
	

InterNational	Committee	for	Information	Technology	Standards	(INCITS)	
Secretariat:	Information	Technology	Industry	Council	(ITI)	

1101	K	Street	NW,	Suite	610,	Washington,	DC	20005	
www.INCITS.org	

	
	

WG14	2375	
INCITS	PL22.11-2018-00007	

Date:	2018-10-18	
Reply	To:	Rajan	Bhakta	

PL22.11	
Email:	rbhakta@us.ibm.com	

Draft	Minutes	for	15-18	October,	2018	
MEETING	OF	ISO/IEC	JTC	1/SC	22/WG	14	AND	INCITS	PL22.11	

WG	14/N	2375	

	
	
Dates	and	times	
	

October	15-18,	2018	 09:00-12:00	–	Lunch	–	13:30-16:30	
	
Meeting	location	
	

Robert	Mehrabian	Collaborative	Innovation	Center	(CIC)	
4720	Forbes	Ave	
Pittsburgh,	PA	15213	
USA	

	
Meeting	Information:	
	

Venue	information:	N	2247	N	2284	
	

Local	contact	information:	
	
	 Daniel	Plakosh	<dplakosh@sei.cmu.edu>	
	
1. Opening	Activities	
	

1.1. Opening	comments	(Plakosh,	Keaton)	
	

Daniel	welcomed	us	to	PIT,	and	WG14.	
	



1.2. Introduction	of	participants/roll	call	
Name	 Organization	 NB	 Comments	
David	Keaton	 Keaton	Consulting	 USA	 WG14	Convener	
Daniel	Plakosh	 SEI/CERT/CMU	 USA	 WG14	ISO	eCommittee	Secretary	
Blaine	Garst	 The	Planet	Earth	Society	 USA	 	
Rajan	Bhakta	 IBM	 CA	 PL22.11	Chair	
Clark	Nelson	 Intel	 USA	 	
Fred	Tydeman	 Tydeman	Consulting	 USA	 PL22.11	Vice	Chair	
Barry	Hedquist	 Perennial	 USA	 PL22.11	IR	
Tom	Plum	 Plum	Hall		 USA	 Phone	
Martin	Sebor	 Red	Hat	 USA	 	
Larry	Jones	 Siemens	PLM	Software	 USA	 WG	14	Project	Editor	
Aaron	Ballman	 GrammaTech	 USA	 	
Clive	Pygott	 LDRA	 UK	 Phone	
Jens	Gustedt	 INRIA	 France	 	
Robert	Seacord	 NCC	Group	 USA	 	
David	Goldblatt	 Facebook	 USA	 	
Victor	Yodaiken	 FSM	Labs	 USA	 Wednesday	morning	only	
Peter	Sewell	 U.	Cambridge	 UK	 Memory	model	study	group	
Ryan	Steele	 SEI	 USA	 	
David	Svoboda	 SEI	 USA	 	
Lori	Flynn	 SEI	 USA	 	
Lars	Bjonnes	 Cisco	 USA	 	
Will	Klieber	 SEI	 USA	 	
Herb	Sutter	 Microsoft	 USA	 WG21	Convener,	Phone	
Niall	Douglas	 	 UK	 Guest	of	WG21	Convener,	Phone	

	
1.3. Procedures	for	this	meeting	(Keaton)	

The	Meeting	Chair	and	WG14	Convener,	David	Keaton,	announced	that	procedures	would	be	as	
per	normal.		Everyone	was	encouraged	to	participate	in	the	discussion	and	straw	polls.		
	
Straw	polls	are	an	informal	WG14	mechanism	used	to	determine	if	there	is	consensus	to	pursue	
a	technical	approach	or	possibly	drop	a	matter	for	lack	of	consensus.		They	are	voted	on	by	a	
show	of	hands	for	people	that	approve,	reject	or	abstain,	respectively	(denoted	by	
#approved/#reject/#abstain	in	the	minutes)	on	the	poll	question.	Straw	polls	are	not	formal	
votes,	and	do	not	in	any	way	represent	any	National	Body	position.		National	Body	positions	are	
established	in	accordance	with	the	procedures	established	by	each	National	Body.	
	
INCITS	PL22.11	members	reviewed	the	INCITS	Anti-Trust	and	Patent	Policy	Guidelines	at:		
	
http://www.incits.org/standards-information/legal-info	
	
All	'N'	document	numbers	in	these	minutes	refer	to	JTC1	SC22/WG14	documents	unless	
otherwise	noted.		
	
The	primary	emphasis	of	this	meeting	was	to	begin	a	working	draft	for	the	next	revision	of	the	C	
Standard,	review	the	progress	of	our	subgroups	and	work	on	Defect	Reports.	



	
Participants	need	to	register	on	ISO's	site	for	this	meeting.	
	
David	Keaton	is	the	meeting	Chair.	
Rajan	Bhakta	is	the	Recording	Secretary.	

	
1.4. Approval	of	previous	minutes	[N2239]	

The	previous	minutes	are	approved	by	unanimous	consent.	
	
The	final	approved	Spring	2018	minutes	are	N2239.	
(Ballman/Garst)	

	
1.5. Review	of	action	items	and	resolutions	

Carry	over:	
						1)	Convener:	Coordinate	with	WG21	for	C/P	papers:	Still	open.	
						2)	Larry:	Paper	for	N2161	(left	shift).	Still	open.	
						3)	Convener:	CPLEX	document.	Close.	Will	be	discussed	later.	
	
4)	ACTION:	Blaine	to	reconcile	N	2019	and	N	2026	for	DR469.	Superseded	by	new	action	item,	
see	below.	
	
5)	ACTION:	Barry	to	make	the	document	on	specific	differences	between	C++	and	C	available	to	
us.	N2249.	
DONE	
	
	
6)	ACTION:	Jens	to	extend	work	on	DR	486	and	DR	495	for	a	more	complete	document	that	
addresses	inconsistencies	concerning	atomics	(language	and	library).	
OPEN	
	
7)	ACTION:	Blaine,	in	relation	to	N	2019,	DRs	469,	479,	and	493,	to	write	a	paper	that	identifies	
more	apparent	problems	for	threads	(language	and	library).	
OPEN	
	
8)	ACTION:	Martin	to	write	up	a	proposal	that	forbids	new	types	to	appear	in	calls	to	offsetof.	
OPEN	
	
9)	ACTION:	Rajan	to	clarify	the	resolution	of	FP-CR20	with	paragraph	numbers	for	the	
occurrence	of	DECIMAL_DIG	in	C17	and	give	a	complete	list	of	changes	in	relation	to	DR501.	
DONE	
	
10)	ACTION:	Rajan	to	in	view	of	DR	501,	the	FP	committee	should	propose	a	new	suggested	
corrigendum	in	coordination	with	the	resolution	of	CR20.	
DONE	
	
11)	ACTION:	Aaron,	for	document	N	2197,	to	look	into	the	possible	intersection	with	Martin’s	
proposal	for	assert	(N	2207).	
OPEN	



	
12)	ACTION:	Convener	to	add	the	proposed	changes	of	N	2197	to	SD3.	
DONE	
	
13)	ACTION:	Aaron	to	revise	N	2198	(u8	character	prefix)	to	reflect	the	discussion	during	the	
Brno	meeting.	
OPEN	
	
14)	ACTION:	Martin	to	write	new	versions	of	papers	N	2190,	N	2191,	N	2192,	N	2193	that	take	
their	interrelationship	into	account.	
OPEN	
	
15)	ACTION:	Convener	to	update	SD3	to	the	updated	documents	N	2214,	N	2215,	N	2216	and	N	
2217.	
DONE	
	
16)	ACTION:	Martin	for	N	2209,	integrate	the	issues	that	were	raised	during	discussion.	
OPEN	
	
17)	ACTION:	Florian	to	work	on	updates	for	N	2225,	N	2227	and	N	2228.	
OPEN	
	
18)	ACTION:	Convener	to	add	N	2225	to	the	bullet	12	of	SD3.	
DONE	
	
19)	ACTION:	Florian,	in	the	context	of	N	2226,	to	propose	a	paper	that	features	a	solution	in	the	
line	of	uselocale	from	POSIX.	
OPEN	
	
20)	ACTION:	Keld	to	update	document	N	2241	in	the	lines	as	suggested	during	discussion.	
OPEN	
	
21)	ACTION:	Aaron	to	coordinate	with	WG21	for	left	shift	operator.	
OPEN	

	
1.6. Approval	of	agenda	[N2184]	

Some	corrections	in	numbering	needed.	
Adding	in	PL22.11	agenda	items	as	per	discussion	last	WG14	meeting.	
Adding	8.1	for	discussion	of	PL22.11	Systematic	review	documents.	
Adding	N2306	under	3.3.	
	
Motion	to	approve:	Blaine,	Barry	(Motion,	second).	
Approved.	
	

1.7. Identify	national	bodies	sending	experts	
Canada	
USA	
UK	



	
2. Reports	on	liaison	activities	

2.1. SC22	
David:	Went	well,	nothing	to	report.	

2.2. PL22.11/WG14	
		 Rajan:	Nothing	to	report.	

2.2.1. Conveners	report	and	business	plan	[N2286]	
2.3. PL22.16/WG21	

2.3.1. WG14/WG21	Liaison	report	(C/C++	differences)	[N2249]	
Aaron:	There	must	be	things	we	missed	(Ex.	Unnamed	parameters).	Otherwise	in	Annex	C	
in	the	C++	standard.	

2.4. PL22	
David:	Had	some	telecons.	

2.5. WG23	
Clive:	3	documents	out	for	vote.	Language	independent,	C	and	Ada.	

2.6. MISRA	C	
Clive:	Close	to	producing	a	new	version	of	the	MISRA	C	document	which	will	be	based	off	of	C11.	
Should	be	out	the	next	meeting.	

2.7. Other	liaison	activities	
	
3. Reports	from	study	groups	

3.1. C	floating	point	activity	report	
-	Working	closely	with	754	(strong	liaison,	one	member	is	chair	and	one	is	the	editor!)	
-	Will	continue	to	bind	IEEE-754	2019	to	the	TS's	that	remain	after	C2X	
David:	C17	was	published	in	2018	so	it	can	be	called	C18	as	well.	We	can	now	talk	about	C2X.	
Plan	to	rebase	to	C2X	for	parts	that	are	still	relevant.	
	

3.2. CPLEX	activity	report	
		Documents	on	the	agenda.	
		Clark:	Thread	based	parallelism	document	was	designed	to	work	with	either	OMP	or	Cilk	as	it’s	
goal.	
				Intel	has	lost	interest	in	Cilk.	The	name	is	deprecated.	They	are	no	longer	supporting	the	
runtime	technology.	
				Not	clear	if	the	principle	of	the	document	is	interesting	anymore.	
				The	study	group	lost	critical	mass	and	hasn’t	met	in	over	a	year,	close	to	2	years.	
				Not	sure	there	is	any	point	in	continuing	work	on	N2170.	No	implementations.	
		Robert	S:	We	did	this	because	we	saw	a	need.	Are	we	replacing	it	with	something	else?	
				Clark:	It	was	a	language	based	approach	to	thread	parallelism	and	not	pragma	based.	
						In	the	real	world,	it	was	library	and	pragma.	This	was	a	way	to	try	to	do	it	in	language.	
						It	was	a	want,	not	a	need.	
				For	SIMD	parallelism,	need	language	since	it	is	much	harder	to	do	it	library	based.	Not	so	for	
thread	based	parallelism.	
		Robert	S:	I	thought	parallelism	was	too	hard	for	the	average	programmer.	CPLEX	was	to	raise	
the	level	of	abstraction	to	make	it	easier	for	the	average	programmer.	
				Clark:	New	syntax	didn’t	directly	address	what	makes	parallelism	hard.	
		Robert	S:	Is	the	fallback	OMP.	
				Jens:	The	industry	has	chosen	it	and	it	is	used	that	way.	
		Clark:	For	C,	it	is	by	library	calls.	



		Ryan:	Can	we	use	anything	from	C++?	Task	based?	
				Clark:	C++	has	higher	level	facilities	like	lambdas	and	libraries	that	cannot	be	easily	projected	
into	C.	
		David:	Should	we	cancel	the	project?	Due	in	a	year.	
		Blaine:	I	presented	a	paper	for	closures.	Apple	does	it.	I	need	someone	from	GCC	to	implement	
it.	Does	the	CPLEX	group	want	to	take	that?	
				Clark:	The	group	has	pretty	much	evaporated.	
				Blaine:	Tom	S.	may	want	to	work	on	it.	
				Jens:	This	changes	everything	that	is	already	there.	It	should	be	a	new	group.	
		Should	we	request	ISO	withdraw	the	CPLEX	project?	
				Objections:	None.	
		David:	Request	that	ISO	cancel	the	CPLEX	project.	
		Clark:	Array	section	work:	The	study	group	did	no	work	on	it.	
				Does	WG14	want	to	work	on	it?	I	am	asking	WG14	to	work	on	it.	
				Blaine:	Did	anyone	implement	it?	
				Lars:	It’s	in	GCC.	
				Martin:	It	is	now	gone	from	GCC.	
		David/Jens:	Personal	interest	in	this.	
		Anyone	willing	to	work	on	Array	Sections:	
				Clark,	David.	
				Not	enough	interest	to	work	on	it.	
	
3.2.1. Prior	effort	[N2170]	
3.2.2. Array	sections	[N2081]	

	
3.3. C	safety	and	security	rules	study	group	

		See	N2306	for	the	report.	
		Clive:	Started	January	2017.	
		David:	No	deadline	since	this	is	not	an	ISO	project.	
		Robert	S.:	Not	present	for	part	of	the	year	do	to	other	work	so	could	not	lead	the	group.	
		Aaron:	No	way	to	meet	without	an	ISO	chair	(no	telecon	facilities	from	ISO).	
				Willing	to	be	the	chair	until	the	next	WG14	meeting.	
		David:	Need	a	chair	to	reconstitute	the	group	since	the	rules	require	it	each	WG14	meeting.	
		Blaine:	What	about	the	lack	of	expertise?	
		Aaron:	Due	to	telecon	issues,	we	lost	participation.	
		David:	Appointing	Aaron	as	chair	of	C	Safety	and	Security	Rules	Study	Group.	Get	ISO	to	give	
him	an	account	for	telecon	purposes.	
		Clive:	At	least	two	definitions	of	safety.	Very	precautionary	approach	like	existing	standards.	
The	other	way	is	type	safety.	No	undefined	behavior.	
		Aaron:	The	MISRA	IP	issue	is	still	there.	Andrew	Banks	is	the	contact,	but	not	sure.	
		Robert	S.:	The	idea	was	MISRA	and	the	TS	would	merge.	That	changed	and	MISRA	withdrew.	
This	adds	a	question	about	the	viability	of	the	project	since	we	don’t	want	yet	another	
competing	standard.	They	don’t	want	anything	referenced	from	their	document.	Ex.	Can’t	use	
the	rule	title.	One	big	concept	in	MISRA	is	“essential	types”.	It	is	a	basis	for	a	number	of	other	
things.	Using	it	could	cause	IP	issues.	
		David:	Andrew	seemed	to	be	OK	with	it.	
		Aaron:	Can	we	get	anything	in	writing	or	email	to	avoid	last	minute	issues.	
		Robert:	Can	we	send	the	email	to	the	ISO	attorneys	to	see	what	they	say?	



		Clive:	Andrew	is	not	the	right	person	for	legal	issues.	Need	to	talk	to	David	Ward	for	that.	
		Blaine:	If	you	have	active	action	from	MISRA	as	part	of	the	study	group,	it	seems	it	is	OK.	
		Robert	S.:	They	don’t	want	the	rule	title	being	cited.	They	feel	it	is	too	much	information.	
				Clive:	It	may	be	the	amount	of	rules	we	mention.	The	online	people	providing	MISRA	checking	
services	seem	to	be	operating	fine	with	no	legal	issues.	
		David	S.:	Seems	we	need	to	talk	to	MISRA’s	lawyers.	
		Robert	S.:	They	are	not	responding.	
		David:	We	could	go	forward	with	Aaron	as	chair,	or	close	the	effort.	
				Robert	S.:	Other	options	like	abandoning	the	scope	increase	to	add	safety	and	keep	it	as	
security.	
						MISRA	brings	up	the	level	to	static	analysis	passing	as	the	minimum.	
		David	S.:	Can	list	both	rules	to	avoid	getting	a	single	rule	for	both	safety	and	security.	
				Aaron:	We	are	doing	it,	but	the	security	side	is	for	vendors,	while	MISRA	is	for	users.	
		David:	We	need	to	deal	with	the	legal	issues	once	and	for	all.	The	study	group	should	propose	
next	meeting	whether	it	wants	to	drop	safety	or	it	has	the	legal	issues	handled.	
		Aaron:	The	Safety	and	Security	Study	Group	should	propose	next	WG14	meeting	whether	it	
wants	to	drop	safety	or	it	has	the	legal	issues	handled.	
		Aaron:	Need	a	permanent	chair	or	a	temporary	chair	for	the	Safety	and	Security	Study	Group	
by	the	next	WG14	meeting.	
		Clive:	MISRA	works	in	writing	code	from	scratch.	No	reuse,	no	libraries	in	general.	Big	
disconnect	there.	
	

3.4. C	memory	object	model	study	group	
Telecons	about	every	two	weeks.	
Looking	into	defining	the	LLVM	internal	memory	model.	
3.4.1. Progress	report	2018-09	[N2294]	

	
4. Teleconference	meeting	reports	

None	
	

5. Future	meetings	
5.1. Future	meeting	schedule	

	 April	29	-	May	3,	2019	–	London,	England	
October	21-24,	2019	–	TBD,	typically	USA	
	

5.2. Future	mailings	
	 Post	Pittsburgh	–	12	November	2018	
	 Pre	Spring	2019	(London)	–	18	March	2019	
	 Post	Spring	2019	(London)	–	13	May	2019	
	
6. Document	review	

6.1. 	Standing	Document	3	-	consider	whether	to	pursue	items	for	C2x,	and	find	document	
champions	if	so	[N	2297]	
		This	document’s	useful	life	ends	this	meeting.	Any	future	proposals	will	need	to	be	new	
papers.		
		1)	N1730:	Floating	types	are	IEC	or	not	feature	test	macros:	Fred	will	champion	it.	We	want	to	
see	more	on	this.	
		2)	N1817:	Two’s	complement	left	shift.	



				Aaron:	C++	hasn’t	resolved	this	so	leave	it	until	they	do	something.	
				We	will	follow	this	one	up.	
		3)	N1793:	Indeterminate	values	(wobbly	bits).	Leave	it	to	the	Memory	Model	Study	Group.	
				Memory	Model	Study	Group	will	champion.	
		4)	N1812:	const	in	signal	handlers:	Martin	will	champion.	
		5)	N1736:	chars/bytes:	Martin	will	champion.	
		6)	N1865:	for	loop	initialization.	In	favor	of	seeing	more	on	this	topic:	13/3/1	
				Martin	will	champion.	
		7)	N1899:	integer	width.	For	the	parts	not	in	the	floating	point	TS.	
				David	S.:	Needs	time	to	work	on	this.	
				Needs	to	be	updated	to	match	floating	point	TS	part	3.	
				David	S.	will	champion.	
		8)	N1910:	alignof	on	incomplete	array	types.	Consensus	for	it.	Aaron	to	champion.	
		9)	N1911:	Preprocessing	line	macro.	Fred	to	champion.	
		10)	N1923:	Multi-dimension	array	qualification.	Consensus	for	it.	
				David:	Ask	Martin	U.	If	he	wants	to	champion	N1923.	
		11)	N1870:	TRUE_MAX	macros	for	floats.	Fred	to	champion.	
		12)	N1962:	Annex	K:	Fix	or	deprecate.	
				Martin:	With	contracts	in	C++	it	went	in	an	entirely	different	direction.	Still	prefer	removal	and	
will	champion	that.	
				Fix:	Enough	interest.	Champion:	Robert	S.	
				Deprecate:	Enough	interest.	Champion:	Martin	
				Straw	poll:	Deprecate/Remove,	Fix,	Abstain.	Deprecate/Fix/Abstain:	6/6/5.	
				Result:	Go	forward	with	both	deprecate/remove	and	fix	proposals.	
		13)	DR482:	Remove	macro	across	include	files.	
				Fred:	Function	calls	can	span	file	boundaries	and	functions	can	be	macros.	
				Aaron:	Unspecified	should	allow	ill-formed.	
						Clark:	We’ve	never	done	that	before.	
				Fred	will	champion	this.	
		14)	N2008:	Typed	enums.	Clive	will	champion	this.	
		15)	N2034:	Trailing	commas	in	macros.	(N2160	is	the	latest)	
				David:	Ask	Thomas	if	he	will	champion	trailing	commas	in	macros	(N2160).	
		16)	N2017:	Parallelism	TS	21938-1.	No	consensus	to	include	this.	Drop.	
		17)	N2043:	Out	of	bounds	store	definition.		
				Clark:	Seems	an	out	of	bounds	read	would	stop	and	not	be	considered	critical	(segfault	is	OK	
compared	to	overwriting	something).	
				Not	sure	what	this	was	trying	to	accomplish,	so	no	consensus.	
				Robert	S.	Can	come	back	with	something	new.	
		18)	N2269,	etc.	Attributes.	Aaron	will	champion.	
		19)	N2074:	static	in	array	bounds.	Martin	will	champion.	
		20)	N2078:	Floating	point	TS’s	part	1,	2.	Already	going	in.	Editors	will	merge	it.	
		21)	N2083:	Struct	with	Flexible	Array	Member	allowed	to	be	nested.	Martin	to	champion.	
				Straw	poll:	Move	forward	with	nested	flexible	array	members:	11/4/3.	
		22)	N2089,	etc.:	Specification	of	pointer	provenance.	Memory	Model	Study	Group	to	
champion.	
		23)	N2098:	Fractional	digits	in	%a.	Martin	to	champion.	
		24)	N2101:	Add	__has_include.	Aaron	to	champion.	
		25)	N2117,	etc.:	Floating	point	TS	parts	3-5.		



				Part	3:	Floating	point	study	group	is	willing	to	turn	this	into	a	conditionally	normative	annex	
(new	proposal).	
				Part	4:	Mathematical	functions:	
						Takes	a	lot	of	work.	
						17	functions	with	variations	for	types	(float,	double,	long	double)	and	encoding	(binary,	
decimal)	
						Martin:	We	could	keep	it	in	the	TS.	If	we	put	in	the	standard,	the	bar	is	higher	since	we	have	
to	maintain	it.	
						Blaine:	Little	harm	in	keeping	it	as	a	TS.	We	can	get	more	implementation	experience.	
						Robert	S.:	Like	the	idea	of	having	it	a	la	carte.	
						Aaron:	Conditional	inclusion	is	really	subsetting	the	language.	
						Blaine:	C11	already	went	that	direction.	
						Aaron:	I	think	that	was	a	mistake	and	we	shouldn’t	do	it.	
						David:	I	agree.	I	went	to	a	vendor	and	got	hit	with	this	where	they	wanted	C11	conformance	
without	atomics	for	an	HPC	bid.	Looking	to	make	it	profile	based	via	a	paper.	Ex.	HPC	profile,	
Embedded.	
						Blaine:	RISCV{F,A,…}	meant	{floating	point	support,	atomics	support,	etc.}.	
						Aaron:	It	is	also	a	teachability	problem.	
						Peter:	From	an	object	model	point	of	view,	the	profile	model	is	useful	(prefer	having	
selectable	configurations).	For	RISCV,	despite	being	involved	in	it,	I	can’t	tell	you	what	the	ACDL,	
etc.	means.	
						Robert	S.:	For	David’s	case,	guidance	won’t	help.	It	needs	to	be	a	requirement.	
								For	teaching,	developers	want	to	hear	less	about	the	standard,	but	more	on	the	
implementation.	
						Straw	poll:	Add	in	both	proposals	for	part	4	of	the	floating	point	TS	as	a	conditionally	
normative	annex	of	C2X:	4/6/6.	No	consensus.	
				Part	5:	Evaluation	format	pragmas:	
						Blaine:	We	need	implementation	experience	for	this	specific	TS.	
						David:	The	lack	of	implementation	experience	is	just	how	to	do	it	with	this	spelling.	
						Jens:	It	has	been	out	for	a	while	but	no	one	has	implemented	it	as	per	this	TS.	
						Blaine:	There	are	edge	cases.	Different	ways	of	handling	it	by	different	implementations.	
						Aaron:	In	WG21,	implementers	were	wary	of	TS’s	since	they	are	not	the	main	standard.	
						Straw	poll:	Do	we	want	to	add	in	FP	TS	part	5	evaluation	format	pragmas	into	C2X:	1/8/6.	
Not	moving	this	forward	into	C2X.	
				Part	5:	Optimization	control	pragmas	
						Jens:	Does	anyone	have	these	features	spelled	the	same	way?	
						Aaron:	Or	spelled	any	way	but	still	a	pragma.	
						Rajan:	Not	sure.	
						Martin:	GCC	does	not	have	support	for	these	pragmas.	
						Blaine:	Looking	to	keep	this	as	a	TS.	We	could	possibly	have	a	solid	implementation	like	what	
Joseph	is	working	on	and	we	can	revisit	these.	
						Aaron:	Do	we	have	a	clock	on	the	TS’s?	
						David:	No,	since	it	has	been	published.	It	only	starts	if	we	say	to	ISO	we	want	to	revise	it.	
						Straw	poll:	Do	we	want	to	add	in	FP	TS	part	5	optimization	pragmas	into	C2X:	0/9/7.	Not	
moving	this	forward	into	C2X.	
				Part	5:	Reproducible	results	
						Rajan:	Depends	on	the	optimization	pragmas	
						Blaine:	Doing	this	will	still	require	rework	since	optimization	pragmas	are	not	present.	



						Not	looking	for	the	FP	study	group	to	rework	this	without	optimization	pragma.	
				Part	5:	Rounding	direction	macro	
						Robert	S.:	Like	the	symmetry	to	Decimal.	
						Blaine:	Implementations	may	not	have	hardware	support	for	this.	
						Rajan:	It	is	the	same	as	the	other	rounding	modes	if	the	hardware	doesn’t	support	it.	
						Larry:	All	the	rounding	modes	are	optional	in	the	standard.	
						Fred:	It	is	coming	since	it	is	required	for	augmented	arithmetic.	
						Straw	poll:	Do	we	want	to	add	in	FE_TONEARESTFROMZERO	into	C2X	as	per	N2124:	7/1/7.	
						Editors	to	put	N2124	into	C2X.	
		26)	N2123:	Alternate	exception	handling.	
				Robert	S.:	How	about	the	existing	runtime	constraint	handling	mechanism?	
						It	needs	to	be	retooled	to	work	with	multi-threading.	It	is	consistent	with	the	conservation	of	
mechanisms	principle.	
				Rajan:	This	works	on	blocks	of	code,	not	on	functions.	
				Blaine:	IEEE	has	over	specified	the	things	that	can	happen	for	an	exception.	Even	though	the	
pragma	is	ugly,	the	committee	has	other	things	to	look	at.	
				Martin:	The	closest	thing	would	be	the	Microsoft	structured	exception	handling.	
				Fred:	You	can	enable	trap	handling.	C	does	not	require	traps.	SIGFPE	is	close,	but	not	the	
same.	
				Robert	S.:	How	does	C++	do	it?	
				Rajan:	They	defer	to	C.	
				No	consensus	to	do	anything.	
		27)	C++	harmonization	(trigraphs,	u8,	static_assert).	
				Trigraphs:	Why	not	drop	this	or	make	it	optional?	
						Rajan:	Breaks	portability.	
						Aaron:	There	is	the	issue	with	incompatibility	with	C++	and	people	putting	trigraphs	into	
comments.	
				u8’x’	literals:	Aaron:	Using	[]	on	a	u8	string,	you	get	a	char.	UTF-8	requires	you	to	encode	the	
first	byte	to	US	ASCII.	
						David:	It	is	ASCII	only,	not	UTF	though.	
						Jens:	It	is	implementation	defined	if	there	are	other	characters	in	there.	
						David:	We	can	make	it	consistent	with	C	character	literals	and	have	other	characters	in	there	
(so	int	type).	Or	we	can	make	it	consistent	with	C++	and	only	encode	the	first	byte.	
						Aaron:	These	are	of	type	char.	
						David:	We	originally	didn’t	do	this	since	Bill	Plauger	said	we	don’t	do	one	byte.	
						Jens:	Currently	we	only	have	literals	for	ints	and	wider	types,	u16,	but	nothing	for	character	
types.	
						Lars:	How	about	the	C++	proposal	for	a	char8_t	and	use	that	for	this?	
						Aaron:	Were	checking	in	C++	for	doing	it	with	decent	performance.	
						No	consensus	to	move	forward	for	this.	If	someone	wants	to,	needs	to	solve	the	problems	
above.	
				static_assert:	Done.	
		28)	Future	directions.	
				Jens:	Looking	forward	to	removing	other	things	from	the	standard	like	K&R,	bool	not	be	
true/false.	
				David:	We	need	someone	to	go	through	the	deprecated	and	obsolescent	features	in	the	
standard	and	track	who	owns	each	one.	Also	to	look	for	items	that	need	to	be	deprecated.	
Looking	for	the	champion	to	come	with	the	list	and	track	who	will	do	what.	



				Blaine:	Do	we	want	input	from	the	editors	into	which	would	be	easy	to	remove?	
				Aaron:	No,	it	should	be	correctness	based,	not	work	based.	
				From	6.11:	
						1)	New	floating	point	types:	Fred:	Any	sentiment	to	make	it	optional	for	freestanding?	Drop	
this.	
						2)	Linkages	of	identifiers:	Yes,	want	to	do	it.	
						3)	External	names:	Aaron:	Should	we	have	a	paper	to	remove	the	obsolescent?	Larry:	No,	no	
time	limit.	It	can	be	a	long	time	before	it	is	obsolete.	
						5)	Storage	class	specifiers	only	at	the	beginning.	In	favor	of	this	change.	
						6)	Function	declarators:	Larry:	Need	it	for	return	function	pointers	to	itself.	No.	
						7)	Function	definitions:	A	different	problem.		Yes.	
				From	7.31:	
						8)	#2:	ATOMIC_VAR_INIT:	Jens	to	champion.	
						9)	Bool	redefine	macros:	Agree.	
						11)	ungetc:	If	removed	it	needs	to	avoid	making	it	undefined	behavior.	Not	adding	to	the	list	
to	do.	
						12)	#2:	Realloc	with	zero:	Previously	we	made	changes	to	the	standard	for	this.	
								David:	The	degree	of	implementation	is	wide	enough	to	make	it	unsafe.	
								We	want	this.	
				Blaine:	We	could	add	in	the	restriction	for	a	floating	point	prefix.	
				Jens:	We	could	also	replace	the	macro/“ugly”	keyword	problem.	
		29)	N2186:	Evaluation	formats.	
				Editors:	Put	N2186	into	C2X.	
				Note	for	Jim	from	Jens:	The	diff	was	not	good.	Did	not	match	paragraphs.	
		30)	N2197:	Harmonize	static_assert	with	C++.	
				Done	under	N2265.	
			
		Every	entry	with	a	champion	has	consensus	to	move	forward.	

	
6.2. Clarifying	the	restrict	Keyword	[N	2260]	

		Editors:	Move	N2260	into	C2X	(no	objections).	
		Should	be	there	by	next	meeting.	
		Can	also	remove	ATOMIC_VAR_INIT.	Needs	a	proposal.	
	

6.3. Clarifying	Pointer	Provenance	(Q1-Q20)	v4	[N	2263]	
		Extend	the	day	until	5pm	for	this	topic.	
		Discussion	based	on	N2294.	
		Peter:	Showing	the	code	go	through	the	Cerberus	tool.	
				Adding	provenance	to	the	pointer	values.	Group	agreed	with	2.1	being	undefined	behavior.	
		Cast	pointer	to	integer	types	and	then	back	to	pointers.	
				The	above	example	has	undefined	behavior	if	provenance	is	tracked	through	integers	as	well.	
				If	provenance	is	not	tracked	through	int	values,	the	cast	from	an	integer	to	a	pointer	has	
choices.	
						1)	Cast	(int->pointer)	time	check	through	all	addresses	and	assign	provenance	if	there	is	a	
match	in	addresses	(at	the	time	of	the	cast).	
								Clark:	This	is	not	an	interesting	problem	in	the	context	of	the	standard.	Implementations	
can	do	whatever	for	undefined	behavior.	Strictly	conforming	programs	are	not	portable	with	
this.	



								Jens:	Conversion	from	integer	to	pointer	is	implementation	defined.	
								Martin:	A	loop	calling	rand()	until	it	matches	an	existing	pointer	could	now	use	the	rand	
value	to	access	the	object	inhibiting	optimizations	since	now	they	alias	and	objects	are	accessed	
through	something	without	being	based	on	the	actual	object	(ex.	A	local	variable).	
								Jens:	As	soon	as	you	have	a	conversion	int/pointer,	all	optimizations	should	go	out	the	
window	and	stop.	
								Peter:	By	not	tracking	pointer	via	integer	it	got	rid	of	a	lot	of	tricky	cases.		
						2)	Make	it	undefined	behavior.	
						3)	Restrict	to	objects	whose	address	has	been	taken.	
						4)	(3),	as	well	as	“escaped”.	
						5)	Give	wildcard	provenance	and	delay	check	until	access	time.	
		Peter:	For	sub-objects	(2.3.1)	what	do	people	think	is	the	intent	of	accessing	the	second	
member	of	a	struct	in	a	function	if	passed	the	address	of	the	first	member	and	cast	
appropriately	and	originating	properly?	
				Is	this	well	defined	behavior	in	the	current	standard:	8/4/1	
				Jens:	Cast	to	char/unsigned	char	says	you	want	to	access	the	representation	of	something	so	
it	is	allowed.	
				Martin:	It	is	not	if	it	were	a	multiple	dimensional	array	and	using	single	dimension	addition	
since	the	standard	doesn’t	allow	it	to	access	a	2D	array	through	1D	pointer	arithmetic.	
				Clark:	The	standard	doesn’t	necessarily	say	it	is	well	defined,	but	without	this,	there	is	no	
reason	for	offsetof.	
		Unitialized	reads:	
				Peter:	There	are	trap	representations	and	whether	the	address	has	been	taken.	Reading	the	
text	of	the	standard	carefully	this	does	not	seem	to	be	the	intent	of	the	committee.	
				The	intent	in	Brno	was	for	it	to	always	be	undefined	behavior.		
				Robert	S.:	It	could	be	indeterminate,	or	a	trap	representation.	
				Martin:	It	is	undefined.	If	you	were	reading	an	8-bit	variable,	and	test	for	all	256	values,	it	may	
still	never	match	since	it	could	change	under	the	covers.	
				Robert	S.:	It	is	unresolved	for	C17	and	needs	to	be	resolved	for	C2X.	
				Blaine:	malloc	followed	by	fread	is	a	case	too.	
				David	S.:	Once	the	array	is	read	by	fread,	it	is	initialized	to	something.	It	doesn’t	necessarily	
have	to	be	a	valid	value.	
				Robert	S.:	It	is	handled	due	to	the	unsigned	char	case.	
				Robert	S.:	We	should	get	rid	of	trap	representations,	and	get	rid	of	uninitialized	and	make	
things	wobbly.	
				Jens:	Can’t	get	rid	of	trap	representations	due	to	_Bool.	
				Robert	S.:	Make	it	no	trap	representations	for	integers	other	than	_Bool.	Annex	L	would	also	
prohibit	out	of	bounds	reads	for	uninitialized	variables.	
				Aaron:	Does	that	still	apply	with	the	proposed	changes	for	Annex	L.	
				David:	Pretty	much	every	optimizing	compiler	wants	it	to	be	undefined	behavior.	
				Aaron:	Also	for	static	analyzer	tools	since	it	allows	diagnosing	all	those	cases	as	being	traps.	
	

6.4. Attributes	in	C	(updating	N2165)	[N	2269]	
		Aaron:	Attribute	names	are	not	reserved	identifiers.	But	it	makes	it	undefined	having	a	macro	
with	the	same	name	as	a	standard	attribute.	
		Jens:	This	is	progress.	How	does	it	handle	non-standard	attributes.	
				Aaron:	It	is	QoI	for	non-standard	attributes.	
				Jens:	Future	code	could	use	similar	names	for	macros.	



				Martin:	Concern	with	the	vendor	namespace:	There	is	not	one.	Already	vendors	are	
using/creating	new	attributes	with	leading	underscores.	The	C	library	does	not	define	attributes	
on	library	functions.	This	means	#include’ing	a	standard	header	could	add	in	a	number	of	new	
macros	or	attributes	using	possibly	colliding	names.	
				Aaron:	If	it	matches	C++	I	am	fine	with	changes.	
				Martin:	Easy	to	do.	Add	in	__	to	the	standard	attribute	names.	
				Aaron:	C++	does	not	do	that!	Users	don’t	like	adding	underscores.	They	don’t	like	clutter.	
				Jens:	Can	do	something	similar	to	the	library	with	a	header	that	defines	nice	names	for	the	__	
versions.	
						Martin:	That	doesn’t	solve	the	problem	for	third	party	tools.	
				Aaron:	I	remain	unconvinced	that	this	is	a	problem	that	is	important	enough	to	make	a	change	
where	users	have	to	keep	in	mind	differences	between	C	and	C++.	
				Jens:	Bug	reports	is	not	the	best	place	to	look	for	them.	
				Aaron:	Adding	_	to	everything	makes	user	code	like	library	code.	
				Jens:	How	about	adding	recommended	practice?	Ex.	Have	_	versions	of	the	attributes.	
				Martin:	Why	not	require	two	leading	underscores?	
				Aaron:	Is	this	being	designed	for	library	code	or	user	code?	
				Martin:	Implementers	have	to	provide	both	forms.	This	lets	users	use	either	form.	
				Aaron:	This	would	be	a	difference	from	C++.	
				Aaron:	Add	in	a	requirement	to	have	underscore	versions	of	the	attributes	to	N2269.	
				Jens:	Would	like	to	clean	up	the	standard	as	well	for	any	instances	that	can	use	these.	
				Jens:	Do	we	have	something	that	says	removing	attributes	won’t	change	the	semantics?	
						Aaron:	“Clear”	is	the	operative	word.	It	is	there.	Perhaps	have	it	in	the	rationale?	It	is	hard	to	
do	in	vendor	space	as	they	may	experiment	with	attributes.	What	it	really	means	“A	correct	
program	with	attributes	remains	correct	if	the	attributes	were	removed.”	
				Jens:	For	standards	based	attributes	for	sure.	
				Aaron:	Calling	convention	attributes	is	something	everyone	has.	
				Aaron:	Good	for	doing	it	for	standard	attributes	but	not	as	standardese.	In	the	rationale	is	
good.	The	guarantee	is	already	in	the	definition	of	the	attribute.	
				Jens:	_Noreturn	is	an	example.	
						Aaron:	It	follows	the	same	principle:	Remove	it	and	correct	programs	still	work.	
				Jens:	Attributes	change	the	reading	of	code.	People	can	get	used	to	knowing	they	can	ignore	
attributes	when	reading	code.	Keywords	can	be	used	for	semantic	impact	so	reading	code	will	
have	meaning.	
				Martin:	Does	C++	have	a	guarantee	like	this?	
				Aaron:	No,	but	there	is	confusion	there.	I	don’t	like	the	idea	of	closing	off	development	on	
there.	But	I	am	OK	with	either.	
				Straw	poll:	Have	a	normative	note	for	saying	attributes	have	no	semantic	impact	(a	vote	
against	prefers	a	non-normative	note).	8/4/3.	Result:	Consensus.	
				Aaron:	Update	N2269	to	make	it	normative	that	attributes	have	no	semantic	impact.	
	

6.5. The	deprecated	attribute	(updating	N2214)	[N	2266]	
		Martin:	The	recommended	practice	added	addresses	all	my	issues.	
		Jens:	None	of	the	examples	have	the	string	parameter.	
				Aaron:	Add	in	an	example	to	show	the	string	parameter	in	use	for	the	deprecated	attribute.	
		Robert	S.:	There	are	a	number	of	words	like	obsolete,	obsolescent,	deprecated,	etc.	Do	you	
know	how	this	works	with	that.	
				Aaron:	Things	need	to	be	obsolete	or	obsolescent	before	they	are	deprecated.	



		Barry:	The	standard	prefers	deprecated.	
		Jens/Larry:	The	standard	uses	obsolescent.	
		Robert	S.:	Perhaps	say	obsolescent	in	the	text	so	people	know	how	the	attribute	should	be	
used.	
				Unsafe	should	mean	not	deemed	appropriate	for	safety	systems.	
				Aaron:	That’s	going	too	far.	It’s	up	to	the	user.	
				Robert:	Perhaps	add	in	other	terms	like	safety,	etc.	to	the	list	of	things	that	could	be	
deprecated.	
		Fred:	Some	italics	and	bold	issues	for	the	term	deprecated.	
	

6.6. The	nodiscard	attribute	(updating	N2215)	[N	2267]	
		Martin:	Is	it	specified	how	far	the	implementation	is	required	to	go?	
		Aaron:	It	is	recommended	practice.	Encouraging	diagnostics.	
		Aaron:	Popular	in	C++.	The	standard	library	has	this	added	in	a	lot	of	places.	Currently	I	am	not	
proposing	this,	but	we	may	want	to	do	it	later.	Microsoft	found	a	very	small	false	positive	rate	
for	Windows.	
		Robert	S.:	Clearly	we	should	have	done	discard	instead	of	nodiscard.	
		Aaron:	If	we	had	to	do	this	again	from	scratch,	we	probably	would.	
		Rajan:	For	the	function	pointer	case,	what	happens?	
		Aaron:	Currently	not	allowed.	If	dereferenced,	again,	not	applied.	
		Martin:	Any	thought	to	add	this	as	it	can	be	confusing	on	where	it	applies?	
				Aaron:	Attributes	are	dependent	on	their	function	so	not	really.	The	only	case	is	for	type	
attributes.	
		Martin:	GCC	does	this	for	noreturn.	It	becomes	part	of	the	type	so	noreturn	stays	there.	
		Aaron:	GCC	has	3	different	ways	of	doing	noreturn	and	they	are	all	different.	
		Rajan:	What	about	to	data	pointers?	Ex.	scanf	arguments.		
				Aaron:	No,	but	I	am	proposing	this	just	for	compatibility	to	C++.	If	there	is	an	interesting	use	
case	we	can	add	it	to	C++	and	C.	
		Martin:	What	about	_Noreturn	and	nodiscard?	
				Aaron:	Allowed.	
				Martin:	There	is	a	valid	use	case	for	this.	Can’t	remember	it	though.	
		Aaron:	This	should	be	good	to	go	once	the	attributes	syntax	paper	goes	in.	
	

6.7. The	fallthrough	attribute	(updating	N2216)	[N	2268]	
		Leaving	this	as	is.	
		Good	to	be	integrated	as	is	once	attributes	syntax	goes	in.	
	

6.8. The	maybe_unused	attribute	(updating	N2217)	[N	2270]	
		Leaving	this	as	is.	
		Good	to	be	integrated	as	is	once	attributes	syntax	goes	in.	
		David	S.:	A	smart	compiler	should	know	this	already.	
		Blaine:	I	agree	with	David	S.	Underwhelmed	by	this	attribute.	
		Aaron:	Common	case	is	assert.	Also	struct	type’s	used	only	in	debug	builds.	
		Good	to	be	integrated	as	is	once	attributes	syntax	goes	in.	
	

6.9. Proposal	for	"defensive"	Attribute	[N	2258]	
		Aaron:	WG21	adopted	new	attributes	that	are	like	this	but	not	exact.	‘likely’	and	‘unlikely’	
attributes.	



				Wonder	how	they	would	compose	or	work	with	these	WG21	attributes.	
		Martin:	I	don’t	know	how	compilers	would	work	with	this	for	code	generation.	
		David	S.:	This	would	mean	you’d	have	poorly	optimized	code	when	you	reach	this.	
		Martin:	This	would	mean	discard	all	state	knowledge	for	this.	
		It’s	like	the	‘cosmic	ray’	issue.	
		David	S.:	It	is	like	volatile.	
		Martin:	This	would	make	more	sense	if	it	applied	to	a	function.	There	is	not	technology	to	
handle	this.	
		Jens:	We	are	doing	the	work	of	the	composer.	Let	the	author	do	something.	
		Peter:	Has	anyone	implemented	this?	
		David	S.:	We	need	a	champion	here.	
		Clive:	I	think	I	have	to	be	the	champion.	This	came	out	of	MISRA.	We	have	a	number	of	
customers	why	complain	about	this.	
		Aaron:	I	don’t	see	this	as	a	compiler	attribute,	but	more	from	a	static	analysis	tool.	
		Martin:	Is	there	precedence	for	this?	
		Blaine:	We	could	use	enum	values	in	combination	like	mutexes	by	OR’ing	them	together.	
		David:	We	need	a	better	use	case.	We	need	prior	art.	
		Rajan:	The	name	should	also	change	since	‘defensive’	has	too	many	other	meanings.	
		David:	Tell	Andrew	what	we	need	to	move	paper	N2258	further.	
	

6.10. Harmonizing	static_assert	with	C++	(updating	N2197)	[N	2265]	
		Martin	has	a	paper	on	assert.	
		Aaron:	I	didn	not	take	the	words	from	Martins	paper,	but	I	am	fine	with	changing	to	match.	
		Blaine:	Typo	for	the	ISO	C	Standard	version	number.	
				Aaron:	That	typo	may	apply	to	all	the	papers.	Should	be	ISO/IEC	9899:2018.	
		Editors:	Put	N2265	into	C2X.	
		Martin:	No	changes	needed	to	the	static_assert	macro	since	it	is	an	object	macro	correct?	
		Aaron:	Correct.	
	

6.11. Proposal	for	a	new	calling	convention	within	the	C	language	[N	2285]	
		There	were	some	revisions	on	the	reflector.	
		Came	from	the	error	handling	discussion	on	the	reflector.	
		Discuss	with	N2289.	
		Niall:	Similar	to	std_error	object	in	C++.	This	proposal	hides	the	error	channel	into	a	new	type.	
It	also	allows	error	propagation	via	a	pragma	to	turn	it	off	and	on.	This	also	has	an	error	location.	
The	odd/even	coding	will	likely	be	dispensed	with	since	it	is	weird.	I	like	a	standardized	error	
object	but	it	should	be	a	magical	object	with	magical	properties.	Prefer	something	like	C++’s	
form.	Also	assuming	the	_Bool	bit-field	will	not	be	volatile.	This	seems	like	an	orthogonal	
concern	to	N2289.	
		Jens:	The	error	coding	with	odd	numbering	causes	problems	since	you	can’t	change	error	
numbers	in	industry.	Ex.	POSIX.	
		Rajan:	Issues	with	the	type	return,	opportunity	cost,	alignment	and	_Generic	selection.	
		Straw	poll:	Do	we	like	the	general	direction	of	N2285:	0/7/9.	No	consensus	to	move	forward	on	
this.	
		David:	Let	Jacob	know	what	the	sentiment	for	N2285	is.	
	

6.12. Proposal	to	clarify	undefined	behavior	range	for	implementations	[N	2278]	



		Victor:	Seems	to	be	read	as	a	legal	document	as	a	way	for	compilers	to	find	loopholes	to	do	
things	that	should	not	happen.	Compiler	optimizations	(like	link	time	optimizations)	seem	to	go	
to	far	taking	these	loopholes	where	they	should	not	be	used.	Ex.	Rollover	of	signed	integer.	
Compilers	assume	it	doesn’t	happen	and	remove	checks	for	overflow	inside	loops	that	do	
overflow.	If	in	an	architecture	that	traps	on	overflows,	it	would	be	fine,	but	on	Intel	and	ARM	it	
doesn’t.	These	things	add	surprises	to	the	language.	There	are	no	papers	that	show	optimization	
is	actually	beneficial.	
		Jens:	The	most	important	thing	in	the	standard	for	optimization	is	the	“as	if”	rule.	In	favor	of	
adding	in	the	normative	text,	but	we	should	scale	better	and	try	to	eliminate	undefined	
behavior.	Ex.	Remove	uninitialized	variables.	
		Aaron:	Agree	that	“as	if”	is	important.	The	null	pointer	check	is	the	example	where	
optimization	matters.	A	dereference	above	means	that	later	checks	are	not	needed.	
		Victor:	No,	the	standard	does	not	say	you	have	to	write	error	free	programs.	
		Aaron:	I	need	concrete	numbers.	
		Blaine:	I	am	supportive	of	this.	An	optimization	that	changes	semantics	of	a	program	is	wrong.	
Compilers	are	assuming	you	are	writing	for	bug	free	programs.	We	should	say	optimization	
should	have	the	same	functionality	as	no	optimization.	
		Martin:	Both	null	pointer	and	signed	overflow	have	options	to	disable	those	optimizations.	
Those	optimizations	are	valid	(in	the	case	of	null	pointer	checks).	
		Victor:	I’m	not	proposing	the	optimization	should	be	barred.	But	I’m	saying	that	from	a	
dereferencing	a	pointer	cannot	be	used	to	remove	null	pointer	checks.	Linux	runs	in	a	dialect	of	
C	that	is	not	standard	since	it	uses	the	flags.	
		Martin:	That	was	always	the	intent	of	the	committee.	
		Robert	S.:	There	are	three	reasons	for	undefined	behavior.	Difficult	to	diagnose,	hard	to	
accommodate	corner	cases,	and	to	allow	implementations	to	have	extensions.	Perhaps	re-
categorize	the	UB	and	have	different	rules	for	them?	
		Dan:	A	lot	of	this	is	brought	up	in	an	MIT	paper	about	UB	and	optimizations.	
		Martin:	Signed	integer	optimizations	is	very	important	for	loop	optimizations.	
		Rajan:	There	is	benefits	to	signed	overflow.	Trust	the	programmer.	
		Victor:	If	Chris	Latner	says	it	is	hard,	it	should	not	be	considered	that	regular	programmers	
would	understand	it.	Agree	with	the	idea	about	documenting	the	behavior	if	implementations	
differ.	
		Peter:	Like	the	idea,	but	not	sure	how	to	define	the	translation.	UB	is	a	blunt	instrument.	We	
can	imagine	bounding	effects	in	some	cases,	but	not	in	others.	
		Victor:	I	don’t	intend	to	bound	the	effects	of	the	error.	I	want	to	bound	what	the	compiler	can	
do	with	the	error.	I	don’t	want	a	problem	at	point	A	cause	something	at	point	B	to	translate	
differently.	In	practice	the	null	pointer	dereference	and	follow	up	check	for	null	is	valid.	
		Peter:	The	standard	only	defines	translation	of	the	whole	program,	not	parts.	
		Aaron:	Can	have	undefined	behavior	sanitizers.	Can	be	checked	at	runtime.	Ex.	UBSan	
		Victor:	It	is	more	of	a	debugger	tool	and	not	in	production	code.	
		Blaine:	Micro-optimizations	are	becoming	irrelevant	since	hardware	is	doing	it	internally.	SPEC	
is	used	as	a	marketing	tool.	If	optimization	causes	incorrect	behavior,	that	is	wrong.	I	think	the	
abstract	machine	could	use	tweaks.	I	would	love	to	see	sub-dialects	that	would	handle	all	the	
flags	to	get	something	for	production	code.	
		David:	Chris	L.’s	quote	was	in	context	of	getting	people	to	switch	to	Swift	so	it	is	more	
marketing.	



		David	G.:	Differences	between	O0	and	O3	disallows	code	semantics.	It	is	not	very	
implementable.	If	people	have	strong	opinions	about	knowing	if	-fno-null-checks	is	important,	I	
can	test	it	and	give	it	back	to	this	group.	
		Robert	S.:	Replacing	UB	with	something	else,	we	could	allow	choices	like	trap	or	give	something	
else	valid.		
		Rajan:	The	standard	allows	choice	so	forcing	the	same	output	for	O0	and	any	optimization	and	
forcing	those	to	be	the	same	is	very	limiting	and	not	good.	Ex.	Parameter	evaluation	order.	The	
compiler	should	be	free	to	choose	what	is	beneficial	for	that	program.	
		Martin:	We	are	sympathetic	and	Peter’s	group	is	working	on	a	way	to	do	it	systematically.	
		Rajan:	How	about	an	attribute	to	disable	these	optimizations?	
		Victor:	I	want	opt-in	for	some	of	these	optimizations.	
	

6.13. Proposal	to	make	aliasing	consistent	[N	2279]	
		Victor:	Having	aligned	pointers	is	enough.	
		Martin:	The	effect	of	this	is	after	a	write	to	an	escaped	pointer	means	that	compilers	can	not	
assume	any	other	access	is	ameliorated.	Basically	it	kills	type	based	aliasing.	
		Victor:	You	can’t	write	malloc	or	free.	Any	reallocate	violates	the	lvalue	requirements.	
		Jens:	There	is	an	exception	for	allocated	memory	to	allow	it	to	change	type	based	on	write.	
		Victor:	For	my	own	malloc	this	is	not	true.	
		Peter:	You	cannot	use	a	random	char	array	as	if	it	were	malloc	but	it	should.	We	are	looking	at	
fixing.	
		Victor:	The	obvious	case	is	computing	checksums	on	packets.	
		Peter:	Need	to	balance	with	alias	analysis.	
		Jens:	Can	do	it	with	char	pointers.	
		Blaine:	C	has	bugs	like	order	of	evaluation.	We	can	fix	it.	zim	is	a	language	that	does	it.	Need	
bug	fixes	for	correctness.	The	reflector	message	about	C	growing	to	be	C++	instead	of	focusing	
on	smaller	chips	that	are	not	even	on	C99.	Ex.	Jens	can	handle	default	initialization.	Say	the	
order	of	evaluation	is	fixed.	
		Robert	S.:	I	like	the	fact	C	is	trying	to	become	a	typed	language,	but	this	is	moving	away	from	
that.	This	seems	to	be	accomplished	by	no-strict-aliasing,	which	every	compiler	has.	
		Victor:	The	current	problem	is	you	can’t	write	malloc/free	in	C.	That	is	a	fundamental	flaw.	
		Robert	S.:	Would	solving	this	problem	narrowly	be	enough?	
		Victor:	In	practice	it	is	done	with	flags.	
		Peter:	If	there	was	a	standardized	attribute	to	say	no	aliasing,	would	that	satisfy	this	problem.	
		Jens:	C++	had	a	reinterpret_cast.	
		David	G:	An	attribute	for	aliasing	would	change	semantics.	
		Rajan:	Have	it	as	an	un-ignorable	attribute:	Keyword	like	_Noreturn?	
		Victor:	There	is	that	fundamental	inconsistency	in	the	standard	about	pointers	that	is	the	major	
problem,	but	I	like	the	un-ignorable	attribute.	
		Fred:	I	can’t	find	the	reference.	
		Victor:	OK	with	writing	a	proposal	for	an	attribute-like	form	for	this.	
	

6.14. Proposal	to	limit	optimization	to	C	semantics	[N	2280]	
		Martin:	Adding	this	sentence	has	no	impact	on	anything.	It	won’t	prevent	any	of	the	cases	you	
want	prevented.	This	is	already	the	case	for	well	defined	programs.	
		Victor:	There	is	a	place	in	the	standard	where	it	says	order	of	evaluation	is	listed	as	giving	a	
different	result.	Should	those	be	taken	seriously	or	not?	It	could	be	that	you	find	undefined	



behavior	and	then	do	something	other	than	what	is	specified	in	the	standard	just	because	you	
had	UB.	
		David	G.:	Addition	is	left	associative.	The	example	shows	that	the	compiler	cannot	reorder	to	
introduce	traps	in	a	well	defined	program.	
		Blaine:	This	lays	the	groundwork	for	future	changes.	The	abstract	machine	needs	to	talk	about	
the	properties	of	memory.	
		Peter:	The	semantics	of	a	program	has	a	candidate	set	of	executions,	and	if	any	one	of	those	
has	undefined	behavior	causes	all	to	have	undefined	behavior	due	to	code	motion.	You	can	
make	it	tighter	for	specific	UB,	but	not	in	general.	
		Victor:	Martin	is	right,	but	it	is	more	of	an	admonishment.	If	you	say	any	UB	causes	anything	to	
happen,	it	is	an	incorrect	approach.	My	first	proposal	was	trying	to	limit	the	damage.	
		Jens:	Annex	L	tries	to	handle	this	by	limiting	the	unbounded	behavior.	
		Martin:	Were	you	trying	to	constrain	unspecified	behavior?	
		Victor:	No,	I	hadn’t	thought	of	it.	Just	want	it	documented.	Not	to	be	a	surprise.	C	is	essentially	
unsafe.	No	way	around	that.	It	is	designed	to	do	things	in	an	unsafe	environment.	Ex.	PCI	
address.	The	compiler	should	change	overflow	to	something	like	‘rm	-rf’.	If	the	programmer	
does	a	write	to	a	hardware	address	that	causes	the	computer	to	go	on	fire,	that’s	fine.	
		Peter:	How	do	you	draw	a	line	between	the	catastrophic	failure	and	doing	something	bad	but	
safe?	For	whole	program	behavior	standard	specification,	we	can’t	talk	about	specific	cases	and	
talking	about	‘later’.	
		Victor:	I	want	the	compiler	writers	to	not	take	advantage	of	weaknesses	in	the	standard.	They	
should	co-operate	with	the	programmer.	They	should	follow	the	intent	of	the	programmer.	
		Rajan:	It	is	not	programmers	vs	compilers.	Compilers	are	for	programmers.	They	are	customers	
that	make	them.	
		Victor:	But	compilers	should	not	remove	code	the	programmer	put	in.	
		Martin:	The	other	camp	is	that	programmers	need	the	help	of	the	compiler.	The	analysis	
depends	on	the	optimization.	It	can	be	used	to	find	bugs	from	the	programmers.	It	has	to	
accommodate	the	systems	programmers	and	the	novice	programmer.	
		Victor:	C	should	not	specify	what	happens	on	integer	overflow.	The	ambiguity	is	fine,	undefined	
is	fine.	I’m	not	OK	with	programmer	surprises.	
		Martin:	The	analysis	that	depends	on	the	optimizer	will	stop	if	you	try	to	stop	optimization.	
That	is	based	on	the	assumption	that	undefined	behavior	doesn’t	occur.	
		Victor:	I	don’t	see	that	at	all.	In	the	SPEC	benchmarks	it	turned	a	loop	into	an	infinite	loop	as	an	
optimization.	Later	it	emitted	an	error	message	about	the	loop.	
		Martin:	The	analysis	has	to	benefit	the	code	gen	too.	Otherwise	they’d	use	a	static	analysis	
tool.	
		Victor:	The	transformations	I	am	talking	about	are	not	optimizations.	They	make	the	program	
incorrect.	
		Aaron:	Sympathetic	to	the	issue.	But	compilers	can’t	tell	the	intent	of	the	programmer.	
		Rajan:	Seeing	the	problem	would	be	helpful.	It	sounds	like	some	of	this	is	compiler	bugs.	
		Dan:	I	am	surprised.	If	a	programmer	writes	something	they	intended	it.	It	is	blindingly	obvious.	
		Robert	S.:	Maybe	diagnose	undefined	behavior	in	the	code.	Perhaps	make	it	a	requirement	for	
the	compilers	to	follow	the	TS.	
		Victor:	There	was	a	security	bug	in	the	Linux	kernel	where	this	happened.	
	

6.15. Zero	overhead	deterministic	failure	[N	2289]	
		Herb:	About	50%	of	C++	users	turn	off	exception	handling.	That	and	runtime	type	information	
are	still	not	zero	overhead.	We	want	to	make	them	zero	overhead.	We	love	the	exception	



model,	but	want	to	have	a	way	to	opt	in	to	a	statically	known	type.	Currently	the	normal	return	
channel	is	wasted	when	an	exception	is	thrown.	Currently	it	cannot	be	deterministically	thrown.	
It	is	trivial	to	do	for	static	types,	but	no	way	for	dynamic.	Having	this	through	C	would	be	like	a	
holy	grail	for	systems	programmers.	
		Niall:	This	also	allows	dealing	with	errno.	Especially	helpful	for	GPU’s	that	use	a	non-standard	
form	of	C.	It	would	be	good	to	use	normal	functions	and	have	the	compiler	use	the	fails	
mechanism	for	errno	and	causes	it	to	delay	the	setting	of	the	real	errno	until	a	point	where	you	
may	be	able	to	eliminate	it	entirely	or	if	not	allow	more	pure	calls.	
		Aaron:	What	happens	with	function	pointers?	When	you	form	a	function	pointer	to	something	
has	the	fails	keyword	assigned	to	it?	i.e.	Does	it	affect	the	functions	type?	
		Niall:	It	is	for	backwards	compatibility,	a	newer	compiler	can	create	wrapper	code	to	the	older	
code	and	use	the	new	method	for	new	code.	For	casts	from	fails	to	a	non-fails	pointer,	you	will	
get	UB.	There	should	be	something	that	can	be	done	at	the	compiler	level.	
		Jens:	If	I	want	to	add	to	existing	code,	casting	to	a	non-fails	function	pointer	should	work.	For	
non-fails	and	cast	to	fails	should	be	UB.	
		Niall:	You	can’t	undo	this,	since	the	fails	function	has	extra	state	and	you	can’t	just	throw	that	
away.	
		Martin:	I	like	the	idea	in	the	paper	and	interoperability.	My	concern	is	with	the	ABI	changes.	
How	does	it	work	with	the	POSIX	layer	or	other	layers?	Any	implementation	experience?	
		Niall:	Seems	good	since	you	can’t	mix.	We	are	still	trying	to	determine	the	state	of	
deterministic	exceptions.	If	C	wants	to	lead	the	calling	convention	we	can	use	it	for	the	
prototype	implementation.	If	C	hates	this	we’d	use	a	C++	approach.	Hard	to	judge	without	a	real	
compiler.	Don’t	know	about	the	overhead	due	to	code	bloat,	etc.	
		Herb:	Need	to	demonstrate	ABI	compatibility.	We	are	ok	with	being	given	a	list	of	concerns	to	
address.	
		Aaron:	I	like	the	paper,	but	have	the	opposite	opinion	to	Jens.	The	failure	channel	seems	to	be	
fundamental	to	the	type	and	so	make	it	an	error	to	cast.	To	much	loss	from	fails	to	non-fails.	
		Rajan:	Does	this	mean	the	function	signature	will	be	different?	
		Niall:	There	should	not	be	any	mangling	required.	It	wouldn’t	help	the	reinterpret_cast	case.	
		Herb:	You	could	view	this	as	a	function	type	issue,	but	it	could	be	a	calling	convention.	
		Niall:	It	would	be	different	function	parameters	between	fails	and	not	fails.	
		Jens:	This	is	already	too	complicated	for	C.	We	should	just	leave	this	as	a	bit	that	says	it	failed.	
Calling	convention	would	not	need	to	change	since	you	have	saved	registers.	The	compiler	
would	need	to	know	to	check	for	the	flag.	
		Niall:	Do	you	want	an	Either	type?	
		Jens:	It	should	be	up	to	the	function	caller.	If	the	caller	needs	a	union,	the	caller	defines	it.	If	it	
is	simple,	it	can	be	re-interpreting	the	return	value	in	a	different	way.	
		Niall:	It	is	already	there	in	this	proposal.	
		Jens:	I	want	to	see	one	proposal	for	the	bit,	and	another	for	the	Either	type	mechanism.	
		Blaine:	I	support	Jens	position	on	this.	We	have	headaches	on	per-thread	errno.	There	are	hard	
issues	if	the	library	function	wants	to	handle	errno	in	a	different	way.	I	don’t	see	exceptions	as	
being	interesting	in	C	yet.	
		Straw	poll:	Does	this	group	like	the	direction	of	N2289:	15/2/2.	
		Rajan:	Don’t	like	this	from	two	points:	1)	Changes	the	C	model	and	idea.	It	is	used	as	the	lingua	
franca	across	a	number	of	other	languages	and	systems	and	OS’s	because	of	it’s	simple	calling	
convention.	Now	there	is	another	burden	for	everyone	to	consider	at	least	two	difference	C	
calling	conventions.	One	for	what’s	always	been	there	and	one	for	‘fails’.	That	takes	away	a	
fundamental	benefit	of	C	which	makes	is	the	basis	for	everything	else.	2)	The	assumption	that	



the	side	channel	bit	is	always	available.	This	is	not	the	case	everywhere	and	using	it	does	affect	
other	downstream	and	upstream	components	like	dumps	and	other	things.	The	bits	may	not	be	
available	and	if	repurposed	it	causes	issues	with	compatibility	with	interlanguage	calls.	
		Blaine:	EH	should	not	be	part	of	the	language.	It	should	be	handled	elsewhere.	Perhaps	have	
errno	cleaned	up?	Or	explore	out	of	band	communication	through	something	that	has	no	ABI	
impact.	Can	it	be	done	that	way?	
		Herb:	The	50%	data	point	for	no	EH	was	20%	in	total,	the	rest	was	in	part.	It	does	cause	
fracture	in	the	community.	C++	and	Java	have	the	same	problem	with	exceptions,	but	it	is	not	
inherent	in	the	exception	model.	This	is	the	C	way	by	returning	a	value.	You	get	what	you	see	
with	the	call.	C	got	it	right	with	return	by	value.	It	is	just	compiler	work.	For	C	you	have	the	same	
issue	with	not	being	able	to	change	the	function	signature.	But	since	errors	is	really	not	
functions	doing	what	they	should	do,	having	an	out	of	band	error	seems	very	promising.	
		Blaine:	The	opening	comments	said	you	have	examined	other	languages,	but	Swift	and	
Objective	C	don’t	require	dynamic	allocation.	I	think	there	are	alternatives.	I	am	not	sure	what	
the	vote	showed	what	everyone	wanted	to	have.	
		Aaron:	There	are	a	number	of	calling	conventions	in	C.	This	is	just	another	one	of	those.	The	
trouble	with	exceptions	are	two	forms.	Throwing/catching	and	how	programmers	are	good	at	
knowing	how	exceptions	work.	This	proposal	keeps	the	code	flowing	downwards	which	is	easier	
to	understand	from	both	cognitive	and	optimization	perspective.	
		Blaine:	How	does	this	work	with	setjmp/longjmp.	Need	to	preserve	the	side	channel.	
		Niall:	I	am	an	author	of	Boost.	We	have	done	this	in	there	already.	There	is	much	less	change	
than	some	people	are	thinking.	
		David	G.:	These	functions	return	a	struct,	but	pass	the	failure	in	a	side	channel.	Why	is	there	
ABI	concerns?	
		Herb:	I	view	this	as	an	extension,	not	a	new	calling	convention.	For	returning	out	of	band,	
people	can	write	it	by	hand.	It	would	become	sugar	vs	writing	by	hand	and	that	results	in	errno.	
		Jens:	I	was	not	intending	to	say	we	should	not	have	the	second	level.	Just	that	we	can	enter	the	
first	(side	channel)	but	not	the	second.	
		Straw	poll:	Do	we	want	to	see	this	proposal	in	two	parts	(a	function	returns	an	extra	bit	for	
failure,	and	the	second	part	being	types	to	return	extra	information):	6/7/6.	No	consensus.	
	

6.16. pow	divide-by-zero	case	[N	2271]	
		David:	We	just	got	this.	The	other	items	had	time	to	be	reviewed	is	over	time.	Perhaps	put	this	
in	a	review	document	then	put	it	in.	
		Aaron:	We	should	leave	it	to	the	document	champion.	
		Blaine:	Have	a	section	in	the	meeting	minutes	that	list	papers	approved	in	C2X.	Also	the	editors	
have	a	list	of	changes	that	went	in	and	what	was	changed	every	meeting/every	draft.	
		Larry:	That	was	traditionally	an	the	editors	report.	
		David:	If	anyone	objects	for	any	reason	we	will	delay	putting	it	in	for	6	months/until	the	next	
meeting.	
		Result:	Put	into	C2X.	
		Rajan:	Put	in	meeting	minutes	any	items	that	will	go	into	C2X	from	this	meeting.	
	

6.17. Min-max	functions	[N	2273]	
		Lars:	Are	these	required	functions.	
		Yes.	
		Blaine:	I	would	like	to	see	a	simpler	proposal	that	deals	with	C2X.	
		Martin:	Is	there	a	better	way	to	design	these	API’s	like	parameterize	and	overload?	



		Jens:	For	consistency	this	should	be	in	tgmath.	
		Fred:	It	is	there	in	clause	16.	
		Martin:	I	am	concerned	about	the	_num	and	_mag	types.	
		Jens:	Other	features	added	have	a	prefix.	These	don’t.	They	pollute	the	user	namespace.	
		Looks	good.	Needs	to	be	updated	for	C2X.	
		FP	study	group:	Split	N2273	into	parts	1	and	2	changes	based	on	the	TS’s,	and	a	separate	one	
for	part	3	that	fits	the	conditionally	normative	part	3	annex.	
		Keep	the	spelling	as	is.	
	

6.18. Augmented	arithmetic	functions	[N	2274]	
		This	requires	a	new	rounding	mode	that	is	only	used	for	these	functions.	
		Jens:	_t	is	not	a	reserved.	By	convention,	_t	is	an	alias	for	a	type	in	POSIX	and	reserved	there.	
We	could	invent	a	prefix	for	this	(Ex.	aug_).	
		Robert	S.:	This	is	against	the	convention	in	C	right	now	to	have	_t.	
		Jens:	We	never	have	struct	tags	with	_t.	
		Jens:	Object	to	adding	it	to	part	4	due	to	the	names.	
		Blaine:	IEEE	is	asking	for	all	these	things.	Do	we	want	to	commit	people	to	build	emulations?	
		David:	This	is	getting	into	the	territory	of	the	latest	IEEE	standard	coming	out	and	not	yet	
finished.	
		Blaine:	We	should	keep	this	with	the	CR’s	for	updates	to	the	next	version	of	the	TS.	
		David:	It	may	be	easier	to	have	all	future	changes	in	a	document	for	a	new	CD	for	the	new	
version	of	the	IEEE	spec.	
		Nothing	to	do	at	this	time	in	WG14,	but	the	floating	point	group	may	want	to	bring	this	forward	
again	for	a	future	revision	of	the	TS.	
	

6.19. C	support	for	IEEE	754-201x	[N	2275]	
		David:	Good	job	on	getting	ahead	of	the	IEEE	spec	and	minimizing	the	changes	needed.	Since	
we	did	not	vote	in	part	4,	the	FP	group	can	do	the	update	to	the	TS’s.	
		Priorities	should	be	do	parts	4	and	5	updates	to	IEEE	and	then	rebase	on	C2X	and	then	bring	it	
forward	for	a	new	published	revision.	
	

6.20. C2X	Proposal	for	new	string	representations	for	NaNs	[N	2290]	
		Martin:	This	was	participated	by	an	optimization	in	GCC	which	was	based	in	the	standard	for	
sprintf	output.	I	cover	a	lot	of	overlap	in	N2301.	
		Do	we	want	to	discuss	both	together?	
		Fred:	The	current	draft	of	754	has	a	‘should’	for	how	SNAN	is	printed	and	it	is	SNAN.	In	the	
previous	version	of	854,	they	said	it	started	with	NAN	but	nothing	about	what	comes	after	it.	
		Aaron:	How	much	existing	code	do	we	think	we	will	invalidate?	
		Jens:	Show	a	case	where	they	print	out	only	3	characters	for	floating	point.	
		Aaron:	My	case	is	just	after	checking	for	NaN	and	then	knowing	it	comes	out	as	a	3	character.	
		Blaine:	What	is	the	spelling	for	infinity?	
		Rajan/Fred:	INF	or	INFINITY.	
		Martin:	I	am	in	favor	of	this,	but	no	way	of	selection	of	which	form	for	the	programmers.	
		Robert	S.:	Should	we	have	a	separate	flag,	conversion	specifier,	etc.	for	using	NaN	instead	of	
something	else	like	NaNS.	Ex.	z.	
		Fred:	The	Fortran	standard	has	the	same	text	as	ours	(C).	
		Jens:	Not	in	favor	of	it	now.	Want	to	look	at	Martin’s	paper.	
		David:	If	we	do	this,	should	we	consider	the	“should”	recommendation?	



		Straw	poll:	Should	we	try	to	address	the	issues	brought	forward	in	N2290:	5/5/4.	No	consensus	
to	address	this	issue.	
	

6.21. Proposal	for	sub-setting	_Thread_local	if	__STDC_NO_THREADS__	is	defined	[N	2291]	
		Jens:	Why	is	this	needed	at	all?	
				The	implementation	can	just	parse	and	ignore.	
		Rajan:	No,	some	cases	it	is	expected	to	be	static.	
		Martin:	The	use	case	is	for	a	library.	
		Martin:	Is	there	precedence	for	a	keyword	being	conditional.	Seems	to	be	late	for	this	change.	
		Blaine:	This	is	feedback	after	years.	It	is	a	problem.	
		Jens:	It	is	not	a	defect.	
		Straw	poll:	Do	we	want	to	see	changes	along	the	lines	of	N2291:	3/9/3.	No	consensus	for	this	
change.	
	

6.22. Make	mblen,	mbtowc,	and	wctomb	thread-safer	[N	2281]	
		Rajan:	Agree	with	the	goal	in	principle,	but	not	with	the	words.	For	example,	mblen	cannot	be	
state	independent	if	the	state	is	locale	dependent.	
		Blaine:	Perhaps	say	a	call	to	setlocale	for	a	stateful	encoding	may	also	introduce	a	data	race.	
		Jens:	What	that	suggests	is	dealing	with	setlocale	is	not	referred	to	here.	There	are	two	
problems:	having	the	state	change	via	setlocale	or	with	the	function	itself.	
		Jens:	No	reason	to	make	the	second	change	as	it	is	already	covered	in	the	section	preamble.	
		Fred:	Is	‘other	calls’	concurrent,	sequential	or	both?	
		David:	It	is	for	any	other	call.	
		Fred:	Currently	it	doesn’t	say	anything	about	needing	to	be	sequential	and	that	needs	to	
happen.	
		The	paper	needs	more	work.	
		Issues:	Dealing	with	setlocale,	duplicated	text	about	data	races	with	the	same	function,	and	the	
data	race	with	‘other	calls’.	
		Rajan:	Perhaps	say	"not	required	to	avoid	data	races	as	long	as	the	LC_CTYPE	category	does	not	
change"	or	something	similar.	
		Blaine:	This	does	not	seem	to	do	what	is	intended.	It	should	it	be	possible	to	clearly	state	that	
you	can	get	data-race	free	with	proper	specification.	
		Blaine:	This	paper	needs	more	positive	assertions	of	being	data	race	free	in	the	presence	of	
possible	changes	to/from	state	dependent	encodings.	It	doesn’t	seem	the	words	here	achieve	
the	goal.	
	

6.23. Additional	multibyte/wide	string	conversion	functions	[N	2282]	
		Still	require	the	proper	proposal	format	(including	prior	art).	It	is	listed	in	this	paper	that	he	has	
prior	art	in	his	compiler.	
		Fred:	Can	one	wide	character	be	more	than	one	c16?	
		Rajan:	Yes	in	general,	but	the	wide	characters	listed	here	are	for	c16’s	if	given	in	context.	
		Jens:	Would	IBM	be	willing	to	provide	the	second	implementation?	
		Rajan:	Can’t	speak	for	my	company	right	now.	
		The	committee	likes	the	direction	but	wants	to	see	other	implementations	of	this	before	
standardizing	it.	
	

6.24. Alignment	requirements	for	memory	management	functions	[N	2293]	
		Jens:	The	users	who	want	it	portably	likely	used	aligned_alloc.	



		Blaine:	This	is	why	we	have	aligned_alloc.	
		David	G.:	I	care	for	performance	reasons.	
		David	G.:	Making	it	forced	to	be	max_align_t	would	not	be	good	for	my	use	cases.	Similar	sizes	
tend	to	be	allocated	and	deallocated	together.	
		Larry:	DR75	says	what	it	says	because	it	says	that’s	what	the	standard	says.	
		Jens:	Uses	that	need	an	alignment	should	use	aligned_alloc.	
		Robert	S.:	Sounds	like	we	are	going	to	be	adopt	this	proposal.	If	we	don’t	adopt	this	we	will	say	
existing	code	is	not	conforming.	
		Fred:	If	you	malloc	10	bytes?	Long	double	on	Intel	does	this.	
		David:	It	needs	to	be	8	byte	aligned.	If	they	need	alignment	16,	it	would	not	be	correct	in	the	
object	model.	
		Jens:	I	don’t	think	the	words	here	disallow	that.	
		Fred:	I	don’t	know	if	the	case	would	segfault	or	have	a	performance	hit.	
		Martin:	Are	you	saying	it	rounds	down	to	the	nearest	power	of	2?	
		David	G.:	In	practice	you	are	only	talking	about	1,	2,	4,	8	since	nothing	has	a	larger	max_align_t	
greater	than	16.	
		David:	If	you	allocate	10,	and	have	8	alignment,	it	may	hit	cache	line	crossing	and	have	a	
performance	hit.	But	with	this	change	that	implementation	would	align	to	a	larger	increment.	
		Jens:	Even	for	the	long	double	case	they	do	it	right.	
		David:	Sometimes	they	have	size	96	and	align	to	32	bits.	
		Straw	poll:	Should	we	adopt	N2293	for	C2X	in	the	next	WG14	meeting,	unless	there	are	
objections	in	the	meantime?	15/0/0.	Consensus	to	put	it	in.	
	

6.25. Library	Functions	and	Compound	Literals	[N	2299]	
		Martin:	Having	implementations	recognize	that	the	function	is	special	(a	standard	library	
function)	is	superior	to	the	macro	mechanism.	C++	does	this	too,	via	intrinsics	or	defining	inline.	
C++	is	starting	to	provide	compound	literals.	Only	expecting	this	for	functions	that	take	pointers,	
not	for	things	like	isalpha.	
		Jens:	Since	using	macros	is	still	allowed,	this	seems	reasonable	to	me.	
		Blaine:	Looking	for	a	shall.	
		David	G.:	A	‘may’	for	a	user	is	a	shall	for	the	implementation.	
		Jens:	Can’t	use	‘may’.	
		Larry:	No,	you	can.	
		Rajan:	Need	to	say	something	clearer	for	the	second	example	to	show	it	is	not	allowed.	
		Aaron:	I	agree.	
		Larry:	The	description	for	macros	says	any	comma	separate	arguments.	
		Martin:	Will	work	on	the	wording.	
		Rajan:	Suggestion	is	to	add	an	example	using	VA_ARGS	that	works	as	per	Jens	assertion.	
	

6.26. Aliasing	by	String	Functions	[N	2300]	
		Clang	and	GCC	aggressively	optimize	away	strlen	calls	by	tracking	strings	dynamically.	
		Aaron:	Do	we	need	to	do	anything	for	wmemcpy	or	anything	like	that?	
		Martin:	No.	
		Lars:	Any	impact	to	Annex	K.	
		Martin:	Not	discussing	that.	
		Jens:	There	could	be	a	problem	on	platforms	with	wchar_t	is	the	same	as	char.	
		David	G.:	If	extern	int	n	were	a	union	of	a	char	array	and	an	int,	it	would	not	work.	It	would	not	
be	about	to	be	optimized	for	the	previous	example	either	(example	2).	



		Martin:	I	would	have	to	see	the	example.	
		Larry:	Even	with	the	new	words,	if	n	were	a	pointer	they	could	still	alias	(n	with	s).	
		Martin:	Yes,	there	will	still	cases	that	cannot	be	optimized.	
		Robert	S.:	The	first	change	seems	to	conflict	with	the	definition	of	arrays.	
		Martin:	Happy	to	adjust	the	wording.	
		Larry:	There	are	two	things	that	are	fuzzy	with	characters	so	the	second	change	should	not	
happen.	It	should	use	byte.	
		Martin:	Fine	to	go	back	to	it.	
		First	set	of	changes	for	string	aliasing	look	good	and	need	to	be	reworded	as	per	the	discussion	
above.	
		Martin:	There	is	still	an	issue	for	cases	where	you	don’t	have	an	effective	type.	
		David:	That’s	what	is	lost	due	to	the	second	change	deletion	part.	It	stops	storing	to	malloc	to	
memory.	
		For	the	second	part,	of	using	bytes	in	place	of	characters,	seems	ready	to	go.	
		Rajan:	There	were	issues	in	the	preamble	(7.22)	that	also	need	to	be	fixed.	
		Martin:	What	needs	tweaking?	
		Larry:	7.24.1	needs	to	be	changed	to	deal	with	the	‘character’	term	instances	there.	Ex.	May	
need	to	say	character	or	byte.	
	

6.27. fprintf	Formatting	Underspecified	for	NaN	[N	2301]	
		Rajan:	We	already	have	existing	exploitation	of	NaN(n-char-sequence).	OK	with	swapping	the	
defaults.	
		Aaron:	Prefer	the	default	to	be	NaN.	
		Jens:	What	is	the	use	of	the	n-char-sequence?	
		Rajan:	An	integer	code	that	gives	the	reason	for	the	NaN.	
		Jens:	Why	have	this	as	recommended	practice	instead	of	forcing	it	(why	not	requiring	
restricting	the	amount	of	output)?	There	is	ambiguity	for	the	character	sequence.	It	should	have	
a	way	of	dealing	with	“)”.	
		Ryan:	Is	there	a	default	standard	now?	
		Fred:	Yes,	as	long	as	NaN	is	in	front,	then	it	is	fine	to	have	anything	following	it.	
		Fred:	n-char-sequence	cannot	be	“)”.	It	is	defined	in	6.4.2	to	not	include	that.	
		Aaron:	Are	the	n-char-sequences	based	on	some	side	channel?	
		Rajan:	No,	it	is	part	of	the	payload.	
		Martin:	I	don’t	consider	the	adding	of	a	way	to	choose	which	way	to	give	the	output	as	a	new	
feature,	I	consider	a	bug.	
		Fred:	Printing	a	number	with	%f	you	can	get	a	large	number	that	is	a	much	larger	number	of	
characters.	
		Martin:	For	NaN	all	the	specifiers	give	you	NaN	or	NaN(n-char-sequence).	There	is	no	way	to	
constrain	it.	
		Fred:	Can	have	the	#	switch	between	the	two	forms	of	infinity.	
		Fred:	Can	use	the	precision	to	constrain	the	output	of	the	NaN/infinity.	
		Straw	poll:	Do	we	want	to	address	the	issues	brought	forward	in	N2301:	12/0/1.	Consensus	to	
address	the	issue.	
		Straw	poll:	Do	we	want	to	constrain	the	maximum	amount	of	output	for	n-char-sequence?	
12/0/2.	Consensus	to	constrain	the	output.	
		Jens:	Prefer	%	form.	What	happens	if	n-char-sequence	is	constrained?	
		Blaine:	We	should	have	a	macro	that	gives	the	maximum	size	of	n-char-sequence.	



		Straw	poll:	Do	we	want	precision	control	or	flag	control?	7/4/3.	Preference	for	precision	
control.	
		Clive:	Call	flag	a	hash	sign.	
		Rajan/CFP	Group:	Write	up	a	proposal	for	precision	control	for	NaN’s.	
	

6.28. nextafterl(1.L,2.L)	[N	2302]	
		We	will	put	N2302	into	C2X	in	the	next	WG14	meeting	barring	objections.	
		Fred:	We	should	do	this	for	the	part	1	similar	functions	as	well.	
		David:	Need	a	paper.	

	
7. Clarification	requests	

7.1. Discussion	on	the	Clarification	Request	Process	
From	this	point	on,	once	we	close	off	on	all	the	defects,	we	should	not	need	the	compendium	

any	more.	
	

7.2. IS	9899:2011/9899:2018	Clarification	Requests	[N	2257]	
		Blaine:	We	should	get	champions	for	C2X	resolved	defects.	
		Rajan:	If	they	have	words,	we	should	just	have	them	as	is	for	C2X	resolved	defects.	
		DR432:	Take	with	DR467.	Fred	to	champion	with	a	new	paper.	
		DR476:	Put	in	C2X.	
				David	S.:	Does	this	address	or	affect	the	clearing	password	case	which	is	optimized	out?	
				Aaron:	No,	but	it	clarifies	the	problem.	
		DR488:	Put	in	C2X.	
		DR494:		
				Robert	S.:	Do	we	not	want	other	parts	of	the	size	expression	to	not	be	evaluated.		
				Rajan:	This	is	the	same	as	sizeof	mod	VLA’s.	Should	not	be	an	issue.	We	should	go	forward	
with	this.	
				Jens:	The	wording	“size	expression”	is	problematic.	
				Larry:	It	is	in	the	context	of	the	size	of	the	array.	It	makes	sense	the	way	it	is.	
				Put	in	C2X.	
		DR497:	Put	in	C2X.	
		DR498:	
				Robert	S.:	This	should	go	into	J.2	as	well.	
				Rajan:	We	should	use	the	new	paper	(N2281)	and	not	this	one.	
				See	discussion	in	N2281.	
		DR500:	Put	in	C2X.	
		Items	marked	‘Put	in	C2X’	goes	to	the	editors	for	inclusion.	
	
		DR469:	Blaine	will	look	at	it	as	a	combined	paper.	
		DR479:	See	DR469.	
		DR493:	See	DR469.	
		DR486:	
				Blaine:	Would	like	to	drop	this	from	the	CR	process	and	wait	for	a	paper.	
				Jens:	I	was	hoping	to	not	get	into	syntax,	but	now	may	need	to	if	I	have	to	deal	with	DR495	as	
well.	
		DR496:	Leave	in	open.	
				Martin:	The	other	questions	are	not	answered.	
				Fred:	Martin	already	has	an	action	item	for	this.	



				Martin:	We	should	not	advance	this	unless	we	answer	everything.	Joseph	asked	a	question	
which	was	not	addressed	here	in	the	change.	
				Blaine:	Process	wise,	can	we	take	this	committee	discussion	and	the	previous	one	and	use	
both	together	to	solve	this	problem?	
				Rajan:	Not	good	to	take	short	cuts	with	the	process.	
				Blaine:	I	believe	this	is	make-work	and	we	did	address	Joseph’s	comments.	
				Martin:	Different	compiler	vendors	had	different	readings	of	the	original	words.	I	am	not	
convinced	things	are	ready.	
				Blaine:	I	believe	this	is	forward	progress.	
				Barry:	In	the	past	if	we	have	a	new	paper	questioning	something	in	a	DR	we	bring	it	back	to	
open.	
				Martin:	What	we	have	is	not	good.	I	am	taking	on	the	responsibility	of	writing	a	paper	to	
resolve	this.	
				Jens:	Can	you	separate	it	from	this	question	and	the	union	type	question?	
				Martin:	If	it	makes	sense.	
				Blaine:	I	will	explicitly	fold	in	the	October	2017	and	April	2018	Committee	Discussion	and	
proposed	change	into	the	October	2018	status.	
		DR499:	Move	to	C2X.	
				Fred:	‘their’	is	ambiguous.	
				David:	‘their’	is	plural	so	it	refers	to	the	structure	members.	
		DR501:	Move	to	review.	
				See	N2253.	
				Move	the	last	committee	discussion	into	proposed	TC.	
	
In	addition	to	normal	CR	processing,	the	following	items	have	new	material	to	consider:	
7.2.1. 	Update	to	N2108	suggested	TC	for	CR501	[N	2253]	

	 	 Move	to	DR501	into	review	after	incorporating	N2253.	
Martin:	Since	cast	and	assignment	can	remove	extra	range	and	precision,	does	this	apply	

to	parameters	to	function	calls?	
	 	 David:	Yes,	since	it	is	as	if	by	assignment.	
	

7.3. TS	17961:2013+Cor	1:2016	Clarification	Requests	[N	2150]	(processing	is	complete)	
	

7.4. 	TS	18661	Clarification	Requests	[N	2256]	
Blaine:	DR12	has	a	mistake	with	the	wrong	committee	discussion.	It	was	for	DR13.	
	
Rajan:	Keep	DR’s	moving	forward	as	is	and	let	the	FP	group	deal	with	rebasing	the	changes	after	
we	have	a	working	draft.	
				Consensus	to	keep	the	process	going.	
Review:	
				DR17:	Move	to	closed	(C2X).	
				DR18:	Move	to	closed.	
				DR19:	Move	to	closed	(C2X).	
Open:	
				DR13:	See	N2252.	Move	to	review.	
						David:	Should	we	incorporate	Parts	1	and	2	first	or	make	these	CR	changes	first	then	add	it	to	
C2X?	



						Jim:	Give	all	(CR/DR)	changes	integrated	into	the	Floating	Point	TS’s	by	the	end	of	this	
meeting	to	the	WG14	editors	for	Parts	1	and	2.	Subsequent	changes	will	be	based	on	the	C2X	
working	draft.	
						WG14	editors	will	endeavor	to	have	a	working	paper	by	next	meeting.	
						Since	the	changes	were	already	present	in	the	log.	
				DR16:	Move	to	review.	
				DR20:	See	N2254.	Move	to	review.	
				DR21:	See	N2283.	Move	to	review.	
				DR22:	(Typo:	Should	be	against	Part	3)	See	N2255.	Move	to	review.	
	
In	addition	to	normal	CR	processing,	the	following	items	have	new	material	to	consider:	
7.4.1. Update	to	N2213	suggested	TC	for	CFP	CR	13	[N	2252]	
7.4.2. P1	CR	for	obsolescing	DECIMAL_DIG	[N	2254]	
7.4.3. P3	CR	for	obsolescing	DECIMAL_DIG	[N	2255]	
7.4.4. P2	CR	for	llquantep	invalid	case	[N	2262]	

CR24.	Move	to	review.	
7.4.5. P1	CR	for	remainder	NaN	case	[N	2272]	

CR24.	Move	to	review.	
7.4.6. printf	of	one-digit	character	string	[N	2283]	
7.4.7. P1	CR	for	totalorder	parameters	[N	2292]	

Lars:	Can	we	leave	the	TS	as	is,	and	fix	it	in	the	C2X.	
David:	For	code	that	doesn’t	have	signaling	NaNs	taking	the	address	is	more	clutter	in	the	
code	
Jens,	Blaine,	Aaron,	Martin:	Prefer	intrinsics.	The	issue	is	taking	the	address	of	the	
function.	
Now	CR25.	Move	to	review.	The	change	will	be	reflected	in	C2X.	

	
8. Other	business	

8.1. Systematic	review	
ISO/IEC	TS	18661-3:2015,	Information	Technology	--	Programming	languages,	their	
environments,	and	system	software	interfaces	--	Floating-point	extensions	for	C	--	Part	
3:	Interchange	and	extended	types.	

	
Motion:	Do	you	agree	with	the	proposed	responses?	(Hedquist/Bhakta)	

	
IBM	(Bhakta)	yes	
Perennial	(Hedquist)yes	
Keaton	Consulting	(Keaton)	yes	
Intel	(Nelson)	absent	
Plum	Hall	(Plum)	absent	
LDRA	(Pygott)	yes	
Red	Hat	(Sebor)		yes	
Tydeman	Consulting	(Tydeman)	yes	
SEI/CERT/CMU	(Plakosh)yes	
Cisco	(Bjonnes)	yes	
GrammaTech	(Ballman)	yes	
The	Planet	Earth	Society	(Garst)	absent	



Motion	Passes		9-0-0-12	(3	absent)	
	

	
ISO/IEC	TS	18661-3:2015,	Information	Technology	--	Programming	languages,	their	
environments,	and	system	software	interfaces	--	Floating-point	extensions	for	C	--	Part	
4:	Supplementary	functions	

	
Motion:	Do	you	agree	with	the	proposed	responses?	(Hedquist/Bhakta)	

	
IBM	(Bhakta)	yes	
Perennial	(Hedquist)yes	
Keaton	Consulting	(Keaton)	yes	
Intel	(Nelson)	absent	
Plum	Hall	(Plum)	absent	
LDRA	(Pygott)	yes	
Red	Hat	(Sebor)		yes	
Tydeman	Consulting	(Tydeman)	yes	
SEI/CERT/CMU	(Plakosh)yes	
Cisco	(Bjonnes)	yes	
GrammaTech	(Ballman)	yes	
The Planet Earth Society (Garst) absent 

Motion	Passes		9-0-0-12	(3	absent)	
	
9. Resolutions	and	decisions	reached	

9.1. Review	of	decisions	reached	
Disband	CPLEX	study	group	and	cancel	projects	in	progress.	
Put	N2124	into	C2X.	
Put	N2186	into	C2X.	
Put	N2260	into	C2X.	
Put	N2265	into	C2X.	
Put	N2271	into	C2X.	
TS	18661-{1,2}	to	have	all	CR’s	in	closed	state	as	of	the	end	of	this	meeting	to	be	integrated	into	
a	working	drafts	and	given	to	the	editors	for	inclusion	into	C2X.	
TS	18661-3	to	have	all	CR’s	in	closed	state	as	of	the	end	of	this	meeting	to	be	integrated	into	a	
working	draft	that	is	a	conditionally	normative	annex	for	inclusion	into	C2X.	
Adopt	N2293	for	C2X	in	the	next	WG14	meeting,	unless	there	are	objections	in	the	meantime.	
Put	N2302	into	C2X	in	the	next	WG14	meeting	barring	objections.	
DR476:	Put	in	C2X.	
DR488:	Put	in	C2X.	
DR494:	Put	in	C2X.	
DR497:	Put	in	C2X.	
DR500:	Put	in	C2X.	
DR499:	Move	to	C2X.	
TS	18661-{4,5}	to	have	all	CR’s	in	closed	state	put	into	working	drafts	and	rebased	to	C2X	
whenever	appropriate	to	prepare	for	re-issuing	the	TS’s.	
CR25	to	be	put	in	C2X.	
	



9.2. Review	of	action	items	
David:	Request	that	ISO	cancel	the	CPLEX	project.	
David:	Appointing	Aaron	as	chair	of	C	Safety	and	Security	Rules	Study	Group.	Get	ISO	to	give	him	
an	account	for	telecon	purposes.	
Aaron:	The	Safety	and	Security	Study	Group	should	propose	by	the	next	WG14	meeting	whether	
it	wants	to	drop	safety	or	it	has	the	legal	issues	handled.	
Aaron:	Need	a	permanent	chair	or	a	temporary	chair	for	the	Safety	and	Security	Study	Group	by	
the	next	WG14	meeting.	
David:	Ask	Martin	U.	If	he	wants	to	champion	N1923.	
David:	Ask	Thomas	if	he	will	champion	trailing	commas	in	macros	(N2160).	
Aaron:	Add	in	a	requirement	to	have	underscore	versions	of	the	attributes	to	N2269.	
Aaron:	Update	N2269	to	make	it	normative	that	attributes	have	no	semantic	impact.	
Aaron:	Add	in	an	example	to	show	the	string	parameter	in	use	for	the	deprecated	attribute.	
David:	Tell	Andrew	what	we	need	to	move	paper	N2258	further.	
David:	Let	Jacob	know	what	the	sentiment	for	N2285	is.	
Rajan:	Put	in	meeting	minutes	any	items	that	will	go	into	C2X	from	this	meeting.	
Rajan:	Write	up	a	proposal	for	precision	control	for	NaN's.	
	

9.3. Identification	of	PL22.11	Voting	Members	
Cisco	
GrammaTech	
IBM	Corp	
Intel	
Keaton	Consulting	
LDRA	Technology	
Perennial	
Plum	Hall	
RedHat	
SEI/CERT/CMU	
The	Planet	Earth	Society	
Tydeman	Consulting	
	
9.3.1. PL22.11	Members	Attaining	Voting	Rights	at	this	Meeting	

None	
9.3.2. Prospective	PL22.11	Members	Attending	their	First	Meeting	

None	
	

9.4. PL22.11	Members	in	Jeopardy	
9.4.1. Members	in	jeopardy	due	to	failure	to	return	Letter	Ballots	

None	
9.4.2. Members	in	jeopardy	due	to	failure	to	attend	Meetings	

None	
9.4.2.1. Members	who	retained	voting	rights	by	attending	this	meeting	

None	
9.4.2.2. Members	who	lost	voting	rights	for	failure	to	attend	this	meeting	

None	
9.4.3. Members	who	previously	lost	voting	rights	who	are	attending	this	meeting	

None	



	
10. Thanks	to	host	
	
11. Adjournment	

(Hedquist/Ballman)	
No	objections.	

	


