Changes to TS 18661 Part 3
Interchange and extended types

Part 3 draft N1758

TS 18661 Part 3 is C support for new IEC 60559
formats

* N1758 updates N1691 discussed in Delft

* Goal: show changes, get input, update for next
meeting

Interchange formats

IEC 60559-2011 introduced a "tower" of
interchange formats

Arbitrarily large widths (32x)

Precision and range determined by width
oinary16, for GPU data etc.

-or exchange of FP data

May or may not be arithmetic

Extended formats

IEC 60559-2011 specifies extended formats
that extend its basic formats (binary32| 64|
128 and decimal64|128)

Have at least a specified precision and range
For explicit wide evaluation
Not for data exchange

IEC 60559 format support

|EC 60559 formats:

Interchange formats
— Arithmetic
— Non-arithmetic

Extended formats
Extendable formats

Arithmetic interchange and extended formats
fully supported as floating types

Non-arithmetic interchange formats supported
without additional types

Extendable formats not covered

Type structure additions

real floating types
standard floating types: float, double, long double
interchange floating types
_FloatN
decimal floating types: DecimalN
extended floating types: FloatNx, DecimalNx
complex types
float _Complex, double Complex, long double _Complex
_FloatN _Complex, FloatNx Complex
Imaginary types
float _Imaginary, double Imaginary, long double Imaginary
_FloatN _Imaginary, FloatNx _Imaginary

Type structure unchanged

floating types
real floating types
complex types
imaginary types

real types
integer types
real floating types

arithmetic types
integer types
floating types

Non-arithmetic interchange formats

Supported as encodings, not types
Encodings stored in unsigned char arrays

Required conversion operations provided by
library functions

Arithmetic interchange formats are supported
as encodings and as types

Requirements

Types are distinct and not compatible

Requires interchange and extended floating types
whose formats must already be supported
because of conformance to Part 1 or 2

Requires support for binaryl6 format, at least as
an encoding (if Part 1 is supported)

Allows support for other interchange floating
types and encodings

Requires complex (and imaginary) types for
supported binary interchange and extended

floating types

Example 1

Assume

— Part 1 conformance
— long double has common IEEE 80-bit extended format

Required new type width

_Float32 32
_Float64 64
_Float32x 64 or 80
_Float64x 80

And complex (and imaginary) types for all of above
Required binary encoding widths: 16, 32, 64

Example 2

Assume
— Part 1 conformance
— long double has IEEE binary128 format

Required new type width

_Float32 32
_Float64 64
_Float128 128
_Float32x 64 or 128
_Float64x 128

And complex (and imaginary) types for all of above
Required binary encoding widths: 16, 32, 64, 128

Example 3

Assume

— Part 2 conformance

Requiredtype ________Width
_Decimal32 32

_Decimal64 64

_Decimal128 128

_Decimal64x 128

Required decimal encoding widths: 32, 64, 128

Encoding functions

For all supported interchange floating types ...
* Encode — type-to-encoding (same format)
 Decode — encoding-to-type (same format)
For all supported IEC 60559 encodings ...

* Encoding-to-encoding conversions

e String-to-encoding conversions

e String-from-encoding conversions

» Each decimal type and encoding requires two
sets of encoding functions, one for each decimal

encoding scheme

Example 4

Assume
— Part 1 conformance
— long double has common IEEE 80-bit extended format
— binary16 supported only as an encoding

To convert binaryl6 encoding stored in
unsigned char el16[2];

to
_Float32 f32;

use

unsigned char e32[4];
f32encfl6e(e32, el6);
decodef32(&f32, e32);

TS (re)organization

Conformance to Part 3 requires conformance to
Part 1 or Part 2 (or both)

Specification is cumulative: C11 (+ TC 1) + Part 1 +
Part 2 + Part 3

Changes in Part 3 are applied to C11 + Part 1 +
Part 2

Part 3 decimal specification generalizes Part 2, so
decimal floating types include all _DecimalN

|ldentifiers controlled by WANT macros listed in
header clauses (Page 2 Line 23 -)

