
float logp1f(float x); 5	
long double logp1l(long double x); 
_Decimal32 logp1d32(_Decimal32 x); 
_Decimal64 logp1d64(_Decimal64 x); 
_Decimal128 logp1d128(_Decimal128 x); 

In	7.12.6.10#2,	replace	the	first	sentence:	10	

The	log1p	functions	compute	the	base-e	(natural)	logarithm	of	1	plus	the	argument.		

with:	

The	log1p	functions	are	equivalent	to	the	logp1	functions.	These	functions	compute	the	
base-e	(natural)	logarithm	of	1	plus	the	argument.		

Replace	7.12.6.10#3:	15	

[3]	The	log1p	functions	return	loge	(1	+	x).			

with:	

[3]	The	log1p	and	logp1	functions	return	loge	(1	+	x).		

After	7.12.6.2,	insert	the	following:	

7.12.6.2a	The	exp2m1	functions	20	

Synopsis	

[1]	 #include <math.h> 
double exp2m1(double x); 
float exp2m1f(float x); 
long double exp2m1l(long double x); 25	
_Decimal32 exp2m1d32(_Decimal32 x); 
_Decimal64 exp2m1d64(_Decimal64 x); 
_Decimal128 exp2m1d128(_Decimal128 x); 

Description	

[2]	The	exp2m1	functions	compute	the	base-2	exponential	of	the	argument,	minus	1.	A	range	30	
error	occurs	if	finite	x	is	too	large	or	if	the	magnitude	of	nonzero	x	is	too	small.	

Returns	

[3]	The	exp2m1	functions	return	2x	−	1.		



ISO/IEC	TS	18661-4:CFP	Working	Draft	

8	 ©	ISO/IEC	2015	–	All	rights	reserved	
	

After	7.12.6.1,	insert	the	following:	

7.12.6.1a	The	exp10	functions	

Synopsis	

[1]	 #include <math.h> 
double exp10(double x); 5	
float exp10f(float x); 
long double exp10l(long double x); 
_Decimal32 exp10d32(_Decimal32 x); 
_Decimal64 exp10d64(_Decimal64 x); 
_Decimal128 exp10d128(_Decimal128 x); 10	

Description	

[2]	 The	 exp10	 functions	 compute	 the	 base-10	 exponential	 of	 the	 argument.	 A	 range	 error	
occurs	if	the	magnitude	of	finite	x	is	too	large.		

Returns	

[3]	The	exp10	functions	return	10x.		15	

7.12.6.1b	The	exp10m1	functions	

Synopsis	

[1]	 #include <math.h> 
double exp10m1(double x); 
float exp10m1f(float x); 20	
long double exp10m1l(long double x); 
_Decimal32 exp10m1d32(_Decimal32 x); 
_Decimal64 exp10m1d64(_Decimal64 x); 
_Decimal128 exp10m1d128(_Decimal128 x); 

Description	25	

[2]	 The	 exp10m1	 functions	 compute	 the	 base-10	 exponential	 of	 the	 argument,	 minus	 1.	 A	
range	error	occurs	if	finite	x	is	too	large	or	if	the	magnitude	of	nonzero	x	is	too	small.		

Returns	

[3]	The	exp10m1	functions	return	10x	−	1.		



	 		 	 	ISO/IEC	TS	18661-4:CFP	Working	Draft	

©	ISO/IEC	2015	–	All	rights	reserved	 9	
	

After	7.12.6.11,	insert	the	following:	

7.12.6.11a	The	log2p1	functions	

Synopsis	

[1]	 #include <math.h> 
double log2p1(double x); 5	
float log2p1f(float x); 
long double log2p1l(long double x); 
_Decimal32 log2p1d32(_Decimal32 x); 
_Decimal64 log2p1d64(_Decimal64 x); 
_Decimal128 log2p1d128(_Decimal128 x); 10	

Description	

[2]	 The	log2p1	 functions	 compute	 the	 base-2	 logarithm	 of	 1	plus	 the	 argument.	 A	 domain	
error	occurs	if	the	argument	is	less	than	−1.	A	pole	error	may	occur	if	the	argument	equals	−1.			

Returns	

[3]	The	log2p1	functions	return	log2(1	+	x).		15	

After	7.12.6.9,	insert	the	following:	

7.12.6.9a	The	log10p1	functions	

Synopsis	

[1]	 #include <math.h> 
double log10p1(double x); 20	
float log10p1f(float x); 
long double log10p1l(long double x); 
_Decimal32 log10p1d32(_Decimal32 x); 
_Decimal64 log10p1d64(_Decimal64 x); 
_Decimal128 log10p1d128(_Decimal128 x); 25	

Description	

[2]	The	log10p1	functions	compute	the	base-10	logarithm	of	1	plus	the	argument.	A	domain	
error	occurs	if	the	argument	is	less	than	−1.	A	pole	error	may	occur	if	the	argument	equals	−1.	
A	range	error	occurs	if	the	magnitude	of	nonzero	x	is	too	small.		

Returns	30	

[3]	The	log10p1	functions	return	log10(1	+	x).		



ISO/IEC	TS	18661-4:CFP	Working	Draft	

10	 ©	ISO/IEC	2015	–	All	rights	reserved	
	

After	7.12.7.1,	insert	the	following:	

7.12.7.1a	The	compoundn	functions	

Synopsis	

[1]	 #include <math.h> 
#include <stdint.h> 5	
double compoundn(double x, intmax_t n); 
float compoundnf(float x, intmax_t n); 
long double compoundnl(long double x, intmax_t n); 
_Decimal32 compoundnd32(_Decimal32 x, intmax_t n); 
_Decimal64 compoundnd64(_Decimal64 x, intmax_t n); 10	
_Decimal128 compoundnd128(_Decimal128 x, intmax_t n); 

Description	

[2]	The	compoundn	functions	compute	1	plus	x,	raised	to	the	power	n.	A	domain	error	occurs	
if	x	<	−1.	A	range	error	may	occur	if	n	is	too	large,	depending	on	x.	A	pole	error	may	occur	if	x	
equals	−1	and	n	<	0.		15	

Returns	

[3]	The	functions	return	(1	+	x)n.	

After	7.12.7.4,	insert	the	following:	

7.12.7.4a	The	pown	functions	

Synopsis	20	

[1]	 #include <math.h> 
#include <stdint.h> 
double pown(double x, intmax_t n); 
float pownf(float x, intmax_t n); 
long double pownl(long double x, intmax_t n); 25	
_Decimal32 pownd32(_Decimal32 x, intmax_t n); 
_Decimal64 pownd64(_Decimal64 x, intmax_t n); 
_Decimal128 pownd128(_Decimal128 x, intmax_t n); 

Description	

[2]	The	pown	 functions	compute	x	 raised	 to	the	nth	power.	A	range	error	may	occur.	A	pole	30	
error	may	occur	if	x	equals	zero	and	n	<	0.		

Returns	

[3]	The	pown	functions	return	xn.	



	 		 	 	ISO/IEC	TS	18661-4:CFP	Working	Draft	

©	ISO/IEC	2015	–	All	rights	reserved	 11	
	

7.12.7.4b	The	powr	functions	

Synopsis	

[1]	 #include <math.h> 
double powr(double x, double y); 
float powrf(float x, float y); 5	
long double powrl(long double x, long double y); 
_Decimal32 powrd32(_Decimal32 x, _Decimal32 y); 
_Decimal64 powrd64(_Decimal64 x, _Decimal64 y); 
_Decimal128 powrd128(_Decimal128 x, _Decimal128 y); 

Description	10	

[2]	The	powr	 functions	compute	x	raised	to	the	power	y	as	exp(y	×	log(x)).	A	domain	error	
occurs	if	x	<	0	or	if	x	and	y	are	both	zero.	A	range	error	may	occur.	A	pole	error	may	occur	if	x	
equals	zero	and	finite	y	<	0.		

Returns	

[3]	The	powr	functions	return	xy.	15	

7.12.7.4c	The	rootn	functions	

Synopsis	

[1]	 #include <math.h> 
#include <stdint.h> 
double rootn(double x, intmax_t n); 20	
float rootnf(float x, intmax_t n); 
long double rootnl(long double x, intmax_t n); 
_Decimal32 rootnd32(_Decimal32 x, intmax_t n); 
_Decimal64 rootnd64(_Decimal64 x, intmax_t n); 
_Decimal128 rootnd128(_Decimal128 x, intmax_t n); 25	

Description	

[2]	The	rootn	functions	compute	the	principal	nth	root	of	x.	A	domain	error	occurs	if	n	is	0	or	
if	x	<	0	and	n	is	even.	A	range	error	may	occur	if	n	is	−1.	A	pole	error	may	occur	if	x	equals	zero	
and	n	<	0.		

Returns	30	

[3]	The	rootn	functions	return	x1/n.	



ISO/IEC	TS	18661-4:CFP	Working	Draft	

12	 ©	ISO/IEC	2015	–	All	rights	reserved	
	

7.12.7.4d	The	rsqrt	functions	

Synopsis	

[1]	 #include <math.h> 
double rsqrt(double x); 
float rsqrtf(float x); 5	
long double rsqrtl(long double x); 
_Decimal32 rsqrtd32(_Decimal32 x); 
_Decimal64 rsqrtd64(_Decimal64 x); 
_Decimal128 rsqrtd128(_Decimal128 x); 

Description	10	

[2]	The	rsqrt	functions	compute	the	reciprocal	of	the	square	root	of	the	argument.	A	domain	
error	occurs	if	the	argument	is	less	than	zero.	A	pole	error	may	occur	if	the	argument	equals	
zero.		

Returns	

[3]	The	rsqrt	functions	return	1	/	√x.	15	

After	7.31.8#3,	insert:	

	[4]	The	function	names	

crexp  crrsqrt cracospi 
crexpm1  crcompoundn cratanpi 
crexp2  crrootn cratan2pi 20	
crexp2m1  crpown crasin 
crexp10  crpow cracos 
crexp10m1  crpowr cratan 
crlog crsin cratan2 
crlog2  crcos crsinh 25	
crlog10  crtan crcosh 
crlog1p  crsinpi crtanh 
crlogp1 crcospi crasinh 
crlog2p1 crtanpi cracosh  
crlog10p1 crasinpi  cratanh  30	
crhypot   

and	the	same	names	suffixed	with	f, l, d32,	d64,	or	d128	may	be	added	to	the	<math.h>	
header.	The	cr	prefix	is	intended	to	indicate	a	correctly	rounded	version	of	the	function.	

After	F.10#2,	insert:	

[2a]	 For	 each	 single-argument	 function	 f	 in	 <math.h>	 whose	 mathematical	 counterpart	 is	35	
symmetric	(even),	f(x)	is	f(−x)	for	all	rounding	modes	and	for	all	x	in	the	(valid)	domain	of	the	
function.	For	each	single-argument	function	f	in	<math.h>	whose	mathematical	counterpart	is	
antisymmetric	 (odd),	 f(−x)	 is	 –f(x)	 for	 the	 IEC	 60559	 rounding	 modes	 roundTiesToEven,	
roundTiesToAway,	and	roundTowardZero,	and	 for	all	x	 in	 the	(valid)	domain	of	the	 function.	
The	atan2	and	atan2pi	functions	are	odd	in	their	first	argument.		40	



	 		 	 	ISO/IEC	TS	18661-4:CFP	Working	Draft	

©	ISO/IEC	2015	–	All	rights	reserved	 13	
	

After	F.10.1.7,	insert	the	following:	

F.10.1.8	The	acospi	functions	

—	 acospi(+1)	returns	+0.	 	
—	 acospi(x)	returns	a	NaN	and	raises	the	“invalid”	floating-point	exception	for	|x|	>	1.		
	5	
F.10.1.9	The	asinpi	functions	

—	 asinpi(±0)	returns	±0.	 	
—	 asinpi(x)	returns	a	NaN	and	raises	the	“invalid”	floating-point	exception	for	|x|	>	1.		
	
F.10.1.10	The	atanpi	functions	10	

—	 atanpi(±0)	returns	±0.	 	
—	 atanpi(±∞)	returns	±1/2.		
	
F.10.1.11	The	atan2pi	functions	

—	 atan2pi(±0,	−0)	returns	±1.	 	15	
—	 atan2pi(±0,	+0)	returns	±0.	 	
—	 atan2pi(±0,	x)	returns	±1	for	x	<	0.	 	
—	 atan2pi(±0,	x)	returns	±0	for	x	>	0.	 	
—	 atan2pi(y, ±0)	returns	−1/2	for	y	<	0.	 	
—	 atan2pi(y, ±0)	returns	+1/2	for	y	>	0.	 	20	
—	 atan2pi(±y, −∞)	returns	±1	for	finite	y	>	0.	 	
—	 atan2pi(±y, +∞)	returns	±0	for	finite	y	>	0.	 	
—	 atan2pi(±∞,	x)	returns	±1/2	for	finite	x.	 	
—	 atan2pi(±∞,	−∞)	returns	±3/4.	 	
—	 atan2pi(±∞,	+∞)	returns	±1/4.	 	25	
	
F.10.1.12	The	cospi	functions	

—	 cospi(±0)	returns	1.	
—	 cospi(n	+	1/2)	returns	+0,	for	integers	n.	
—	 cospi(±∞)	returns	a	NaN	and	raises	the	“invalid”	floating-point	exception.		30	
	
F.10.1.13	The	sinpi	functions	

—	 sinpi(±0)	returns	±0.	 	
—	 sinpi(±n)	returns	±0,	for	positive	integers	n.	 	
—	 sinpi(±∞)	returns	a	NaN	and	raises	the	“invalid”	floating-point	exception.		35	
	
F.10.1.14	The	tanpi	functions	

—	 tanpi(±0)	returns	±0.	 	
—	 tanpi(n)	returns	+0,	for	positive	even	and	negative	odd	integers	n.	 	
—	 tanpi(n)	returns	−0,	for	positive	odd	and	negative	even	integers	n.	 	40	
—	 tanpi(n	+	1/2)	returns	+∞	and	raises	the	“divide-by-zero”	floating-point	exception,	for	

even	integers	n.	 	



ISO/IEC	TS	18661-4:CFP	Working	Draft	

14	 ©	ISO/IEC	2015	–	All	rights	reserved	
	

—	 tanpi(n	+	1/2)	returns	−∞	and	raises	the	“divide-by-zero”	floating-point	exception,	for	
odd	integers	n.	 	

—	 tanpi(±∞)	returns	a	NaN	and	raises	the	“invalid”	floating-point	exception.		
	

After	F.10.3.2,	insert	the	following:	5	

F.10.3.2a	The	exp2m1	functions	

—	 exp2m1(±0)	returns	±0.	 	
—	 exp2m1(−∞)	returns	−1.		
—	 exp2m1(+∞)	returns	+∞.		
	10	

After	F.10.3.1,	insert	the	following:	

F.10.3.1a	The	exp10	functions	

—	 exp10(±0)	returns	1.	 	
—	 exp10(−∞)	returns	+0.		
—	 exp10(+∞)	returns	+∞.		15	
	
F.10.3.1b	The	exp10m1	functions	

—	 exp10m1(±0)	returns	±0.	 	
—	 exp10m1(−∞)	returns	−1.		
—	 exp10m1(+∞)	returns	+∞.		20	
	

In	F.10.3.10,	replace	the	subclause	title:	

F.10.3.10	The	log1p	functions	

with:	

F.10.3.10	The	log1p	and	logp1	functions	25	

In	F.10.3.10,	in	each	bullet,	replace	log1p	with	logp1,	and,	after	the	bullets,	append:	

The	log1p	functions	are	equivalent	to	the	logp1	functions.	

After	F.10.3.11,	insert	the	following:	

F.10.3.11a	The	log2p1	functions	

—	 log2p1(±0)	returns	±0.	 	30	
—	 log2p1(−1)	returns	−∞	and	raises	the	“divide-by-zero”	floating-point	exception.		
—	 log2p1(x)	returns	a	NaN	and	raises	the	“invalid”	floating-point	exception	for	x	<	−1.		
—	 log2p1(+∞)	returns	+∞.		
	

After	F.10.3.9,	insert	the	following:	35	

F.10.3.9a	The	log10p1	functions	

—	 log10p1(±0)	returns	±0.	 	



	 		 	 	ISO/IEC	TS	18661-4:CFP	Working	Draft	

©	ISO/IEC	2015	–	All	rights	reserved	 15	
	

—	 log10p1(−1)	returns	−∞	and	raises	the	“divide-by-zero”	floating-point	exception.		
—	 log10p1(x)	returns	a	NaN	and	raises	the	“invalid”	floating-point	exception	for	x	<	−1.		
—	 log10p1(+∞)	returns	+∞.		
	

After	F.10.4.4,	insert	the	following:	5	

 	F.10.4.4a	The	pown	functions	

—	 pown(x, 0)	returns	1	for	all	x	not	a	signaling	NaN.	
—	 pown(±0, n)	returns	±∞	and	raises	the	“divide-by-zero”	floating-point	exception	for	odd	

n	<	0.		 	
—	 pown(±0, n)	returns	+∞	and	raises	the	“divide-by-zero”	floating-point	exception	for	10	

even	n	<	0.		 	
—	 pown(±0, n)	returns	+0	for	even	n	>	0.		 	
—	 pown(±0, n)	returns	±0	for	odd	n	>	0.		 	
—	 pown(±∞, n)	is	equivalent	to	pown(±0, −n)	for	n	not	0,	except	that	the	

“divide-by-zero”	floating-point	exception	is	not	raised.		 	15	
	
 	F.10.4.4b	The	powr	functions	

—	 powr(x, ±0)	returns	1	for	finite	x	>	0.		 	
—	 powr(±0, y)	returns	+∞	and	raises	the	“divide-by-zero”	floating-point	exception	for	

finite	y	<	0.		 	20	
—	 powr(±0, −∞)	returns	+∞.		 	
—	 powr(±0, y)	returns	+0	for	y	>	0.		 	
—	 powr(+1, y)	returns	1	for	finite	y.		 	
—	 powr(x, y)	returns	a	NaN	and	raises	the	“invalid”	floating-point	exception	for	x	<	0.		 	
—	 powr(±0, ±0)	returns	a	NaN	and	raises	the	“invalid”	floating-point	exception.		 	25	
—	 powr(+∞, ±0)	returns	a	NaN	and	raises	the	“invalid”	floating-point	exception.		 	
—	 powr(1, ±∞)	returns	a	NaN	and	raises	the	“invalid”	floating-point	exception.		 	

F.10.4.4c	The	rootn	functions	

—	 rootn(±0, n)	returns	±∞	and	raises	the	“divide-by-zero”	floating-point	exception	for	
odd	n	<	0.		 	30	

—	 rootn(±0, n)	returns	+∞	and	raises	the	“divide-by-zero”	floating-point	exception	for	
even	n	<	0.		 	

—	 rootn(±0, n)	returns	+0	for	even	n	>	0.		 	
—	 rootn(±0, n)	returns	±0	for	odd	n	>	0.		 	
—	 rootn(+∞, n)	returns	+∞	for	n	>	0.		 	35	
—	 rootn(−∞, n)	returns	−∞	for	odd	n	>	0.		 	
—	 rootn(−∞, n)	returns	a	NaN	and	raises	the	“invalid”	floating-point	exception	for	even	

n	>	0.		 	
—	 rootn(+∞, n)	returns	+0	for	n	<	0.		 	
—	 rootn(−∞, n)	returns	−0	for	odd	n	<	0.		 	40	
—	 rootn(−∞, n)	returns	a	NaN	and	raises	the	“invalid”	floating-point	exception	for	even	

n	<	0.		 	
—	 rootn(x, 0)	returns	a	NaN	and	raises	the	“invalid”	floating-point	exception	for	all	x	

(including	NaN).	



ISO/IEC	TS	18661-4:CFP	Working	Draft	

16	 ©	ISO/IEC	2015	–	All	rights	reserved	
	

—	 rootn(x, n)	returns	a	NaN	and	raises	the	“invalid”	floating-point	exception	for	x	<	0	and	
n	even.		

	
F.10.4.4d	The	rsqrt	functions	

—	 rsqrt(±0)	returns	±∞	and	raises	the	“divide-by-zero”	floating-point	exception.		 	5	
—	 rsqrt(x)	returns	a	NaN	and	raises	the	“invalid”	floating-point	exception	for	x	<	0.		
—	 rsqrt(+∞)	returns	+0.		
	

After	F.10.4.1,	insert	the	following:	

F.10.4.1a	The	compoundn	functions	10	

—	 compoundn(x, 0)	returns	1	for	x	≥	−1	or	x	a	NaN.			
—	 compoundn(x, n)	returns	a	NaN	and	raises	the	“invalid”	floating-point	exception	for	

x	<	−1.	 	
—	 compoundn(−1, n)	returns	+∞	and	raises	the	divide-by-zero	floating-point	exception	

for	n	<	0.		 	15	
—	 compoundn(−1, n)	returns	+0	for	n	>	0.			

In	the	Preferred	Quantum	Exponents	table	in	5.2.4.2.3#7,	insert	before	the	final	row:	

compoundn floor(n	×	min(0,	Q(x)))	
pown floor(n	×	Q(x))	
powr floor(y	×	Q(x))	
rootn floor(Q(x)/n)	
rsqrt −floor(Q(x)/2)	

8	 Reduction	functions	for	<math.h> 

[NOTE	 This	clause	was	not	approved	for	inclusion	in	C2X.]	

9	 Future	directions	for	<complex.h>	20	

This	 clause	 extends	 the	 list	 of	 function	 names	 reserved	 for	 future	 library	 directions	 under	
<complex.h>	to	include	complex	versions	of	math	functions	that	this	part	of	Technical	Specification	
18661	adds	to	C11.	

Change	to	C2X-20190607:	

In	7.31.1#1,	add	the	following	to	the	list	of	function	names:	25	

cexp2m1 crsqrt casinpi 
cexp10 ccompoundn catanpi 
cexp10m1 crootn ccospi 
clogp1 cpown csinpi 
clog2p1 cpowr ctanpi 30	
clog10p1	 cacospi	 		



	 		 	 	ISO/IEC	TS	18661-4:CFP	Working	Draft	

©	ISO/IEC	2015	–	All	rights	reserved	 17	
	

10	Type-generic	macros	<tgmath.h>	

The	 following	 changes	 to	 C2X-20190607	 enhance	 the	 specification	 of	 type-generic	 macros	 in	
<tgmath.h>	to	apply	to	math	functions	that	this	Part	of	Technical	Specification	18661	adds	to	C11.		

Change	to	C2X-20190607:	

In	7.25#9,	add	the	following	to	the	list	of	type-generic	macros:	5	

exp2m1 rsqrt asinpi 
exp10 compoundn atanpi 
exp10m1 rootn atan2pi 
logp1 pown cospi 
log2p1 powr sinpi 10	
log10p1 acospi tanpi  

11	Constant	rounding	modes	<fenv.h>	

As	 IEC	60559	operations,	 the	<math.h>	 functions	 introduced	 in	 this	part	 of	 ISO/IEC	TS	18661	are	
subject	to	IEC	60559	constant	rounding-direction	attributes.	The	following	changes	to	C2X-20190607	
add	these	new	functions	to	the	set	of	functions	affected	by	constant	rounding	modes	in	<fenv.h>.	15	

Changes	to	C2X-20190607:	

In	7.6.2#4,	replace	the	table:	

Header	 Function	families	
<math.h> acos,	asin,	atan,	atan2	
<math.h> cos,	sin,	tan	
<math.h> acosh,	asinh,	atanh	
<math.h> cosh,	sinh,	tanh	
<math.h> exp,	exp2,	expm1	
<math.h> log,	log10,	log1p,	log2 
<math.h> scalbn,	scalbln,	ldexp	
<math.h> cbrt,	hypot,	pow,	sqrt	
<math.h> erf,	erfc	
<math.h> lgamma,	tgamma	
<math.h> rint,	nearbyint,	lrint,	llrint	
<math.h> fdim	  
<math.h> fma		
<math.h> fadd,	daddl,	fsub,	dsubl,	fmul,	dmull,	fdiv,	ddivl,	

ffma,	dfmal,	fsqrt,	dsqrtl	
<stdlib.h> atof,	strfrom,	strto	
<wchar.h> wcsto	
<stdio.h> printf	and	scanf	families	
<wchar.h> wprintf	and	wscanf	families 



ISO/IEC	TS	18661-4:CFP	Working	Draft	

18	 ©	ISO/IEC	2015	–	All	rights	reserved	
	

	

with:	

Header	 Function	families	
<math.h> acos,	acospi,	asin,	asinpi,	atan,	atan2,	atan2pi,	

atanpi	
<math.h> cos,	cospi,	sin,	sinpi,	tan,	tanpi	
<math.h> acosh,	asinh,	atanh	
<math.h> cosh,	sinh,	tanh	
<math.h> exp,	exp10,	exp10m1,	exp2,	exp2m1,	expm1	
<math.h> log,	log10,	log10p1,	log1p,	log2,	log2p1,	logp1 
<math.h> ldexp,	scalbln,	scalbn	
<math.h> cbrt,	compoundn,	hypot,	pow,	pown,	powr,	rootn,	

rsqrt,	sqrt	
<math.h> erf,	erfc	
<math.h> lgamma,	tgamma	
<math.h> llrint,	lrint,	nearbyint,	rint	
<math.h> fdim	  
<math.h> fma		
<math.h> daddl,	ddivl,	dfmal,	dmull,	dsqrtl,	dsubl,	fadd,	

fdiv,	ffma,	fmul,	fsqrt,	fsub	
<stdlib.h> atof,	strfrom,	strto	
<wchar.h> wcsto	
<stdio.h> printf	and	scanf	families	
<wchar.h> wprintf	and	wscanf	families 

	

In	7.6.3#2,	replace	the	table:	

Header	 Function	families	
<math.h> acos,	asin,	atan,	atan2	
<math.h> cos,	sin,	tan	
<math.h> acosh,	asinh,	atanh	
<math.h> cosh,	sinh,	tanh	
<math.h> exp,	exp2,	expm1	
<math.h> log,	log10,	log1p,	log2 
<math.h> scalbn,	scalbln,	ldexp	
<math.h> cbrt,	hypot,	pow,	sqrt	
<math.h> erf,	erfc	
<math.h> lgamma,	tgamma	
<math.h> rint,	nearbyint,	lrint,	llrint	
<math.h> quantize 
<math.h> fdim 
<math.h> fmad	
<math.h> d32add, d64add, d32sub, d64sub, d32mul, 

d64mul, d32div, d64div, d32fma, d64fma, 
d32sqrt, d64sqrt 

<stdlib.h> strfrom,	strto	
<wchar.h> wcsto	



	 		 	 	ISO/IEC	TS	18661-4:CFP	Working	Draft	

©	ISO/IEC	2015	–	All	rights	reserved	 19	
	

<stdio.h> printf	and	scanf	families	
<wchar.h> wprintf	and	wscanf	families 

	

with:	

Header	 Function	families	
<math.h> acos,	acospi,	asin,	asinpi,	atan,	atan2,	atan2pi,	

atanpi	
<math.h> cos,	cospi,	sin,	sinpi,	tan,	tanpi	
<math.h> acosh,	asinh,	atanh	
<math.h> cosh,	sinh,	tanh	
<math.h> exp,	exp10,	exp10m1,	exp2,	exp2m1,	expm1	
<math.h> log,	log10,	log10p1,	log1p,	log2,	log2p1,	logp1 
<math.h> ldexp,	scalbln,	scalbn	
<math.h> cbrt,	compoundn,	hypot,	pow,	pown,	powr,	rootn,	

rsqrt,	sqrt	
<math.h> erf,	erfc	
<math.h> lgamma,	tgamma	
<math.h> llrint,	lrint,	nearbyint,	rint	
<math.h> quantize 
<math.h> fdim 
<math.h> fmad	
<math.h> d32add, d64add, d32sub, d64sub, d32mul, 

d64mul, d32div, d64div, d32fma, d64fma, 
d32sqrt, d64sqrt	

<stdlib.h> strfrom,	strto	
<wchar.h> wcsto	
<stdio.h> printf	and	scanf	families	
<wchar.h> wprintf	and	wscanf	families 

	



ISO/IEC	TS	18661-4:CFP	Working	Draft	

20	 ©	ISO/IEC	2015	–	All	rights	reserved	
	

Bibliography	

[1]	 IEC	60559:1989,	Binary	floating-point	arithmetic	for	microprocessor	systems,	second	edition	

[2]	 IEEE	754−1985,	IEEE	Standard	for	Binary	Floating-Point	Arithmetic	

[3]	 IEEE	754-2008,	IEEE	Standard	for	Floating-Point	Arithmetic	

[4]	 IEEE	854−1987,	IEEE	Standard	for	Radix-Independent	Floating-Point	Arithmetic	5	

[5]	 ISO/IEC	9899:2011/Cor.1:2012,	 Information	 technology	—	 Programming	 languages	—	
C	/	Technical	Corrigendum	1	

	


