
ISO/IEC JTC 1/SC 22/WG14

July 6, 2017

N 2159

v 1
Flexible array members may take unspecified values
Defect Report against C11

Jens Gustedt
INRIA and ICube, Université de Strasbourg, France

Flexible array members are allowed to overlap with trailing padding bytes of their structure. Thus when a

value is stored in another member of such a structure object, the bytes of the object representation that
correspond to any padding bytes take unspecified values.

—
Acknowledgment: I was pointed to this problem by dorp, who also largely contributed to the improvement

of this document by providing valuable feedback to several of its versions.

1. INTRODUCTION

The following code illustrates the problem that originated this DR:

1 struct FA {
2 size_t size;
3 unsigned char dummy;
4 unsigned char array [];
5 } *s = malloc(sizeof *s + 1);
6 _Static_assert(offsetof(struct FA, array)+3 == sizeof *s,
7 "we␣need␣3␣array␣elements␣inside");
8
9 s->array [0] = 1; s->array [1] = 2;

10 s->array [2] = 3; s->array [3] = 4;
11 /* the padding bytes corresponding to s->array [0..2] take
12 unspecified values */
13 s->size = 4;
14 /* this value is now unspecified */
15 printf("%hhu", s->array [0]);
16 /* this value is well specified */
17 printf("%hhu", s->array [3]);

Here, on most architectures sizeof(struct FA) will be such that there is trailing padding
(usually 3 or 7 bytes, here we assume 3) after dummy. C11 6.7.2.1 states:

In most situations, the flexible array member is ignored. In particular, the size
of the structure is as if the flexible array member were omitted except that it may
have more trailing padding than the omission would imply.

So the trailing part of a structure with a flexible array member is considered to be padding.
After an assignment to any other structure member such as size in that snippet, the value
of any of these padding bytes is unspecified, 6.2.6.1 p6:

When a value is stored in an object of structure or union type, including in
a member object, the bytes of the object representation that correspond to any
padding bytes take unspecified values.

In contrast to the first three elements, s->array[3] is a correctly initialized object of type
unsigned char and value 4.
If this behavior would be the intended, a structure with a flexible array member that uses
some of the padding for the initial segment of the array, could not be used reliably.

© 2017 Jens Gustedt. Distributed under a Creative Commons Attribution 4.0 International License



N2159:2 Jens Gustedt

2. QUESTIONS TO THE COMMITTEE

To be able to formulate our questions we need another, more complete example:

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <stddef.h>
4 #include <wchar.h>
5
6 typedef struct wstring wstring;
7
8 // On machines with 64 size_t , data [0] fits inside.
9 struct wstring {

10 size_t length;
11 int status;
12 wchar_t data [];
13 };
14 _Static_assert(offsetof(wstring , data [1]) <= sizeof(wstring),
15 "element␣data [0]␣must␣be␣inside");
16
17 // undefined , but not a constraint violation
18 wstring empty = { 0, 0, { L'\0', }, };
19 wstring Z = { 3, 0, L"ZZZ", };
20
21 int main (void) {
22 wstring A = { 0 };
23 printf("size␣of␣wstring :\t%zu\n", sizeof A);
24 printf("size␣of␣empty:\t%zu\n", sizeof empty);
25 printf("size␣of␣Z:\t%zu\n", sizeof Z);
26 printf("offset␣of␣data:\t%zu\n", offsetof(wstring , data));
27 printf("size␣of␣data [0]:\t%zu\n", sizeof A.data [0]);
28 printf("0:␣values :\t(%d)␣%.1ls\n", A.data[0], A.data);
29 A.data [0] = L'A';
30 printf("1:␣values :\t(%d)␣%.1ls\n", A.data[0], A.data);
31 A.length = 1;
32 printf("2:␣values :\t(%d)␣%.1ls\n", A.data[0], A.data);
33
34 wstring *B = malloc(sizeof *B);
35 *B = A;
36 printf("0:␣values :\t(%d)␣%.1ls\n", B->data[0], B->data);
37 B->data [0] = L'B';
38 printf("1:␣values :\t(%d)␣%.1ls\n", B->data[0], B->data);
39 B->length = 1;
40 printf("2:␣values :\t(%d)␣%.1ls\n", B->data[0], B->data);
41
42 wstring *C = calloc(1, sizeof *C);
43 printf("0:␣values :\t(%d)␣%.1ls\n", C->data[0], C->data);
44 C->data [0] = L'C';
45 printf("1:␣values :\t(%d)␣%.1ls\n", C->data[0], C->data);
46 C->length = 1;
47 printf("2:␣values :\t(%d)␣%.1ls\n", C->data[0], C->data);
48 }



Flexible array members may take unspecified values N2159:3

(A) (a) Line 28: A has a declared type, so it has the same effective type throughout its whole
lifetime. What is the effective type of the object located at address (void*)A.data?

(b) Line 28: After initialization, before any other value is assigned to any of its mem-
bers, does A.data[0] have a specified value?

(c) Line 30: After assignment to the first array member, does A.data[0] have a spec-
ified value?

(d) Line 32: After assignment to member object A.size, does A.data[0] have a spec-
ified value?

(B) (a) Line 36: After structure assignment from a valid structure object, what is the
effective type of the object located at address (void*)B->data, if any?

(b) Line 36: After structure assignment from a valid structure object, does B->data[0]
have a specified value?

(c) Line 38: After assignment to member object B->data[0], does B->data[0] have a
specified value?

(d) Line 40: After assignment to member object B->size, does B->data[0] have a
specified value?

(C) (a) Line 43: After zero initialization via calloc, what is the effective type of the object
located at address (void*)C->data, if any?

(b) Line 43: Before any other value is assigned to any of its members, does C->data[0]
have a specified value?

(c) Line 45: After assignment to the first array member, does C->data[0] have a
specified value?

(d) Line 47: After assignment to member object C->size, does C->data[0] have a
specified value?

(Z) May an initialization of a structure provide initializers for elements of a flexible array?

3. HOW IT SHOULD BE

Our idea for the answers to the questions can be seen in the following. This is not always
supported by text in the C standard (thus this DR). We think that it presents a solution of
“minimal surprise” for programmers. Quick experiments with gcc and clang suggest that
our view corresponds to the behavior of these implementations.

(A) (a) Line 28: The effective type of the object located at address (void*)A.data should
be of type wchar_t for all elements that fit within the boundary of A. Otherwise
this effective type could never change afterwards and the flexible array would be
useless.

(b) Line 28: A.data[0] has value L'\0';
(c) Line 30: A.data[0] now has the value L'A'.
(d) Line 32: A.data[0] keeps the value from before.

(B) (a) Line 36: Through structure assignment, *B acquires the effective type wstring. The
effective type of the object located at address (void*)B->data is wchar_t.

(b) Line 36: B->data[0] does not have a specified value, so according to different
schools of thought the behavior might be

— undefined (anything can happen),
— eradic (the printed value may change on the fly)
— determinable (the value is determined after its first access).

(c) Line 38: B->data[0] has value L'B'.
(d) Line 40: B->data[0] keeps type and value from before.

(C) (a) Line 43: The object located at address (void*)C->data has no effective type.
(b) Line 43: The first access C->data[0] reads with an lvalue of type wchar_t, but

does not change the effective type. The value that is read is L'\0'.



N2159:4 Jens Gustedt

(c) Line 45: The assignment changes the effective type to wchar_t, and C->data[0]
has the value L'C'.

(d) Line 47: C->data[0] keeps type and value from before.
(Z) Non normative text suggest that the answer is not to allow initialization of flexible

arrays. Nevertheless, we found no normative text that states this explicitly. On the
other hand, we found compilers (clang and gcc) that allow initialization under certain
circumstances.

To summarize, we think that:

(1) Once an object acquires the effective type wstring, either by declaration, assignment or
byte copy (e.g memcpy), the effective type of overlaid flexible array elements is the base
type of the array. So if an object has effective type wstring, the initial segment of the
flexible array has to be taken into account for aliasing analysis.

(2) Structure assignment of wstring may or may not affect elements of the flexible array that
are overlaid by the structure. All these flexible array elements have unspecified values
after structure assignment.

(3) Assignment to any other member object of wstring does not affect any flexible array
member elements, including the overlaid members or those members that may lay within
a union that encloses the struct. So after such an assignment, the type and value of the
array elements are unchanged.

(4) Other than incomplete arrays that are not structure members, the type of flexible array
members cannot be completed through initialization. Nevertheless, there are existing
implementations that provide the possibility of initialization as an extension, such that
enough memory is reserved for the object to accommodate all initialized members.

4. SUGGESTED TECHNICAL CORRIGENDUM

Add a new paragraph after 6.2.6.1 p7:

:::::::
Specific

::::
rules

::::::
apply

::
to

::::::::::
structures

::::
that

:::::::
contain

:::::::
flexible

:::::
array

:::::::::
members.

::::::
When

::
a

:::::
value

:
is
::::::::
assigned

:::
to

::
an

::::::
object

::
of

:::::
such

:
a
:::::::::
structure

:::::
type,

:::::
bytes

::::::
within

:::
the

:::::::::
structure

::::
that

::::::::::
correspond

:::
to

:::
the

:::::::
flexible

:::::
array

::::::::
member

:::::
take

::::::::::
unspecified

:::::::
values.

::::::
When

::
a

:::::
value

:
is
::::::::

assigned
:::
to

:
a
::::::::

member
::
of

:::
an

::::::
object

::
of
:::::
such

:::::::::
structure

::::
type

::::
that

::
is
::::
not

:::
an

:::::::
element

::
of

:::
the

:::::::
flexible

::::::
array,

::
no

:::::
byte

:::::::
beyond

:::
the

:::::
offset

:::
of

:::
the

:::::::
flexible

:::::
array

:::::
shall

::
be

:::::::::
modified.

::
If

::::
such

:
a
:::::::::
structure

::
is

:
a
::::::::
member

::
of

:
a
::::::
union

:::::
type,

:::::::
possibly

:::::::::::
recursively,

:::
the

:::::::
flexible

:::::
array

::
is

:::
not

::::::::::
considered

:::
to

::
be

::::::::
padding

:::
but

::::::::
expands

:::
as

:::
far

::
as

::::::::
possible

::
to

:::
the

::::
end

::
of

::::
the

::::::::::
union.FN1)

:

:::::
FN1)

::::
The

:::::
bytes

::
of

::
a
:::::::
flexible

:::::
array

::::::::
member

::::
that

::::
fall

:::::
inside

::::
the

::::::::
structure

:::
or

:::
an

::::::::
enclosing

::::::
union

:::
are

::::
not

::::::::::
considered

:::
to

:::
be

::::::::
padding.

:::::
They

:::::::
should

::::
not

:::::::
change

::
if

:::::::
another

::::::::
member

::
of

::::
the

::::::::
structure

:::
is

:::::::::
modified.

:::
On

::::
the

:::::
other

::::::
hand,

::
a
:::::::::
structure

::::::::::
assignment

:::::::::
operation

:::::
may

::::
not

:::::
copy

::::
any

:::::::::
elements

:::
of

::::
the

:::::::
flexible

::::::
array.

::::
So

:::
the

::::::::
elements

:::
of

::::
the

:::::::
flexible

:::::
array

:::
of

::::
the

:::
left

::::::::
operand

:::
of

:::
an

:::::::::::
assignment

:::::
have

::::::::::
unspecified

::::::
values

::::
after

::::
the

:::::::::
operation.

:

To the end of the same section 6.2.6.1 add a forward reference to “flexible arrays”.

Add the following sentence to the end of 6.7.2.1 p3:

:::
The

:::::::::::
incomplete

:::::
array

::::
type

::
of

::
a
:::::::
flexible

:::::
array

::::::::
member

::
is

:::::
never

::::::::::
completed.

::
If

:::
an

::::::::
initializer

:::
for

:::::
such

:
a
:::::::
flexible

:::::
array

::::::::
member

::
is

::::::::
provided

:::
the

::::::::
behavior

::
is

::::::::::
undefined.

Modify 6.7.2.1 p18:

As a special case, the last element
::
A of a structure

::
S with more than one

named member may have an incomplete array type; this is called a flexible



Flexible array members may take unspecified values N2159:5

array member. ///In///////most//////////////situations,/////the//////////flexible////////array///////////member///is///////////ignored.
::::
The//In

/////////////particular,/////the size of
:
S

::::
may

:::
be

::
as

::::::
small////the////////////structure///is as if the flexible array

member were omitted,
:::
but

:::
the

:::::
offset

:
X
::
of
::
A
::
in

::
S

::::
shall

::
be

:::
at

::::
most

:::::::::::
sizeof(S) ////////except

/////that///it///////may///////have///////more///////////trailing///////////padding///////than/////the////////////omission/////////would////////imply.
::::
The

::::::
trailing

::::::
bytes

::
of

::
S

:::::::
starting

:::
at

::
X,

::
if

::::
any,

::::
shall

::::
not

:::::::
overlap

:::::
with

:::::
other

::::::::
members

:::
of

::
S;

::::
they

:::
are

:::
not

::::::::
padding

::::
but

:::
the

:::::
initial

::::::
bytes

::
of

:::
the

:::::
array

::::::::
member

::
A.

::
In

::::::::::
particular,

:
if
::
B

::
is

:::
the

:::::::
element

::::
type

:::
of

::
A,

:::
and

::
if
:::::
there

::
is

:::::
some

::::::
strictly

::::::::
positive

:::::
value

:
N
::::
such

:::::
that

::::::::::::::::::::::::::
X+sizeof(B[N]) ≤ sizeof(S)

:::::
holds,

::
A
::::::::::
designates

::
an

:::::::
“array

::
of

::
B”

:::::
with

::
at

:::::
least

::
N

:::::::::::::
elements.FN2)

::::
Also///////////However, when a . (or -> ) operator has a left operand that

is
::
of

::::
type (a pointer to)

::
S //a////////////structure//////with//a//////////flexible////////array//////////member and the right

operand
:
is
:::
A,///////names///////that////////////member, it behaves as if that member were replaced

with the longest array (with ////the///////same element type
::
B ) that would not make

the structure larger than the object being accessed; the offset of the array shall
remain

:
X,/////that///of/////the//////////flexible///////array////////////member, even if this would differ from that of

the replacement array. If this array would have no elements, it behaves as if it
had one element but the behavior is undefined if any attempt is made to access
that element or to generate a pointer one past it.

:::::
FN2)

::
So

:::
for

:::::::
almost

:::
all

::::::
aspects

:::::
that

:::::::::
determine

:::::
type

::
or

::::::
value,

:::
the

::::
part

:::
of

:
A
:::::
that

:::
fits

::::
into

:
S
:::
(if

::::
any)

::
is
::::::::::
composed

::
of

::::::::
elements

::
of

:::::
type

::
B.

::::
The

::::
only

:::::::::
difference

::
is
:::::
that

:
a
:::::::
special

::::
rule

:::
for

::::
the

::::::::::
assignment

::::::::
operator

:::::::
applies

:::::
such

::::
that

:::::
none

:::
of

:::
the

::::::
array

::::::::
elements

:::
are

:::::::
copied.

Add a footnote to the end of 6.5.16.1 p3:

If the value being stored in an object is read from another object that overlaps
in any way the storage of the first object, then the overlap shall be exact and
the two objects shall have qualified or unqualified versions of a compatible type;
otherwise, the behavior is undefined.

::::
FN3)

:::::
FN3)

::
If

:::
the

::::::::
common

:::::
type

::
of

::::
the

::::::::
operands

:::
of

:
a
::
=
:::::::::
operation

::::::::
contains

::
a

:::::::
flexible

:::::
array

::::::::
member,

::
it

::
is

::::::::::
unspecified

::
if

:::
the

::::::::
elements

::
of
:::::
that

:::::::
flexible

:::::
array

:::::::
member

::::
are

::::::
copied,

:::
see

:::::::
6.2.6.1.

:::::
Such

::::::::
elements

::::
will

::::
thus

:::::
have

::::::::::
unspecified

::::::
values

::::
after

:::::
such

:::
an

::::::::::
assignment

:::::::::
operation.


	Introduction
	Questions to the committee
	How it should be
	Suggested Technical Corrigendum

