
ISO/IEC JTC 1/SC 22/WG14

June 7, 2019

N 2329

v 1
Remove ATOMIC VAR INIT
proposal for integration to C2x

Jens Gustedt
INRIA and ICube, Université de Strasbourg, France

Because of syntactical problems and because it had been found to be basically useless for the intended use

case, the macro ATOMIC_VAR_INIT had been marked obsolete in C17. We propose to remove it completely.

1. PROBLEM DESCRIPTION

The macro ATOMIC_VAR_INIT is basically useless for the purpose for which it was designed,
namely to initialize any atomic type with a constant expression of the appropriate base type.
There are problems because it is subject to macro parameter expansion (causing difficulties
with compound literals) and with the fact that compile time constants of a particular base
type (e.g for structure types) might not even exist.
On the other hand, all implementations seems to cope well with the normal initialization
syntax for variables when extending it to atomics. Therefore, the use of ATOMIC_VAR_INIT
has been made optional in C17 and the macro itself has been declared obsolete.
Because it is basically useless and problematic to use, we propose to remove it from C2x.
Since the macro name uses a reserved prefix, implementations may continue to provide the
macro if they want to. They do not need to do anything to stay conforming.

2. SUGGESTED CHANGES

The text concerning it (7.17.2.1) can not be completely removed from C2x because it con-
tains normative text that is important for initialization of atomics. Therefore we propose
to keep the second part of 7.17.2.1 p2 as the a new introduction to “Initialization”, 7.17.2
p1.
We also propose to amend the example(s) that are following there, such that it does not
use the macro, and such they clarify under which circumstances no additional initialization
is necessary for race-free access (Example 1) or where explicit race-free initialization is still
required (Example 2).
In addition, we also propose to add a sub-setence about initialization to the definition of data
race (5.1.2.4 p35), and to remove the mention of the macro from “Future library directions”
(7.31.10).

Appendix: diffmarks for the proposed changes

Following are those pages that contain diffmarks for the proposed changed against C2x.
The procedure is not perfect, in particular there may be changes inside code blocks that
are not visible.

© 2019 by the author(s). Distributed under a Creative Commons Attribution 4.0 International License

ISO/IEC 9899:202x (E) working draft — June 7, 2019atomics-cleanup..ATOMICV ARINIT N2390

17 NOTE 7 The "inter-thread happens before" relation describes arbitrary concatenations of "sequenced before", "synchronizes
with", and "dependency-ordered before" relationships, with two exceptions. The first exception is that a concatenation is
not permitted to end with "dependency-ordered before" followed by "sequenced before". The reason for this limitation is
that a consume operation participating in a "dependency-ordered before" relationship provides ordering only with respect
to operations to which this consume operation actually carries a dependency. The reason that this limitation applies only
to the end of such a concatenation is that any subsequent release operation will provide the required ordering for a prior
consume operation. The second exception is that a concatenation is not permitted to consist entirely of "sequenced before".
The reasons for this limitation are (1) to permit "inter-thread happens before" to be transitively closed and (2) the "happens
before" relation, defined below, provides for relationships consisting entirely of "sequenced before".

18 An evaluation A happens before an evaluation B if A is sequenced before B or A inter-thread happens
before B. The implementation shall ensure that no program execution demonstrates a cycle in the
"happens before" relation.

19 NOTE 8 This cycle would otherwise be possible only through the use of consume operations.

20 A visible side effect A on an object M with respect to a value computation B of M satisfies the
conditions:

— A happens before B, and

— there is no other side effect X to M such that A happens before X and X happens before B.

The value of a non-atomic scalar object M , as determined by evaluation B, shall be the value stored
by the visible side effect A.

21 NOTE 9 If there is ambiguity about which side effect to a non-atomic object is visible, then there is a data race and the
behavior is undefined.

22 NOTE 10 This states that operations on ordinary variables are not visibly reordered. This is not actually detectable without
data races, but it is necessary to ensure that data races, as defined here, and with suitable restrictions on the use of atomics,
correspond to data races in a simple interleaved (sequentially consistent) execution.

23 The value of an atomic object M , as determined by evaluation B, shall be the value stored by some
side effect A that modifies M , where B does not happen before A.

24 NOTE 11 The set of side effects from which a given evaluation might take its value is also restricted by the rest of the rules
described here, and in particular, by the coherence requirements below.

25 If an operation A that modifies an atomic object M happens before an operation B that modifies M ,
then A shall be earlier than B in the modification order of M .

26 NOTE 12 The requirement above is known as "write-write coherence".

27 If a value computation A of an atomic object M happens before a value computation B of M , and A
takes its value from a side effect X on M , then the value computed by B shall either be the value
stored by X or the value stored by a side effect Y on M , where Y follows X in the modification
order of M .

28 NOTE 13 The requirement above is known as "read-read coherence".

29 If a value computation A of an atomic object M happens before an operation B on M , then A shall
take its value from a side effect X on M , where X precedes B in the modification order of M .

30 NOTE 14 The requirement above is known as "read-write coherence".

31 If a side effect X on an atomic object M happens before a value computation B of M , then the
evaluation B shall take its value from X or from a side effect Y that follows X in the modification
order of M .

32 NOTE 15 The requirement above is known as "write-read coherence".

33 NOTE 16 This effectively disallows compiler reordering of atomic operations to a single object, even if both operations are
"relaxed" loads. By doing so, it effectively makes the "cache coherence" guarantee provided by most hardware available to C
atomic operations.

34 NOTE 17 The value observed by a load of an atomic object depends on the "happens before" relation, which in turn depends
on the values observed by loads of atomic objects. The intended reading is that there exists an association of atomic loads
with modifications they observe that, together with suitably chosen modification orders and the "happens before" relation
derived as described above, satisfy the resulting constraints as imposed here.

35 The execution of a program contains a data race if it contains two conflicting actions in different
threads, at least one of which is not atomic

::
or

::
if
:::::
they

::::::
access

:::
an

:::::::
atomic

:::::
object

:::::
that

:::
has

::::
not

:::::
been

16 Environment § 5.1.2.4

N2390 working draft — June 7, 2019 ISO/IEC 9899:202x (E)

:::::::::
initialized, and neither happens before the other. Any such data race results in undefined behavior.

36 NOTE 18 It can be shown that programs that correctly use simple mutexes and memory_order_seq_cst operations to
prevent all data races, and use no other synchronization operations, behave as though the operations executed by their
constituent threads were simply interleaved, with each value computation of an object being the last value stored in that
interleaving. This is normally referred to as "sequential consistency". However, this applies only to data-race-free programs,
and data-race-free programs cannot observe most program transformations that do not change single-threaded program
semantics. In fact, most single-threaded program transformations continue to be allowed, since any program that behaves
differently as a result necessarily has undefined behavior even before such a transformation is applied.

37 NOTE 19 Compiler transformations that introduce assignments to a potentially shared memory location that would not
be modified by the abstract machine are generally precluded by this document, since such an assignment might overwrite
another assignment by a different thread in cases in which an abstract machine execution would not have encountered a
data race. This includes implementations of data member assignment that overwrite adjacent members in separate memory
locations. Reordering of atomic loads in cases in which the atomics in question might alias is also generally precluded, since
this could violate the coherence requirements.

38 NOTE 20 Transformations that introduce a speculative read of a potentially shared memory location might not preserve
the semantics of the program as defined in this document, since they potentially introduce a data race. However, they are
typically valid in the context of an optimizing compiler that targets a specific machine with well-defined semantics for data
races. They would be invalid for a hypothetical machine that is not tolerant of races or provides hardware race detection.

5.2 Environmental considerations
5.2.1 Character sets

1 Two sets of characters and their associated collating sequences shall be defined: the set in which
source files are written (the source character set), and the set interpreted in the execution environment
(the execution character set). Each set is further divided into a basic character set, whose contents are
given by this subclause, and a set of zero or more locale-specific members (which are not members
of the basic character set) called extended characters. The combined set is also called the extended
character set. The values of the members of the execution character set are implementation-defined.

2 In a character constant or string literal, members of the execution character set shall be represented by
corresponding members of the source character set or by escape sequences consisting of the backslash
\ followed by one or more characters. A byte with all bits set to 0, called the null character, shall exist
in the basic execution character set; it is used to terminate a character string.

3

Both the basic source and basic execution character sets shall have the following members: the 26
uppercase letters of the Latin alphabet

A B C D E F G H I J K L M
N O P Q R S T U V W X Y Z

the 26 lowercase letters of the Latin alphabet

a b c d e f g h i j k l m
n o p q r s t u v w x y z

the 10 decimal digits

0 1 2 3 4 5 6 7 8 9

the following 29 graphic characters

! " # % & ’ () * + , - . / :
; < = > ? [\] ^ _ { | } ~

the space character, and control characters representing horizontal tab, vertical tab, and form feed.
The representation of each member of the source and execution basic character sets shall fit in a
byte. In both the source and execution basic character sets, the value of each character after 0 in
the above list of decimal digits shall be one greater than the value of the previous. In source files,
there shall be some way of indicating the end of each line of text; this document treats such an
end-of-line indicator as if it were a single new-line character. In the basic execution character set,
there shall be control characters representing alert, backspace, carriage return, and new line. If any
other characters are encountered in a source file (except in an identifier, a character constant, a string

§ 5.2.1 Environment 17

ISO/IEC 9899:202x (E) working draft — June 7, 2019atomics-cleanup..ATOMICV ARINIT N2390

7.17.2 Initialization
Synopsis replace
Description

1 The expands to a token sequence suitable for initializing an atomic object of a type that is
initialization-compatible with value. An atomic object with automatic storage duration that is
not explicitly initialized is initially in an indeterminate state; however, the default (zero) initial-
ization for objects with static or thread-local storage duration is guaranteed to produce a valid
state.

2 Concurrent access to the variable being initialized, even via an atomic operation, constitutes a data
race.

3 EXAMPLE 1
:::
The

:::::::
following

::::::::
definitions

:::::
ensure

::::
valid

::::
states

:::
for

:::::
guide

:::
and

::::
head

:::::::
regardless

::
if

::::
these

::
are

:::::
found

::
in

::
file

:::::
scope

::
or

::::
block

:::::
scope.

::::
Thus

:::
any

:::::
atomic

:::::::
operation

:::
that

::
is

::::::::
performed

::
on

::::
them

::::
after

:::
their

::::::::::
initialization

:::
has

:::
been

:::
met

::
is
:::
well

:::::::
defined.

atomic_int guide = ATOMIC_VAR_INIT(42);

:::::::::::
_Atomic

::::
int

:::::
guide

::
=
::::
42;

::::::::::
static

:::::
void

:* ::::::
_Atomic

:::::
head

:
;

4 EXAMPLE 2
::::
With

::
the

::::::::
following

::::::::
definition

::
in

::::
block

:::::
scope,

:::::::::
concurrent

::::::
accesses

::
to

:::::
cumul

:::
are

::::::::
undefined

:::::
unless

::
a

::::
prior

::::::
race-free

::::::::::
initialization,

::::
either

:::
by

:
a
:::
call

:
to
:::::::::::
atomic_init,

:
a
::::
store

:::::::
operation

::
or

::
by

:::::::::
assignment,

:::
has

:::
been

:::::::::
performed.

:::::::::::
_Atomic

::::::
double

::::::
cumul

:
;

7.17.2.1 The atomic_init generic function
Synopsis

1 #include <stdatomic.h>
void atomic_init(volatile A *obj, C value);

Description
2 The atomic_init generic function initializes the atomic object pointed to by obj to the value value,

while also initializing any additional state that the implementation might need to carry for the
atomic object.

3 Although this function initializes an atomic object, it does not avoid data races; concurrent access to
the variable being initialized, even via an atomic operation, constitutes a data race.

4 If a signal occurs other than as the result of calling the abort or raise functions, the behavior is
undefined if the signal handler calls the atomic_init generic function.

Returns
5 The atomic_init generic function returns no value.
6 EXAMPLE

_Atomic int guide;
atomic_init(&guide, 42);

7.17.3 Order and consistency
1 The enumerated type memory_order specifies the detailed regular (non-atomic) memory synchro-

nization operations as defined in 5.1.2.4 and may provide for operation ordering. Its enumeration
constants are as follows:277)

memory_order_relaxed
memory_order_consume
memory_order_acquire

277)See "future library directions" (7.31.10).

242 Library § 7.17.3

N2390 atomics-cleanup..ATOMICV ARINITworking draft — June 7, 2019 ISO/IEC 9899:202x (E)

7.31.10 Atomics <stdatomic.h>
1 Macros that begin with ATOMIC_ and an uppercase letter may be added to the macros defined

in the <stdatomic.h> header. Typedef names that begin with either atomic_ or memory_, and
a lowercase letter may be added to the declarations in the <stdatomic.h> header. Enumeration
constants that begin with memory_order_ and a lowercase letter may be added to the definition
of the memory_order type in the <stdatomic.h> header. Function names that begin with atomic_

and a lowercase letter may be added to the declarations in the <stdatomic.h> header.

2 The macro ATOMIC_VAR_INIT is an obsolescent feature.

The possibility that an atomic type name of an atomic integer type defines a different type than the
corresponding direct type is an obsolescent feature.

7.31.11 Boolean type and values <stdbool.h>
1 The ability to undefine and perhaps then redefine the macros bool, true, and false is an obsolescent

feature.

7.31.12 Integer types <stdint.h>
1 Typedef names beginning with int or uint and ending with _t may be added to the types defined

in the <stdint.h> header. Macro names beginning with INT or UINT and ending with _MAX, _MIN,
_WIDTH, or _C may be added to the macros defined in the <stdint.h> header.

7.31.13 Input/output <stdio.h>
1 Lowercase letters may be added to the conversion specifiers and length modifiers in fprintf and

fscanf. Other characters may be used in extensions.

2 The use of ungetc on a binary stream where the file position indicator is zero prior to the call is an
obsolescent feature.

7.31.14 General utilities <stdlib.h>
1 Function names that begin with str or wcs and a lowercase letter may be added to the declarations

in the <stdlib.h> header.

2 Invoking realloc with a size argument equal to zero is an obsolescent feature.

7.31.15 String handling <string.h>
1 Function names that begin with str, mem, or wcs and a lowercase letter may be added to the

declarations in the <string.h> header.

7.31.16 Date and time <time.h>
Macros beginning with TIME_ and an uppercase letter may be added to the macros in the <time.h>
header.

7.31.17 Threads <threads.h>
1 Function names, type names, and enumeration constants that begin with either cnd_, mtx_, thrd_,

or tss_, and a lowercase letter may be added to the declarations in the <threads.h> header.

7.31.18 Extended multibyte and wide character utilities <wchar.h>
1 Function names that begin with wcs and a lowercase letter may be added to the declarations in the

<wchar.h> header.

2 Lowercase letters may be added to the conversion specifiers and length modifiers in fwprintf and
fwscanf. Other characters may be used in extensions.

7.31.19 Wide character classification and mapping utilities <wctype.h>
1 Function names that begin with is or to and a lowercase letter may be added to the declarations in

the <wctype.h> header.

§ 7.31.19 Library 385

