
P1	CR	for	obsolescing	DECIMAL_DIG	
WG	14	N2254	
2018-05-11	
C	FP	Group	
	
TS	18661-1	CR	20	
============================================	

Reference	Document:	CR501,	N2211,	N2253,	TS	18661-1 	

Subject:	changes	for	obsolescing	DECIMAL_DIG	

Summary	

N2211	described	changes	in	C11	and	TS	18661	to	remove	references	to	DECIMAL_DIG,	which	
CR501	is	expected	to	obsolesce.	The	changes	that	apply	to	C11	are	collected	in	N2253	as	an	update	
to	the	suggested	TC	in	CR501.	The	changes	that	apply	to	TS	18661-1	compose	the	CR	in	this	
document.	The	remaining	change	is	for	TS	18661-3,	which	will	be	covered	by	a	CR	in	a	subsequent	
document.	

Suggested	Technical	Corrigendum	

In	7.1,	omit:	
	

Change	footnote	361)	from:	

361)	 	If	 the	 minimum-width	 IEC60559	 extended	 format	 (64	 bits	 of	 precision)	 is	
supported,	DECIMAL_DIG	shall	be	at	least	21.	If	IEC	60559	double	(53	bits	of	precision)	
is	the	widest	IEC	60559	format	supported,	then	DECIMAL_DIG	shall	be	at	least	17.	(By	
contrast,	LDBL_DIG	and	DBL_DIG	are	18	and	15,	respectively,	for	these	formats.)	

to:	

361)		If	the	minimum-width	IEC	60559	binary64-extended	format	(64	bits	of	precision)	
is	 supported,	DECIMAL_DIG	 shall	 be	 at	 least	 21.	 If	 IEC	 60559	 binary64	 (53	 bits	 of	
precision)	 is	 the	widest	 IEC	60559	 format	supported,	 then	DECIMAL_DIG	shall	be	at	
least	17.	(By	contrast,	LDBL_DIG	and	DBL_DIG	are	18	and	15,	respectively,	for	these	
formats.)	

In	10.1,	change:	
	

After	F.5#2,	insert:	
	

[2a]	The	<float.h>	header	defines	the	macro	

CR_DECIMAL_DIG 



if	 and	 only	 if	__STDC_WANT_IEC_60559_BFP_EXT__	 is	 defined	 as	 a	macro	 at	 the	
point	 in	 the	 source	 file	 where	 <float.h>	 is	 first	 included.	 If	 defined,	
CR_DECIMAL_DIG	expands	to	an	integral	constant	expression	suitable	for	use	in	#if	
preprocessing	directives	whose	 value	 is	 a	number	 such	 that	 conversions	 between	 all	
supported	types	with	IEC	60559	binary	formats	and	character	sequences	with	at	most	
CR_DECIMAL_DIG	 significant	 decimal	 digits	 are	 correctly	 rounded.	 The	 value	 of	
CR_DECIMAL_DIG	shall	be	at	least	DECIMAL_DIG	+	3.	If	the	implementation	correctly	
rounds	for	all	numbers	of	significant	decimal	digits,	then	CR_DECIMAL_DIG	shall	have	
the	value	of	the	macro	UINTMAX_MAX.	

[2b]	Conversions	of	types	with	IEC	60559	binary	formats	to	character	sequences	with	
more	 than	 CR_DECIMAL_DIG	 significant	 decimal	 digits	 shall	 correctly	 round	 to	
CR_DECIMAL_DIG	significant	digits	and	pad	zeros	on	the	right.	

[2c]	 Conversions	 from	 character	 sequences	 with	 more	 than	 CR_DECIMAL_DIG	
significant	decimal	digits	to	types	with	IEC	60559	binary	formats	shall	correctly	round	to	
an	intermediate	character	sequence	with	CR_DECIMAL_DIG	significant	decimal	digits,	
according	 to	 the	 applicable	 rounding	 direction,	 and	 correctly	 round	 the	 intermediate	
result	(having	CR_DECIMAL_DIG	significant	decimal	digits)	to	the	destination	type.	The	
“inexact”	 floating-point	exception	 is	raised	(once)	 if	either	conversion	 is	 inexact.	 (The	
second	conversion	may	raise	the	“overflow”	or	“underflow”	floating-point	exception.)	

In	F.5#2c,	attach	a	footnote	to	the	wording:	

The	“inexact”	floating-point	exception	is	raised	(once)	if	either	conversion	is	inexact.	

where	the	footnote	is:	

*)	 The	 intermediate	 conversion	 is	 exact	 only	 if	 all	 input	 digits	 after	 the	 first	
CR_DECIMAL_DIG	digits	are	0.	

to:	

Replace	the	content	of	F.5	with:	

[1]	The	<float.h>	header	defines	the	macro	

CR_DECIMAL_DIG 

if	 and	 only	 if	__STDC_WANT_IEC_60559_BFP_EXT__	 is	 defined	 as	 a	macro	 at	 the	
point	 in	 the	 source	 file	 where	 <float.h>	 is	 first	 included.	 If	 defined,	
CR_DECIMAL_DIG	 expands	 to	an	 integral	 constant	 expression	 suitable	 for	use	 in	#if	
preprocessing	directives	whose	 value	 is	 a	number	 such	 that	 conversions	 between	 all	
supported	 IEC	 60559	 binary	 formats	 and	 character	 sequences	 with	 at	 most	
CR_DECIMAL_DIG	 significant	 decimal	 digits	 are	 correctly	 rounded.	 The	 value	 of	
CR_DECIMAL_DIG	 shall	 be	 at	 least	M	 +	 3,	 where	M	 is	 the	 maximum	 value	 of	 the	
T_DECIMAL_DIG	macros	for	IEC	60559	binary	formats.	If	the	implementation	correctly	



rounds	for	all	numbers	of	significant	decimal	digits,	then	CR_DECIMAL_DIG	shall	have	
the	value	of	the	macro	UINTMAX_MAX.	

[2]	Conversions	of	 types	with	 IEC	60559	binary	 formats	 to	 character	 sequences	with	
more	 than	 CR_DECIMAL_DIG	 significant	 decimal	 digits	 shall	 correctly	 round	 to	
CR_DECIMAL_DIG	significant	digits	and	pad	zeros	on	the	right.	

[3]	 Conversions	 from	 character	 sequences	 with	 more	 than	 CR_DECIMAL_DIG	
significant	decimal	digits	to	types	with	IEC	60559	binary	formats	shall	correctly	round	to	
an	intermediate	character	sequence	with	CR_DECIMAL_DIG	significant	decimal	digits,	
according	 to	 the	 applicable	 rounding	 direction,	 and	 correctly	 round	 the	 intermediate	
result	(having	CR_DECIMAL_DIG	significant	decimal	digits)	to	the	destination	type.	The	
“inexact”	 floating-point	exception	 is	raised	(once)	 if	either	conversion	 is	 inexact.	 (The	
second	conversion	may	raise	the	“overflow”	or	“underflow”	floating-point	exception.)	

[4]	The	 specification	 in	 this	 subclause	 assures	 conversion	between	 IEC	60559	binary	
format	and	decimal	character	sequence	follows	all	pertinent	recommended	practice.	It	
also	assures	conversion	from	IEC	60559	format	to	decimal	character	sequence	with	at	
least	 T_DECIMAL_DIG	 digits	 and	 back,	 using	 to-nearest	 rounding,	 is	 the	 identity	
function,	where	T	is	the	macro	prefix	for	the	format.	

[5]	Functions	such	as	strtod	that	convert	character	sequences	to	floating	types	honor	
the	rounding	direction.	Hence,	if	the	rounding	direction	might	be	upward	or	downward,	
the	implementation	cannot	convert	a	minus-signed	sequence	by	negating	the	converted	
unsigned	sequence.	

In	F.5#3,	attach	a	footnote	to	the	wording:	

The	“inexact”	floating-point	exception	is	raised	(once)	if	either	conversion	is	inexact.	

where	the	footnote	is:	

*)	 The	 intermediate	 conversion	 is	 exact	 only	 if	 all	 input	 digits	 after	 the	 first	
CR_DECIMAL_DIG	digits	are	0.	

	

	

	
	
	
	
	
	
	
	
	
	


