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Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Commis-
sion) form the specialized system for worldwide standardization. National bodies that are members of ISO or
IEC participate in the development of International Standards through technical committees established by the
respective organization to deal with particular fields of technical activity. ISO and IEC technical committees
collaborate in fields of mutual interest. Other international organizations, governmental and non-governmental,
in liaison with ISO and IEC, also take part in the work.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 3.

In the field of Information Technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC
1. Draft International Standards adopted by the joint technical committee are circulated to national bodies for
voting. Publication as an International Standard requires approval by at least 75% of the national bodies casting
a vote.

Attention is drawn to the possibility that some of the elements of this International Standard may be the subject
of patent rights. ISO and IEC shall not be held responsible for identifying any or all of such patent rights.

International Standard ISO/IEC 13568 was prepared by Joint Technical Committee ISO/IEC JTC 1, Information
Technology, Subcommittee SC 22, Programming languages, their environments and system software interfaces.

Annexes A to C form a normative part of this International Standard. Annexes D and E are for information only.
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Introduction

This International Standard specifies the syntax, type and semantics of the Z notation, as used in formal specifi-
cation.

A specification of a system should aid understanding of that system, assisting development and maintenance of the
system. Specifications need express only abstract properties, unlike implementations such as detailed algorithms,
physical circuits, etc. Specifications may be loose, allowing refinement to many different implementations. Such
abstract and loose specifications can be written in Z.

A specification written in Z models the specified system: it names the components of the system and expresses
the constraints between those components. The meaning of a Z specification—its semantics—is defined as the
set of interpretations (values for the named components) that are consistent with the constraints.

Z uses mathematical notation, hence specifications written in Z are said to be formal: the meaning is captured
by the form of the mathematics used, independent of the names chosen. This formal basis enables mathematical
reasoning, and hence proofs that desired properties are consequences of the specification. The soundness of
inference rules used in such reasoning should be proven relative to the semantics of the Z notation.

This International Standard establishes precise syntax and semantics for a system of notation for mathematics,
providing a basis on which further mathematics can be formalized.

Particular characteristics of Z include:

• its extensible toolkit of mathematical notation;

• its schema notation for specifying structures in the system and for structuring the specification itself; and

• its decidable type system, which allows some well-formedness checks on a specification to be performed
automatically.

Examples of the kinds of systems that have been specified in Z include:

• safety critical systems, such as railway signalling, medical devices, and nuclear power systems;

• security systems, such as transaction processing systems, and communications; and

• general systems, such as programming languages and floating point processors.

Standard Z will also be appropriate for use in:

• formalizing the semantics of other notations, especially in standards documents.

This is the first ISO standard for the Z notation. Much has already been published about Z. Most uses of the
Z notation have been based on the examples in the book “Specification Case Studies” edited by Hayes [2][3].
Early definitions of the notation were made by Sufrin [13] and by King et al [7]. Spivey’s doctoral thesis showed
that the semantics of the notation could be defined in terms of sets of models in ZF set theory [10]. His book
“The Z Notation—A Reference Manual” [11][12] is the most complete definition of the notation, prior to this
International Standard. Differences between Z as defined here and as defined in [12] are discussed in [14]. This
International Standard addresses issues that have been resolved in different ways by different users, and hence
encourages interchange of specifications between diverse tools. It also aims to be a complete formal definition of
Z.

c©ISO/IEC 2000—All rights reserved v
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INTERNATIONAL STANDARD ISO/IEC 13568:2000(E)

Formal Specification—
Z Notation—
Syntax, Type and Semantics

1 Scope

The following are within the scope of this International Standard:

• the syntax of the Z notation;

• the type system of the Z notation;

• the semantics of the Z notation;

• a toolkit of widely used mathematical operators;

• LATEX [9] and email mark-ups of the Z notation.

The following are outside the scope of this International Standard:

• any method of using Z, though an informative annex (E) describes one widely-used convention.

2 Normative references

The following normative documents contain provisions which, through reference in this text, constitute provisions
of this International Standard. For dated references, subsequent amendments to, or revisions of, any of these
publications do not apply. However, parties to agreements based on this International Standard are encouraged
to investigate the possibility of applying the most recent editions of the normative documents indicated below.
For undated references, the latest edition of the normative document referred to applies. Members of ISO and
IEC maintain registers of currently valid International Standards.

ISO/IEC 10646-1:2000, Information Technology—Universal Multiple-Octet Coded Character Set (UCS)—Part 1:
Architecture and Basic Multilingual Plane, plus its amendments and corrigenda

ISO/IEC FCD 10646-2, Information Technology—Universal Multiple-Octet Coded Character Set (UCS)—Part 2:
Secondary Multilingual Plane for scripts and symbols, Supplementary Plane for CJK Ideographs, Special Purpose
Plane

ISO/IEC 14977:1996, Information Technology—Syntactic Metalanguage—Extended BNF

3 Terms and definitions

For the purposes of this International Standard, the following definitions of terms apply. Italicized terms in
definitions are themselves defined in this list.

3.1
binding
finite function from names to values

c©ISO/IEC 2000—All rights reserved 1
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3.2
capture
cause a reference expression to refer to a different declaration from that intended

3.3
carrier set
set of all values in a type

3.4
constraint
property that is either true or false

3.5
environment
function from names to information used in type inference

3.6
interpretation
function from global names of a section to values in the semantic universe

3.7
metalanguage
language used for defining another language

3.8
metavariable
name denoting an arbitrary phrase of a particular syntactic class

3.9
model
interpretation that makes the defining constraints of the corresponding section be true

3.10
schema
set of bindings

3.11
scope of a declaration
part of a specification in which a reference expression whose name is the same as a particular declaration refers
to that declaration

3.12
scope rules
rules determining the scope of a declaration

3.13
semantic universe
set of all semantic values, providing representations for both non-generic and generic Z values

3.14
signature
function from names to types

3.15
type universe
set of all type values, providing representations for all Z types

3.16
ZF set theory
Zermelo-Fraenkel set theory

2 c©ISO/IEC 2000—All rights reserved
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4 Symbols and definitions

For the purposes of this International Standard, the following definitions of symbols apply.

4.1 Syntactic metalanguage

The syntactic metalanguage used is the subset of the standard ISO/IEC 14977:1996 [6] summarised in Table 1,
with modifications so that the mathematical symbols of Z can be presented in a more comprehensible way.

Table 1 – Syntactic metalanguage

Symbol Definition
= defines a non-terminal on the left in terms of the syntax on the right.
| separates alternatives.
, separates notations to be concatenated.
— separates notation on the left from notation to be excepted on the right.
{ } delimit notation to be repeated zero or more times.
[ ] delimit optional notation.
( ) are grouping brackets (parentheses).
’ ’ delimit a terminal symbol.
; terminates a definition.

(* *) delimit commentary.

The infix operators | and , have precedence such that parentheses are needed when concatenating alternations,
but not when alternating between concatenations. The exception notation is always used with parentheses, making
its precedence irrelevant. Whitespace separates tokens of the syntactic metalanguage; it is otherwise ignored.

EXAMPLE The lexis of a NUMERAL token, and its informal reading, are as follows.

NUMERAL = NUMERAL , DIGIT

| DIGIT

;

The non-terminal symbol NUMERAL stands for a maximal sequence of one or more digit characters (without intervening
white space).

The changes to ISO/IEC 14977:1996 allow use of mathematical symbols in the names of non-terminals, and are
formally defined as follows.

NOTE 1 The question marks delimit the formal definition, as required by ISO/IEC 14977:1996.

?
Meta identifier character = all cases from ISO/IEC 14977:1996

| ’`’ | ’∀ ’ | ’∃ ’ | ’•’ | ’⇔’ | ’⇒’ | ’∨’ | ’∧’ | ’¬ ’ | ’∈’
| ’λ ’ | ’µ ’ | ’o

9’ | ’>>’ | ’�’ | ’×’ | ’P’ | ’θ ’
| ’{’ | ’}’ | ’(’ | ’)’ | ’[’ | ’]’ | ’〈|’ | ’|〉’ | ’〈〈’ | ’〉〉’
| ’|’ | ’,’ | ’.’ | ’/’ | ’; ’ | ’:’ | ’=’ | ’\’ | ’ ’ | ’&’ | ’ o

o ’
;

?

NOTE 2 This anticipates a future version of ISO/IEC 14977:1996 permitting use of the characters of ISO/IEC
10646. It also anticipates a future version of ISO/IEC 10646 including all of these mathematical symbols (most are
already included and the rest have been proposed).

The new Meta identifier characters ’(’, ’)’, ’[’, ’]’, ’{’, ’}’, ’,’, ’|’, ’&’, ’; ’ and ’=’ overload existing metalan-
guage characters. Uses of them as Meta identifier characters are with the common suffix -tok, e.g. (-tok,
which may be viewed as a postfix metalanguage operator.

c©ISO/IEC 2000—All rights reserved 3
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A further change to ISO/IEC 14977:1996 is the use of multiple fonts: metalanguage characters and non-terminals
are in Typewriter, those non-terminals that correspond to Z tokens appear as those Z tokens normally appear,
typically in Roman, and comments are in Italic.

The syntactic metalanguage is used in defining Z characters, lexis, concrete syntax and annotated syntax.

4.2 Mathematical metalanguage

4.2.1 Introduction

Logic and Zermelo-Fraenkel set theory are the basis for the semantics of Z. In this section the specific notations
used are described. The notations used here are deliberately similar in appearance to those of Z itself, but are
grounded only on the logic and set theory developed by the wider mathematical community.

The mathematical metalanguage is used in type inference rules and in semantic relations.

4.2.2 Parentheses

The forms of proposition and expression are given below. Where there could be any ambiguity in the parsing,
usually parentheses have been used to clarify, but in any other case the precedence conventions of Z itself are
intended to be used.

The use of parentheses is given in tabular form in Table 2, where p stands for any proposition and e stands for
any expression.

Table 2 – Parentheses in metalanguage

Notation Definition
(p) p
(e) e

The same brackets symbols are used around pairs and tuple extensions (Table 12), but those cannot be omitted
in this way.

4.2.3 Propositions

4.2.3.1 Introduction

The value of a metalanguage proposition is either true or false. The values true and false are distinct. In this
International Standard, no proposition of the metalanguage is both true and false; that is, this metatheory is
consistent. Furthermore, every proposition is either true or false, even where it is not possible to say which; that
is, the logic is two-valued.

4.2.3.2 Propositional connectives

The propositional connectives of negation, conjunction and disjunction are used. In Table 3 and later, p, p2, etc,
represent arbitrary propositions.

Table 3 – Propositional connectives in metalanguage

Notation Name Definition
¬ p negation true iff p is false
p1 ∧ p2 conjunction true iff p1 and p2 are both true
p1 ∨ p2 disjunction false iff p1 and p2 are both false

Conjunction is also sometimes indicated by writing propositions on successive lines, as a vertical list.

4 c©ISO/IEC 2000—All rights reserved
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4.2.3.3 Quantifiers

Existential, universal and unique-existential quantifiers are used. In Tables 4 and 5 and later, i , i2, etc, represent
arbitrary names, e, e2, etc, represent arbitrary expressions, and ... represents zero or more repetitions of the
surrounding formulae; in these tables, the propositions can contain references to the names, but the expressions
cannot.

Table 4 – Quantifiers in metalanguage

Notation Name Definition
∃ i1 : e1; ...; in : en • p existential quantification there exist (∃ ) values of i1 in set e1, ..., in in set

en (i1 : e1; ...; in : en) such that (•) p is true

∀ i1 : e1; ...; in : en • p universal quantification for all (∀ ) values of i1 in set e1, ..., in in set en

(i1 : e1; ...; in : en), it is true that (•) p is true

∃1 i1 : e1; ...; in : en • p unique existential quantification there exists exactly one (∃1) configuration of val-
ues i1 in set e1, ..., in in set en (i1 : e1; ...; in :
en) such that (•) p is true

Certain abbreviations in the writing of quantifications are permitted, as given in Table 5. They shall be applied
repeatedly until none of them is applicable.

Table 5 – Abbreviations in quantifications in metalanguage

Notation Definition
i1, i2, ..., in : e i1 : e; i2, ..., in : e
∃ i1 : e1; ...; in : en | p1 • p2 ∃ i1 : r1; ...; in : en • p1 ∧ p2

∀ i1 : e1; ...; in : en | p1 • p2 ∀ i1 : e1; ...; in : en • (¬ p1) ∨ p2

∃1 i1 : e1; ...; in : en | p1 • p2 ∃1 i1 : e1; ...; in : en • p1 ∧ p2

4.2.3.4 Conditional expression

The conditional expression allows the choice between two alternative values according to the truth or falsity of a
given proposition, as defined in Table 6.

Table 6 – Conditional expression in metalanguage

Notation Definition
if p then e1 else e2 either p is true and e1 is the value, or p is false and e2 is the value

4.2.4 Sets

4.2.4.1 Introduction

The notation used here is based on Zermelo-Fraenkel set theory, as described in for example [1], and the presenta-
tion here is guided by the order given there. In that theory there are only sets. Members of sets can only be other
sets. The word “element” may be used loosely when referring to set members treated as atomic, without regard
to their set nature. If metalanguage operations are applied to inappropriate arguments, they produce unspecified
results rather than being undefined.

4.2.4.2 The universe

The universe, W, denotes a world of sets, providing semantic values for Z expressions. W is big enough to contain
the set NAME, from which Z names are drawn, and an infinite set and be closed under formation of powerset and

c©ISO/IEC 2000—All rights reserved 5
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products. The formation of a suitable W comprising models of sets, tuples and bindings, as needed to model Z,
is well-known in ZF set theory and is assumed in this International Standard.

4.2.4.3 Propositions about sets and elements

The simplest propositions about sets are the relationships of membership, non-membership, subset and equality
between sets or their elements, as detailed in Table 7.

Table 7 – Propositions about sets in metalanguage

Notation Name Definition
e1 ∈ e1 membership true iff e1 is a member of set e2

e1 6∈ e2 non-membership ¬ e1 ∈ e2

e1 ⊆ e2 subset ∀ i : e1 • i ∈ e2

e1 = e2 equality for e1 and e2 considered as sets, e1 ⊆ e2 ∧ e2 ⊆ e1

4.2.4.4 Basic set operations

ZF set theory constructs its repertoire of set operations starting with the axiom of empty set, then showing how
to build up sets using the axioms of pairing and of union, and how to trim them back with the axiom of subset
or separation.

For the purposes of this mathematical metalanguage, the simplest form of set comprehension is defined directly
using the axiom of separation in Table 8. The existence of a universal set W is assumed. Other forms of set
comprehension are defined in terms of the simplest form, using rules in which w is any name distinct from those
already in use. Also defined in Table 8 are notations for empty set, finite set extensions, unions, intersections and
differences.

Table 8 – Basic set operations in metalanguage

Notation Name Definition
{i : e | p} set comprehension subset of elements i of e such that p, by axiom of separation
{i1 : e1; ...; in : en • e} set comprehension {w : W | ∃ i1 : e1; ...; in : en • w = e}
{i1 : e1; ...; in : en | p • e} set comprehension {w : W | ∃ i1 : e1; ...; in : en • p ∧ w = e}
∅ empty set {i : W | false}
{} empty set {i : W | false}
{e} singleton set {i : W | i = e}
e1 ∪ e2 union {i : W | i ∈ e ∨ i ∈ e}
{e1, e2, ..., en} set extension {e1} ∪ {e2, ..., en}
e1 ∩ e2 intersection {i : e1 | i ∈ e2}
e1 \ e2 difference {i : e1 | i 6∈ e2}

4.2.4.5 Powersets

The axiom of powers asserts the existence of a powerset, which is the set of all subsets of a set. The set of all
finite subsets is a subset of the powerset. It is the smallest set containing the empty set and all singleton subsets
of e and closed under the operation of forming the union with singleton subsets of e. Their forms are given in
Table 9.

4.2.5 Numbers

Numbers are not primitive in Zermelo-Fraenkel set theory, but there are several well established ways of repre-
senting them. The choice of coding is irrelevant here and so is not specified. There are notations to measure the
cardinality of a finite set, to define addition of natural numbers and to form the set of natural numbers between
two stated natural numbers, as given in Table 10.
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Table 9 – Powerset in metalanguage

Notation Name Definition
P e set of all subsets {i : W | i ⊆ e}
F e set of all finite subsets {i1 : W | ∀ i2 : PP e | ∅ ∈ i2 ∧ (∀ i3 : i2 • ∀ i4 : e • i3∪{i4} ∈ i2) • i1 ∈ i2}

Table 10 – Operations on numbers in metalanguage

Notation Definition
e1 + e2 sum of natural numbers e1 and e2

# e cardinality of finite set e
e1 . . e2 set of natural numbers between e1 and e2 inclusive

4.2.6 Names

Names are needed for this International Standard. There are several ways of representing names in Zermelo-
Fraenkel set theory. The choice of coding is irrelevant here and so is not specified. Only one operation is needed
on names; it is an infix operation with highest precedence, and is defined in Table 11.

Table 11 – Decorations of names in metalanguage

Notation Definition
i decor + the name that is like i but with the extra stroke +

4.2.7 Tuples and Cartesian products

Tuples and Cartesian products are not primitive in Zermelo-Fraenkel set theory, but there are various ways in
which they may be represented within that theory, such as the well-known encoding given by Kuratowski [1]. The
choice of coding is irrelevant here and so is not specified. In this International Standard, particular names are
always known either to have tuples or Cartesian products as their values, or not to have such values. Therefore
there is never any possibility of accidental confusion between the encoding used to represent the tuple and any
other value which is not a tuple.

In this mathematical metalanguage, tuples and Cartesian products with more than two components are interpreted
as nested binary tuples and products, unlike in Z.

The syntactic forms are given in Table 12.

Table 12 – Tuples and Cartesian products in metalanguage

Notation Name Definition
(e1, e2) pair

e1 7→ e2 maplet (e1, e2)
first e first(e1, e2) = e1

second e second(e1, e2) = e2

e1 × e2 {i1 : e1; i2 : e2 • (i1, i2)}
(e1, e2, ..., en) tuple extension (e1, (e2, ..., en)) where n ≥ 2
e1 × e2 × ...× en Cartesian product e1 × (e2 × ...× en) where n ≥ 2
e ↑ n iterated product e × ...× e where there are n ≥ 2 occurrences of e
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The brackets delimiting a pair or tuple extension written with commas may not be omitted—they are not grouping
parentheses.

4.2.8 Function comprehensions

Table 13 defines the notation for λ , which is a form of comprehension convenient when defining functions.

Table 13 – Function comprehensions in metalanguage

Notation Definition
λ i : e1 • e2 {i : e1 • i 7→ e2}
λ i : e1 | p • e2 {i : e1 | p • i 7→ e2}
λ i1 : e1; ...; in : en • e {i1 : e1; ...; in : en • (i1, ..., in) 7→ e}
λ i1 : e1; ...; in : en | p • e {i1 : e1; ...; in : en | p • (i1, ..., in) 7→ e}

4.2.9 Relations

A relation is defined to be a set of Cartesian pairs. There are several operations involving relations, which are
given equivalences in Table 14. A proposition about relations is given in Table 15.

Table 14 – Relations in metalanguage

Notation Name Definition
id e identity function λ i : e • i
dom e domain {i : e • first i}
e∼ relational inversion {i : e • second i 7→ first i}
e1 C e2 domain restriction {i : e2 | first i ∈ e1}
e1 −C e2 domain subtraction {i : e2 | first i 6∈ e1}
e1(| e2 |) relational image {i : e1 | first i ∈ e2 • second i}
e1

o
9 e2 relational composition {i1 : e1; i2 : e2 | second i1 = first i2 • first i1 7→ second i2}

e1 ⊕ e2 relational overriding ((dom e2)−C e1) ∪ e2

Table 15 – Proposition about relations in metalanguage

Notation Name Definition
e1 ≈ e2 compatible relations (dom e2)C e1 = (dom e1)C e2

4.2.10 Functions

A function is a particular form of relation, where each domain element has only one corresponding range element.
Table 16 shows the various forms of function that are identified, each being a set of functions.

Table 16 – Functions in metalanguage

Notation Name Definition
e1 7→ e2 functions {i1 : P (e1 × e2) | ∀ i2, i3 : i1 | first i2 = first i3 • second i2 = second i3}
e1 → e2 total functions {i : e1 7→ e2 | dom i = e1}
e1 �→ e2 bijections {i : e1 → e2 | i∼ ∈ e2 → e1}
e1 7 7→ e2 finite functions {i : F (e1 × e2) | i ∈ e1 7→ e2}

4.2.10.1 Function use

A function can be juxtaposed with an argument to produce a result, using the notation of Table 17. Metalanguage
notations introduced above that match the e1 e2 pattern, such as dom e, are not applications in this sense.
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Table 17 – Function use in metalanguage

Notation Name Definition
e1 e2 application if there exists a unique e3 such that e2 7→ e3 is in e1,

then the value of e1 e2 is e3, otherwise each e1 e2 has a
fixed but unknown value

4.2.11 Sequences

A sequence is a particular form of function, where the domain elements are all the natural numbers from 1 to the
length of the sequence.

Table 18 – Sequences in metalanguage

Notation Name Definition
〈e1, ...., en〉 sequence {1 7→ e1, ...,n 7→ en}

4.2.12 Disjointness

A labelled family of sets is disjoint when any distinct pair yields sets with no members in common.

Table 19 – Disjointness in metalanguage

Notation Name Definition
disjoint e disjointness ∀ e1, e2 : dom e | e1 6= e2 • e e1 ∩ e e2 = ∅

4.3 Transformation metalanguage

Each transformation rule is written in the following form.

concrete phrase template =⇒ less concrete phrase template

The phrase templates are patterns; they are not specific sentences and they are not written in the syntactic
metalanguage. These patterns are written in a notation based on the concrete and annotated syntaxes, with
metavariables appearing in place of syntactically well-formed phrases. Where several phrases of the same syntactic
classes have to be distinguished, these metavariables are given distinct numeric subscripts. The letters k , m , n , r

are used as metavariables for such numeric subscripts. The patterns can be viewed either as using the non-terminal
symbols of the Z lexis with the -tok suffixes omitted from mathematical symbols, or as using the mathematical
rendering with the box tokens in place of paragraph outlines. Transformations map parse trees of phrases to
other parse trees. The metavariables are defined in Tables 20 and 21 (the phrases being defined in clauses 7 and
8, and the operator words in 7.4.4).

EXAMPLE 1 The syntactic transformation rule for a schema definition paragraph, and an informal reading of it,
are as follows.

SCH i t END =⇒ AX [i == t] END

A schema definition paragraph is formed from a box token SCH, a name i, a schema text t, and an END token. An
equivalent axiomatic description paragraph is that which would be written textually as a box token AX, a [ token, the
original name i, a == token, the original schema text t, a ] token, and an END token.

EXAMPLE 2 The semantic transformation rule for a schema hiding expression, and an informal reading of it, are
as follows.

(e o
o P[σ]) \ (i, ..., in) =⇒ ∃ i : carrier (σ i); ...; in : carrier (σ in) • e
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Table 20 – Metavariables for phrases

Symbol Definition
b denotes a list of digits within a NUMERAL token.
c denotes a digit within a NUMERAL token.
d denotes a Paragraph phrase (d for definition/description).
de denotes a Declaration phrase.
e denotes an Expression phrase.
f denotes a free type’s NAME token.
g denotes an injection’s NAME token (g for ingection).
h denotes an element’s NAME token (h for helement).
i, j denote NAME tokens or DeclName or RefName phrases (i for identifier).
p denotes a Predicate phrase.
s denotes a Section phrase.
al denotes an ExpressionList phrase (al for list argument).
t denotes a SchemaText phrase (t for text).
u, v , w , x , y denote distinct names for new local declarations.
z denotes a Specification sentence.
τ denotes a Type phrase.
σ denotes a Signature phrase.
+ denotes a STROKE token.
∗ denotes a { STROKE } phrase.
... denotes elision of repetitions of surrounding phrases, the total number of

repetitions depending on syntax.

A schema with signature σ from which some names are hidden is semantically equivalent to the schema existential
quantification of the hidden names from the schema. Each name is declared with the set that is the carrier set of the
type of the name in the signature of the schema.

The applicability of a transformation rule can be guarded by a condition written above the =⇒ symbol. Local
definitions can be associated with a transformation rule by appending a where clause, in which later definitions
can refer to earlier definitions.

The transformation rule metalanguage is used in defining characterisation rules, syntactic transformation rules,
type inference rules, and semantic transformation rules.

4.4 Type inference rule metalanguage

Each type inference rule is written in the following form.

type subsequents

type sequent
(side−condition)

where local−declaration
and ...

This can be read as: if the type subsequents are valid, and the side-condition is true, then the type sequent is
valid, in the context of the zero-or-more local declarations. The side-condition is optional; if omitted, the type
inference rule is equivalent to one with a true side-condition.

The annotated syntax establishes notation for writing types as Type phrases and for writing signatures as
Signature phrases. The o

o operator allows annotations such as types to be associated with other phrases.
Determining whether a type sequent is valid or not involves manipulation of types and signatures. This requires
viewing types and signatures as values, and having a mathematical notation to do the manipulation. Signatures
are viewed as functions from names to type values. Type is used to denote the set of type values as well as the set
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Table 21 – Metavariables for operator words

Symbol Definition
el denotes an EL token.
elp denotes an ELP token.
er denotes an ER token.
ere denotes an ERE token.
erep denotes an EREP token.
erp denotes an ERP token.
es denotes an ES token.
ess denotes an ES token or SS token.
in denotes an I token.
ip denotes an IP token or ∈ token or = token.
ln denotes an L token.
lp denotes an LP token.
post denotes a POST token.
postp denotes a POSTP token.
pre denotes a PRE token.
prep denotes a PREP token.
sr denotes an SR token.
sre denotes an SRE token.
srep denotes an SREP token.
srp denotes an SRP token.
ss denotes an SS token.

of type phrases, the appropriate interpretation being distinguished by context of use. Similarly, NAME is also used
to denote a set of name values. These values all lie within the type universe. A type’s NAME has a corresponding
type value in the type universe whereas its carrier set is in the semantic universe.

Type values are formed from just finite sets and ordered pairs, so the mathematical metalanguage introduced in
section 4.2 suffices for their manipulation.

Details of which names are in scope are kept in environments. The various kinds of environment are defined in
Table 22, and metavariables for environments are defined in Table 23.

Table 22 – Environments

Symbol Definition
TypeEnv denotes type environments, where TypeEnv == NAME 7 7→ Type. Type en-

vironments associate names with types. They are like signatures, but are
used in different contexts.

SectTypeEnv denotes section-type environments, where SectTypeEnv == NAME 7 7→
(NAME× Type). Section-type environments associate names of declarations
with the name of the ancestral section that originally declared the name
paired with its type.

SectEnv denotes section environments, where SectEnv == NAME 7 7→ SectTypeEnv.
Section environments associate section names with section-type environ-
ments.

Type sequents are written using a ` symbol superscripted with a mnemonic letter to distinguish the syntax of
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Table 23 – Metavariables for environments

Symbol Definition
Σ denotes a type environment, Σ : TypeEnv.
Γ denotes a section-type environment, Γ : SectTypeEnv.
Λ denotes a section environment, Λ : SectEnv.

the phrase appearing to its right—see Table 24.

Table 24 – Type sequents

Symbol Definition
`Z z a type sequent asserting that specification z is well-typed.

Λ `S s o
o Γ a type sequent asserting that, in the context of section environment Λ,

section s has section-type environment Γ.

Σ `D d o
o σ a type sequent asserting that, in the context of type environment Σ, the

paragraph d has signature σ.

Σ `P p a type sequent asserting that, in the context of type environment Σ, the
predicate p is well-typed.

Σ `E e o
o τ a type sequent asserting that, in the context of type environment Σ, the

expression e has type τ.

NOTE 1 These superscripts are the same as the superscripts used on the [[ ]] semantic brackets in the semantic
relations below.

NOTE 2 Unlike the `? symbol of Z, there is no ? as these sequents are decidable.

The annotated phrases to the right of ` in type sequents are phrase templates written using the same metavariables
as the syntactic transformation rules; see Table 20.

EXAMPLE The type inference rule for a schema conjunction expression, and its informal reading, are as follows.

Σ `E e o
o τ Σ `E e o

o τ

Σ `E (e o
o τ) ∧ (e o

o τ) o
o τ

 τ = P[β1]
τ = P[β2]
β1 ≈ β2

τ = P[β1 ∪ β2]


In a schema conjunction expression e ∧ e, expressions e and e shall be schemas, and their signatures shall be
compatible. The type of the whole expression is that of the schema whose signature is the union of those of expressions
e and e.

NOTE 3 The metavariables σ and σ denote syntactic phrases. These are mapped implicitly to type values,
so that the set union can be computed, and the resulting signature is implicitly mapped back to a syntactic
phrase. These mappings are not made explicit as they would make the type inference rules harder to read, e.g.
[[ [[σ]] ∪ [[σ]] ]].

This metalanguage is used in defining type inference rules.
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4.5 Semantic relation metalanguage

Most semantic relations are equations written in the following form.

[[phrase template]] = semantics

Where the definition is only partial, the equality notation is not appropriate, and instead a lower bound is specified
on the semantics.

semantics ⊆ [[ µ e • e ]]E

The phrase templates use the same metavariables as used by the syntactic transformation rules—see Table 20.

Symbols concerned with the domain of the semantic definitions are listed in Tables 25 and 26.

Table 25 – Semantic universe

Symbol Definition
U denotes the semantic universe, providing semantic values for all Z values,

where U == W ∪ (W ↑ n →W). U comprises W and Z generic definitions
each as a function from the semantic values of its instantiating expressions
(a tuple in W) to a member of W.

Model denotes models, where Model == NAME 7 7→ U. Models associate names of
declarations with semantic values. They are applied only to names in their
domains, as guaranteed by well-typedness.

SectionModels denotes functions from sections’ names to their sets of models, where
SectionModels == NAME 7 7→ PModel .

Table 26 – Variables over semantic universe

Symbol Definition
M denotes a model, M : Model .
T denotes a section’s name and its set of models, T : SectionModels.
t denotes a binding semantic value, t : NAME 7 7→W.
g denotes a generic semantic value, g : W→W.
w , x , y denote non-generic semantic values, w : W; x : W; y : W.

The meaning of a phrase template is given by a semantic relation from the Z phrase in terms of operations of ZF
set theory on the semantic universe. There are different semantic relations for each syntactic notation, written
using the conventional [[ ]] semantic brackets, but here superscripted with a mnemonic letter to distinguish the
syntax of phrase appearing within them—see Table 27.

NOTE The superscripts are the same as those used on the ` of type sequents in the type inference rules above.

EXAMPLE The semantic relation for a conjunction predicate, and its informal reading, are as follows. The con-
junction predicate p ∧ p is true if and only if p and p are true.

[[ p ∧ p ]]P = [[ p ]]P ∩ [[ p ]]P

In terms of the semantic universe, it is true in those models in which both p and p are true, and is false otherwise.

Within the semantic relations, the idioms listed in Table 28 occur repeatedly.

Semantic relation metalanguage is used in defining semantic relations.
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Table 27 – Semantic relations

Symbol Definition
[[ z ]]Z denotes the meaning of specification z, where [[ z ]]Z ∈ SectionModels. The

meaning of a specification is the function from its sections’ names to their
sets of models.

[[ s ]]S denotes the meaning of section s, where [[ s ]]S ∈ SectionModels 7→
SectionModels. The meaning of a section is given by the extension of
a SectionModels function with an extra maplet corresponding to the given
section.

[[ d ]]D denotes the meaning of paragraph d, where [[ d ]]D ∈ Model ↔ Model . The
meaning of a paragraph relates a model to that model extended according
to that paragraph.

[[ p ]]P denotes the meaning of predicate p, where [[ p ]]P ∈ PModel . The meaning
of a predicate is the set of all models in which that predicate is true.

[[ e ]]E denotes the meaning of expression e, where [[ e ]]E ∈ Model → W. The
meaning of an expression is a function returning the semantic value of the
expression in the given model.

[[ τ ]]T denotes the meaning of type τ, where [[ τ ]]T ∈ Model 7→ P U. The meaning
of a type is the semantic value of its carrier set, as determined from the
given model.

Table 28 – Semantic idioms

Idiom Description
[[ e ]]EM denotes the value of expression e in model M

M ⊕ t denotes the model M giving semantic values for more global declarations
overridden by the binding t giving the semantic values of locally declared
names

5 Conformance

5.1 Phases of the definition

The definition of the Z notation is divided into a sequence of phases, as illustrated in Figure 1. Each arrow
represents a phase from a representation of a Z specification at its source to another representation of the Z
specification at its target. The phase is named at the left margin. Some phases detect errors in the specification;
these are shown drawn off to the right-hand side.

NOTE 1 Figure 1 shows the order in which the phases are applied, and where errors are detected; it does not show
information flows.

NOTE 2 The arrows are analogous to total and partial function arrows in the Z mathematical toolkit, but drawn
vertically.
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Figure 1 – Phases of the definition
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5.2 Conformance requirements

5.2.1 Specification conformance

For a Z specification to conform to this International Standard, no errors shall be detected by any of the phases
shown in Figure 1. In words, for a Z specification to conform to this International Standard, its formal text shall
be valid mark-up of a sequence of Z characters, that can be lexed as a valid sequence of tokens, that can be parsed
as a sentence of the concrete syntax, and that is well-typed according to the type inference system.

NOTE The presence of sections that have no models does not affect the conformance of their specification.

5.2.2 Mark-up conformance

A mark-up for Z based on LATEX [9] conforms to this International Standard if and only if it follows the rules
given for LATEX mark-up in A.2.

A mark-up for Z used in email correspondence conforms to this International Standard if and only if it follows
the rules given for email mark-up in A.3.

Mark-up for Z based on any other mark-up language is permitted; it shall be possible to define a functional
mapping from that mark-up to sequences of Z characters.

The ISO/IEC 10646 representation may be used directly—the identity function is an acceptable mapping.

5.2.3 Deductive system conformance

A Z deductive system conforms to this International Standard if and only if its rules are sound with respect to
the semantics, i.e. if both of the following conditions hold:

a) all of its axioms hold in all models of all Z specifications, i.e. for any axiom p,

[[ p ]]P = Model

b) all of its rules of inference have the property that the intersection of the sets of models of each of the premises
is contained in the model of the conclusion, i.e. for any rule of inference where p is deduced from p, ... pn,

[[ p ]]P ∩ ... ∩ [[ pn ]]P ⊆ [[ p ]]P

All constraints appearing before a conjecture in a specification may be used as premises in inferences about
that conjecture. A Z deductive system should document whether or not it allows constraints appearing after a
conjecture in a specification to be used as premises in inferences about that conjecture.

The semantic relation is defined loosely in this International Standard, so as to permit alternative treatments of
undefinedness. A Z deductive system may take a particular position on undefinedness. That position should be
clearly documented.

5.2.4 Mathematical toolkit conformance

A Z section whose name is the same as a section of the mathematical toolkit of annex B conforms to this
International Standard if and only if it defines the same set of models as that section of the mathematical toolkit.
A Z section whose name is prelude conforms to this International Standard if and only if it defines the same set
of models as the section in clause 11.

A mathematical toolkit conforms to this standard if it defines a conformant section called standard toolkit.

NOTE 1 The set of models defined by a section within a specification may be found by applying the meaning of
the specification to the section’s name.

NOTE 2 A conforming section of the toolkit may formulate its definitions differently from those in annex B.
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NOTE 3 A conforming section of the toolkit may partition its definitions amongst parent sections that differ from
those in annex B.

NOTE 4 Alternative and additional toolkits are not precluded, but are required to have different section names to
avoid confusion.

NOTE 5 Some names are loosely defined, such as A, and may be further constrained by sections that use toolkit
sections, but not by toolkit sections themselves.

5.2.5 Support tool conformance

A strongly conforming Z support tool shall recognise at least one conforming mark-up, accepting all conforming Z
specifications presented to it, and rejecting all non-conforming Z specifications presented to it. A weakly conform-
ing Z support tool shall never accept a non-conforming Z specification, nor reject a conforming Z specification,
but it may state that it is unable to determine whether or not a Z specification conforms.

NOTE Strong conformance can be summarised as always being right, whereas weak conformance is never being
wrong.

EXAMPLE A tool would be weakly conformant if it were to announce its inability to determine the conformance
of a Z specification that used names longer than the tool could handle, but would be non-conformant if it silently
truncated long names.

Certain exceptions to general rules are anticipated and permitted in subsequent clauses, because of, for example,
implementation considerations or for backwards compatibility with pre-existing tools.

5.3 Structure of this document

The phases in the definition of the Z notation, and the representations of specifications manipulated by those
phases, as illustrated in Figure 1, are specified in the following clauses and annexes.

Annex A, Mark-ups, specifies two source text representations and corresponding mark-up phases for translating
source text to sequences of Z characters.

Clause 6 specifies the Z characters by their appearances and their names in ISO/IEC 10646.

Clause 7, Lexis, specifies tokens and the lexing phase that translates a sequence of Z characters to a sequence of
tokens.

Clause 8 specifies the grammar of the concrete syntax, and hence abstractly specifies the parsing phase that
translates a sequence of tokens to a parse tree of a concrete syntax sentence. Some information from parsing
operator template paragraphs is fed back to the lexis phase.

Clause 9 specifies the characterising phase, during which characteristic tuples are made explicit in the parse tree
of a concrete syntax sentence.

Clause 10 specifies the grammar of the annotated syntax, defining the target language for the syntactic transfor-
mation phase.

Clause 11 specifies the prelude section, providing an initial environment of definitions.

Clause 12 specifies the syntactic transformation phase that translates a parse tree of a concrete syntax sentence
to a parse tree of an equivalent annotated syntax sentence.

Clause 13 specifies the type inference phase, during which type annotations are added to the parse tree of the
annotated syntax sentence, and reference expressions that refer to generic definitions are translated to generic
instantiation expressions.

Clause 14 specifies the semantic transformation phase, during which some annotated parse trees are translated
to equivalent other annotated parse trees.

Clause 15 specifies the semantic relation between a sentence of the remaining annotated syntax and its meaning
in ZF set theory.
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Annex C duplicates those parts of the definition that fit into an organisation by concrete syntax production.

6 Z characters

6.1 Introduction

A Z character is the smallest unit of information in this International Standard; Z characters are used to build
tokens (clause 7), which are in turn the units of information in the concrete syntax (clause 8). The Z characters
are defined by reference to ISO/IEC 10646-1 and ISO/IEC 10646-2: for each Z character is listed its appearance,
code position and name.

Many Z characters are not present in the standard 7-bit ASCII encoding [4]. It is possible to represent Z
characters in ASCII, by defining a mark-up, where several ASCII characters are used together to represent a
single Z character. This International Standard defines some ASCII mark-ups in annex A by relation to the
ISO/IEC 10646 representation defined here. Other mark-ups of Z characters can similarly be defined by relation
to the ISO/IEC 10646 representation.

6.2 Formal definition of Z characters

ZCHAR = DIGIT | LETTER | SPECIAL | SYMBOL ;

DIGIT = ’0’ | ’1’ | ’2’ | ’3’ | ’4’ | ’5’ | ’6’ | ’7’ | ’8’ | ’9’
| any other ISO/IEC 10646 character with the ‘decimal’ property (as supported)
;

LETTER = LATIN | GREEK | OTHERLETTER
| any characters of the mathematical toolkit with ‘letter’ property (as supported)
| any other ISO/IEC 10646 characters with the ‘letter’ property (as supported)
;

LATIN = ’A’ | ’B’ | ’C’ | ’D’ | ’E’ | ’F’ | ’G’ | ’H ’ | ’I ’
| ’J’ | ’K’ | ’L’ | ’M ’ | ’N ’ | ’O’ | ’P’ | ’Q’ | ’R’
| ’S’ | ’T’ | ’U ’ | ’V ’ | ’W ’ | ’X ’ | ’Y ’ | ’Z’
| ’a’ | ’b’ | ’c’ | ’d’ | ’e’ | ’f ’ | ’g’ | ’h’ | ’i’
| ’j’ | ’k’ | ’l’ | ’m’ | ’n’ | ’o’ | ’p’ | ’q’ | ’r’
| ’s’ | ’t’ | ’u’ | ’v’ | ’w’ | ’x’ | ’y’ | ’z’
;

GREEK = ’∆’ | ’Ξ’ | ’θ’ | ’λ’ | ’µ’ ;

OTHERLETTER = ’A’ | ’N’ | ’P’ ;

SPECIAL = STROKECHAR | WORDGLUE | BRACKET | BOXCHAR | SPACE ;

STROKECHAR = ’′’ | ’!’ | ’?’ ;

WORDGLUE = ’↗’ | ’↙’ | ’↘’ | ’↖’ | ’ ’ ;

BRACKET = ’(’ | ’)’ | ’[’ | ’]’ | ’{’ | ’}’ | ’〈|’ | ’|〉’ | ’〈〈’ | ’〉〉’ ;

BOXCHAR = AXCHAR | SCHCHAR | GENCHAR | ENDCHAR | NLCHAR ;

SYMBOL = ’|’ | ’&’ | ’`’ | ’∧’ | ’∨’ | ’⇒’ | ’⇔’ | ’¬’ | ’∀’ | ’∃’
| ’×’ | ’/’ | ’=’ | ’∈’ | ’:’ | ’; ’ | ’,’ | ’.’ | ’•’
| ’\’ | ’�’ | ’o

9’ | ’>>’ | ’+’
| any characters of the mathematical toolkit not included above (as supported)
| any other ISO/IEC 10646 characters not included above (as supported)
;
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6.3 Additional restrictions and notes

The word supported means available for use in presenting a specification.

The characters enumerated in the formal definition are those used by the core language; they shall be supported.
If the mathematical toolkit is supported, then its characters shall be supported. The “other ISO/IEC 10646
characters” may also be supported, extending DIGIT, LETTER or SYMBOL according to their property, but not
extending SPECIAL. Use of characters that are absent from ISO/IEC 10646 is permitted, but there is no standard
way of distinguishing which of DIGIT, LETTER or SYMBOL (not SPECIAL) they extend, and specifications using
them might not be interchangeable between tools.

SPACE is a Z character that serves to separate two sequences of Z characters that would otherwise be mis-lexed
as a single token.

NOTE 1 STROKECHAR characters are used in STROKE tokens in the lexis.

NOTE 2 WORDGLUE characters are used in building NAME tokens in the lexis.

NOTE 3 BOXCHAR characters correspond to Z’s distinctive boxes around paragraphs.

6.4 Z character representations

6.4.1 Introduction

The following tables show the Z characters in their mathematical representation. (Other representations are given
in annex A.) The columns give:

Math: The representation for rendering the character on a high resolution device, such as a bit-mapped
screen, or on paper (either hand-written, or printed).

Code position: The encoding of the Z character in ISO/IEC 10646. Encodings that are enclosed in brackets
are ones that have been assigned by the Unicode Technical Committee to appear in a future version of their
standard [5], but which are not yet known to have been adopted into ISO/IEC 10646.

Character name: The name for the character in ISO/IEC 10646 or, in the case of characters with bracketed
code positions, the name suggested by the Unicode Technical Committee.

NOTE 1 The code position column is included to assist location of the characters by many users; it is not necessary
for definition of the characters.

NOTE 2 From the point of view of conformance, only those Z characters with code positions already registered in
ISO/IEC 10646 are relevant. When the other Z characters are adopted into ISO/IEC 10646, a Technical Corrigendum
to the present standard will be issued.

6.4.2 Digit characters

Math Code position Character name

0 0000 0030 DIGIT ZERO
...

...
...

9 0000 0039 DIGIT NINE
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6.4.3 Letter characters

6.4.3.1 Latin alphabet characters

Math Code position Character name

A 0000 0041 LATIN CAPITAL LETTER A
...

...
...

Z 0000 005A LATIN CAPITAL LETTER Z
a 0000 0061 LATIN SMALL LETTER A
...

...
...

z 0000 007A LATIN SMALL LETTER Z

6.4.3.2 Greek alphabet characters

The Greek alphabet characters used by the core language are those listed here.

Math Code position Character name

∆ 0000 0394 GREEK CAPITAL LETTER DELTA
Ξ 0000 039E GREEK CAPITAL LETTER XI
θ 0000 03B8 GREEK SMALL LETTER THETA
λ 0000 03BB GREEK SMALL LETTER LAMBDA
µ 0000 03BC GREEK SMALL LETTER MU

6.4.3.3 Other Z core language letter characters

The other Z core language characters with the ISO/IEC 10646 ‘letter’ property are listed here. (These characters
are introduced in the prelude, clause 11.)

Math Code position Character name

A [0001 D538] MATH OPEN-FACE CAPITAL A
N 0000 2115 DOUBLE-STRUCK CAPITAL N
P 0000 2119 DOUBLE-STRUCK CAPITAL P

6.4.4 Special characters

6.4.4.1 Stroke characters
Math Code position Character name

′ 0000 02B9 MODIFIER LETTER PRIME
! 0000 0021 EXCLAMATION MARK
? 0000 003F QUESTION MARK

6.4.4.2 Word glue characters

The characters ’↗’, ’↙’, ’↘’, and ’↖’ may be presented as in-line literals, or they may indicate a rais-
ing/lowering of the text, and possible size change. Such rendering details are not defined here.

Math Code position Character name

↗ 0000 2197 NORTH EAST ARROW
↙ 0000 2199 SOUTH WEST ARROW
↘ 0000 2198 SOUTH EAST ARROW
↖ 0000 2196 NORTH WEST ARROW

0000 005F LOW LINE
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6.4.4.3 Bracket characters
Math Code position Character name

( 0000 0028 LEFT PARENTHESIS
) 0000 0029 RIGHT PARENTHESIS
[ 0000 005B LEFT SQUARE BRACKET
] 0000 005D RIGHT SQUARE BRACKET
{ 0000 007B LEFT CURLY BRACKET
} 0000 007D RIGHT CURLY BRACKET
〈| [0000 2989] Z NOTATION LEFT BINDING BRACKET
|〉 [0000 298A] Z NOTATION RIGHT BINDING BRACKET
〈〈 0000 300A LEFT DOUBLE ANGLE BRACKET
〉〉 0000 300B RIGHT DOUBLE ANGLE BRACKET

6.4.4.4 Box characters

The ENDCHAR character is used to mark the end of a Paragraph. The NLCHAR character is used to mark a hard
newline (see section 7.5). The box rendering of the BOXCHAR characters is as lines drawn around the Z text (see
section 8.5).

Z character Simple rendering Code position Character name

AXCHAR | 0000 2577 BOX DRAWINGS LIGHT DOWN
SCHCHAR p 0000 250C BOX DRAWINGS LIGHT DOWN AND RIGHT
GENCHAR = 0000 2550 BOX DRAWINGS DOUBLE HORIZONTAL
ENDCHAR (new line) 0000 2029 PARAGRAPH SEPARATOR
NLCHAR (new line) 0000 2028 LINE SEPARATOR

6.4.4.5 SPACE character
Z character Code position Character name

SPACE 0000 0020 SPACE
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6.4.5 Symbol characters except mathematical toolkit characters

Math Code position Character name

| 0000 007C VERTICAL LINE
& 0000 0026 AMPERSAND
` 0000 22A2 RIGHT TACK
∧ 0000 2227 LOGICAL AND
∨ 0000 2228 LOGICAL OR
⇒ 0000 21D2 RIGHTWARDS DOUBLE ARROW
⇔ 0000 21D4 LEFT RIGHT DOUBLE ARROW
¬ 0000 00AC NOT SIGN
∀ 0000 2200 FOR ALL
∃ 0000 2203 THERE EXISTS
× 0000 00D7 MULTIPLICATION SIGN
/ 0000 002F SOLIDUS
= 0000 003D EQUALS SIGN
∈ 0000 2208 ELEMENT OF
: 0000 003A COLON
; 0000 003B SEMICOLON
, 0000 002C COMMA
. 0000 002E FULL STOP
• [0000 2981] Z NOTATION SPOT
\ [0000 2055] BIG REVERSE SOLIDUS
� [0000 2A21] Z NOTATION SCHEMA PROJECTION
o
9 [0000 2A1F] Z NOTATION SCHEMA COMPOSITION
>> [0000 2A20] Z NOTATION SCHEMA PIPING
+ 0000 002B PLUS SIGN
o
o [0000 2982] Z NOTATION TYPE COLON

6.4.6 Mathematical toolkit characters

The mathematical toolkit (annex B) need not be supported by an implementation. If it is supported, it shall use
the representations given here.

Mathematical toolkit names that use only Z core language characters, or combinations of Z characters defined
here, are not themselves listed here.
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Math Code position Character name

↔ 0000 2194 LEFT RIGHT ARROW
→ 0000 2192 RIGHTWARDS ARROW
6= 0000 2260 NOT EQUAL TO
6∈ 0000 2209 NOT AN ELEMENT OF
∅ 0000 2205 EMPTY SET
⊆ 0000 2286 SUBSET OF OR EQUAL TO
⊂ 0000 2282 SUBSET OF
∪ 0000 222A UNION
∩ 0000 2229 INTERSECTION
\ 0000 005C REVERSE SOLIDUS
	 0000 2296 CIRCLED MINUS⋃

0000 22C3 N-ARY UNION⋂
0000 22C2 N-ARY INTERSECTION

F [0001 D53D] MATH OPEN-FACE CAPITAL F
7→ 0000 21A6 RIGHTWARDS ARROW FROM BAR
o
9 [0000 2A3E] Z NOTATION RELATIONAL COMPOSITION
◦ 0000 2218 RING OPERATOR
C 0000 25C1 WHITE LEFT-POINTING TRIANGLE
B 0000 25B7 WHITE RIGHT-POINTING TRIANGLE
−C [0000 2A64] Z NOTATION DOMAIN ANTIRESTRICTION
−B [0000 2A65] Z NOTATION RANGE ANTIRESTRICTION
∼ 0000 007E TILDE
(| [0000 2987] Z NOTATION LEFT IMAGE BRACKET
|) [0000 2988] Z NOTATION RIGHT IMAGE BRACKET
⊕ 0000 2295 CIRCLED PLUS
7→ [0000 21F8] RIGHTWARDS ARROW WITH VERTICAL STROKE
7� [0000 2914] RIGHTWARDS ARROW WITH TAIL WITH VERTICAL STROKE
� 0000 21A3 RIGHTWARDS ARROW WITH TAIL
7→→ [0000 2900] RIGHTWARDS TWO-HEADED ARROW WITH VERTICAL STROKE
→→ 0000 21A0 RIGHTWARDS TWO-HEADED ARROW
�→ [0000 2916] RIGHTWARDS TWO-HEADED ARROW WITH TAIL
7 7→ [0000 21FB] RIGHTWARDS ARROW WITH DOUBLE VERTICAL STROKE
7 7� [0000 2915] RIGHTWARDS ARROW WITH TAIL WITH DOUBLE VERTICAL STROKE
Z 0000 2124 DOUBLE-STRUCK CAPITAL Z
- 0000 002D HYPHEN-MINUS
− 0000 2212 MINUS SIGN
≤ 0000 2264 LESS-THAN OR EQUAL TO
< 0000 003C LESS-THAN SIGN
≥ 0000 2265 GREATER-THAN OR EQUAL TO
> 0000 003E GREATER-THAN SIGN
# 0000 0023 NUMBER SIGN
〈 0000 2329 LEFT-POINTING ANGLE BRACKET
〉 0000 232A RIGHT-POINTING ANGLE BRACKET
a 0000 2040 CHARACTER TIE
� 0000 21BF UPWARDS HARPOON WITH BARB LEFTWARDS
� 0000 21BE UPWARDS HARPOON WITH BARB RIGHTWARDS

6.4.7 Renderings of Z characters

Renderings of Z characters are called glyphs (following the terminology of ISO/IEC 10646). A rendering of a Z
character on a graphics screen is typically different from its rendering on a piece of paper: the glyphs used for Z
characters are device-dependent.
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A Z character may also be rendered using different glyphs at different places in a specification, for reasons of
emphasis or aesthetics, but such different glyphs still represent the same Z character. For example, ‘d ’, ‘d’, ‘d’
and ‘d’ are all the same Z character.

For historical reasons, some different Z characters have similar-looking renderings. In particular:

• schema composition ‘o9’ and the mathematical toolkit character relational composition ‘o9’ are different Z
characters;

• schema projection ‘�’ and the mathematical toolkit character filter ‘�’ are different Z characters;

• schema hiding ‘\’ and the mathematical toolkit character set minus ‘\’ are different Z characters.

7 Lexis

7.1 Introduction

The lexis specifies a function from sequences of Z characters to sequences of tokens. The domain of the function
involves all the Z characters of clause 6. The range of the function involves all the tokens used in clause 8. The
function is partial: sequences of Z characters that do not conform to the lexis are excluded from consideration at
this stage.

The lexis is composed of two parts: a context-free part followed by a context-sensitive part. The former translates
the stream of Z characters into a stream of DECORWORDs and tokens. The latter classifies each DECORWORD as being
a keyword, an operator token, or a NAME token, taking into account the lexical scopes of the operators (see 7.4.4).

7.2 Formal definition of context-free lexis

TOKENSTREAM = { SPACE } , { TOKEN , { SPACE } } ;

TOKEN = DECORWORD | NUMERAL | STROKE
| (-tok | )-tok | [-tok | ]-tok | {-tok | }-tok | 〈| | |〉 | 〈〈 | 〉〉
| AX | GENAX | SCH | GENSCH | END | NL
;

DECORWORD = WORD , { STROKE } ;

WORD = WORDPART , { WORDPART }
| LETTER , ALPHASTR , { WORDPART }
| SYMBOL , SYMBOLSTR , { WORDPART }
;

WORDPART = WORDGLUE , ( ALPHASTR | SYMBOLSTR ) ;

ALPHASTR = { LETTER | DIGIT } ;

SYMBOLSTR = { SYMBOL } ;

NUMERAL = NUMERAL , DIGIT
| DIGIT
;

STROKE = STROKECHAR
| ’↘’ , DIGIT , ’↖’
;
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(-tok = ’(’ ;
)-tok = ’)’ ;
[-tok = ’[’ ;
]-tok = ’]’ ;
{-tok = ’{’ ;
}-tok = ’}’ ;
〈| = ’〈|’ ;
|〉 = ’|〉’ ;
〈〈 = ’〈〈’ ;
〉〉 = ’〉〉’ ;

AX = AXCHAR ;
SCH = SCHCHAR ;
GENAX = AXCHAR , GENCHAR ;
GENSCH = SCHCHAR , GENCHAR ;
END = ENDCHAR ;
NL = NLCHAR ;

7.3 Additional lexical restrictions, notes and examples

SPACE is not itself lexed as part of any token. It can be used freely between tokens. The cases where its use is
necessary are: between two WORDs, which would otherwise be lexed as a single WORD; between an alphabetic WORD
and a NUMERAL, which would otherwise be lexed as a single WORD; between a DECORWORD and a STROKE (a decoration
expression), which would otherwise be lexed as a single DECORWORD; and between two consecutive NUMERALs, which
would otherwise be lexed as a single NUMERAL.

Words are formed from alphanumeric and symbolic parts.

EXAMPLE 1 The following strings of Z characters are single DECORWORDs: ‘&+=’, ‘x + y ’, ‘x+y ’, ‘x+y ’, ‘x+
+y ’.

However, ‘x+y ’ comprises the three DECORWORDs ‘x ’, ‘+’ and ‘y ’.

EXAMPLE 2 The following strings of Z characters are single DECORWORDs: ‘λS ’, ‘∆S ’, ‘∃×’, ‘∃ X ’, ‘∃X ’. However,
‘∃X ’ is the keyword token ‘∃’, followed by the DECORWORD ‘X ’.

EXAMPLE 3 The following strings of Z characters are single DECORWORDs: ‘×:∈’, ‘x : e’, ‘x :e ’. However, ‘x :e’ is the
word ‘x ’, followed by the keyword token ‘:’, followed by the DECORWORD ‘e’.

The concrete syntax allows a RefName, which may be a NAME that includes strokes; it also allows an expression
to be decorated with a stroke. When the decorated expression is a NAME, the lexis disambiguates the two cases
by using the white space between the DECORWORD and the STROKE: in the absence of any white space, the stroke
shall be lexed as part of the DECORWORD; in the presence of white space, the stroke shall be lexed as a decoration
on the expression.

EXAMPLE 4 x ! is the DECORWORD comprising the WORD ‘x ’ followed by the STROKE ‘!’.
x ! is the decorated expression comprising the RefName expression ‘x ’ decorated with the STROKE ‘!’.
x ! ! is the decorated expression comprising the RefName expression ‘x !’ decorated with the STROKE ‘!’.

The lexis allows a WORD to include subscript digits; it also allows a DECORWORD to be decorated with subscript
digits. Trailing subscript digits shall be lexed as strokes, not as part of a WORD.

EXAMPLE 5 xa 1 is a DECORWORD comprising the WORD ‘xa ’ and the STROKE ‘1’.
xa? is a DECORWORD comprising the WORD ‘xa ’ and the STROKE ‘?’.
x1a is a DECORWORD comprising the WORD ‘x1a ’ and no strokes.

A multi-digit last WORDPART enclosed in a ↘ . . .↖ pair is deprecated, because of the visual ambiguity with
multiple STROKE subscript digits.

NOTE 1 There is no need for any particular mark-up to follow these rules; this syntax applies only to tokens built
from Z characters.
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NOTE 2 Although a parser does not need to know the spelling of particular instances of DECORWORD, NUMERAL,
STROKE, etc tokens, subsequent phases of processing such as typechecking do. This relation between instances of
tokens and spellings is not explicitly formalized here.

Some tools may impose restrictions on the forms of some names. Section names that are entirely alphanumeric,
capitalized and short are the most likely to be portable between tools.

7.4 Context-sensitive lexis

7.4.1 Introduction

The context-sensitive part of lexis maps each DECORWORD to either a keyword token, an operator token, or a NAME
token. It also strips all SPACEs from the token stream, and forwards all other tokens unchanged.

If a DECORWORD’s spelling is exactly that of a keyword, the DECORWORD is mapped to the corresponding keyword
token. Otherwise, if the DECORWORD’s WORD part’s spelling is that of an operator word, the DECORWORD is mapped
to the relevant operator token. Otherwise, the DECORWORD is mapped to a NAME token.

In the case of a NAME token, for every ’↘’ WORDGLUE character in its WORD part, there shall be a paired following
’↖’ WORDGLUE character, for every ’↗’ WORDGLUE character in its WORD part, there shall be a paired following
’↙’ WORDGLUE character, and these shall occur only in nested pairs.

NOTE 1 Operators have a similar restriction applied to the whole operator name (12.2.8), not to the individual
words within the operator.

The keywords are as listed in the following tables. No other spellings give rise to keyword tokens. The columns
give:

Spelling: The sequence of Z characters representing the rendering of the token on a high resolution device,
such as a bit-mapped screen, or on paper (either hand-written, or printed).

Token: The token used for that keyword in the concrete syntax.

Token name: A suggested form for reading the keyword out loud, suitable for use in reviews, or for dis-
cussing specifications over the telephone. In the following, an English language form is given; for other
natural languages, other forms may be defined.

NOTE 2 Even where a keyword consists of a single Z character, the token name tends to reflect the keyword’s
function rather than the form of the Z character.
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7.4.2 Alphabetic keywords

Spelling Token Token name

else else else
false false false
function function function
generic generic generic
if if if
leftassoc leftassoc left [associative]
let let let
P P powerset
parents parents parents
pre pre pre[condition]
relation relation relation
rightassoc rightassoc right [associative]
section section section
then then then
true true true

7.4.3 Symbolic keywords

Spelling Token Token name

: : colon
== == define equal
, ,-tok comma
::= ::= free equals
| |-tok bar
& & and also [free types]
\ \ hide
/ / rename
. . select | dot
; ; -tok semi[colon]

arg[ument]
, , , , list arg[ument]
= =-tok equals

EXAMPLE 1 = is recognised as the keyword token =-tok; := is recognised as a NAME token; ::= is recognised as the
keyword token.
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Spelling Token Token name

`? `? conjecture
∀ ∀ for all
• • spot | fat dot
∃ ∃ exists
∃1 ∃1 unique exists
⇔ ⇔ equivalent | if and only if
⇒ ⇒ implies
∨ ∨ or
∧ ∧ and
¬ ¬ not
∈ ∈ in | member of | element of
� � project
× × cross
λ λ lambda
µ µ mu
θ θ theta
o
9

o
9 schema compose

>> >> schema pipe

EXAMPLE 2 ∃ and ∃1 (‘∃’, ‘↘’, ‘1’, ‘↖’) are recognised as keyword tokens; ∃0 (‘∃’, ‘↘’, ‘0’, ‘↖’) is recognised as
a NAME token.

EXAMPLE 3 λ is recognised as the keyword token; λx is recognised as a NAME token; λ x is recognised as the
keyword token followed by a NAME token.

7.4.4 User-defined operators

Each operator template creates additional keyword-like associations between WORDs and operator tokens. The
scope of these associations is the whole of the section in which the operator template appears (not just from
the operator template onwards), as well as all sections of which that section is an ancestor, excluding section
headers.

NOTE The set of active associations is always a function. This International Standard does not specify how that
function is determined: operator template paragraphs provide the information, yet in their concrete syntax it is
assumed that the function is already known.

The appropriate token for an operator word is as follows.
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PREP prefix unary relation
PRE prefix unary function or generic
POSTP postfix unary relation
POST postfix unary function or generic
IP infix binary relation
I infix binary function or generic
LP left bracket of non-unary relation
L left bracket of non-unary function or generic
ELP first word preceded by expression of non-unary relation
EL first word preceded by expression of non-unary function or generic
ERP right bracket preceded by expression of non-unary relation
ER right bracket preceded by expression of non-unary function or generic
SRP right bracket preceded by list argument of non-unary relation
SR right bracket preceded by list argument of non-unary function or generic
EREP last word followed by expression and preceded by expression of tertiary or higher relation
ERE last word followed by expression and preceded by expression of tertiary or higher function or generic
SREP last word followed by expression and preceded by list argument of tertiary or higher relation
SRE last word followed by expression and preceded by list argument of tertiary or higher function or generic
ES middle word preceded by expression of non-unary operator
SS middle word preceded by list argument of non-unary operator

EXAMPLE 1 The operator template paragraph for the ( + ) operator adds one entry to the mapping.

Spelling Token

+ I

EXAMPLE 2 The operator template paragraph for the ( (| |)) operator adds two entries to the mapping.

Spelling Token

(| EL

|) ER

EXAMPLE 3 The operator template paragraph for the (disjoint ) operator adds one entry to the mapping.

Spelling Token

disjoint PREP

EXAMPLE 4 The operator template paragraph for the (〈 〉) operator adds two entries to the mapping.

Spelling Token

〈 L

〉 SR

7.5 Newlines

The Z character NLCHAR is lexed either as a token separator (like the SPACE character) or as the token NL,
depending on its context. A soft newline is a NLCHAR that is lexed as a token separator. A hard newline is a
NLCHAR that is lexed as a NL token.

Tokens are assigned to a newline category, namely BOTH, AFTER, BEFORE or NEITHER, based on whether
that token could start or end a Z phrase.

c©ISO/IEC 2000—All rights reserved 29



ISO/IEC 13568:2000(E) 8 Concrete syntax

• BOTH: newlines are soft before and after the token, because it is infix, something else has to appear before
it and after it.

else function generic leftassoc parents relation rightassoc section then
::= |-tok 〈〈 〉〉 & `? , , ∧ ∨ ⇒ ⇔ × / =-tok ∈ == : ; -tok ,-tok . • \ � o

9 >>
I IP EL ELP ERE EREP ES SS SRE SREP

All newlines are soft outside of a DeclPart or a Predicate.

NOTE Tokens that cannot appear in these contexts are in category BOTH. This includes the box tokens.
Newlines at the very beginning or end of a specification are soft.

• AFTER: newlines are soft after the token, because it is prefix, something else has to appear after it.

if let pre
[−tok ¬ ∀ ∃ ∃1 P (−tok {−tok 〈| λ µ θ
PRE PREP L LP

• BEFORE: newlines are soft before the token, because it is postfix, something else has to appear before it.

]−tok )−tok }−tok |〉
POST POSTP ER ERP SR SRP

• NEITHER: no newlines are soft, because such a token is nofix, nothing else need appear before or after it.

false true
NAME NUMERAL STROKE

For each NLCHAR, the newline categories of the closest token generated from the preceding Z characters and the
token generated from the immediately following Z characters are examined. If either token allows the newline to
be soft in that position, it is soft, otherwise it is hard (and hence recognised as a NL token).

The operator template paragraph allows the definition of various mixfix names (see section 7.4.4), which are
placed in the appropriate newline category. Other (ordinary) user declared names are nofix, and so are placed in
NEITHER.

Consecutive NLCHARs are treated the same as a single NLCHAR.

8 Concrete syntax

8.1 Introduction

The concrete syntax defines the syntax of the Z language: every sentence of the Z language is recognised by
this syntax, and all sentences recognised by this syntax are sentences of the Z language. The concrete syntax
is written in terms of the tokens generated by the lexis (clause 7). There are no terminal symbols within this
syntax, so as to establish a formal connection with that lexis. Sequences of tokens that are not recognised by this
syntax are not sentences of the Z language and are thus excluded from consideration by subsequent phases and
so are not given a semantics by this International Standard.

A parser conforming to this concrete syntax converts a concrete sentence to a parse tree.

The non-terminal symbols of the concrete syntax that are written as mathematical symbols or are entirely
CAPITALIZED or Roman are Z tokens defined in the lexis (claue 7). The other non-terminal symbols are written
in MixedCase and are defined within the concrete syntax.
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8.2 Formal definition of concrete syntax

Specification = { Section } (* sectioned specification *)
| { Paragraph } (* anonymous specification *)
;

Section = section , NAME , parents , [ NAME , { ,-tok , NAME } ] , END ,
{ Paragraph } (* inheriting section *)

| section , NAME , END , { Paragraph } (* base section *)
;

Paragraph = [-tok , NAME , { ,-tok , NAME } , ]-tok , END (* given types *)
| AX , SchemaText , END (* axiomatic description *)
| SCH , NAME , SchemaText , END (* schema definition *)
| GENAX , [-tok , Formals , ]-tok , SchemaText , END

(* generic axiomatic description *)
| GENSCH , NAME , [-tok , Formals , ]-tok , SchemaText , END

(* generic schema definition *)
| DeclName , == , Expression , END (* horizontal definition *)
| NAME , [-tok , Formals , ]-tok , == , Expression , END

(* generic horizontal definition *)
| GenName , == , Expression , END (* generic operator definition *)
| Freetype , { & , Freetype } , END (* free types *)
| `? , Predicate , END (* conjecture *)
| [-tok , Formals , ]-tok , `? , Predicate , END (* generic conjecture *)
| OperatorTemplate , END (* operator template *)
;

Freetype = NAME , ::= , Branch , { |-tok , Branch } ; (* free type *)

Branch = DeclName , [ 〈〈 , Expression , 〉〉 ] ; (* element or injection *)

Formals = NAME , { ,-tok , NAME } ; (* generic parameters *)

Predicate = Predicate , NL , Predicate (* newline conjunction *)
| Predicate , ; -tok , Predicate (* semicolon conjunction *)
| ∀ , SchemaText , • , Predicate (* universal quantification *)
| ∃ , SchemaText , • , Predicate (* existential quantification *)
| ∃1 , SchemaText , • , Predicate (* unique existential quantification *)
| Predicate , ⇔ , Predicate (* equivalence *)
| Predicate , ⇒ , Predicate (* implication *)
| Predicate , ∨ , Predicate (* disjunction *)
| Predicate , ∧ , Predicate (* conjunction *)
| ¬ , Predicate (* negation *)
| Relation (* relation operator application *)
| Expression (* schema predicate *)
| true (* truth *)
| false (* falsity *)
| (-tok , Predicate , )-tok (* parenthesized predicate *)
;
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Expression = ∀ , SchemaText , • , Expression (* schema universal quantification *)
| ∃ , SchemaText , • , Expression (* schema existential quantification *)
| ∃1 , SchemaText , • , Expression (* schema unique existential quantification *)
| λ , SchemaText , • , Expression (* function construction *)
| µ , SchemaText , • , Expression (* definite description *)
| let , DeclName , == , Expression

{ ; -tok , DeclName , == , Expression }
, • , Expression (* substitution expression *)

| Expression , ⇔ , Expression (* schema equivalence *)
| Expression , ⇒ , Expression (* schema implication *)
| Expression , ∨ , Expression (* schema disjunction *)
| Expression , ∧ , Expression (* schema conjunction *)
| ¬ , Expression (* schema negation *)
| if , Predicate , then , Expression , else , Expression (* conditional *)
| Expression , o

9 , Expression (* schema composition *)
| Expression , >> , Expression (* schema piping *)
| Expression , \ , (-tok , DeclName , { ,-tok , DeclName } , )-tok

(* schema hiding *)
| Expression , � , Expression (* schema projection *)
| pre , Expression (* schema precondition *)
| Expression , × , Expression , { × , Expression } (* Cartesian product *)
| P , Expression (* powerset *)
| Application (* function and generic operator application *)
| Expression , Expression (* application *)
| Expression , STROKE (* schema decoration *)
| Expression , [-tok , DeclName , / , DeclName ,

{ ,-tok , DeclName , / , DeclName } , ]-tok (* schema renaming *)
| Expression , . , RefName (* binding selection *)
| Expression , . , NUMERAL (* tuple selection *)
| θ , Expression , { STROKE } (* binding construction *)
| RefName (* reference *)
| RefName , [-tok , Expression , { ,-tok , Expression } , ]-tok

(* generic instantiation *)
| NUMERAL (* number literal *)

| {-tok , [ Expression , { ,-tok , Expression } ] , }-tok (* set extension *)
| {-tok , SchemaText , • , Expression , }-tok (* set comprehension *)
| ( ( {-tok , SchemaText , }-tok ) — ( {-tok , }-tok ) )

— ( {-tok , Expression , }-tok )
(* characteristic set comprehension *)

| ( [-tok , SchemaText , ]-tok ) — ( [-tok , Expression , ]-tok )
(* schema construction *)

| 〈| , [ DeclName , == , Expression ,
{ ,-tok , DeclName , == , Expression } ] , |〉 (* binding extension *)

| (-tok , Expression , ,-tok , Expression , { ,-tok , Expression } , )-tok
(* tuple extension *)

| (-tok , µ , SchemaText , )-tok (* characteristic definite description *)
| (-tok , Expression , )-tok (* parenthesized expression *)
;

SchemaText = [ DeclPart ] , [ |-tok , Predicate ] ;

DeclPart = Declaration , { ( ; -tok | NL ) , Declaration } ;
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Declaration = DeclName , { ,-tok , DeclName } , : , Expression
| DeclName , == , Expression
| Expression
;

OperatorTemplate = relation , Template
| function , CategoryTemplate
| generic , CategoryTemplate
;

CategoryTemplate = Prec , PrefixTemplate
| Prec , PostfixTemplate
| Prec , Assoc , InfixTemplate
| NofixTemplate
;

Prec = NUMERAL ;

Assoc = leftassoc
| rightassoc
;

Template = PrefixTemplate
| PostfixTemplate
| InfixTemplate
| NofixTemplate
;

PrefixTemplate = (-tok , PrefixName , )-tok
| (-tok , P , , )-tok
;

PostfixTemplate = (-tok , PostfixName , )-tok ;

InfixTemplate = (-tok , InfixName , )-tok ;

NofixTemplate = (-tok , NofixName , )-tok ;

DeclName = NAME
| OpName
;

RefName = NAME
| (-tok , OpName , )-tok
;

OpName = PrefixName
| PostfixName
| InfixName
| NofixName
;

PrefixName = PRE ,
| PREP ,
| L , { , ES | , , , SS } , ( , ERE | , , , SRE ) ,
| LP , { , ES | , , , SS } , ( , EREP | , , , SREP ) ,
;
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PostfixName = , POST
| , POSTP
| , EL , { , ES | , , , SS } , ( , ER | , , , SR )
| , ELP , { , ES | , , , SS } , ( , ERP | , , , SRP )
;

InfixName = , I ,
| , IP ,
| , EL , { , ES | , , , SS } , ( , ERE | , , , SRE ) ,
| , ELP , { , ES | , , , SS } , ( , EREP | , , , SREP ) ,
;

NofixName = L , { , ES | , , , SS } , ( , ER | , , , SR )
| LP , { , ES | , , , SS } , ( , ERP | , , , SRP )
;

GenName = PrefixGenName
| PostfixGenName
| InfixGenName
| NofixGenName
;

PrefixGenName = PRE , NAME
| L , { NAME , ( ES | SS ) } , NAME , ( ERE | SRE ) , NAME
;

PostfixGenName = NAME , POST
| NAME , EL , { NAME , ( ES | SS ) } , NAME , ( ER | SR )
;

InfixGenName = NAME , I , NAME
| NAME , EL , { NAME , ( ES | SS ) } , NAME , ( ERE | SRE ) , NAME
;

NofixGenName = L , { NAME , ( ES | SS ) } , NAME , ( ER | SR ) ;

Relation = PrefixRel
| PostfixRel
| InfixRel
| NofixRel
;

PrefixRel = PREP , Expression
| LP , ExpSep , ( Expression , EREP | ExpressionList , SREP ) , Expression
;

PostfixRel = Expression , POSTP
| Expression , ELP , ExpSep , ( Expression , ERP | ExpressionList , SRP )
;

InfixRel = Expression , ( ∈ | =-tok | IP ) , Expression
{ ( ∈ | =-tok | IP ) , Expression }

| Expression , ELP , ExpSep ,
( Expression , EREP | ExpressionList , SREP ) , Expression

;

NofixRel = LP , ExpSep , ( Expression , ERP | ExpressionList , SRP ) ;
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Application = PrefixApp
| PostfixApp
| InfixApp
| NofixApp
;

PrefixApp = PRE , Expression
| L , ExpSep , ( Expression , ERE | ExpressionList , SRE ) , Expression
;

PostfixApp = Expression , POST
| Expression , EL , ExpSep , ( Expression , ER | ExpressionList , SR )
;

InfixApp = Expression , I , Expression
| Expression , EL , ExpSep ,

( Expression , ERE | ExpressionList , SRE ) , Expression
;

NofixApp = L , ExpSep , ( Expression , ER | ExpressionList , SR ) ;

ExpSep = { Expression , ES | ExpressionList , SS } ;

ExpressionList = [ Expression , { ,-tok , Expression } ] ;

8.3 Operator precedences and associativities

Table 29 defines the relative precedences of the productions of Expression and Predicate. The rows in the table
are ordered so that the entries with higher precedence (and so that bind more strongly) appear nearer the top of the
table than those with lower precedence (that bind more weakly). Associativity has significance only in determining
the nesting of applications involving non-associative operators of the same precedence. Explicitly-defined function
and generic operator applications have a range of precedences specified numerically in the corresponding operator
template paragraph. Cartesian product expressions have precedence value 8 and powerset expressions have
precedence value 80 within that numeric range.

8.4 Additional syntactic restrictions and notes

All prefix operators are right associative. All postfix operators are left associative. Different associativities shall
not be used at the same precedence level by operator template paragraphs in the same scope.

STROKE is used in three contexts: within NAMEs, in binding construction expressions, and in schema decoration
expressions. The condition for a STROKE to be considered as part of a NAME was given in 7.3. Other STROKEs are
considered to be parts of binding construction expressions if they can be when interpreted from left to right. The
schema decoration expression interpretation is considered last.

EXAMPLE 1 In θS ′ ′ ′, the first ′ is part of the NAME S ′, the second ′ can be part of the binding construction
expression, and the third ′ is syntactically part of a schema decoration expression, though that will be rejected by
the type inference rules as only schemas can be decorated, not bindings.

A predicate can be just an expression, yet the same logical operators (∧, ∨, ¬ , ⇒, ⇔, ∀ , ∃ , ∃1 ) can be used
in both expressions and predicates. Where a predicate is expected, and one of these logical operators is used on
expressions, there is an ambiguity: either the whole logical operation is an expression and that expression is used
as a predicate, or the whole logical operation is a predicate involving expressions each used as a predicate. This
ambiguity is benign, as both interpretations have the same precedence, associativity and meaning.

The NUMERAL in a tuple selection expression is interpreted in decimal (base ten). That the number is in the
appropriate range is checked by the relevant type inference rule (13.2.6.7). Leading zeroes shall be accepted and
ignored.

c©ISO/IEC 2000—All rights reserved 35



ISO/IEC 13568:2000(E) 8 Concrete syntax

Table 29 – Operator precedences and associativities

Productions Associativity
binding construction
binding selection, tuple selection
schema renaming
schema decoration
application left
Cartesian product, powerset, function and generic operator application
schema precondition
schema projection left
schema hiding
schema piping
schema composition
conditional
substitution expression
definite description
function construction
relation operator application
negation
conjunction
disjunction
implication right
equivalence
universal, existential and unique existential quantifications
newline conjunction, semicolon conjunction

A section header shall be parsed in its entirety before bringing the declarations and operator templates of its
parent sections into scope.

NOTE 1 This prevents surprises when the name of a parent section is the same as the name of an operator defined
in another parent.

In the Template rule’s auxiliaries, the name of each of the operator tokens shall not have any STROKEs.

NOTE 2 This is so that any common decoration of those words can be treated as an application of a decorated
instance of that operator.

NOTE 3 The order of productions in the Predicate and Expression rules is based roughly on the precedences of
their operators. Some productions have the same precedence as their neighbours, and so the separate table of operator
precedences is necessary.

NOTE 4 One way of parsing nested operator applications at different user-defined levels of precedence and asso-
ciativity is explained by Lalonde and des Rivieres [8]. Using distinct variants of the operator tokens PRE|...|SS for
relational operators from those for function and generic operators allows that transformation to avoid dealing with
those notations whose precedences lie between the relations and the functions, such as the schema operations.

NOTE 5 The juxtaposition of two expressions ee is always parsed as the application of function e to argument
e, never as the application of relation e to argument e which in some previous dialects of Z, e.g. King et al [7],
was equivalent to the relation e ∈ e. In Standard Z, membership is the normal form of all relational predicates (see
12.2.10), and juxtaposition is the normal form (canonical representation) of all application expressions (see 12.2.11).

NOTE 6 In the PrefixTemplate rule, the production for powerset enables explicit definition of P1 in the mathe-
matical toolkit to coexist with the treatment of P as a keyword by the lexis.

NOTE 7 The syntax of conjectures is deliberately simple. This is so as to be compatible with the syntaxes of
sequents as found in as many different theorem provers as possible, while establishing a common form to enable
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interchange.

NOTE 8 Implementations of parsers commonly inspect the next token from the input stream and have to decide
there and then whether that token is another token in an incomplete phrase or whether the current phrase is complete
and the token is starting a new phrase. The tokens defined by the lexis (clause 7) are insufficient for such an
implementation of a parser.

EXAMPLE 2 At the first comma in the set extension {x , y , z} the x shall be seen to be an expression, yet the
phrase might yet turn out to be the set comprehension {x , y , z : e}.

EXAMPLE 3 At the opening square bracket in the application to a schema construction i [e1; e2] the name i
shall be seen to be an expression, yet the phrase might yet turn out to be the generic instantiation i [e1].

One solution to such problems is to try all possible parses and accept the one that works. Another solution is to
have the lexer lookahead far enough to be able to distinguish which of the alternative cases is present, and to provide
the parser with one of several distinct tokens. Expressions {x , y , z} and {x , y , z : e} can be distinguished by looking
ahead from a comma, over following alternating names (including operator names) and commas, for a : or == token,
and using distinct comma tokens depending on whether that is seen or not. Expressions i [e1; e2] and i [e1] can be
distinguished by looking ahead from the open square bracket for the matching closing square bracket, stopping if a
; -tok, :, == or |-tok token is encountered, and using distinct open square bracket tokens for the matched and stopped
cases.

NOTE 9 An ExpressionList phrase will be regarded as an expression whose value is a sequence (see 12.2.12).
In defining operators that take such ExpressionLists as arguments, it is convenient to have the operations of
sequence toolkit (see B.8) in scope.

NOTE 10 The ExpressionList rule is used only in operator applications, not in set extension, tuple extension and
generic instantiation expressions, so that syntactic transformation 12.2.12 is applied only to operator applications.

8.5 Box renderings

There are two different sets of box renderings in widespread use, as illustrated here. Any particular presentation
of a section shall use one set or the other throughout. The middle line shall be omitted when the paragraph has
no predicates, but otherwise shall be retained if the paragraph has no declarations. The outlines need be only as
wide as the text, but are here shown as wide as the page.

8.5.1 First box rendering

The following four paragraphs illustrate the first of two alternative renderings of box tokens.

An axiomatic paragraph, involving the AX, |-tok and END tokens, shall have this box rendering.

DeclPart

Predicate

A schema paragraph, involving the SCH, |-tok and END tokens, shall have this box rendering.

NAME
DeclPart

Predicate

A generic axiomatic paragraph, involving the GENAX, |-tok and END tokens, shall have this box rendering.

[Formals]
DeclPart

Predicate
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A generic schema paragraph, involving the GENSCH, |-tok and END tokens, shall have this box rendering.

NAME [Formals]
DeclPart

Predicate

8.5.2 Second box rendering

The following four paragraphs illustrate the second of two alternative renderings of box tokens.

An axiomatic paragraph, involving the AX, |-tok and END tokens, shall have this box rendering.

DeclPart

Predicate

A schema paragraph, involving the SCH, |-tok and END tokens, shall have this box rendering.

NAME
DeclPart

Predicate

A generic axiomatic paragraph, involving the GENAX, |-tok and END tokens, shall have this box rendering.

[Formals]
DeclPart

Predicate

A generic schema paragraph, involving the GENSCH, |-tok and END tokens, shall have this box rendering.

NAME [Formals]
DeclPart

Predicate

9 Characterisation rules

9.1 Introduction

The characterisation rules together map the parse tree of a concrete syntax sentence to the parse tree of an
equivalent concrete syntax sentence in which all implicit characteristic tuples have been made explicit.

Only concrete trees that are mapped to different trees are given explicit characterisation rules. The characterisa-
tion rules are listed in the same order as the corresponding productions of the concrete syntax.

Characteristic tuples are calculated from schema texts by the metalanguage function chartuple (9.2).

9.2 Characteristic tuple

A characteristic tuple is computed in two phases: charac, which returns a sequence of expressions, and mktuple,
which converts that sequence into the characteristic tuple.

chartuple t = mktuple (charac t)
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Sequences of expressions are enclosed between metalanguage brackets 〈 and 〉, in general 〈e, ..., en〉. Two se-
quences of expressions are concatenated by the a operator.

〈e, ..., en〉a 〈en+, ..., en+m〉 = 〈e, ..., en, en+, ..., en+m〉

Unlike the mathematical metalanguage of 4.2, the operands of these two notations are not semantic values but
parse trees of the concrete syntax.

charac (de; ...; den | p) = charac (de; ...; den)

charac (de; ...; den) = charac de a ...a charac den where n ≥ 1
charac () = 〈〈| |〉〉

charac (i, ..., in : e) = 〈i, ..., in〉
charac (i == e) = 〈i〉

charac e ∗ = 〈θ e∗〉

mktuple 〈e〉 = e

mktuple 〈e, ..., en〉 = (e, ..., en) where n ≥ 2

NOTE 1 In the last case of charac, the type inference rule 13.2.6.9 ensures that e is a schema.

NOTE 2 In mktuple, the result is a Z expression, so the brackets in its second equation are those of a tuple extension.

9.3 Formal definition of characterisation rules

9.3.1 Function construction expression

The value of the function construction expression λ t • e is the function associating values of the characteristic
tuple of t with corresponding values of e.

λ t • e =⇒ {t • (chartuple t, e)}

It is semantically equivalent to the set of pairs representation of that function.

9.3.2 Characteristic set comprehension expression

The value of the characteristic set comprehension expression {t} is the set of the values of the characteristic tuple
of t.

{t} =⇒ {t • chartuple t}

It is semantically equivalent to the corresponding set comprehension expression in which the characteristic tuple
is made explicit.

9.3.3 Characteristic definite description expression

The value of the characteristic definite description expression (µ t) is the sole value of the characteristic tuple of
schema text t.

(µ t) =⇒ µ t • chartuple t

It is semantically equivalent to the corresponding definite description expression in which the characteristic tuple
is made explicit.
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10 Annotated syntax

10.1 Introduction

The annotated syntax defines a language that includes all sentences that could be produced by application of the
syntactic transformation rules (clause 12) to sentences of the concrete syntax (clause 8). This language’s set of
sentences would be a subset of that defined by the concrete syntax but for introduction of type annotations and
use of expressions in place of schema texts.

Like the concrete syntax, this annotated syntax is written in terms of the tokens generated by the lexis; there
are no terminal symbols within this syntax. Three additional tokens are used besides those defined in the lexis:
GIVEN, GENTYPE, and o

o. An additional character, 1, in included in the STROKECHAR and WORDGLUE classes.
It is assumed that 1 is distinct from the characters used in concrete phrases. This restriction ensures that its
use in forming single names from the constituent words of operators produces results that cannot clash with any
other names. It also ensures that its use as a stroke on inclusion declarations cannot result in any captures of
references to other declarations. Further characters ♠ and ♥ are included in the STROKECHAR class. They are also
assumed to be distinct from the characters used in concrete phrases. They are used in defining the semantics of
types, again for the purpose of avoiding variable captures.

There are no parentheses in the annotated syntax as defined here. A sentence or phrase of the annotated
syntax should be thought of as a tree structure of nested formulae. When presented as linear text, however, the
precedences of the concrete syntax may be assumed and parentheses may be inserted to override those precedences.
The precedence of the type annotation o

o operator is then weaker than all other operators, and the precedences
and associativities of the type notations are analogous to those of the concrete notations of similar appearance.

NOTE 1 This annotated syntax permits some verification of the syntactic transformation rules to be performed.

NOTE 2 The annotated syntax is similar to an abstract syntax used in a tool, but the level of abstraction effected
by the characterization rules and syntactic transformation rules might not be appropriate for a tool.

10.2 Formal definition of annotated syntax

Specification = { Section } ; (* sectioned specification *)

Section = section , NAME , parents , [ NAME , { ,-tok , NAME } ] , END ,
{ Paragraph } , [ o

o , SectTypeEnv ] ; (* inheriting section *)

Paragraph = [-tok , NAME , { ,-tok , NAME } , ]-tok , END ,
[ o

o , Signature ] (* given types *)
| AX , Expression , END ,

[ o
o , Signature ] (* axiomatic description *)

| GENAX , [-tok , NAME , { ,-tok , NAME } , ]-tok , Expression , END ,
[ o

o , Signature ] (* generic axiomatic description *)
| NAME , ::= , NAME , [ 〈〈 , Expression , 〉〉 ] ,

{ |-tok , NAME , [ 〈〈 , Expression , 〉〉 ] } ,
{ & , NAME , ::= , NAME , [ 〈〈 , Expression , 〉〉 ] ,
{ |-tok , NAME , [ 〈〈 , Expression , 〉〉 ] } } , END ,
[ o

o , Signature ] (* free types *)
| `? , Predicate , END ,

[ o
o , Signature ] (* conjecture *)

| [-tok , NAME , { ,-tok , NAME } , ]-tok , `? , Predicate , END ,
[ o

o , Signature ] (* generic conjecture *)
;
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Predicate = Expression , ∈ , Expression (* membership *)
| true (* truth *)
| ¬ , Predicate (* negation *)
| Predicate , ∧ , Predicate (* conjunction *)
| ∀ , Expression , • , Predicate (* universal quantification *)
| ∃1 , Expression , • , Predicate (* unique existential quantification *)
;
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Expression = NAME ,
[ o

o , Type ] (* reference *)
| NAME , [-tok , Expression , { ,-tok , Expression } , ]-tok ,

[ o
o , Type ] (* generic instantiation *)

| {-tok , [ Expression , { ,-tok , Expression } ] , }-tok ,
[ o

o , Type ] (* set extension *)
| {-tok , Expression , • , Expression , }-tok ,

[ o
o , Type ] (* set comprehension *)

| P , Expression ,
[ o

o , Type ] (* powerset *)
| (-tok , Expression , ,-tok , Expression , { ,-tok , Expression } , )-tok ,

[ o
o , Type ] (* tuple extension *)

| Expression , . , NUMERAL ,
[ o

o , Type ] (* tuple selection *)
| 〈| , NAME , == , Expression ,

{ ,-tok , NAME , == , Expression } , |〉 ,
[ o

o , Type ] (* binding extension *)
| θ , Expression , { STROKE } ,

[ o
o , Type ] (* binding construction *)

| Expression , . , NAME ,
[ o

o , Type ] (* binding selection *)
| Expression , Expression ,

[ o
o , Type ] (* application *)

| µ , Expression , • , Expression ,
[ o

o , Type ] (* definite description *)
| [-tok , NAME , : , Expression , ]-tok ,

[ o
o , Type ] (* variable construction *)

| [-tok , Expression , |-tok , Predicate , ]-tok ,
[ o

o , Type ] (* schema construction *)
| ¬ , Expression ,

[ o
o , Type ] (* schema negation *)

| Expression , ∧ , Expression ,
[ o

o , Type ] (* schema conjunction *)
| Expression , \ , (-tok , NAME , { ,-tok , NAME } , )-tok ,

[ o
o , Type ] (* schema hiding *)

| ∀ , Expression , • , Expression ,
[ o

o , Type ] (* schema universal quantification *)
| ∃1 , Expression , • , Expression ,

[ o
o , Type ] (* schema unique existential quantification *)

| Expression , [-tok , NAME , / , NAME ,
{ ,-tok , NAME , / , NAME } , ]-tok ,

[ o
o , Type ] (* schema renaming *)

| pre , Expression ,
[ o

o , Type ] (* schema precondition *)
| Expression , o

9 , Expression ,
[ o

o , Type ] (* schema composition *)
| Expression , >> , Expression ,

[ o
o , Type ] (* schema piping *)

| Expression , STROKE ,
[ o

o , Type ] (* schema decoration *)
;
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SectTypeEnv = [ NAME , : , (-tok , NAME , ,-tok , Type , )-tok ,
{ ; -tok , NAME , : , (-tok , NAME , ,-tok , Type , )-tok } ] ;

Type = GIVEN , NAME (* given type *)
| GENTYPE , NAME (* generic parameter type *)
| P , Type (* powerset type *)
| Type , × , Type , { × , Type } (* Cartesian product type *)
| [-tok , Signature , ]-tok (* schema type *)
| [-tok , NAME , { ,-tok , NAME } , ]-tok ,

Type , [ ,-tok , Type ] (* generic type *)
| α , { STROKE } (* variable type *)
;

Signature = [ NAME , : , Type , { ; -tok , NAME , : , Type } ]
| β , { STROKE } (* variable signature *)
| ε (* empty signature *)
;

10.3 Notes

NOTE 1 More free types than necessary are permitted by this syntax: as a result of syntactic transformation
12.2.3.5, all elements appear before all injections.

NOTE 2 More types than necessary are permitted by this syntax: generic type notation is used at only the outermost
level of a type.

11 Prelude

11.1 Introduction

The prelude is a Z section. It is an implicit parent of every other section. It assists in defining the meaning
of number literal expressions (see 12.2.6.9), and the list arguments of operators (see 12.2.12), via syntactic
transformation rules later in this International Standard. The prelude is presented here using the mathematical
lexis.

11.2 Formal definition of prelude

section prelude

The section is called prelude and has no parents.

generic 80 ( P )

The precedence of the prefix generic operator P is 80.

[A]

The given type A, pronounced “arithmos”, provides a supply of values for use in specifying number systems.

N : PA

The set of natural numbers, N, is a subset of A.

number literal 0 : N
number literal 1 : N

0 and 1 are natural numbers, all uses of which are transformed to references to these declarations (see 12.2.6.9).

function 30 leftassoc ( + )

c©ISO/IEC 2000—All rights reserved 43



ISO/IEC 13568:2000(E) 12 Syntactic transformation rules

+ : P ((A× A)× A)

∀m,n : N • ∃1 p : ( + ) • p.1 = (m,n)
∀m,n : N • m + n ∈ N
∀m,n : N | m + 1 = n + 1 • m = n
∀m : N • ¬ m + 1 = 0
∀w : P N | 0 ∈ w ∧ (∀ y : w • y + 1 ∈ w) • w = N

∀m : N • m + 0 = m
∀m,n : N • m + (n + 1) = m + n + 1

Addition is defined here for natural numbers. (It is extended to integers in the mathematical toolkit, annex B.)
Addition is a function. The sum of two natural numbers is a natural number. The operation of adding 1 is an
injection on natural numbers, and produces a result different from 0. There is an induction constraint that all
natural numbers are either 0 or are formed by adding 1 to another natural number. 0 is an identity of addition.
Addition is associative.

NOTE The definition of addition is equivalent to the following definition, which is written using notation from the
mathematical toolkit (and so is unsuitable as the normative definition here).

+ : A× A↔ A

(N× N)C ( + ) ∈ (N× N)→ N

λn : N • n + 1 ∈ N� N

disjoint〈{0}, {n : N • n + 1}〉
∀w : PN | {0} ∪ {n : w • n + 1} ⊆ w • w = N

∀m : N • m + 0 = m

∀m,n : N • m + (n + 1) = m + n + 1

12 Syntactic transformation rules

12.1 Introduction

The syntactic transformation rules together map the parse tree of a concrete syntax sentence to the parse tree of
a semantically equivalent annotated syntax sentence. The resulting annotated parse trees may refer to definitions
of the prelude.

Although exhaustive application of the syntactic transformation rules produces annotated parse trees, individual
syntactic transformation rules can produce a mixture of concrete and annotated notation. Explicit distinction of
the two is not done, as it would be cumbersome and detract from readability.

Only concrete trees that are not in the annotated syntax are given explicit syntactic transformation rules. The
syntactic transformation rules are listed in the same order as the corresponding productions of the concrete
syntax. Where an individual concrete syntax production is expressed using alternations, a separate syntactic
transformation rule is given for each alternative.

All applications of syntactic transformation rules that generate new declarations shall choose the names of those
declarations to be such that they do not capture references during subsequent typechecking.

Rules that generate type annotations generate annotations with fresh variables each time they are applied.

12.2 Formal definition of syntactic transformation rules

12.2.1 Specification

12.2.1.1 Anonymous specification

The anonymous specification d ... dn is semantically equivalent to the sectioned specification comprising a single
section containing those paragraphs with the mathematical toolkit of annex B as its parent.

d ... dn =⇒ Mathematical toolkit section Specification parents standard toolkit END d ... dn
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In this transformation, Mathematical toolkit denotes the entire text of annex B. The name given to the section
is not important: it need not be Specification, though it may not be prelude or that of any section of the
mathematical toolkit.

12.2.2 Section

12.2.2.1 Base section

The base section section i END d ... dn is semantically equivalent to the inheriting section that inherits from no
parents (bar prelude).

section i END d ... dn =⇒ section i parents END d ... dn

12.2.3 Paragraph

12.2.3.1 Schema definition paragraph

The schema definition paragraph SCH i t END introduces the global name i, associating it with the schema that
is the value of t.

SCH i t END =⇒ AX [i == t] END

The paragraph is semantically equivalent to the axiomatic description paragraph whose sole declaration associates
the schema’s name with the expression resulting from syntactic transformation of the schema text.

12.2.3.2 Generic schema definition paragraph

The generic schema definition paragraph GENSCH i [i, ..., in] t END can be instantiated to produce a schema
definition paragraph.

GENSCH i [i, ..., in] t END =⇒ GENAX [i, ..., in] [i == t] END

It is semantically equivalent to the generic axiomatic description paragraph with the same generic parameters and
whose sole declaration associates the schema’s name with the expression resulting from syntactic transformation
of the schema text.

12.2.3.3 Horizontal definition paragraph

The horizontal definition paragraph i == e END introduces the global name i, associating with it the value of e.

i == e END =⇒ AX [i == e] END

It is semantically equivalent to the axiomatic description paragraph that introduces the same single declaration.

12.2.3.4 Generic horizontal definition paragraph

The generic horizontal definition paragraph i [i, ..., in] == e END can be instantiated to produce a horizontal
definition paragraph.

i [i, ..., in] == e END =⇒ GENAX [i, ..., in] [i == e] END

It is semantically equivalent to the generic axiomatic description paragraph with the same generic parameters
and that introduces the same single declaration.

12.2.3.5 Free types paragraph

The transformation of free types paragraphs is done in two stages. First, the branches are permuted to bring
elements to the front and injections to the rear.

... | g〈〈e〉〉 | h | ... =⇒ ... | h | g〈〈e〉〉 | ...

Exhaustive application of this syntactic transformation rule effects a sort.

The second stage requires implicit generic instantiations to have been filled in, which is done during typechecking
(section 13.2.3.3). Hence that second stage is delayed until after typechecking, where it appears in the form of a
semantic transformation rule (section 14.2.3.1).
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12.2.4 Operator template

There are no syntactic transformation rules for operator template paragraphs; rather, operator template para-
graphs determine which syntactic transformation rule to use for each phrase that refers to or applies an operator.

12.2.5 Predicate

12.2.5.1 Newline conjunction predicate

The newline conjunction predicate p NL p is true if and only if both its predicates are true.

p NL p =⇒ p ∧ p

It is semantically equivalent to the conjunction predicate p ∧ p.

12.2.5.2 Semicolon conjunction predicate

The semicolon conjunction predicate p; p is true if and only if both its predicates are true.

p; p =⇒ p ∧ p

It is semantically equivalent to the conjunction predicate p ∧ p.

12.2.5.3 Existential quantification predicate

The existential quantification predicate ∃ t • p is true if and only if p is true for at least one value of t.

∃ t • p =⇒ ¬ ∀ t • ¬ p

It is semantically equivalent to p being false for not all values of t.

12.2.5.4 Equivalence predicate

The equivalence predicate p ⇔ p is true if and only if both p and p are true or neither is true.

p ⇔ p =⇒ (p ⇒ p) ∧ (p ⇒ p)

It is semantically equivalent to each of p and p being true if the other is true.

12.2.5.5 Implication predicate

The implication predicate p ⇒ p is true if and only if p is true if p is true.

p ⇒ p =⇒ ¬ p ∨ p

It is semantically equivalent to p being false disjoined with p being true.

12.2.5.6 Disjunction predicate

The disjunction predicate p ∨ p is true if and only if at least one of p and p is true.

p ∨ p =⇒ ¬ (¬ p ∧ ¬ p)

It is semantically equivalent to not both of p and p being false.

12.2.5.7 Schema predicate

The schema predicate e is true if and only if the binding of the names in the signature of schema e satisfies the
constraints of that schema.

e =⇒ θ e ∈ e

It is semantically equivalent to the binding constructed by θ e being a member of the set denoted by schema e.
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12.2.5.8 Falsity predicate

The falsity predicate false is never true.

false =⇒ ¬ true

It is semantically equivalent to the negation of true.

12.2.5.9 Parenthesized predicate

The parenthesized predicate (p) is true if and only if p is true.

(p) =⇒ p

It is semantically equivalent to p.

12.2.6 Expression

12.2.6.1 Schema existential quantification expression

The value of the schema existential quantification expression ∃ t • e is the set of bindings of schema e restricted
to exclude names that are in the signature of t, for at least one binding of the schema t.

∃ t • e =⇒ ¬ ∀ t • ¬ e

It is semantically equivalent to the result of applying de Morgan’s law.

12.2.6.2 Substitution expression

The value of the substitution expression let i == e; ...; in == en • e is the value of e when all of its references
to the names have been substituted by the values of the corresponding expressions.

let i == e; ...; in == en • e =⇒ µ i == e; ...; in == in • e

It is semantically equivalent to the similar definite description expression.

12.2.6.3 Schema equivalence expression

The value of the schema equivalence expression e ⇔ e is that schema whose signature is the union of those of
schemas e and e, and whose bindings are those whose relevant restrictions are either both or neither in e and
e.

e ⇔ e =⇒ (e ⇒ e) ∧ (e ⇒ e)

It is semantically equivalent to the schema conjunction shown above.

12.2.6.4 Schema implication expression

The value of the schema implication expression e ⇒ e is that schema whose signature is the union of those of
schemas e and e, and whose bindings are those whose restriction to the signature of e is in the value of e if
its restriction to the signature of e is in the value of e.

e ⇒ e =⇒ ¬ e ∨ e

It is semantically equivalent to the schema disjunction shown above.

12.2.6.5 Schema disjunction expression

The value of the schema disjunction expression e ∨ e is that schema whose signature is the union of those of
schemas e and e, and whose bindings are those whose restriction to the signature of e is in the value of e or
its restriction to the signature of e is in the value of e.

e ∨ e =⇒ ¬ (¬ e ∧ ¬ e)

It is semantically equivalent to the schema negation shown above.
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12.2.6.6 Conditional expression

The value of the conditional expression if p then e else e is the value of e if p is true, and is the value of e if
p is false.

if p then e else e =⇒ µ i : {e, e} | p ∧ i = e ∨ ¬ p ∧ i = e • i

It is semantically equivalent to the definite description expression whose value is either that of e or that of e
such that if p is true then it is e or if p is false then it is e.

12.2.6.7 Schema projection expression

The value of the schema projection expression e � e is the schema that is like the conjunction e ∧ e but whose
signature is restricted to just that of schema e.

e � e =⇒ {e; e • θ e}

It is semantically equivalent to that set of bindings of names in the signature of e to values that satisfy the
constraints of both e and e.

12.2.6.8 Cartesian product expression

The value of the Cartesian product expression e× ...× en is the set of all tuples whose components are members
of the corresponding sets that are the values of its expressions.

e × ...× en =⇒ {i : e; ...; in : en • (i, ..., in)}

It is semantically equivalent to the set comprehension expression that declares members of the sets and assembles
those members into tuples.

12.2.6.9 Number literal expression

The value of the multiple-digit number literal expression bc is the number that it denotes.

bc =⇒ b + b + b + b + b +
b + b + b + b + b + c

It is semantically equivalent to the sum of ten repetitions of the number literal expression b formed from all but
the last digit, added to that last digit.

0 =⇒ number literal 0
1 =⇒ number literal 1
2 =⇒ 1 + 1
3 =⇒ 2 + 1
4 =⇒ 3 + 1
5 =⇒ 4 + 1
6 =⇒ 5 + 1
7 =⇒ 6 + 1
8 =⇒ 7 + 1
9 =⇒ 8 + 1

The number literal expressions 0 and 1 are semantically equivalent to number literal 0 and number literal 1 re-
spectively as defined in section prelude. The remaining digits are defined as being successors of their predecessors,
using the function + as defined in section prelude.

NOTE These syntactic transformations are applied only to NUMERAL tokens that form number literal expressions,
not to other NUMERAL tokens (those in tuple selection expressions and operator template paragraphs), as those other
occurrences of NUMERAL do not have semantic values associated with them.
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12.2.6.10 Schema construction expression

The value of the schema construction expression [t] is that schema whose signature is the names declared by the
schema text t, and whose bindings are those that satisfy the constraints in t.

[t] =⇒ t

It is semantically equivalent to the schema resulting from syntactic transformation of the schema text t.

12.2.6.11 Parenthesized expression

The value of the parenthesized expression (e) is the value of expression e.

(e) =⇒ e

It is semantically equivalent to e.

12.2.7 Schema text

There is no separate schema text class in the annotated syntax: all concrete schema texts are transformed to
expressions.

12.2.7.1 Declaration

Each declaration is transformed to an equivalent expression.

A constant declaration is equivalent to a variable declaration in which the variable ranges over a singleton set.

i == e =⇒ i : {e}

A comma-separated multiple declaration is equivalent to the conjunction of variable construction expressions in
which all variables are constrained to be of the same type.

i, ..., in : e =⇒ [i : e o
o τ1] ∧ ... ∧ [in : e o

o τ1]

12.2.7.2 DeclPart

Each declaration part is transformed to an equivalent expression.

de; ...; den =⇒ de ∧ ... ∧ den

If NL tokens have been used in place of any ; s, the same transformation to ∧ applies.

12.2.7.3 SchemaText

Given the above transformations of Declaration and DeclPart, any DeclPart in a SchemaText can be assumed
to be a single expression.

A SchemaText with non-empty DeclPart and Predicate is equivalent to the schema construction expression
containing that schema text.

e | p =⇒ [e | p]

If both DeclPart and Predicate are omitted, the schema text is equivalent to the set containing the empty
binding.

=⇒ {〈| |〉}

If just the DeclPart is omitted, the schema text is equivalent to the schema construction expression in which
there is a set containing the empty binding.

| p =⇒ [{〈| |〉} | p]
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12.2.8 Name

These syntactic transformation rules address the concrete syntax productions DeclName, RefName, and OpName.

All operator names are transformed to NAMEs, by removing spaces and replacing each by a Z character that is
not acceptable in concrete NAMEs. The Z character 1 is used for this purpose here. The resulting name is given
the same STROKEs as the component names of the operator, all of which shall have the same STROKEs.

Each resulting NAME should be one for which there is an operator template paragraph in scope.

NOTE This excludes names made up of words from different operator templates.

EXAMPLE Given the operator templates

generic 30 leftassoc ( a b )

generic 40 leftassoc ( c d )

the following declaration conforms to the syntax but is excluded by this restriction.

X a Y d Z == X ×Y × Z

In every operator name generated by syntactic transformation, for every ’↘’ WORDGLUE character in its WORD
part, there shall be a paired following ’↖’ WORDGLUE character, for every ’↗’ WORDGLUE character in its WORD
part, there shall be a paired following ’↙’ WORDGLUE character, and these shall occur only in nested pairs.

12.2.8.1 PrefixName

pre =⇒ pre1

prep =⇒ prep1

ln ess ... essn− ere =⇒ ln1ess...1essn−1ere1

ln ess ... essn− sre =⇒ ln1ess...1essn−1sre1

lp ess ... essn− erep =⇒ lp1ess...1essn−1erep1

lp ess ... essn− srep =⇒ lp1ess...1essn−1srep1

12.2.8.2 PostfixName

post =⇒ 1post

postp =⇒ 1postp

el ess ... essn− er =⇒ 1el1ess...1essn−1er

el ess ... essn− sr =⇒ 1el1ess...1essn−1sr

elp ess ... essn− erp =⇒ 1elp1ess...1essn−1erp

elp ess ... essn− srp =⇒ 1elp1ess...1essn−1srp

12.2.8.3 InfixName

in =⇒ 1in1

ip =⇒ 1ip1
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el ess ... essn− ere =⇒ 1el1ess...1essn−1ere1

el ess ... essn− sre =⇒ 1el1ess...1essn−1sre1

elp ess ... essn− erep =⇒ 1elp1ess...1essn−1erep1

elp ess ... essn− srep =⇒ 1elp1ess...1essn−1srep1

12.2.8.4 NofixName

ln ess ... essn− er =⇒ ln1ess...1essn−1er

ln ess ... essn− sr =⇒ ln1ess...1essn−1sr

lp ess ... essn− erp =⇒ ln1ess...1essn−1erp

lp ess ... essn− srp =⇒ ln1ess...1essn−1srp

12.2.9 Generic name

All generic names are transformed to juxtapositions of NAMEs and generic parameter lists. This causes the generic
operator definition paragraphs in which they appear to become generic horizontal definition paragraphs, and thus
be amenable to further syntactic transformation.

Each resulting NAME should be one for which there is an operator template paragraph in scope (see 12.2.8).

12.2.9.1 PrefixGenName

pre i =⇒ pre1 [i]
ln i ess ... in− essn− in− ere in =⇒ ln1ess...1essn−1ere1 [i, ..., in−, in−, in]
ln i ess ... in− essn− in− sre in =⇒ ln1ess...1essn−1sre1 [i, ..., in−, in−, in]

12.2.9.2 PostfixGenName

i post =⇒ 1post [i]
iel i ess ... in− essn− in er =⇒ 1el1ess...1essn−1er [i, i, ..., in−, in]
iel i ess ... in− essn− in sr =⇒ 1el1ess...1essn−1sr [i, i, ..., in−, in]

12.2.9.3 InfixGenName

iin i =⇒ 1in1 [i, i]
iel i ess ... in− essn− in− ere in =⇒ 1el1ess...1essn−1ere1 [i, i, ..., in−, in−, in]
iel i ess ... in− essn− in− sre in =⇒ 1el1ess...1essn−1sre1 [i, i, ..., in−, in−, in]
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12.2.9.4 NofixGenName

ln i ess ... in− essn− in er =⇒ ln1ess...1essn−1er [i, ..., in−, in]
ln i ess ... in− essn− in sr =⇒ ln1ess...1essn−1sr [i, ..., in−, in]

12.2.10 Relation operator application

All relation operator applications are transformed to annotated membership predicates.

Each relation NAME should be one for which there is an operator template paragraph in scope (see 12.2.8).

The left-hand sides of many of these transformation rules involve ExpSep phrases: they use es metavariables.
None of them use ss metavariables: in other words, only the Expression ES case of ExpSep is specified, not
the ExpressionList SS case. Where the latter case occurs in a specification, the ExpressionList shall be
transformed by rule 12.2.12 to an expression, and thence a transformation analogous to that specified for the
former case can be performed, differing only in that a ss appears in the relation name in place of an es.

12.2.10.1 PrefixRel

prep e =⇒ e ∈ prep1
lp e es ... en− esn− en− erep en =⇒ (e, ..., en−, en−, en) ∈ lp1es...1esn−1erep1
lp e es ... en− esn− aln− srep en =⇒ (e, ..., en−, aln−, en) ∈ lp1es...1esn−1srep1

12.2.10.2 PostfixRel

e postp =⇒ e ∈ 1postp

e elp e es ... en− esn− en erp =⇒ (e, e, ..., en−, en) ∈ 1elp1es...1esn−1erp

e elp e es ... en− esn− aln srp =⇒ (e, e, ..., en−, aln) ∈ 1elp1es...1esn−1srp

12.2.10.3 InfixRel

e ip e ip e ... =⇒ e ip e
o
o τ ∧ e o

o τ ip e
o
o τ ...

The chained relation e ip e ip e ... is semantically equivalent to a conjunction of relational predicates, with
the constraint that duplicated expressions be of the same type.

e = e =⇒ e ∈ {e}
e ip e =⇒ (e, e) ∈ 1ip1

ip in the above transformation is excluded from being ∈ or =, whereas ip, ip, ... can be ∈ or =.

e elp e es ... en− esn− en− erep en =⇒ (e, e, ..., en−, en−, en) ∈ 1elp1es...1esn−1erep1

e elp e es ... en− esn− aln− srep en =⇒ (e, e, ..., en−, aln−, en) ∈ 1elp1es...1esn−1srep1
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12.2.10.4 NofixRel

lp e es ... en− esn− en erp =⇒ (e, ..., en−, en) ∈ lp1es...1esn−1erp
lp e es ... en− esn− aln srp =⇒ (e, ..., en−, aln) ∈ lp1es...1esn−1srp

12.2.11 Function and generic operator application

All function operator applications are transformed to annotated application expressions.

All generic operator applications are transformed to annotated generic instantiation expressions.

Each resulting NAME should be one for which there is an operator template paragraph in scope (see 12.2.8).

The left-hand sides of many of these transformation rules involve ExpSep phrases: they use es metavariables.
None of them use ss metavariables: in other words, only the Expression ES case of ExpSep is specified, not
the ExpressionList SS case. Where the latter case occurs in a specification, the ExpressionList shall be
transformed by rule 12.2.12 to an expression, and thence a transformation analogous to that specified for the
former case can be performed, differing only in that a ss appears in the function or generic name in place of an
es.

12.2.11.1 PrefixApp

pre e =⇒ pre1 e

ln e es ... en− esn− en− ere en =⇒ ln1es...1esn−1ere1 (e, ..., en−, en−, en)
ln e es ... en− esn− aln− sre en =⇒ ln1es...1esn−1sre1 (e, ..., en−, aln−, en)

pre e =⇒ pre1 [e]
ln e es ... en− esn− en− ere en =⇒ ln1es...1esn−1ere1 [e, ..., en−, en−, en]
ln e es ... en− esn− aln− sre en =⇒ ln1es...1esn−1sre1 [e, ..., en−, aln−, en]

12.2.11.2 PostfixApp

e post =⇒ 1post e

e el e es ... en− esn− en er =⇒ 1el1es...1esn−1er (e, e, ..., en−, en)
e el e es ... en− esn− aln sr =⇒ 1el1es...1esn−1sr (e, e, ..., en−, aln)

e post =⇒ 1post [e]
e el e es ... en− esn− en er =⇒ 1el1es...1esn−1er [e, e, ..., en−, en]
e el e es ... en− esn− aln sr =⇒ 1el1es...1esn−1sr [e, e, ..., en−, aln]

c©ISO/IEC 2000—All rights reserved 53



ISO/IEC 13568:2000(E) 13 Type inference rules

12.2.11.3 InfixApp

e in e =⇒ 1in1 (e, e)
e el e es ... en− esn− en− ere en =⇒ 1el1es...1esn−1ere1 (e, e, ..., en−, en−, en)
e el e es ... en− esn− aln− sre en =⇒ 1el1es...1esn−1sre1 (e, e, ..., en−, aln−, en)

e in e =⇒ 1in1 [e, e]
e el e es ... en− esn− en− ere en =⇒ 1el1es...1esn−1ere1 [e, e, ..., en−, en−, en]
e el e es ... en− esn− aln− sre en =⇒ 1el1es...1esn−1sre1 [e, e, ..., en−, aln−, en]

12.2.11.4 NofixApp

ln e es ... en− esn− en er =⇒ ln1es...1esn−1er (e, ..., en−, en)
ln e es ... en− esn− aln sr =⇒ ln1es...1esn−1sr (e, ..., en−, aln)

ln e es ... en− esn− en er =⇒ ln1es...1esn−1er [e, ..., en−, en]
ln e es ... en− esn− aln sr =⇒ ln1es...1esn−1sr [e, ..., en−, aln]

12.2.12 Expression list

e, ..., en =⇒ {(1, e), ..., (n, en)}

Within an operator application, each expression list is syntactically transformed to the equivalent explicit repre-
sentation of a sequence, which is a set of pairs of position and corresponding component expression.

13 Type inference rules

13.1 Introduction

All expressions in Z are typed, allowing some of the logical anomalies that can arise when sets are defined in
terms of their properties to be avoided. An example of a Z phrase that is not well-typed is the predicate 2 ∈ 3,
because the second expression of a membership predicate is required to be a set of values, each of the same type
as the first expression. The check for well-typedness of a Z specification can be automated, by conforming to the
specification given in this clause.

The type constraints that shall be satisfied between the various parts of a Z phrase are specified by type inference
rules, of which there is one corresponding to each annotated syntax production. The type inference rules together
can be viewed as a partial function that maps a parse tree of an annotated syntax sentence to a fully annotated
parse tree of an annotated syntax sentence.

Initially, all annotations are set to variables, and these are all distinct except as set by the syntactic transformation
rules (12.2.7 and 12.2.10). A type inference rule’s type sequent is a pattern that when matched against a phrase
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produces substitutions for its metavariables. Starting with a type sequent for a whole Z specification, that is
matched against the pattern in the type inference rule for a sectioned specification. The resulting substitutions
for metavariables are used to produce instantiations of the rule’s type subsequents and side-conditions. The
instantiated side-conditions include constraints that determine the environments to be used in typechecking the
type subsequents. There is no need to solve the constraints yet. Instead, type inference rules can be applied to
the generated type subsequents, each application producing zero or more new type subsequents, until no more
type subsequents remain. This produces a tree of deductions, whose leaves correspond to the atomic phrases of
the sentence, namely given types paragraphs, truth predicates, and reference expressions.

There remains a collection of constraints to be solved. There are dependencies between constraints: for example,
a constraint that checks that a name is declared in an environment cannot be solved until that environment has
been determined by other constraints. Unification is a suitable mechanism for solving constraints. A typechecker
shall not impose any additional constraints, such as on the order in which constraints are expected to be solved
[15].

For a well-typed specification, there shall be no contradictions amongst the constraints, and the solution to the
constraints shall provide values for all of the variables. If there is a contradiction amongst the constraints, there
can be no consistent assignment of annotations, and the specification is not well-typed. If the solution to the
constraints does not provide a value for a variable, there is more than one possible assignment of annotations,
and the specification is not well-typed.

EXAMPLE 1

empty == {}

In this declaration, the type of empty , Pα, involves an unconstrained variable.

13.2 Formal definition of type inference rules

13.2.1 Specification

13.2.1.1 Sectioned specification

{} `S sprelude o
o Γ δ1 `

S
s o

o Γ ... δn `
S
sn o

o Γn
`Z s o

o Γ ... sn o
o Γn

 δ1 = {prelude 7→ Γ}
...

δn = δn−1 ∪ {in− 7→ Γn−}


where in− is the name of section sn−, and none of the sections s ... sn are named prelude.

Each section is typechecked in an environment formed from preceding sections, and is annotated with an envi-
ronment that it establishes.

NOTE The environment established by the prelude section is as follows.

Γ = (A, (prelude,P(GIVEN A))),
(N, (prelude,P(GIVEN A))),
(number literal 0, (prelude, (GIVEN A))),
(number literal 1, (prelude, (GIVEN A))),
(1+1, (prelude,P(((GIVEN A)× (GIVEN A))× (GIVEN A))))

If one of the sections s ... sn is named prelude, then the same type inference rule applies except that the type
subsequent for the prelude section is omitted.
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13.2.2 Section

13.2.2.1 Inheriting section

β0 `
D
d o

o σ ... βn−1 `
D
dn o

o σn

Λ `S section i parents i, ..., im END
d o

o σ ... dn o
o σn o

o Γ



i 6∈ dom Λ
{i, ..., im} ⊆ dom Λ
γ−1 = if i = prelude then {} else Λ prelude
γ0 = γ−1 ∪ Λ i ∪ ... ∪ Λ im
β0 = γ0

o
9 second

disjoint 〈dom σ, ..., dom σn〉
Γ ∈ ( 7→ )
Γ = γ0 ∪ {j : NAME; τ : Type | j 7→ τ ∈ σ ∪ ... ∪ σn • j 7→ (i, τ)}
β1 = β0 ∪ σ

...
βn−1 = βn−2 ∪ σn−


Taking the side-conditions in order, this type inference rule ensures that:

a) the name of the section, i, is different from that of any previous section;

b) the names in the parents list are names of known sections;

c) the section environment of the prelude is included if the section is not itself the prelude;

d) the section environment γ0 is formed from those of the parents;

e) the type environment β0 is determined from the section environment γ0;

f) there is no global redefinition between any pair of paragraphs of the section (the sets of names in their
signatures are disjoint);

g) a name which is common to the environments of multiple parents shall have originated in a common ancestral
section, and a name introduced by a paragraph of this section shall not also be introduced by another
paragraph or parent section (all ensured by the combined environment being a function);

h) the annotation of the section is an environment formed from those of its parents extended according to the
signatures of its paragraphs;

i) and the type environment in which a paragraph is typechecked is formed from that of the parent sections
extended with the signatures of the preceding paragraphs of this section.

NOTE 1 Ancestors need not be immediate parents, and a section cannot be amongst its own ancestors (no cycles
in the parent relation).

NOTE 2 The name of a section can be the same as the name of a variable introduced in a declaration—the two are
not confused.

13.2.3 Generic instantiation

Generic declarations can appear only at the paragraph level. The types of generic declarations shall be determined
before the constraints arising from the side-conditions of the type inference rules for references to generics (13.2.6.1
and 13.2.6.2) can be solved. This implies solving the constraints in per-paragraph batches. Having determined
the types of references to generic declarations, instantiations that were left implicit are made explicit, ready for
subsequent semantic relation.

NOTE This is why generic instantiation is defined here, immediately before the type inference rules for paragraphs.
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13.2.3.1 Generic type instantiation

The constraints that cannot be solved until the type of a generic declaration is determined are those that involve
the operation of generic type instantiation. The generic type instantiation meta-function relates a known generic
type and a list of argument types to the type in which each reference to a generic parameter has been substi-
tuted with the corresponding argument type. Applications of the generic type instantiation meta-function are
formulated here as the juxtaposition of a generic type (parenthesized) with a square-bracketed list of argument
types.

([i, ..., in] GIVEN i) [τ, ..., τn] = GIVEN i

([i, ..., in] GENTYPE ik) [τ, ..., τn] = τk

([i, ..., in] P τ) [τ, ..., τn] = P(([i, ..., in] τ) [τ, ..., τn])
([i, ..., in] τ ′ × ...× τ ′m) [τ, ..., τn] = ([i, ..., in] τ ′) [τ, ..., τn]× ...× ([i, ..., in] τ ′m) [τ, ..., τn]

([i, ..., in] [i′ : τ ′; ...; i
′
m : τ ′m]) [τ, ..., τn]

= [i′ : [i, ..., in] τ ′ [τ, ..., τn]; ...; i′m : [i, ..., in] τ ′m [τ, ..., τn]]

NOTE There is no equation for variable type because that is the case of the type of the generic declaration being
unknown. In a well-typed specification, all variable types within a generic type will have been unified with other
types.

13.2.3.2 Carrier set

The meta-function carrier relates a type phrase to an expression phrase denoting the carrier set of that type. It
is used for the calculation of implicit generic actuals, and also later in semantic transformation rules.

carrier (GIVEN i) = i o
o P(GIVEN i)

carrier (GENTYPE i) = i o
o P(GENTYPE i)

carrier (P τ) = P(carrier τ) o
o PP τ

carrier (τ × ...× τn) = (carrier τ × ...× carrier τn) o
o P(τ × ...× τn)

carrier ([in : τn; ...; in : τn]) = [in : carrier τn; ...; in : carrier τn] o
o P[in : τn; ...; in : τn]

NOTE 1 The expressions are generated with type annotations, to avoid needing to apply type inference again, and
so avoid the potential problem of type names being captured by local declarations.

NOTE 2 But for the GIVEN/GENTYPE distinction and the generation of type annotations, each of these equations
generates an expression that has the same textual appearance as the type.

NOTE 3 There is no equation for variable type because in a well-typed specification all variable types have been
unified with other types. There is no equation for generic types because they appear in only the type annotation of
generic axiomatic paragraphs, and carrier is never applied there.

13.2.3.3 Implicit instantiation

The value of a reference expression that refers to a generic definition is an inferred instantiation of that generic
definition.

i o
o [i, ..., in]τ, τ ′

τ ′=([i, ..., in]τ) [α1, ..., αn ]
=⇒ i [carrier α1, ..., carrier αn ] o

o τ ′

It is semantically equivalent to the generic instantiation expression whose generic actuals are the carrier sets of
the types inferred for the generic parameters. The type τ ′ is an instantiation of the generic type τ. The types
inferred for the generic parameters are α1, ..., αn . They shall all be determinable by comparison of τ with τ ′ as
suggested by the condition on the transformation. Cases where these types cannot be so determined, because the
generic type is independent of some of the generic parameters, are not well-typed.

EXAMPLE 1 The paragraph

a[X ] == 1
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defines a with type [X ]GIVEN A. The paragraph

b == a

typechecks, giving the annotated expression a o
o [X ]GIVEN A, GIVEN A. Comparison of the generic type with the

instantiated type does not determine a type for the generic parameter X , and so this specification is not well-typed.

Cases where these types are not unique (contain unconstrained variables) are not well-typed.

EXAMPLE 2 The paragraph

empty == ∅

will contain the annotated expression ∅ o
o [X ]PX ,Pα, in which the type determined for the generic parameter X is

unconstrained, and so this specification is not well-typed.

13.2.4 Paragraph

13.2.4.1 Given types paragraph

Σ `D [i, ..., in] END o
o σ

(
# {i, ..., in} = n
σ = i : P(GIVEN i); ...; in : P(GIVEN in)

)
In a given types paragraph, there shall be no duplication of names. The annotation of the paragraph is a signature
associating the given type names with powerset types.

13.2.4.2 Axiomatic description paragraph

Σ `E e o
o τ

Σ `D AX e o
o τ END o

o σ
(τ = P[σ])

In an axiomatic description paragraph AX e END, the expression e shall be a schema. The annotation of the
paragraph is the signature of that schema.

13.2.4.3 Generic axiomatic description paragraph

Σ ⊕ {i 7→ P(GENTYPE i), ..., in 7→ P(GENTYPE in)} `E e o
o τ

Σ `D GENAX [i, ..., in] e o
o τ END o

o σ

 # {i, ..., in} = n
τ = P[β]
σ = λ j : dom β • [i, ..., in] (β j)


In a generic axiomatic description paragraph GENAX [i, ..., in] e END, there shall be no duplication of names within
the generic parameters. The expression e is typechecked, in an environment overridden by the generic parameters,
and shall be a schema. The annotation of the paragraph is formed from the signature of that schema, having the
same names but associated with types that are generic.
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13.2.4.4 Free types paragraph

β `E e  o
o τ  ... β `E e n o

o τ n
...

β `E er  o
o τr  ... β `E er nr o

o τr nr

Σ `D

f ::= h  | ... | hm |
g 〈〈e  o

o τ 〉〉 |
... |

g n〈〈e n o
o τ n〉〉 &

... &
fr ::= hr  | ... | hrmr |

gr 〈〈er  o
o τr 〉〉 |

... |
gr nr 〈〈er nr o

o τr nr 〉〉

END o
o σ



# {f, h , ..., hm , g , ..., g n ,
...,

fr, hr , ..., hrmr , gr , ..., gr nr}
= r + m1 + ...+ mr + n1 + ...+ nr

β = Σ ⊕ {f 7→ P(GIVEN f), ..., fr 7→ P(GIVEN fr)}
τ  = Pα1 1 ... τ n = Pα1 n1

...
τr  = Pαr 1 ... τr nr = Pαr nr

σ = f : P(GIVEN f);
h  : GIVEN f; ...; hm : GIVEN f;
g  : P(τ  × GIVEN f);

...;
g n : P(τ n × GIVEN f);

...;
fr : P(GIVEN fr);

hr  : GIVEN fr; ...; hrmr : GIVEN fr;
gr  : P(τr  × GIVEN fr);

...;
gr nr : P(τr nr × GIVEN fr)


In a free types paragraph, the names of the free types, elements and injections shall all be different. The expressions
representing the domains of the injections are typechecked in an environment overridden by the names of the free
types, and shall all be sets. The annotation of the paragraph is the signature whose names are those of all the
free types, the elements, and the injections, each associated with the corresponding type.

13.2.4.5 Conjecture paragraph

Σ `P p

Σ `D `? p END o
o σ

(σ = ε)

In a conjecture paragraph `? p END, the predicate p shall be well-typed. The annotation of the paragraph is the
empty signature.

13.2.4.6 Generic conjecture paragraph

Σ ⊕ {i 7→ P(GENTYPE i), ..., in 7→ P(GENTYPE in)} `P p

Σ `D [i, ..., in] `? p END o
o σ

(
# {i, ..., in} = n
σ = ε

)
In a generic conjecture paragraph [i, ..., in] `? p END, there shall be no duplication of names within the generic
parameters. The predicate p shall be well-typed in an environment overridden by the generic parameters. The
annotation of the paragraph is the empty signature.

13.2.5 Predicate

13.2.5.1 Membership predicate

Σ `E e o
o τ Σ `E e o

o τ

Σ `P (e o
o τ) ∈ (e o

o τ)

(
τ = P τ

)
In a membership predicate e ∈ e, expression e shall be a set, and expression e shall be of the same type as
the members of set e.
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13.2.5.2 Truth predicate

Σ `P true

A truth predicate is always well-typed.

13.2.5.3 Negation predicate

Σ `P p

Σ `P ¬ p
A negation predicate ¬ p is well-typed if and only if predicate p is well-typed.

13.2.5.4 Conjunction predicate

Σ `P p Σ `P p

Σ `P p ∧ p
A conjunction predicate p ∧ p is well-typed if and only if predicates p and p are well-typed.

13.2.5.5 Universal quantification predicate

Σ `E e o
o τ Σ ⊕ β `P p

Σ `P ∀ (e o
o τ) • p

(τ = P[β])

In a universal quantification predicate ∀ e • p, expression e shall be a schema, and predicate p shall be well-typed
in the environment overridden by the signature of schema e.

13.2.5.6 Unique existential quantification predicate

Σ `E e o
o τ Σ ⊕ β `P p

Σ `P ∃1 (e o
o τ) • p

(τ = P[β])

In a unique existential quantification predicate ∃1 e • p, expression e shall be a schema, and predicate p shall be
well-typed in the environment overridden by the signature of schema e.

13.2.6 Expression

13.2.6.1 Reference expression

In a reference expression, if the name is of the form ∆i and no declaration of this name yet appears in the
environment, then the following syntactic transformation is applied.

∆i
∆i 6∈dom Σ

=⇒ [i; i ′]

This syntactic transformation makes the otherwise undefined name be equivalent to the corresponding schema
construction expression, which is then typechecked.

Similarly, if the name is of the form Ξi and no declaration of this name yet appears in the environment, then the
following syntactic transformation is applied.

Ξi
Ξi 6∈dom Σ

=⇒ [i; i ′ | θ i = θ i ′]

NOTE 1 The Ξ notation is deliberately not defined in terms of the ∆ notation.

NOTE 2 Type inference could be done without these syntactic transformations, but they are necessary steps in
defining the formal semantics.

NOTE 3 Only occurrences of ∆ and Ξ that are in such reference expressions are so transformed, not others such as
those in the names of declarations.
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Σ `E i o
o τ

(
i ∈ dom Σ
τ = if Σ i = [ı1, ..., ın ] α then Σ i, (Σ i) [α1, ..., αn ] else Σ i

)
In any other reference expression i, the name i shall be associated with a type in the environment. If that type
is generic, the annotation of the whole expression is a pair of both the uninstantiated type (for the Instantiation
clause to determine that this is a reference to a generic definition) and the type instantiated with new distinct
variable types (which the context should constrain to non-generic types). Otherwise (if the type in the environment
is non-generic), that is the type of the whole expression.

NOTE 4 If the type is generic, the reference expression will be transformed to a generic instantiation expression by
the rule in 13.2.3.3. That shall be done only when the implicit instantiations have been determined via constraints
on the new variable types α1, ..., αn .

13.2.6.2 Generic instantiation expression

Σ `E e o
o τ ... Σ `E en o

o τn

Σ `E i[(e o
o τ), ..., (en o

o τn)] o
o τ



i ∈ dom Σ
Σ i = [ı1, ..., ın ] α
τ = Pα1

...
τn = Pαn

τ = (Σ i) [α1, ..., αn ]


In a generic instantiation expression i [e, ..., en], the name i shall be associated with a generic type in the
environment, and the expressions e, ..., en shall be sets. That generic type shall have the same number of
parameters as there are sets. The type of the whole expression is the instantiation of that generic type by the
types of those sets’ components.

NOTE The operation of generic type instantiation is defined in 13.2.3.1.

13.2.6.3 Set extension expression

Σ `E e o
o τ ... Σ `E en o

o τn

Σ `E {(e o
o τ), ..., (en o

o τn)} o
o τ



if n > 0 then
(τ = τn

...
τn− = τn
τ = P τ)

else τ = Pα


In a set extension expression, every component expression shall be of the same type. The type of the whole
expression is a powerset of the components’ type, or a powerset of a variable type if there are no components. In
the latter case, the variable shall be constrained by the context, otherwise the specification is not well-typed.

13.2.6.4 Set comprehension expression

Σ `E e o
o τ Σ ⊕ β `E e o

o τ

Σ `E {(e o
o τ) • (e o

o τ)} o
o τ

(
τ = P[β]
τ = P τ

)
In a set comprehension expression {e • e}, expression e shall be a schema. The type of the whole expression is
a powerset of the type of expression e, as determined in an environment overridden by the signature of schema
e.

13.2.6.5 Powerset expression

Σ `E e o
o τ

Σ `E P(e o
o τ) o

o τ

(
τ = Pα
τ = P τ

)
In a powerset expression P e, expression e shall be a set. The type of the whole expression is then a powerset of
the type of expression e.
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13.2.6.6 Tuple extension expression

Σ `E e o
o τ ... Σ `E en o

o τn

Σ `E ((e o
o τ), ..., (en o

o τn)) o
o τ

(
τ = τ × ...× τn

)
In a tuple extension expression (e, ..., en), the type of the whole expression is the Cartesian product of the types
of the individual component expressions.

13.2.6.7 Tuple selection expression

Σ `E e o
o τ

Σ `E (e o
o τ) . b o

o τ
((b, τ) ∈ τ)

In a tuple selection expression e . b, the type of expression e shall be a Cartesian product, and number b shall
select one of its components. The type of the whole expression is the type of the selected component.

13.2.6.8 Binding extension expression

Σ `E e o
o τ ... Σ `E en o

o τn

Σ `E 〈| i == (e o
o τ), ..., in == (en o

o τn) |〉 o
o τ

(
# {i, ..., in} = n
τ = [i : τ; ...; in : τn]

)
In a binding extension expression 〈| i == e, ..., in == en |〉, there shall be no duplication amongst the bound
names. The type of the whole expression is that of a binding whose signature associates the names with the types
of the corresponding expressions.

13.2.6.9 Binding construction expression

Σ `E e o
o τ

Σ `E θ (e o
o τ) ∗ o

o τ

 τ = P[β]
∀ i : NAME | (i, α1) ∈ β • (i decor ∗, α1) ∈ Σ ∧ ¬ α1 = [ı1, ..., ın ] α2

τ = [β]


In a binding construction expression θ e ∗, the expression e shall be a schema. Every name and type pair in its
signature, with the optional decoration added, should be present in the environment with a non-generic type.
The type of the whole expression is that of a binding whose signature is that of the schema.

NOTE If the type in the environment were generic, semantic transformation 14.2.5.2 would produce a reference
expression whose implicit instantiation is not determined by this International Standard.

13.2.6.10 Binding selection expression

Σ `E e o
o τ

Σ `E (e o
o τ) . i o

o τ

(
τ = [β]
(i, τ) ∈ β

)
In a binding selection expression e . i, expression e shall be a binding, and name i shall select one of its
components. The type of the whole expression is the type of the selected component.

13.2.6.11 Application expression

Σ `E e o
o τ Σ `E e o

o τ

Σ `E (e o
o τ) (e o

o τ) o
o τ

(
τ = P(τ × τ)

)
In an application expression e e, the expression e shall be a set of pairs, and expression e shall be of the
same type as the first components of those pairs. The type of the whole expression is the type of the second
components of those pairs.

13.2.6.12 Definite description expression

Σ `E e o
o τ Σ ⊕ β `E e o

o τ

Σ `E µ (e o
o τ) • (e o

o τ) o
o τ

(
τ = P[β]
τ = τ

)
In a definite description expression µ e • e, expression e shall be a schema. The type of the whole expression
is the type of expression e, as determined in an environment overridden by the signature of schema e.
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13.2.6.13 Variable construction expression

Σ `E e o
o τ

Σ `E [i : (e o
o τ)] o

o τ

(
τ = Pα
τ = P[i : α]

)
In a variable construction expression [i : e], expression e shall be a set. The type of the whole expression is that
of a schema whose signature associates the name i with the type of a member of the set e.

13.2.6.14 Schema construction expression

Σ `E e o
o τ Σ ⊕ β `P p

Σ `E [(e o
o τ) | p] o

o τ

(
τ = P[β]
τ = τ

)
In a schema construction expression [e | p], expression e shall be a schema, and predicate p shall be well-typed
in an environment overridden by the signature of schema e. The type of the whole expression is the same as the
type of expression e.

13.2.6.15 Schema negation expression

Σ `E e o
o τ

Σ `E ¬ (e o
o τ) o

o τ

(
τ = P[β]
τ = τ

)
In a schema negation expression ¬ e, expression e shall be a schema. The type of the whole expression is the
same as the type of expression e.

13.2.6.16 Schema conjunction expression

Σ `E e o
o τ Σ `E e o

o τ

Σ `E (e o
o τ) ∧ (e o

o τ) o
o τ


τ = P[β1]
τ = P[β2]
β1 ≈ β2

τ = P[β1 ∪ β2]


In a schema conjunction expression e ∧ e, expressions e and e shall be schemas, and their signatures shall
be compatible. The type of the whole expression is that of the schema whose signature is the union of those of
expressions e and e.

13.2.6.17 Schema hiding expression

Σ `E e o
o τ

Σ `E (e o
o τ) \ (i, ..., in) o

o τ

 τ = P[β]
{i, ..., in} ⊆ dom β
τ = P[{i, ..., in} −C β]


In a schema hiding expression e \ (i, ..., in), expression e shall be a schema, and the names to be hidden shall
all be in the signature of that schema. The type of the whole expression is that of a schema whose signature is
computed by subtracting from the signature of expression e those pairs whose names are hidden.

13.2.6.18 Schema universal quantification expression

Σ `E e o
o τ Σ ⊕ β1 `

E
e o

o τ

Σ `E ∀ (e o
o τ) • (e o

o τ) o
o τ


τ = P[β1]
τ = P[β2]
β1 ≈ β2

τ = P[dom β1 −C β2]


In a schema universal quantification expression ∀ e • e, expression e shall be a schema, and expression e, in
an environment overridden by the signature of schema e, shall also be a schema, and the signatures of these two
schemas shall be compatible. The type of the whole expression is that of a schema whose signature is computed
by subtracting from the signature of e those pairs whose names are in the signature of e.
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13.2.6.19 Schema unique existential quantification expression

Σ `E e o
o τ Σ ⊕ β1 `

E
e o

o τ

Σ `E ∃1 (e o
o τ) • (e o

o τ) o
o τ


τ = P[β1]
τ = P[β2]
β1 ≈ β2

τ = P[dom β1 −C β2]


In a schema unique existential quantification expression ∃1 e • e, expression e shall be a schema, and expression
e, in an environment overridden by the signature of schema e, shall also be a schema, and the signatures of
these two schemas shall be compatible. The type of the whole expression is that of a schema whose signature is
computed by subtracting from the signature of e those pairs whose names are in the signature of e.

13.2.6.20 Schema renaming expression

Σ `E e o
o τ

Σ `E (e o
o τ)[j / i, ..., jn / in] o

o τ


# {i, ..., in} = n
τ = P[β1]
β2 = {j 7→ i, ..., jn 7→ in} o

9 β1 ∪ {i, ..., in} −C β1

τ = P[β2]
β2 ∈ ( 7→ )


In a schema renaming expression e [j / i, ..., jn / in], there shall be no duplicates amongst the old names
i, ..., in. Expression e shall be a schema. The type of the whole expression is that of a schema whose signature
is like that of expression e but with the new names in place of corresponding old names. Declarations that are
merged by the renaming shall have the same type.

NOTE Old names need not be in the signature of the schema. This is so as to permit renaming to distribute over
other notations such as disjunction.

13.2.6.21 Schema precondition expression

Σ `E e o
o τ

Σ `E pre (e o
o τ) o

o τ

(
τ = P[β]
τ = P[{i, j : NAME | j ∈ dom β ∧ (j = i decor ′ ∨ j = i decor !) • j} −C β]

)
In a schema precondition expression pre e, expression e shall be a schema. The type of the whole expression is
that of a schema whose signature is computed by subtracting from the signature of e those pairs whose names
have primed or shrieked decorations.

13.2.6.22 Schema composition expression

Σ `E e o
o τ Σ `E e o

o τ

Σ `E (e o
o τ) o

9 (e o
o τ) o

o τ



τ = P[β1]
τ = P[β2]
match = {i : dom β2 | i decor ′ ∈ dom β1 • i}
β3 = {i : match • i decor ′} −C β1

β4 = match −C β2

β3 ≈ β4

{i : match • i 7→ β1(i decor ′)} ≈ {i : match • i 7→ β2 i}
τ = P[β3 ∪ β4]


In a schema composition expression e o

9 e, expressions e and e shall be schemas. Let match be the set of
names in schema e for which there are matching primed names in schema e. Let β3 be the signature formed
from the components of e excluding the matched primed components. Let β4 be the signature formed from the
components of e excluding the matched unprimed components. Signatures β3 and β4 shall be compatible. The
types of the excluded matched pairs of components shall be the same. The type of the whole expression is that
of a schema whose signature is the union of β3 and β4.
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13.2.6.23 Schema piping expression

Σ `E e o
o τ Σ `E e o

o τ

Σ `E (e o
o τ)>> (e o

o τ) o
o τ



τ = P[β1]
τ = P[β2]
match = {i : NAME | i decor ! ∈ dom β1 ∧ i decor ? ∈ dom β2 • i}
β3 = {i : match • i decor !} −C β1

β4 = {i : match • i decor ?} −C β2

β3 ≈ β4

{i : match • i 7→ β1(i decor !)} ≈ {i : match • i 7→ β2 (i decor ?)}
τ = P[β3 ∪ β4]


In a schema piping expression e>>e, expressions e and e shall be schemas. Let match be the set of names for
which there are matching shrieked names in schema e and queried names in schema e. Let β3 be the signature
formed from the components of e excluding the matched shrieked components. Let β4 be the signature formed
from the components of e excluding the matched queried components. Signatures β3 and β4 shall be compatible.
The types of the excluded matched pairs of components shall be the same. The type of the whole expression is
that of a schema whose signature is the union of β3 and β4.

13.2.6.24 Schema decoration expression

Σ `E e o
o τ

Σ `E (e o
o τ) + o

o τ

(
τ = P[β]
τ = P[{i : dom β • i decor + 7→ β i}]

)
In a schema decoration expression e +, expression e shall be a schema. The type of the whole expression is that
of a schema whose signature is like that of e but with the stroke appended to each of its names.

13.3 Summary of scope rules

NOTE Here is an informal explanation of the scope rules implied by the type inference rules of 13.2.

A scope is static: it depends on only the structure of the text, not on the value of any predicate or expression.

A declaration can be either: a given type, a free type, a formal generic parameter, or an instance of Declaration
usually within a DeclPart.

The scopes of given types and free types (which occur only at paragraph level), and Declarations at paragraph level
(such as those of schema definitions and those of the outermost DeclPart in axiomatic descriptions), are the whole
of the rest of the section and any sections of which that is an ancestor.

Redeclaration at paragraph level of any name already declared at paragraph level is prohibited. Redeclaration at an
inner level of any name already declared with larger scope makes a hole in the scope of the outer declaration.

In a free types paragraph, the scopes of the declarations of the free types include the right-hand sides of the free type
declarations, whereas the scopes of the declarations of the elements and injections of the free types do not include
the free types paragraph itself.

The scope of a formal generic parameter is the rest of the paragraph in which it appears.

A DeclPart is not in the scope of its declarations.

The declarations of a schema inclusion declaration are distinct from those in the signature of the schema itself, and
so have separate scopes.

A name may be declared more than once within a DeclPart provided the types of the several declarations are identical.
In this case, the declarations are merged, so that they share the same scope, and the corresponding properties are
conjoined.

The scope of the declarations in the DeclPart of a quantification, set comprehension, function construction, definite
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description or schema construction expression is the | part of the SchemaText and any • part of that construct.

14 Semantic transformation rules

14.1 Introduction

The semantic transformation rules define some annotated notations as being equivalent to other annotated no-
tations. The only sentences of concern here are ones that are already known to be well-formed syntactically
and well-typed. These semantic transformations are transformations that could not appear earlier as syntactic
transformations because they depend on type annotations or generic instantiations or are applicable only to parse
trees of phrases that are not in the concrete syntax.

Some semantic transformation rules generate other transformable notation, though exhaustive application of these
rules always terminates. They introduce no type errors. It is not intended that type inference be repeated on the
generated notation, though type annotations are needed on that notation for the semantic relations. Nevertheless,
the manipulation of type annotations is not made explicit throughout these rules, as that would be obfuscatory
and can easily be derived by the reader. Indeed, some rules exploit concrete notation for brevity and clarity.

The semantic transformation rules are listed in the same order as the corresponding productions of the annotated
syntax.

All applications of transformation rules that generate new declarations shall choose the names of those declarations
to be such that they do not capture references.

14.2 Formal definition of semantic transformation rules

14.2.1 Specification

There are no semantic transformation rules for specifications.

14.2.2 Section

There are no semantic transformation rules for sections.

14.2.3 Paragraph

14.2.3.1 Free types paragraph

A free types paragraph is semantically equivalent to the sequence of given type paragraph and axiomatic definition
paragraph defined here.

NOTE 1 This exploits notation that is not present in the annotated syntax for the purpose of abbreviation.

f ::= h  | ... | hm | g 〈〈e 〉〉 | ... | g n〈〈e n〉〉
& ... &
fr ::= hr  | ... | hrmr | gr 〈〈er 〉〉 | ... | gr nr 〈〈er nr 〉〉

=⇒

[f, ..., fr]
END
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AX
h , ..., hm : f
...
hr , ..., hrmr : fr
g  : P(e  × f); ...; g n : P(e n × f)
...
gr  : P(er  × fr); ...; gr nr : P(er nr × fr)
|
(∀ u : e  • ∃1 x : g  • x . 1 = u) ∧ ... ∧ (∀ u : e n • ∃1 x : g n • x . 1 = u)
... ∧
(∀ u : er  • ∃1 x : gr  • x . 1 = u) ∧ ... ∧ (∀ u : er nr • ∃1 x : gr nr • x . 1 = u)

(∀ u, v : e  | g u = g v • u = v) ∧ ... ∧ (∀ u, v : e n | g nu = g nv • u = v)
... ∧
(∀ u, v : er  | gr u = gr v • u = v) ∧ ... ∧ (∀ u, v : er nr | gr nru = gr nrv • u = v)

∀ b, b : N •
(∀ w : f |

(b = 1 ∧ w = h  ∨ ... ∨ b = m1 ∧ w = hm ∨
b = m1 + 1 ∧ w ∈ {x : g  • x . 2} ∨ ... ∨ b = m1 + n1 ∧ w ∈ {x : g n • x . 2})

∧ (b = 1 ∧ w = h  ∨ ... ∨ b = m1 ∧ w = hm ∨
b = m1 + 1 ∧ w ∈ {x : g  • x . 2} ∨ ... ∨ b = m1 + n1 ∧ w ∈ {x : g n • x . 2}) •

b = b) ∧
... ∧
(∀ w : fr |

(b = 1 ∧ w = hr  ∨ ... ∨ b = mr ∧ w = hrmr ∨
b = mr + 1 ∧ w ∈ {x : gr  • x . 2} ∨ ... ∨ b = mr + nr ∧ w ∈ {x : gr nr • x . 2})

∧ (b = 1 ∧ w = hr  ∨ ... ∨ b = mr ∧ w = hrmr ∨
b = mr + 1 ∧ w ∈ {x : gr  • x . 2} ∨ ... ∨ b = mr + nr ∧ w ∈ {x : gr nr • x . 2}) •

b = b)

∀ w : P f; ...; wr : P fr |
h  ∈ w ∧ ... ∧ hm ∈ w ∧
... ∧
hr  ∈ wr ∧ ... ∧ hrmr ∈ wr ∧
(∀ y : (µ f == w; ...; fr == wr • e ) • g y ∈ w) ∧
... ∧ (∀ y : (µ f == w; ...; fr == wr • e n) • g ny ∈ w) ∧
... ∧
(∀ y : (µ f == w; ...; fr == wr • er ) • gr y ∈ wr) ∧
... ∧ (∀ y : (µ f == w; ...; fr == wr • er nr ) • gr nry ∈ wr) •

w = f ∧ ... ∧ wr = fr
END

The type names are introduced by the given types paragraph. The elements are declared as members of their cor-
responding free types. The injections are declared as functions from values in their domains to their corresponding
free type.

The first of the four blank-line separated predicates is the total functionality property. It ensures that for every
injection, the injection is functional at every value in its domain.
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The second of the four blank-line separated predicates is the injectivity property. It ensures that for every
injection, any pair of values in its domain for which the injection returns the same value shall be a pair of equal
values (hence the name injection).

The third of the four blank-line separated predicates is the disjointness property. It ensures that for every free
type, every pair of values of the free type are equal only if they are the same element or are returned by application
of the same injection to equal values.

The fourth of the four blank-line separated predicates is the induction property. It ensures that for every free
type, its members are its elements, the values returned by its injections, and nothing else.

The generated µ expressions in the induction property are intended to effect substitutions of all references to the
free type names, including any such references within generic instantiation lists in the e expressions.

NOTE 2 That is why this is a semantic transformation not a syntactic one: all implicit generic instantiations shall
have been made explicit before it is applied.

NOTE 3 The right-hand side of this transformation could have been expressed using the following notation from
the mathematical toolkit, but for the desire to define the core language separately from the mathematical toolkit.

[f, ..., fr]

END

AX

h , ..., hm : f
...

hr , ..., hrmr : fr
g  : e � f; ...; g n : e n � f
...

gr  : er � fr; ...; gr nr : er nr � fr
|
disjoint〈{h }, ..., {hm}, ran g , ..., ran g n〉
...

disjoint〈{hr }, ..., {hrmr}, ran gr , ..., ran gr nr 〉
∀ w : P f; ...; wr : P fr |

{h , ..., hm} ∪ g (| µ f == w; ...; fr == wr • e  |)
∪... ∪ g n(| µ f == w; ...; fr == wr • e n |) ⊆ w ∧

... ∧
{hr , ..., hrmr} ∪ gr (| µ f == w; ...; fr == wr • er  |)

∪... ∪ gr nr (| µ f == w; ...; fr == wr • er nr |) ⊆ wr •
w = f ∧ ... ∧ wr = fr

END

14.2.4 Predicate

14.2.4.1 Unique existential predicate

The unique existential quantification predicate ∃1 e • p is true if and only if there is exactly one value for e for
which p is true.

∃1 e • p =⇒ ¬ (∀ e • ¬ (p ∧ (∀ [e | p]1 • θ e = θ e 1)))
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NOTE Exploiting notation that is not present in the annotated syntax, this abbreviates to the following.

∃1 e • p =⇒ ∃ e • p ∧ (∀ [e | p]1 • θ e = θ e 1)

It is semantically equivalent to there existing at least one value for e for which p is true and all those values for
which it is true being the same.

14.2.5 Expression

14.2.5.1 Tuple selection expression

The value of the tuple selection expression e . b is the b’th component of the tuple that is the value of e.

(e o
o τ × ...× τn) . b =⇒ {i : carrier (τ × ...× τn) •

(i, µ i : carrier τ; ...; in : carrier τn | i = (i, ..., in) • ib)} e

NOTE Exploiting notation that is not present in the annotated syntax, this abbreviates to the following.

(e o
o τ × ...× τn) . b =⇒ (λ i : carrier (τ × ...× τn) •

µ i : carrier τ; ...; in : carrier τn | i = (i, ..., in) • ib) e

It is semantically equivalent to the function construction, from tuples of the Cartesian product type to the selected
component of the tuple b, applied to the particular tuple e.

14.2.5.2 Binding construction expression

The value of the binding construction expression θ e ∗ is the binding whose names are those in the signature of
schema e and whose values are those of the same names with the optional decoration appended.

θ e ∗ o
o [i : τ; ...; in : τn] =⇒ 〈| i == i decor ∗, ..., in == in decor ∗ |〉

It is semantically equivalent to the binding extension expression whose value is that binding.

14.2.5.3 Binding selection expression

The value of the binding selection expression e . i is that value associated with i in the binding that is the value
of e.

(e o
o [σ]) . i =⇒ {carrier [σ] • (chartuple (carrier [σ]), i)} e

NOTE Exploiting notation that is not present in the annotated syntax, this abbreviates to the following.

(e o
o [σ]) . i =⇒ (λ carrier [σ] • i) e

It is semantically equivalent to the function construction expression, from bindings of the schema type of e, to
the value of the selected name i, applied to the particular binding e.

14.2.5.4 Application expression

The value of the application expression e e is the sole value associated with e in the relation e.

e e o
o τ =⇒ (µ i : carrier τ | (e, i) ∈ e • i)

It is semantically equivalent to that sole range value i such that the pair (e, i) is in the set of pairs that is the
value of e. If there is no value or more than one value associated with e, then the application expression has a
value but what it is is not specified.
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14.2.5.5 Schema hiding expression

The value of the schema hiding expression e \ (i, ..., in) is that schema whose signature is that of schema e
minus the hidden names, and whose bindings have the same values as those in schema e.

(e o
o P[σ]) \ (i, ..., in) =⇒ ¬ (∀ i : carrier (σ i); ...; in : carrier (σ in) • ¬ e)

NOTE Exploiting notation that is not present in the annotated syntax, this abbreviates to the following.

(e o
o P[σ]) \ (i, ..., in) =⇒ ∃ i : carrier (σ i); ...; in : carrier (σ in) • e

It is semantically equivalent to the schema existential quantification of the hidden names i, ..., in from the schema
e.

14.2.5.6 Schema unique existential quantification expression

The value of the schema unique existential quantification expression ∃1 e • e is the set of bindings of schema
e restricted to exclude names that are in the signature of e, for at least one binding of the schema e.

∃1 e • e =⇒ ¬ (∀ e • ¬ (e ∧ (∀ [e | e]1 • θ e = θ e
1)))

NOTE Exploiting notation that is not present in the annotated syntax, this abbreviates to the following.

∃1 e • e =⇒ ∃ e • e ∧ (∀ [e | e]1 • θ e = θ e
1)

It is semantically equivalent to a schema existential quantification expression, analogous to the unique existential
quantification predicate transformation.

14.2.5.7 Schema precondition expression

The value of the schema precondition expression pre e is that schema which is like schema e but without its
primed and shrieked components.

pre(e o
o P[σ]) o

o P[σ] =⇒ ¬ (∀ carrier [σ \ σ] • ¬ e)

NOTE Exploiting notation that is not present in the annotated syntax, this abbreviates to the following.

pre(e o
o P[σ]) o

o P[σ] =⇒ ∃ carrier [σ \ σ] • e

It is semantically equivalent to the existential quantification of the primed and shrieked components from the
schema e.

14.2.5.8 Schema composition expression

The value of the schema composition expression e o
9 e is that schema representing the operation of doing the

operations represented by schemas e and e in sequence.

(e o
o P[σ]) o

9 (e o
o P[σ]) o

o P[σ]
=⇒

¬ (∀ e1 • ¬ (¬ (∀ e • ¬ [e; e1 | θ e = θ e1])
∧ ¬ (∀ e • ¬ [e; e1 | θ e = θ e1])))

where e == carrier [{i : NAME; τ : Type | i decor ′ 7→ τ ∈ σ • i decor ′ 7→ τ}]
and e == carrier [{i : NAME; τ : Type | i 7→ τ ∈ σ • i 7→ τ}]
and e1 == (e)1
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NOTE Exploiting notation that is not present in the annotated syntax, this abbreviates to the following.

(e o
o P[σ]) o

9 (e o
o P[σ]) o

o P[σ]
=⇒

∃ e1 • (∃ e • [e; e
1 | θ e = θ e1])

∧ (∃ e • [e; e
1 | θ e = θ e1])

where e == carrier [{i : NAME; τ : Type | i decor ′ 7→ τ ∈ σ • i decor ′ 7→ τ}]
and e == carrier [{i : NAME; τ : Type | i 7→ τ ∈ σ • i 7→ τ}]
and e1 == (e)

1

It is semantically equivalent to the existential quantification of the matched pairs of primed components of e
and unprimed components of e, with those matched pairs being equated.

14.2.5.9 Schema piping expression

The value of the schema piping expression e >> e is that schema representing the operation formed from the
two operations represented by schemas e and e with the outputs of e identified with the inputs of e.

(e o
o P[σ])>> (e o

o P[σ]) o
o P[σ]

=⇒
¬ (∀ e1 • ¬ (¬ (∀ e • ¬ [e; e1 | θ e = θ e1])

∧ ¬ (∀ e • ¬ [e; e1 | θ e = θ e1])))
where e == carrier [{i : NAME; τ : Type | i decor ! 7→ τ ∈ σ • i decor ! 7→ τ}]

and e == carrier [{i : NAME; τ : Type | i decor ? 7→ τ ∈ σ • i decor ? 7→ τ}]
and e1 == (e)1

NOTE Exploiting notation that is not present in the annotated syntax, this abbreviates to the following.

(e o
o P[σ])>> (e o

o P[σ]) o
o P[σ]

=⇒
∃ e1 • (∃ e • [e; e

1 | θ e = θ e1])
∧ (∃ e • [e; e

1 | θ e = θ e1])

where e == carrier [{i : NAME; τ : Type | i decor ! 7→ τ ∈ σ • i decor ! 7→ τ}]
and e == carrier [{i : NAME; τ : Type | i decor ? 7→ τ ∈ σ • i decor ? 7→ τ}]
and e1 == (e)

1

It is semantically equivalent to the existential quantification of the matched pairs of shrieked components of e
and queried components of e, with those matched pairs being equated.

14.2.5.10 Schema decoration expression

The value of the schema decoration expression e + is that schema whose bindings are like those of the schema e
except that their names have the addition stroke +.

(e o
o P[i : τ; ...; in : τn])+ =⇒ e [i decor + / i, ..., in decor + / in]

It is semantically equivalent to the schema renaming where decorated names rename the original names.

15 Semantic relations

15.1 Introduction

The semantic relations define the meaning of the remaining annotated notation (that not defined by semantic
transformation rules) by relation to sets of models in ZF set theory. The only sentences of concern here are ones
that are already known to be well-formed syntactically and well-typed.

This clause defines the meaning of a Z specification in terms of the semantic values that its global variables may
take consistent with the constraints imposed on them by the specification.

This definition is loose: it leaves the values of ill-formed definite description expressions undefined. It is otherwise
tight: it specifies the values of all expressions that do not depend on values of ill-formed definite descriptions,
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every predicate is either true or false, and every expression denotes a value. The looseness leaves the values
of undefined expressions unspecified. Any particular semantics conforms to this International Standard if it is
consistent with this loose definition.

EXAMPLE The predicate (µ x : { }) ∈ T could be either true or false depending on the treatment of undefinedness.

NOTE 1 Typical specifications contain expressions that in some circumstances have undefined values. In those
circumstances, those expressions ought not to affect the meaning of the specification. This definition is then sufficiently
tight.

NOTE 2 Alternative treatments of undefined expressions include one or more bottoms outside of the carrier sets,
or undetermined values from within the carrier sets.

15.2 Formal definition of semantic relations

15.2.1 Specification

15.2.1.1 Sectioned specification

[[ s ... sn ]]Z = ([[ section prelude... ]]S o
9 [[ s ]]S o

9 ... o
9 [[ sn ]]S) ∅

The meaning of the Z specification s ... sn is the function from sections’ names to their sets of models formed
by starting with the empty function and extending that with a maplet from a section’s name to its set of models
for each section in the specification, starting with the prelude.

To determine [[ section prelude... ]]Z another prelude shall not be prefixed onto it.

NOTE The meaning of a specification is not the meaning of its last section, so as to permit several meaningful units
within a single document.

15.2.2 Section

15.2.2.1 Inheriting section

The prelude section, as defined in clause 11, is treated specially, as it is the only one that does not have prelude
as an implicit parent.

[[ section prelude parents END d ... dn ]]S

=
λ T : SectionModels • {prelude 7→ ([[ d ]]D o

9 ... o
9 [[ dn ]]D) (| {∅} |)}

The meaning of the prelude section is given by that constant function which, whatever function from sections’
names and their sets of models it is given, returns the singleton set mapping the name prelude to its set of models.
The set of models is that to which the set containing an empty model is related by the composition of the relations
between models that denote the meanings of each of the prelude’s paragraphs—see clause 11 for details of those
paragraphs.

NOTE One model of the prelude section can be written as follows.

{A 7→ A,

N 7→ N,

number literal 0 7→ 0,

number literal 1 7→ 1,

+ 7→ {((0, 0), 0), ((0, 1), 1), ((1, 0), 1), ((1, 1), 2), ...}}

The behaviour of ( + ) on non-natural numbers, e.g. reals, has not been defined at this point, so the set of models
for the prelude section includes alternatives for every possible extended behaviour of addition.
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[[ section i parents i, ..., im END d ... dn ]]S

=
λ T : SectionModels • T ∪ {i 7→

([[ d ]]D o
9 ... o9 [[ dn ]]D) (| {M0 : T prelude; M1 : T i; ...; Mm : T im; M : Model | M = M0∪M1∪ ...∪Mm • M} |)}

The meaning of a section other than the prelude is the extension of a function from sections’ names to their sets
of models with a maplet from the given section’s name to its set of models. The given section’s set of models
is that to which the union of the models of the section’s parents is related by the composition of the relations
between models that denote the meanings of each of the section’s paragraphs.

15.2.3 Paragraph

15.2.3.1 Given types paragraph

The given types paragraph [i, ..., in] END introduces unconstrained global names.

[[ [i, ..., in] END ]]D = {M : Model ; w1, ..., wn : W
• M 7→ M ∪ {i 7→ w1, ..., in 7→ wn}

∪ {i decor ♥ 7→ w1, ..., in decor ♥ 7→ wn}}

It relates a model M to that model extended with associations between the names of the given types and semantic
values chosen to represent their carrier sets. Associations for names decorated with the reserved stroke ♥ are also
introduced, so that references to them from given types (15.2.6.1) can avoid being captured.

15.2.3.2 Axiomatic description paragraph

The axiomatic description paragraph AX e END introduces global names and constraints on their values.

[[ AX e END ]]D = {M : Model ; t : W | t ∈ [[ e ]]EM • M 7→ M ∪ t}

It relates a model M to that model extended with a binding t of the schema that is the value of e in model M.

15.2.3.3 Generic axiomatic description paragraph

The generic axiomatic description paragraph GENAX [i, ..., in] e END introduces global names and constraints on
their values, with generic parameters that have to be instantiated (by sets) whenever those names are referenced.

[[ GENAX [i, ..., in] (e o
o P[j : τ; ...; jm : τm]) END ]]D =

{M : Model ; u : W ↑ n →W

| ∀ w1, ..., wn : W • ∃ w : W •
u (w1, ..., wn) ∈ w
∧ (M ⊕ {i 7→ w1, ..., in 7→ wn} ∪ {i decor ♠ 7→ w1, ..., in decor ♠ 7→ wn}) 7→ w ∈ [[ e ]]E

• M 7→ M ∪ λ y : {j, ..., jm} • λ x : W ↑ n • u x y}

Given a model M and generic argument sets w1, ..., wn , the semantic value of the schema e in that model
overridden by the association of the generic parameter names with those sets is w . All combinations of generic
argument sets are considered. The function u maps the generic argument sets to a binding in the schema w .
The paragraph relates the model M to that model extended with the binding that associates the names of the
schema e (namely j, ..., jm) with the corresponding value in the binding resulting from application of u to
arbitrary instantiating sets x . Associations for names decorated with the reserved stroke ♠ are also introduced
whilst determining the semantic value of e, so that references to them from generic types (15.2.6.2) can avoid
being captured.

15.2.3.4 Conjecture paragraph

The conjecture paragraph `? p END expresses a property that may logically follow from the specification. It may
be a starting point for a proof.

[[ `? p END ]]D = id Model
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It relates a model to itself: the truth of p in a model does not affect the meaning of the specification.

15.2.3.5 Generic conjecture paragraph

The generic conjecture paragraph [i, ..., in] `? p END expresses a generic property that may logically follow from
the specification. It may be a starting point for a proof.

[[ [i, ..., in] `? p END ]]D = id Model

It relates a model to itself: the truth of p in a model does not affect the meaning of the specification.

15.2.4 Predicate

The set of models defining the meaning of a predicate is determined from the values of its constituent expressions.
The set therefore depends on the particular treatment of undefinedness.

15.2.4.1 Membership predicate

The membership predicate e ∈ e is true if and only if the value of e is in the set that is the value of e.

[[ e ∈ e ]]P = {M : Model | [[ e ]]EM ∈ [[ e ]]EM • M}

In terms of the semantic universe, it is true in those models in which the semantic value of e is in the semantic
value of e, and is false otherwise.

15.2.4.2 Truth predicate

A truth predicate is always true.

[[ true ]]P = Model

In terms of the semantic universe, it is true in all models.

15.2.4.3 Negation predicate

The negation predicate ¬ p is true if and only if p is false.

[[ ¬ p ]]P = Model \ [[ p ]]P

In terms of the semantic universe, it is true in all models except those in which p is true.

15.2.4.4 Conjunction predicate

The conjunction predicate p ∧ p is true if and only if p and p are true.

[[ p ∧ p ]]P = [[ p ]]P ∩ [[ p ]]P

In terms of the semantic universe, it is true in those models in which both p and p are true, and is false
otherwise.

15.2.4.5 Universal quantification predicate

The universal quantification predicate ∀ e • p is true if and only if predicate p is true for all bindings of the
schema e.

[[ ∀ e • p ]]P = {M : Model | ∀ t : [[ e ]]EM • M ⊕ t ∈ [[ p ]]P • M}

In terms of the semantic universe, it is true in those models for which p is true in that model overridden by all
bindings in the semantic value of e, and is false otherwise.

15.2.5 Expression

Every expression has a semantic value, specified by the following semantic relations. The value of an undefined
definite description expression is left loose, and hence the values of larger expressions containing undefined values
are also loosely specified.
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15.2.5.1 Reference expression

The value of the reference expression that refers to a non-generic definition i is the value of the declaration to
which it refers.

[[ i ]]E = λ M : Model • M i

In terms of the semantic universe, its semantic value, given a model M, is that associated with the name i in M.

15.2.5.2 Generic instantiation expression

The value of the generic instantiation expression i [e, ..., en] is a particular instance of the generic referred to by
name i.

[[ i [e, ..., en] ]]E = λ M : Model • M i ([[ e ]]EM, ..., [[ en ]]EM)

In terms of the semantic universe, its semantic value, given a model M, is the generic value associated with the
name i in M instantiated with the semantic values of the instantiation expressions in M.

15.2.5.3 Set extension expression

The value of the set extension expression { e, ..., en} is the set containing the values of its expressions.

[[ { e, ..., en} ]]E = λ M : Model • {[[ e ]]EM, ..., [[ en ]]EM}

In terms of the semantic universe, its semantic value, given a model M, is the set whose members are the semantic
values of the member expressions in M.

15.2.5.4 Set comprehension expression

The value of the set comprehension expression { e • e} is the set of values of e for all bindings of the schema
e.

[[ { e • e} ]]E = λ M : Model • {t1 : [[ e ]]EM • [[ e ]]E (M ⊕ t1)}

In terms of the semantic universe, its semantic value, given a model M, is the set of values of e in M overridden
with a binding value of e in M.

15.2.5.5 Powerset expression

The value of the powerset expression P e is the set of all subsets of the set that is the value of e.

[[ P e ]]E = λ M : Model • P ([[ e ]]EM)

In terms of the semantic universe, its semantic value, given a model M, is the powerset of values of e in M.

15.2.5.6 Tuple extension expression

The value of the tuple extension expression (e, ..., en) is the tuple containing the values of its expressions in
order.

[[ (e, ..., en) ]]E = λ M : Model • ([[ e ]]EM, ..., [[ en ]]EM)

In terms of the semantic universe, its semantic value, given a model M, is the tuple whose components are the
semantic values of the component expressions in M.

15.2.5.7 Binding extension expression

The value of the binding extension expression 〈| i == e, ..., in == en |〉 is the binding whose names are as
enumerated and whose values are those of the associated expressions.

[[ 〈| i == e, ..., in == en |〉 ]]E = λ M : Model • {i 7→ [[ e ]]EM, ..., in 7→ [[ en ]]EM}

In terms of the semantic universe, its semantic value, given a model M, is the set of pairs enumerated by its
names each associated with the semantic value of the associated expression in M.
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15.2.5.8 Definite description expression

The value of the definite description expression µ e • e is the sole value of e that arises whichever binding is
chosen from the set that is the value of schema e.

{M : Model ; t1 : W
| t1 ∈ [[ e ]]EM
∧ (∀ t3 : [[ e ]]EM • [[ e ]]E (M ⊕ t3) = [[ e ]]E (M ⊕ t1))

• M 7→ [[ e ]]E (M ⊕ t1)} ⊆ [[ µ e • e ]]E

In terms of the semantic universe, its semantic value, given a model M in which the value of e in that model
overridden by a binding of the schema e is the same regardless of which binding is chosen, is that value of e.
In other models, it has a semantic value, but this loose definition of the semantics does not say what it is.

15.2.5.9 Variable construction expression

The value of the variable construction expression [i : e] is the set of all bindings whose sole name is i and whose
associated value is in the set that is the value of e.

[[ [i : e] ]]E = λ M : Model • {w : [[ e ]]EM • {i 7→ w}}

In terms of the semantic universe, its semantic value, given a model M, is the set of all singleton bindings (sets
of pairs) of the name i associated with a value from the set that is the semantic value of e in M.

15.2.5.10 Schema construction expression

The value of the schema construction expression [e | p] is the set of all bindings of schema e that satisfy the
constraints of predicate p.

[[ [e | p] ]]E = λ M : Model • {t : [[ e ]]EM | M ⊕ t ∈ [[ p ]]P • t}

In terms of the semantic universe, its semantic value, given a model M, is the set of the bindings (sets of pairs)
that are members of the semantic value of schema e in M such that p is true in the model M overridden with
that binding.

15.2.5.11 Schema negation expression

The value of the schema negation expression ¬ e is that set of bindings that are of the same type as those in
schema e but that are not in schema e.

[[ ¬ e o
o P τ ]]E = λ M : Model • {t : [[ τ ]]TM | ¬ t ∈ [[ e ]]EM • t}

In terms of the semantic universe, its semantic value, given a model M, is the set of the bindings (sets of pairs)
that are members of the semantic value of the carrier set of schema e in M such that those bindings are not
members of the semantic value of schema e in M.

15.2.5.12 Schema conjunction expression

The value of the schema conjunction expression e ∧ e is the schema resulting from merging the signatures of
schemas e and e and conjoining their constraints.

[[ e ∧ e o
o P τ ]]E = λ M : Model • {t : [[ τ ]]TM; t1 : [[ e ]]EM; t2 : [[ e ]]EM | t1 ∪ t2 = t • t}

In terms of the semantic universe, its semantic value, given a model M, is the set of the unions of the bindings
(sets of pairs) in the semantic values of e and e in M.

15.2.5.13 Schema universal quantification expression

The value of the schema universal quantification expression ∀ e • e is the set of bindings of schema e restricted
to exclude names that are in the signature of e, for all bindings of the schema e.

[[ ∀ e • e o
o P τ ]]E = λ M : Model • {t2 : [[ τ ]]TM | ∀ t1 : [[ e ]]EM • t1 ∪ t2 ∈ [[ e ]]E (M ⊕ t1) • t2}
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In terms of the semantic universe, its semantic value, given a model M, is the set of the bindings (sets of pairs)
in the semantic values of the carrier set of the type of the entire schema universal quantification expression in
M, for which the union of the bindings (sets of pairs) in e and in the whole expression is in the set that is the
semantic value of e in the model M overridden with the binding in e.

15.2.5.14 Schema renaming expression

The value of the schema renaming expression e [j / i, ..., jn / in] is that schema whose bindings are like those
of schema e except that some of its names have been replaced by new names, possibly merging components.

[[ e [j / i, ..., jn / in] ]]E = λ M : Model •
{t1 : [[ e ]]EM; t2 : W |

t2 = {j 7→ i, ..., jn 7→ in} o
9 t1 ∪ {i, ..., in} −C t1

∧ t2 ∈ ( 7→ )
• t2}

In terms of the semantic universe, its semantic value, given a model M, is the set of the bindings (sets of pairs)
in the semantic value of e in M with the new names replacing corresponding old names. Where components are
merged by the renaming, those components shall have the same value.

15.2.6 Type

The value of a type is its carrier set.

NOTE 1 For an expression e with a defined value, [[ e o
o τ ]]E ∈ [[ τ ]]T .

NOTE 2 Variable types do not appear in the type annotations of well-typed specifications, so do not need to be
given semantics here.

NOTE 3 The value of a generic type, [[ [i, ..., in] τ ]]T , is never needed, and so is not defined.

NOTE 4 [[ τ ]]TM differs from carrier τ in that the former application returns a semantic value whereas the latter
application returns an annotated parse tree.

15.2.6.1 Given type

[[ GIVEN i ]]T = λ M : Model • M (i decor ♥)

The semantic value of the given type GIVEN i, given a model M, is the semantic value associated with the given
type name i in M.

15.2.6.2 Generic parameter type

[[ GENTYPE i ]]T = λ M : Model • M (i decor ♠)

The semantic value of the generic type GENTYPE i, given a model M, is the semantic value associated with generic
parameter name i in M.

15.2.6.3 Powerset type

[[ P τ ]]T = λ M : Model • P ([[ τ ]]TM)

The semantic value of the set type P τ, given a model M, is the powerset of the semantic value of type τ in M.
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15.2.6.4 Cartesian product type

[[ τ × ...× τn ]]T = λ M : Model • ([[ τ ]]TM)× ...× ([[ τn ]]TM)

The semantic value of the Cartesian product type τ × ...× τn, given a model M, is the Cartesian product of the
semantic values of types τ... τn in M.

15.2.6.5 Schema type

[[ [i : τ; ...; in : τn] ]]T = λ M : Model
• {t : {i, ..., in} →W | t i ∈ [[ τ ]]TM ∧ ... ∧ t in ∈ [[ τn ]]TM • t}

The semantic value of the schema type [i : τ; ...; in : τn], given a model M, is the set of bindings, represented
by sets of pairs of names and values, for which the names are those of the schema type and the associated values
are the semantic values of the corresponding types in M.
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Annex A
(normative)

Mark-ups

A.1 Introduction

A mark-up is a mapping to (or from) the ISO/IEC 10646 representation. The ISO/IEC 10646 representation may
be used directly—the identity function is an acceptable mapping. However, not all systems support ISO/IEC
10646, the definitive representation of Z characters (clause 6). This annex defines two mark-ups based on 7-bit
ASCII [4]:

• a LATEX [9] mark-up, suitable for processing by that tool to render Z characters in their mathematical form;

• an email, or lightweight ASCII, mark-up, suitable for rendering Z characters on a low resolution device, such
as an ASCII-character-based terminal, or in email correspondence.

The mark-ups described in this annex show how to translate between a ‘mark-up token’ (string of ASCII mark-up
characters) into the corresponding string of Z characters. Remaining individual mark-up characters that do not
form a special mark-up token (such as digits, Latin letters, and much punctuation) are converted directly to the
corresponding Z character, e.g. from ASCII-xy to 0000 00xy in ISO/IEC 10646. Use of different sequences of
mark-up characters that correspond to the same Z characters are permitted by this International Standard, as
the same tokens will result. Tools may require tokens to be marked-up consistently.

A chosen mark-up language may also be used to specify a particular rendering for the characters, for example,
bold or italic.

The semantics of a specification are specified by the normative clauses of this International Standard on the
assumption that its sections are in a definition before use order. This restriction need not be imposed on the
order in which sections are presented to a human reader or to a tool. If the mark-up of a specification is scanned
recognising only section headers, then a definition before use order for the sections can be determined (unless
there are erroneous cycles in the parents relation), and the contents of the sections can then be scanned in that
order.

A.2 LATEX mark-up

A LATEX command is a backslash ‘\’ followed by a string of alphabetic characters (up to the first non-alphabetic
character), or by a single non-alphabetic character.

A.2.1 Letter characters

A.2.1.1 Greek alphabet characters

Only the minimal subset of Greek alphabet defined in 6.2 need be supported by an implementation. LATEX
does not support upper case Greek letters that look like Roman counterparts. Those Greek characters that are
supported shall use the mark-up given here.

LATEX command Z character string

\Delta ∆
\Xi Ξ
\theta θ
\lambda λ
\mu µ
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A.2.1.2 Other Z core language letter characters

LATEX command Z character string

\arithmos A

\nat N

\power P

A.2.2 Special characters

A.2.2.1 Special characters except Box characters

LATEX command Z character string

\_
\{ {
\} }
\ldata 〈〈
\rdata 〉〉
\lblot 〈|
\rblot |〉

Subscripts and superscripts shall be marked up as follows:

LATEX command Z character string

^ 〈single LATEX token〉 ↗〈 Z string 〉 ↙
^{ 〈LATEX tokens〉 } ↗〈 Z string 〉 ↙
_ 〈single LATEX token〉 ↘〈 Z string 〉 ↖
_{ 〈LATEX tokens〉 } ↘〈 Z string 〉 ↖

EXAMPLE LATEX mark-up x^1 corresponds to Z character string ‘x ↗ 1↙’, which may be rendered ‘x1’
LATEX mark-up x^{1} corresponds to Z character string ‘x ↗ 1↙’, which may be rendered ‘x1’
LATEX mark-up x^{\Delta S} corresponds to Z character string ‘x ↗ ∆S ↙’, which may be rendered ‘x∆S ’
LATEX mark-up \exists_1 corresponds to Z character string ‘∃ ↘ 1↖’, which may be rendered ‘∃1’
LATEX mark-up \exists_{1} corresponds to Z character string ‘∃ ↘ 1↖’, which may be rendered ‘∃1’
LATEX mark-up \exists_{\Delta S} corresponds to Z character string ‘∃ ↘ ∆S ↖’, which may be rendered ‘∃∆S ’
LATEX mark-up x_a^b corresponds to Z character string ‘x ↘ a ↖↗ b ↙’, which may be rendered ‘xa

b ’
LATEX mark-up x_{a^b} corresponds to Z character string ‘x ↘ a ↗ b ↙↖’, which may be rendered ‘xab ’

A.2.2.2 Box characters

The ENDCHAR character is used to mark the end of a Paragraph. The NLCHAR character is used to mark a hard
newline (see 7.5). Different implementations may represent these characters in different ways.

The box characters are described in A.2.7, on paragraph mark-up.
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A.2.3 Symbol characters (except mathematical toolkit characters)

LATEX command Z character string

\vdash `
\land ∧
\lor ∨
\implies ⇒
\iff ⇔
\lnot ¬
\forall ∀
\exists ∃
\cross ×
\in ∈
@ •
\hide \
\project �
\semi o

9

\pipe >>

A.2.4 Core tokens

The Roman typeface used for core tokens in this International Standard is obtained using the mark-up defined
in A.2.10, with the following exceptions where there would otherwise be clashes with LATEX keywords.

LATEX command Z character string

\IF if
\THEN then
\ELSE else
\LET let
\SECTION section

A.2.5 Mathematical toolkit characters and tokens

The mathematical toolkit need not be supported by an implementation. If any of its tokens are supported, they
shall use the mark-up given here.
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LATEX command Z character string

\rel ↔
\fun →
\neq 6=
\notin 6∈
\emptyset ∅

\subseteq ⊆
\subset ⊂
\cup ∪
\cap ∩
\setminus \
\symdiff 	
\bigcup

⋃
\bigcap

⋂
\finset F

\mapsto 7→
\comp o

9

\circ ◦
\dres C
\rres B
\ndres −C
\nrres −B
\inv ∼

\limg (|
\rimg |)
\oplus ⊕
\plus ↗ +↙
\star ↗ ∗ ↙
\pfun 7→
\pinj 7�
\inj �
\psurj 7→→
\surj →→
\bij �→
\ffun 7 7→
\finj 7 7�
\num Z

\negate -
- −
\leq ≤
< <
\geq ≥
> >
\upto . .
\# #
\langle 〈
\rangle 〉
\cat a

\extract �
\filter �

\dcat a/

82 c©ISO/IEC 2000—All rights reserved



A Mark-ups ISO/IEC 13568:2000(E)

A.2.6 Section header mark-up

Section headers are enclosed in a LATEX zsection environment. The \begin{zsection} is converted to SPACE.
The \end{zsection} is converted to ENDCHAR.

\begin{zsection}
\SECTION NAME \parents ...
\end{zsection}

A.2.7 Paragraph mark-up

Each formal Z paragraph appears between a pair of \begin{xxx} and \end{xxx} LATEX commands. Text not
appearing between such commands is informal accompanying text.

For boxed paragraphs, the \begin{xxx} command indicates some box character, while for other paragraphs the
\begin{xxx} command is Z whitespace. Any middle line in a boxed paragraph is marked-up using the \where
LATEX command, which corresponds to the Z | character. The \end{xxx} command represents the Z ENDCHAR
character.

A.2.7.1 Axiomatic description paragraph mark-up

\begin{axdef}
DeclPart
\where
Predicate
\end{axdef}

The mark-up \begin{axdef} is translated to an AXCHAR character. The mark-up \where is translated to a |
character. The mark-up \end{axdef} is translated to an ENDCHAR character.

A.2.7.2 Schema definition paragraph mark-up

\begin{schema}{NAME}
DeclPart
\where
Predicate
\end{schema}

The mark-up \begin{schema}{ } is translated to a SCHCHAR character. The mark-up \where is translated to
a | character. The mark-up \end{schema} is translated to an ENDCHAR character.

A.2.7.3 Generic axiomatic description paragraph mark-up

\begin{gendef}[Formals]
DeclPart
\where
Predicate
\end{gendef}

The mark-up \begin{gendef} is translated to an AXCHAR and a GENCHAR character. The mark-up \where is
translated to a | character. The mark-up \end{gendef} is translated to an ENDCHAR character.

A.2.7.4 Generic schema definition paragraph mark-up

\begin{schema}{NAME}[Formals]
DeclPart
\where
Predicate
\end{schema}
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The mark-up \begin{schema}{ } is translated to a SCHCHAR and a GENCHAR character. The mark-up \where
is translated to a | character. The mark-up \end{schema} is translated to an ENDCHAR character.

A.2.7.5 Free types paragraph mark-up

\begin{zed}
Freetype, { \& , Freetype }
\end{zed}

A.2.7.6 Other paragraph mark-up

All other paragraphs are enclosed in a pair of \begin{zed} and \end{zed} commands. \begin{zed} is converted
to white space and \end{zed} is converted to ENDCHAR.

A.2.8 LATEX whitespace mark-up

LATEX has ‘hard’ white space (explicit LATEX mark-up) and ‘soft’ white space (ASCII white space characters such
as space, tab, and new line that are converted to the Z character SPACE).

The hard white space is converted as follows:

LATEX command Z character string

{ (empty)
} (empty)
~ SPACE
\, SPACE
\! SPACE
\(space) SPACE
\; SPACE
\: SPACE
\t1 SPACE
\t2 SPACE
\t3 SPACE
\t4 SPACE
\t5 SPACE
\t6 SPACE
\t7 SPACE
\t8 SPACE
\t9 SPACE
\\ NLCHAR
\also NLCHAR

The conversion of LATEX Greek characters shall consume any immediately following soft white space. The con-
version of LATEX symbol characters shall preserve any following soft white space. Any remaining soft white space
shall be converted to the SPACE character.

EXAMPLE 1 The LATEX command ‘\Delta S’ converts to the Z string ‘∆S ’.

EXAMPLE 2 The LATEX command ‘\Delta~S’ converts to the Z string ‘∆ S ’.

EXAMPLE 3 The LATEX command ‘\power S’ converts to the Z string ‘P S ’.

A.2.9 Introducing new Z characters

A new Z character is introduced by the following one-line directive.

%%Zchar \LaTeXcommand U+nnnn

Subsequent occurrences of this \LaTeXcommand shall be converted to the corresponding character in plane 1 of
ISO/IEC 10646.
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NOTE 1 There may be an accompanying LATEX \DeclareMathSymbol for the same \LaTeXcommand, giving a corre-
sponding character code as its expansion. The two characters thus defined are not required to be the same, but if
they differ, confusion may ensue.

A LATEX command to abbreviate the LATEX mark-up of a sequence of Z characters is introduced by the following
one-line directive.

%%Zstring \LaTeXcommand Zstring

The Zstring excludes any leading spaces.

NOTE 2 There will typically be an accompanying LATEX \newcommand for the same \LaTeXcommand, giving the same
Zstring as its expansion. The two expansions are not required to be the same, but if they differ, confusion may
ensue.

Subsequent occurrences of this \LaTeXcommand shall be replaced by the corresponding Zstring and that mark-up
shall be converted.

The scope of one of these directives is the rest of the section in which it appears and any sections of which it is
an ancestor, excluding the headers of those sections.

NOTE 3 This is the same as the scope of a global definition.

EXAMPLE %%Zchar \sqsubseteq U+2291

%%Zstring \nattwo \nat_2

A.2.10 Remaining LATEX mark-up

Any remaining LATEX command names enclosed in braces, ‘{\aToken}’, shall be converted to the equivalent Z
character string with the braces and leading backslash removed, as ‘aToken’.

Any remaining LATEX command names shall be converted to the equivalent Z character string with the leading
backslash removed, and with a SPACE character added at the beginning and end, as ‘ aToken ’.

EXAMPLE 1 LATEX mark-up: ‘{\dom}s’, Z character string: ‘doms’.
LATEX mark-up: ‘\dom s’, Z character string: ‘ dom s’.

EXAMPLE 2 LATEX mark-up: \IF \disjoint a \THEN x = y \mod z \ELSE x = y \div z

Z character string: if disjoint a then x = y mod z else x = y div z

A possible rendering: if disjoint a then x = y mod z else x = y div z

A.3 Email mark-up

This email mark-up is designed primarily as a human-readable lightweight mark-up, but may also be processed
by tools. The character ‘%’ delimits an ASCII string used to represent a Z character string, for example ‘×’ as
‘%x%’. This disambiguates it from, for example, the name ‘x’.

Where there is no danger of ambiguity (for the human reader) the trailing ‘%’ character, or both ‘%’ characters,
may be omitted to reduce clutter.

A literal ‘%’ character may be introduced into the text as ‘%%’.

A.3.1 Letter characters

In the following, the email string is to be used surrounded by a leading and trailing ‘%’ character.

Names that use only ASCII characters, or that are composed out of previously defined Z characters, are not listed
here.

A.3.1.1 Greek alphabet characters

Only the minimal subset of Greek alphabet defined in 6.2 need be supported by an implementation. Those Greek
characters that are supported shall use the mark-up given here.
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Email string Z character string

Delta ∆
Xi Ξ
theta θ
lambda λ
mu µ

A.3.1.2 Other Z core language letter characters

Email string Z character string

arithmos A

N N

P P

A.3.2 Special characters

A.3.2.1 Special characters except Box characters

Email string Z character string

/^ ↗
v/ ↙
\v ↘
^\ ↖
<< 〈〈
>> 〉〉
<| 〈|
|> |〉

A.3.2.2 Box characters

The ENDCHAR character is used to mark the end of a Paragraph. There are several different mark-ups for the
ENDCHAR character, depending on the kind of paragraph. They are described in A.3.5, on paragraph mark-up.

The NLCHAR character is used to mark a hard newline (see 7.5).

The email form of the box characters mimicks the mathematical form, as various boxes drawn around the text.
They are described in A.3.5, on paragraph mark-up.

86 c©ISO/IEC 2000—All rights reserved



A Mark-ups ISO/IEC 13568:2000(E)

A.3.3 Symbol characters (except mathematical toolkit characters)

Email string Z character string

| |
|- `
/\ ∧
\/ ∨
==> ⇒
<=> ⇔
not ¬
A ∀
E ∃
x ×
e ∈
@ •
S\ \
S|\ �
S; o

9

S>> >>

A.3.4 Mathematical toolkit characters and tokens

The mathematical toolkit need not be supported by an implementation. If any of its tokens are supported, they
shall use the mark-up given here.
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Email string Z character string

<--> ↔
--> →
/= 6=
/e 6∈
(/) ∅

c_ ⊆
c ⊂
u ∪
n ∩
(-) 	
uu

⋃
nn

⋂
F F

|--> 7→
; o

9

o ◦
<: C
:> B
<-: −C
:-> −B
(| (|
|) |)
(+) ⊕
+ +

* ∗

-|-> 7→
>-|-> 7�
>--> �
-|->> 7→→
-->> →→
>-->> �→
-||-> 7 7→
>-||-> 7 7�
Z Z

- - (unary negation)
<= ≤
>= ≥
< 〈
> 〉
^ a

/| �
|\ �

A.3.5 Paragraph mark-up

A.3.5.1 Axiomatic description paragraph mark-up

+..
DeclPart
|--
Predicate
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-..

The mark-up +.. is translated to an AXCHAR character. The mark-up |-- is translated to a | character. The
mark-up -.. is translated to an ENDCHAR character.

A.3.5.2 Schema definition paragraph mark-up

+-- NAME ---
DeclPart
|--
Predicate
---

The mark-up +-- --- is translated to a SCHCHAR character. The mark-up |-- is translated to a | character.
The mark-up --- is translated to an ENDCHAR character.

A.3.5.3 Generic axiomatic description paragraph mark-up

+== [Formals] ===
DeclPart
|--
Predicate
-==

The mark-up +== === is translated to an AXCHAR and a GENCHAR character. The mark-up |-- is translated to
a | character. The mark-up -== is translated to an ENDCHAR character.

A.3.5.4 Generic schema definition paragraph mark-up

+-- NAME[Formals] ---
DeclPart
|--
Predicate
---

The mark-up +-- --- is translated to a SCHCHAR and a GENCHAR character. The mark-up |-- is translated to
a | character. The mark-up --- is translated to an ENDCHAR character.

A.3.5.5 Other paragraph mark-up

Unboxed formal paragraphs (and informal paragraphs where necessary) end with a ‘%%’ on a line by itself, which
mark-up is translated to an ENDCHAR character.
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Annex B
(normative)

Mathematical toolkit

B.1 Introduction

The mathematical toolkit is an optional extension to the compulsory core language. It comprises a hierarchy of
related sections, each defining operators that are widely used in common application domains.

Figure B.1 – Parent relation between sections of the mathematical toolkit

set toolkit

6

relation toolkit

6

function toolkit number toolkit

@
@I

�
��

sequence toolkit

6

standard toolkit

The division of the mathematical toolkit into separate sections allows use of certain subsets of the toolkit rather
than its entirety. For example, if sequences are not used in a particular specification, then using function toolkit
and number toolkit as parents avoids bringing the notation of sequence toolkit into scope. Notations that are not
reused can be given different definitions.

A specification without a section header has section standard toolkit as an implicit parent.

B.2 Preliminary definitions

section set toolkit

B.2.1 Relations

generic 5 rightassoc ( ↔ )

X ↔ Y == P(X ×Y )

X ↔ Y is the set of relations between X and Y , that is, the set of all sets of ordered pairs whose first members
are members of X and whose second members are members of Y .

B.2.2 Total functions

generic 5 rightassoc ( → )

X → Y == { f : X ↔ Y | ∀ x : X • ∃1 y : Y • (x , y) ∈ f }

X → Y is the set of all total functions from X to Y , that is, the set of all relations between X and Y such that
each x in X is related to exactly one y in Y .
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B.3 Sets

B.3.1 Inequality relation

relation ( 6= )

[X ]
6= : X ↔ X

∀ x , y : X • x 6= y ⇔ ¬ x = y

Inequality is the relation between those values of the same type that are not equal to each other.

B.3.2 Non-membership

relation ( 6∈ )

[X ]
6∈ : X ↔ PX

∀ x : X ; a : PX • x 6∈ a ⇔ ¬ x ∈ a

Non-membership is the relation between those values of a type, x , and sets of values of that type, a, for which x
is not a member of a.

B.3.3 Empty set

∅[X ] == { x : X | false }

The empty set of any type is the set of that type that has no members.

B.3.4 Subset relation

relation ( ⊆ )

[X ]
⊆ : PX ↔ PX

∀ a, b : PX • a ⊆ b ⇔ (∀ x : a • x ∈ b)

Subset is the relation between two sets of the same type, a and b, such that every member of a is a member of b.

B.3.5 Proper subset relation

relation ( ⊂ )

[X ]
⊂ : PX ↔ PX

∀ a, b : PX • a ⊂ b ⇔ a ⊆ b ∧ a 6= b

Proper subset is the relation between two sets of the same type, a and b, such that a is a subset of b, and a and
b are not equal.
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B.3.6 Non-empty subsets

P1 X == { a : PX | a 6= ∅ }

If X is a set, then P1 X is the set of all non-empty subsets of X .

NOTE The word P is established as a generic operator by the prelude.

B.3.7 Set union

function 30 leftassoc ( ∪ )

[X ]
∪ : PX × PX → PX

∀ a, b : PX • a ∪ b = { x : X | x ∈ a ∨ x ∈ b }

The union of two sets of the same type is the set of values that are members of either set.

B.3.8 Set intersection

function 40 leftassoc ( ∩ )

[X ]
∩ : PX × PX → PX

∀ a, b : PX • a ∩ b = { x : X | x ∈ a ∧ x ∈ b }

The intersection of two sets of the same type is the set of values that are members of both sets.

B.3.9 Set difference

function 30 leftassoc ( \ )

[X ]
\ : PX × PX → PX

∀ a, b : PX • a \ b = { x : X | x ∈ a ∧ x 6∈ b }

The difference of two sets of the same type is the set of values that are members of the first set but not members
of the second set.

B.3.10 Set symmetric difference

function 25 leftassoc ( 	 )

[X ]
	 : PX × PX → PX

∀ a, b : PX • a 	 b = { x : X | ¬ (x ∈ a ⇔ x ∈ b) }

The symmetric set difference of two sets of the same type is the set of values that are members of one set, or the
other, but not members of both.
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B.3.11 Generalized union

[X ]⋃
: PPX → PX

∀A : PPX •
⋃

A = { x : X | ∃ a : A • x ∈ a }

The generalized union of a set of sets of the same type is the set of values of that type that are members of at
least one of the sets.

B.3.12 Generalized intersection

[X ]⋂
: PPX → PX

∀A : PPX •
⋂

A = { x : X | ∀ a : A • x ∈ a }

The generalized intersection of a set of sets of values of the same type is the set of values of that type that are
members of every one of the sets.

B.4 Finite sets

B.4.1 Finite subsets

generic 80 ( F )

FX ==
⋂
{ A : PPX | ∅ ∈ A ∧ (∀ a : A; x : X • a ∪ {x} ∈ A) }

If X is a set, then FX is the set of all finite subsets of X . The set of finite subsets of X is the smallest set that
contains the empty set and is closed under the action of adding single elements of X .

B.4.2 Non-empty finite subsets

F1 X == FX \ {∅}

If X is a set, then F1 X is the set of all non-empty finite subsets of X . The set of non-empty finite subsets of X
is the smallest set that contains the singleton sets of X and is closed under the action of adding single elements
of X .

B.5 More notations for relations

section relation toolkit parents set toolkit

B.5.1 First component projection

[X ,Y ]
first : X ×Y → X

∀ p : X ×Y • first p = p.1

For any ordered pair p, first p is the first component of the pair.

B.5.2 Second component projection

[X ,Y ]
second : X ×Y → Y

∀ p : X ×Y • second p = p.2

For any ordered pair p, second p is the second component of the pair.
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B.5.3 Maplet

function 10 leftassoc ( 7→ )

[X ,Y ]
7→ : X ×Y → X ×Y

∀ x : X ; y : Y • x 7→ y = (x , y)

The maplet forms an ordered pair from two values; x 7→ y is just another notation for (x , y).

B.5.4 Domain

[X ,Y ]
dom : (X ↔ Y )→ PX

∀ r : X ↔ Y • dom r = { p : r • p.1 }

The domain of a relation r is the set of first components of the ordered pairs in r .

B.5.5 Range

[X ,Y ]
ran : (X ↔ Y )→ PY

∀ r : X ↔ Y • ran r = { p : r • p.2 }

The range of a relation r is the set of second components of the ordered pairs in r .

B.5.6 Identity relation

generic 80 ( id )

id X == { x : X • x 7→ x }

The identity relation on a set X is the relation that relates every member of X to itself.

B.5.7 Relational composition

function 40 leftassoc ( o
9 )

[X ,Y ,Z ]
o
9 : (X ↔ Y )× (Y ↔ Z )→ (X ↔ Z )

∀ r : X ↔ Y ; s : Y ↔ Z • r o
9 s = { p : r ; q : s | p.2 = q .1 • p.1 7→ q .2 }

The relational composition of a relation r : X ↔ Y and s : Y ↔ Z is a relation of type X ↔ Z formed by taking
all the pairs p of r and q of s, where the second component of p is equal to the first component of q , and relating
the first component of p with the second component of q .

B.5.8 Functional composition

function 40 leftassoc ( ◦ )

[X ,Y ,Z ]
◦ : (Y ↔ Z )× (X ↔ Y )→ (X ↔ Z )

∀ r : X ↔ Y ; s : Y ↔ Z • s ◦ r = r o
9 s

The functional composition of s and r is the same as the relational composition of r and s.
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B.5.9 Domain restriction

function 65 rightassoc ( C )

[X ,Y ]
C : PX × (X ↔ Y )→ (X ↔ Y )

∀ a : PX ; r : X ↔ Y • a C r = { p : r | p.1 ∈ a }

The domain restriction of a relation r : X ↔ Y by a set a : PX is the set of pairs in r whose first components
are in a.

B.5.10 Range restriction

function 60 leftassoc ( B )

[X ,Y ]
B : (X ↔ Y )× PY → (X ↔ Y )

∀ r : X ↔ Y ; b : PY • r B b = { p : r | p.2 ∈ b }

The range restriction of a relation r : X ↔ Y by a set b : PY is the set of pairs in r whose second components
are in b.

B.5.11 Domain subtraction

function 65 rightassoc ( −C )

[X ,Y ]
−C : PX × (X ↔ Y )→ (X ↔ Y )

∀ a : PX ; r : X ↔ Y • a −C r = { p : r | p.1 6∈ a }

The domain subtraction of a relation r : X ↔ Y by a set a : PX is the set of pairs in r whose first components
are not in a.

B.5.12 Range subtraction

function 60 leftassoc ( −B )

[X ,Y ]
−B : (X ↔ Y )× PY → (X ↔ Y )

∀ r : X ↔ Y ; b : PY • r −B b = { p : r | p.2 6∈ b }

The range subtraction of a relation r : X ↔ Y by a set b : PY is the set of pairs in r whose second components
are not in b.

B.5.13 Relational inversion

function 90 ( ∼ )

[X ,Y ]
∼ : (X ↔ Y )→ (Y ↔ X )

∀ r : X ↔ Y • r∼ = { p : r • p.2 7→ p.1 }

The inverse of a relation is the relation obtained by reversing every ordered pair in the relation.
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B.5.14 Relational image

function 90 ( (| |) )

[X ,Y ]
(| |) : (X ↔ Y )× PX → PY

∀ r : X ↔ Y ; a : PX • r(| a |) = { p : r | p.1 ∈ a • p.2 }

The relational image of a set a : PX through a relation r : X ↔ Y is the set of values of type Y that are related
under r to a value in a.

B.5.15 Overriding

function 50 leftassoc ( ⊕ )

[X ,Y ]
⊕ : (X ↔ Y )× (X ↔ Y )→ (X ↔ Y )

∀ r , s : X ↔ Y • r ⊕ s = ((dom s)−C r) ∪ s

If r and s are both relations between X and Y , the overriding of r by s is the whole of s together with those
members of r that have no first components that are in the domain of s.

B.5.16 Transitive closure

function 90 ( + )

[X ]
+ : (X ↔ X )→ (X ↔ X )

∀ r : X ↔ X • r + =
⋂
{ s : X ↔ X | r ⊆ s ∧ r o

9 s ⊆ s }

The transitive closure of a relation r : X ↔ X is the smallest set that contains r and is closed under the action
of composing r with its members.

B.5.17 Reflexive transitive closure

function 90 ( ∗ )

[X ]
∗ : (X ↔ X )→ (X ↔ X )

∀ r : X ↔ X • r ∗ = r + ∪ id X

The reflexive transitive closure of a relation r : X ↔ X is the relation formed by extending the transitive closure
of r by the identity relation on X .

B.6 Functions

section function toolkit parents relation toolkit
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B.6.1 Partial functions

generic 5 rightassoc ( 7→ )

X 7→ Y == { f : X ↔ Y | ∀ p, q : f | p.1 = q .1 • p.2 = q .2 }

X 7→ Y is the set of all partial functions from X to Y , that is, the set of all relations between X and Y such
that each x in X is related to at most one y in Y . The terms “function” and “partial function” are synonymous.

B.6.2 Partial injections

generic 5 rightassoc ( 7� )

X 7� Y == { f : X ↔ Y | ∀ p, q : f • p.1 = q .1⇔ p.2 = q .2 }

X 7� Y is the set of partial injections from X to Y , that is, the set of all relations between X and Y such that
each x in X is related to no more than one y in Y , and each y in Y is related to no more than one x in X . The
terms “injection” and “partial injection” are synonymous.

B.6.3 Total injections

generic 5 rightassoc ( � )

X � Y == (X 7� Y ) ∩ (X → Y )

X � Y is the set of total injections from X to Y , that is, the set of injections from X to Y that are also total
functions from X to Y .

B.6.4 Partial surjections

generic 5 rightassoc ( 7→→ )

X 7→→ Y == { f : X 7→ Y | ran f = Y }

X 7→→ Y is the set of partial surjections from X to Y , that is, the set of functions from X to Y whose range is
equal to Y . The terms “surjection” and “partial surjection” are synonymous.

B.6.5 Total surjections

generic 5 rightassoc ( →→ )

X →→ Y == (X 7→→ Y ) ∩ (X → Y )

X →→ Y is the set of total surjections from X to Y , that is, the set of surjections from X to Y that are also total
functions from X to Y .

B.6.6 Bijections

generic 5 rightassoc ( �→ )

X �→ Y == (X →→ Y ) ∩ (X � Y )

X �→ Y is the set of bijections from X to Y , that is, the set of total surjections from X to Y that are also total
injections from X to Y .

c©ISO/IEC 2000—All rights reserved 97



ISO/IEC 13568:2000(E) B Mathematical toolkit

B.6.7 Finite functions

generic 5 rightassoc ( 7 7→ )

X 7 7→ Y == (X 7→ Y ) ∩ F(X ×Y )

The finite functions from X to Y are the functions from X to Y that are also finite sets.

B.6.8 Finite injections

generic 5 rightassoc ( 7 7� )

X 7 7� Y == (X 7 7→ Y ) ∩ (X 7� Y )

The finite injections from X to Y are the injections from X to Y that are also finite functions from X to Y .

B.6.9 Disjointness

relation ( disjoint )

[L,X ]
disjoint : P(L↔ PX )

∀ f : L↔ PX • disjoint f ⇔ (∀ p, q : f | p 6= q • p.2 ∩ q .2 = ∅)

A labelled family of sets is disjoint precisely when any distinct pair yields sets with no members in common.

B.6.10 Partitions

relation ( partition )

[L,X ]
partition : (L↔ PX )↔ PX

∀ f : L↔ PX ; a : PX • f partition a ⇔ disjoint f ∧
⋃

(ran f ) = a

A labelled family of sets f partitions a set a precisely when f is disjoint and the union of all the sets in f is a.

B.7 Numbers

section number toolkit

B.7.1 Successor

function 80 ( succ )

succ : P(N× N)

(succ ) = λn : N • n + 1

The successor of a natural number n is equal to n + 1.
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B.7.2 Integers

Z : PA

Z is the set of integers, that is, positive and negative whole numbers and zero. The set Z is characterised by
axioms for its additive structure given in the prelude (clause 11) together with the next formal paragraph below.

Number systems that extend the integers may be specified as supersets of Z.

B.7.3 Addition of integers, arithmetic negation

function 80 ( - )

- : P(A× A)

∀ x , y : Z • ∃1 z : Z • ((x , y), z ) ∈ ( + )
∀ x : Z • ∃1 y : Z • (x , y) ∈ (- )
∀ i , j , k : Z •

(i + j ) + k = i + (j + k)
∧ i + j = j + i
∧ i + -i = 0
∧ i + 0 = i

Z = {z : A | ∃ x : N • z = x ∨ z = -x}

The binary addition operator ( + ) is defined in the prelude (clause 11). The definition here introduces additional
properties for integers. The addition and negation operations on integers are total functions that take integer
values. The integers form a commutative group under ( + ) with (- ) as the inverse operation and 0 as the
identity element.

NOTE If function toolkit notation were exploited, the negation operator could be defined as follows.

- : A 7→ A

(Z× Z)C ( + ) ∈ Z× Z→ Z

ZC (- ) ∈ Z→ Z

∀ i , j , k : Z •
(i + j ) + k = i + (j + k)

∧ i + j = j + i

∧ i + -i = 0

∧ i + 0 = i

∀ h : PZ •
1 ∈ h ∧ (∀ i , j : h • i + j ∈ h ∧ -i ∈ h)

⇒ h = Z

B.7.4 Subtraction

function 30 leftassoc ( − )

− : P((A× A)× A)

∀ x , y : Z • ∃1 z : Z • ((x , y), z ) ∈ ( − )
∀ i , j : Z • i − j = i + -j

Subtraction is a function whose domain includes all pairs of integers. For all integers i and j , i − j is equal to
i + -j .
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NOTE If function toolkit notation were exploited, the subtraction operator could be defined as follows.

− : A× A 7→ A

(Z× Z)C ( − ) ∈ Z× Z→ Z

∀ i , j : Z • i − j = i + -j

B.7.5 Less-than-or-equal

relation ( ≤ )

≤ : P(A× A)

∀ i , j : Z • i ≤ j ⇔ j − i ∈ N

For all integers i and j , i ≤ j if and only if their difference j − i is a natural number.

B.7.6 Less-than

relation ( < )

< : P(A× A)

∀ i , j : Z • i < j ⇔ i + 1 ≤ j

For all integers i and j , i < j if and only if i + 1 ≤ j .

B.7.7 Greater-than-or-equal

relation ( ≥ )

≥ : P(A× A)

∀ i , j : Z • i ≥ j ⇔ j ≤ i

For all integers i and j , i ≥ j if and only if j ≤ i .

B.7.8 Greater-than

relation ( > )

> : P(A× A)

∀ i , j : Z • i > j ⇔ j < i

For all integers i and j , i > j if and only if j < i .

B.7.9 Strictly positive natural numbers

N1 == {x : N | ¬ x = 0}

The strictly positive natural numbers N1 are the natural numbers except zero.
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B.7.10 Non-zero integers

Z1 == {x : Z | ¬ x = 0}

The non-zero integers Z1 are the integers except zero.

B.7.11 Multiplication of integers

function 40 leftassoc ( ∗ )

∗ : P((A× A)× A)

∀ x , y : Z • ∃1 z : Z • ((x , y), z ) ∈ ( ∗ )
∀ i , j , k : Z •

(i ∗ j ) ∗ k = i ∗ (j ∗ k)
∧ i ∗ j = j ∗ i
∧ i ∗ (j + k) = i ∗ j + i ∗ k
∧ 0 ∗ i = 0
∧ 1 ∗ i = i

The binary multiplication operator ( ∗ ) is defined for integers. The multiplication operation on integers is a
total function and has integer values. Multiplication on integers is characterised by the unique operation under
which the integers become a commutative ring with identity element 1.

NOTE If function toolkit notation were exploited, the multiplication operator could be defined as follows.

∗ : (A× A) 7→ A

(Z× Z)C ( ∗ ) ∈ Z× Z→ Z

∀ i , j , k : Z •
(i ∗ j ) ∗ k = i ∗ (j ∗ k)

∧ i ∗ j = j ∗ i

∧ i ∗ (j + k) = i ∗ j + i ∗ k

∧ 0 ∗ i = 0

∧ 1 ∗ i = i

B.7.12 Division, modulus

function 40 leftassoc ( div )
function 40 leftassoc ( mod )

div , mod : P((A× A)× A)

∀ x : Z; y : Z1 • ∃1 z : Z • ((x , y), z ) ∈ ( div )
∀ x : Z; y : Z1 • ∃1 z : Z • ((x , y), z ) ∈ ( mod )
∀ i : Z; j : Z1 •

i = (i div j ) ∗ j + i mod j
∧ (0 ≤ i mod j < j ∨ j < i mod j ≤ 0)

For all integers i and non-zero integers j , the pair (i , j ) is in the domain of div and of mod , and i div j and
i mod j have integer values.

When not zero, i mod j has the same sign as j . This means that i div j is the largest integer no greater than the
rational number i/j .
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NOTE If function toolkit notation were exploited, the division and modulus operators could be defined as follows.

div , mod : A× A 7→ A

(Z× Z1)C ( div ) ∈ Z× Z1 → Z

(Z× Z1)C ( mod ) ∈ Z× Z1 → Z

∀ i : Z; j : Z1 •
i = (i div j ) ∗ j + i mod j

∧ (0 ≤ i mod j < j ∨ j < i mod j ≤ 0)

B.8 Sequences

section sequence toolkit parents function toolkit ,number toolkit

B.8.1 Number range

function 20 leftassoc ( . . )

. . : A× A 7→ PA

(Z× Z)C ( . . ) ∈ Z× Z→ PZ

∀ i , j : Z • i . . j = { k : Z | i ≤ k ≤ j }

The number range from i to j is the set of all integers greater than or equal to i , which are also less than or equal
to j .

B.8.2 Iteration

[X ]
iter : Z→ (X ↔ X )→ (X ↔ X )

∀ r : X ↔ X • iter 0 r = id X
∀ r : X ↔ X ; n : N • iter (n + 1) r = r o

9 (iter n r)
∀ r : X ↔ X ; n : N • iter (-n) r = iter n (r∼)

iter is the iteration function for a relation. The iteration of a relation r : X ↔ X for zero times is the identity
relation on X . The iteration of a relation r : X ↔ X for n + 1 times is the composition of the relation with its
iteration n times. The iteration of a relation r : X ↔ X for -n times is the iteration for n times of the inverse of
the relation.

function 90 ( )

[X ]
: (X ↔ X )× Z→ (X ↔ X )

∀ r : X ↔ X ; n : N • rn = iter n r

iter n r may be written as rn .
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B.8.3 Number of members of a set

function 80 ( # )

[X ]
# : FX → N

∀ a : FX • #a = (µn : N | (∃ f : 1 . . n � a • ran f = a))

The number of members of a finite set is the upper limit of the number range starting at 1 that can be put into
bijection with the set.

B.8.4 Minimum

function 80 ( min )

min : PA 7→ A

PZC (min ) = { a : PZ; m : Z | m ∈ a ∧ (∀n : a • m ≤ n) • a 7→ m }

If a set of integers has a member that is less than or equal to all members of that set, that member is its minimum.

B.8.5 Maximum

function 80 ( max )

max : PA 7→ A

PZC (max ) = { a : PZ; m : Z | m ∈ a ∧ (∀n : a • n ≤ m) • a 7→ m }

If a set of integers has a member that is greater than or equal to all members of that set, that member is its
maximum.

B.8.6 Finite sequences

generic 80 ( seq )

seq X == { f : N 7 7→ X | dom f = 1 . .#f }

A finite sequence is a finite indexed set of values of the same type, whose domain is a contiguous set of positive
integers starting at 1.

seq X is the set of all finite sequences of values of X , that is, of finite functions from the set 1 . . n, for some n,
to elements of X .

B.8.7 Non-empty finite sequences

seq1 X == seq X \ {∅}

seq1 X is the set of all non-empty finite sequences of values of X .

B.8.8 Injective sequences

generic 80 ( iseq )

iseq X == seq X ∩ (N 7� X )

iseq X is the set of all injective finite sequences of values of X , that is, of finite sequences over X that are also
injections.
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B.8.9 Sequence brackets

function ( 〈 , , 〉 )

〈 〉[X ] == λ s : seq X • s

The brackets 〈 and 〉 can be used for enumerated sequences.

B.8.10 Concatenation

function 30 leftassoc ( a )

[X ]
a : seq X × seq X → seq X

∀ s, t : seq X • s a t = s ∪ { n : dom t • n + #s 7→ t n }

Concatenation is a function of a pair of finite sequences of values of the same type whose result is a sequence that
begins with all elements of the first sequence and continues with all elements of the second sequence.

B.8.11 Reverse

[X ]
rev : seq X → seq X

∀ s : seq X • rev s = λn : dom s • s(#s − n + 1)

The reverse of a sequence is the sequence obtained by taking its elements in the opposite order.

B.8.12 Head of a sequence

[X ]
head : seq1 X → X

∀ s : seq1 X • head s = s 1

If s is a non-empty sequence of values, then head s is the value that is first in the sequence.

B.8.13 Last of a sequence

[X ]
last : seq1 X → X

∀ s : seq1 X • last s = s(#s)

If s is a non-empty sequence of values, then last s is the value that is last in the sequence.

B.8.14 Tail of a sequence

[X ]
tail : seq1 X → seq X

∀ s : seq1 X • tail s = λn : 1 . . (#s − 1) • s(n + 1)

If s is a non-empty sequence of values, then tail s is the sequence of values that is obtained from s by discarding
the first element and renumbering the remainder.
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B.8.15 Front of a sequence

[X ]
front : seq1 X → seq X

∀ s : seq1 X • front s = {#s} −C s

If s is a non-empty sequence of values, then front s is the sequence of values that is obtained from s by discarding
the last element.

B.8.16 Squashing

[X ]
squash : (Z 7 7→ X )→ seq X

∀ f : Z 7 7→ X • squash f = { p : f • #{ i : dom f | i ≤ p.1 } 7→ p.2 }

squash takes a finite function f : Z 7 7→ X and renumbers its domain to produce a finite sequence.

B.8.17 Extraction

function 45 rightassoc ( � )

[X ]
� : PZ× seq X → seq X

∀ a : PZ; s : seq X • a � s = squash(a C s)

The extraction of a set a of indices from a sequence is the sequence obtained from the original by discarding any
indices that are not in the set a, then renumbering the remainder.

B.8.18 Filtering

function 40 leftassoc ( � )

[X ]
� : seq X × PX → seq X

∀ s : seq X ; a : PX • s � a = squash(s B a)

The filter of a sequence by a set a is the sequence obtained from the original by discarding any members that are
not in the set a, then renumbering the remainder.

B.8.19 Prefix relation

relation ( prefix )

[X ]
prefix : seq X ↔ seq X

∀ s, t : seq X • s prefix t ⇔ s ⊆ t

A sequence s is a prefix of another sequence t if it forms the front portion of t .

c©ISO/IEC 2000—All rights reserved 105



ISO/IEC 13568:2000(E) B Mathematical toolkit

B.8.20 Suffix relation

relation ( suffix )

[X ]
suffix : seq X ↔ seq X

∀ s, t : seq X • s suffix t ⇔ (∃ u : seq X • u a s = t)

A sequence s is a suffix of another sequence t if it forms the end portion of t .

B.8.21 Infix relation

relation ( infix )

[X ]
infix : seq X ↔ seq X

∀ s, t : seq X • s infix t ⇔ (∃ u, v : seq X • u a s a v = t)

A sequence s is an infix of another sequence t if it forms a mid portion of t .

B.8.22 Distributed concatenation

[X ]
a/ : seq seq X → seq X

a/ 〈 〉 = 〈 〉
∀ s : seq X • a/ 〈s〉 = s

∀ q , r : seq seq X • a/(q a r) = (a/ q)a (a/ r)

The distributed concatenation of a sequence t of sequences of values of type X is the sequence of values of type
X that is obtained by concatenating the members of t in order.

B.9 Standard toolkit

section standard toolkit parents sequence toolkit

The standard toolkit contains the definitions of section sequence toolkit (and implicitly those of its ancestral
sections).
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Annex C
(normative)

Organisation by concrete syntax production

C.1 Introduction

This annex duplicates some of the definitions presented in the normative clauses, but re-organised by concrete
syntax production. This re-organisation provides no suitable place to accommodate the material listed in the rest
of this introduction. That material is consequently omitted from this annex.

a) From Concrete syntax, the rules defining:

1) Formals, used in Generic axiomatic description paragraph, Generic schema paragraph, Generic horizon-
tal definition paragraph, and Generic conjecture paragraph;

2) DeclName, used in Branch, Schema hiding expression, Schema renaming expression, Colon declaration
and Equal declaration;

3) RefName, used in Reference expression, Generic instantiation expression, and Binding selection expres-
sion;

4) OpName and its auxiliaries, used in RefName and DeclName;

5) ExpSep and ExpressionList, used in auxiliaries of Relation operator application predicates and Func-
tion and generic operator application expressions;

6) and also the operator precedences and associativities and additional syntactic restrictions.

b) From Characterisation rules:

1) Characteristic tuple.

c) From Prelude:

1) its text is relevant not just to number literal expressions but also to the list arguments in Relation
operator application predicates and Function and generic operator application expressions.

d) From Syntactic transformation rules:

1) Name and ExpressionList.

e) From Type inference rules:

1) Carrier set and Generic type instantiation.

2) Summary of scope rules.

f) From Semantic relations:

1) all of the relations for Type are omitted.
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Also, the description of the overall effect of a phase, or how the phase operates, is generally omitted from this
annex.

Moreover, some of the phases and representations are entirely omitted here, namely Mark-ups, Z characters, Lexis
and Annotated syntax.

C.2 Specification

C.2.1 Introduction

Specification is the start symbol of the syntax. A Specification can be either a sectioned specification or
an anonymous specification. A sectioned specification comprises a sequence of named sections. An anonymous
specification comprises a single anonymous section.

C.2.2 Sectioned specification

C.2.2.1 Syntax

Specification = { Section }
| ...
;

C.2.2.2 Type

{} `S sprelude o
o Γ δ1 `

S
s o

o Γ ... δn `
S
sn o

o Γn
`Z s o

o Γ ... sn o
o Γn

 δ1 = {prelude 7→ Γ}
...

δn = δn−1 ∪ {in− 7→ Γn−}


where in− is the name of section sn−, and none of the sections s ... sn are named prelude.

Each section is typechecked in an environment formed from preceding sections, and is annotated with an envi-
ronment that it establishes.

NOTE The environment established by the prelude section is as follows.

Γ = (A, (prelude,P(GIVEN A))),
(N, (prelude,P(GIVEN A))),
(number literal 0, (prelude, (GIVEN A))),
(number literal 1, (prelude, (GIVEN A))),
(1+1, (prelude,P(((GIVEN A)× (GIVEN A))× (GIVEN A))))

If one of the sections s ... sn is named prelude, then the same type inference rule applies except that the type
subsequent for the prelude section is omitted.

C.2.2.3 Semantics

[[ s ... sn ]]Z = ([[ section prelude... ]]S o
9 [[ s ]]S o

9 ... o
9 [[ sn ]]S) ∅

The meaning of the Z specification s ... sn is the function from sections’ names to their sets of models formed
by starting with the empty function and extending that with a maplet from a section’s name to its set of models
for each section in the specification, starting with the prelude.

To determine [[ section prelude... ]]Z another prelude shall not be prefixed onto it.

NOTE The meaning of a specification is not the meaning of its last section, so as to permit several meaningful units
within a single document.
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C.2.3 Anonymous specification

C.2.3.1 Syntax

Specification = ...
| { Paragraph }
;

C.2.3.2 Transformation

The anonymous specification d ... dn is semantically equivalent to the sectioned specification comprising a single
section containing those paragraphs with the mathematical toolkit of annex B as its parent.

d ... dn =⇒ Mathematical toolkit section Specification parents standard toolkit END d ... dn

In this transformation, Mathematical toolkit denotes the entire text of annex B. The name given to the section
is not important: it need not be Specification, though it may not be prelude or that of any section of the
mathematical toolkit.

C.3 Section

C.3.1 Introduction

A Section can be either an inheriting section or a base section. An inheriting section gathers together the
paragraphs of parent sections with new paragraphs. A base section is like an inheriting section but has no
parents.

C.3.2 Inheriting section

C.3.2.1 Syntax

Section = section , NAME , parents , [ NAME , { ,-tok , NAME } ] , END ,
{ Paragraph }

| ...
;

C.3.2.2 Type

β0 `
D
d o

o σ ... βn−1 `
D
dn o

o σn

Λ `S section i parents i, ..., im END
d o

o σ ... dn o
o σn o

o Γ



i 6∈ dom Λ
{i, ..., im} ⊆ dom Λ
γ−1 = if i = prelude then {} else Λ prelude
γ0 = γ−1 ∪ Λ i ∪ ... ∪ Λ im
β0 = γ0

o
9 second

disjoint 〈dom σ, ..., dom σn〉
Γ ∈ ( 7→ )
Γ = γ0 ∪ {j : NAME; τ : Type | j 7→ τ ∈ σ ∪ ... ∪ σn • j 7→ (i, τ)}
β1 = β0 ∪ σ

...
βn−1 = βn−2 ∪ σn−


Taking the side-conditions in order, this type inference rule ensures that:

a) the name of the section, i, is different from that of any previous section;
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b) the names in the parents list are names of known sections;

c) the section environment of the prelude is included if the section is not itself the prelude;

d) the section environment γ0 is formed from those of the parents;

e) the type environment β0 is determined from the section environment γ0;

f) there is no global redefinition between any pair of paragraphs of the section (the sets of names in their
signatures are disjoint);

g) a name which is common to the environments of multiple parents shall have originated in a common ancestral
section, and a name introduced by a paragraph of this section shall not also be introduced by another
paragraph or parent section (all ensured by the combined environment being a function);

h) the annotation of the section is an environment formed from those of its parents extended according to the
signatures of its paragraphs;

i) and the type environment in which a paragraph is typechecked is formed from that of the parent sections
extended with the signatures of the preceding paragraphs of this section.

NOTE 1 Ancestors need not be immediate parents, and a section cannot be amongst its own ancestors (no cycles
in the parent relation).

NOTE 2 The name of a section can be the same as the name of a variable introduced in a declaration—the two are
not confused.

C.3.2.3 Semantics

The prelude section, as defined in clause 11, is treated specially, as it is the only one that does not have prelude
as an implicit parent.

[[ section prelude parents END d ... dn ]]S

=
λ T : SectionModels • {prelude 7→ ([[ d ]]D o

9 ... o
9 [[ dn ]]D) (| {∅} |)}

The meaning of the prelude section is given by that constant function which, whatever function from sections’
names and their sets of models it is given, returns the singleton set mapping the name prelude to its set of models.
The set of models is that to which the set containing an empty model is related by the composition of the relations
between models that denote the meanings of each of the prelude’s paragraphs—see clause 11 for details of those
paragraphs.

NOTE One model of the prelude section can be written as follows.

{A 7→ A,

N 7→ N,

number literal 0 7→ 0,

number literal 1 7→ 1,

+ 7→ {((0, 0), 0), ((0, 1), 1), ((1, 0), 1), ((1, 1), 2), ...}}

The behaviour of ( + ) on non-natural numbers, e.g. reals, has not been defined at this point, so the set of models
for the prelude section includes alternatives for every possible extended behaviour of addition.

[[ section i parents i, ..., im END d ... dn ]]S

=
λ T : SectionModels • T ∪ {i 7→

([[ d ]]D o
9 ... o9 [[ dn ]]D) (| {M0 : T prelude; M1 : T i; ...; Mm : T im; M : Model | M = M0∪M1∪ ...∪Mm • M} |)}
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The meaning of a section other than the prelude is the extension of a function from sections’ names to their sets
of models with a maplet from the given section’s name to its set of models. The given section’s set of models
is that to which the union of the models of the section’s parents is related by the composition of the relations
between models that denote the meanings of each of the section’s paragraphs.

C.3.3 Base section

C.3.3.1 Syntax

Section = ...
| section , NAME , END , { Paragraph }
;

C.3.3.2 Transformation

The base section section i END d ... dn is semantically equivalent to the inheriting section that inherits from no
parents (bar prelude).

section i END d ... dn =⇒ section i parents END d ... dn

C.4 Paragraph

C.4.1 Introduction

A Paragraph can introduce new names into the models, and can constrain the values associated with names. A
Paragraph can be any of given types, axiomatic description, schema definition, generic axiomatic description,
generic schema definition, horizontal definition, generic horizontal definition, generic operator definition, free
types, conjecture, generic conjecture, or operator template.

C.4.2 Given types

C.4.2.1 Syntax

Paragraph = [-tok , NAME , { ,-tok , NAME } , ]-tok , END
| ...
;

C.4.2.2 Type

Σ `D [i, ..., in] END o
o σ

(
# {i, ..., in} = n
σ = i : P(GIVEN i); ...; in : P(GIVEN in)

)
In a given types paragraph, there shall be no duplication of names. The annotation of the paragraph is a signature
associating the given type names with powerset types.

C.4.2.3 Semantics

The given types paragraph [i, ..., in] END introduces unconstrained global names.

[[ [i, ..., in] END ]]D = {M : Model ; w1, ..., wn : W
• M 7→ M ∪ {i 7→ w1, ..., in 7→ wn}

∪ {i decor ♥ 7→ w1, ..., in decor ♥ 7→ wn}}
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It relates a model M to that model extended with associations between the names of the given types and semantic
values chosen to represent their carrier sets. Associations for names decorated with the reserved stroke ♥ are also
introduced, so that references to them from given types (15.2.6.1) can avoid being captured.

C.4.3 Axiomatic description

C.4.3.1 Syntax

Paragraph = ...
| AX , SchemaText , END
| ...
;

C.4.3.2 Type

Σ `E e o
o τ

Σ `D AX e o
o τ END o

o σ
(τ = P[σ])

In an axiomatic description paragraph AX e END, the expression e shall be a schema. The annotation of the
paragraph is the signature of that schema.

C.4.3.3 Semantics

The axiomatic description paragraph AX e END introduces global names and constraints on their values.

[[ AX e END ]]D = {M : Model ; t : W | t ∈ [[ e ]]EM • M 7→ M ∪ t}

It relates a model M to that model extended with a binding t of the schema that is the value of e in model M.

C.4.4 Schema definition

C.4.4.1 Syntax

Paragraph = ...
| SCH , NAME , SchemaText , END
| ...
;

C.4.4.2 Transformation

The schema definition paragraph SCH i t END introduces the global name i, associating it with the schema that
is the value of t.

SCH i t END =⇒ AX [i == t] END

The paragraph is semantically equivalent to the axiomatic description paragraph whose sole declaration associates
the schema’s name with the expression resulting from syntactic transformation of the schema text.
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C.4.5 Generic axiomatic description

C.4.5.1 Syntax

Paragraph = ...
| GENAX , [-tok , Formals , ]-tok , SchemaText , END
| ...
;

C.4.5.2 Type

Σ ⊕ {i 7→ P(GENTYPE i), ..., in 7→ P(GENTYPE in)} `E e o
o τ

Σ `D GENAX [i, ..., in] e o
o τ END o

o σ

 # {i, ..., in} = n
τ = P[β]
σ = λ j : dom β • [i, ..., in] (β j)


In a generic axiomatic description paragraph GENAX [i, ..., in] e END, there shall be no duplication of names within
the generic parameters. The expression e is typechecked, in an environment overridden by the generic parameters,
and shall be a schema. The annotation of the paragraph is formed from the signature of that schema, having the
same names but associated with types that are generic.

C.4.5.3 Semantics

The generic axiomatic description paragraph GENAX [i, ..., in] e END introduces global names and constraints on
their values, with generic parameters that have to be instantiated (by sets) whenever those names are referenced.

[[ GENAX [i, ..., in] (e o
o P[j : τ; ...; jm : τm]) END ]]D =

{M : Model ; u : W ↑ n →W

| ∀ w1, ..., wn : W • ∃ w : W •
u (w1, ..., wn) ∈ w
∧ (M ⊕ {i 7→ w1, ..., in 7→ wn} ∪ {i decor ♠ 7→ w1, ..., in decor ♠ 7→ wn}) 7→ w ∈ [[ e ]]E

• M 7→ M ∪ λ y : {j, ..., jm} • λ x : W ↑ n • u x y}

Given a model M and generic argument sets w1, ..., wn , the semantic value of the schema e in that model
overridden by the association of the generic parameter names with those sets is w . All combinations of generic
argument sets are considered. The function u maps the generic argument sets to a binding in the schema w .
The paragraph relates the model M to that model extended with the binding that associates the names of the
schema e (namely j, ..., jm) with the corresponding value in the binding resulting from application of u to
arbitrary instantiating sets x . Associations for names decorated with the reserved stroke ♠ are also introduced
whilst determining the semantic value of e, so that references to them from generic types (15.2.6.2) can avoid
being captured.

C.4.6 Generic schema definition

C.4.6.1 Syntax

Paragraph = ...
| GENSCH , NAME , [-tok , Formals , ]-tok , SchemaText , END
| ...
;
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C.4.6.2 Transformation

The generic schema definition paragraph GENSCH i [i, ..., in] t END can be instantiated to produce a schema
definition paragraph.

GENSCH i [i, ..., in] t END =⇒ GENAX [i, ..., in] [i == t] END

It is semantically equivalent to the generic axiomatic description paragraph with the same generic parameters and
whose sole declaration associates the schema’s name with the expression resulting from syntactic transformation
of the schema text.

C.4.7 Horizontal definition

C.4.7.1 Syntax

Paragraph = ...
| DeclName , == , Expression , END
| ...
;

C.4.7.2 Transformation

The horizontal definition paragraph i == e END introduces the global name i, associating with it the value of e.

i == e END =⇒ AX [i == e] END

It is semantically equivalent to the axiomatic description paragraph that introduces the same single declaration.

C.4.8 Generic horizontal definition

C.4.8.1 Syntax

Paragraph = ...
| NAME , [-tok , Formals , ]-tok , == , Expression , END
| ...
;

C.4.8.2 Transformation

The generic horizontal definition paragraph i [i, ..., in] == e END can be instantiated to produce a horizontal
definition paragraph.

i [i, ..., in] == e END =⇒ GENAX [i, ..., in] [i == e] END

It is semantically equivalent to the generic axiomatic description paragraph with the same generic parameters
and that introduces the same single declaration.
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C.4.9 Generic operator definition

C.4.9.1 Syntax

Paragraph = ...
| GenName , == , Expression , END
| ...
;

GenName = PrefixGenName
| PostfixGenName
| InfixGenName
| NofixGenName
;

PrefixGenName = PRE , NAME
| L , { NAME , ( ES | SS ) } , NAME , ( ERE | SRE ) , NAME
;

PostfixGenName = NAME , POST
| NAME , EL , { NAME , ( ES | SS ) } , NAME , ( ER | SR )
;

InfixGenName = NAME , I , NAME
| NAME , EL , { NAME , ( ES | SS ) } , NAME , ( ERE | SRE ) , NAME
;

NofixGenName = L , { NAME , ( ES | SS ) } , NAME , ( ER | SR ) ;

C.4.9.2 Transformation

All generic names are transformed to juxtapositions of NAMEs and generic parameter lists. This causes the generic
operator definition paragraphs in which they appear to become generic horizontal definition paragraphs, and thus
be amenable to further syntactic transformation.

Each resulting NAME should be one for which there is an operator template paragraph in scope (see 12.2.8).

C.4.9.3 PrefixGenName

pre i =⇒ pre1 [i]
ln i ess ... in− essn− in− ere in =⇒ ln1ess...1essn−1ere1 [i, ..., in−, in−, in]
ln i ess ... in− essn− in− sre in =⇒ ln1ess...1essn−1sre1 [i, ..., in−, in−, in]

C.4.9.4 PostfixGenName

i post =⇒ 1post [i]
iel i ess ... in− essn− in er =⇒ 1el1ess...1essn−1er [i, i, ..., in−, in]
iel i ess ... in− essn− in sr =⇒ 1el1ess...1essn−1sr [i, i, ..., in−, in]

C.4.9.5 InfixGenName

iin i =⇒ 1in1 [i, i]
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iel i ess ... in− essn− in− ere in =⇒ 1el1ess...1essn−1ere1 [i, i, ..., in−, in−, in]
iel i ess ... in− essn− in− sre in =⇒ 1el1ess...1essn−1sre1 [i, i, ..., in−, in−, in]

C.4.9.6 NofixGenName

ln i ess ... in− essn− in er =⇒ ln1ess...1essn−1er [i, ..., in−, in]
ln i ess ... in− essn− in sr =⇒ ln1ess...1essn−1sr [i, ..., in−, in]

C.4.10 Free types

C.4.10.1 Syntax

Paragraph = ...
| Freetype , { & , Freetype } , END
| ...
;

Freetype = NAME , ::= , Branch , { |-tok , Branch } ;

Branch = DeclName , [ 〈〈 , Expression , 〉〉 ] ;

C.4.10.2 Transformation

The transformation of free types paragraphs is done in two stages. First, the branches are permuted to bring
elements to the front and injections to the rear.

... | g〈〈e〉〉 | h | ... =⇒ ... | h | g〈〈e〉〉 | ...

Exhaustive application of this syntactic transformation rule effects a sort.

The second stage requires implicit generic instantiations to have been filled in, which is done during typechecking
(section 13.2.3.3). Hence that second stage is delayed until after typechecking, where it appears in the form of a
semantic transformation rule (section 14.2.3.1).
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C.4.10.3 Type

β `E e  o
o τ  ... β `E e n o

o τ n
...

β `E er  o
o τr  ... β `E er nr o

o τr nr

Σ `D

f ::= h  | ... | hm |
g 〈〈e  o

o τ 〉〉 |
... |

g n〈〈e n o
o τ n〉〉 &

... &
fr ::= hr  | ... | hrmr |

gr 〈〈er  o
o τr 〉〉 |

... |
gr nr 〈〈er nr o

o τr nr 〉〉

END o
o σ



# {f, h , ..., hm , g , ..., g n ,
...,

fr, hr , ..., hrmr , gr , ..., gr nr}
= r + m1 + ...+ mr + n1 + ...+ nr

β = Σ ⊕ {f 7→ P(GIVEN f), ..., fr 7→ P(GIVEN fr)}
τ  = Pα1 1 ... τ n = Pα1 n1

...
τr  = Pαr 1 ... τr nr = Pαr nr

σ = f : P(GIVEN f);
h  : GIVEN f; ...; hm : GIVEN f;
g  : P(τ  × GIVEN f);

...;
g n : P(τ n × GIVEN f);

...;
fr : P(GIVEN fr);

hr  : GIVEN fr; ...; hrmr : GIVEN fr;
gr  : P(τr  × GIVEN fr);

...;
gr nr : P(τr nr × GIVEN fr)


In a free types paragraph, the names of the free types, elements and injections shall all be different. The expressions
representing the domains of the injections are typechecked in an environment overridden by the names of the free
types, and shall all be sets. The annotation of the paragraph is the signature whose names are those of all the
free types, the elements, and the injections, each associated with the corresponding type.

C.4.10.4 Semantics

A free types paragraph is semantically equivalent to the sequence of given type paragraph and axiomatic definition
paragraph defined here.

NOTE 1 This exploits notation that is not present in the annotated syntax for the purpose of abbreviation.

f ::= h  | ... | hm | g 〈〈e 〉〉 | ... | g n〈〈e n〉〉
& ... &
fr ::= hr  | ... | hrmr | gr 〈〈er 〉〉 | ... | gr nr 〈〈er nr 〉〉

=⇒

[f, ..., fr]
END
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AX
h , ..., hm : f
...
hr , ..., hrmr : fr
g  : P(e  × f); ...; g n : P(e n × f)
...
gr  : P(er  × fr); ...; gr nr : P(er nr × fr)
|
(∀ u : e  • ∃1 x : g  • x . 1 = u) ∧ ... ∧ (∀ u : e n • ∃1 x : g n • x . 1 = u)
... ∧
(∀ u : er  • ∃1 x : gr  • x . 1 = u) ∧ ... ∧ (∀ u : er nr • ∃1 x : gr nr • x . 1 = u)

(∀ u, v : e  | g u = g v • u = v) ∧ ... ∧ (∀ u, v : e n | g nu = g nv • u = v)
... ∧
(∀ u, v : er  | gr u = gr v • u = v) ∧ ... ∧ (∀ u, v : er nr | gr nru = gr nrv • u = v)

∀ b, b : N •
(∀ w : f |

(b = 1 ∧ w = h  ∨ ... ∨ b = m1 ∧ w = hm ∨
b = m1 + 1 ∧ w ∈ {x : g  • x . 2} ∨ ... ∨ b = m1 + n1 ∧ w ∈ {x : g n • x . 2})

∧ (b = 1 ∧ w = h  ∨ ... ∨ b = m1 ∧ w = hm ∨
b = m1 + 1 ∧ w ∈ {x : g  • x . 2} ∨ ... ∨ b = m1 + n1 ∧ w ∈ {x : g n • x . 2}) •

b = b) ∧
... ∧
(∀ w : fr |

(b = 1 ∧ w = hr  ∨ ... ∨ b = mr ∧ w = hrmr ∨
b = mr + 1 ∧ w ∈ {x : gr  • x . 2} ∨ ... ∨ b = mr + nr ∧ w ∈ {x : gr nr • x . 2})

∧ (b = 1 ∧ w = hr  ∨ ... ∨ b = mr ∧ w = hrmr ∨
b = mr + 1 ∧ w ∈ {x : gr  • x . 2} ∨ ... ∨ b = mr + nr ∧ w ∈ {x : gr nr • x . 2}) •

b = b)

∀ w : P f; ...; wr : P fr |
h  ∈ w ∧ ... ∧ hm ∈ w ∧
... ∧
hr  ∈ wr ∧ ... ∧ hrmr ∈ wr ∧
(∀ y : (µ f == w; ...; fr == wr • e ) • g y ∈ w) ∧
... ∧ (∀ y : (µ f == w; ...; fr == wr • e n) • g ny ∈ w) ∧
... ∧
(∀ y : (µ f == w; ...; fr == wr • er ) • gr y ∈ wr) ∧
... ∧ (∀ y : (µ f == w; ...; fr == wr • er nr ) • gr nry ∈ wr) •

w = f ∧ ... ∧ wr = fr
END

The type names are introduced by the given types paragraph. The elements are declared as members of their cor-
responding free types. The injections are declared as functions from values in their domains to their corresponding
free type.

The first of the four blank-line separated predicates is the total functionality property. It ensures that for every
injection, the injection is functional at every value in its domain.
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The second of the four blank-line separated predicates is the injectivity property. It ensures that for every
injection, any pair of values in its domain for which the injection returns the same value shall be a pair of equal
values (hence the name injection).

The third of the four blank-line separated predicates is the disjointness property. It ensures that for every free
type, every pair of values of the free type are equal only if they are the same element or are returned by application
of the same injection to equal values.

The fourth of the four blank-line separated predicates is the induction property. It ensures that for every free
type, its members are its elements, the values returned by its injections, and nothing else.

The generated µ expressions in the induction property are intended to effect substitutions of all references to the
free type names, including any such references within generic instantiation lists in the e expressions.

NOTE 2 That is why this is a semantic transformation not a syntactic one: all implicit generic instantiations shall
have been made explicit before it is applied.

NOTE 3 The right-hand side of this transformation could have been expressed using the following notation from
the mathematical toolkit, but for the desire to define the core language separately from the mathematical toolkit.

[f, ..., fr]

END

AX

h , ..., hm : f
...

hr , ..., hrmr : fr
g  : e � f; ...; g n : e n � f
...

gr  : er � fr; ...; gr nr : er nr � fr
|
disjoint〈{h }, ..., {hm}, ran g , ..., ran g n〉
...

disjoint〈{hr }, ..., {hrmr}, ran gr , ..., ran gr nr 〉
∀ w : P f; ...; wr : P fr |

{h , ..., hm} ∪ g (| µ f == w; ...; fr == wr • e  |)
∪... ∪ g n(| µ f == w; ...; fr == wr • e n |) ⊆ w ∧

... ∧
{hr , ..., hrmr} ∪ gr (| µ f == w; ...; fr == wr • er  |)

∪... ∪ gr nr (| µ f == w; ...; fr == wr • er nr |) ⊆ wr •
w = f ∧ ... ∧ wr = fr

END

C.4.11 Conjecture

C.4.11.1 Syntax

Paragraph = ...
| `? , Predicate , END
| ...
;
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C.4.11.2 Type

Σ `P p

Σ `D `? p END o
o σ

(σ = ε)

In a conjecture paragraph `? p END, the predicate p shall be well-typed. The annotation of the paragraph is the
empty signature.

C.4.11.3 Semantics

The conjecture paragraph `? p END expresses a property that may logically follow from the specification. It may
be a starting point for a proof.

[[ `? p END ]]D = id Model

It relates a model to itself: the truth of p in a model does not affect the meaning of the specification.

C.4.12 Generic conjecture

C.4.12.1 Syntax

Paragraph = ...
| [-tok , Formals , ]-tok , `? , Predicate , END
| ...
;

C.4.12.2 Type

Σ ⊕ {i 7→ P(GENTYPE i), ..., in 7→ P(GENTYPE in)} `P p

Σ `D [i, ..., in] `? p END o
o σ

(
# {i, ..., in} = n
σ = ε

)
In a generic conjecture paragraph [i, ..., in] `? p END, there shall be no duplication of names within the generic
parameters. The predicate p shall be well-typed in an environment overridden by the generic parameters. The
annotation of the paragraph is the empty signature.

C.4.12.3 Semantics

The generic conjecture paragraph [i, ..., in] `? p END expresses a generic property that may logically follow from
the specification. It may be a starting point for a proof.

[[ [i, ..., in] `? p END ]]D = id Model

It relates a model to itself: the truth of p in a model does not affect the meaning of the specification.

C.4.13 Operator template

An operator template has only syntactic significance: it notifies the reader to treat all occurrences in this section
of the words in the template, with whatever strokes they are decorated, as particular prefix, infix, postfix or
nofix names. The category of the operator—relation, function, or generic—determines how applications of the
operator are interpreted— as relational predicates, application expressions, or generic instantiation expressions
respectively.
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C.4.13.1 Syntax

Paragraph = ...
| OperatorTemplate , END
;

OperatorTemplate = relation , Template
| function , CategoryTemplate
| generic , CategoryTemplate
;

CategoryTemplate = Prec , PrefixTemplate
| Prec , PostfixTemplate
| Prec , Assoc , InfixTemplate
| NofixTemplate
;

Prec = NUMERAL ;

Assoc = leftassoc
| rightassoc
;

Template = PrefixTemplate
| PostfixTemplate
| InfixTemplate
| NofixTemplate
;

PrefixTemplate = (-tok , PrefixName , )-tok ;

PostfixTemplate = (-tok , PostfixName , )-tok ;

InfixTemplate = (-tok , InfixName , )-tok ;

NofixTemplate = (-tok , NofixName , )-tok ;

C.5 Predicate

C.5.1 Introduction

A Predicate expresses constraints between the values associated with names. A Predicate can be any of uni-
versal quantification, existential quantification, unique existential quantification, newline conjunction, semicolon
conjunction, equivalence, implication, disjunction, conjunction, negation, relation operator application, member-
ship, schema predicate, truth, falsity, or parenthesized predicate.

C.5.2 Universal quantification

C.5.2.1 Syntax

Predicate = ∀ , SchemaText , • , Predicate
| ...
;
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C.5.2.2 Type

Σ `E e o
o τ Σ ⊕ β `P p

Σ `P ∀ (e o
o τ) • p

(τ = P[β])

In a universal quantification predicate ∀ e • p, expression e shall be a schema, and predicate p shall be well-typed
in the environment overridden by the signature of schema e.

C.5.2.3 Semantics

The universal quantification predicate ∀ e • p is true if and only if predicate p is true for all bindings of the
schema e.

[[ ∀ e • p ]]P = {M : Model | ∀ t : [[ e ]]EM • M ⊕ t ∈ [[ p ]]P • M}

In terms of the semantic universe, it is true in those models for which p is true in that model overridden by all
bindings in the semantic value of e, and is false otherwise.

C.5.3 Existential quantification

C.5.3.1 Syntax

Predicate = ...
| ∃ , SchemaText , • , Predicate
| ...
;

C.5.3.2 Transformation

The existential quantification predicate ∃ t • p is true if and only if p is true for at least one value of t.

∃ t • p =⇒ ¬ ∀ t • ¬ p

It is semantically equivalent to p being false for not all values of t.

C.5.4 Unique existential quantification

C.5.4.1 Syntax

Predicate = ...
| ∃1 , SchemaText , • , Predicate
| ...
;

C.5.4.2 Type

Σ `E e o
o τ Σ ⊕ β `P p

Σ `P ∃1 (e o
o τ) • p

(τ = P[β])

In a unique existential quantification predicate ∃1 e • p, expression e shall be a schema, and predicate p shall be
well-typed in the environment overridden by the signature of schema e.

C.5.4.3 Semantics

The unique existential quantification predicate ∃1 e • p is true if and only if there is exactly one value for e for
which p is true.

∃1 e • p =⇒ ¬ (∀ e • ¬ (p ∧ (∀ [e | p]1 • θ e = θ e 1)))
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NOTE Exploiting notation that is not present in the annotated syntax, this abbreviates to the following.

∃1 e • p =⇒ ∃ e • p ∧ (∀ [e | p]1 • θ e = θ e 1)

It is semantically equivalent to there existing at least one value for e for which p is true and all those values for
which it is true being the same.

C.5.5 Newline conjunction

C.5.5.1 Syntax

Predicate = ...
| Predicate , NL , Predicate
| ...
;

C.5.5.2 Transformation

The newline conjunction predicate p NL p is true if and only if both its predicates are true.

p NL p =⇒ p ∧ p

It is semantically equivalent to the conjunction predicate p ∧ p.

C.5.6 Semicolon conjunction

C.5.6.1 Syntax

Predicate = ...
| Predicate , ; -tok , Predicate
| ...
;

C.5.6.2 Transformation

The semicolon conjunction predicate p; p is true if and only if both its predicates are true.

p; p =⇒ p ∧ p

It is semantically equivalent to the conjunction predicate p ∧ p.

C.5.7 Equivalence

C.5.7.1 Syntax

Predicate = ...
| Predicate , ⇔ , Predicate
| ...
;
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C.5.7.2 Transformation

The equivalence predicate p ⇔ p is true if and only if both p and p are true or neither is true.

p ⇔ p =⇒ (p ⇒ p) ∧ (p ⇒ p)

It is semantically equivalent to each of p and p being true if the other is true.

C.5.8 Implication

C.5.8.1 Syntax

Predicate = ...
| Predicate , ⇒ , Predicate
| ...
;

C.5.8.2 Transformation

The implication predicate p ⇒ p is true if and only if p is true if p is true.

p ⇒ p =⇒ ¬ p ∨ p

It is semantically equivalent to p being false disjoined with p being true.

C.5.9 Disjunction

C.5.9.1 Syntax

Predicate = ...
| Predicate , ∨ , Predicate
| ...
;

C.5.9.2 Transformation

The disjunction predicate p ∨ p is true if and only if at least one of p and p is true.

p ∨ p =⇒ ¬ (¬ p ∧ ¬ p)

It is semantically equivalent to not both of p and p being false.

C.5.10 Conjunction

C.5.10.1 Syntax

Predicate = ...
| Predicate , ∧ , Predicate
| ...
;
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C.5.10.2 Type

Σ `P p Σ `P p

Σ `P p ∧ p
A conjunction predicate p ∧ p is well-typed if and only if predicates p and p are well-typed.

C.5.10.3 Semantics

The conjunction predicate p ∧ p is true if and only if p and p are true.

[[ p ∧ p ]]P = [[ p ]]P ∩ [[ p ]]P

In terms of the semantic universe, it is true in those models in which both p and p are true, and is false
otherwise.

C.5.11 Negation

C.5.11.1 Syntax

Predicate = ...
| ¬ , Predicate
| ...
;

C.5.11.2 Type

Σ `P p

Σ `P ¬ p
A negation predicate ¬ p is well-typed if and only if predicate p is well-typed.

C.5.11.3 Semantics

The negation predicate ¬ p is true if and only if p is false.

[[ ¬ p ]]P = Model \ [[ p ]]P

In terms of the semantic universe, it is true in all models except those in which p is true.

C.5.12 Relation operator application

C.5.12.1 Syntax

Predicate = ...
| Relation
| ...
;

Relation = PrefixRel
| PostfixRel
| InfixRel
| NofixRel
;
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PrefixRel = PREP , Expression
| LP , ExpSep , ( Expression , EREP | ExpressionList , SREP ) , Expression
;

PostfixRel = Expression , POSTP
| Expression , ELP , ExpSep , ( Expression , ERP | ExpressionList , SRP )
;

InfixRel = Expression , ( ∈ | =-tok | IP ) , Expression
{ ( ∈ | =-tok | IP ) , Expression }

| Expression , ELP , ExpSep ,
( Expression , EREP | ExpressionList , SREP ) , Expression

;

NofixRel = LP , ExpSep , ( Expression , ERP | ExpressionList , SRP ) ;

C.5.12.2 Transformation

All relation operator applications are transformed to annotated membership predicates.

Each relation NAME should be one for which there is an operator template paragraph in scope (see 12.2.8).

The left-hand sides of many of these transformation rules involve ExpSep phrases: they use es metavariables.
None of them use ss metavariables: in other words, only the Expression ES case of ExpSep is specified, not
the ExpressionList SS case. Where the latter case occurs in a specification, the ExpressionList shall be
transformed by rule 12.2.12 to an expression, and thence a transformation analogous to that specified for the
former case can be performed, differing only in that a ss appears in the relation name in place of an es.

C.5.12.3 PrefixRel

prep e =⇒ e ∈ prep1
lp e es ... en− esn− en− erep en =⇒ (e, ..., en−, en−, en) ∈ lp1es...1esn−1erep1
lp e es ... en− esn− aln− srep en =⇒ (e, ..., en−, aln−, en) ∈ lp1es...1esn−1srep1

C.5.12.4 PostfixRel

e postp =⇒ e ∈ 1postp

e elp e es ... en− esn− en erp =⇒ (e, e, ..., en−, en) ∈ 1elp1es...1esn−1erp

e elp e es ... en− esn− aln srp =⇒ (e, e, ..., en−, aln) ∈ 1elp1es...1esn−1srp

C.5.12.5 InfixRel

e ip e ip e ... =⇒ e ip e
o
o τ ∧ e o

o τ ip e
o
o τ ...

The chained relation e ip e ip e ... is semantically equivalent to a conjunction of relational predicates, with
the constraint that duplicated expressions be of the same type.

e = e =⇒ e ∈ {e}
e ip e =⇒ (e, e) ∈ 1ip1
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ip in the above transformation is excluded from being ∈ or =, whereas ip, ip, ... can be ∈ or =.

e elp e es ... en− esn− en− erep en =⇒ (e, e, ..., en−, en−, en) ∈ 1elp1es...1esn−1erep1

e elp e es ... en− esn− aln− srep en =⇒ (e, e, ..., en−, aln−, en) ∈ 1elp1es...1esn−1srep1

C.5.12.6 NofixRel

lp e es ... en− esn− en erp =⇒ (e, ..., en−, en) ∈ lp1es...1esn−1erp
lp e es ... en− esn− aln srp =⇒ (e, ..., en−, aln) ∈ lp1es...1esn−1srp

C.5.12.7 Type

Σ `E e o
o τ Σ `E e o

o τ

Σ `P (e o
o τ) ∈ (e o

o τ)

(
τ = P τ

)
In a membership predicate e ∈ e, expression e shall be a set, and expression e shall be of the same type as
the members of set e.

C.5.12.8 Semantics

The membership predicate e ∈ e is true if and only if the value of e is in the set that is the value of e.

[[ e ∈ e ]]P = {M : Model | [[ e ]]EM ∈ [[ e ]]EM • M}

In terms of the semantic universe, it is true in those models in which the semantic value of e is in the semantic
value of e, and is false otherwise.

C.5.13 Schema

C.5.13.1 Syntax

Predicate = ...
| Expression
| ...
;

C.5.13.2 Transformation

The schema predicate e is true if and only if the binding of the names in the signature of schema e satisfies the
constraints of that schema.

e =⇒ θ e ∈ e

It is semantically equivalent to the binding constructed by θ e being a member of the set denoted by schema e.
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C.5.14 Truth

C.5.14.1 Syntax

Predicate = ...
| true
| ...
;

C.5.14.2 Type

Σ `P true

A truth predicate is always well-typed.

C.5.14.3 Semantics

A truth predicate is always true.

[[ true ]]P = Model

In terms of the semantic universe, it is true in all models.

C.5.15 Falsity

C.5.15.1 Syntax

Predicate = ...
| false
| ...
;

C.5.15.2 Transformation

The falsity predicate false is never true.

false =⇒ ¬ true

It is semantically equivalent to the negation of true.

C.5.16 Parenthesized predicate

C.5.16.1 Syntax

Predicate = ...
| (-tok , Predicate , )-tok
;

C.5.16.2 Transformation

The parenthesized predicate (p) is true if and only if p is true.

(p) =⇒ p

It is semantically equivalent to p.
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C.6 Expression

C.6.1 Introduction

An Expression denotes a value in terms of the names with which values are associated by a model. An
Expression can be any of schema universal quantification, schema existential quantification, schema unique ex-
istential quantification, function construction, definite description, substitution expression, schema equivalence,
schema implication, schema disjunction, schema conjunction, schema negation, conditional, schema composition,
schema piping, schema hiding, schema projection, schema precondition, Cartesian product, powerset, function
and generic operator application, application, schema decoration, schema renaming, binding selection, tuple se-
lection, binding construction, reference, generic instantiation, number literal, set extension, set comprehension,
characteristic set comprehension, schema construction, binding extension, tuple extension, characteristic definite
description, or parenthesized expression.

C.6.2 Schema universal quantification

C.6.2.1 Syntax

Expression = ∀ , SchemaText , • , Expression
| ...
;

C.6.2.2 Type

Σ `E e o
o τ Σ ⊕ β1 `

E
e o

o τ

Σ `E ∀ (e o
o τ) • (e o

o τ) o
o τ


τ = P[β1]
τ = P[β2]
β1 ≈ β2

τ = P[dom β1 −C β2]


In a schema universal quantification expression ∀ e • e, expression e shall be a schema, and expression e, in
an environment overridden by the signature of schema e, shall also be a schema, and the signatures of these two
schemas shall be compatible. The type of the whole expression is that of a schema whose signature is computed
by subtracting from the signature of e those pairs whose names are in the signature of e.

C.6.2.3 Semantics

The value of the schema universal quantification expression ∀ e • e is the set of bindings of schema e restricted
to exclude names that are in the signature of e, for all bindings of the schema e.

[[ ∀ e • e o
o P τ ]]E = λ M : Model • {t2 : [[ τ ]]TM | ∀ t1 : [[ e ]]EM • t1 ∪ t2 ∈ [[ e ]]E (M ⊕ t1) • t2}

In terms of the semantic universe, its semantic value, given a model M, is the set of the bindings (sets of pairs)
in the semantic values of the carrier set of the type of the entire schema universal quantification expression in
M, for which the union of the bindings (sets of pairs) in e and in the whole expression is in the set that is the
semantic value of e in the model M overridden with the binding in e.

C.6.3 Schema existential quantification

C.6.3.1 Syntax

Expression = ...
| ∃ , SchemaText , • , Expression
| ...
;
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C.6.3.2 Transformation

The value of the schema existential quantification expression ∃ t • e is the set of bindings of schema e restricted
to exclude names that are in the signature of t, for at least one binding of the schema t.

∃ t • e =⇒ ¬ ∀ t • ¬ e

It is semantically equivalent to the result of applying de Morgan’s law.

C.6.4 Schema unique existential quantification

C.6.4.1 Syntax

Expression = ...
| ∃1 , SchemaText , • , Expression
| ...
;

C.6.4.2 Type

Σ `E e o
o τ Σ ⊕ β1 `

E
e o

o τ

Σ `E ∃1 (e o
o τ) • (e o

o τ) o
o τ


τ = P[β1]
τ = P[β2]
β1 ≈ β2

τ = P[dom β1 −C β2]


In a schema unique existential quantification expression ∃1 e • e, expression e shall be a schema, and expression
e, in an environment overridden by the signature of schema e, shall also be a schema, and the signatures of
these two schemas shall be compatible. The type of the whole expression is that of a schema whose signature is
computed by subtracting from the signature of e those pairs whose names are in the signature of e.

C.6.4.3 Semantics

The value of the schema unique existential quantification expression ∃1 e • e is the set of bindings of schema
e restricted to exclude names that are in the signature of e, for at least one binding of the schema e.

∃1 e • e =⇒ ¬ (∀ e • ¬ (e ∧ (∀ [e | e]1 • θ e = θ e
1)))

NOTE Exploiting notation that is not present in the annotated syntax, this abbreviates to the following.

∃1 e • e =⇒ ∃ e • e ∧ (∀ [e | e]1 • θ e = θ e
1)

It is semantically equivalent to a schema existential quantification expression, analogous to the unique existential
quantification predicate transformation.

C.6.5 Function construction

C.6.5.1 Syntax

Expression = ...
| λ , SchemaText , • , Expression
| ...
;
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C.6.5.2 Transformation

The value of the function construction expression λ t • e is the function associating values of the characteristic
tuple of t with corresponding values of e.

λ t • e =⇒ {t • (chartuple t, e)}

It is semantically equivalent to the set of pairs representation of that function.

C.6.6 Definite description

C.6.6.1 Syntax

Expression = ...
| µ , SchemaText , • , Expression
| ...
;

C.6.6.2 Type

Σ `E e o
o τ Σ ⊕ β `E e o

o τ

Σ `E µ (e o
o τ) • (e o

o τ) o
o τ

(
τ = P[β]
τ = τ

)
In a definite description expression µ e • e, expression e shall be a schema. The type of the whole expression
is the type of expression e, as determined in an environment overridden by the signature of schema e.

C.6.6.3 Semantics

The value of the definite description expression µ e • e is the sole value of e that arises whichever binding is
chosen from the set that is the value of schema e.

{M : Model ; t1 : W
| t1 ∈ [[ e ]]EM
∧ (∀ t3 : [[ e ]]EM • [[ e ]]E (M ⊕ t3) = [[ e ]]E (M ⊕ t1))
• M 7→ [[ e ]]E (M ⊕ t1)} ⊆ [[ µ e • e ]]E

In terms of the semantic universe, its semantic value, given a model M in which the value of e in that model
overridden by a binding of the schema e is the same regardless of which binding is chosen, is that value of e.
In other models, it has a semantic value, but this loose definition of the semantics does not say what it is.

C.6.7 Substitution expression

C.6.7.1 Syntax

Expression = ...
| let , DeclName , == , Expression

{ ; -tok , DeclName , == , Expression }
, • , Expression

| ...
;
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C.6.7.2 Transformation

The value of the substitution expression let i == e; ...; in == en • e is the value of e when all of its references
to the names have been substituted by the values of the corresponding expressions.

let i == e; ...; in == en • e =⇒ µ i == e; ...; in == in • e

It is semantically equivalent to the similar definite description expression.

C.6.8 Schema equivalence

C.6.8.1 Syntax

Expression = ...
| Expression , ⇔ , Expression
| ...
;

C.6.8.2 Transformation

The value of the schema equivalence expression e ⇔ e is that schema whose signature is the union of those of
schemas e and e, and whose bindings are those whose relevant restrictions are either both or neither in e and
e.

e ⇔ e =⇒ (e ⇒ e) ∧ (e ⇒ e)

It is semantically equivalent to the schema conjunction shown above.

C.6.9 Schema implication

C.6.9.1 Syntax

Expression = ...
| Expression , ⇒ , Expression
| ...
;

C.6.9.2 Transformation

The value of the schema implication expression e ⇒ e is that schema whose signature is the union of those of
schemas e and e, and whose bindings are those whose restriction to the signature of e is in the value of e if
its restriction to the signature of e is in the value of e.

e ⇒ e =⇒ ¬ e ∨ e

It is semantically equivalent to the schema disjunction shown above.
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C.6.10 Schema disjunction

C.6.10.1 Syntax

Expression = ...
| Expression , ∨ , Expression
| ...
;

C.6.10.2 Transformation

The value of the schema disjunction expression e ∨ e is that schema whose signature is the union of those of
schemas e and e, and whose bindings are those whose restriction to the signature of e is in the value of e or
its restriction to the signature of e is in the value of e.

e ∨ e =⇒ ¬ (¬ e ∧ ¬ e)

It is semantically equivalent to the schema negation shown above.

C.6.11 Schema conjunction

C.6.11.1 Syntax

Expression = ...
| Expression , ∧ , Expression
| ...
;

C.6.11.2 Type

Σ `E e o
o τ Σ `E e o

o τ

Σ `E (e o
o τ) ∧ (e o

o τ) o
o τ


τ = P[β1]
τ = P[β2]
β1 ≈ β2

τ = P[β1 ∪ β2]


In a schema conjunction expression e ∧ e, expressions e and e shall be schemas, and their signatures shall
be compatible. The type of the whole expression is that of the schema whose signature is the union of those of
expressions e and e.

C.6.11.3 Semantics

The value of the schema conjunction expression e ∧ e is the schema resulting from merging the signatures of
schemas e and e and conjoining their constraints.

[[ e ∧ e o
o P τ ]]E = λ M : Model • {t : [[ τ ]]TM; t1 : [[ e ]]EM; t2 : [[ e ]]EM | t1 ∪ t2 = t • t}

In terms of the semantic universe, its semantic value, given a model M, is the set of the unions of the bindings
(sets of pairs) in the semantic values of e and e in M.

C.6.12 Schema negation

C.6.12.1 Syntax

Expression = ...
| ¬ , Expression
| ...
;
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C.6.12.2 Type

Σ `E e o
o τ

Σ `E ¬ (e o
o τ) o

o τ

(
τ = P[β]
τ = τ

)
In a schema negation expression ¬ e, expression e shall be a schema. The type of the whole expression is the
same as the type of expression e.

C.6.12.3 Semantics

The value of the schema negation expression ¬ e is that set of bindings that are of the same type as those in
schema e but that are not in schema e.

[[ ¬ e o
o P τ ]]E = λ M : Model • {t : [[ τ ]]TM | ¬ t ∈ [[ e ]]EM • t}

In terms of the semantic universe, its semantic value, given a model M, is the set of the bindings (sets of pairs)
that are members of the semantic value of the carrier set of schema e in M such that those bindings are not
members of the semantic value of schema e in M.

C.6.13 Conditional

C.6.13.1 Syntax

Expression = ...
| if , Predicate , then , Expression , else , Expression
| ...
;

C.6.13.2 Transformation

The value of the conditional expression if p then e else e is the value of e if p is true, and is the value of e if
p is false.

if p then e else e =⇒ µ i : {e, e} | p ∧ i = e ∨ ¬ p ∧ i = e • i

It is semantically equivalent to the definite description expression whose value is either that of e or that of e
such that if p is true then it is e or if p is false then it is e.

C.6.14 Schema composition

C.6.14.1 Syntax

Expression = ...
| Expression , o

9 , Expression
| ...
;
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C.6.14.2 Type

Σ `E e o
o τ Σ `E e o

o τ

Σ `E (e o
o τ) o

9 (e o
o τ) o

o τ



τ = P[β1]
τ = P[β2]
match = {i : dom β2 | i decor ′ ∈ dom β1 • i}
β3 = {i : match • i decor ′} −C β1

β4 = match −C β2

β3 ≈ β4

{i : match • i 7→ β1(i decor ′)} ≈ {i : match • i 7→ β2 i}
τ = P[β3 ∪ β4]


In a schema composition expression e o

9 e, expressions e and e shall be schemas. Let match be the set of
names in schema e for which there are matching primed names in schema e. Let β3 be the signature formed
from the components of e excluding the matched primed components. Let β4 be the signature formed from the
components of e excluding the matched unprimed components. Signatures β3 and β4 shall be compatible. The
types of the excluded matched pairs of components shall be the same. The type of the whole expression is that
of a schema whose signature is the union of β3 and β4.

C.6.14.3 Semantics

The value of the schema composition expression e o
9 e is that schema representing the operation of doing the

operations represented by schemas e and e in sequence.

(e o
o P[σ]) o

9 (e o
o P[σ]) o

o P[σ]
=⇒

¬ (∀ e1 • ¬ (¬ (∀ e • ¬ [e; e1 | θ e = θ e1])
∧ ¬ (∀ e • ¬ [e; e1 | θ e = θ e1])))

where e == carrier [{i : NAME; τ : Type | i decor ′ 7→ τ ∈ σ • i decor ′ 7→ τ}]
and e == carrier [{i : NAME; τ : Type | i 7→ τ ∈ σ • i 7→ τ}]
and e1 == (e)1

NOTE Exploiting notation that is not present in the annotated syntax, this abbreviates to the following.

(e o
o P[σ]) o

9 (e o
o P[σ]) o

o P[σ]
=⇒

∃ e1 • (∃ e • [e; e
1 | θ e = θ e1])

∧ (∃ e • [e; e
1 | θ e = θ e1])

where e == carrier [{i : NAME; τ : Type | i decor ′ 7→ τ ∈ σ • i decor ′ 7→ τ}]
and e == carrier [{i : NAME; τ : Type | i 7→ τ ∈ σ • i 7→ τ}]
and e1 == (e)

1

It is semantically equivalent to the existential quantification of the matched pairs of primed components of e
and unprimed components of e, with those matched pairs being equated.

C.6.15 Schema piping

C.6.15.1 Syntax

Expression = ...
| Expression , >> , Expression
| ...
;
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C.6.15.2 Type

Σ `E e o
o τ Σ `E e o

o τ

Σ `E (e o
o τ)>> (e o

o τ) o
o τ



τ = P[β1]
τ = P[β2]
match = {i : NAME | i decor ! ∈ dom β1 ∧ i decor ? ∈ dom β2 • i}
β3 = {i : match • i decor !} −C β1

β4 = {i : match • i decor ?} −C β2

β3 ≈ β4

{i : match • i 7→ β1(i decor !)} ≈ {i : match • i 7→ β2 (i decor ?)}
τ = P[β3 ∪ β4]


In a schema piping expression e>>e, expressions e and e shall be schemas. Let match be the set of names for
which there are matching shrieked names in schema e and queried names in schema e. Let β3 be the signature
formed from the components of e excluding the matched shrieked components. Let β4 be the signature formed
from the components of e excluding the matched queried components. Signatures β3 and β4 shall be compatible.
The types of the excluded matched pairs of components shall be the same. The type of the whole expression is
that of a schema whose signature is the union of β3 and β4.

C.6.15.3 Semantics

The value of the schema piping expression e >> e is that schema representing the operation formed from the
two operations represented by schemas e and e with the outputs of e identified with the inputs of e.

(e o
o P[σ])>> (e o

o P[σ]) o
o P[σ]

=⇒
¬ (∀ e1 • ¬ (¬ (∀ e • ¬ [e; e1 | θ e = θ e1])

∧ ¬ (∀ e • ¬ [e; e1 | θ e = θ e1])))
where e == carrier [{i : NAME; τ : Type | i decor ! 7→ τ ∈ σ • i decor ! 7→ τ}]

and e == carrier [{i : NAME; τ : Type | i decor ? 7→ τ ∈ σ • i decor ? 7→ τ}]
and e1 == (e)1

NOTE Exploiting notation that is not present in the annotated syntax, this abbreviates to the following.

(e o
o P[σ])>> (e o

o P[σ]) o
o P[σ]

=⇒
∃ e1 • (∃ e • [e; e

1 | θ e = θ e1])
∧ (∃ e • [e; e

1 | θ e = θ e1])

where e == carrier [{i : NAME; τ : Type | i decor ! 7→ τ ∈ σ • i decor ! 7→ τ}]
and e == carrier [{i : NAME; τ : Type | i decor ? 7→ τ ∈ σ • i decor ? 7→ τ}]
and e1 == (e)

1

It is semantically equivalent to the existential quantification of the matched pairs of shrieked components of e
and queried components of e, with those matched pairs being equated.

C.6.16 Schema hiding

C.6.16.1 Syntax

Expression = ...
| Expression , \ , (-tok , DeclName , { ,-tok , DeclName } , )-tok
| ...
;
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C.6.16.2 Type

Σ `E e o
o τ

Σ `E (e o
o τ) \ (i, ..., in) o

o τ

 τ = P[β]
{i, ..., in} ⊆ dom β
τ = P[{i, ..., in} −C β]


In a schema hiding expression e \ (i, ..., in), expression e shall be a schema, and the names to be hidden shall
all be in the signature of that schema. The type of the whole expression is that of a schema whose signature is
computed by subtracting from the signature of expression e those pairs whose names are hidden.

C.6.16.3 Semantics

The value of the schema hiding expression e \ (i, ..., in) is that schema whose signature is that of schema e
minus the hidden names, and whose bindings have the same values as those in schema e.

(e o
o P[σ]) \ (i, ..., in) =⇒ ¬ (∀ i : carrier (σ i); ...; in : carrier (σ in) • ¬ e)

NOTE Exploiting notation that is not present in the annotated syntax, this abbreviates to the following.

(e o
o P[σ]) \ (i, ..., in) =⇒ ∃ i : carrier (σ i); ...; in : carrier (σ in) • e

It is semantically equivalent to the schema existential quantification of the hidden names i, ..., in from the schema
e.

C.6.17 Schema projection

C.6.17.1 Syntax

Expression = ...
| Expression , � , Expression
| ...
;

C.6.17.2 Transformation

The value of the schema projection expression e � e is the schema that is like the conjunction e ∧ e but whose
signature is restricted to just that of schema e.

e � e =⇒ {e; e • θ e}

It is semantically equivalent to that set of bindings of names in the signature of e to values that satisfy the
constraints of both e and e.

C.6.18 Schema precondition

C.6.18.1 Syntax

Expression = ...
| pre , Expression
| ...
;
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C.6.18.2 Type

Σ `E e o
o τ

Σ `E pre (e o
o τ) o

o τ

(
τ = P[β]
τ = P[{i, j : NAME | j ∈ dom β ∧ (j = i decor ′ ∨ j = i decor !) • j} −C β]

)
In a schema precondition expression pre e, expression e shall be a schema. The type of the whole expression is
that of a schema whose signature is computed by subtracting from the signature of e those pairs whose names
have primed or shrieked decorations.

C.6.18.3 Semantics

The value of the schema precondition expression pre e is that schema which is like schema e but without its
primed and shrieked components.

pre(e o
o P[σ]) o

o P[σ] =⇒ ¬ (∀ carrier [σ \ σ] • ¬ e)

NOTE Exploiting notation that is not present in the annotated syntax, this abbreviates to the following.

pre(e o
o P[σ]) o

o P[σ] =⇒ ∃ carrier [σ \ σ] • e

It is semantically equivalent to the existential quantification of the primed and shrieked components from the
schema e.

C.6.19 Cartesian product

C.6.19.1 Syntax

Expression = ...
| Expression , × , Expression , { × , Expression }
| ...
;

C.6.19.2 Transformation

The value of the Cartesian product expression e× ...× en is the set of all tuples whose components are members
of the corresponding sets that are the values of its expressions.

e × ...× en =⇒ {i : e; ...; in : en • (i, ..., in)}

It is semantically equivalent to the set comprehension expression that declares members of the sets and assembles
those members into tuples.

C.6.20 Powerset

C.6.20.1 Syntax

Expression = ...
| P , Expression
| ...
;
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C.6.20.2 Type

Σ `E e o
o τ

Σ `E P(e o
o τ) o

o τ

(
τ = Pα
τ = P τ

)
In a powerset expression P e, expression e shall be a set. The type of the whole expression is then a powerset of
the type of expression e.

C.6.20.3 Semantics

The value of the powerset expression P e is the set of all subsets of the set that is the value of e.

[[ P e ]]E = λ M : Model • P ([[ e ]]EM)

In terms of the semantic universe, its semantic value, given a model M, is the powerset of values of e in M.

C.6.21 Function and generic operator application

C.6.21.1 Syntax

Expression = ...
| Application
| ...
;

Application = PrefixApp
| PostfixApp
| InfixApp
| NofixApp
;

PrefixApp = PRE , Expression
| L , ExpSep , ( Expression , ERE | ExpressionList , SRE ) , Expression
;

PostfixApp = Expression , POST
| Expression , EL , ExpSep , ( Expression , ER | ExpressionList , SR )
;

InfixApp = Expression , I , Expression
| Expression , EL , ExpSep ,

( Expression , ERE | ExpressionList , SRE ) , Expression
;

NofixApp = L , ExpSep , ( Expression , ER | ExpressionList , SR ) ;

C.6.21.2 Transformation

All function operator applications are transformed to annotated application expressions.

All generic operator applications are transformed to annotated generic instantiation expressions.

Each resulting NAME should be one for which there is an operator template paragraph in scope (see 12.2.8).

The left-hand sides of many of these transformation rules involve ExpSep phrases: they use es metavariables.
None of them use ss metavariables: in other words, only the Expression ES case of ExpSep is specified, not
the ExpressionList SS case. Where the latter case occurs in a specification, the ExpressionList shall be
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transformed by rule 12.2.12 to an expression, and thence a transformation analogous to that specified for the
former case can be performed, differing only in that a ss appears in the function or generic name in place of an
es.

C.6.21.3 PrefixApp

pre e =⇒ pre1 e

ln e es ... en− esn− en− ere en =⇒ ln1es...1esn−1ere1 (e, ..., en−, en−, en)
ln e es ... en− esn− aln− sre en =⇒ ln1es...1esn−1sre1 (e, ..., en−, aln−, en)

pre e =⇒ pre1 [e]
ln e es ... en− esn− en− ere en =⇒ ln1es...1esn−1ere1 [e, ..., en−, en−, en]
ln e es ... en− esn− aln− sre en =⇒ ln1es...1esn−1sre1 [e, ..., en−, aln−, en]

C.6.21.4 PostfixApp

e post =⇒ 1post e

e el e es ... en− esn− en er =⇒ 1el1es...1esn−1er (e, e, ..., en−, en)
e el e es ... en− esn− aln sr =⇒ 1el1es...1esn−1sr (e, e, ..., en−, aln)

e post =⇒ 1post [e]
e el e es ... en− esn− en er =⇒ 1el1es...1esn−1er [e, e, ..., en−, en]
e el e es ... en− esn− aln sr =⇒ 1el1es...1esn−1sr [e, e, ..., en−, aln]

C.6.21.5 InfixApp

e in e =⇒ 1in1 (e, e)
e el e es ... en− esn− en− ere en =⇒ 1el1es...1esn−1ere1 (e, e, ..., en−, en−, en)
e el e es ... en− esn− aln− sre en =⇒ 1el1es...1esn−1sre1 (e, e, ..., en−, aln−, en)

e in e =⇒ 1in1 [e, e]
e el e es ... en− esn− en− ere en =⇒ 1el1es...1esn−1ere1 [e, e, ..., en−, en−, en]
e el e es ... en− esn− aln− sre en =⇒ 1el1es...1esn−1sre1 [e, e, ..., en−, aln−, en]

C.6.21.6 NofixApp

ln e es ... en− esn− en er =⇒ ln1es...1esn−1er (e, ..., en−, en)
ln e es ... en− esn− aln sr =⇒ ln1es...1esn−1sr (e, ..., en−, aln)
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ln e es ... en− esn− en er =⇒ ln1es...1esn−1er [e, ..., en−, en]
ln e es ... en− esn− aln sr =⇒ ln1es...1esn−1sr [e, ..., en−, aln]

C.6.21.7 Type

Σ `E e o
o τ

Σ `E P(e o
o τ) o

o τ

(
τ = Pα
τ = P τ

)
In a powerset expression P e, expression e shall be a set. The type of the whole expression is then a powerset of
the type of expression e.

C.6.21.8 Semantics

The value of the powerset expression P e is the set of all subsets of the set that is the value of e.

[[ P e ]]E = λ M : Model • P ([[ e ]]EM)

In terms of the semantic universe, its semantic value, given a model M, is the powerset of values of e in M.

C.6.22 Application

C.6.22.1 Syntax

Expression = ...
| Expression , Expression
| ...
;

C.6.22.2 Type

Σ `E e o
o τ Σ `E e o

o τ

Σ `E (e o
o τ) (e o

o τ) o
o τ

(
τ = P(τ × τ)

)
In an application expression e e, the expression e shall be a set of pairs, and expression e shall be of the
same type as the first components of those pairs. The type of the whole expression is the type of the second
components of those pairs.

C.6.22.3 Semantics

The value of the application expression e e is the sole value associated with e in the relation e.

e e o
o τ =⇒ (µ i : carrier τ | (e, i) ∈ e • i)

It is semantically equivalent to that sole range value i such that the pair (e, i) is in the set of pairs that is the
value of e. If there is no value or more than one value associated with e, then the application expression has a
value but what it is is not specified.

C.6.23 Schema decoration

C.6.23.1 Syntax

Expression = ...
| Expression , STROKE
| ...
;
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C.6.23.2 Type

Σ `E e o
o τ

Σ `E (e o
o τ) + o

o τ

(
τ = P[β]
τ = P[{i : dom β • i decor + 7→ β i}]

)
In a schema decoration expression e +, expression e shall be a schema. The type of the whole expression is that
of a schema whose signature is like that of e but with the stroke appended to each of its names.

C.6.23.3 Semantics

The value of the schema decoration expression e + is that schema whose bindings are like those of the schema e
except that their names have the addition stroke +.

(e o
o P[i : τ; ...; in : τn])+ =⇒ e [i decor + / i, ..., in decor + / in]

It is semantically equivalent to the schema renaming where decorated names rename the original names.

C.6.24 Schema renaming

C.6.24.1 Syntax

Expression = ...
| Expression , [-tok , DeclName , / , DeclName ,

{ ,-tok , DeclName , / , DeclName } , ]-tok
| ...
;

C.6.24.2 Type

Σ `E e o
o τ

Σ `E (e o
o τ)[j / i, ..., jn / in] o

o τ


# {i, ..., in} = n
τ = P[β1]
β2 = {j 7→ i, ..., jn 7→ in} o

9 β1 ∪ {i, ..., in} −C β1

τ = P[β2]
β2 ∈ ( 7→ )


In a schema renaming expression e [j / i, ..., jn / in], there shall be no duplicates amongst the old names
i, ..., in. Expression e shall be a schema. The type of the whole expression is that of a schema whose signature
is like that of expression e but with the new names in place of corresponding old names. Declarations that are
merged by the renaming shall have the same type.

NOTE Old names need not be in the signature of the schema. This is so as to permit renaming to distribute over
other notations such as disjunction.

C.6.24.3 Semantics

The value of the schema renaming expression e [j / i, ..., jn / in] is that schema whose bindings are like those
of schema e except that some of its names have been replaced by new names, possibly merging components.

[[ e [j / i, ..., jn / in] ]]E = λ M : Model •
{t1 : [[ e ]]EM; t2 : W |

t2 = {j 7→ i, ..., jn 7→ in} o
9 t1 ∪ {i, ..., in} −C t1

∧ t2 ∈ ( 7→ )
• t2}

In terms of the semantic universe, its semantic value, given a model M, is the set of the bindings (sets of pairs)
in the semantic value of e in M with the new names replacing corresponding old names. Where components are
merged by the renaming, those components shall have the same value.
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C.6.25 Binding selection

C.6.25.1 Syntax

Expression = ...
| Expression , . , RefName
| ...
;

C.6.25.2 Type

Σ `E e o
o τ

Σ `E (e o
o τ) . i o

o τ

(
τ = [β]
(i, τ) ∈ β

)
In a binding selection expression e . i, expression e shall be a binding, and name i shall select one of its
components. The type of the whole expression is the type of the selected component.

C.6.25.3 Semantics

The value of the binding selection expression e . i is that value associated with i in the binding that is the value
of e.

(e o
o [σ]) . i =⇒ {carrier [σ] • (chartuple (carrier [σ]), i)} e

NOTE Exploiting notation that is not present in the annotated syntax, this abbreviates to the following.

(e o
o [σ]) . i =⇒ (λ carrier [σ] • i) e

It is semantically equivalent to the function construction expression, from bindings of the schema type of e, to
the value of the selected name i, applied to the particular binding e.

C.6.26 Tuple selection

C.6.26.1 Syntax

Expression = ...
| Expression , . , NUMERAL
| ...
;

C.6.26.2 Type

Σ `E e o
o τ

Σ `E (e o
o τ) . b o

o τ
((b, τ) ∈ τ)

In a tuple selection expression e . b, the type of expression e shall be a Cartesian product, and number b shall
select one of its components. The type of the whole expression is the type of the selected component.

C.6.26.3 Semantics

The value of the tuple selection expression e . b is the b’th component of the tuple that is the value of e.

(e o
o τ × ...× τn) . b =⇒ {i : carrier (τ × ...× τn) •

(i, µ i : carrier τ; ...; in : carrier τn | i = (i, ..., in) • ib)} e
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NOTE Exploiting notation that is not present in the annotated syntax, this abbreviates to the following.

(e o
o τ × ...× τn) . b =⇒ (λ i : carrier (τ × ...× τn) •

µ i : carrier τ; ...; in : carrier τn | i = (i, ..., in) • ib) e

It is semantically equivalent to the function construction, from tuples of the Cartesian product type to the selected
component of the tuple b, applied to the particular tuple e.

C.6.27 Binding construction

C.6.27.1 Syntax

Expression = ...
| θ , Expression , { STROKE }
| ...
;

C.6.27.2 Type

Σ `E e o
o τ

Σ `E θ (e o
o τ) ∗ o

o τ

 τ = P[β]
∀ i : NAME | (i, α1) ∈ β • (i decor ∗, α1) ∈ Σ ∧ ¬ α1 = [ı1, ..., ın ] α2

τ = [β]


In a binding construction expression θ e ∗, the expression e shall be a schema. Every name and type pair in its
signature, with the optional decoration added, should be present in the environment with a non-generic type.
The type of the whole expression is that of a binding whose signature is that of the schema.

NOTE If the type in the environment were generic, semantic transformation 14.2.5.2 would produce a reference
expression whose implicit instantiation is not determined by this International Standard.

C.6.27.3 Semantics

The value of the binding construction expression θ e ∗ is the binding whose names are those in the signature of
schema e and whose values are those of the same names with the optional decoration appended.

θ e ∗ o
o [i : τ; ...; in : τn] =⇒ 〈| i == i decor ∗, ..., in == in decor ∗ |〉

It is semantically equivalent to the binding extension expression whose value is that binding.

C.6.28 Reference

C.6.28.1 Syntax

Expression = ...
| RefName
| ...
;

C.6.28.2 Type

In a reference expression, if the name is of the form ∆i and no declaration of this name yet appears in the
environment, then the following syntactic transformation is applied.

∆i
∆i 6∈dom Σ

=⇒ [i; i ′]
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This syntactic transformation makes the otherwise undefined name be equivalent to the corresponding schema
construction expression, which is then typechecked.

Similarly, if the name is of the form Ξi and no declaration of this name yet appears in the environment, then the
following syntactic transformation is applied.

Ξi
Ξi 6∈dom Σ

=⇒ [i; i ′ | θ i = θ i ′]

NOTE 1 The Ξ notation is deliberately not defined in terms of the ∆ notation.

NOTE 2 Type inference could be done without these syntactic transformations, but they are necessary steps in
defining the formal semantics.

NOTE 3 Only occurrences of ∆ and Ξ that are in such reference expressions are so transformed, not others such as
those in the names of declarations.

Σ `E i o
o τ

(
i ∈ dom Σ
τ = if Σ i = [ı1, ..., ın ] α then Σ i, (Σ i) [α1, ..., αn ] else Σ i

)
In any other reference expression i, the name i shall be associated with a type in the environment. If that type
is generic, the annotation of the whole expression is a pair of both the uninstantiated type (for the Instantiation
clause to determine that this is a reference to a generic definition) and the type instantiated with new distinct
variable types (which the context should constrain to non-generic types). Otherwise (if the type in the environment
is non-generic), that is the type of the whole expression.

NOTE 4 If the type is generic, the reference expression will be transformed to a generic instantiation expression by
the rule in 13.2.3.3. That shall be done only when the implicit instantiations have been determined via constraints
on the new variable types α1, ..., αn .

C.6.28.3 Semantics

The value of a reference expression that refers to a generic definition is an inferred instantiation of that generic
definition.

i o
o [i, ..., in]τ, τ ′

τ ′=([i, ..., in]τ) [α1, ..., αn ]
=⇒ i [carrier α1, ..., carrier αn ] o

o τ ′

It is semantically equivalent to the generic instantiation expression whose generic actuals are the carrier sets of
the types inferred for the generic parameters. The type τ ′ is an instantiation of the generic type τ. The types
inferred for the generic parameters are α1, ..., αn . They shall all be determinable by comparison of τ with τ ′ as
suggested by the condition on the transformation. Cases where these types cannot be so determined, because the
generic type is independent of some of the generic parameters, are not well-typed.

EXAMPLE 1 The paragraph

a[X ] == 1

defines a with type [X ]GIVEN A. The paragraph

b == a

typechecks, giving the annotated expression a o
o [X ]GIVEN A, GIVEN A. Comparison of the generic type with the

instantiated type does not determine a type for the generic parameter X , and so this specification is not well-typed.

Cases where these types are not unique (contain unconstrained variables) are not well-typed.

EXAMPLE 2 The paragraph

empty == ∅

will contain the annotated expression ∅ o
o [X ]PX ,Pα, in which the type determined for the generic parameter X is

unconstrained, and so this specification is not well-typed.
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The value of the reference expression that refers to a non-generic definition i is the value of the declaration to
which it refers.

[[ i ]]E = λ M : Model • M i

In terms of the semantic universe, its semantic value, given a model M, is that associated with the name i in M.

C.6.29 Generic instantiation

C.6.29.1 Syntax

Expression = ...
| RefName , [-tok , Expression , { ,-tok , Expression } , ]-tok
| ...
;

C.6.29.2 Type

Σ `E e o
o τ ... Σ `E en o

o τn

Σ `E i[(e o
o τ), ..., (en o

o τn)] o
o τ



i ∈ dom Σ
Σ i = [ı1, ..., ın ] α
τ = Pα1

...
τn = Pαn

τ = (Σ i) [α1, ..., αn ]


In a generic instantiation expression i [e, ..., en], the name i shall be associated with a generic type in the
environment, and the expressions e, ..., en shall be sets. That generic type shall have the same number of
parameters as there are sets. The type of the whole expression is the instantiation of that generic type by the
types of those sets’ components.

NOTE The operation of generic type instantiation is defined in 13.2.3.1.

C.6.29.3 Semantics

The value of the generic instantiation expression i [e, ..., en] is a particular instance of the generic referred to by
name i.

[[ i [e, ..., en] ]]E = λ M : Model • M i ([[ e ]]EM, ..., [[ en ]]EM)

In terms of the semantic universe, its semantic value, given a model M, is the generic value associated with the
name i in M instantiated with the semantic values of the instantiation expressions in M.

C.6.30 Number literal

C.6.30.1 Introduction

Z accepts the ordinary notation for writing number literals that represent natural numbers, and imposes the usual
meaning on those literals. The method of doing this is as follows.

The lexis defines the notion of a numeric string. The prelude defines the notions of natural number, zero, one
and addition (of natural numbers). The syntactic transformation rules prescribe how numeric strings are to be
understood as natural numbers, using the ideas defined in the prelude.

The extension to integers, and the introduction of other numeric operations on integers, is defined in the mathe-
matical toolkit (annex B).
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The extension to other number systems is left to user definition.

C.6.30.2 Syntax

Expression = ...
| NUMERAL
| ...
;

Numeric literals are concrete expressions.

C.6.30.3 Transformation

The value of the multiple-digit number literal expression bc is the number that it denotes.

bc =⇒ b + b + b + b + b +
b + b + b + b + b + c

It is semantically equivalent to the sum of ten repetitions of the number literal expression b formed from all but
the last digit, added to that last digit.

0 =⇒ number literal 0
1 =⇒ number literal 1
2 =⇒ 1 + 1
3 =⇒ 2 + 1
4 =⇒ 3 + 1
5 =⇒ 4 + 1
6 =⇒ 5 + 1
7 =⇒ 6 + 1
8 =⇒ 7 + 1
9 =⇒ 8 + 1

The number literal expressions 0 and 1 are semantically equivalent to number literal 0 and number literal 1 re-
spectively as defined in section prelude. The remaining digits are defined as being successors of their predecessors,
using the function + as defined in section prelude.

NOTE These syntactic transformations are applied only to NUMERAL tokens that form number literal expressions,
not to other NUMERAL tokens (those in tuple selection expressions and operator template paragraphs), as those other
occurrences of NUMERAL do not have semantic values associated with them.

C.6.31 Set extension

C.6.31.1 Syntax

Expression = ...
| {-tok , [ Expression , { ,-tok , Expression } ] , }-tok
| ...
;
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C.6.31.2 Type

Σ `E e o
o τ ... Σ `E en o

o τn

Σ `E {(e o
o τ), ..., (en o

o τn)} o
o τ



if n > 0 then
(τ = τn

...
τn− = τn
τ = P τ)

else τ = Pα


In a set extension expression, every component expression shall be of the same type. The type of the whole
expression is a powerset of the components’ type, or a powerset of a variable type if there are no components. In
the latter case, the variable shall be constrained by the context, otherwise the specification is not well-typed.

C.6.31.3 Semantics

The value of the set extension expression { e, ..., en} is the set containing the values of its expressions.

[[ { e, ..., en} ]]E = λ M : Model • {[[ e ]]EM, ..., [[ en ]]EM}

In terms of the semantic universe, its semantic value, given a model M, is the set whose members are the semantic
values of the member expressions in M.

C.6.32 Set comprehension

C.6.32.1 Syntax

Expression = ...
| {-tok , SchemaText , • , Expression , }-tok
| ...
;

C.6.32.2 Type

Σ `E e o
o τ Σ ⊕ β `E e o

o τ

Σ `E {(e o
o τ) • (e o

o τ)} o
o τ

(
τ = P[β]
τ = P τ

)
In a set comprehension expression {e • e}, expression e shall be a schema. The type of the whole expression is
a powerset of the type of expression e, as determined in an environment overridden by the signature of schema
e.

C.6.32.3 Semantics

The value of the set comprehension expression { e • e} is the set of values of e for all bindings of the schema
e.

[[ { e • e} ]]E = λ M : Model • {t1 : [[ e ]]EM • [[ e ]]E (M ⊕ t1)}

In terms of the semantic universe, its semantic value, given a model M, is the set of values of e in M overridden
with a binding value of e in M.
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C.6.33 Characteristic set comprehension

C.6.33.1 Syntax

Expression = ...
| ( ( {-tok , SchemaText , }-tok ) — ( {-tok , }-tok ) )

— ( {-tok , Expression , }-tok )
| ...
;

C.6.33.2 Transformation

The value of the characteristic set comprehension expression {t} is the set of the values of the characteristic tuple
of t.

{t} =⇒ {t • chartuple t}

It is semantically equivalent to the corresponding set comprehension expression in which the characteristic tuple
is made explicit.

C.6.34 Schema construction

C.6.34.1 Syntax

Expression = ...
| ( [-tok , SchemaText , ]-tok ) — ( [-tok , Expression , ]-tok )
| ...
;

C.6.34.2 Transformation

The value of the schema construction expression [t] is that schema whose signature is the names declared by the
schema text t, and whose bindings are those that satisfy the constraints in t.

[t] =⇒ t

It is semantically equivalent to the schema resulting from syntactic transformation of the schema text t.

C.6.34.3 Type

Σ `E e o
o τ

Σ `E [i : (e o
o τ)] o

o τ

(
τ = Pα
τ = P[i : α]

)
In a variable construction expression [i : e], expression e shall be a set. The type of the whole expression is that
of a schema whose signature associates the name i with the type of a member of the set e.

Σ `E e o
o τ Σ ⊕ β `P p

Σ `E [(e o
o τ) | p] o

o τ

(
τ = P[β]
τ = τ

)
In a schema construction expression [e | p], expression e shall be a schema, and predicate p shall be well-typed
in an environment overridden by the signature of schema e. The type of the whole expression is the same as the
type of expression e.

C.6.34.4 Semantics

The value of the variable construction expression [i : e] is the set of all bindings whose sole name is i and whose
associated value is in the set that is the value of e.

[[ [i : e] ]]E = λ M : Model • {w : [[ e ]]EM • {i 7→ w}}
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In terms of the semantic universe, its semantic value, given a model M, is the set of all singleton bindings (sets
of pairs) of the name i associated with a value from the set that is the semantic value of e in M.

The value of the schema construction expression [e | p] is the set of all bindings of schema e that satisfy the
constraints of predicate p.

[[ [e | p] ]]E = λ M : Model • {t : [[ e ]]EM | M ⊕ t ∈ [[ p ]]P • t}

In terms of the semantic universe, its semantic value, given a model M, is the set of the bindings (sets of pairs)
that are members of the semantic value of schema e in M such that p is true in the model M overridden with
that binding.

C.6.35 Binding extension

C.6.35.1 Syntax

Expression = ...
| 〈| , [ DeclName , == , Expression ,

{ ,-tok , DeclName , == , Expression } ] , |〉
| ...
;

C.6.35.2 Type

Σ `E e o
o τ ... Σ `E en o

o τn

Σ `E 〈| i == (e o
o τ), ..., in == (en o

o τn) |〉 o
o τ

(
# {i, ..., in} = n
τ = [i : τ; ...; in : τn]

)
In a binding extension expression 〈| i == e, ..., in == en |〉, there shall be no duplication amongst the bound
names. The type of the whole expression is that of a binding whose signature associates the names with the types
of the corresponding expressions.

C.6.35.3 Semantics

The value of the binding extension expression 〈| i == e, ..., in == en |〉 is the binding whose names are as
enumerated and whose values are those of the associated expressions.

[[ 〈| i == e, ..., in == en |〉 ]]E = λ M : Model • {i 7→ [[ e ]]EM, ..., in 7→ [[ en ]]EM}

In terms of the semantic universe, its semantic value, given a model M, is the set of pairs enumerated by its
names each associated with the semantic value of the associated expression in M.

C.6.36 Tuple extension

C.6.36.1 Syntax

Expression = ...
| (-tok , Expression , ,-tok , Expression , { ,-tok , Expression } , )-tok
| ...
;

C.6.36.2 Type

Σ `E e o
o τ ... Σ `E en o

o τn

Σ `E ((e o
o τ), ..., (en o

o τn)) o
o τ

(
τ = τ × ...× τn

)
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In a tuple extension expression (e, ..., en), the type of the whole expression is the Cartesian product of the types
of the individual component expressions.

C.6.36.3 Semantics

The value of the tuple extension expression (e, ..., en) is the tuple containing the values of its expressions in
order.

[[ (e, ..., en) ]]E = λ M : Model • ([[ e ]]EM, ..., [[ en ]]EM)

In terms of the semantic universe, its semantic value, given a model M, is the tuple whose components are the
semantic values of the component expressions in M.

C.6.37 Characteristic definite description

C.6.37.1 Syntax

Expression = ...
| (-tok , µ , SchemaText , )-tok
| ...
;

C.6.37.2 Transformation

The value of the characteristic definite description expression (µ t) is the sole value of the characteristic tuple of
schema text t.

(µ t) =⇒ µ t • chartuple t

It is semantically equivalent to the corresponding definite description expression in which the characteristic tuple
is made explicit.

C.6.38 Parenthesized expression

C.6.38.1 Syntax

Expression = ...
| (-tok , Expression , )-tok
| ...
;

C.6.38.2 Transformation

The value of the parenthesized expression (e) is the value of expression e.

(e) =⇒ e

It is semantically equivalent to e.

C.7 Schema text

C.7.1 Introduction

A SchemaText introduces local variables, with constraints on their values.
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C.7.2 Syntax

SchemaText = [ DeclPart ] , [ |-tok , Predicate ] ;

DeclPart = Declaration , { ( ; -tok | NL ) , Declaration } ;

Declaration = DeclName , { ,-tok , DeclName } , : , Expression
| DeclName , == , Expression
| Expression
;

C.7.3 Transformation

There is no separate schema text class in the annotated syntax: all concrete schema texts are transformed to
expressions.

C.7.3.1 Declaration

Each declaration is transformed to an equivalent expression.

A constant declaration is equivalent to a variable declaration in which the variable ranges over a singleton set.

i == e =⇒ i : {e}

A comma-separated multiple declaration is equivalent to the conjunction of variable construction expressions in
which all variables are constrained to be of the same type.

i, ..., in : e =⇒ [i : e o
o τ1] ∧ ... ∧ [in : e o

o τ1]

C.7.3.2 DeclPart

Each declaration part is transformed to an equivalent expression.

de; ...; den =⇒ de ∧ ... ∧ den

If NL tokens have been used in place of any ; s, the same transformation to ∧ applies.

C.7.3.3 SchemaText

Given the above transformations of Declaration and DeclPart, any DeclPart in a SchemaText can be assumed
to be a single expression.

A SchemaText with non-empty DeclPart and Predicate is equivalent to the schema construction expression
containing that schema text.

e | p =⇒ [e | p]

If both DeclPart and Predicate are omitted, the schema text is equivalent to the set containing the empty
binding.

=⇒ {〈| |〉}

If just the DeclPart is omitted, the schema text is equivalent to the schema construction expression in which
there is a set containing the empty binding.

| p =⇒ [{〈| |〉} | p]
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Annex D
(informative)

Tutorial

D.1 Introduction

The aim of this tutorial is to show, by examples, how this International Standard can be used to determine
whether a specification is a well-formed Z sentence, and if it is, to determine its semantics. The examples cover
some of the more difficult parts of Z, and some of the recent innovations in the Z notation.

D.2 Semantics as models

The semantics of a specification is determined by sets of models, each model being a function from names defined
by the specification to values that those names are permitted to have by the constraints imposed on them in the
specification. For example, consider the following specification.

n : N

n ∈ {1, 2, 3, 4}

This specification introduces one name with four possible values (ignoring the prelude section for the moment).
The set of models defining the meaning of the specification contains four models, as follows.

{{n 7→ 1}, {n 7→ 2}, {n 7→ 3}, {n 7→ 4}}

One model of the prelude section can be written as follows.

{A 7→ A,
N 7→ N,
number literal 0 7→ 0,
number literal 1 7→ 1,

+ 7→ {((0, 0), 0), ((0, 1), 1), ((1, 0), 1), ((1, 1), 2), ...}}

The behaviour of ( + ) on non-natural numbers, e.g. reals, has not been defined at this point, so the set of
models for the prelude section includes alternatives for every possible extended behaviour of addition. The set of
models for the whole specification arises from extending models of the prelude section with associations for n in
all combinations.

This International Standard specifies the relation between Z specifications and their semantics in terms of sets of
models. That relation is specified as a composition of relations, each implementing a phase within the standard.
Those phases are as identified in Figure 1 in the conformance clause, namely mark-up, lexing, parsing, character-
ising, syntactic transformation, type inference, semantic transformation and semantic relation. The rest of this
tutorial illustrates the effects of those phases on example Z phrases.

D.3 Given types and schema definition paragraphs

The following two paragraphs are taken from the birthday book specification [12].

[NAME ,DATE ]

BirthdayBook
known : PNAME
birthday : NAME 7→ DATE

known = dom birthday

The mark-up, lexing, parsing and syntactic transformation phases are illustrated using this example.
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D.3.1 Mark-ups

The mathematical representation of Z is what one would write with pen, pencil, chalk, etc. Instructing a computer
to produce the same appearance currently requires the use of a mark-up language. There are many different mark-
up languages, each tailored to different circumstances, such as particular typesetting software. This International
Standard defines some mark-ups in annex A, by relating substrings of the mark-up language to strings of Z
characters. Source text for the birthday-book paragraphs written in the mark-ups defined in annex A follow. The
translation of these into sequences of Z characters is not explained here – annex A provides sufficient information.

D.3.1.1 LATEX mark-up

\begin{zed}
[NAME, DATE]
\end{zed}

\begin{schema}{BirthdayBook}
known : \power NAME\\
birthday : NAME \pfun DATE
\where
known = \dom~birthday
\end{schema}

D.3.1.2 Email mark-up

[NAME, DATE]

+-- BirthdayBook ---
known : %P NAME
birthday : NAME -+-> DATE
|--
known = dom birthday
---

D.3.2 Lexing

Lexing is the translation of a specification’s sequence of Z characters to a corresponding sequence of tokens. The
translation is defined by the lexis in clause 7. Associated with the tokens NAME and NUMERAL are the original
names and numerals. Here on the left is the sequence of tokens corresponding to the extract from the birthday
book (with -tok suffices omitted), and on the right is the same sequence but revealing the underlying spelling of
the name tokens.

[NAME, NAME] END [NAME ,DATE ] END
SCH NAME SCH BirthdayBook
NAME : P NAME NL known : PNAME NL
NAME : NAME I NAME birthday : NAME 7→ DATE
| |
NAME = NAME NAME known = dom birthday
END END

The layout here is of no significance: there are NL and END tokens where ones are needed. The paragraph outline
has been replaced by a SCH box token, to satisfy the linear syntax requirement of the syntactic metalanguage.
NAME and I are name tokens: this abstraction allows the fixed size grammar of the concrete syntax to cope with
the extensible Z notation.

This specification’s sequence of Z characters does conform to the lexis. If it had not, then subsequent phases
would not be applicable, and this International Standard would not define a meaning for the specification.
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D.3.3 Parsing

Parsing is the translation of the sequence of tokens produced by lexing to a tree structure, grouping the tokens
into grammatical phrases. The grammar is defined by the concrete syntax in clause 8. The parse tree for the
birthday-book specification is shown in Figure D.1.

The sequence of tokens produced by lexing can be seen in this tree by reading just the leaf nodes in order from
left to right. To save space elsewhere in this International Standard, parse trees are presented as just their textual
fringes, with parentheses added where necessary to override precedences.

This specification’s sequence of tokens does conform to the concrete syntax. If it had not, then subsequent phases
would not be applicable, and this International Standard would not define a meaning for the specification.

D.3.4 Syntactic transformation

The meaning of a Z specification is established by relating it to an interpretation in a semantic universe. That
relation is expressed using ZF set theory, which is not itself formally defined. It is therefore beneficial to define
as much Z notation as possible by transformations to other Z notation, so that only a relatively small kernel need
be related using ZF set theory. Conveniently, that Z kernel contains largely notation that has direct counterparts
in traditional ZF set theory, the novel Z notation having been largely transformed away. A further benefit is that
the transformations reveal relationships between different Z notations. The syntactic transformation stage is one
of several phases of such transformation.

The syntactic transformation rules (clause 12) are applied to a parsed sentence of the concrete syntax (clause 8).
The notation that results is a sentence of the annotated syntax (clause 10).

Consider the effect of the syntactic transformation rules on the birthday book extract. There is no syntactic

Figure D.1 – Parse tree of birthday book example

Anonymous specification

Given types paragraph Schema definition paragraph

[ NAME , NAME ] END SCH NAME SchemaText END

NAME DATE BirthdayBook DeclPar t | Relation predicate

Declaration NL Declaration InfixRel

DeclName : Application DeclName : Application RefName = application

NAME powerset NAME InfixApp NAME RefName RefName

known
�

RefName birthday RefName I RefName known NAME NAME

NAME NAME � NAME dom birthday

NAME NAME DATE
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transformation rule for given types; given types are in the annotated syntax. So the first paragraph is left
unchanged.

[NAME,NAME] END [NAME ,DATE ] END

The schema paragraph requires several syntactic transformations before it becomes a sentence of the annotated
syntax. The order in which these syntactic transformations are applied does not matter, as the same result is
obtained.

Transform NL by first rule in 12.2.7.

SCH NAME SCH BirthdayBook
NAME : P NAME; known : PNAME ;
NAME : NAME I NAME birthday : NAME 7→ DATE
| |
NAME = NAME NAME known = dom birthday
END END

Transform generic application NAME 7→ DATE by sixth InfixApp rule in 12.2.11.

SCH NAME SCH BirthdayBook
NAME : P NAME; known : PNAME ;
NAME : NAME [NAME, NAME] birthday : 1 7→1 [NAME ,DATE ]
| |
NAME = NAME NAME known = dom birthday
END END

Transform equality by third InfixRel rule in 12.2.10.

SCH NAME SCH BirthdayBook
NAME : P NAME; known : PNAME ;
NAME : NAME [NAME, NAME] birthday : 1 7→1 [NAME ,DATE ]
| |
NAME ∈ {NAME NAME} known ∈ {dom birthday}
END END

Transform basicdecls by sixth rule in 12.2.7.

SCH NAME SCH BirthdayBook
[NAME : P NAME]; [known : PNAME ];
[NAME : NAME [NAME, NAME]] [birthday : 1 7→1 [NAME ,DATE ]]
| |
NAME ∈ {NAME NAME} known ∈ {dom birthday}
END END

Transform schema text by second rule in 12.2.7.

SCH NAME SCH BirthdayBook
[[NAME : P NAME] ∧ [[known : PNAME ] ∧
[NAME : NAME [NAME, NAME]] [birthday : 1 7→1 [NAME ,DATE ]]
| |
NAME ∈ {NAME NAME}] known ∈ {dom birthday}]
END END

Transform paragraph by first rule in 12.2.3.
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AX AX
[NAME == [BirthdayBook ==
[[NAME : P NAME] ∧ [[known : PNAME ] ∧
[NAME : NAME [NAME, NAME]] [birthday : 1 7→1 [NAME ,DATE ]]
| |
NAME ∈ {NAME NAME}]] known ∈ {dom birthday}]
END END

The two paragraphs now form a sentence of the annotated syntax. These syntactic transformations do not change
the meaning: the meaning of the annotated representation is the same as that of the original schema paragraph.
This is ensured, despite transformations to notations of different precedences, by transforming trees not text –
the trees are presented as text above solely to save space.

Do not be surprised that the result of syntactic transformation looks “more complicated” than the original
formulation – if it did not, there would not have been much point in having the notation that has been transformed
away. The benefits are that fewer notations remain to be defined, and those that have been defined have been
defined entirely within Z.

D.4 Axiomatic description paragraphs

Here is a very simple axiomatic description paragraph, preceded by an auxiliary given types paragraph.

[X ]

i : X

D.4.1 Lexing and parsing

Lexing generates the following sequence of tokens, with corresponding spellings of name tokens.

[NAME] END [X ] END
AX NAME : NAME END AX i : X END

Parsing proceeds as for the birthday book, so is not explained in detail again.

D.4.2 Syntactic transformation

The schema text is transformed to an expression.

AX [NAME : NAME] END AX [i : X ] END

This is now a sentence of the annotated syntax.

D.4.3 Type inference

The type inference phase adds annotations to each expression and each paragraph in the parse tree. Without
going into too much detail, the signature of the given types paragraph is determined by rule 13.2.4.1 to be
X : P(GIVEN X ).

[X ] END o
o X : P(GIVEN X )

Rule 13.2.2.1 adds the name of the given type X to the type environment, associated with type P(GIVEN X ). The
annotation for the reference expression referring to X is determined by rule 13.2.6.1 using that type environment
to be P(GIVEN X ). Hence the type of the variable construction expression is found by rule 13.2.6.13 to be
P[i : GIVEN X ]. Hence the signature of the axiomatic description paragraph is determined. The resulting
annotated tree is shown in Figure D.2, and as linear text as follows.

AX ([i : (X o
o P(GIVEN X ))] o

o P[i : GIVEN X ]) END o
o i : GIVEN X

This specification’s parse tree is well-typed. If it were not, then subsequent phases would not be applicable, and
this International Standard would not define a meaning for the specification.
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D.4.4 Semantic relation

The semantic relation phase takes a sentence of the annotated syntax and relates it to its meaning in terms of
sets of models. The meaning of a paragraph d is given by the semantic relation [[ d ]]D, which relates a model to
that same model extended with associations between its names and their semantic values in the given model. For
the example given types paragraph, the semantic relation in 15.2.3.1 relates any model to that model extended
with an association of the given type name X with an arbitrarily chosen set w . (A further association is made
between a distinctly decorated version of the given type name X♥ and that same semantic value, for use in
avoiding variable capture.)

{X 7→ w ,X♥ 7→ w}

This is one model of the prefix of the specification up to the given types paragraph (ignoring the prelude). The
set of models defining the meaning of this prefix includes other models, each with a different set w .

The meaning of an expression e is given by the semantic function [[ e ]]E , which maps the expression to its semantic
value in a given model. Within the axiomatic description paragraph, the reference to the given type X has a
semantic value determined by relation 15.2.5.1 as being the semantic value w already associated with the given
type name X in the model. The variable construction expression [i : X ] has a semantic value determined by
relation 15.2.5.9 that represents a set of bindings of the name i to members of the semantic value of the reference
to X , i.e. the set w . The meaning of the example axiomatic description paragraph, as given by semantic relation
15.2.3.2, is to relate any model to that model extended with a binding that is in the set that is the semantic value
of the variable construction expression. So, if the members of w are w1,w2, ..., then the set of models defining
the meaning of the specification includes the following.

{{X 7→ w ,X♥ 7→ w , i 7→ w1}, {X 7→ w ,X♥ 7→ w , i 7→ w2}, ...}

If w is chosen to be the empty set, then the set of models is empty.

Figure D.2 – Annotated parse tree of part of axiomatic example
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D.5 Generic axiomatic description paragraphs

Here is a generic axiomatic description paragraph. Although it looks simple, it has the complication of being a
loose generic definition.

[X ]
i : PX

D.5.1 Lexing and parsing

Lexing generates the following sequence of tokens, with corresponding spellings of name tokens.

GENAX [NAME] NAME : P NAME END GENAX [X ] i : PX END

Parsing proceeds as for the birthday book, so is not explained in detail again.

D.5.2 Syntactic transformation

The schema text is transformed to an expression.

GENAX [NAME] [NAME : P NAME] END GENAX [X ] [i : PX ] END

This is now a sentence of the annotated syntax.

D.5.3 Type inference

Without going into too much detail, rule 13.2.4.3 adds the name of the generic parameter X to the type en-
vironment, associated with type P(GENTYPE X ). The annotation for the reference expression referring to X is
determined by rule 13.2.6.1 using that type environment to be P(GENTYPE X ). Hence the type of the powerset
expression is found by rule 13.2.6.5 to be PP(GENTYPE X ). Hence the type of the variable construction expression
is found by rule 13.2.6.13 to be P[i : P(GENTYPE X )]. Hence the signature of the generic axiomatic description
paragraph is determined.

GENAX [X ] ([i : (P(X o
o P(GENTYPE X )) o

o PP(GENTYPE X ))] o
o P[i : P(GENTYPE X )]) END o

o i : P(GENTYPE X )

D.5.4 Semantic relation

Every use of a generic definition instantiates the generic parameters with particular sets. A suitable semantic
value for a generic definition is therefore a function from the semantic values of the sets instantiating the generic
parameters to the semantic value of the definition given those values for the parameters. In the case of a loose
generic definition, several models are needed to express its semantics, each giving a different function. Each model
defining the meaning of the example generic axiomatic description paragraph has the following form.

{i 7→ {s1 7→ subset of s1, s2 7→ subset of s2, ...}}

The model associates the name i with a function from sets s1, s2, ... instantiating the generic parameter X to
the semantic value of i resulting from the corresponding instantiation. Different models for this paragraph have
different subsets of s1, s2, .... The way this is defined by the semantic relations is roughly as follows.

The semantic relation in 15.2.3.3 specifies that w is a binding in the semantic value of schema e in the given
model extended with an association of the generic parameter X with the set instantiating it w1. (The model is
also extended with a further association between a distinctly decorated version of the generic parameter X♠ and
that same semantic value w1, for use in avoiding variable capture). This is specified in a way that is cautious
of e being undefined in the extended model. The determination of the value of e is done in the same way as
for the preceding example, using semantic relations 15.2.5.5, 15.2.5.1 and 15.2.5.9. The semantic relation for the
paragraph is then able to extend its given model with the association illustrated above.

D.6 Operator templates and generics

The definition of relations in the toolkit provides an example of an operator template and the definition of a
generic operator.
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generic 5 rightassoc ( ↔ )

X ↔ Y == P(X ×Y )

D.6.1 Lexing and parsing

An operator template paragraph affects the lexing and parsing of subsequent paragraphs. In this example, it causes
subsequent appearances of names using the word ↔ to be lexed as I tokens, and hence its infix applications are
parsed as operator names (illustrated in the example) or as generic operator application expressions. An operator
template paragraph does not have any further effect on the meaning of a specification, so a parsed representation
is needed of only the generic operator definition paragraph, for which lexing generates the following sequence of
tokens and corresponding spellings of name tokens.

NAME I NAME == P(NAME× NAME) END X ↔ Y == P(X ×Y ) END

Parsing proceeds as for the birthday-book example, so is not explained in detail again.

D.6.2 Syntactic transformation

The generic operator name is transformed by the first InfixGenName rule in 12.2.9.

I [NAME, NAME] == P(NAME× NAME) END ↔ [X ,Y ] == P(X ×Y ) END

This generic horizontal definition paragraph is then transformed by 12.2.3.4 to a generic axiomatic description
paragraph, which is the sole form of generic definition for which there is a semantic relation.

GENAX [NAME, NAME] GENAX [X ,Y ]
I == P(NAME× NAME) ↔ == P(X ×Y )

END END

Transform Cartesian product expression by the rule in 12.2.6.8 to a set of pairs.

GENAX [NAME, NAME] GENAX [X ,Y ]
I == P{NAME : NAME; NAME : NAME • (NAME, NAME)} ↔ == P{x : X ; y : Y • (x , y)}

END END

Transform the operator name by the first InfixName rule in 12.2.8.3.

GENAX [NAME, NAME] GENAX [X ,Y ]
NAME == P{NAME : NAME; NAME : NAME • (NAME, NAME)} 1↔1 == P{x : X ; y : Y • (x , y)}
END END

Transform the schema texts to expressions.

GENAX [NAME, NAME] GENAX [X ,Y ]
[NAME : {P{[NAME : NAME] ∧ [NAME : NAME] • (NAME, NAME)}}] [1↔1 : {P{[x : X ] ∧ [y : Y ] • (x , y)}}]
END END

This is now a sentence of the annotated syntax.

D.6.3 Type inference

The type inference phase adds annotations to the parse tree. For this example, the resulting subtree for the set
extension expression (to the right of the colon) is shown in Figure D.3.

Informally, the way the annotations are determined is as follows. The type inference rule for generic axiomatic
description paragraph (13.2.4.3) overrides the type environment with types for the generic parameters X and
Y . The type inference rule for reference expression (13.2.6.1) retrieves these types for the references to X and
Y . The type inference rule for variable construction expression (13.2.6.13) builds the schema types. The type
inference rule for schema conjunction expression (13.2.6.16) merges those schema types. The type inference rule
for set comprehension expression (13.2.6.4) overrides the type environment with types for the local declarations
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x and y . The type inference rule for reference expression (13.2.6.1) retrieves these types for the references to x
and y . The type inference rule for tuple extension expression (13.2.6.6) builds the Cartesian product type. The
type of the set comprehension is thus determined, and hence that of the powerset by rule 13.2.6.5 and that of the
set extension by rule 13.2.6.3.

D.6.4 Semantic relation

For the example generic axiomatic description paragraph, the semantic relation in 15.2.3.3 associates name ↔
with a function from the semantic values of the sets instantiating the generic parameters X and Y to the
semantic value of the powerset expression given those values for X and Y . The semantic value of the example’s
powerset expression is given by semantic relations 15.2.5.4, 15.2.5.5 and 15.2.5.6 as sets of tuples in ZF set theory.
Hence the example generic axiomatic description paragraph adds the following association to the meaning of the
specification.

( ↔ ) 7→ {(set for X , set for Y ) 7→ value of powerset expression given that X and Y ,
and so on for all combinations of sets for X and Y }

Syntactic transformation 12.2.3.4 moved the name of the generic operator to after the generic parameters. In
constructing this association, the name had to be lifted back out again. This has sometimes been called the
generic lifting operation.

Figure D.3 – Annotated parse tree of part of generic example
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D.7 List arguments

An operator that forms an indexed-from-zero sequence can be introduced and defined as follows. The definition
uses several toolkit notations.

function (〈0 , , 〉0)

〈0 , , 〉0[X ] == λ s : seq X • {b : dom s; r : ran s • b − 1 7→ r}

The semantics of an application of this operator, for example 〈01, 2, 1〉0, are defined as follows.

D.7.1 Lexing and parsing

The application is recognised as being an instance of the NofixApp rule in the concrete syntax, the word 〈0 being
lexed as a L token and the word 〉0 being lexed as a SR token. Between those brackets, 1, 2, 1 is recognised as an
ExpressionList.

L NUMERAL, NUMERAL, NUMERAL SR 〈01, 2, 1〉0

D.7.2 Syntactic transformation

The ExpressionList is transformed to an expression by rule 12.2.12.

L {(NUMERAL, NUMERAL), 〈0{(1, 1), (2, 2), (3, 1)}〉0
(NUMERAL, NUMERAL),
(NUMERAL, NUMERAL)} SR

The NofixApp is transformed to an application expression.

NAME {(NUMERAL, NUMERAL), 〈01〉0 {(1, 1), (2, 2), (3, 1)}
(NUMERAL, NUMERAL),
(NUMERAL, NUMERAL)}

The operator notation has now been eliminated, and so the semantic definition proceeds as usual for the remaining
notation. All applications of operator notation are eliminated by such syntactic transformations.

D.8 Mutually recursive free types

The standard notation for free types is an extension of the traditional notation, to allow the specification of
mutually recursive free types, such as the following example.

exp ::= Node〈〈N1〉〉
| Cond〈〈pred × exp × exp〉〉

&
pred ::= Compare〈〈exp × exp〉〉

This specifies a tiny language, in which an expression exp can be a conditional involving a predicate pred , and a
pred compares expressions. A more realistic example would have more kinds of expressions and predicates, and
maybe other auxiliary types perhaps in mutual recursion with these two, but this small example suffices here.

Like the previous examples, the source text for this one has to be taken through the phases of mark-up, lexing,
parsing, syntactic transformation and type inference. (There are no applicable characterisations or instantiations.)
The focus here is on the semantic transformation of free types. (Strictly, the Cartesian products should be
syntactically transformed first, but keeping them makes the following more concise.)

D.8.1 Semantic transformation

Transforming the above free types paragraph by rule 12.2.3.5 generates the following Z notation. The semantic
transformation rules are defined in terms of concrete notation for clarity, which should itself be subjected to
further transformations, though that is not done here.
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D.8.1.1 Type declarations

[exp, pred ]

D.8.1.2 Membership constraints

Node : P(N1 × exp)
Cond : P((pred × exp × exp)× exp)
Compare : P((exp × exp)× exp)

D.8.1.3 Total functionality constraints

∀ u : N1 • ∃1 x : Node • x .1 = u
∀ u : pred × exp × exp • ∃1 x : Cond • x .1 = u
∀ u : exp × exp • ∃1 x : Compare • x .1 = u

D.8.1.4 Injectivity constraints

∀ u, v : nat1 | Node u = Node v • u = v
∀ u, v : pred × exp × exp | Cond u = Cond v • u = v
∀ u, v : exp × exp | Compare u = Compare v • u = v

D.8.1.5 Portmanteau disjointness constraint

There are no disjointness constraints from the pred type as it has only one injection and no element values.

∀ b1, b2 : N •
∀w : exp |

(b1 = 1 ∧ w ∈ {x : Node • x .2} ∨
b1 = 2 ∧ w ∈ {x : Cond • x .2})

∧ (B2 = 1 ∧ w ∈ {x : Node • x .2} ∨
b2 = 2 ∧ w ∈ {x : Cond • x .2}) •

b1 = b2

D.8.1.6 Induction constraint

∀w1 : P exp; w2 : P pred |
(∀ y : (µ exp == w1; pred == w2 • N1) •

Node y ∈ w1) ∧
(∀ y : (µ exp == w1; pred == w2 • pred × exp × exp) •

Cond y ∈ w1) ∧
(∀ y : (µ exp == w1; pred == w2 • exp × exp) •

Compare y ∈ w2) •
w1 = exp ∧ w2 = pred
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D.9 Chained relations and implicit generic instantiation

The semantics of chained relations is defined to give a meaning to this example,

{1} 6= ∅ ⊆ {2, 3}

in which ∅ refers to the generic definition of empty set and so is implicitly instantiated, whilst rejecting the
following example as being not well-typed,

{(1, 2)} 6= ∅ ⊆ A

because the single ∅ expression in the second example needs to be instantiated differently for the two relations.

To demonstrate how this is done, the former example is taken through syntactic transformation and type inference,
including the filling in of the implicit instantiations.

D.9.1 Syntactic transformation

The chaining is transformed by the first InfixRel rule in 12.2.10 to a conjunction of relations in which the
duplicates of the common expression are constrained to be of the same type by giving them the same annotation.

{1} 6= (∅ o
o τ) ∧ (∅ o

o τ) ⊆ {2, 3}

The third InfixRel rule in 12.2.10 transforms these two relations to membership predicates.

({1}, (∅ o
o τ)) ∈ ( 6= ) ∧ ((∅ o

o τ), {2, 3}) ∈ ( ⊆ )

The two operator names are transformed by the second rule in 12.2.8.3.

({1}, (∅ o
o τ)) ∈ 1 6=1 ∧ ((∅ o

o τ), {2, 3}) ∈ 1⊆1

This is now a phrase of the annotated syntax.

D.9.2 Type inference

Type inference on this example generates the annotations illustrated in Figure D.4. (The tool used to draw that
figure has no 1 symbol, so ∞ is used instead.)

Those reference expressions that refer to generic definitions have to be transformed to generic instantiation
expressions for their meaning to be determined. This is done by the instantiation rule (13.2.3.3). It determines
the generic instantiations by comparison of the generic type with the inferred type. For example, the references
to ∅ have been given the type annotation P(GIVEN A), which is the instance of [X ]P(GENTYPE X ) in which
GENTYPE X is GIVEN A. The desired instantiating expression is the carrier set of that type, which is A. It is
generated by the instantiation rule, which effects the following transformation.

∅ o
o [X ]PX ,P(GIVEN A) =⇒ ∅[A o

o P(GIVEN A)] o
o P(GIVEN A)

Similarly, the reference to 16=1 has type P(P(GIVEN A)×P(GIVEN A)) which is the instance of [X ]P(GENTYPE X ×
GENTYPE X ) in which GENTYPE X is P(GIVEN A). The instantiating expression is the carrier set of that type, which
is PA.

Similarly again, the reference to 1⊆1 has type P(P(GIVEN A) × P(GIVEN A)) which is the instance of
[X ]P(P(GENTYPE X ) × P(GENTYPE X )) in which GENTYPE X is GIVEN A. The instantiating expression is the
carrier set of that type, which is A.
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D.10 Logical inference rules

This document does not attempt to standardise any particular deductive system for Z. However, the soundness
of potential logical inference rules can be shown relative to the sets of models defined by the semantics. Some
examples are given here.

The predicate true can be used as an axiom. The proof of this is trivial: an axiom p is sound if and only
if [[ p ]]P = Model (as given by the definition of soundness in 5.2.3), and from the semantic relation for truth
predicates (15.2.4.2), [[ true ]]P = Model .

The inference rule with premise ¬ ¬ p and consequent p is sound if and only if

[[ ¬ ¬ p ]]P ⊆ [[ p ]]P

(again as given by the definition of soundness in 5.2.3). By two applications of the semantic relation for negation
predicate (15.2.4.3), this becomes

Model \ (Model \ [[ p ]]P) ⊆ [[ p ]]P

which by properties of set difference becomes

[[ p ]]P ⊆ [[ p ]]P

which is a property of set inclusion.

The transformation rules of clauses 12 and 14 inspire corresponding logical inference rules: any logical infer-
ence rule whose sole premise matches the left-hand side of a transformation rule and whose consequent is the
corresponding instantiation of that transformation rule’s right-hand side is sound.

Figure D.4 – Annotated parse tree of chained relation example
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Annex E
(informative)

Conventions for state-based descriptions

E.1 Introduction

This annex records some of the conventions of notation that are often used when state-based descriptions of
systems are written in Z. Conventions for identifying before and after states (x and x ′) and input and output
variables (i? and o!) are given.

E.2 States

When giving a model-based description of a system, the state of the system and the operations on the state are
specified. Each operation is described as a relation between states. It is therefore necessary to distinguish between
the values of state variables before the operation and their values afterwards. The convention in Z described here
is to use dashes (primes) to make this distinction: if the state variables are x and y , then a predicate describing
an operation is written using the variables x , y , x ′, y ′, where x and y denote the values before the operation, and
x ′ and y ′ denote the values afterwards. (The predicate can also refer to any global constants.) For instance,
if x and y are both integer variables, then an operation which incremented both variables could be specified as
follows.

x ′ = x + 1 ∧ y ′ = y + 1

In order to use predicates like this to describe operations, all of the variables have to be in scope. If the state
has been described in a schema S , then including S in the declaration part of the operation schema brings the
state variables—x and y in the example above— into scope. The after-state variables are similarly introduced
by including S ′: this is a schema obtained from S by adding a dash to all the variables in the signature of S ,
and replacing every occurrence of such a variable in the predicate part of S by its dashed counterpart. Notice
that the variables from the signature of S are the only ones which are dashed—global constants, types etc remain
undashed. If S contains a variable which has already been decorated in some way, then an extra dash is added
to the existing decoration.

Thus operations can be described in Z by a schema of the form

Op
S
S ′

...

Since the inclusion of undashed and dashed copies of the state schema is so common, an abbreviation is used:

∆S == [S ; S ′]

The operation schema above now becomes

Op
∆S

...
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It should be stressed that ∆ is not an ‘operator on schemas’, merely a character in the schema name. One reason
for this is that some authors like to include additional invariants in their ∆-schemas. For instance, if S contained
an additional component z , but none of the operations ever changed z , then ∆S could be defined by

∆S == [S ; S ′ | z ′ = z ] ,

thus making it unnecessary to include z ′ = z in each operation description. If a name ∆S is referred to without a
declaration of it having appeared previously, the reference is equivalent to [S ; S ′] as defined formally in 13.2.6.1.

It should be noted that strange results can occur if this implicit definition of ∆S is used on a schema S that
contains variables which are not intended to be state components, perhaps inputs or outputs (see below). The
sequence of strokes after a variable name might then become difficult to interpret.

There is one further piece of notation for describing state transitions: when enquiry operations are being described,
it is often necessary to specify that the state should not change. For this the abbreviation ΞS is used. Unless it
has been explicitly defined to mean something else, references to ΞS are equivalent to [S ; S ′ | θS = θS ′]. Note
that ΞS is not defined in terms of ∆S , in case ∆S has been given an explicit unconventional definition.

E.3 Inputs and outputs

For many systems, it is convenient to be able to describe operations not just in terms of relations between states,
but with inputs and outputs as well. The input values of an operation are provided by ‘the environment’, and
the outputs are returned to the environment.

In order to distinguish a variable intended as either an input or an output in an operation schema from a state-
before variable (which has no decoration), an additional suffix is used: ? for input variables and ! for output
variables. Thus name? denotes an input, and result ! denotes an output.

E.4 Schema operators

The schema operators pre, o
9 and >> make use of this decoration convention.
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Index

+ (addition)
in mathematical metalanguage, 7
in prelude, 43

- (arithmetic negation)
in mathematical toolkit, 99

�→ (bijections)
in mathematical metalanguage, 8
in mathematical toolkit, 97

θ (binding construction)
expression, see binding construction expression

〈|, , |〉 (binding extension)
expression, see binding extension expression

. (binding selection)
expression, see binding selection expression

# (cardinality)
in mathematical metalanguage, 7
in mathematical toolkit, 103

× (Cartesian product)
expression, see Cartesian product expression
in mathematical metalanguage, 7
type, see Cartesian product type

(µ | ) (characteristic definite description)
expression, see characteristic definite description

expression
{ | } (characteristic set comprehension)

expression, see characteristic set comprehension ex-
pression

≈ (compatible relations)
in mathematical metalanguage, 8

a (concatenation)
in mathematical toolkit, 104
in metalanguage, 39

`? (conjecture)
paragraph, see conjecture paragraph

∧ (conjunction)
expression, see schema conjunction expression
in mathematical metalanguage, 4
predicate, see conjunction predicate

µ | • (definite description)
expression, see definite description expression

∨ (disjunction)
expression, see schema disjunction expression
in mathematical metalanguage, 4
predicate, see disjunction predicate

a/ (distributed concatenation)
in mathematical toolkit, 106

C (domain restriction)
in mathematical metalanguage, 8
in mathematical toolkit, 95

−C (domain subtraction)
in mathematical metalanguage, 8

in mathematical toolkit, 95
∅ (empty set)

in mathematical metalanguage, 6
in mathematical toolkit, 91

= (equality)
in mathematical metalanguage, 6
predicate, see relation operator application predi-

cate
⇔ (equivalence)

expression, see schema equivalence expression
predicate, see equivalence predicate

∃ | • (existential quantification)
expression, see schema existential quantification ex-

pression
in mathematical metalanguage, 5
predicate, see existential quantification predicate

� (extraction)
in mathematical toolkit, 105

� (filtering)
in mathematical toolkit, 105

7 7→ (finite functions)
in mathematical metalanguage, 8
in mathematical toolkit, 98
7 7� (finite injections)

in mathematical toolkit, 98
::= (free type)

paragraph, see free types paragraph
λ | • (function construction)

expression, see function construction expression
in mathematical metalanguage, 8

◦ (functional composition)
in mathematical toolkit, 94
7→ (functions)

in mathematical metalanguage, 8⋂
(generalized intersection)
in mathematical toolkit, 93⋃
(generalized union)
in mathematical toolkit, 93

♠ (generic type name stroke), 40
♥ (given type name stroke), 40
> (greater than)

in mathematical toolkit, 100
≥ (greater than or equal)

in mathematical toolkit, 100
⇒ (implication)

expression, see schema implication expression
predicate, see implication predicate

6= (inequality)
in mathematical toolkit, 91

↑ (iterated product)
in mathematical metalanguage, 7
(iteration)
in mathematical toolkit, 102
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(juxtaposition)
expression, see application expression
in mathematical metalanguage, 9

λ • (lambda)
expression, see function construction expression

< (less than)
in mathematical toolkit, 100

≤ (less than or equal)
in mathematical toolkit, 100

7→ (maplet)
in mathematical metalanguage, 7
in mathematical toolkit, 94

∈ (membership)
in mathematical metalanguage, 6
predicate, see membership predicate

µ • (mu)
expression, see definite description expression

∗ (multiplication)
in mathematical toolkit, 101

¬ (negation)
expression, see schema negation expression
in mathematical metalanguage, 4
predicate, see negation predicate

NL (newline conjunction)
in mathematical metalanguage, 4
predicate, see newline conjunction predicate

6∈ (non-membership)
in mathematical metalanguage, 6
in mathematical toolkit, 91

. . (numeric range)
in mathematical metalanguage, 7
in mathematical toolkit, 102

( ) (parentheses)
expression, see parenthesized expression
in mathematical metalanguage, 4
predicate, see parenthesized predicate
7→ (partial functions)

in mathematical toolkit, 97
7� (partial injections)

in mathematical toolkit, 97
7→→ (partial surjections)

in mathematical toolkit, 97
⊂ (proper subset)

in mathematical toolkit, 91
B (range restriction)

in mathematical toolkit, 95
−B (range subtraction)

in mathematical toolkit, 95
∗ (reflexive transitive closure)

in mathematical toolkit, 96
o
9 (relational composition)

in mathematical metalanguage, 8
in mathematical toolkit, 94

(| |) (relational image)
in mathematical metalanguage, 8
in mathematical toolkit, 96

∼ (relational inversion)
in mathematical metalanguage, 8
in mathematical toolkit, 95

⊕ (relational overriding)
in mathematical metalanguage, 8
in mathematical toolkit, 96

↔ (relations)
in mathematical toolkit, 90

o
9 (schema composition)

expression, see schema composition expression
⇔ (schema equivalence)

expression, see schema equivalence expression
\ (schema hiding)

expression, see schema hiding expression
⇒ (schema implication)

expression, see schema implication expression
>> (schema piping)

expression, see schema piping expression
� (schema projection)

expression, see schema projection expression
/ (schema renaming)

expression, see schema renaming expression
〈, , 〉 (sequence brackets)

in mathematical metalanguage, 9
in mathematical toolkit, 104

{ | • } (set comprehension)
expression, see set comprehension expression
in mathematical metalanguage, 6

\ (set difference)
in mathematical metalanguage, 6
in mathematical toolkit, 92

{, , } (set extension)
expression, see set extension expression
in mathematical metalanguage, 6

∩ (set intersection)
in mathematical metalanguage, 6
in mathematical toolkit, 92

	 (set symmetric difference)
in mathematical toolkit, 92

∪ (set union)
in mathematical metalanguage, 6
in mathematical toolkit, 92

⊆ (subset)
in mathematical metalanguage, 6
in mathematical toolkit, 91

− (subtraction)
in mathematical toolkit, 99

→ (total functions)
in mathematical metalanguage, 8
in mathematical toolkit, 90
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� (total injections)
in mathematical toolkit, 97

→→ (total surjections)
in mathematical toolkit, 97

+ (transitive closure)
in mathematical toolkit, 96

( ,, ) (tuple extension)
expression, see tuple extension expression
in mathematical metalanguage, 7

∃1 | • (unique existential quantification)
expression, see schema unique existential quantifi-

cation expression
in mathematical metalanguage, 5
predicate, see unique existential quantification pred-

icate
∀ | • (universal quantification)

expression, see schema universal quantification ex-
pression

in mathematical metalanguage, 5
predicate, see universal quantification predicate

ALPHASTR, 24
Annotated syntax, 40
anonymous specification

concrete syntax, 31, 109
syntactic transformation, 44, 109

application expression
annotated syntax, 42
concrete syntax, 32, 141
semantic transformation, 69, 141
type inference rule, 62, 141

A (arithmos)
in prelude, 43

associativity of operators, 35
AX, 25
AXCHAR, 21
axiomatic description paragraph

annotated syntax, 40
concrete syntax, 31, 112
semantic relation, 73, 112
type inference rule, 58, 112

base section
concrete syntax, 31, 111
syntactic transformation, 45, 111

Bibliography, 168
binding, 1
binding construction expression

annotated syntax, 42
concrete syntax, 32, 144
semantic transformation, 69, 144
type inference rule, 62, 144

binding extension expression

annotated syntax, 42
concrete syntax, 32, 150
semantic relation, 75, 150
type inference rule, 62, 150

binding selection expression
annotated syntax, 42
concrete syntax, 32, 143
semantic transformation, 69, 143
type inference rule, 62, 143

BOXCHAR, 18
BRACKET, 18

capture, 2
carrier , 57
carrier set, 2
Cartesian product expression

concrete syntax, 32, 138
syntactic transformation, 48, 138

Cartesian product type
annotated syntax, 43
semantic relation, 78

charac , 39
Characterisation rules, 38
characteristic definite description expression

characterisation, 39, 151
concrete syntax, 32, 151

characteristic set comprehension expression
characterisation, 39, 149
concrete syntax, 32, 149

characteristic tuple, 38
chartuple , 39
Concrete syntax, 30
conditional expression

concrete syntax, 32, 134
syntactic transformation, 48, 134

Conformance, 14
conjecture paragraph

annotated syntax, 40
concrete syntax, 31, 119
semantic relation, 73, 120
type inference rule, 59, 120

conjunction predicate
annotated syntax, 41
concrete syntax, 31, 124
semantic relation, 13, 74, 125
type inference rule, 60, 125

constraint, 2
Conventions for state-based descriptions, 166

decor
in mathematical metalanguage, 7

DECORWORD, 24
definite description expression
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annotated syntax, 42
concrete syntax, 32, 131
semantic relation, 76, 131
type inference rule, 62, 131

DIGIT, 18
disjoint

in mathematical metalanguage, 9
in mathematical toolkit, 98

disjunction predicate
concrete syntax, 31, 124
syntactic transformation, 46, 124

div
in mathematical toolkit, 101

dom
in mathematical metalanguage, 8
in mathematical toolkit, 94

EL, 29
ELP, 29
empty signature

annotated syntax, 43
END, 25
ENDCHAR, 21
environment, 2
equivalence predicate

concrete syntax, 31, 123
syntactic transformation, 46, 124

ER, 29
ERE, 29
EREP, 29
ERP, 29
ES, 29
existential quantification predicate

concrete syntax, 31, 122
syntactic transformation, 46, 122

Expression
annotated syntax, 42
characterisation rules, 39
concrete syntax, 32
semantic relations, 74
semantic transformation rules, 69
syntactic transformation rules, 47
type inference rules, 60

expression list
concrete syntax, 35
syntactic transformation, 54

F (finite subsets)
in mathematical metalanguage, 7
in mathematical toolkit, 93

F1 (non-empty finite subsets)
in mathematical toolkit, 93

falsity predicate

concrete syntax, 31, 128
syntactic transformation, 47, 128

first
in mathematical metalanguage, 7
in mathematical toolkit, 93

Foreword, iv
free types paragraph

annotated syntax, 40
concrete syntax, 31, 116
semantic transformation, 66, 117
syntactic transformation, 45, 116
type inference rule, 59, 117

front
in mathematical toolkit, 105

function and generic operator application expression
concrete syntax, 32, 139
syntactic transformation, 53, 140

function construction expression
characterisation, 39, 131
concrete syntax, 32, 130

function toolkit , 96

GENAX, 25
GENCHAR, 21
generic axiomatic description paragraph

annotated syntax, 40
concrete syntax, 31, 113
semantic relation, 73, 113
type inference rule, 58, 113

generic conjecture paragraph
annotated syntax, 40
concrete syntax, 31, 120
semantic relation, 74, 120
type inference rule, 59, 120

generic horizontal definition paragraph
concrete syntax, 31, 114
syntactic transformation, 45, 114

generic instantiation, 56
generic instantiation expression

annotated syntax, 42
concrete syntax, 32, 146
semantic relation, 75, 146
type inference rule, 61, 146

generic name
concrete syntax, 34, 115
syntactic transformation, 51, 115

generic operator definition paragraph
concrete syntax, 31, 115
syntactic transformation, 51, 115

generic parameter type
annotated syntax, 43
semantic relation, 77

generic schema definition paragraph
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concrete syntax, 31, 113
syntactic transformation, 45, 114

generic type
annotated syntax, 43

generic type instantiation, 57
GENSCH, 25
given type

annotated syntax, 43
semantic relation, 77

given types paragraph
annotated syntax, 40
concrete syntax, 31, 111
semantic relation, 73, 111
type inference rule, 58, 111

GREEK, 18

head
in mathematical toolkit, 104

horizontal definition paragraph
concrete syntax, 31, 114
syntactic transformation, 45, 114

I, 29
id

in mathematical metalanguage, 8
in mathematical toolkit, 94

if then else (conditional)
in mathematical metalanguage, 5

implication predicate
concrete syntax, 31, 124
syntactic transformation, 46, 124

infix
in mathematical toolkit, 106

infix function and generic operator application
concrete syntax, 35, 139
syntactic transformation, 54, 140

infix generic name
concrete syntax, 34, 115
syntactic transformation, 51, 115

infix operator name
concrete syntax, 34
syntactic transformation, 50

infix relation operator application
concrete syntax, 34, 125
syntactic transformation, 52, 126

inheriting section
annotated syntax, 40
concrete syntax, 31, 109
semantic relation

non-prelude, 72, 110
prelude, 72, 110

type inference rule, 56, 109
interpretation, 2

Introduction, v
IP, 29
iseq (injective sequences)

in mathematical toolkit, 103
iter (iteration)

in mathematical toolkit, 102

L, 29
lambda expression, see function construction expression
last

in mathematical toolkit, 104
LATIN, 18
let • (substitution)

expression, see substitution expression
LETTER, 18
Lexis, 24
LP, 29

Mark-ups, 79
Mathematical toolkit, 90
max

in mathematical toolkit, 103
membership predicate

annotated syntax, 41
semantic relation, 74, 127
type inference rule, 59, 127

metalanguage, 2
metavariable, 2
min

in mathematical toolkit, 103
mktuple , 39

mod
in mathematical toolkit, 101

Model , 13
model, 2
mu expression, see definite description expression

N1 (strictly positive naturals)
in mathematical toolkit, 100

N (naturals)
in prelude, 43

negation predicate
annotated syntax, 41
concrete syntax, 31, 125
semantic relation, 74, 125
type inference rule, 60, 125

newline conjunction predicate
concrete syntax, 31, 123
syntactic transformation, 46, 123

NL, 25
NLCHAR, 21
nofix function and generic operator application

concrete syntax, 35, 139
syntactic transformation, 54, 140
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nofix generic name
concrete syntax, 34, 115
syntactic transformation, 52, 116

nofix operator name
concrete syntax, 34
syntactic transformation, 51

nofix relation operator application
concrete syntax, 34, 125
syntactic transformation, 53, 127

Normative references, 1
number literal expression

concrete syntax, 32, 147
syntactic transformation, 48, 147

number toolkit , 98
number literal 0

in prelude, 43
number literal 1

in prelude, 43
NUMERAL, 24

operator associativity, 35
operator name

concrete syntax, 33
syntactic transformation, 50

operator precedence, 35
operator template paragraph

concrete syntax, 31, 121
Organisation by concrete syntax production, 107
OTHERLETTER, 18

P (powerset)
in mathematical metalanguage, 7

P1 (non-empty subsets)
in mathematical toolkit, 92

Paragraph
annotated syntax, 40
concrete syntax, 31
semantic relations, 73
semantic transformation rules, 66
syntactic transformation rules, 45
type inference rules, 58

parenthesized expression
concrete syntax, 32, 151
syntactic transformation, 49, 151

parenthesized predicate
concrete syntax, 31, 128
syntactic transformation, 47, 128

partition
in mathematical toolkit, 98

POST, 29
postfix function and generic operator application

concrete syntax, 35, 139
syntactic transformation, 53, 140

postfix generic name
concrete syntax, 34, 115
syntactic transformation, 51, 115

postfix operator name
concrete syntax, 34
syntactic transformation, 50

postfix relation operator application
concrete syntax, 34, 125
syntactic transformation, 52, 126

POSTP, 29
P (powerset)

in prelude, 43
powerset expression

annotated syntax, 42
concrete syntax, 32, 138
semantic relation, 75, 139, 141
type inference rule, 61, 139, 141

powerset type
annotated syntax, 43
semantic relation, 77

PRE, 29
precedence of operators, 35
Predicate

annotated syntax, 41
concrete syntax, 31
semantic relations, 74
semantic transformation rules, 68
syntactic transformation rules, 46
type inference rules, 59

prefix
in mathematical toolkit, 105

prefix function and generic operator application
concrete syntax, 35, 139
syntactic transformation, 53, 140

prefix generic name
concrete syntax, 34, 115
syntactic transformation, 51, 115

prefix operator name
concrete syntax, 33
syntactic transformation, 50

prefix relation operator application
concrete syntax, 34, 125
syntactic transformation, 52, 126

Prelude, 43
PREP, 29

ran
in mathematical toolkit, 94

reference expression
annotated syntax, 42
concrete syntax, 32, 144
semantic relation, 75, 146
type inference rule, 61, 145
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relation operator application predicate
concrete syntax, 31, 125
syntactic transformation, 52, 126

relation toolkit , 93
rev (reverse)

in mathematical toolkit, 104

SCH, 25
SCHCHAR, 21
schema, 2
schema composition expression

annotated syntax, 42
concrete syntax, 32, 134
semantic transformation, 70, 135
type inference rule, 64, 135

schema conjunction expression
annotated syntax, 42
concrete syntax, 32, 133
semantic relation, 76, 133
type inference rule, 12, 63, 133

schema construction expression
annotated syntax, 42
concrete syntax, 32, 149
semantic relation, 76, 150
syntactic transformation, 49, 149
type inference rule, 63, 149

schema decoration expression
annotated syntax, 42
concrete syntax, 32, 141
semantic transformation, 71, 142
type inference rule, 65, 142

schema definition paragraph
concrete syntax, 31, 112
syntactic transformation, 9, 45, 112

schema disjunction expression
concrete syntax, 32, 133
syntactic transformation, 47, 133

schema equivalence expression
concrete syntax, 32, 132
syntactic transformation, 47, 132

schema existential quantification expression
concrete syntax, 32, 129
syntactic transformation, 47, 130

schema hiding expression
annotated syntax, 42
concrete syntax, 32, 136
semantic transformation, 70, 137
type inference rule, 63, 137

schema implication expression
concrete syntax, 32, 132
syntactic transformation, 47, 132

schema negation expression
annotated syntax, 42

concrete syntax, 32, 133
semantic relation, 76, 134
type inference rule, 63, 134

schema piping expression
annotated syntax, 42
concrete syntax, 32, 135
semantic transformation, 71, 136
type inference rule, 65, 136

schema precondition expression
annotated syntax, 42
concrete syntax, 32, 137
semantic transformation, 70, 138
type inference rule, 64, 138

schema predicate
concrete syntax, 31, 127
syntactic transformation, 46, 127

schema projection expression
concrete syntax, 32, 137
syntactic transformation, 48, 137

schema renaming expression
annotated syntax, 42
concrete syntax, 32, 142
semantic relation, 77, 142
type inference rule, 64, 142

schema text
concrete syntax, 32, 152
syntactic transformation, 49, 152

schema type
annotated syntax, 43
semantic relation, 78

schema unique existential quantification expression
annotated syntax, 42
concrete syntax, 32, 130
semantic transformation, 70, 130
type inference rule, 64, 130

schema universal quantification expression
annotated syntax, 42
concrete syntax, 32, 129
semantic relation, 76, 129
type inference rule, 63, 129

Scope, 1
scope of a declaration, 2
scope rules, 2
second

in mathematical metalanguage, 7
in mathematical toolkit, 93

Section
annotated syntax, 40
concrete syntax, 31
semantic relations, 72
syntactic transformation rules, 45
type inference rules, 56

section type environment
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annotated syntax, 43
sectioned specification

annotated syntax, 40
concrete syntax, 31, 108
semantic relation, 72, 108
type inference rule, 55, 108

SectionModels, 13
Semantic relations, 71
Semantic transformation rules, 66
semantic universe, 2
semicolon conjunction predicate

concrete syntax, 31, 123
syntactic transformation, 46, 123

seq (finite sequences)
in mathematical toolkit, 103

seq1 (non-empty finite sequences)
in mathematical toolkit, 103

sequence toolkit , 102
set comprehension expression

annotated syntax, 42
concrete syntax, 32, 148
semantic relation, 75, 148
type inference rule, 61, 148

set extension expression
annotated syntax, 42
concrete syntax, 32, 147
semantic relation, 75, 148
type inference rule, 61, 148

set toolkit , 90
signature, 2

annotated syntax, 43
signature variable, see variable signature
SPACE, 21
SPECIAL, 18
Specification

annotated syntax, 40
concrete syntax, 31
semantic relations, 72
syntactic transformation rules, 44
type inference rules, 55

squash
in mathematical toolkit, 105

SR, 29
SRE, 29
SREP, 29
SRP, 29
SS, 29
standard toolkit , 106
STROKE, 24
STROKECHAR, 18
substitution expression

concrete syntax, 32, 131
syntactic transformation, 47, 132

succ
in mathematical toolkit, 98

suffix
in mathematical toolkit, 106

SYMBOL, 18
Symbols and definitions, 3
SYMBOLSTR, 24
Syntactic transformation rules, 44

tail
in mathematical toolkit, 104

Terms and definitions, 1
TOKEN, 24
TOKENSTREAM, 24
toolkit, see mathematical toolkit
truth predicate

annotated syntax, 41
concrete syntax, 31, 128
semantic relation, 74, 128
type inference rule, 60, 128

tuple extension expression
annotated syntax, 42
concrete syntax, 32, 150
semantic relation, 75, 151
type inference rule, 62, 150

tuple selection expression
annotated syntax, 42
concrete syntax, 32, 143
semantic transformation, 69, 143
type inference rule, 62, 143

Tutorial, 153
Type inference rules, 54
type universe, 2
type variable, see variable type

U (semantic universe), 13
unique existential quantification predicate

annotated syntax, 41
concrete syntax, 31, 122
semantic transformation, 68, 122
type inference rule, 60, 122

universal quantification predicate
annotated syntax, 41
concrete syntax, 31, 121
semantic relation, 74, 122
type inference rule, 60, 122

variable construction expression
annotated syntax, 42
semantic relation, 76, 149
type inference rule, 63, 149

variable signature
annotated syntax, 43

variable type
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annotated syntax, 43

WORD, 24
WORDGLUE, 18
WORDPART, 24

Z (integers)
in mathematical toolkit, 99

Z characters, 18
Z1 (non-zero integers)

in mathematical toolkit, 101
ZCHAR, 18
ZF set theory, 2
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