
Re-revised	suggested	TC	for	CFP	DR	13	
N2213	
	
Submitter:	C	FP	group	
Submission	Date:	2018-03-16		
Source:	WG14	
Reference	Document:	N2202,	TS	18661-3	
Subject:	Type-generic	macros	for	functions	that	round	result	to	narrower	type		

Summary	

This	document	revises	the	suggested	TC	for	TS	18661-3	DR	13	presented	in	N2202.		

After	N2202	was	posted,	Joseph	Myers	sent	the	following	message:	

Joseph	Myers	
(SC22WG14.14921)	Floating-point	DR#13	and	integer	arguments	to	type-generic	macros	
To:	SC22	WG14	
	

I	believe	these	comments	all	still	apply	to	the	version	of	the	DR		
resolution	in	N2202:	it	still	determines	a	type,	but	says	nothing	about		
what	function	is	determined	from	that	type	(needed	to	cover	dadd(f,	f)		
which	needs	to	call	daddl	to	stay	compatible	with	TS	18661-1,	for	example		
-	the	type	determined	is	float,	but	what	function	is	determined	from	it?).	
	
--		
Joseph	S.	Myers	
joseph@codesourcery.com	
	
On	Thu,	23	Nov	2017,	Joseph	Myers	wrote:	
	
	
Looking	at	the	latest	proposed	DR	resolution		
<http://wiki.edg.com/pub/CFP/WebHome/tgmath_for_narrowing_functions-20171117.pdf>:	
	
This	resolution	changes	text	that	partially	determines	a	function	called		
by	type-generic	macros	such	as	dadd,	to	text	that	determines	a	type.		Does		
it	then	result	in	a	call	to	a	function	whose	parameters	have	that	type?		I		
don't	see	anything	saying	so,	but	it's	possible	I've	missed	some	text	in		
the	complicated	sequence	of	(C11	amended	by	18661-1	amended	by	18661-2		
amended	by	18661-3	amended	by	DR#9	amended	by	DR#13	as	modified	by	this		
proposed	change	to	the	resolution	of	DR#13).	
	
In	any	case,	there	needs	to	be	*something*	about	choosing	a	function	whose		
arguments	have	a	wider	type	than	the	one	determined	from	the	types	of	the		
arguments	(subject	to	whatever's	needed	to	keep	things	well-defined	in	the		
case	of	integer	arguments,	if	desired),	because	of	the	dadd(f,	f)	case,		
which	is	clearly	specified	in	TS	18661-1	to	call	the	function	daddl,	and		
is	included	as	an	example	there	-	as	there	isn't	any	dadd	function	with		
float	or	double	arguments.		A	correction	to	TS	18661-3	should	not	have	the		
effect	of	invalidating	something	that	was	valid	with	TS	18661-1.	
	
--		
Joseph	S.	Myers	
joseph@codesourcery.com	

The	23	Nov	message	Joseph	Myers	refers	to	had	been	overlooked	and	the	valid	issue	it	
raises	was	not	considered	in	the	preparation	of	N2202.	The	suggested	TC	below	revises	the	
one	in	N2202	to	address	this	issue.	The	changes	to	the	suggested	TC	in	N2202	are	the	
additions	of	the	last	bullet	and	the	last	three	examples.		

With	the	approach	suggested	here,	rounding	of	arguments	might	occur.	For	example,	
f32xsqrt(f32x) invokes	f32xsqrtf64x(f32x)	if	_Float64x	is	supported,	else	
f32xsqrtf64.	Thus,	if _Float64x	is	not	supported	and	_Float32z	is	wider	than	
_Float64,	the	argument	f32x	will	be	rounded	to	_Float64.	We	didn’t	see	a	way	to	avoid	
such	roundings	without	unduly	complicating	the	specification	and/or	breaking	with	the	
overall	approach	in	C	and	the	other	parts	of	TS	18661.	Note	that	the	cases	where	argument	
rounding	might	occur	do	not	represent	the	intended	use	of	the	macros:	to	round	result	to	
narrower	type.	

The	macros	that	round	results	to	narrower	type	differ	from	other	<tgmath.h>	macros	in	
that	the	type	of	the	expanded	expression	can	be	determined	by	the	macro	prefix,	rather	
than	by	the	argument	types.	We	considered	directly	specifying	that	these	macros	produce	
their	result	with	at	most	one	rounding	(after	appropriately	converting	integer	type	
arguments),	and	leaving	the	function	to	be	called,	or	other	manner	of	computation,	to	the	
implementation.	We	rejected	this	approach	because	it	was	inconsistent	with	the	rest	of	the	
specification	in	<tgmath.h>.	

Suggested	Technical	Corrigendum	

In	clause	15,	after	the	change	to	7.25#6,	add:	
	

Change	7.25#6a	from:	
	

[6a]	The	functions	that	round	result	to	a	narrower	type	have	type-generic	
macros	whose	names	are	obtained	by	omitting	any	suffix	from	the	function	
names.	Thus,	the	macros	with	f	or	d	prefix	are:	
	

fadd fmul ffma
dadd dmul dfma
fsub fdiv fsqrt
dsub ddiv dsqrt

	
and	the	macros	with	d32	or	d64	prefix	are:	
	

d32add d32mul d32fma
d64add d64mul d64fma
d32sub d32div d32sqrt
d64sub d64div d64sqrt

	
All	arguments	are	generic.	If	any	argument	is	not	real,	use	of	the	macro	
results	in	undefined	behavior.	If	the	macro	prefix	is	f	or	d,	use	of	an	
argument	of	decimal	floating	type	results	in	undefined	behavior.	If	the	

macro	prefix	is	d32	or	d64,	use	of	an	argument	of	standard	floating	type	
results	in	undefined	behavior.	The	function	invoked	is	determined	as	
follows:	
	
—				If	any	argument	has	type	_Decimal128,	or	if	the	macro	prefix	is	d64,	

the	function	invoked	has	the	name	of	the	macro,	with	a	d128	suffix.	
	
—				Otherwise,	if	the	macro	prefix	is	d32,	the	function	invoked	has	the	name	

of	the	macro,	with	a	d64	suffix.	
	
—				Otherwise,	if	any	argument	has	type	long double,	or	if	the	macro	

prefix	is	d,	the	function	invoked	has	the	name	of	the	macro,	with	an	l	
suffix.	

	
—				Otherwise,	the	function	invoked	has	the	name	of	the	macro	(with	no	

suffix).	
	
	to:	
	

[6a]	The	functions	that	round	result	to	a	narrower	type	have	type-generic	
macros	whose	names	are	obtained	by	omitting	any	suffix	from	the	function	
names.	Thus,	the	macros	with	f	or	d	prefix	are:	
	

fadd fmul ffma
dadd dmul dfma
fsub fdiv fsqrt
dsub ddiv dsqrt

	
and	the	macros	with	fM,	fMx,	dM,	or	dMx	prefix	are:	
	

fMadd fMxmul dMfma
fMsub fMxdiv dMsqrt
fMmul fMxfma dMxadd
fMdiv fMxsqrt dMxsub
fMfma dMadd dMxmul
fMsqrt dMsub dMxdiv
fMxadd dMmul dMxfma
fMxsub dMdiv dMxsqrt

	
All	arguments	are	generic.	If	any	argument	is	not	real,	use	of	the	macro	
results	in	undefined	behavior.	If	the	macro	prefix	is	f	or	d,	use	of	an	
argument	of	interchange	or	extended	floating	type	results	in	undefined	
behavior.	If	the	macro	prefix	is	fM,	or	fMx,	use	of	an	argument	of	standard	
or	decimal	floating	type	results	in	undefined	behavior.	If	the	macro	prefix	is	
dM	or	dMx,	use	of	an	argument	of	standard	or	binary	floating	type	results	in	
undefined	behavior.		The	function	invoked	is	determined	as	follows:	

	
—	 Arguments	that	have	integer	type	are	regarded	as	having	type	double	if	

the	macro	prefix	is	f	or	d,	as	having	type	_Float64	if	the	macro	prefix	
is	fM	or	fMx,	and	as	having	type	_Decimal64	if	the	macro	prefix	is	dM	
or	dMx.	

	
—	 If	the	function	has	exactly	one	generic	parameter,	the	type	determined	

is	the	type	of	the	argument.		
	
—	 If	the	function	has	exactly	two	generic	parameters,	the	type	determined	

is	the	type	determined	by	the	usual	arithmetic	conversions	(6.3.1.8)	
applied	to	the	arguments.	

	
—	 If	the	function	has	three	generic	parameters,	the	type	determined	is	the	

type	determined	by	applying	the	usual	arithmetic	conversions	twice,	
first	to	the	first	two	arguments,	then	to	that	result	type	and	the	third	
argument.	

	
—	 If	no	function	with	the	given	prefix	has	the	parameter	type	determined	

above,	the	parameter	type	is	determined	from	the	prefix	as	follows:	
	

f double
d long double
fM	 _FloatMx	if	supported,	else	_FloatN	for	minimum	N	>	M	
fMx	 _FloatNx	for	minimum	N	>	M	if	supported,	else	_FloatN	for	

minimum	N	>	M	
dM	 _DecimalMx	if	supported,	else	_DecimalN	for	minimum	N	>	M	
dMx	 _DecimalNx	for	minimum	N	>	M	if	supported,	else	_DecimalN	

for	minimum	N	>	M	
	
	

In	clause	15,	at	the	end	of	the	text	appended	to	the	table	in	7.25#7,	further	append:	
	

fsub(d, ld) fsubl
f32add(f64x, f64) f32addf64x
d32xsqrt(n) d32xsqrtd64
f32mul(f128, f32x) f32mulf128	if	_Float128	is	at	least	as	

wide	as	_Float32x,	or	f32mulf32x	if	
_Float32x	is	wider	than	_Float128	

f32fma(f32x, n, f32x)	 f32fmaf64	if	_Float64	is	at	least	as	wide	
as	_Float32x,	or	f32fmaf32x	if	
_Float32x	is	wider	than	_Float64	

ddiv(ld, f128)	 undefined		
f32fma(f64, d, f64)	 undefined		
fmul(dc, d)	 undefined	
f32add(f32, f32)		 f32addf32x(f32, f32)	

f32xsqrt(f32)	 	 f32xsqrtf64x(f32)	if	_Float64x	is		
supported,	else	f32xsqrtf64	

f64div(f32x, f32x)	 f64divf64x(f32x, f32x)	if	_Float64x		
is	supported,	else	f64divf128		

	
	

	

