
ISO/IEC JTC 1/SC 22/WG14

June 8, 2019

N 2392

v 1
Revise spelling of keywords and make them feature tests
proposal for C2x

Jens Gustedt
INRIA and ICube, Université de Strasbourg, France

Over time C has integrated some new features as keywords (some genuine, some from C++) but the naming
strategy has not be entirely consistent: some were integrated using non-reserved names (const, inline) others

were integrated in an underscore-capitalized form. For some of them, the use of the lower-case form then

is ensured via a set of library header files. The reason for this complicated mechanism had been backwards
compatibility for existing code bases. Since now years or even decades have gone by, we think that it is time

to switch and to use to the primary spelling.

This is a follow-up paper to N2368 where we reduce the focus to the list of keywords that found consensus
in the WG14 London 2019 meeting. Other papers will build on this for those keywords or features that need

more investigation.

1. INTRODUCTION

Several keywords in current C2x have weird spellings as reserved names that have ensured
backwards compatibility for existing code bases:

_Alignas
_Alignof
_Atomic

_Bool
_Complex
_Decimal128

_Decimal32
_Decimal64
_Generic

_Imaginary
_Noreturn
_Static_assert

_Thread_local

Many of them have alternative spellings that are provided through special library headers:

alignas
alignof

bool
complex

imaginary
noreturn

static_assert
thread_local

In addition, several important constants or language constructs are provided through head-
ers and have not achieved the status of first class language constructs:

NULL
_Complex_I

_Imaginary_I
false

offsetof
true

The use of these different keywords make C code often more difficult or unpleasant to read,
and always need special care for code that is sought to be included in both languages, C
and C++. For all of the features it will be ten years since their introduction when C2x
comes out, a time that should be sufficient for all users of the identifiers to have upgraded
to a non-conflicting form.
Some of the constructs mentioned above have their own specificities and need more coordi-
nation with WG21 and C++. E.g a common mechanism is currently sought for the derived
type mechanisms for _Complex and _Atomic, or a keyword like _Noreturn might even be
replaced by means of the attribute mechanism that has recently been voted into C2x.
This paper reproposes those keywords of N2368 that found direct consensus in WG14, in
the expectation that the thus proposed modifications can be integrated directly into C2x:

alignas
alignof

bool
static_assert

thread_local
false

true

© 2019 by the author(s). Distributed under a Creative Commons Attribution 4.0 International License



N2392:2 Jens Gustedt

Other proposals will follow that will tackle other parts of N2368 and beyond:

— Modify false and true to be of type bool.
— Make noreturn a keyword or replace it by an attribute.
— Introduce nullptr and deprecate NULL.
— Make complex and imaginary keywords and/or provide __complex(T) and __imaginary(T)

constructs for interoperability with C++.
— Make atomic (or __atomic) a keyword that resolves to the specifier form of _Atomic(T).
— Replace _Complex_I and _Imaginary_I by first-class language constructs.
— Make offsetof a keyword.
— Make generic a keyword that replaces _Generic.
— Make decimal32, decimal64 and decimal128 (or dec32, dec64 and dec128) keywords that

replace _Decimal32, _Decimal64 and _Decimal128.

2. PROPOSED MECHANISM OF INTEGRATION

Many code bases use in fact the underscore-capitalized form of the keywords and not the
compatible ones that are provided by the library headers. Therefore we need a mechanism
that makes a final transition to the new keywords seamless. We propose the following:

— Require the keywords to be also macros that can be tested.
— Don’t allow user code to change such macros.
— Allow the keywords to result in other spellings when they are expanded in with # or ##

operators.
— Keep the alternative spelling with underscore-capitalized identifiers around for a while.

With this in mind, implementing these new keywords is in fact almost trivial for any im-
plementation that is conforming to C17.

— 7 predefined macros have to be added to the startup mechanism of the translator. They
should expand to similar tokens as had been defined in the corresponding library headers.

— If some of the macros are distinct to their previous definition, the library headers have to
be amended with #ifndef tests. Otherwise, the equivalent macro definition in a header
should not harm.

Needless to say that on the long run, it would be good if implementations would switch
to full support as keywords, but there is no rush, and some implementations that have no
need for C++ compatibility might never do this.

3. PREDEFINED CONSTANTS

Predefined constants need a little bit more effort for the integration, because up to now C
did not have named constants on the level of the language. We propose to integrate these
constants by means of a new syntax term predefined constant.
For this proposal we only include false and true. Other proposals will follow for nullptr
and maybe _Complex_I and _Imaginary_I.

3.1. Boolean constants

The Boolean constants false and true are a bit ambivalent because in C17 they expand
to integer constants 0 and 1 that have type int and not bool. This is unfortunate when
they are used as arguments to type-generic macros, because there they could trigger an
unexpected expansion, namely for int instead of bool.
Nevertheless, int is the type that is currently used for them, so in this consensus paper we
propose to stay with this. A follow-up paper will propose to change the type to bool.



Revise spelling of keywords and make them feature tests N2392:3

4. FEATURE TESTS

As additional effect of having the keywords to be macros, too, the macros bool and
thread_local (and eventual future complex or atomic) can be used as feature tests that are
independent of library support and of the inclusion of the corresponding header.

5. REFERENCE IMPLEMENTATION

To add minimal support for the proposed changes, an implementation would have to add
definitions that are equivalent to the following lines to their startup code:

#define alignas _Alignas
#define alignof _Alignof
#define bool _Bool
#define false 0
#define static_assert _Static_assert
#define thread_local _Thread_local
#define true 1

At the other end of the spectrum, an implementation that implements all new keywords as
first-class constructs can simply have definitions that are the token identity:

#define alignas alignas
#define alignof alignof
#define bool bool
#define false false
#define static_assert static_assert
#define thread_local thread_local
#define true true

6. MODIFICATIONS TO THE STANDARD TEXT

This proposal implies a large number of trivial modifications in the text, namely simple
text processing that replaces the occurrence of one of the deprecated keywords by its new
version. These modifications are not by themselves interesting and are not included in the
following. WG14 members are invited to inspect them on the VC system, if they want, they
are in the branch “keywords”.
The following appendix lists the non-trivial changes:

— Changes to the “Keywords” clause 6.4.1, where we replace the keywords themselves (p1)
and add provisions to have the new ones as macro names (p2) and establish the old
keywords as alternative spellings (p4).

— Addition of a new clause 6.4.4.5 “Predefined constants” that implement the constants
false and true, and that is anchored in 6.4.4 “Constants”.

— Addition of text to 6.10.8.1 “Mandatory macros” that lists the new keywords.
— Modifications of the corresponding library clauses (7.2, 7.15, 7.18, and 7.26).
— Mark <stdalign.h> and <stdbool.h> to be obsolescent inside their specific text and in

clause 7.13 “Future library directions”.
— Update Annex A.



N2392:4 Jens Gustedt

Appendix: pages with diffmarks of the proposed changes
against the May 2019 working draft.
The following page numbers are from the particular snapshot and may vary once the changes
are integrated.



N2392 C201906..keywords working draft — June 8, 2019 ISO/IEC 9899:202x (E)

6.4.1 Keywords
Syntax

1 keyword: one of

::::::::
alignas

::::::::
alignof
auto

:::::
bool
break
case
char
const
continue
default
do
double
else
enum

extern

::::::
false
float
for
goto
if
inline
int
long
register
restrict
return
short
signed

sizeof
static

:::::::::::::::
static_assert
struct
switch

::::::::::::::
thread_local

:::::
true
typedef
union
unsigned
void
volatile
while
_Alignas

_Alignof
_Atomic
_Bool
_Complex
_Decimal128
_Decimal32
_Decimal64
_Generic
_Imaginary
_Noreturn
_Static_assert
_Thread_local

:::::::::::
Constraints

2
:::
The

::::::::::
keywords

alignas
alignof

bool
false

static_assert
thread_local

true

:::
are

::::
also

::::::::::
predefined

::::::
macro

:::::::
names

:::::::
(6.10.8).

:::::::
None

::
of

:::::
these

:::::
shall

:::
be

:::
the

:::::::
subject

:::
of

:
a
:::::::::
#define

::
or

::
a
:

:::::::
#undef

::::::::::::
preprocessing

:::::::::
directive

::::
and

::::
their

::::::::
spelling

::::::
inside

:::::::::::
expressions

::::
that

:::
are

:::::::
subject

::
to

::::
the

:
#
::::
and

:

::
##

:::::::::::::
preprocessing

:::::::::
operators

::
is

:::::::::::
unspecified.74)

Semantics
3 The above tokens (case sensitive) are reserved (in translation phases 7 and 8) for use as keywords

except in an attribute token, and shall not be used otherwise. The keyword _Imaginary is reserved
for specifying imaginary types.75)

4
:::
The

:::::::::
following

:::::
table

::::::::
provides

:::::::::
alternate

::::::::
spellings

:::
for

:::::::
certain

:::::::::
keywords.

::::::
These

::::
can

::
be

:::::
used

:::::::::
wherever

:::
the

::::::::
keyword

::::
can.76)

::::::::
keyword

: ::::::::::
alternative

:::::::
spelling

::::::::
alignas

:::::::::
_Alignas

::::::::
alignof

:::::::::
_Alignof

:::::
bool

::::::
_Bool

::::::::::::::
static_assert

: :::::::::::::::
_Static_assert

:::::::::::::
thread_local

: ::::::::::::::
_Thread_local

:

6.4.2 Identifiers
6.4.2.1 General
Syntax

1 identifier:
identifier-nondigit
identifier identifier-nondigit
identifier digit

74)
:::
The

::::
intent

::
of

::::
these

::::::::::
specifications

::
is

::
to

::::
allow

:::
but

:::
not

:
to
::::

force
:::
the

::::::::::::
implementation

::
of

::
the

::::::::::
correspondig

:::::
feature

:::
by

:::::
means

:
of
::

a
::::::::
predefined

:::::
macro.

75)One possible specification for imaginary types appears in Annex G.
76)

::::
These

::::::::
alternative

:::::::
keywords

:::
are

:::::::::
obsolescent

::::::
features

:::
and

:::::
should

:::
not

::
be

::::
used

::
for

:::
new

:::::
code.

§ 6.4.2.1 Language 49



ISO/IEC 9899:202x (E) working draft — June 8, 2019 C201906..keywords N2392

6.4.4 Constants
Syntax

1 constant:
integer-constant
floating-constant
enumeration-constant
character-constant

::::::::::::::::::::::::::::::::
predefined-constant

:

Constraints
2 Each constant shall have a type and the value of a constant shall be in the range of representable

values for its type.

Semantics
3 Each constant has a type, determined by its form and value, as detailed later.

6.4.4.1 Integer constants
Syntax

1 integer-constant:
decimal-constant integer-suffixopt
octal-constant integer-suffixopt
hexadecimal-constant integer-suffixopt

decimal-constant:
nonzero-digit
decimal-constant digit

octal-constant:
0
octal-constant octal-digit

hexadecimal-constant:
hexadecimal-prefix hexadecimal-digit
hexadecimal-constant hexadecimal-digit

hexadecimal-prefix: one of
0x 0X

nonzero-digit: one of
1 2 3 4 5 6 7 8 9

octal-digit: one of
0 1 2 3 4 5 6 7

hexadecimal-digit: one of
0 1 2 3 4 5 6 7 8 9
a b c d e f
A B C D E F

integer-suffix:
unsigned-suffix long-suffixopt
unsigned-suffix long-long-suffix
long-suffix unsigned-suffixopt
long-long-suffix unsigned-suffixopt

52 Language § 6.4.4.1



N2392 C201906..keywords working draft — June 8, 2019 ISO/IEC 9899:202x (E)

Forward references: common definitions <stddef.h> (7.19), the mbtowc function (7.22.7.2), Uni-
code utilities <uchar.h> (7.28).

6.4.4.5 Predefined constants

::::::
Syntax

1
::::::::::::::::
predefined-constant:

:

:::::::::::::::::::::
false

::::::::::::::::::::
true

:::::::::::
Description

:::::
Some

:::::::::
keywords

:::::::::
represent

:::::::::
constants

::
of

:
a
::::::::
specific

:::::
value

::::
and

:::::
type.

6.4.4.5.1 The false and true constants

:::::::::::
Description

1
:::
The

::::::::::
keywords

:::::
false

::::
and

:::::
true

::::::::
represent

:::::::::
constants

::
of

:::::
type

:::
int

::::
that

:::
are

:::::::
suitable

:::
for

::::
use

::
as

:::
are

:::::::
integer

::::::
literals.

::::::
Their

::::::
values

:::
are

::
0

:::
for

::::::
false

::::
and

:
1
:::
for

::::::
true.86)

6.4.5 String literals
Syntax

1 string-literal:
encoding-prefixopt " s-char-sequenceopt "

encoding-prefix:
u8
u
U
L

s-char-sequence:
s-char
s-char-sequence s-char

s-char:
any member of the source character set except

the double-quote ", backslash \, or new-line character
escape-sequence

Constraints
2 A sequence of adjacent string literal tokens shall not include both a wide string literal and a UTF–8

string literal.

Description
3 A character string literal is a sequence of zero or more multibyte characters enclosed in double-quotes,

as in "xyz". A UTF–8 string literal is the same, except prefixed by u8. A wide string literal is the same,
except prefixed by the letter L, u, or U.

4 The same considerations apply to each element of the sequence in a string literal as if it were in an
integer character constant (for a character or UTF–8 string literal) or a wide character constant (for a
wide string literal), except that the single-quote’ is representable either by itself or by the escape
sequence \’, but the double-quote " shall be represented by the escape sequence \".

86)
::::
Thus,

::
the

::::::::
keywords

:::::
false

:::
and

::::
true

::
are

:::::
usable

::
in

:::::::::
preprocessor

::::::::
directives.

§ 6.4.5 Language 59



ISO/IEC 9899:202x (E) working draft — June 8, 2019 C201906..keywords N2392

6.10.8 Predefined macro names
1 The values of the predefined macros listed in the following subclauses191) (except for __FILE__ and

__LINE__) remain constant throughout the translation unit.

2 None of these macro names, nor the identifier defined, shall be the subject of a #define or a #undef
preprocessing directive. Any other predefined macro names shall begin with a leading underscore
followed by an uppercase letter or a second underscore.

3 The implementation shall not predefine the macro__cplusplus, nor shall it define it in any standard
header.

Forward references: standard headers (7.1.2).

6.10.8.1 Mandatory macros
1 The

::
In

::::::::
addition

::
to

:::
the

:::::::::
keywords

:

alignas
alignof

bool
false

static_assert
thread_local

true

:::::
which

::::
are

:::::::::
object-like

:::::::
macros

::::
that

::::::::
expand

::
to

:::::::::::
unspecified

:::::::
tokens,

:::
the

:
following macro names shall

be defined by the implementation:
:
.

__DATE__ The date of translation of the preprocessing translation unit: a character string literal of
the form "Mmm dd yyyy", where the names of the months are the same as those generated
by the asctime function, and the first character of dd is a space character if the value is
less than 10. If the date of translation is not available, an implementation-defined valid
date shall be supplied.

__FILE__ The presumed name of the current source file (a character string literal).192)

__LINE__ The presumed line number (within the current source file) of the current source line (an
integer constant).192)

__STDC__ The integer constant 1, intended to indicate a conforming implementation.

__STDC_HOSTED__ The integer constant 1 if the implementation is a hosted implementation or the
integer constant 0 if it is not.

__STDC_VERSION__ The integer constant yyyymmL.193)

__TIME__ The time of translation of the preprocessing translation unit: a character string literal of
the form "hh:mm:ss" as in the time generated by the asctime function. If the time of
translation is not available, an implementation-defined valid time shall be supplied.

Forward references: the asctime function (7.27.3.1).

6.10.8.2 Environment macros
1 The following macro names are conditionally defined by the implementation:

__STDC_ISO_10646__ An integer constant of the form yyyymmL (for example, 199712L). If this
symbol is defined, then every character in the Unicode required set, when stored in an
object of type wchar_t, has the same value as the short identifier of that character. The
Unicode required set consists of all the characters that are defined by ISO/IEC 10646, along
with all amendments and technical corrigenda, as of the specified year and month. If
some other encoding is used, the macro shall not be defined and the actual encoding
used is implementation-defined.

191)See "future language directions" (6.11.9).
192)The presumed source file name and line number can be changed by the #line directive.
193)See Annex M for the values in previous revisions. The intention is that this will remain an integer constant of type
long int that is increased with each revision of this document.

146 Language § 6.10.8.2



ISO/IEC 9899:202x (E) working draft — June 8, 2019 C201906..keywords N2392

7.2 Diagnostics <assert.h>
1 The header <assert.h> defines the assert and static_assert macros

::::::
macro and refers to another

macro,

NDEBUG

which is not defined by <assert.h>. If NDEBUG is defined as a macro name at the point in the source
file where <assert.h> is included, the assert macro is defined simply as

#define assert(ignore) ((void)0)

The assert macro is redefined according to the current state of NDEBUG each time that <assert.h>
is included.

2 The assert macro shall be implemented as a macro, not as an actual function. If the macro definition
is suppressed in order to access an actual function, the behavior is undefined.

The macro expands to _Static_assert.

7.2.1 Program diagnostics
7.2.1.1 The assert macro
Synopsis

1 #include <assert.h>
void assert(scalar expression);

Description
2 The assert macro puts diagnostic tests into programs; it expands to a void expression. When it

is executed, if expression (which shall have a scalar type) is false (that is, compares equal to 0),
the assert macro writes information about the particular call that failed (including the text of the
argument, the name of the source file, the source line number, and the name of the enclosing function
— the latter are respectively the values of the preprocessing macros __FILE__ and __LINE__ and of
the identifier __func__) on the standard error stream in an implementation-defined format.207) It
then calls the abort function.

Returns
3 The assert macro returns no value.

Forward references: the abort function (7.22.4.1).

207)The message written might be of the form:

Assertion failed: expression, function abc, file xyz, line nnn.

154 Library § 7.2.1.1



ISO/IEC 9899:202x (E) working draft — June 8, 2019 C201906..keywords N2392

7.15 Alignment <stdalign.h>
The header defines four macros.

1 The obsolescent header <stdalign.h> defines two macros that are suitable for use in #if prepro-
cessing directives. They are

__alignas_is_defined

and

__alignof_is_defined

which both expand to true.

238 Library § 7.15



ISO/IEC 9899:202x (E) working draft — June 8, 2019 C201906..keywords N2392

7.18 Boolean type and values <stdbool.h>
1 The

::::::::::
obsolescent

:
header <stdbool.h> defines four macros.

expands to _Bool.

Notwithstanding the provisions of 7.1.3, a program may undefine and perhaps then redefine the
macros bool

::
the

::::::::::
following

::::::
macro

:::::
which

::
is
::::::::
suitable

:::
for

:::
use

:::
in

::::::::::
conditional

:::::::::::::
preprocessing

::::::::::
directives:

:: ::: ::::::::::::::::::::::::::::
__bool_true_false_are_defined

:
It
::::::::
expands

::
to

::::
the

::::::::
constant

:::::
true.

:
, true, and false.

252 Library § 7.18



ISO/IEC 9899:202x (E) working draft — June 8, 2019 C201906..keywords N2392

7.26 Threads <threads.h>
7.26.1 Introduction

1 The header <threads.h> includes the header <time.h>, defines macros, and declares types, enu-
meration constants, and functions that support multiple threads of execution.339)

2 Implementations that define the macro __STDC_NO_THREADS__ need not provide this header nor
support any of its facilities.

which expands to the keyword _Thread_local;3
:::
The

:::::::
macros

:::
are

:

ONCE_FLAG_INIT

which expands to a value that can be used to initialize an object of type once_flag; and

TSS_DTOR_ITERATIONS

which expands to an integer constant expression representing the maximum number of times that
destructors will be called when a thread terminates.

4 The types are

cnd_t

which is a complete object type that holds an identifier for a condition variable;

thrd_t

which is a complete object type that holds an identifier for a thread;

tss_t

which is a complete object type that holds an identifier for a thread-specific storage pointer;

mtx_t

which is a complete object type that holds an identifier for a mutex;

tss_dtor_t

which is the function pointer type void (*)(void*), used for a destructor for a thread-specific
storage pointer;

thrd_start_t

which is the function pointer type int (*)(void*) that is passed to thrd_create to create a new
thread; and

once_flag

which is a complete object type that holds a flag for use by call_once.

5 The enumeration constants are

mtx_plain

which is passed to mtx_init to create a mutex object that does not support timeout;

mtx_recursive

339)See "future library directions" (7.31.18).

324 Library § 7.26.1



N2392 C201906..keywords working draft — June 8, 2019 ISO/IEC 9899:202x (E)

7.31.10 Alignment <stdalign.h>
1

:::
The

::::::::
header

:
<stdalign.h>

::::::::
together

:::::
with

:::
its

::::::::
defined

::::::::
macros

:::::::::::::::::::::::
__alignas_is_defined

::::
and

::

::::::::::::::::::::::
__alignas_is_defined

::
is

::
an

:::::::::::
obsolescent

:::::::
feature.

:

7.31.11 Atomics <stdatomic.h>
1 Macros that begin with ATOMIC_ and an uppercase letter may be added to the macros defined

in the <stdatomic.h> header. Typedef names that begin with either atomic_ or memory_, and
a lowercase letter may be added to the declarations in the <stdatomic.h> header. Enumeration
constants that begin with memory_order_ and a lowercase letter may be added to the definition
of the memory_order type in the <stdatomic.h> header. Function names that begin with atomic_

and a lowercase letter may be added to the declarations in the <stdatomic.h> header.

2 The macro ATOMIC_VAR_INIT is an obsolescent feature.

7.31.12 Boolean type and values <stdbool.h>
1 The ability to undefine and perhaps then redefine the macros bool, true, and false

::::::
header

:

<stdbool.h>
::::::::
together

::::
with

:::
its

:::::::
defined

::::::
macro

::::::::::::::::::::::::::::::::
__bool_true_false_are_defined is an obsolescent

feature.

7.31.13 Integer types <stdint.h>
1 Typedef names beginning with int or uint and ending with _t may be added to the types defined

in the <stdint.h> header. Macro names beginning with INT or UINT and ending with _MAX, _MIN,
_WIDTH, or _C may be added to the macros defined in the <stdint.h> header.

7.31.14 Input/output <stdio.h>
1 Lowercase letters may be added to the conversion specifiers and length modifiers in fprintf and

fscanf. Other characters may be used in extensions.

2 The use of ungetc on a binary stream where the file position indicator is zero prior to the call is an
obsolescent feature.

7.31.15 General utilities <stdlib.h>
1 Function names that begin with str or wcs and a lowercase letter may be added to the declarations

in the <stdlib.h> header.

2 Invoking realloc with a size argument equal to zero is an obsolescent feature.

7.31.16 String handling <string.h>
1 Function names that begin with str, mem, or wcs and a lowercase letter may be added to the

declarations in the <string.h> header.

7.31.17 Date and time <time.h>
Macros beginning with TIME_ and an uppercase letter may be added to the macros in the <time.h>
header.

7.31.18 Threads <threads.h>
1 Function names, type names, and enumeration constants that begin with either cnd_, mtx_, thrd_,

or tss_, and a lowercase letter may be added to the declarations in the <threads.h> header.

7.31.19 Extended multibyte and wide character utilities <wchar.h>
1 Function names that begin with wcs and a lowercase letter may be added to the declarations in the

<wchar.h> header.

2 Lowercase letters may be added to the conversion specifiers and length modifiers in fwprintf and
fwscanf. Other characters may be used in extensions.

§ 7.31.19 Library 385



N2392 C201906..keywords working draft — June 8, 2019 ISO/IEC 9899:202x (E)

Annex A
(informative)

Language syntax summary

1 NOTE The notation is described in 6.1.

A.1 Lexical grammar
A.1.1 Lexical elements

(6.4) token:
keyword
identifier
constant
string-literal
punctuator

(6.4) preprocessing-token:
header-name
identifier
pp-number
character-constant
string-literal
punctuator

each non-white-space character that cannot be one of the above

A.1.2 Keywords

(6.4.1) keyword: one of

::::::::
alignas

::::::::
alignof
auto

:::::
bool
break
case
char
const
continue
default
do
double
else
enum

extern

::::::
false
float
for
goto
if
inline
int
long
register
restrict
return
short
signed

sizeof
static

:::::::::::::::
static_assert
struct
switch

::::::::::::::
thread_local

:::::
true
typedef
union
unsigned
void
volatile
while
_Alignas

_Alignof
_Atomic
_Bool
_Complex
_Decimal128
_Decimal32
_Decimal64
_Generic
_Imaginary
_Noreturn
_Static_assert
_Thread_local

A.1.3 Identifiers

(6.4.2.1) identifier:
identifier-nondigit
identifier identifier-nondigit
identifier digit

(6.4.2.1) identifier-nondigit:
nondigit
universal-character-name

other implementation-defined characters

§ A.1.3 Language syntax summary 387



ISO/IEC 9899:202x (E) working draft — June 8, 2019 C201906..keywords N2392

(6.4.2.1) nondigit: one of
_ a b c d e f g h i j k l m
n o p q r s t u v w x y z
A B C D E F G H I J K L M
N O P Q R S T U V W X Y Z

(6.4.2.1) digit: one of
0 1 2 3 4 5 6 7 8 9

A.1.4 Universal character names

(6.4.3) universal-character-name:
\u hex-quad
\U hex-quad hex-quad

(6.4.3) hex-quad:
hexadecimal-digit hexadecimal-digit hexadecimal-digit hexadecimal-digit

A.1.5 Constants

(6.4.4) constant:
integer-constant
floating-constant
enumeration-constant
character-constant

::::::::::::::::::::::::::::::::
predefined-constant

:

(6.4.4.1) integer-constant:
decimal-constant integer-suffixopt
octal-constant integer-suffixopt
hexadecimal-constant integer-suffixopt

(6.4.4.1) decimal-constant:
nonzero-digit
decimal-constant digit

(6.4.4.1) octal-constant:
0
octal-constant octal-digit

(6.4.4.1) hexadecimal-constant:
hexadecimal-prefix hexadecimal-digit
hexadecimal-constant hexadecimal-digit

(6.4.4.1) hexadecimal-prefix: one of
0x 0X

(6.4.4.1) nonzero-digit: one of
1 2 3 4 5 6 7 8 9

(6.4.4.1) octal-digit: one of
0 1 2 3 4 5 6 7

(6.4.4.1) hexadecimal-digit: one of
0 1 2 3 4 5 6 7 8 9
a b c d e f
A B C D E F

388 Language syntax summary § A.1.5



ISO/IEC 9899:202x (E) working draft — June 8, 2019 C201906..keywords N2392

(6.4.4.3) enumeration-constant:
identifier

(6.4.4.4) character-constant:
’ c-char-sequence ’
L’ c-char-sequence ’
u’ c-char-sequence ’
U’ c-char-sequence ’

(6.4.4.4) c-char-sequence:
c-char
c-char-sequence c-char

(6.4.4.4) c-char:
any member of the source character set except

the single-quote ’, backslash \, or new-line character
escape-sequence

(6.4.4.4) escape-sequence:
simple-escape-sequence
octal-escape-sequence
hexadecimal-escape-sequence
universal-character-name

(6.4.4.4) simple-escape-sequence: one of
\’ \" \? \\
\a \b \f \n \r \t \v

(6.4.4.4) octal-escape-sequence:
\ octal-digit
\ octal-digit octal-digit
\ octal-digit octal-digit octal-digit

(6.4.4.4) hexadecimal-escape-sequence:
\x hexadecimal-digit
hexadecimal-escape-sequence hexadecimal-digit

A.1.5.1 Predefined constants

(6.4.4.5)
:::::::::::::::::
predefined-constant:

:::::::::::::::::::::
false

::::::::::::::::::::
true

A.1.6 String literals

(6.4.5) string-literal:
encoding-prefixopt " s-char-sequenceopt "

(6.4.5) encoding-prefix:
u8
u
U
L

(6.4.5) s-char-sequence:
s-char
s-char-sequence s-char

390 Language syntax summary § A.1.6


