ISO/IEC JTC1 SC22 WG11 N0486 2003-08-11

Title: Roadmap of ISO/IEC 11404 -- Its Standardization and Data Interoperability
Author: Frank Farance, Project Editor for 11404 revision (frank @farance.com)

The first edition of ISO/IEC 11404 standard, published in 1996, was titled "Information
technology — Programming languages, their environments, and system software interfaces —
Language-independent datatypes”. Since 1996, the standard has enjoyed increasing use and
applicability outside its original area of providing common semantics for datatypes across
programming languages, databases, and other systems that use datatypes. The revision of
11404 incorporates new features from the technologies in the past 7 years. The standard has
been re-titled "Information technology — General Purpose Datatypes (GPD)" to reflect the
general-purpose nature of the standard.

This document describes the changes and their rationale for the 11404 revision.! The first
portion discusses data and datatypes. The second portion of this document is an overview of
the development of data interchange standards and how 11404 may be used to develop these
kind of standards. The third portion discusses the current activities for the revision of 11404.

TABLE OF CONTENTS

PART 1: FUNDAMENTALS OF DATA AND DATATYPES
What is Data?
What is a Datatype?
PART 2: DATA INTERCHANGE STANDARDS
Overview of the Consensus-Building Process
Risk Mitigation
De-Coupling Data Models From Bindings/Encodings
Considering All Three: Codings, APIs, Protocols
Extensions and Incremental Improvements
Using ISO/IEC 11179 to Support Incremental Standardization
Using ISO/IEC 11179 and ISO/IEC 11404 to Support Automation
Using ISO/IEC 11404 To Support Data Interchange Standards
Example of XML Binding Generated from 11404 Datatyping
PART 3: DEVELOPING THE REVISION OF 11404
Charter For The Revision of ISO/IEC 11404
Referencing, Harmonization, Mapping, and Incorporation of Standards
For Further Information About ISO/IEC JTC1 SC22 WGI1

PART 1: FUNDAMENTALS OF DATA AND DATATYPES
What Is ""Data''?

According to ISO/IEC 2382-1 Information Technology — Vocabulary — Fundamental
Terms, the definition of "data" is:

" As of this writing, the latest draft of the ISO/IEC 11404 revision is available as document WG11/N0485 at the
SC22/WG11 web site at "http://std.dkuug.dk/jtc1/sc22/wgl1".

Page 1 ©2003 F. Farance

ISO/IEC JTC1 SC22 WG11 N0486 2003-08-11

data: A reinterpretable representation of information in a formalized manner suitable
for communication, interpretation, or processing. Note: Data can be processed by
humans or by automatic means.

Other definitions of data exist, too. A better, operational definition of "data" is:?

data: instantiation of a relation between a concept and a sign

EXAMPLE 1 The sign "..." is associated with the concept of "image in monochrome
pixels" and its data is a 2-dimensional array of bits with three of the bits (representing the dots
in the ellipsis) are set to black and all others set to white.

EXAMPLE 2 The sign "..." is associated with the concept of "horizontal ellipsis" in
ISO/IEC 10646-1 and its data is 2026 (in hexadecimal).

EXAMPLE 3 The sign "..." is associated with the concept of "the letter S" in Morse Code
and its data is dot-dot-dot.

NOTE 1 The purpose of using the same sign in each of the examples is to show (1)
how the concept influences the nature of the data (the relation between the concept and the
sign), and (2) how different data can be created from the same sign.

NOTE 2 The first example is a simple set of pixels (sign) that creates data consisting
of a set of bits (the 2-dimensional array). The second example is a sign that is related to a
permissible value (each character's code value of ISO/IEC 10646-1 is a permissible value) that
is part of a value domain (ISO/IEC 10646-1 character set) whose datatype is numeric. The
third example is similar to the second example except that the datatype, fundamentally, is non-
numeric. Of course, for all data that is computable in a digital data processing system, it is
possible to map all data to numeric datatypes.

Thus, "data" is not just a symbol (e.g., a set of bits) but must be associated with some concept.

What is a ''datatype''?
In 11404, a "datatype" is defined as:

datatype: set of distinct values, characterized by properties of those values, and by
operations on those values

A datatype consists of three main features: a value space, a set of properties, and a set of
characterizing operations.

The first main feature is: the value space. A value space is the collection of values for a given
datatype. The value space of a given datatype can be defined in one of the following ways:*

— enumerated outright, or
— defined axiomatically from fundamental notions, or

? This definition of "data" was taken from a working draft of ISO/IEC 20944-002, Information technology —
Metadata Interoperability and Bindings (MDIB) — Part 002: Common vocabulary. See "http://metadata-stds.org"

? This definition of value space is excerpted from 11404, subclause 6.2.

Page 2 ©2003 F. Farance

ISO/IEC JTC1 SC22 WG11 N0486 2003-08-11

— defined as the subset of those values from some already defined value space which have a
given set of properties, or

— defined as a combination of arbitrary values from some already defined value spaces by a
specified construction procedure.

A new feature for the revision of 11404 is the incorporation and support of "sentinel values"
(in contrast to "regular values"). A sentinel value is a "signaling" value, such as nil, NaN
(not-a-number), +inf and -inf (infinities), and so on.

The second main feature of datatypes are: properties. 11404 defines six standard character-
istics and their properties:

— equality: Is there a notion of equality among the elements of the value space?

— order: Is there some inherent ordering of the value space?

— boundedness: Is there a lowerbound, an upperbound, or both for the value space?

— cardinality: Is the value space finite, denumerably infinite (countable), or non-
denumerably infinite (uncountable)?

— exactness: With respect to the computation model of the value space, are the elements of
the value space the same as their conceptual values (exact), or are they just approximations
(approximate)? For example, real numbers can only be approximated on digital
computers.

— numeric: Are the values "quantities" is some mathematical number system?

The third main feature of datatypes are: characterizing operations. Characterizing operations
are the main operations upon the values of the value space. For example, the 11404 integer
datatype has the following characterizing operations:

Equal(x, y: integer): boolean is true if x and y designate the same integer value, and false otherwise
Add(x,y: integer): integer is the mathematical additive operation
Multiply(x, y: integer): integer is the mathematical multiplicative operation
Negate(x: integer): integer is the value y: integer such that Add(x,y) =0
NonNegative(x: integer): boolean is
true if x = 0 or x can be developed by one or more iterations of adding 1,
ie.if x=Add(, Add(, ... Add(1, Add(1,0)) ...));
else false.
InOrder(x,y: integer): boolean = NonNegative(Add(x, Negate(y)))
Quotient(x, y: integer): integer, where 0 <y, is the upperbound of the set of all integers z such that
Multiply(y,z) < x

Remainder(x, y: integer): integer, where 0 < x and 0 < y, = Add(x, Negate(Multiply(y,
Quotient(x,y))))

Characterizing operations are needed to distinguish datatypes whose value spaces differ only
in what the values are called. For example, the value spaces (one, two, three, four), (1, 2,
3, 4), and (red, yellow, green, blue) all have four distinct values and all the names
(designations) are different. But one can claim that the first two support the characterizing
operation Add(), while the last does not.

Page 3 ©2003 F. Farance

ISO/IEC JTC1 SC22 WG11 N0486 2003-08-11

The 11404 standard provides a rich library of datatype generators (e.g., record, array, etc.)
that may be used to create complex data structures (which are supported by many
programming languages). The following is a simple example of using 11404 notation:

type employee record = new
record
(
name: characterstring, // employee name
marital status: state (single, married),
exemptions: integer, // number of exemptions for tax deduction
pay rates: array (0..20) of pay rate type, // an array of records
)I
type pay rate type = new
record
(
code: characterstring, // pay code
wage: scaled(10,4), // hourly wages to 4 decimal digits
)I

PART 2: DATA INTERCHANGE STANDARDS

Overview of the Consensus-Building Process

The consensus-building process can be described in
Development w four major overlapping phases:* development phase,
Surding where normative wording is formulated; consensus-
building phase, where formal balloting and resolution
occur; maintenance phase, where the standard is
interpreted and minor refinements are incorporated;
review phase, where the standard is revised
(incorporate new technology), reaffirmed (stable
technology), or withdrawn (obsolete technology).

Revise, Maintenance
‘F,‘v?ta':‘;:::‘W Data interchange standards use this process, too,
T however these kind of standards, their development,
consensus-building, and maintenance involves further
complications because of the ongoing fast pace of information technology standards and
infrastructure.

Risk Mitigation

Standards need to be developed in short periods of time, so participants use risk mitigation
strategies and methodologies. A common engineering methodology is to divide a large
project into several phases of development — each phase addresses a particular category of
engineering risks. For example, when building a house, it is easier to fix mistakes earlier and
when on paper (blueprints), rather than waiting later after the foundation has been built.
Likewise, for engineering of software or the development of standards: getting agreement on
"functionality" should be done earlier rather than later. This phased approach reduces the risk
of development — risk measured in terms of re-work, re-design, and re-implementation.

* Most standards development committees overlap these phases.

Page 4 ©2003 F. Farance

ISO/IEC JTC1 SC22 WG11 N0486 2003-08-11

The following diagram shows a typical approach for developing data interchange standards
and their bindings.”

The Steps of Building Successful
Information Technology Standards/Specifications

“Interpretation/maintenance

TZe) 2’::;;?:{:_1:57 d’;;gma‘::; Requirements is stabilized: each level is
(2) long-term stability, * dependent on higher levels.
interpretation, maintenance of Functionality
the standard/specification.” * “Interpretation Examples:
- Ambiguities in bindings are
Conceptual Model resolved by interpreting the
semantics;
is incremental.” Semantics are resolved by interpreting
the conceptual model.”
Bindings: APIs Bindings: Codings Bindings: Protocols
Encodings: Calling Encodings: Encodings: Various
Conventions Data Formats Communication Layers

In the figure above, standards development may be considered as progressing in several
overlapping steps. Note: These steps are not development phases per se, but areas of
development risk and technical description.

Requirements allow the standard (or specification), upon completion, to be validated by
reaffirming the satisfaction of the original requirements. Result: The standard or
specification is still useful. Note: Although the formal standards process is not
requirements-based, the identification of requirements is a useful "best practice".
Functionality helps delimit and "contain" the scope of the standard, which minimizes
"feature creep". Result: The consensus-building process will stay focused on its technical
goals.

Conceptual Model describes a virtual implementation that models the theory of
operation. For the maintenance phase of the standards process, the conceptual model may
be used to resolve ambiguities in semantics that were unforeseen or overlooked in the
consensus-building process. Result: The standard (or specification) can adapt to changes
in technology.

Semantics are described separately from conceptual model and bindings. Semantics are
not tied to or influenced by a particular binding. Result: Semantics are binding-
independent so more (future) bindings and applications are possible, thus, a longer
lifetime for the standard or specification, and increased interoperability.

Bindings separate the "standard behavior" (semantics) from the mappings to particular
codings, file formats, APIs, commands, protocols, transaction sets, and so on.’ Formally,

> This "flow" diagram is merely a best practice. Other approaches are possible. The main point is: (1) to recognize
some engineering risk and business risk is present in the development of a standard, and (2) to recognize that one
needs to choose some strategy for mitigating risk.

Page 5 ©2003 F. Farance

ISO/IEC JTC1 SC22 WG11 N0486 2003-08-11

a "binding" is "a mapping from one standard or framework to another standard or
framework". Result: The standard or specification can have common functionality across
many operating environments (syntaxes, file types, languages, operating systems, protocol
stacks, service methods, etc.), thus the standard or specification will have wider
applicability and adoption.

e Encodings separate the information structure from its bit/byte representation. Result: The
standard or specification can be transformed into "native" representations that are
optimal for individual, specific operating environments, thus the standard or specification
will have wider adoption.

By separating the standards or specification development into several steps, certain high-risk
issues can be addressed earlier (e.g., conceptual model and conformance) while certain low-
risk issues (e.g., API signatures and character sets) can be postponed.

Result: Resources are best utilized and scheduling of standards (or specification) development
can be more predictable — an important management goal. This technique of using several
phases of design and implementation is a common engineering methodology, whether it's
software development or housing construction (better results are gained by drawing up
blueprints before pouring concrete — it's cheaper to fix mistakes on paper).

De-Coupling Data Models From Bindings/Encodings

e < Relatively StatiCh= = = = = = = ———— - - - [
Topic-Specific

Topic-Specific
Normative Wording Requirements Informative Wording

Cross-Topic Codings,
e.g.: XML, DNVP, ASN.1

Cross-Topic APIs

Normative Wording

|

|

|

Various Standards,e.qg.: |
|

|

e.g., Bindings in Cross-Topic Protocols |
|

|

|

|

Functionality ASCII, 8859-1, UTF8

Java, C/C++. Perl Conceptual Model e.g.: Presentation and
JavaScript, Tl Session Layers

Cross-Topic APIs
Informative Wording

Semantics

Bindings: APIs

Encodings: Encodings: Various
Calling Convgntions Communigation Layers

An important strategy for keeping pace with technology changes is: de-coupling the
standardization of the data models from the standardization of bindings (e.g., codings, APIs,

® The breakdown of "semantics" to coding bindings, API bindings, and protocol bindings is not as rigid as it might
appear: there is no hard and firm taxonomy. For example, "remote procedure calls" (RPCs) combine features of
API bindings and features of protocol bindings. Thus, the breakdown into codings, APIs, and protocols is
representative of the general nature, but specific bindings may include a combination of these features or different
features.

Page 6 ©2003 F. Farance

ISO/IEC JTC1 SC22 WG11 N0486 2003-08-11

protocols). For example, these days there are many requests for "an XML-based standard for
data, transactions, etc.". Translation: "I want an XML coding binding". In the late 1980's to
mid-1990's, the emphasis was on API bindings, e.g., the main interoperability or standards
aspect was providing, say, a C, C++, Fortran, Ada , or CORBA "binding" of services. In the
late 1970's to late 1980's, the emphasis was on protocol bindings, e.g., the main
interoperability or standards aspect was providing some protocol layer(s) in the ISO OSI
network layering framework. Thus, since the 1980's, there have been several different ways
of thinking about standards for data, information, and knowledge interchange: codings, APIs,
and protocols.

Conclusion: With this kind of de-coupling, the work on the functional, conceptual model, and
semantics of the standard may proceed at its own pace (e.g., a rollout of several incremental
improvements via several iterations of standards revisions and amendments). Meanwhile
bindings and encodings can be developed quickly, as the industry and technology demands,
because the standards wording for bindings and encodings is relatively simple compared to
other parts of the standard.

Considering All Three: Codings, APIs, Protocols

Typically, there aren't enough resources to standardize all the kinds of bindings that are
(ultimately) necessary, so a committee may need to prioritize its standards development work.
The diagram above shows a prioritization roadmap the may be used to plan a long-term roll
out of data interchange standards.”

- Std APIs may be implemented via
std or proprietary Protocols

- Std Protocols may be accessed
by std or proprietary APIs

- Both std APlIs/Protocols improve
wide area interoperability

Semantics

\

Bindings: Protocols

Bindings: APIs

- Std APIs may use std or
proprietary Codings

- Std Codings may be used
by std or proprietary APIs

- Both std APIs/Codings
improve portable apps/data

Bindings: Codings
- Std Protocols may use std or

proprietary Codings

- Std Codings may be exchanged
Prioritizing The Development Of via std or proprietary Protocols

Standards for Codings, APIs, and Protocols - Both std Protocols/Codings

Harmonized standard APIs, Codings,
and Protocols promote:

- Application portability

- Data portability

- Multi-vendor, “open” solutions

- Wide area, end-to-end interoperability

improve system interoperability

7 For example, if one's highest priority is "improving system interoperability", then the primary focus should be on
standardizing codings and protocols; if one's highest priority is "improving the portability of applications and

Page 7 ©2003 F. Farance

ISO/IEC JTC1 SC22 WG11 N0486 2003-08-11

Based on the needs of the "stakeholders", standardization strategies can be chosen to meet
their needs. Each stakeholder has its own set of priorities:

— Codings: These stakeholders consider coding standards, such as data formats, record
formats, file formats, etc., as the most important aspect of standardization — these
stakeholders are typically concerned about the "wire format". API standards are less
important to these stakeholders because, e.g., they have no interest in building consensus
around application environments or frameworks. Protocol standards are less important to
these stakeholders because, e.g., they consider protocols to be merely "wrappers" for the
codings.

— APIs: These stakeholders consider API standards, such as programming language
bindings, object class libraries, command line interfaces, etc., as the most important aspect
of standardization — these stakeholders are typically concerned about "portable"
application frameworks. Coding standards are less important to these stakeholders
because, e.g., they believe codings are implementation details that may/should be hidden.
Protocol standards are less important to these stakeholders because, like codings, they may
be considered implementation details that may/should be hidden.

— Protocols: These stakeholders consider protocols standards, such as application,
presentation, and session layer services (layers 7, 6, and 5), as the most important aspect of
standardization — these stakeholders are typically concerned about wide-area network
interoperability. Coding standards are less important to these stakeholders because, e.g.,
they become transparent if there are presentation layer services. API standards are less
important to these stakeholders because, for example, there are application issues "above"
and outside the scope of protocol standardization.

— Combinations: The prioritization of pairs of binding types (e.g., codings and APIs) is
discussed below. If all three binding types are important, then standards work may
proceed in parallel, but the work should be closely harmonized.

Standards participants may find it very useful to consider development of all three types
of bindings (codings, APIs, protocols), but it is also important to prioritize the work, too, i.e.,
only develop the bindings that are necessary now. The reason for considering all three even
though only one is high priority is because the consideration of all three will ensure that future
standards in the other two areas won't be hampered by design decisions at this point. Even
future standards of the same binding type won't be hampered, e.g., if only an XML coding
binding is desired, the "top half" (binding-independent) portion of the standard should be
developed independently (but not necessarily in a separate standards document) so that it is
not "tainted by XML thinking",® and the XML coding binding can be quickly developed —
very important when one later considers developing, say, an ASN.1 coding binding.

Later on after the highest priority bindings have been developed, there will be interest in
secondary priorities (e.g., if a an XML coding binding is developed first, then should an API

data", then the primary focused should be on standardizing codings and APIs; and if one's highest priority is on
"wide area interoperability", then the primary focused should be on standardizing APIs and protocols.

¥ Considering multiple bindings has the same beneficial effect as developing terminology (terms, definitions) in
multiple languages simultaneously: it is possible to discover and reduce the inherent bias of the working language
(or the inherent bias of the primary binding for a data interchange standard).

Page 8 ©2003 F. Farance

ISO/IEC JTC1 SC22 WG11 N0486 2003-08-11

binding or protocol binding be next?). This decision-making can be easily prioritized by
observing and prioritizing the benefits of pairs of bindings:

— Standardizing both Codings and API Bindings: more portable applications and data

— Standardizing both Codings and Protocol Bindings: better (inter-) system
interoperability

— Standardizing both API and Protocol Bindings: improvements in wide area application
portability

At some point, all three (codings, APIs, protocols) may be standardized, which will produce
the following benefits:

— Applications portability.

— Data portability.

— Multi-vendor "open" solutions.

— Wide area, end-to-end interoperability.

Conclusions: The understanding of these kind of stakeholders' priorities for the participants of
the consensus-building process is most important for achieving the most efficient, shortest
schedule, and highest quality standards development process.

This strategy shows how to make good progress by de-coupling the binding-independent
portions of standardization from the binding (and encoding) standards. These binding (and
encoding) standards can proceed in parallel. The strategy also reveals how to prioritize the
standardization: (1) choose which binding type (coding, API, protocol) is most important, (2)
choose which pair of binding types produce the best benefit (codings and APIs, codings and
protocols, APIs and protocols) and work on them next, and (3) choose tertiary bindings as
needed.

This strategy produces better engineered standards solutions over a span of 10 to 20 years, not
just the usual 3-to-5-year lifetime of a standard.’

Extensions and Incremental Improvements

The standards process should not be viewed as the ''be all and end all''. Standards are
updated and revised on a regular basis, typically every 4-5 years. Within shorter timeframes,
standards are amended to incorporate new features.

Extensions are created by users, vendors, institutions, and the industry itself. Industry-relevant
features can be incorporated in amendments and revisions to standards. The nature of specific
extensions, as an extended feature of some implementation, is a conformance issue and not a
technical issue per se because extensions, by their nature, are outside the scope of a standard.
However, the ability to support a general extension capability is a technical issue and is an
important consideration when developing a standard. Note that it is impossible to support
arbitrary extensions in a generic way that provides meaning to the extensions, but it is
possible to support arbitrary extensions in a limited way, such as (1) ignoring them or (2)
retaining them but not processing them.

® While standards participants be primarily concerned with meeting present technical, industry, and market needs,
these techniques general produce better inumediate results and better long-term results.

Page 9 ©2003 F. Farance

ISO/IEC JTC1 SC22 WG11 N0486 2003-08-11

User/Vendor/
Institutional/

The “Standard” Industry
“Extensions”

Building

3

Industry-Relevant,
Widely-Adopted
“Extensions”

Review

Maintenance

Amendments:
2-3 years

Revisions: “Extensions” Become Input To
4-5 years Next Revision Of Standard

Conclusions: Only the stable, agreed upon portions of technical specifications should be
standardized now, while certain improvements may be deferred for future amendments and
revisions. In some cases, it may be worth delaying the standards effort until more consensus
can be built around improvements, but many times it can be just as important to get an
intermediate or trial standard out to the public. The standards process includes "amendments"
and "revisions" to support this kind of incremental delivery of a standard. Limited support of
arbitrary extensions can be a significant facilitator of better interoperability and compatibility
among legacy, current, and future systems.

Using ISO/IEC 11179 to Support Incremental Standardization

The ISO/IEC 11179 standard (Metadata Registries) was developed by JTC1/SC32/WG2
(Metadata)'' for the purpose of providing a standard method for describing data and its
semantics. Registries and registration are well-known tools to support incremental
standardization (e.g., the value domain ISO 3166-1 for country codes). The 11179 standard
supports registration and description. In fact, for many standards an applications themselves
11404 datatyping may be combined with 11179 to support both incremental standardization
and interoperable datatype specification.

Y ISOMEC 11179-3 specifies the "metamodel", i.e., the data model of the metadata.
' See the JTC1/SC32/WG2 web site at "http://metadata-stds.org". The 11179, 20943, and 20944 series of
standards are freely available. See also "http://www.iso.org/ittf".

Page 10 ©2003 F. Farance

ISO/IEC JTC1 SC22 WG11 N0486 2003-08-11

Using ISO/IEC 11179 and ISO/IEC 11404 to Support Automation

With this combination of 11179 and 11404, it is possible to provide automated translation
among XML and ASN.1 data sets (assuming the XML and ASN.1 tags are registered in the
11179 metadata registry). Other automated data processing and information processing
features are possible. For example: 11179 + 11404 can support a standardization effort, such
as data elements and value domains are described by 11404 and further described and
registered in an 11179 metadata registry that is maintained by a standards committee. As
another example: 11179 + 11404 can support cross organizational data exchange by having a
common language of description (11179 + 11404), regardless of the technology used for data
interchange.

ISO/IEC 11179

Metadata Registry yuL class UML Model
Attributes

Abstraction-
Implementation
UML } -

““““ ISO/IEC 11404

Data Model

| 11404 }m vV_~ .
Descriptions Bindings
i g XML

! Binding
XML J{))
Tags e —
d h ASN.1
Toos Binding
Tags Ll

Using ISO/IEC 11404 To Support Data Interchange Standards

The "semantics" phase of development concerns the formal specification of the "meaning" of
the standard. For data interchange standards, the "semantics" can be described using a variety
of techniques:'?

— ISO/IEC 11404 can be used for formal specification of datatypes

— ISO/IEC 13886 (Language Independent Procedure Calling) can be used for formal
specification of APIs and, potentially, aspects of protocol specification

— ISO/IEC TR 14369 (Language Independent Service Specification) can be used as
guidance for interoperability of services

The 11404 standard is particularly useful for describing datatypes in a binding independent
way — not just independent of programming language, but independent of coding, API, and
protocol, etc. (see diagram below).

"2 Typically, a data interchange standard would make use of some combination of 11404, 13886, and 14369.

Page 11 ©2003 F. Farance

ISO/IEC JTC1 SC22 WG11 N0486 2003-08-11

Bindings: Codings

¥

Encodings:
Data Formats

Example of XML Binding Generated from 11404 Datatyping

A main reason for using 11404 is its precise data semantics. For example, we 11404 describes
a "record", its meanings and capabilities are completely and formally defined. The 11404
standard has precise distinctions among a record, set, bag, and array; among a state and enum;
among an integer, scaled, rational, and real; and so on. The 11404 standard has a rich and
formal definition of commonly used (general-purpose) datatypes.

As in illustration of this formality and precision, it is possible to create a rule-based XML
binding of a data model using the foundations of 11404. The following is an example of
normative wording taken from an actual standard in development. This excerpt assumes that a
data model has been described in the 11404 notation and that data values are to be represented
and exchanged in XML.

The following rules describe the transformation of data elements, as described by ISO/IEC xxxxx and by
ISO/IEC 11404 notation, to XML records.

— Rule 1: For each data element in ISO/IEC 11404 notation, map all identifiers to XML tags, except as
noted in Rule 2 below. Represent all values in 11404 value notation. Balanced XML tags delimit the
boundary of the value associated with the data element. The nesting of the XML tags represents the
structure of data elements, as described by its "aggregate datatype generator” (ISO/IEC 11404
terminology). For array and sequence aggregates, (1) an XML tag of the same name as the identifier of
the aggregate represents the group of aggregates, (2) the individual data elements are represented by
repeated XML tags based on the identifier of the aggregate minus the suffix "_list" or "_bucket", not the
index of the element.

— Rule 2: Map all 1ocalizedstring datatypes” to:
— Rule 2A: The locale element of localizedstring sets the xml:lang attribute in parent XML
element.
— Rule 2B: The string element sets content of parent tag (i.e., the current target)

— Rule 3: Transform the following XML tags (wildcard notation):

" The 1ocalizedstring datatype is a particular feature of this illustration and not general to XML nor 11404.

Page 12 ©2003 F. Farance

ISO/IEC JTC1 SC22 WG11 N0486 2003-08-11

XYZ *

to the following XML tags (wildcard notation):
ISO_IEC xxxxx XYZ *

All data produced shall be well-formed XML.

The normative wording above is used to describe a rule-based transformation'* of internal data
(as described by 11404 datatypes) to XML records.”” Rule #1 serves as the main translation
rule, converting the most of the data and its structures to XML. Rule #2 handles certain
translation exceptions, such as transforming localized strings (e.g., {locale="en",
string="hello"}) to XML entities and attributes (e.g., <tag xml:lang="en">
hello</tag>). Rule #3 handles certain namespace issues'® — in this example, namespaces
are handled simply by creating unique prefixes to the tags.

For example, the rule-based XML binding could specify the translation of the following
11404 datatype to the XML records below:

type employee record = new
record
(
name: characterstring, // employee name
marital status: state (single, married),
exemptions: integer, // number of exemptions for tax deduction
pay rates: array (0..20) of pay rate type, // an array of records
)I
type pay rate type = new
record
(
code: characterstring, // pay code
wage: scaled(10,4), // hourly wages to 4 decimal digits
)I

<employee record>
<name>John Doe</name>
<marital_ status>single</marital_ status>
<exemptions>l</exemptions>
<pay_rates>
<pay rate><code>123</code><wage>10.0000</wage></pay rate>
<pay rate><code>234</code><wage>12.5000</wage></pay rate>
<pay_rates>
</employee record>

The reasons this kind of XML data interoperability is possible in such a short amount of
normative wording is because the 11404 descriptions of datatypes is formal and precise.

' This illustration is based on a strategy of employing several translation phases, each with their own purpose.
This illustration uses three main translation phases, but the number and type of translation phases is dependent
upon the complexity of the structure of the data, and dependent upon the number and kind of exceptions.

"> This excerpt shows the transformation from internal data to XML. For complete data interchange, the reverse
operation is required: the transformation from XML to internal data. The reverse transformation is,
approximately, reversing the order of the rules (e.g., Rule #1 — Rule #3) and reversing the operations, e.g.,
scanning the XML tags and converting them and their structure to internal data.

' In this illustration, namespaces are handled trivially by prepending a prefix to the XML tags. Equally trivially,
XML namespaces could have been used by a slightly different re-write rule for Rule #3.

Page 13 ©2003 F. Farance

ISO/IEC JTC1 SC22 WG11 N0486 2003-08-11

PART 3: DEVELOPING THE REVISION OF 11404

Charter For The Revision of ISO/IEC 11404

The revision of 11404 is sharply focused on achieving several technical goals. The following
excerpt from the Introduction section summarizes this charter.

Page 14

Introduction to the Second Edition (published in 200x)

This second edition incorporates recent technologies and improvements since the first edition
of this International Standard. The following improvements have been incorporated into the
second edition:

— Change title to reflect actual usage. The use of this International Standard is no longer

simply a tool for communicating among programming languages (old title: "Language
Independent Datatypes"), this International Standard is used for formal description of
conceptual datatypes in binding (or binding-independent) standards and used as
formalization of metadata for data elements, data element concepts, and value domains
(see ISO/IEC 11179-3). The old title was potentially misleading because readers might
believe that this International Standard is only useful for programming languages. The
new title "General Purpose Datatypes" captures the essence of the standard and its use.
Incorporate latest technologies. Provide enhancements to the use of ISO/IEC 11404 as a
data type nomenclature reference for current programming languages, interface languages
and data representation languages, specifically Java, IDL, Express, and XML.

Support for semi-structured and unstructured data aggregates. Semi-structured data
and unstructured data includes aggregates where datatyping and navigation may be
unknown or unspecified in advance. For example, some systems permit "discovery" (or
"introspection") of data. In some cases, the datatype may be unknown in advance (e.g., a
compilation time), but may be discovered and process at runtime (e.g., via datatype
libraries or metadata registries).

Support for data longevity, versioning, and migration. There is a need to support,
from a datatyping perspective, obsolete and reserved features, such as data elements and
permissible values (enumerations and states). Marking features as "obsolete" allows
processing, compilation, and runtime systems to "flag" or diagnose old (deprecated)
features, while still maintaining compatibility, thus it is possible to support transitions
from past to present. Similarly, marking features as "reserved" allows processing,
compilation, and runtime systems to "flag" or diagnose potential incompatibilities with
future systems, thus it is possible to support transitions from present to future.
Extensibility of datatypes and value spaces. There is a need to support some kind of
extensibility concept. For example: (1) a GPD specification of an aggregate contains the
elements A and B; (2) an application creates an aggregate with the elements A, B, and C;
(3) are the application's "extensions" of the aggregate acceptable/conforming with the
GPD specification in #1? The answer to #3 is dependent upon the intent and design of the
specification in #1: in some cases extensions are permitted, in some cases extensions are
not permitted. The extensibility concept would allow the user of GPD datatypes to
describe the kind of extensions permitted. This feature is particularly important in (1) data

©2003 F. Farance

ISO/IEC JTC1 SC22 WG11 N0486 2003-08-11

conformance, (2) application runtime environments that permit "discovery" or
"introspection”. This feature is available via the "provision()" capability.

Some features that are not incorporated within GPD are:

— Namespace capability. Given the larger number of declarations, a namespace capability
is necessary.

— Data representation. Although these features are a part of GPD annotations, there is no
standardization of data representation in these annotations. This step is an important link
for data interoperability.

Referencing, Harmonization, Mapping, and Incorporation of Standards

In addition to this revised scoping, the following technologies, documents, and committee
activities are being referenced, harmonized, mapped, and/or incorporated.

One or more of the following would be included in a mapping annex — alignment with
datatypes in: ISO 14750 (ODP IDL); ISO 10303-11 (Express); ISO 8824 (ASN.1); XML
Schema.

The following are being reviewed for incorporation of requirements and features: ISO/IEC
8824 and 8825 (ASN.1); ISO 14750; Open Distributed Processing -- Interface Definition
Language (IDL); ISO 11303-11 and ISO CD 10303-11.2, Data modeling language Express;
XML specification, XML Schema spec:iﬁcation;]7 OMG UML, OMG XMI.

The following new or revised standards are being reviewed for harmonization and mapping:
ISO/TEC 9899 C Programming Language; ISO/IEC 14882 C++ Programming Language;
ISO/IEC 11179 Metadata Registries; ISO/IEC 20943 MDR Content Consistency; ISO/IEC
20944 Metadata Interoperability Bindings.

Liaison relationships are being developed/maintained with the following standards
committees: JTC1/SC2 coded character sets, JTC1/SC6, RMODP and IDL, JTC1/SC22
programming languages, JTC1/SC25/WG4, maintenance of IEC 60559 (IEEE floating point),
JTC1/SC32 data management and interchange, JTC1/SC34 document description and
processing languages, TC184/SC4 product data, TC211 geographic information systems,
IEEE 1596.5, scalable coherent interface (datatypes and representations). Liaison
relationships are being developed/maintained with the following organizations: W3C (World
Wide Web Consortium), OMG (Object Management Group), IETF (Internet Engineering
Task Force).

For Further Information About ISO/IEC JTC1 SC22 WG11

Web Page: http://std.dkuug.dk/jtc1/sc22/wgl 1
WG11 Convener: Mr. Willem WAKKER <willemw @ace.nl>

7 XML Schema references 11404 as a basis for developing the XML Schema concept of a datatype.

Page 15 ©2003 F. Farance

