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Foreword 

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Commission) 
together form a system for worldwide standardization as a whole. National bodies that are members of ISO or IEC 
participate in the development of International Standards through technical committees established by the respective 
organization to deal with particular fields of technical activity. ISO and IEC technical committees collaborate in fields 
of mutual interest. Other international organizations, governmental and non-governmental, in liaison with ISO and IEC, 
also take part in the work. 

In the field of information technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1.  

The main task of a technical committee is to prepare International Standards, but in exceptional circumstances, the 
publication of a technical report of one of the following types may be proposed:  

 type 1, when the necessary support cannot be obtained for the publication of an International Standard, despite 
repeated efforts; 

 type 2, when the subject is still under technical development, or where for any other reason there is the future but 
not immediate possibility of an agreement on an International Standard, requiring wider exposure; 

 type 3, when a technical committee has collected data of a different kind from that which is normally published 
as an International Standard (“state of the art”, for example). 

Technical Reports of types 1 and 2 are subject to review within three years of publication, to decide whether they can 
be transformed into International Standards. Technical Reports of type 3 do not necessarily have to be reviewed until 
the data they provide are considered to be no longer valid or useful. 

ISO/IEC TR 10176, which is a Technical Report of type 3, was prepared by ISO/IEC Joint Technical Committee JTC 1, 
Information Technology, Subcommittee SC 22, Programming languages, their environments and system software 
interfaces. 

This fourth edition cancels and replaces the third edition (ISO/IEC 10176:2001) which has been technically revised. 
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Introduction 

Background: Over the last three decades (1966-2002), standards have been produced for a number of computer 
programming languages. Each has dealt with its own language in isolation, although to some extent the drafting 
committees have become more expert by learning from both the successes and the mistakes of their predecessors. 

The first edition of this Technical Report was produced during the 1980s to put together some of the experience that 
had been gained to that time, in a set of guidelines, designed to ease the task of drafting committees of programming 
language standards. This second edition enhances the guidelines to take into account subsequent experiences and 
developments in the areas of internationalization and character sets. 

This document is published as a Technical Report type 3 because the design of programming languages - and hence 
requirements relating to their standardization - is still evolving fairly rapidly, and because existing languages, both 
standardized and unstandardized, vary so greatly in their properties and styles that publication as a full standard, even 
as a standard set of guidelines, did not seem appropriate at this time. 

The need for guidelines:  While each language, taken as a whole, is unique, there are many individual features that 
are common to many, or even to most of them. While standardization should not inhibit such diversity as is essential, 
both in the languages and in the form of their standards, unnecessary diversity is better avoided. Unnecessary 
diversity leads to unnecessary confusion, unnecessary retraining, unnecessary conversion or redevelopment, and 
unnecessary costs. The aim of the guidelines is therefore to help to achieve standardization across languages and 
across their standards. 

The existence of a guideline will often save a drafting committee from much discussion of detailed points all of which 
have been discussed previously for other languages. 

Furthermore the avoidance of needless diversity between languages makes it easier for programmers to switch 
between one and another. 

NOTE   Diversity is a major problem because it uses up time and resources better devoted to the essential 
part, both by makers and users of standards. Building a language standard is very expensive in resources and far 
too much time and effort goes into “reinventing the wheel” and trying to solve again, from the beginning, the same 
problems that other committees have faced. 

However, a software writer faced with the task of building (say) a support environment (operating system facilities, 
utilities, etc.) for a number of different language processors is also faced with many problems from the eventual 
standards. Quite apart from the essential differences between the languages, there are to begin with the 
variations of layout, arrangement, terminology, metalanguages, etc. Much worse, there are the variations between 
requirements of basically the same kind, some substantial, some slight, some subtle - compounded by needless 
variations in the way they are specified. This represents an immense extra burden - as does the duplication in 
providing different support tools for different languages performing basically the same task. 

How to use this Technical Report: This Technical Report does not seek to legislate on how programming 
languages should be designed or standardized: it would be futile even to attempt that. The guidelines are, as their 
name implies, intended for guidance only. Nevertheless, drafting committees are strongly urged to examine them 
seriously, to consider each one with care, and to adopt its recommendation where practicable. The guidelines have 
been so written that it will be possible in most cases to determine, by examination, whether a given programming 
language standard has been produced in accordance with a given guideline, or otherwise. However, the conclusions to 
be drawn from such an assessment, and consequent action to be taken, are matters for individual users of this 
Technical Report and are beyond its scope. 

Reasons for not adopting any particular guideline should be documented and made available, (e.g. in an informative 
annex of the programming language standard). This and the reason therefore can be taken into account at future 
revisions of the programming language standard or this technical report. 
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Of course, care must naturally be taken when following these guidelines to do so in a way which does not conflict with 
the ISO/IEC Directives, or other rules of the standards body under whose direction the standard is being prepared. 

Further related guidelines:  This Technical Report is concerned with the generality of programming languages and 
general issues concerning questions of standardization of programming languages, and is not claimed to be 
necessarily universally applicable to all languages in all circumstances. Particular languages or kinds of languages, or 
particular areas of concern, may need more detailed and more specific guidelines than would be appropriate for this 
Technical Report. At the time of publication, some specific areas are already the subject of more detailed guidelines, 
to be found in existing or forthcoming Technical Reports. Such Technical Reports may extend, interpret, or adapt the 
guidelines in this Technical Report to cover specific issues and areas of application. Users of this Technical Report 
are recommended to take such other guidelines into account, as well as those in this Technical Report, where the 
circumstances are appropriate. See, in particular, ISO TR 9547 and ISO/IEC TR 10034. 
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Information technology – Guidelines for the preparation of 
programming language standards 

1 Scope 

This Technical Report presents a set of guidelines for producing a standard for a programming language. 

2 References 

ISO/IEC 646:1991, Information processing — ISO 7-bit coded character set for information interchange 

ISO/IEC 2022:1994, Information technology — Character code structure and extension techniques 

ISO 2382-15:1999, Data processing systems — Vocabulary — Part 15: Programming languages 

ISO/IEC 4873:1991, Information processing — ISO 8-bit code for information interchange — Structure and rules for 
implementation 

ISO/IEC 6937:1994, Information technology — Coded graphic character set for text communication — Latin alphabet 
(second edition) 

ISO/IEC 8859-1:1998, Information processing — 8-bit single-byte coded graphic character sets — Part 1: Latin 
alphabet No. 1 

ISO TR 9547:1988, Programming language processors — Test methods — Guidelines for their development and 
acceptability 

ISO/IEC TR 10034:1990, Guidelines for the preparation of conformity clauses in programming language standards 

ISO/IEC 10646-1:2000, Universal Multiple-Octet Coded Character Set (UCS) 

ISO/IEC TR 11017:1997, Information technology — Framework for Internationalization 

ISO/IEC 11404:1996, Information technology — Programming Languages, their environments and system software 
interfaces — Language-independent datatypes 

ISO/IEC 14977:1996, Syntactic metalanguages — Extended BNF 

3 Definitions 

This clause contains terminology which is used in particular specialized senses in this Technical Report. It is not 
claimed that all language standards necessarily use the terminology in the senses defined here; where appropriate, 
the necessary interpretations and conversions would need to be carried out when applying these guidelines in a 
particular case. Also, not all language standards use the terminology of ISO 2382-15; the terminology defined here, 
itself divergent in some cases from that in ISO 2382-15, has been introduced to minimize confusion which might result 
from such difference. Some remarks are made below about particular divergences from ISO 2382-15, for further 
clarification. 
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3.1   programming language processor (abbreviated where there is no ambiguity to processor) : 
Denotes the entire computing system which enables the programming language user to translate and execute 
programs written in the language, in general consisting both of hardware and of the relevant associated software. 

NOTES 

1  A “processor” in the sense of this Technical Report therefore consists of more than simply (say) a “compiler” or 
an “implementation” in conventional terminology; in general it consists of a package of facilities, of which a 
“compiler” in the conventional sense may be only one. There is also no implication that the processor consists of 
a monolithic entity, however constituted. For example, processor software may consist of a syntax checker, a code 
generator, a link-loader, and a run-time support package, each of which exists as a logically distinct entity. The 
“processor” in this case would be the assemblage of all of these and the associated hardware. Conformity to the 
standard would apply to the assemblage as a whole, not to individual parts of it. 

2  In ISO TR 9547 the term “processor” is used in a more restricted sense. For the purposes of ISO TR 9547, a 
differentiation is necessary between “processor” and “configuration”; that distinction is not necessary in this 
Technical Report. Those using both Technical Reports will need to bear this difference in terminology in mind. 
See 3.3.4 for another instance of a difference in terminology, where a distinction which is not necessary in ISO TR 
9547 has to be made in this Technical Report. 

3.2   syntax and semantics: 
Denote the grammatical rules of the language. The term syntax refers to the rules that determine whether a program 
text is well-formed. The syntactic rules need not be exclusively “context-free”, but must allow a processor to decide, 
solely by inspection of a program text, with a practicable amount of effort and within a practicable amount of time, 
whether that text conforms to the rules. An error (see 3.3.1) is a violation of the syntactic rules. 

The term semantics refers to the rules which determine the behaviour of processors when executing well-formed 
programs. An exception (see 3.3.2) is a violation of a non-syntactic requirement on programs. 

NOTE   In ISO 2382-15 the term static is defined (15.02.09) as “pertaining to properties that can be 
established before the execution of a program” and dynamic (15.02.10) as “pertaining to properties that can only 
be established during the execution of a program”. These therefore appear to be close to the terms “syntax” and 
“semantics” respectively as defined in this Technical Report. ISO 2382-15 does not define “syntax” or “semantics”, 
though these are terms very commonly used in the programming language community.  

Furthermore, the uses of “static” and “dynamic” (and other terms) in ISO 2382-15 seem designed for use within a 
single language rather than across all languages, but while that terminology can mostly be applied consistently 
within a single language, it becomes much harder to do so across the generality of languages, which is the need 
in this Technical Report. This problem is not totally absent with “syntax/semantics” but is  much less acute. 

3.3   Errors, Exceptions, Conditions 
3.3.1   errors: 
The incorrect program constructs which are statically determinable solely from inspection of the program text, without 
execution, and from knowledge of the language syntax. A fatal error is one from which recovery is not possible, i.e. it 
is not possible to proceed to (or continue with) program execution. A non-fatal error is one from which such recovery 
is possible. 

NOTE   A fatal error may not necessarily preclude the processor from continuing to process the program, in 
ways which do not involve program execution (for example, further static analysis of the program text). 

3.3.2   exceptions: 
The instances of incorrect program functioning which in general are determinable only dynamically, through execution 
of the program. A fatal exception is one from which recovery is not possible, i.e. it is not possible to continue with 
(or to proceed to) program execution. A non-fatal exception is one from which recovery is possible. 

NOTES  

1  In case of doubt, “possible” within this section should be interpreted as “possible without violating definitions 
within or requirements of the standard”. For example, the hardware element of a language processor may have 
the technical capability of continuing program execution after division by zero, but in terms of a language standard 
which defines division by zero as a fatal exception, the consequences of such continued execution would not be 
meaningful. 
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2  See also 3.3.4 

3.3.3   conditions: 
Occurrences during execution of the program which cause an interruption of normal processing when detected. A 
condition may be an exception, or may be some language-defined or user-defined occurrence, depending on the 
language. 

NOTE   For example, reaching end-of-file on input may always be an exception in one language, may 
always be a condition in another, while in a third it may be a condition if action to be taken on detection is specified 
in the program, but an exception if its occurrence is not anticipated. 

3.3.4   Relationship to other terminology 
In ISO TR 9547 the term “error” is used in a more general sense to encompass what this Technical Report terms 
“exceptions” as well as “errors”. For the purposes of ISO TR 9547, the differentiation made here is not necessary. 
Those using both Technical Reports will need to bear this difference in terminology in mind. See note 2 of 3.1 for 
another instance of a difference in terminology, where a distinction has to be made in ISO TR 9547 which is not 
necessary in this Technical Report. 

ISO 2382-15 does not define “error” but does define “exception (in a programming language)” (15.06.12). The definition 
reads “A special situation which may arise during execution, which is considered abnormal, which may cause a 
deviation from the normal execution sequence, and for which facilities exist in the programming language to define, 
raise, recognize, ignore and handle it”. ON-conditions in PL/I and exceptions in Ada are cited as examples. 

The reason for not using this terminology in this Technical Report, which deals with the generality of existing and 
potential standardized languages rather than just a single one, is that it makes it difficult to distinguish (as this 
Technical Report needs to do) between “pure” exceptions, more general conditions, and processor options for 
exception handling which are built into the language (all in the senses defined in this Technical Report). It also does 
not aid making sufficient distinction between ON-conditions being enabled or disabled (globally or locally), nor whether 
the condition handler is the system default or provided by the programmer. 

3.4   processor dependence 
For the purposes of this Technical Report, the following definitions are assumed. 

If this Technical Report refers to a feature being left undefined in a standard (though referred to within the standard), 
this means that no requirement is specified concerning its provision and the effect of attempting to use the feature 
cannot be predicted. 

If this Technical Report refers to a feature being processor-dependent, this means that the standard requires the 
processor to supply the feature but that there are no further requirements upon how it is provided. 

If this Technical Report refers to a feature being processor-defined, this means that its definition is left processor-
dependent by the standard, but that the definition shall be explicitly specified and made available to the user in some 
appropriate form (such as part of the documentation accompanying the processor, or through use of an environmental 
enquiry function). 

NOTES 

1  The term “feature” is used here to encompass both language features (syntactic elements a change to which 
would change the text of a program) and processor features (e.g. processor options, or accompanying 
documentation, a change to which would not change the text of a program). Examples of features which are 
commonly left undefined, processor-dependent or processor-defined are the collating sequence of the supported 
character set (a language feature) and processor action on detection of an exception (a processor feature). 

2  In any particular instance the precise effect of the use of any of these terms may be affected by the nature of the 
feature concerned and the context in which the term is used. 

3  None of the above terms specifically covers the case where reference to a feature is omitted altogether from the 
standard. While in general this might be regarded as “implicit undefined”, it is possible that an unmentioned 
feature might necessarily have to be supplied for the processor to be usable (and would hence be processor-
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dependent) and that some aspects of the feature might in turn have to be processor-defined for the feature to be 
usable. 

3.5   Secondary, Incremental and supplementary standards 
3.5.1   Secondary standards 
In this Technical Report, a secondary standard is one which requires strict conformity with another (“primary”) 
standard - or possibly more than one primary standard - but places further requirements on conforming products (e.g. 
in the context of this Technical Report, on language processors or programs). 

NOTE   A possible secondary standard for conforming programs might specify additional requirements 
with respect to use of comments and indentation, provision of documentation, use of conventions for naming 
user-defined identifiers, etc. 

A possible secondary standard for conforming processors might specify additional requirements with respect to 
error and exception handling, range and accuracy of arithmetic, complexity of programs which can be processed, 
etc. 

3.5.2   Incremental standards 
In this Technical Report, an incremental standard adds to an existing standard without modifying its content. Its 
purpose is to supplement the coverage of the existing standard within its scope (e.g. language definition) rather than 
(as with a secondary standard, see 3.5.1) to add further requirements upon products conforming with an existing 
standard which are outside that scope. It is recognized that in some cases it might be desirable to produce a 
standard additional to an existing one which was both “incremental” (in terms of language functionality) and 
“secondary” (in terms of other requirements upon products). 

3.5.3   Supplementary standards 
In this Technical Report, a supplementary standard adds functionality to an existing standard without extending its 
range of syntactic constructs; such as by the binding of a language to a specific set of functions. Supplementary 
standards are expected to be expressed in terms of the base language which they supplement, but do not replace 
any elements of the primary standard. 

3.6   Terms related to character and internationalization 
3.6.1   octet: 
An ordered sequence of eight bits considered as a unit. 

3.6.2   byte: 
An individually addressable unit of data storage used to store a character, portion of a character or other data. 

3.6.3   character: 
A member of a set of elements used for the organization, control, or representation of data. 

NOTE   The definition above is that from the standard developed by ISO/IEC JTC 1/SC2. This ensures that 
the term “character” used in this TR is consistent with the coded character set standard. The composite sequence 
of ISO/IEC 10646 is not considered as a character. Each element of a composite sequence (as it is in ISO/IEC 
10646) is considered as a “character” in this TR. 

3.6.4   combining character: 
A member of an identified subset of the coded character set of ISO/IEC 10646 intended for combination with the 
preceding non-combining graphic character, or with a sequence of combining characters preceded by a non-
combining character. 

3.6.5   composite sequence: 
A sequence of graphic characters consisting of a non-combining character followed by one or more combining 
characters. 

NOTES 

1  A graphic symbol for a composite sequence generally consists of the combination of the graphic symbols of 
each character in the sequence. 

2  A composite sequence is not a character and therefore is not a member of the repertoire of ISO/IEC 10646. 
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3.6.7   coded character: 
A character together with its coded representation. 

3.6.8   basic character set: 
A character set that is common across every execution environment of a programming language, e.g. the invariant set 
of ISO/IEC 646. 

3.6.9   extended character set: 
A character set that is used in an execution environment, e.g. ISO/IEC 10646-1. In most cases, the repertoire of the 
extended character set is larger than the basic character set. 

3.6.10   character datatype: 
Character datatype is a family of datatypes whose value spaces are character sets. 

NOTE   The value space of the character datatype should be wide enough to represent every member of 
extended character set, if the repertoire list of characters to be stored in the character datatype is not specified 
explicitly. 

3.6.11   octet datatype: 
Octet datatype is the datatype of 8-bit codes, as used for character sets and private encodings. 

NOTE   The value space of the octet datatype is wide enough to represent every member of basic character 
set, but may not be wide enough to every member of extended character sets. 

3.6.12   octet string datatype: 
Octet string datatype is the datatype of variable-length encoding using 8-bit codes. 

NOTE   The octet string datatype may be used to represent a member of extended character sets. 

3.6.13   multi-byte representation of character: 
A coded character represented by using a sequence of bytes (one-octet byte, two-octet byte, or four-octet byte). 

NOTES 

1  A character that is encoded by UTF-8 (UCS Transformation format) specified by a DAM of ISO/IEC 10646-1 and 
stored in an octet-string datatype is an example of the multi -byte representation of a character. The size of a coded 
character encoded by UTF-8 is up to six octets, therefore it may occupy up to 6 one-octet bytes in the octet string 
datatype. 

2  To handle the multi -byte representation of character correctly in an octet string datatype, the character boundary  
needs to be distinguished from the octet(s) boundary. Otherwise a multi -byte representation of character may be 
bisected as the result of octet base string manipulation, thus becoming no longer a character. In following 
reference the multi -byte representation of a character will be abbreviated as multi -byte character. 

3.6.14   multi-octet representation of character: 
A coded character stored in a character datatype that size is equal to or larger than two octets with whose values are 
multiple octets. 

NOTES 

1  A character that is encoded by UCS-2 stored in a character datatype is an example of the multi -octet 
representation of character. The size of a coded character encoded by UCS-2 is always two octets, therefore it can 
be considered as a coded character that is represented by single two-octet byte. 

2  In following reference the multi-octet representation of a character will be abbreviated as the multi-octet 
character. 

3  A coded character represented by UTF-16 is categorized in both multi-byte and multi-octet character, 
because the byte size of UTF-16 is two-octet, but a character may occupy 1 or 2 two-octet bytes in a octet 
string datatype. 
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3.6.15   collation: 
The logical ordering of strings according to defined precedence rules. 

3.6.16   cultural convention: 
A convention of an information system which is functionally equivalent between cultures, but may differ in 
presentation, operation behaviour or degree of importance. 

NOTE   Time zone, Summer time, Date and time format, Numeric format, Monetary format, Collation 
sequence, and Character classification, are examples of cultural convention. 

3.6.17   cultural convention set: 
A set of cultural conventions to be referred to by each programming language standard. 

3.6.18   execution environment 
An environment where a program is executed. 

NOTES 

1  An execution environment of program is not always the same as the compilation environment of the program. 

2  Coded character sets supported by execution environment and input from the environment to program may vary 
from one to another. For example, ISO/IEC 8859-1 may be supported by an environment, and ISO/IEC 10646-1 
may be supported by another environment. 

3.7   Auxiliary verbs used in this TR 
3.7.1   shall: 
An indication of a requirement on programming language standard or processors. 

3.7.2   should: 
An indication of a recommendation to programming language standard or processors. 

3.7.3   may: 
An indication of an optional feature of programming language standard or processors. When this Technical Report 
provides a recommendation to the programming language standard that supports a specific optional feature, the 
auxiliary verb “may” is used in the sentence explaining the condition. 

4 Guidelines 

4.1 Guidelines for the form and content of standards 

4.1.1 Guideline: The general framework 

The standard should be designed so that it consists of at least the following elements: 

1) The specification of the syntax of the language, including rules for conformity of programs and processors. 

2) The specification of the semantics of the language, including rules for conformity of programs and 
processors. 

3) The specification of all further requirements on standard-conforming programs, and of rules for conformity. 

4) The specification of all further requirements on standard-conforming processors (such as error and exception 
detection, reporting and processing; provision of processor options to the user; documentation; validation; 
etc.), and of rules for conformity. 

5) One or more annexes containing an informal description of the language, a description of the metalanguage 
used in 1) and any formal method used in 2), a summary of the metalanguage definitions, a glossary, 
guidelines for programmers (on processor-dependent features, documentation available, desirable 
documentation of programs, etc.), and a cross-referenced index to the document. 
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6) An annex containing a checklist of any implementation defined features. 

7) An annex containing guidelines for implementors, including short examples. 

8) An annex providing guidance to users of the standard on questions relating to the validation of conformity, 
with particular reference to ISO/IEC TR 10034, and any specific requirements relating to validation contained 
in 1) to 4) above. 

9) In the case where a language standard is a revision of an earlier standard, an annex containing a detailed 
and precise description of the areas of incompatibility between the old and the new standard. 

10) An annex which forms a tutorial commentary containing complete example programs that illustrate the use 
of the language. 

NOTES 

1  The objective of this guideline is to provide a framework for use by drafting committees when producing 
standards documents. This framework ensures that users of the standard, whether programmers, implementors 
or testers, will find in the standards document the things that they are looking for; in addition, it provides drafting 
committees with a basis for organizing their work. 

2  The elements referred to above are concerned only with the technical content of the standard, and are to be 
regarded as logical elements of that content rather than necessarily physical elements (see note 4 below). 

3  It is to be made clear that the annexes referred to in elements 5) to 10) above are informative annexes (i.e. 
descriptive or explanatory only), and not normative, i.e. do not qualify or amend the specific requirements of the 
standard given in elements 1), 2), 3) and 4). It should be explicitly stated that, in any case of ambiguity or conflict, it 
is the standard as specified in elements 1), 2), 3) and 4) that is definitive. Note that, if a definition (as opposed to a 
description) of any formal method used in elements 1) and 2) cannot be established by reference, then the 
standard may need to incorporate that definition, insofar as is allowed by the rules of the responsible standards 
body (see also 4.1.2). 

4  Given the requirements of note 3 above, a drafting committee has the right to interleave the various elements of 
the standard it is producing if it feels that this has advantages of clarity and readability, provided that precision is 
not compromised thereby, and that the distinction between the normative (specification) elements and the 
informative (informal descriptive) elements is everywhere made clear. 

5  Element 9) will be empty if the standard is not a revision of an earlier standard. No specific guidelines or 
recommendations are included in this Technical Report concerning requirements on programs other than 
conformity with the syntactic and semantic rules of the language, and if this is the case in a standard, element 3) 
will be empty; however, it is recommended that in such a case an explicit statement be included that the only rules 
for conformity of programs are those for conformity with the language definition. It is recommended that none of 
the other elements should be left empty.  

4.1.2 Guideline: Definitions of syntax and semantics 

Consideration should be given to the use of a syntactic metalanguage for the formal definition of the syntax of the 
language, and the current “state of the art” in formal definition of semantics should be investigated, to determine 
whether the use of a formal method in the standard is feasible; the current policies on the use of formal methods 
within the standards body responsible for the standard should also be taken into account. 

NOTES 

1  Traditionally some language standards have not used a full metalanguage (with production rules) for defining 
language syntax; some have used a metalanguage for only part of the syntax, leaving the remainder for natural-
language explanation; some have used notation which is not amenable to automatic processing. The advantages 
of a true syntactic metalanguage are given in the introduction to ISO/IEC 14977:1996. The main ones can be 
summarized as conciseness, precision and elimination of ambiguity, and suitability for automatic processing for 
purposes like producing tools such as syntax analyzers and syntax-directed editors. 

2  At the time of publication of this Technical Report, formal semantic definition methods suitable for programming 
languages form an active research area, making it impractical to provide any definite guidelines concerning 
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whether to adopt a particular method, or any method at all; hence the recommendation to drafting committees to 
look at the position current when they begin work on their standard. 

3  One of the purposes of including element 5) in 4.1.1 is to ensure that the standard as a whole is accessible to 
non-specialist readers while still providing the exact definitions required by those who are to implement the 
language processors. 

4  Any formal method used may be specified by reference to an external standard or other definitive document, or 
may need to be specified in the standard itself (e.g. an annex providing a complete definition). In either case an 
informal description of the formal method should be included [element 5) of 4.1.1] so that for many purposes the 
standard can be read as a self-contained document even by those unfamiliar with the particular formal method 
concerned. As this guideline itself indicates, in deciding on matters of this kind, the current policies governing use 
of formal methods will need to be observed. 

4.1.3 Guidelines on the use of character sets 

The standard should ensure that it is possible within the language to support the handling of a wide range of character 
sets, including multi-octet character sets, e.g. ISO/IEC 10646-1, and non-English single octet character sets, e.g. 
ISO/IEC 8859-1. 

NOTES 

1  For some applications, and for some classes of users for all applications, it is vital for the language to have the 
ability to accept and manipulate data from character sets other than the minimal character set needed for the 
basic purpose of specifying programs. For some users this need will be greater than the need for international 
interchange. An important task for any language standards committee is to ensure that it is possible for each of 
these needs to be met in a standard-conforming way. 

2  Some programs will require both the ability to manipulate multi -octet and multi -byte characters and the 
capability of international interchange. This may imply two or more alternative representations of the same 
“character” (data object), one of which will be a representation (for interchange purposes) in the minimal character 
set defined in 4.1.3.1.1. 

3  In general it should be possible to use non-English single-octet, multi-octet and multi -byte coded character 
sets in program text, character literals, comment, and data without recourse to the use of processors which are 
not standard-conforming. Programs using such characters in program text, literals or comments may not be 
standard-conforming and in general will be less portable internationally than those using only the minimal 
character set, but may still be portable within the applications community for those programs. Defined mappings 
from other character sets to the minimal character set of the language, and the presence of suitable processor 
options, are likely to maximize benefits and use-ability for differing requirements. 

4.1.3.1 Guidelines on character sets used in program text 

The guidelines in this clause covers the considerations on the character sets used in programming language source 
code, i.e. characters used for syntax of programming language, user-defined identifier, character literal, and 
comments. 

4.1.3.1.1 Guideline: Character sets used for program text 

As far as possible, the language should be defined in terms only of the characters included within ISO/IEC 646, 
avoiding the use of any that are in national use positions. If any symbols are used which are not included within 
ISO/IEC 646 or are in national use positions, an alternative representation for all such symbols should be specified. A 
conforming processor should be required to be capable of accepting a program represented using only this minimal 
character set. Great care should be taken in specifying how “non-printing” characters are to be handled, i.e. those 
characters that correspond to integer values 0 to 32 inclusive and 127, i.e. null (0/0) to space (2/0) and delete (7/15), 
in case of ISO/IEC 646 coded character set. 

The guideline relates to the need for international interchange of programs, and hence is based on the principle of 
using a minimal set of characters which can be expected to be common to all systems likely to use the programs. In 
general this guideline is based on the default assumption that the form of representation of the program is not critical 
for the application concerned. In some cases, however (such as a program to convert text from one alphabet to 
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another), interchange cannot be general but limited to processors capable of handling larger character sets. The 
guideline is based on the principle that standards should ensure that interchange of programs without such application 
dependence will be generally possible. 

NOTES 

1  The motivation here is to provide a common basis for representing programs, which does not exist with current 
(published up to 1998) standards. The characters that are available in all national variants of ISO/IEC 646 cannot 
represent programs in many programming languages in a way that is acceptable to programmers who are 
familiar with the International Reference Version of ISO/IEC 646 that is equivalent with the U.S. national variant 
(usually referred to by its acronym  “ASCII”). In particular, square brackets, curly brackets and vertical line are 
unavailable. 

Further, the characters that are available in the International Reference Version of ISO/IEC 646 cannot represent 
programs in many programming languages in a way that is acceptable to programmers who are familiar with a 
particular national variant of ISO/IEC 646. For example, the pound symbol may not be available. The characters 
that are available in ISO/IEC 646 IRV (ASCII) cannot represent programs in many programming languages in a 
way that is acceptable to programmers because their terminals support some other national variant of ISO/IEC 
646. 

Consideration needs also to be given to the use of upper and lower case (roman) letters. If only one case is 
required, it should be made clear whether the other case is regarded as an alternative representation (so that, for 
example, TIME, time, Time, tImE are regarded as identical elements) or its use is disallowed in a standard-
conforming program. Where both cases are required or allowed, the rules governing their use should be as 
simple as possible, and exactly and completely specified. 

Of the non-printing characters, nearly all languages allow space (2/0), and carriage return (0/13) line feed (0/10) 
as a pair, though they differ as to whether these characters are meaningful or ignored. How carriage return without 
line feed (or vice versa) is to be treated needs consideration, as do constructions such as carriage return, 
carriage return, line feed. If characters are disallowed that do not show themselves on a printed representation, 
the undesirable situation may arise where a program may be incorrect though its printout shows no fault. If a 
tabulation character (0/9) is disallowed, this can cause trouble, since it appears to be merely a sequence of 
spaces; if allowed, the effect on languages such as FORTRAN, having a given length of line, has to be 
considered. 

2  The characters that are available in the eight-bit coded character sets ISO/IEC 4873 with ISO/IEC 8859-1, or 
ISO/IEC 6937-2, would be sufficient to represent programs in a way that, in the Western European and American 
cultures, looks familiar to most (but not APL) programmers. 

3  The character sets that are available in the multi -octet coded character set of ISO/IEC 10646-1 would be 
sufficient to represent programs in a way that looks familiar to most programmers from most cultures. However, 
in 1998, the standard is not yet widely supported on printers and display terminals. 

4  For advice on character set matters, committees should consult the ISO/IEC JTC 1 subcommittee for character 
coding. 

4.1.3.1.2 Guideline: Identification of characters used for program text 

The programming language standard should provide an annex containing a correspondence table between the graphic 
representation of the characters used for program text and character identifiers specified by ISO/IEC 10646. 

NOTE   It is possible to write program text using a character set that includes characters whose shapes 
are identical or very similar to one another. For example, in ISO/IEC 10646-1, “LATIN CAPITAL LETTER A”, 
“GREEK CAPITAL LETTER ALPHA”, and “CYRILLIC CAPITAL LETTER A” have identical shapes. Also the shape of 
“FULL WIDTH LATIN CAPITAL LETTER A” is very similar to these. In addition to that, ISO/IEC 10646-1 specifies 
many “non-printing” characters that occupy a certain amount of space in the presentation of text. In some 
programming languages, these “non-printing” characters act as token delimiters. Therefore, if a programming 
language standard specifies a character used for program text only by using its shape, it is ambiguous whether 
this shape means the identical or a similar shape (e.g. in the case of COBOL, character “A” means both “LATIN 
CAPITAL LETTER A” and “FULL WIDTH LATIN CAPITAL LETTER A” if the character appears in program text not in 
data) or a particular one of them (e.g. only “LATIN CAPITAL LETTER A” in the above example). Adoption of this 
guideline avoids such ambiguity.  
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4.1.3.1.3 Guideline: Character sets used in user-defined identifiers 

The programming language standard should define which, and in what way, characters outside the “minimal” set 
defined in 4.1.3.1.1 can be used in user-defined identifiers. If characters outside of the minimal set are permitted, then 
the characters listed in annex A should be allowable. 

NOTES 

1  It is important to allow characters from outside the minimal set to be used in user-defined identifiers in program 
text, to improve understandability for programmers whose native language is not English. 

2  Using an extended character repertoire for user-defined identifiers may have an adverse effect on the portability 
of the program concerned. 

3  As an alternative way to represent characters outside of the minimal set in a user-defined identifier by using the 
minimal character set for program portability, an escape character or an escape sequence followed by character 
short identifier standardized by ISO/IEC JTC 1/SC2, can be considered. For example, if &u is an escape 
sequence, &u000000C1 represents LATIN CAPITAL LETTER A WITH ACUTE. The SC2 specified the code value 
of characters in ISO/IEC 10646, represented by 4 or 8 hexadecimal digits, for the character short identifier. 

4  In the case that a programming language standard allows use of combining characters for user-defined 
identifier, the language standard need not require that a composite sequence is recognized as equivalent with the 
character which is pre-composed from the composite sequence. 

4.1.3.1.4 Guideline: Character sets used in character literals 

Character literals permitted to be embedded in program text in a standard-conforming program should be defined in 
such a way that each character may be represented using one or more of the following methods: 

a) The character represents itself, e.g. A, B, g, 3, +, ( . 

b) A character is represented by a pair of characters: an escape character followed by a graphic character, 
e.g. if & is the escape character, &’ to represent apostrophe, && to represent ampersand, &n to 
represent newline. 

c) A character is represented by an escape character or an escape sequence followed by character short 
identifier, e.g. if &u is an escape sequence, &u000000C1 represents LATIN CAPITAL LETTER A WITH 
ACUTE. 

d) A character is represented by three, five or nine characters: an escape character followed by two, four or 
eight hexadecimal digits that specify its internal value, e.g. if & is the escape character, the internal 
value of LATIN CAPITAL LETTER A can be represented by &41 in the case of ISO/IEC 646, and can be 
represented by &0041 or &00000041 in the case of ISO/IEC 10646-1 depending on its forms, i.e. Two-
octet Basic Multi-lingual Plane (BMP) form or Four-octet canonical form respectively. 

Any conforming processor should be required to be able to accept “as themselves” [i.e. as in a)] at least all printable 
characters in the “minimal set” defined in 4.1.3.1.1, apart possibly from any special-purpose characters such as an 
escape character or those used to delimit literal character strings. 

Any conforming processor should be required to be able to accept method c) to represent a character literal outside of 
“minimal set” defined in 4.1.3.1.1, any “non-printing character”, or any special-purpose character, in a way that is 
independent from any coded character set which is used to represent a source code in a machine readable format. 

The programming language committee should consider to provide the means to accept “as themselves” [i.e. as in a)] 
all printable characters in the ISO/IEC 10646-1, apart possibly from any special-purpose characters such as an 
escape character or those used to delimit literal character strings, for character literal, e.g. a pre-processor to 
translate character literals represented by method a) to method c). 

NOTES 
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1  For reasons of portability it is necessary to provide a common basis for representing character literals in 
programs, in addition to the characters used for the program text itself. The required character set could be wider 
than (and for general purpose text handling would need to be wider than) that which is necessary for 
representation of program statements. Programs must be representable on as many different peripherals and 
systems as possible; the number of characters required to represent a program therefore needs to be reduced to 
the minimum that is consistent with general practice and readability. On the other hand, programs themselves 
need to be able to represent and process as many different characters as possible. 

These two needs make it impossible to represent every character by itself in a literal character string if the 
language is to be suitable for general processing of character data. 

2  A particular problem arises with the representation of a space in a character or string literal. It can be 
represented by a visible graphic character, the argument in favour being that blank spaces in program text should 
not affect the meaning. However, it can also be represented by itself, the argument in favour being that this is the 
most natural form of representation. The indistinguishability of a tabulation character from a sequence of spaces 
(in a printed representation) is a particular problem since a function that returns the length of a string, in 
characters, may give different results from two programs that appear identical. There can be further complications 
when using a “high quality” printer with variable-width characters. Drafting committees are recommended to pay 
particular attention to these points. 

3  The character short identifier referred to by method c) is standardizedd by ISO/IEC JTC 1/SC2, and the SC2 
uses the code value of characters in ISO/IEC 10646, represented by 4 or 8 hexadecimal digits, for the character 
short identifier. 

4  The character set in ISO/IEC 6937 represents some graphic characters as a pair of octets. This is suitable for 
printing but is difficult to process in operations such as comparison and sorting. 

4.1.3.1.5 Guideline: Character sets used in comments 

The programming language standard should define the characters that are permitted in comments in a standard-
conforming program. For comments, the programming language standard should permit as wide a repertoire of the 
characters as possible. 

NOTE   For publication in the pages of a journal, some languages make no restriction on permitted 
characters in comments, beyond making it clear where the comment finishes. For inclusion on a computer file, 
however, it is preferable to restrict the characters to those that are widely available, to help portability. Since 
comments are intended for human reading and hence escape mechanisms are unnecessary, there is no 
disadvantage in printing characters simply representing themselves (apart of course from any characters or 
sequences of characters marking the end of the comment), and in limiting non-printing characters to those (like 
carriage return and line feed) necessary for layout purposes. 

4.1.3.2 Guideline: Character sets used for data 

The programming language standard should be defined in such a way that it is not assumed that character data 
processed by a program is anything other than a sequence of octets whose meaning depends on the context. 
However, a conforming processor should be required at least to be able to input, manipulate and output characters 
from the minimal character set defined in 4.1.3.1.1 above. 

The standard should also specify whether, and in what way, support for ISO/IEC 10646-1 is required to be provided. 

NOTES 

1  The objective here is to provide a common basis for processing data. Many programs will assume that their 
data is expressed in ISO/IEC 646 IRV (ASCII) or some other versions of ISO/IEC 646. But if the standard assumes 
that all data is expressed in any one particular character set, it will cause difficulties for some users of other coded 
character sets. 

2  See also the guideline on collating sequences 4.1.3.5 below). 
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4.1.3.3 Guidelines on datatypes for character data 

4.1.3.3.1 Guideline: Character datatype 

The programming language standard should provide a character datatype whose value space is the entire repertoire of 
the extended character set in an execution environment. 

NOTES 

1  In the case that the value space of a character datatype is not specified explicitly, by using the repertoire list that 
enumerates allowable repertoire of characters for the datatype, the default value space of the character datatype 
should be the entire repertoire of the extended character set. 

2  The repertoire of the extended character set may be processor-defined, but the language standard should not 
restrict the repertoire. 

The character datatype should be independent from any coded character set. 

NOTE   The character datatype may be sub-typed to restrict its value space specified by a character 
repertoire list (see 4.1.3.3.3), but it should not be sub-typed by an encoding scheme of character data. For 
example, a distinct or a subtype of the character datatype that is unique to the encoding scheme of ISO/IEC 
10646-1 should not be provided. The characters in the ISO/IEC 10646-1 should be handled through a generic 
character datatype that is independent from any coded character set, as long as the programming language does 
not address the object code level portability. For the programming languages that address the object code level 
portability, such as Java, use of ISO/IEC 10646 encoding is recommended for the character datatype. 

4.1.3.3.2 Guideline: Octet and octet string datatype 

In addition to the character datatype (see 4.1.3.3.1), a programming language standard may use the octet or the octet 
string datatype for character data. 

NOTES 

1  The value space of the octet datatype is large enough to represent the entire repertoire of the basic character 
set, but may not represent the entire repertoire of the extended character set. 

2  The use of octet or octet string datatype for character data would be effective to keep the portability of programs 
that assume the size of the datatype for character. For example, some program may share the same memory 
area between character string and data of another datatype, e.g. union statement of C language. If the size of a 
datatype for character becomes changed in order to contain an extended character set, the alignment of memory 
area assigned for the data becomes broken. In order not to impact on existing programs that assum the size of 
character datatype is an octet, the programming language standard could use the octet or the octet string datatype 
for character data, in addition to the character datatype for backward compatibility of such program. 

3  The programming language standard may allow use of the octet string datatype to represent a wide range of 
characters, from outside the basic character set, by means of a sequence of values of the octet string datatype, i.e. 
multi -byte character (See also 4.1.3.7). 

4.1.3.3.3 Guideline: Subtypes of character datatype 

A programming language standard may provide sub-types of the character datatype or may provide multiple distinct 
character datatypes, by specifying a character repertoire list, in order to restrict the character set that can be 
assigned into the sub-type or the character datatype. An example of the sub-type of character datatype is kind=n of 
FORTRAN. If the programming language standard provides such sub-types of character character datatype or multiple 
distinct character datatypes, inter character datatype assignment and comparison should be processor-defined. 

NOTE   Assignment from a character datatype whose value space is ISO/IEC 646 IRV to another character 
datatype whose value space is ISO/IEC 10646 is an example of the inter character datatype assignment. 
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4.1.3.4 Guidelines on character handling 

4.1.3.4.1 Guideline: Character classification 

The programming language standard should provide the means of testing whether a character data belongs to subsets 
of the extended character set (character classes) likely to be of importance in programs, such as alphabetic, 
alphanumeric, upper case letters, lower case letter, decimal digit, hexadecimal digit, control character, punctuation 
character, printable character, graphic character, and space character. The programming language standard should 
require that the means supplied does not depend on a specific coded character set, and may require, or permit, the 
provision of such means of testing for further user-defined subsets (user-defined character class) that are culture-
specific or natural language-specific. 

NOTE   For example, LATIN CAPITAL LETTER A could be classified in alphabetic, alphanumeric, 
uppercase, hexadecimal digit, printable, and graphic character subset, but not in lower case, decimal digit, 
punctuation nor space character subset. 

4.1.3.4.2 Guideline: Character transformation 

The programming language standard should provide the means to transform a character to another. The means 
provided by the standard should not depend on any specific coded character set, any specific culture, nor any specific 
natural language. 

NOTES 

1  Transformation from an upper case letter to the corresponding lower case letter and from a full width letter to 
the corresponding half width (normal) letter are examples of character transformation. 

2  This character transformation functionality should be usable by a programmer, but not necessarily applied 
when a language processor is parsing the program text. 

3  The mapping rule such as upper case to lower case mapping is culture and natural language specific. 

4.1.3.5 Guideline: Collating sequences 

The programming language standard should specify completely the default collating sequence to be provided by a 
conforming processor, and preferably that this should be that implied by the ordering of the characters in the minimal 
character set drawn from ISO/IEC 646 as defined in 4.1.3.1.1 above. If the default collating sequence is other than that 
implied by ISO/IEC 646, means should be provided whereby the user may optionally switch to the ISO/IEC 646 
collating sequences, and consideration should be given to providing means for the user optionally to switch to 
alternative collating sequences, whether or not the defined default collating sequence is that based on ISO/IEC 646. 

If a programming language standard provides the functionality to switch collating sequence from one to another, the 
cultural convention set switching mechanism described in 4.7.1 could be used for the purpose, since the collation 
sequence is a cultural convention. 

NOTES 

1  Programs which perform ordering of character data are in general not portable unless the collating sequence is 
completely defined. This guideline ensures that such programs will be portable at least where only those 
characters drawn from the minimal character set defined in 4.1.3.1.1 are used. 

2  Drafting committees may wish to consider further guidance relating to characters not included in the minimal 
character set, especially where ordering of character data is a major anticipated use of the language. 

3  Possible means of including alternative collating sequences are language features or processor options (see 
4.1.9). 

4  Possible reasons for wishing to provide such alternative means are to obtain maximum processing efficiency 
by use of a processor-defined internal character set, or to allow orderings more useful for particular purposes, 
e.g. a=A < b=B < ... < z=Z. (ISO/IEC 646 implies 0 < 1 < ... < 9 < A < B ... < Z < a < b ... < z, which is not always 
convenient.) 
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5  The international default ordering of character strings that consist of characters defined by ISO/IEC 10646, the 
switching mechanism of the ordering from the default to an alternative sequence, and language independent 
string comparison APIs, are presently being standardized towards ISO/IEC 14651. 

4.1.3.6 Guideline: Multiple-octet coded character sets 

The programming language standard should provide a character datatype whose value space is an extended character 
set representable by a multiple-octet code. The programming language standard should ensure that at least every 
character specified by ISO/IEC 10646 can be a value of the character datatype. 

The programming language standard need not require that a composite sequence of ISO/IEC 10646 be recognized as 
a single character. Each character in a composite sequence should be stored in an extended character datatype and 
processed separately. The programming language standard may specify functionality to test the boundary of a 
composite sequence in a character string, and to convert the composite sequence into the corresponding pre-
composed character, if it exists. 

If a programming language standard has a requirement to store a composite sequence in single value of a datatype, 
the programming language standard committee should consider the provision datatype distinct from other character 
datatypes, whose values include composite sequences of characters, and provide functionality to convert a character 
string to and from a value of this datatype or to and from a string of this datatype. 

4.1.3.7 Guideline: Multiple-byte coded character sets 

A programming language standard may support characters using the multi-byte representation. If the programming 
language standard supports a multi-byte representation of characters, the standard should provide both or either of the 
following functionality. 

a) Convert the multi-byte character stored in an octet string datatype to the corresponding character stored 
in an character datatype, and vice versa. 

b) Test or find out the character boundary of a multi-byte character in an octet string datatype. 

4.1.4 Guideline: Error detection requirements 

Requirements should be included covering error detection, reporting and handling, with appropriate conformity 
clauses. The standard should specify a minimum set of errors which a conforming processor must detect (in the 
absence of any masking errors); minimum level of accuracy and readability of error reports; whether an error is fatal or 
non-fatal; and, for non-fatal errors, the minimum recovery action to be taken. 

NOTES 

1  The objective of this guideline is to enhance the value of standards to users. The inclusion of requirements on 
error detection, reporting and handling provides a minimum level of assurance to the programmer of assistance 
from the processor in identifying errors. 

2  See 3.3.1 for a definition of the term “error” in this context. 

3  That an error is statically determinable (see 3.3.1) does not imply that the processor must necessarily 
determine it statically rather than dynamically. 

4  It is recognized that requiring provision of specific error detection requirements within the standard entails a 
certain overhead in a conforming processor. It is a matter for each standards committee to determine how 
severely such overhead will affect the users of the language concerned, and consequently whether requiring 
detection is worthwhile. It is of course open to the committee to specify or recommend the provision of processor 
options which would permit the user to control the use of error detection (see 4.1.9). 

4.1.4.1 Checklist of potential errors 

The following is a list of typical errors which can arise in the submission of program text to a processor. Drafting 
committees should check all of the following for relevance to their language, and the standard produced should 



© ISO/IEC TR 10176:2002(E)  

 

15 

address all that are appropriate, plus others specific to the language concerned. This list is not to be considered 
either as exhaustive or as prescriptive. 

In all cases the standard should specify whether the error concerned is fatal or non-fatal. Depending on the design and 
philosophy of the language, it may occur that a particular usage is not invalid (whereas it would be in another 
language) but that users would nevertheless benefit from the availability of a warning message within the processor. 

4.1.4.1.1 Errors of program structure 

a) unmatched brackets - either open without close, or vice versa.  
NOTE   This covers all sorts of bracket: (), [], {} etc.; 

b) unmatched structure - similarly. (e.g. begin-end, IF-ENDIF, repeat-until, ELSE without IF, etc.); 
NOTE   In some languages, such as Algol 68, it is not meaningful to try to distinguish between this and a); 

c) line number missing (e.g. in Basic); 

d) absence of program heading (e.g. in Pascal); 

e) constructs in disallowed order (e.g. parameter statement after data statement in FORTRAN, or if...then 
for...do...else  in Algol 60); 

f) program incomplete (e.g. no main program in FORTRAN);  
NOTE   In many languages this is a particular case of b); 

g) program overcomplete (e.g. two main programs in FORTRAN);  
NOTE   In many languages this is a particular case of b); 

h) section of program that cannot be accessed;  
NOTE   This is disallowed in (e.g.) FORTRAN, but is not a fault in many languages; 

i) limitation on construct violated (e.g. too many continuation lines in FORTRAN, level 01 statement 
starting in incorrect margin in COBOL); 

j) construct in disallowed context (e.g. declaration in Pascal statement-part). 

4.1.4.1.2 Transfer of control 

a) reference to non-existent or out-of-scope label; 

b) transfer into a loop or procedure body;  
NOTE   In some languages this is included in a); 

c) exit from function instead of normal return. 

4.1.4.1.3 Words and numbers 

a) unknown or misspelt keyword; 

b) undeclared identifier; 

c) duplicated identifier; 

d) invalid syntax of numerical value (e.g. two decimal points). 

4.1.4.1.4 Procedures 

a) function that does not define its result (e.g. no assignment to function identifier in FORTRAN or Pascal); 
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b) call of unknown procedure or other named program segment (e.g. attempt to PERFORM non-existent 
paragraph in COBOL); 

c) wrong number of arguments in procedure call; 

d) wrong type of argument in procedure call. 

4.1.4.1.5 Data structures 

a) array declared with too many dimensions; 

b) attempt to select element of non-existent structure (e.g. A[i] where A is not an array); 

c) array variable unsubscripted (in context where subscript necessary); 

d) incorrect number of subscripts; 

e) use of unknown field selector; 

f) incorrect type of subscript or selector; 

g) invalid use of structure element (e.g. in many languages, array variable used as control variable of loop); 

h) empty structure in disallowed context (e.g. character string in FORTRAN). 

4.1.4.1.6 Lexical requirements 

a) symbol not in character set. 

4.1.4.1.7 Assignments 

a) type incompatibility (e.g. int j; real x;...; j:=x; in Algol 68); 

b) assignment to loop control variable (not a fault in some languages); 

c) assignment to constant (e.g. const k=2; ... k:=4 in Pascal). 

d) assignment between different datatypes (e.g. from character datatype to octet string datatype) 

4.1.4.1.8 Program element structure 

a) expression incorrectly formed (e.g. A*-B in FORTRAN); 

b) incorrect statement syntax (e.g. IF(A.EQ.B) 12, 15 in FORTRAN); 

c) reference incorrectly formed; 

d) declaration incorrectly formed. 

4.1.5 Guideline: Exception detection requirements 

Requirements should be included covering exception detection, reporting and handling, with appropriate conformity 
clauses. A minimum set should be specified of exceptions which a conforming processor must be capable of 
detecting (possibly by the user invoking a processor option). Conforming processors should be required to be capable 
of accurately reporting the occurrence of exceptions; whether an exception is fatal or non-fatal; and, for non-fatal 
exceptions, the recovery action to be taken. 

NOTES 
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1  The objective of this guideline is to enhance the value of standards to users by the inclusion of requirements on 
exception detection, reporting and handling. This ensures a minimum level of “safety” to the user, e.g. in executing 
a program with incorrect data. 

2  See 3.3.2 for a definition of the term “exception”. 

3  That an exception is in general determinable only dynamically (see 3.3.2) does not imply that the processor is 
precluded from determining it statically rather than dynamically if the nature of the language itself and the 
processor concerned makes static detection feasible (see 4.1.6). 

4  It is recognized that languages exist which do not in themselves recognize the concept of “exception” in the 
sense that any syntactically correct program is regarded as executable even if the consequent output may be 
empty or meaningless. Nevertheless it is recommended that in such cases standards committees consider 
requiring processors to provide an appropriate amount of detection and reporting of specified conditions (chosen 
to suit the particular language, see 3.3.3) which can arise during program execution, as a processor option (see 
4.1.9). 

5  It is recognized that requiring provision of specific requirements within the standard for the detection of 
exceptions entails a certain overhead in a conforming processor. It is a matter for each standards committee to 
determine how severely such overhead will affect the users of the language concerned, and consequently 
whether requiring detection is worthwhile. It is of course open to the committee to specify or recommend the 
provision of processor options which would permit the user to control the use of exception handling (see 4.1.9). 

4.1.5.1 Checklist of potential exceptions 

The following is a list of typical exceptions which can arise during execution of a program by a processor. Drafting 
committees should check all of the following for relevance to their language, and the standard produced should 
address all that are appropriate, plus others specific to the language concerned. This list is not to be considered 
either as exhaustive or as prescriptive. 

In all cases the standard should specify whether the exception concerned is fatal or non-fatal. Depending on the 
design and philosophy of the language, it may occur that the occurrence of a particular event is not invalid (whereas it 
would be in another language) but that users would nevertheless benefit from the availability of a warning message 
within the processor. 

When considering requirements in this area, drafting committees may well need to take execution overhead into 
account, which for some languages, some processors or some applications could be considerable. A possible way of 
dealing with conflicting priorities (e.g. between speed and safety) for differing applications could be to specify that 
processor options (see 4.1.9) should be available to allow the level and extent of checking to be controlled. 

4.1.5.1.1 Data operations 

a) attempt to divide by zero; 

b) numeric overflow on arithmetic (floating-point or fixed-point, including integer) operation; 

c) numeric underflow on floating-point operation;  
NOTE   It is recommended that a processor option be specified, to permit the user to treat such an 
exception as non-fatal, replacing the underflow value by zero and continuing, or as fatal, which would be the 
default; 

d) attempt to raise a negative value to a non-integral power (where a real arithmetic result rather than a 
complex arithmetic result is expected); 

e) attempt to raise zero to a negative or zero power;  
NOTE   Even where the language accepts and defines the result of such an operation it is recommended 
that the processor be capable of treating such a condition as a non-fatal exception; 

f) overflow upon string or list concatenation; 
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g) attempt to perform an operation undefined for an empty string or list (e.g. car(L) in Lisp, where L is 
empty); 

h) operation undefined for value (e.g. succ(last) in Pascal, or ordering operation attempted on item of 
(unordered) set type); 

i) attempt to perform operation on an undefined value; 

j) attempt to dereference a nil pointer value; 

k) attempt to delete a non-existent item; 

l) overlapping assignment (e.g. A[2:5]=A[m:n] where m=1 and n=4 - valid in some languages); 

m) operation requiring dynamic storage allocation (not a fault in many languages). 

n) truncation of a multi-byte character 

o) data (code value) is not in repertoire 

4.1.5.1.2 Violations of aggregate limits 

a) subscript out of range; 

b) substring reference out of range; 

c) incorrect dimensionality in array reference; 

d) unrecognized dynamically generated field selector of record; 

e) index of control flow switch out of range;  
NOTE   For example, index out of implied range in “computed GOTO” statements; while this may not be an 
exception in the language - the default being to proceed to the next statement - the possibility of a warning or 
non-fatal exception message being available should be considered; 

f) value of case selector not allowed for.  
NOTE   Similar remarks apply as for e). 

4.1.5.1.3 Procedure calls 

a) unable to execute call (e.g. named procedure unavailable); 

b) mismatch between actual and formal parameters (in number, datatype, or other attributes); 

c) recursive call of procedure in disallowed context (e.g. where the language does not support recursion, or 
a recursive procedure must specifically be declared as such);   
NOTE   Though some such cases can be detected as errors, the possibility of indirect recursion, including 
through the use of procedure parameters, means that consideration must also be given to detecting them as 
exceptions; 

d) argument out of defined range for intrinsic function (e.g. sqrt(x) where x is negative). 

4.1.5.1.4 Input-output operations 

a) attempt to open file which cannot be found; 

b) attempt to open file which is already open;   
NOTE   Perhaps non-fatal though it may indicate incorrect file naming; 
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c) illegal file name;  
NOTE   File names may be generated dynamically;  

d) attempt to access (for input or output) file to which access is unauthorized;  
NOTE   It is advisable not to require in the standard the provision of an unnecessary amount of information 
or lower levels of security than provided by the host environment. Any message should be aimed at a 
legitimate user who has merely omitted to unlock a protected file for read or write access, and who will be able 
to obtain the needed information and take the necessary action without direct assistance from the processor; 

e) unexpected end of file during input;  
NOTE   May be fatal, non-fatal or condition-raising, depending on the language; 

f) required record not found on input (in random-access input); 

g) attempt to input from output-only file (e.g. printer stream); 

h) attempt to output to input-only file (e.g. keyboard); 

i) attempt to create a record which already exists; 

j) attempt to replace a non-existing record; 

k) attempt to close file already closed. 

4.1.5.1.5 System limitations and characteristics 

a) insufficient memory available for specified operation; 

b) time limit exceeded; 

c) limit on depth of nesting (e.g. of recursion) exceeded; 

d) use of non-standard dynamic processor-defined extension; 

e) language/culture dependent service is not available; 

4.1.6 Guideline: Static detection of exceptions 

The standard should specify that, where a processor will detect, solely by inspection of the program text, that an 
exception may (or will) occur if an otherwise well-formed program is executed, a processor option (see 4.1.9 ) is to be 
provided whereby the user may choose how the anticipated exception is to be handled. 

NOTES 

1  In a particular case the most appropriate form of handling will depend on the nature of the exception in the 
context of the application and the stage of development of the program. This cannot be foreseen either by the 
standard or by the designer of the processor if the action is left processor-dependent. Provision of a user-
controlled processor option reduces the need for the user to include devious codes to “program around” 
restrictions. 

2  In the case of a fatal exception, it is recommended that the default option be to treat the statically-detected 
exception as if it were a fatal error, an alternative option being to treat it as a non-fatal error and to continue 
processing (until, unless some other action intervenes, the anticipated fatal exception is encountered). 

3  In the case of a non-fatal exception, it is recommended that the default option be to treat the statically-detected 
exception as if it were a non-fatal error and to continue processing (until, unless some other action intervenes, the 
anticipated non-fatal exception is encountered, and thereafter as if the non-fatal error had not been anticipated), 
an alternative being to treat it as a non-fatal error but not to proceed to execution. 

4  The recommendations in notes 2 and 3 above do not preclude the provision of further alternative options. 
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4.1.7 Guideline: Recovery from non-fatal errors and exceptions 

Where the standard permits recovery mechanisms from error or exception conditions, the required results of the 
actions to be taken by the processor (when such a recovery mechanism is invoked) should be defined as fully as are 
defined the normal semantic features of the language. 

NOTE   The objective of this guideline is to improve the predictability of processor action in the case of 
recoverable faults. Users of standard-conforming processors should be able to expect a similar degree of 
consistency of behaviour in such circumstances as they do with normal programs. 

4.1.8 Guideline: Requirements on user documentation 

Requirements on the documentation which is to be provided with a standard-conforming processor should be included. 
Some particular requirements of this kind may be found in ISO/IEC TR 10034. Committees may wish to extend the 
documentation requirements which those guidelines recommend. 

NOTES 

1  The value of standards to users is enhanced by the inclusion of requirements on documentation, since to make 
effective use of a processor it is necessary that adequate documentation is available to explain its use. Specific 
examples will be found in ISO/IEC TR 10034. 

2  This guideline does not specify the form in which the documentation is to be provided; this is also the case with 
ISO/IEC TR 10034. Some language committees may specify conventional manuals, others may specify “on-line” 
help systems, yet others may require both, or leave the question open, depending on the nature of the languages. 
However, it is envisaged that all should specify a reasonable level of minimal provision, in some form, in this 
area, at least to the level recommended in ISO/IEC TR 10034. 

3  Whatever form of documentation is required by the standard, it should be specified in such a way that the user 
of the processor can check by inspection that the processor conforms with such requirements. By the very nature 
of documentation this should be possible. Validation services should not be expected, and should not feel it 
necessary, to check conformity with requirements related to this guideline, except as envisaged in ISO/IEC TR 
10034 and in ISO TR 9547. 

4.1.9 Guideline: Provision of processor options 

The standard should specify processor options required to be provided within a standard-conforming processor, 
including in each case a specification of standard default settings of the option and the form or forms in which the 
processor options are to be made available to the user. 

NOTES 

1  The aim here is to widen the range of facilities guaranteed to the user by standard conformity of a processor. 
When a processor is being used, almost always some facilities are needed in addition to the ability to process 
standard-conforming programs and to detect programs which are not standard-conforming, depending on the 
particular application; this guideline assures the user that a standard-conforming processor will provide at least a 
minimum set of such facilities. 

2  “Processor option” in this context means an option for the user which the processor is required to supply, not a 
facility which the processor may optionally provide. 

3  Options may be provided, for example, as “switches” set when the processor is invoked by the user, or as 
“processor directives” embedded in a standard-conforming program. 

4  Default settings of an option could possibly vary between different types of processor, such as compilers or 
interpreters. 

5  In some cases it will be appropriate to require the option to be provided both statically - e.g. processor option - 
and dynamically - e.g. processor directive or interactive session command. 

6  In general the form of provision of a required option can be left processor-dependent, though where it is invoked 
by a directive embedded in the program text, a program invoking it will not be standard-conforming or (e.g. if the 
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directive is embedded in “pragmatic comments”) will not be fully portable unless the form is specified in the 
standard. 

7  A checklist of appropriate options is given in 4.1.9.1. The choice from these or others to be covered in a 
particular standard is a matter for the individual language committee to determine in the light of the nature of their 
particular language. 

8  Provision of processor options is sufficiently common that this guideline, and many of the specific items listed 
in 4.1.9.1, can be regarded as recommending standardization of “existing practice”. 

9  It should be noted that, for purposes of validation of conformity, e.g. by a registered validation service or agency, 
each possible combination of settings of options produces, in general, a different processor requiring validation. It 
is not reasonable to expect that the effect on conformity of all possible combinations of settings can be checked 
and validated. Rather than, as a consequence, limiting the number of options or removing them from the 
standard, drafting committees are recommended to ensure that 

 checking that the provision of options is in accordance with the standard can, as far as possible, be 
performed by the user; 

 the requirements upon provision of options are so designed as to limit the validation overhead, e.g. by 
making as many as possible checkable independently without interaction with the effects of other options. 

4.1.9.1 Checklist of potential processor options 

Drafting committees should consider all of the following features as potential areas for specifying standard processor 
options, and the standard produced should address all that are appropriate for the language and types of processor 
covered: 

 the handling of non-standard features; 

 the use of machine-dependent or processor-dependent features; 

 the type(s) of optimization; 

 the use of overlays; 

 the selection of debugging, profiling and trace options, including post-mortem dumps; 

 the handling of errors, exceptions and warning messages; 

 the handling of array bound, overflow and similar range checking; 

 the control of output listing and pagination, including any listing of variable attributes and usage and listing of 
object or intermediate code; 

 operating modes, such as execution automatically following compilation; 

 the mapping of relevant language elements (such as files or input-output channels into corresponding elements of 
the host environment); 

 the use of preconnected files and their status on termination; 

 the rounding or truncation of arithmetic operations; 

 the precision and accuracy of representation and of arithmetic, as appropriate; 

 the default setting of uninitialized variables; 

 in the case where a language standard is a revision of an earlier standard, the detection within programs, and 
reporting, of usage incompatible with the old standard. 
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NOTES 

1  It may well be appropriate in many cases to specify several different settings of a given option, or a hierarchy of 
combinations of settings, though see note 9 of 4.1.9 above. 

2  See also 4.1.6 and 4.4. 

4.1.10 Guideline: Processor-defined limits 

Minimum levels should be specified of guaranteed translation time and run-time support to be supplied by conforming 
processors in appropriate circumstances, namely where 

a) it is probable that programs in the language may encounter processor-defined limits in the 
implementation of the language, and 

b) such limits can be expressed in terms of the logical behaviour of programs (rather than implementation 
issues such as storage capacity); 

and provide advice on choice of actual levels. 

NOTES 

1  Users should be able to feel assured of a guaranteed minimal level of support from a conforming processor. 
Severe processor restrictions (e.g. inability to handle SET OF CHAR in Pascal) impede portability; at a minimum, 
all such restrictions should be documented. In all the cases listed above, it is desirable that programmers be 
able to rely on a specified minimum, while allowing processors to supply additional capability if they so choose. 

2  The limits specified in the standard may be semantic or syntactic, depending on the language. 

3  As can be seen from the checklist below, it is clear that some of these requirements upon processors may be 
interdependent, and drafting committees are advised to pay particular attention to ensuring mutual consistency 
between them. Attention also needs to be paid to the implications of having to meet all the limits on provision 
simultaneously; for example, it may be relatively simple for a processor to meet any individual one of these limits, 
but meeting them all at once places a much greater demand upon the resources of the underlying system 
supporting the processor. 

4.1.10.1 Checklist of potential processor-defined limits 

Examples of features for which it may be appropriate to specify minimal limits in standards are 

 length of character strings; 

 range of integers; 

 internal precision of real numbers; 

 magnitude of real numbers; 

 number of files which can be open simultaneously; 

 number of dimensions for arrays; 

 number of array elements; 

 length of external names; 

 length of records which can be read or written; 

 length of keys in keyed files; 

 length in characters of a line of source text; 
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 length in items of a list-structured object; 

 depth of nesting of various constructs (e.g. lists, records, procedure calls, loop constructs); 

 number of items in various program constructs (e.g. declarations or statements in a block or compilation unit, 
procedures or modules in a package) and the accumulated length of such items. 

Particular care is needed where limit requirements impinge on the external world, for example in the context of mixed 
language processing (see 4.6.4). 

4.1.10.2 Actual values of limits 

When advising implementors on considerations involved in setting the actual values of processor-defined limits, note 
that such advice may do one or more of 

 recommending specific values; 

 recommending minimum useful values; 

 recommending maximum useful values; 

 recommending that limits should depend on processor thresholds where efficiency changes sharply (such as 
word size, or memory size); 

 recommending that limits should depend on resource availability, which may fluctuate during processing; 

 setting forth other criteria appropriate to the specific language. 

In each case the reasons for the recommendations should be explained. Different recommendations may be 
appropriate for different limits. 

It should be noted that appropriate processor-defined limits need to be made accessible to users, in particular for 
those performing conformity testing, as well as being documented. Where this is not available through language 
facilities (such as environmental enquiry functions), appropriate guidance to implementors should be provided. 

4.2 Guidelines on presentation 

4.2.1 Guideline: Terminology 

As far as possible, the standard document should use the terminology given in the appropriate parts of ISO 2382, 
taking into account common practice in the language community concerned and possible costs of transfer to new 
terminology (see 4.5.4). Additional terms not covered by ISO 2382 should be defined in a specific section of the 
standard, and these additional terms should be registered with the appropriate subcommittee of ISO/IEC JTC 1. 

NOTES 

1  The objective of this guideline is to avoid unnecessary variations in terminology between standards for different 
languages. In general, the same word should be used for the same concept in all language standards; this aids 
“programmer portability” between languages, mutual understanding, and promotion of commonality between 
languages, and also strengthens the credibility of standards generally by making sure that one standard 
recognizes the existence and validity of other related standards. 

2  Any divergence from standard terminology should be explicitly documented in the glossary section of the 
standard. Where for historical reasons a different word is commonly used, the standard should record this fact in 
an appropriate way, and could use that different word in any informal language definition included as an annex. 
Similarly the same word should not be used for different concepts in different language standards, and 
explanations should similarly be incorporated. 
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4.2.2 Guideline: Presentation of source programs 

A consistent format should be adopted for textual presentation of source programs, and should be used in the relevant 
programming language standards documents for examples of language constructs, program fragments, and complete 
programs; when determining this format, such matters as indentation, how to break up long statements into lines, etc. 
should be taken into account. 

NOTES 

1  Guidance from standards committees on matters of source program presentation is useful to implementors 
trying to determine how to present source code listings, to those developing utilities (e.g. prettyprinters) which 
transform syntactically correct programs into programs formatted in a universally recognized way, to those 
publishing programs, and more generally to the community of language users who read and maintain programs. 

2  In recommending consistency of appearance of programs in standards documents, there is no suggestion that 
standards, or drafting committees, should specify style. 

4.3 Guidelines on processor dependence 

4.3.1 Guideline: Completeness of definition 

The number of aspects within its scope that the standard leaves not completely defined should be minimized (and 
preferably eliminated altogether). Where full definition is impracticable, in general such aspects should be required to 
be processor-defined, subject where appropriate to specified minimal or other limits, rather than left as processor-
dependent or undefined. In this case, a complete checklist should be provided of all such processor-defined features 
[see 4.1.1, elements 6) and 7)], guidance should be provided for implementors, required limits (see 4.1.10), as 
appropriate, should be specified, and the documentation accompanying the processor should be required to provide 
for the user a full specification of the processor definitions used. 

NOTES 

1  Though in particular cases counter-arguments to this guideline may exist on the grounds of “flexibility”, 
everything within the scope of a standard which is left undefined, processor-dependent or processor-defined 
weakens the standard and harms portability. Flexibility may sensibly be provided within the standard itself in the 
form of guaranteed ranges of facility for the user, but not as unguaranteed variations in provision which are 
outside the control of the user. 

2  This guideline applies to matters within the scope of the standard and it is important that the definition of scope 
is itself sufficiently precise that it is clear when a matter is outside the scope. Where genuine doubt can exist - or 
simply as an aid to the user of the standard, to avoid misunderstanding - it may be appropriate to state explicitly 
that something is undefined by the standard. However, the scope of a standard should not be given contrived 
precision by the use of exclusion clauses which remove from its definition aspects which, given the objective of 
the standard, fall naturally within it. 

4.3.2 Guideline: Optional language features 

Inclusion within the standard of optional language features, whether as optional additions or as optional alternatives, 
should be minimized. 

NOTES 

1  The argument here is similar to note 1 under 4.3.1. Language options provided for the user within the standard 
are acceptable provided the choice is with the user. Language options which may or may not be available and are 
out of the control of the user are not acceptable. 

2  Ideally, the aim should be to have no optional features at all. 

4.3.3 Guideline: Management of optional language features 

Where complete avoidance of language options is impracticable, they should be organized in levels so that each level 
is a pure subset of all higher levels, and the number of different levels should be minimized. 
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NOTES 

1  If a standard contains N optional features (whether separate facilities, or modules containing several facilities), 
this implies the existence of 2 to the power N different possible combinations and hence different processor 
configurations. This severely harms portability and greatly increases the problems of validation. 

2  Drafting committees will always have to balance the arguments against levels and subsets, the arguments 
against making the language and its implementations too large, and the dangers of leaving extensions to provide 
further functionality outside the standard and hence liable to be provided in incompatible ways. 

3  Revision of an existing standard offers an opportunity to reduce the number of options and levels, including by 
migration of optional features to mandatory features. 

4.3.4 Guideline: Syntax and semantics of optional language features 

Whenever a language feature is made optional in a standard, whether by inclusion in a level higher than a minimal 
level, or otherwise, and if a processor accepts, syntactically, a standard-conforming program beyond the level or 
subset for which standard conformity is claimed, then the standard should require that, nevertheless, the processor 
must process that program in the way described by the standard. 

NOTES 

1  The aim of this guideline is to ensure consistency of semantics. It must be possible to be sure that any syntax 
defined in the standard, whether optional or not, means the same thing in any standard-conforming 
implementation, and that if a feature is described in the standard, whether optional or not, it is provided in the 
same way in all standard-conforming implementations. 

There can also be the problem that a processor claiming conformity only at a lower level may still provide 
equivalent functionality to some language feature at a higher level, but provide it with different syntax. Any program 
using that functionality will not be standard-conforming. Standards committees may wish to consider whether this 
is a likely scenario with their language which might cause serious problems, and whether some further 
conformity statement or at least warning might be appropriate. 

2  Detailed consequences of this general guideline are provided below (see 4.3.5, 4.3.6). 

4.3.5 Guideline: Predefined keywords and identifiers 

The standard should specify that any standard keyword or identifier defined in any section of a language standard, 
whether optional or not, retains the same standard-defined meaning throughout the whole standard and applies to all 
standard-conforming processors, at whatever level, even if, when optional, the keyword or identifier is not directly 
supported by the processor. 

NOTES 

1  In line with 4.3.4, this guideline ensures consistency of use of standard-defined words. 

2  This applies, for example, to COBOL reserved words, FORTRAN keywords, Pascal word-symbols and required 
identifiers, and predefined identifiers such as the names of standard datatypes, and to the names of optional 
built-in functions; but it does not preclude redefinition within a program of the meaning of a standard-defined 
identifier if the language (and the standard) permits this (e.g. by application of scope rules). 

4.3.6 Guideline: Definition of optional features 

As far as possible, any optional (or higher level) features should be defined functionally in terms of mandatory (or lower 
level) features. 

NOTES 

1  This guideline enhances portability because a user of (say) a lower level processor but who needs higher level 
features can implement those features individually in a (functionally) standard-conforming way. 
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2  The purpose of including such higher level features in the standard is often to relieve the user of the need to 
implement them individually, and (very often) so that the implementor can provide them more efficiently than can a 
user with only the lower level language features available. (A simple example is that of the standard intrinsic 
functions commonly required to be supplied by a standard-conforming processor, many of which - like the 
common trigonometric or arithmetic functions - can be programmed in the language itself.) On the other hand the 
purpose of providing them as options or higher level features is often so that users will not have to “pay” in some 
way to get features they will never or will rarely use. This guideline simply recognizes this and suggests a means 
whereby it can be taken into account without impairing portability.  

It is recognized that some optional or higher level features are intrinsically incapable of being treated in this way 
and it is not suggested that they should therefore be avoided. However, it may be felt appropriate to point out in the 
standard that their use has a greater impact on portability than those which are expressible in terms of mandatory 
or lower level features. 

4.3.7 Guideline: Processor dependence in numerical processing 

Where a major anticipated use of the language is for arithmetic processing, means whereby the user may specify and 
interrogate the range, precision and accuracy of arithmetic operations should be included in the standard. 

NOTES 

1  Because of the wide variety of data processing equipment with which languages are used, these features of 
numerical work are commonly left processor-defined or processor-dependent. While for many uses it is adequate 
for the default ranges, precisions and accuracy of arithmetic to be processor-defined, such variations severely 
inhibit the production of portable numerical software, and specifying lower limits (see 4.1.10) is only a partial 
solution. 

2  Suitable means of providing such facilities may be specific language features, processor options, or binding of 
a language-independent facility. 

3  Processor limits, as in 4.1.10, should still also be specified for processor-defined defaults. 

4  It is recommended that processor (or language-independent facility) documentation be required to include a 
specification of the means (including algorithms for controlling accuracy) used to achieve requirements under this 
heading. 

5  Drafting committees, and also implementors (through recommendations in element 7) of the standard, see 
4.1.1) should seek guidance from professional numerical analysts on how to draw up and how to meet 
requirements under this heading. 

4.4 Guidelines on conformity requirements 

Guidelines on requirements for conformity to the standard may be found in ISO/IEC TR 10034. Particular attention is 
drawn to the need for consistency between requirements for different levels or options, if the standard permits subsets 
or optional modules. 

4.5 Guidelines on strategy 

4.5.1 Guideline: Secondary standards 

Where existing standards do not address all of the issues proposed in these guidelines, standards committees 
should consider producing secondary standards to cover such matters (e.g. requirements upon processors). 

NOTES 

1  The advantage of the use of secondary standards is that they make it possible, in effect, to improve the content 
of the corresponding primary standards without introducing unnecessary delay, such as by having to wait for the 
next full revision. 

2  See 3.5.1 for a definition of “secondary standard”. 
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3  This procedure could also be considered for standards not yet in existence but in an advanced stage of 
processing, where delay in order to introduce further requirements would be undesirable. 

4.5.2 Guideline: Incremental standards 

Standards committees should, in general, use incremental standards to add new constructs to existing languages 
rather than incorporate them in a complete revision. 

NOTES 

1  The advantage of incremental standards is that they make it possible, in effect, to augment the content of 
existing standards without introducing unnecessary delay, e.g. while waiting for the next full revision. 

2  See 3.5.2 for a definition of “incremental standard”. 

3  Consideration should always be given to producing a revised standard (to correct errors but not change the 
language except perhaps to extend existing constructs) and an incremental standard in parallel, rather than 
attempt to do the two together; though perhaps in such a way that the two could be merged at a later revision, after 
gaining experience of the new standard. 

4  For an example of the incremental standards approach see ISO 1989/AMD1. 

4.5.3 Guideline: Consistency of use of guidelines 

Where guidelines in this Technical Report are applied in a primary standard, they should be applied, as appropriate, to 
related secondary, incremental and supplementary standards, in the same manner. 

NOTES 

1  The concept of secondary, incremental and supplementary standards will provide a mechanism whereby 
additions and corrections can be made to primary standards without the need to reconsider and reapprove those 
standards immediately. Standards committees should consider utilizing these mechanisms to revise portions of 
primary standards on a more frequent basis than is possible for the complete standard. To maintain stylistic 
compatibility, secondary, incremental and supplementary standards should follow the same form as the primary 
standard. This will enhance the ability of the committee to integrate any changes or modifications into the primary 
standard when that standard is updated as a whole. 

2  For guidelines relevant to secondary, incremental and supplementary standards see 4.5.1, 4.5.2, 4.6.1 and 
4.6.2. 

4.5.4 Guideline: Revision compatibility 

For each proposed addition, deletion or modification that represents a potential incompatibility from an earlier standard 

 the rationale for the proposed change should be stated; 

 the way in which the proposed change will affect the original language feature should be determined, in 
accordance with the classifications in 4.5.4.1 below; 

 the difficulty of converting affected programs should be assessed, according to 4.5.4.2 below; 

 an attempt should be made to determine how widely the affected feature is used; 

 all the above should be documented, and conversion guidance should be provided in the relevant section 
of the standard [see element 9) of 4.1.1]. 

NOTE   Altering a standard in an incompatible manner during a revision may bring benefits but will also 
entail costs, and so should not be undertaken lightly. The rationale for a proposed change should include 
statements of 

 Specific benefits, and how the benefits result from the change. 
Benefits may fall into such categories as improved programming practice, better portability, better 
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machine performance, elimination of ambiguity, or improved consistency and clarity of the language 
specification. 

 Costs (other than those directly associated with compatibility, which are discussed below). 
Costs may fall into such categories as use-ability, performance, or ease of learning. 

4.5.4.1 Classifications of types of change 

1) Change to semantics of well-defined feature. A change is made to the semantic specification of a 
feature for which the original document guarantees a reasonably precise result. The feature remains 
syntactically valid, but a program may now produce different results. 

2) Deletion of semantically well-defined feature. A feature well-defined in the original document is rendered 
syntactically invalid by the new specification. 

3) Deletion of semantically ill-defined feature. A feature which was not well-defined in the original 
document is rendered syntactically invalid by the new specification. 

4) Clarification of semantically ill-defined feature. A feature which was not well-defined in the original 
document, so that its interpretation was open to question, is properly defined in the new specification. (This, 
strictly speaking, is not an incompatibility, since no guarantee has been withdrawn, but is included here for 
completeness since some past interpretations may not be compatible with that in the revised document.) 

5) Change or deletion of obsolescent feature. A feature designated in the original document as 
obsolescent is deleted or changed in the new specification.  

6) Change of level definition. 

7) Change of processor defined limit.  

8) Change of other processor requirement. 

9) Change of conformity clause. 

NOTE   Conversion problems (if any) in cases 6) to 9) are different from those in cases 1) to 5), where the 
language definition has been changed. 

4.5.4.2 Difficulty of converting affected programs 

At least four levels of difficulty may be distinguished. In doubtful cases use the more severe classification. From the 
standardization point of view, the following are listed in order of decreasing conversion effort: 

1) No possible translation. There is no feasible way to implement the original function within the new 
standard. 

2) Semantic transformation. The original function can still be performed using the language, but human 
translation, based upon knowledge of the purpose of the program, is required. 

3) Significant syntactic transformation. A mechanical translation is feasible, but some analysis of the 
program structure as a whole may be required, or a significant amount of code may be generated. 

4) Simple syntactic transformation. Old statements can be mechanically transformed to the new syntax with 
little or no knowledge of the rest of the program or its purpose. 

NOTES 

1  The extent of use of the affected feature may be estimated in terms of whether a high or low proportion of 
programs use the feature, or of frequency of use within programs. In making this estimate the drafting committee 
should consider the existing pattern of implementation. Thus, for example, even though many programs use the 
feature in question, few may actually be affected if the committee is simply ratifying existing practice. It is 
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recognized that this estimate cannot be precise; the point is to distinguish at least between clearing up 
anomalous cases which are technically valid, but probably unused in practice, and changing features on which 
many programs may truly depend. 

The inference is that a higher proportion of use would increase the total conversion cost. The conversion 
complexity, along with frequency of use, will provide a comparative measure of the conversion cost. 

2  Documentation will be needed under one or more of the following headings: 

a) Obsolescence. A notification that the standard's support for the language feature in question is 
scheduled to be withdrawn in the next revision. This action allows users to plan a smooth evolution 
of their software base away from dependence upon the feature (or upon the old interpretation of the 
feature, if there is a semantic change). 

b) Documentation of transition semantics. (see note 3) 

c) Conversion guidance. This may be one or more of 

1) A conversion program. 

2) An algorithm that is detailed enough to be understood by a reasonably informed user of the 
language. 

3) A commentary describing the conversion process. 

4) As much conversion information as possible, in cases when a well-defined conversion 
process is not feasible. 

3  Transition semantics: Transition between two interpretations of the same language feature may be provided in 
various ways: 

a) The standard may require conforming implementations to make both the old and the new 
interpretations available to the user through the use of a user-controlled option (which itself may be 
part of the language, or provided as a processor option). 

b) The standard may allow implementations to use either the old or the new interpretation, but with 
the old interpretation scheduled to be withdrawn in the next version. (The implementation should 
then be required to document which interpretation it is using.) 

c) If it is judged that the costs of such measures outweigh the benefits, the standard may simply 
adopt the new interpretation and require implementations to provide a “flagging” capability which 
would detect and report cases of possible incompatibility. [Flagging may also be required in 
conjunction with case b).] If this course of action is taken then the standard should be as specific 
as possible about the cases to be flagged and should provide appropriate guidance on the form of 
flagging, the user documentation which 
will be needed, and so on. 

(In general, changing the interpretation of a language feature is to be avoided if possible, but may 
be essential in order to eliminate inconsistencies, or as enabling action to permit other desirable 
changes.) 

4  While this section applies primarily to revision of an existing standard, in cases where a new (initial) standard 
is based upon a previous informal, unofficial or “de facto” standard (for example a published and implemented 
language definition) the drafting committee may well find it appropriate to take into account at least some of the 
guidelines when preparing the formal standard. 

4.6 Guidelines on cross-language issues 

NOTE   At the time that this Technical Report is published, active work is in progress which is expected to 
result in another Technical Report giving guidelines for language bindings. The guidelines resulting from this 
work could lead to those described below in this section being modified or extended. Standards committees 
should therefore check on the progress of this work before applying these guidelines. 
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4.6.1 Guideline: Binding to functional standards 

Where a binding is required between the programming language and a functional standard defined externally, the 
standards committee should ensure that this is specified in a supplementary (or incremental) standard to the 
functional specification, cross-referenced to the primary language standard. 

NOTE   The objective here is to specify the location of the binding specification for a functional standard. 

4.6.2 Guideline: Facilitation of binding 

The standard should be designed so that it takes into account the existence of relevant existing or potential language-
independent functional standards, in such a way that it facilitates binding (preferably by means of a supplementary 
standard), including the possibility of generic bindings for future functional standards. 

NOTES 

1  Many language processors currently obtain specialized functionality from language-independent subsystems 
provided by the host environment. Many users want and expect functionality to be provided in a uniform manner 
across language systems. Functional standards recognize both of these needs and it is beneficial for language 
standards to be so designed as to take account of them. 

2  Examples of existing (or emerging) functional standards are GKS (graphics), DBMS (database systems) and 
IRDS (information resource dictionary). Examples of potential functional standards are for communications 
facilities, screen management, mathematical library facilities, etc. It will be necessary for users to be able to 
invoke each of these from a variety of different languages. 

4.6.3 Guideline: Conformity with multi-level functional standards 

The standards committee should ensure that the rules for conformity with multi-level functional standards are 
consistent with those for conformity with multi-level primary standards given above, both for programs and for 
processors. 

NOTES 

1  It is necessary, especially with the increasing number of functional standards, to ensure that the same criteria 
apply to conformity with external functional standards as to the primary language itself. 

2  The requirements for processors apply equally to subroutine packages (or their equivalent) which implement 
functional standards, since in the terms used in this Technical Report such a subroutine package will form part of 
the processor as far as binding to the functional standard is concerned. 

4.6.4 Guideline: Mixed language programming 

When specifying requirements upon conforming processors, possible needs of users for mixed language programming 
should be taken into account. These may include the incorporation of modules or segments in programs mainly 
written in another language, as well as the use of modules or segments written in another language. The committee 
should consider whether it is appropriate to require conforming processors to provide means to facilitate this, or to 
provide guidance to implementors on such provision. 

NOTE   Standards are commonly designed as if the language and its community operate in an isolated 
world in which other languages do not exist. However, in practice many users of many languages find the need to 
invoke in some way facilities written in other languages. The growth of libraries of reusable software packages 
which are not necessarily available in a specific language, and the risk of decreased reliability in the configuration 
management of multiple copies of those packages, reinforces the need to give attention to this topic. 

4.6.5 Guideline: Common elements 

Those elements and properties within the language which may be held in common with those of other languages 
should be defined in the standard; the hierarchy of the elements should be specified; and the functionality of the 
common holding of definitions to be performed internal and external to the language should be specified. 
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NOTE   This guideline is aimed at ensuring that common elements may be used consistently across 
languages. 

4.6.6 Guideline: Use of data dictionaries 

Where a standard exists for a data dictionary and users of the language standard require access to that dictionary 
through their language, the semantics and the matching of the structures, elements and properties of those data 
elements in the language which are associated with the dictionary standard should be specified, preferably in a 
supplementary standard. 

NOTE   The aim of this guideline is to remove any possible ambiguity between the data descriptors in the 
language and those in the dictionary, provide an additional check on the functionality, semantics and structure of 
the dictionary, and provide some commonality within the dictionary for the use of alternative languages. 

The holding of elements within the dictionary requires definition of properties for each element type which, if 
commonly defined for instances, provides the necessary means for the validation of format, content, and 
relationship with other instances. 

4.7 Guidelines on Internationalization 

4.7.1 Guideline: Cultural convention set switching mechanism  

The programming language standard should provide the functionality to dynamically switch from one cultural 
convention set to another (e.g. setlocale() function in C language). If the programming language supports multiple 
threads in a process, the cultural convention set binding should be done by thread or by API, not by process. 

NOTES 

1  setlocale() function in C and POSIX standards is an example of the culture convention set switching 
mechanism. 

2  locale object may be used for object oriented languages in order to indicate a cultural convention set to be 
applied for a method of a cultural sensitive object. 

4.7.2 Guideline: Cultural convention related functionality 

Every cultural convention related functionality, e.g. character string ordering service, provided by a programming 
language standard should refer to the cultural convention, e.g. collating sequence, associated at execution time, and 
behave correctly as defined in the cultural convention. 

The programming language committee should consider what cultural convention related functionality are relevant to 
and should be provided by the subjecting programming language standard. 

NOTE   Candidates of cultural convention related functionality provided by programming language 
standards are described in ISO/IEC TR 11017 “Framework of internationalization”. 
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Annex A 
Recommended extended repertoire for user-defined identifiers 

The recommended extended repertoire consists of those characters which collectively can be used to generate word-
like identifiers for most natural languages of the world. This list comprises the letters (combining or not), syllables, 
and ideographs from ISO/IEC 10646-1, together with the modifier letters and marks conventionally used as parts of 
words. The list excludes punctuation and symbols not generally included in words or considered appropriate for use in 
identifiers. Also excluded are most presentation forms of letters and a number of compatibility characters. The 
inclusion of combining characters corresponds to those allowed under a level 2 implementation of ISO/IEC 10646-1. 
These are the minimum required to do a reasonable job of representing word-like identifiers in Hebrew, Arabic, and 
scripts of South and Southeast Asia, which make general use of combining marks. However, combining marks for 
level 3 implementations of ISO/IEC 10646-1 are not included in the list, so as to avoid the problem of alternative 
representations of identifiers. 

Attention is drawn to the fact that using the extended repertoire for identifiers may impact source code portability, 
since the presence of these characters in program text may not be supported on systems that implement less than 
the full repertoire of ISO/IEC 10646-1. 

The character repertoire listed in this annex is based on ISO/IEC 10646-1:2000. It is subject to expansion in the 
future, to track future amendments to the standard. Characters currently listed in this Annex will not be removed from 
the recommended extended repertoire in future revisions. However, the use of some characters may be discouraged. 

The character repertoire listed in this annex should be conceived of as a recommendation for the minimum extended 
repertoire for use in user-defined identifiers. Each programming language standard or implementation of the standard 
can extend the repertoire at the adaptation, in accordance with established practice of identifier usage for the 
language and any additional user requirements that may be present. For example, the C language should allow 
U003F LOW LINE in addition to the character repertoire listed below; COBOL should allow U002D HYPHEN-MINUS 
as well; Java allows a rather large extension to support a level 3 implementation of 10646-1. Some programming 
language standards may allow half- or full-width compatibility characters from ISO/IEC 10646-1, and some of the 
standards, e.g. COBOL, may recognize these characters in a width-insensitive manner. 

Programming language standards generally have restrictions on what characters may be allowed as the first character 
of an identifier. For example, digits are often constrained from appearing as the first character of an identifier. To 
assist in their identification, the decimal digits in ISO/IEC 10646-1 are separately noted in the list below. In addition, 
combining characters should not appear as the first character of an identifier. To maximize the chances of 
interoperability between programming languages (as for example, when linking compiled objects between languages), 
programming language standards and their implementations should follow these restrictions when making use of the 
extended repertoire for user-defined identifiers. 

The characters, recommended for identifiers in programming languages consist of the following character ranges of 
ISO/IEC 10646-1. Combining characters for scripts are separated out.   

The table shows 
-  the first and the last code point in hexadecimal form for a range of characters 
-  the General Category property of these characters (see legend below) 
-  the number of characters in this range between square brackets  
-  and the names of the first and the last character in the range. 

 

The following table will also be available in electronic form on the ITTF secure web site for downloading.  Its file name 
is TR10176-4-table.txt, the URL is http://xxxxxxxxxxxxxx/TR10176-4-table.txt (final URL to be supplied by ITTF) 
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Legend: 

The following table identifies the property of characters suitable for identifiers, as used in the Unicode Character 
Database and in the table TR10176-4-table.txt on the ITTF web site.   

 

Abbr. Description 
L& The symbol "L&" indicates characters of type Lu, Ll, or Lt (see below). 
Lu Letter, Uppercase 
Ll Letter, Lowercase 
Lt Letter, Titlecase 
Lm Letter, Modifier 
Lo Letter, Other 
Mn Mark, Non-Spacing 
Mc Mark, Spacing Combining 
Nd Number, Decimal Digit 
Nl Number, Letter 
Pc Punctuation, Connector 
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TR 10176, fourth edition - Annex A:  List of characters allowed for identifiers, based on the repertoire of 
characters in ISO/IEC 10646-1:2000 or Unicode 3.0 
 
 
This list is available electronically as “TR10176-4-table.txt” at the ITTF secure web site. 
 
# Latin 
 
0041..005A    ; L&  [26] LATIN CAPITAL LETTER A..LATIN CAPITAL LETTER Z 
0061..007A    ; L&  [26] LATIN SMALL LETTER A..LATIN SMALL LETTER Z 
00AA          ; L&       FEMININE ORDINAL INDICATOR 
00BA          ; L&       MASCULINE ORDINAL INDICATOR 
00C0..00D6    ; L&  [23] LATIN CAPITAL LETTER A WITH GRAVE..LATIN CAPITAL LETTER O WITH DIAERESIS 
00D8..00F6    ; L&  [31] LATIN CAPITAL LETTER O WITH STROKE..LATIN SMALL LETTER O WITH DIAERESIS 
00F8..01BA    ; L& [195] LATIN SMALL LETTER O WITH STROKE..LATIN SMALL LETTER EZH WITH TAIL 
01BB          ; Lo       LATIN LETTER TWO WITH STROKE 
01BC..01BF    ; L&   [4] LATIN CAPITAL LETTER TONE FIVE..LATIN LETTER WYNN 
01C0..01C3    ; Lo   [4] LATIN LETTER DENTAL CLICK..LATIN LETTER RETROFLEX CLICK 
01C4..021F    ; L&  [92] LATIN CAPITAL LETTER DZ WITH CARON..LATIN SMALL LETTER H WITH CARON 
0222..0233    ; L&  [18] LATIN CAPITAL LETTER OU..LATIN SMALL LETTER Y WITH MACRON 
0250..02AD    ; L&  [94] LATIN SMALL LETTER TURNED A..LATIN LETTER BIDENTAL PERCUSSIVE 
1E00..1E9B    ; L& [156] LATIN CAPITAL LETTER A WITH RING BELOW..LATIN SMALL LETTER LONG S WITH DOT ABOVE 
1EA0..1EF9    ; L&  [90] LATIN CAPITAL LETTER A WITH DOT BELOW..LATIN SMALL LETTER Y WITH TILDE 
207F          ; L&       SUPERSCRIPT LATIN SMALL LETTER N 
 
# Greek 
 
0386          ; L&       GREEK CAPITAL LETTER ALPHA WITH TONOS 
0388..038A    ; L&   [3] GREEK CAPITAL LETTER EPSILON WITH TONOS..GREEK CAPITAL LETTER IOTA WITH TONOS 
038C          ; L&       GREEK CAPITAL LETTER OMICRON WITH TONOS 
038E..03A1    ; L&  [20] GREEK CAPITAL LETTER UPSILON WITH TONOS..GREEK CAPITAL LETTER RHO 
03A3..03CE    ; L&  [44] GREEK CAPITAL LETTER SIGMA..GREEK SMALL LETTER OMEGA WITH TONOS 
03D0..03D7    ; L&   [8] GREEK BETA SYMBOL..GREEK KAI SYMBOL 
03DA..03F3    ; L&  [26] GREEK LETTER STIGMA..GREEK LETTER JOT 
1F00..1F15    ; L&  [22] GREEK SMALL LETTER ALPHA WITH PSILI..GREEK SMALL LETTER EPSILON WITH DASIA AND OXIA 
1F18..1F1D    ; L&   [6] GREEK CAPITAL LETTER EPSILON WITH PSILI..GREEK CAPITAL LETTER EPSILON WITH DASIA AND OXIA 
1F20..1F45    ; L&  [38] GREEK SMALL LETTER ETA WITH PSILI..GREEK SMALL LETTER OMICRON WITH DASIA AND OXIA 
1F48..1F4D    ; L&   [6] GREEK CAPITAL LETTER OMICRON WITH PSILI..GREEK CAPITAL LETTER OMICRON WITH DASIA AND OXIA 
1F50..1F57    ; L&   [8] GREEK SMALL LETTER UPSILON WITH PSILI..GREEK SMALL LETTER UPSILON WITH DASIA AND PERISPOMENI 
1F59          ; L&       GREEK CAPITAL LETTER UPSILON WITH DASIA 
1F5B          ; L&       GREEK CAPITAL LETTER UPSILON WITH DASIA AND VARIA 
1F5D          ; L&       GREEK CAPITAL LETTER UPSILON WITH DASIA AND OXIA 
1F5F..1F7D    ; L&  [31] GREEK CAPITAL LETTER UPSILON WITH DASIA AND PERISPOMENI..GREEK SMALL LETTER OMEGA WITH OXIA 
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1F80..1FB4    ; L&  [53] GREEK SMALL LETTER ALPHA WITH PSILI AND YPOGEGRAMMENI..GREEK SMALL LETTER ALPHA WITH OXIA AND 
YPOGEGRAMMENI 
1FB6..1FBC    ; L&   [7] GREEK SMALL LETTER ALPHA WITH PERISPOMENI..GREEK CAPITAL LETTER ALPHA WITH PROSGEGRAMMENI 
1FC2..1FC4    ; L&   [3] GREEK SMALL LETTER ETA WITH VARIA AND YPOGEGRAMMENI..GREEK SMALL LETTER ETA WITH OXIA AND 
YPOGEGRAMMENI 
1FC6..1FCC    ; L&   [7] GREEK SMALL LETTER ETA WITH PERISPOMENI..GREEK CAPITAL LETTER ETA WITH PROSGEGRAMMENI 
1FD0..1FD3    ; L&   [4] GREEK SMALL LETTER IOTA WITH VRACHY..GREEK SMALL LETTER IOTA WITH DIALYTIKA AND OXIA 
1FD6..1FDB    ; L&   [6] GREEK SMALL LETTER IOTA WITH PERISPOMENI..GREEK CAPITAL LETTER IOTA WITH OXIA 
1FE0..1FEC    ; L&  [13] GREEK SMALL LETTER UPSILON WITH VRACHY..GREEK CAPITAL LETTER RHO WITH DASIA 
1FF2..1FF4    ; L&   [3] GREEK SMALL LETTER OMEGA WITH VARIA AND YPOGEGRAMMENI..GREEK SMALL LETTER OMEGA WITH OXIA AND 
YPOGEGRAMMENI 
1FF6..1FFC    ; L&   [7] GREEK SMALL LETTER OMEGA WITH PERISPOMENI..GREEK CAPITAL LETTER OMEGA WITH PROSGEGRAMMENI 
 
# Cyrillic 
 
0400..0481    ; L& [130] CYRILLIC CAPITAL LETTER IE WITH GRAVE..CYRILLIC SMALL LETTER KOPPA 
048C..04C4    ; L&  [57] CYRILLIC CAPITAL LETTER SEMISOFT SIGN..CYRILLIC SMALL LETTER KA WITH HOOK 
04C7..04C8    ; L&   [2] CYRILLIC CAPITAL LETTER EN WITH HOOK..CYRILLIC SMALL LETTER EN WITH HOOK 
04CB..04CC    ; L&   [2] CYRILLIC CAPITAL LETTER KHAKASSIAN CHE..CYRILLIC SMALL LETTER KHAKASSIAN CHE 
04D0..04F5    ; L&  [38] CYRILLIC CAPITAL LETTER A WITH BREVE..CYRILLIC SMALL LETTER CHE WITH DIAERESIS 
04F8..04F9    ; L&   [2] CYRILLIC CAPITAL LETTER YERU WITH DIAERESIS..CYRILLIC SMALL LETTER YERU WITH DIAERESIS 
 
# Armenian 
 
0531..0556    ; L&  [38] ARMENIAN CAPITAL LETTER AYB..ARMENIAN CAPITAL LETTER FEH 
0561..0587    ; L&  [39] ARMENIAN SMALL LETTER AYB..ARMENIAN SMALL LIGATURE ECH YIWN 
 
# Hebrew 
 
05D0..05EA    ; Lo  [27] HEBREW LETTER ALEF..HEBREW LETTER TAV 
05F0..05F2    ; Lo   [3] HEBREW LIGATURE YIDDISH DOUBLE VAV..HEBREW LIGATURE YIDDISH DOUBLE YOD 
 
# Hebrew (combining) 
 
05B0..05B9    ; Mn  [10] HEBREW POINT SHEVA..HEBREW POINT HOLAM 
05BB..05BD    ; Mn   [3] HEBREW POINT QUBUTS..HEBREW POINT METEG 
05BF          ; Mn       HEBREW POINT RAFE 
05C1..05C2    ; Mn   [2] HEBREW POINT SHIN DOT..HEBREW POINT SIN DOT 
 
# Arabic 
 
0621..063A    ; Lo  [26] ARABIC LETTER HAMZA..ARABIC LETTER GHAIN 
0640          ; Lm       ARABIC TATWEEL 
0641..064A    ; Lo  [10] ARABIC LETTER FEH..ARABIC LETTER YEH 
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0671..06D3    ; Lo  [99] ARABIC LETTER ALEF WASLA..ARABIC LETTER YEH BARREE WITH HAMZA ABOVE 
06D5          ; Lo       ARABIC LETTER AE 
06E5..06E6    ; Lm   [2] ARABIC SMALL WAW..ARABIC SMALL YEH 
06FA..06FC    ; Lo   [3] ARABIC LETTER SHEEN WITH DOT BELOW..ARABIC LETTER GHAIN WITH DOT BELOW 
 
# Arabic (combining) 
 
064B..0652    ; Mn   [8] ARABIC FATHATAN..ARABIC SUKUN 
0670          ; Mn       ARABIC LETTER SUPERSCRIPT ALEF 
06D6..06DC    ; Mn   [7] ARABIC SMALL HIGH LIGATURE SAD WITH LAM WITH ALEF MAKSURA..ARABIC SMALL HIGH SEEN 
06E7..06E8    ; Mn   [2] ARABIC SMALL HIGH YEH..ARABIC SMALL HIGH NOON 
06EA..06ED    ; Mn   [4] ARABIC EMPTY CENTRE LOW STOP..ARABIC SMALL LOW MEEM 
 
# Syriac 
 
0710          ; Lo       SYRIAC LETTER ALAPH 
0712..072C    ; Lo  [27] SYRIAC LETTER BETH..SYRIAC LETTER TAW 
 
# Syriac (combining) 
 
0711          ; Mn       SYRIAC LETTER SUPERSCRIPT ALAPH 
 
# Thaana 
 
0780..07A5    ; Lo  [38] THAANA LETTER HAA..THAANA LETTER WAAVU 
 
# Thaana (combining) 
 
07A6..07B0    ; Mn  [11] THAANA ABAFILI..THAANA SUKUN 
 
# Devanagari 
 
0905..0939    ; Lo  [53] DEVANAGARI LETTER A..DEVANAGARI LETTER HA 
093D          ; Lo       DEVANAGARI SIGN AVAGRAHA 
0950          ; Lo       DEVANAGARI OM 
0958..0961    ; Lo  [10] DEVANAGARI LETTER QA..DEVANAGARI LETTER VOCALIC LL 
 
# Devanagari (combining) 
 
0901..0902    ; Mn   [2] DEVANAGARI SIGN CANDRABINDU..DEVANAGARI SIGN ANUSVARA 
0903          ; Mc       DEVANAGARI SIGN VISARGA 
093E..0940    ; Mc   [3] DEVANAGARI VOWEL SIGN AA..DEVANAGARI VOWEL SIGN II 
0941..0948    ; Mn   [8] DEVANAGARI VOWEL SIGN U..DEVANAGARI VOWEL SIGN AI 
0949..094C    ; Mc   [4] DEVANAGARI VOWEL SIGN CANDRA O..DEVANAGARI VOWEL SIGN AU 
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094D          ; Mn       DEVANAGARI SIGN VIRAMA 
0951..0952    ; Mn   [2] DEVANAGARI STRESS SIGN UDATTA..DEVANAGARI STRESS SIGN ANUDATTA 
0962..0963    ; Mn   [2] DEVANAGARI VOWEL SIGN VOCALIC L..DEVANAGARI VOWEL SIGN VOCALIC LL 
 
# Bengali 
 
0985..098C    ; Lo   [8] BENGALI LETTER A..BENGALI LETTER VOCALIC L 
098F..0990    ; Lo   [2] BENGALI LETTER E..BENGALI LETTER AI 
0993..09A8    ; Lo  [22] BENGALI LETTER O..BENGALI LETTER NA 
09AA..09B0    ; Lo   [7] BENGALI LETTER PA..BENGALI LETTER RA 
09B2          ; Lo       BENGALI LETTER LA 
09B6..09B9    ; Lo   [4] BENGALI LETTER SHA..BENGALI LETTER HA 
09DC..09DD    ; Lo   [2] BENGALI LETTER RRA..BENGALI LETTER RHA 
09DF..09E1    ; Lo   [3] BENGALI LETTER YYA..BENGALI LETTER VOCALIC LL 
09F0..09F1    ; Lo   [2] BENGALI LETTER RA WITH MIDDLE DIAGONAL..BENGALI LETTER RA WITH LOWER DIAGONAL 
 
# Bengali (combining) 
 
0981          ; Mn       BENGALI SIGN CANDRABINDU 
0982..0983    ; Mc   [2] BENGALI SIGN ANUSVARA..BENGALI SIGN VISARGA 
09BE..09C0    ; Mc   [3] BENGALI VOWEL SIGN AA..BENGALI VOWEL SIGN II 
09C1..09C4    ; Mn   [4] BENGALI VOWEL SIGN U..BENGALI VOWEL SIGN VOCALIC RR 
09C7..09C8    ; Mc   [2] BENGALI VOWEL SIGN E..BENGALI VOWEL SIGN AI 
09CB..09CC    ; Mc   [2] BENGALI VOWEL SIGN O..BENGALI VOWEL SIGN AU 
09CD          ; Mn       BENGALI SIGN VIRAMA 
09E2..09E3    ; Mn   [2] BENGALI VOWEL SIGN VOCALIC L..BENGALI VOWEL SIGN VOCALIC LL 
 
# Gurmukhi 
 
0A05..0A0A    ; Lo   [6] GURMUKHI LETTER A..GURMUKHI LETTER UU 
0A0F..0A10    ; Lo   [2] GURMUKHI LETTER EE..GURMUKHI LETTER AI 
0A13..0A28    ; Lo  [22] GURMUKHI LETTER OO..GURMUKHI LETTER NA 
0A2A..0A30    ; Lo   [7] GURMUKHI LETTER PA..GURMUKHI LETTER RA 
0A32..0A33    ; Lo   [2] GURMUKHI LETTER LA..GURMUKHI LETTER LLA 
0A35..0A36    ; Lo   [2] GURMUKHI LETTER VA..GURMUKHI LETTER SHA 
0A38..0A39    ; Lo   [2] GURMUKHI LETTER SA..GURMUKHI LETTER HA 
0A59..0A5C    ; Lo   [4] GURMUKHI LETTER KHHA..GURMUKHI LETTER RRA 
0A5E          ; Lo       GURMUKHI LETTER FA 
0A72..0A74    ; Lo   [3] GURMUKHI IRI..GURMUKHI EK ONKAR 
 
# Gurmukhi (combining) 
 
0A02          ; Mn       GURMUKHI SIGN BINDI 
0A3E..0A40    ; Mc   [3] GURMUKHI VOWEL SIGN AA..GURMUKHI VOWEL SIGN II 
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0A41..0A42    ; Mn   [2] GURMUKHI VOWEL SIGN U..GURMUKHI VOWEL SIGN UU 
0A47..0A48    ; Mn   [2] GURMUKHI VOWEL SIGN EE..GURMUKHI VOWEL SIGN AI 
0A4B..0A4D    ; Mn   [3] GURMUKHI VOWEL SIGN OO..GURMUKHI SIGN VIRAMA 
 
# Gujarati 
 
0A85..0A8B    ; Lo   [7] GUJARATI LETTER A..GUJARATI LETTER VOCALIC R 
0A8D          ; Lo       GUJARATI VOWEL CANDRA E 
0A8F..0A91    ; Lo   [3] GUJARATI LETTER E..GUJARATI VOWEL CANDRA O 
0A93..0AA8    ; Lo  [22] GUJARATI LETTER O..GUJARATI LETTER NA 
0AAA..0AB0    ; Lo   [7] GUJARATI LETTER PA..GUJARATI LETTER RA 
0AB2..0AB3    ; Lo   [2] GUJARATI LETTER LA..GUJARATI LETTER LLA 
0AB5..0AB9    ; Lo   [5] GUJARATI LETTER VA..GUJARATI LETTER HA 
0ABD          ; Lo       GUJARATI SIGN AVAGRAHA 
0AD0          ; Lo       GUJARATI OM 
0AE0          ; Lo       GUJARATI LETTER VOCALIC RR 
 
# Gujarati (combining) 
 
0A81..0A82    ; Mn   [2] GUJARATI SIGN CANDRABINDU..GUJARATI SIGN ANUSVARA 
0A83          ; Mc       GUJARATI SIGN VISARGA 
0ABE..0AC0    ; Mc   [3] GUJARATI VOWEL SIGN AA..GUJARATI VOWEL SIGN II 
0AC1..0AC5    ; Mn   [5] GUJARATI VOWEL SIGN U..GUJARATI VOWEL SIGN CANDRA E 
0AC7..0AC8    ; Mn   [2] GUJARATI VOWEL SIGN E..GUJARATI VOWEL SIGN AI 
0AC9          ; Mc       GUJARATI VOWEL SIGN CANDRA O 
0ACB..0ACC    ; Mc   [2] GUJARATI VOWEL SIGN O..GUJARATI VOWEL SIGN AU 
0ACD          ; Mn       GUJARATI SIGN VIRAMA 
 
# Oriya 
 
0B05..0B0C    ; Lo   [8] ORIYA LETTER A..ORIYA LETTER VOCALIC L 
0B0F..0B10    ; Lo   [2] ORIYA LETTER E..ORIYA LETTER AI 
0B13..0B28    ; Lo  [22] ORIYA LETTER O..ORIYA LETTER NA 
0B2A..0B30    ; Lo   [7] ORIYA LETTER PA..ORIYA LETTER RA 
0B32..0B33    ; Lo   [2] ORIYA LETTER LA..ORIYA LETTER LLA 
0B36..0B39    ; Lo   [4] ORIYA LETTER SHA..ORIYA LETTER HA 
0B3D          ; Lo       ORIYA SIGN AVAGRAHA 
0B5C..0B5D    ; Lo   [2] ORIYA LETTER RRA..ORIYA LETTER RHA 
0B5F..0B61    ; Lo   [3] ORIYA LETTER YYA..ORIYA LETTER VOCALIC LL 
 
# Oriya (combining) 
 
0B01          ; Mn       ORIYA SIGN CANDRABINDU 
0B02..0B03    ; Mc   [2] ORIYA SIGN ANUSVARA..ORIYA SIGN VISARGA 
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0B3E          ; Mc       ORIYA VOWEL SIGN AA 
0B3F          ; Mn       ORIYA VOWEL SIGN I 
0B40          ; Mc       ORIYA VOWEL SIGN II 
0B41..0B43    ; Mn   [3] ORIYA VOWEL SIGN U..ORIYA VOWEL SIGN VOCALIC R 
0B47..0B48    ; Mc   [2] ORIYA VOWEL SIGN E..ORIYA VOWEL SIGN AI 
0B4B..0B4C    ; Mc   [2] ORIYA VOWEL SIGN O..ORIYA VOWEL SIGN AU 
0B4D          ; Mn       ORIYA SIGN VIRAMA 
 
# Tamil 
 
0B85..0B8A    ; Lo   [6] TAMIL LETTER A..TAMIL LETTER UU 
0B8E..0B90    ; Lo   [3] TAMIL LETTER E..TAMIL LETTER AI 
0B92..0B95    ; Lo   [4] TAMIL LETTER O..TAMIL LETTER KA 
0B99..0B9A    ; Lo   [2] TAMIL LETTER NGA..TAMIL LETTER CA 
0B9C          ; Lo       TAMIL LETTER JA 
0B9E..0B9F    ; Lo   [2] TAMIL LETTER NYA..TAMIL LETTER TTA 
0BA3..0BA4    ; Lo   [2] TAMIL LETTER NNA..TAMIL LETTER TA 
0BA8..0BAA    ; Lo   [3] TAMIL LETTER NA..TAMIL LETTER PA 
0BAE..0BB5    ; Lo   [8] TAMIL LETTER MA..TAMIL LETTER VA 
0BB7..0BB9    ; Lo   [3] TAMIL LETTER SSA..TAMIL LETTER HA 
 
# Tamil (combining) 
 
0B82          ; Mn       TAMIL SIGN ANUSVARA 
0B83          ; Mc       TAMIL SIGN VISARGA 
0BBE..0BBF    ; Mc   [2] TAMIL VOWEL SIGN AA..TAMIL VOWEL SIGN I 
0BC0          ; Mn       TAMIL VOWEL SIGN II 
0BC1..0BC2    ; Mc   [2] TAMIL VOWEL SIGN U..TAMIL VOWEL SIGN UU 
0BC6..0BC8    ; Mc   [3] TAMIL VOWEL SIGN E..TAMIL VOWEL SIGN AI 
0BCA..0BCC    ; Mc   [3] TAMIL VOWEL SIGN O..TAMIL VOWEL SIGN AU 
0BCD          ; Mn       TAMIL SIGN VIRAMA 
 
# Telugu 
 
0C05..0C0C    ; Lo   [8] TELUGU LETTER A..TELUGU LETTER VOCALIC L 
0C0E..0C10    ; Lo   [3] TELUGU LETTER E..TELUGU LETTER AI 
0C12..0C28    ; Lo  [23] TELUGU LETTER O..TELUGU LETTER NA 
0C2A..0C33    ; Lo  [10] TELUGU LETTER PA..TELUGU LETTER LLA 
0C35..0C39    ; Lo   [5] TELUGU LETTER VA..TELUGU LETTER HA 
0C60..0C61    ; Lo   [2] TELUGU LETTER VOCALIC RR..TELUGU LETTER VOCALIC LL 
 
# Telugu (combining) 
 
0C01..0C03    ; Mc   [3] TELUGU SIGN CANDRABINDU..TELUGU SIGN VISARGA 
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0C3E..0C40    ; Mn   [3] TELUGU VOWEL SIGN AA..TELUGU VOWEL SIGN II 
0C41..0C44    ; Mc   [4] TELUGU VOWEL SIGN U..TELUGU VOWEL SIGN VOCALIC RR 
0C46..0C48    ; Mn   [3] TELUGU VOWEL SIGN E..TELUGU VOWEL SIGN AI 
0C4A..0C4D    ; Mn   [4] TELUGU VOWEL SIGN O..TELUGU SIGN VIRAMA 
 
# Kannada 
 
0C85..0C8C    ; Lo   [8] KANNADA LETTER A..KANNADA LETTER VOCALIC L 
0C8E..0C90    ; Lo   [3] KANNADA LETTER E..KANNADA LETTER AI 
0C92..0CA8    ; Lo  [23] KANNADA LETTER O..KANNADA LETTER NA 
0CAA..0CB3    ; Lo  [10] KANNADA LETTER PA..KANNADA LETTER LLA 
0CB5..0CB9    ; Lo   [5] KANNADA LETTER VA..KANNADA LETTER HA 
0CDE          ; Lo       KANNADA LETTER FA 
0CE0..0CE1    ; Lo   [2] KANNADA LETTER VOCALIC RR..KANNADA LETTER VOCALIC LL 
 
# Kannada (combining) 
 
0C82..0C83    ; Mc   [2] KANNADA SIGN ANUSVARA..KANNADA SIGN VISARGA 
0CBE          ; Mc       KANNADA VOWEL SIGN AA 
0CBF          ; Mn       KANNADA VOWEL SIGN I 
0CC0..0CC4    ; Mc   [5] KANNADA VOWEL SIGN II..KANNADA VOWEL SIGN VOCALIC RR 
0CC6          ; Mn       KANNADA VOWEL SIGN E 
0CC7..0CC8    ; Mc   [2] KANNADA VOWEL SIGN EE..KANNADA VOWEL SIGN AI 
0CCA..0CCB    ; Mc   [2] KANNADA VOWEL SIGN O..KANNADA VOWEL SIGN OO 
0CCC..0CCD    ; Mn   [2] KANNADA VOWEL SIGN AU..KANNADA SIGN VIRAMA 
 
# Malayalam 
 
0D05..0D0C    ; Lo   [8] MALAYALAM LETTER A..MALAYALAM LETTER VOCALIC L 
0D0E..0D10    ; Lo   [3] MALAYALAM LETTER E..MALAYALAM LETTER AI 
0D12..0D28    ; Lo  [23] MALAYALAM LETTER O..MALAYALAM LETTER NA 
0D2A..0D39    ; Lo  [16] MALAYALAM LETTER PA..MALAYALAM LETTER HA 
0D60..0D61    ; Lo   [2] MALAYALAM LETTER VOCALIC RR..MALAYALAM LETTER VOCALIC LL 
 
# Malayalam (combining) 
 
0D02..0D03    ; Mc   [2] MALAYALAM SIGN ANUSVARA..MALAYALAM SIGN VISARGA 
0D3E..0D40    ; Mc   [3] MALAYALAM VOWEL SIGN AA..MALAYALAM VOWEL SIGN II 
0D41..0D43    ; Mn   [3] MALAYALAM VOWEL SIGN U..MALAYALAM VOWEL SIGN VOCALIC R 
0D46..0D48    ; Mc   [3] MALAYALAM VOWEL SIGN E..MALAYALAM VOWEL SIGN AI 
0D4A..0D4C    ; Mc   [3] MALAYALAM VOWEL SIGN O..MALAYALAM VOWEL SIGN AU 
0D4D          ; Mn       MALAYALAM SIGN VIRAMA 
 
# Sinhala 
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0D85..0D96    ; Lo  [18] SINHALA LETTER AYANNA..SINHALA LETTER AUYANNA 
0D9A..0DB1    ; Lo  [24] SINHALA LETTER ALPAPRAANA KAYANNA..SINHALA LETTER DANTAJA NAYANNA 
0DB3..0DBB    ; Lo   [9] SINHALA LETTER SANYAKA DAYANNA..SINHALA LETTER RAYANNA 
0DBD          ; Lo       SINHALA LETTER DANTAJA LAYANNA 
0DC0..0DC6    ; Lo   [7] SINHALA LETTER VAYANNA..SINHALA LETTER FAYANNA 
 
# Sinhala (combining) 
 
0D82..0D83    ; Mc   [2] SINHALA SIGN ANUSVARAYA..SINHALA SIGN VISARGAYA 
0DCA          ; Mn       SINHALA SIGN AL-LAKUNA 
0DCF..0DD1    ; Mc   [3] SINHALA VOWEL SIGN AELA-PILLA..SINHALA VOWEL SIGN DIGA AEDA-PILLA 
0DD2..0DD4    ; Mn   [3] SINHALA VOWEL SIGN KETTI IS-PILLA..SINHALA VOWEL SIGN KETTI PAA-PILLA 
0DD6          ; Mn       SINHALA VOWEL SIGN DIGA PAA-PILLA 
0DD8..0DDF    ; Mc   [8] SINHALA VOWEL SIGN GAETTA-PILLA..SINHALA VOWEL SIGN GAYANUKITTA 
0DF2..0DF3    ; Mc   [2] SINHALA VOWEL SIGN DIGA GAETTA-PILLA..SINHALA VOWEL SIGN DIGA GAYANUKITTA 
 
# Thai 
 
0E01..0E30    ; Lo  [48] THAI CHARACTER KO KAI..THAI CHARACTER SARA A 
0E32..0E33    ; Lo   [2] THAI CHARACTER SARA AA..THAI CHARACTER SARA AM 
0E40..0E45    ; Lo   [6] THAI CHARACTER SARA E..THAI CHARACTER LAKKHANGYAO 
0E46          ; Lm       THAI CHARACTER MAIYAMOK 
 
# Thai (combining) 
 
0E31          ; Mn       THAI CHARACTER MAI HAN-AKAT 
0E34..0E3A    ; Mn   [7] THAI CHARACTER SARA I..THAI CHARACTER PHINTHU 
0E47..0E4E    ; Mn   [8] THAI CHARACTER MAITAIKHU..THAI CHARACTER YAMAKKAN 
 
# Lao 
 
0E81..0E82    ; Lo   [2] LAO LETTER KO..LAO LETTER KHO SUNG 
0E84          ; Lo       LAO LETTER KHO TAM 
0E87..0E88    ; Lo   [2] LAO LETTER NGO..LAO LETTER CO 
0E8A          ; Lo       LAO LETTER SO TAM 
0E8D          ; Lo       LAO LETTER NYO 
0E94..0E97    ; Lo   [4] LAO LETTER DO..LAO LETTER THO TAM 
0E99..0E9F    ; Lo   [7] LAO LETTER NO..LAO LETTER FO SUNG 
0EA1..0EA3    ; Lo   [3] LAO LETTER MO..LAO LETTER LO LING 
0EA5          ; Lo       LAO LETTER LO LOOT 
0EA7          ; Lo       LAO LETTER WO 
0EAA..0EAB    ; Lo   [2] LAO LETTER SO SUNG..LAO LETTER HO SUNG 
0EAD..0EB0    ; Lo   [4] LAO LETTER O..LAO VOWEL SIGN A 
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0EB2..0EB3    ; Lo   [2] LAO VOWEL SIGN AA..LAO VOWEL SIGN AM 
0EBD          ; Lo       LAO SEMIVOWEL SIGN NYO 
0EC0..0EC4    ; Lo   [5] LAO VOWEL SIGN E..LAO VOWEL SIGN AI 
0EC6          ; Lm       LAO KO LA 
0EDC..0EDD    ; Lo   [2] LAO HO NO..LAO HO MO 
 
# Lao (combining) 
 
0EB1          ; Mn       LAO VOWEL SIGN MAI KAN 
0EB4..0EB9    ; Mn   [6] LAO VOWEL SIGN I..LAO VOWEL SIGN UU 
0EBB..0EBC    ; Mn   [2] LAO VOWEL SIGN MAI KON..LAO SEMIVOWEL SIGN LO 
0EC8..0ECD    ; Mn   [6] LAO TONE MAI EK..LAO NIGGAHITA 
 
# Tibetan 
 
0F00          ; Lo       TIBETAN SYLLABLE OM 
0F40..0F47    ; Lo   [8] TIBETAN LETTER KA..TIBETAN LETTER JA 
0F49..0F6A    ; Lo  [34] TIBETAN LETTER NYA..TIBETAN LETTER FIXED-FORM RA 
0F88..0F8B    ; Lo   [4] TIBETAN SIGN LCE TSA CAN..TIBETAN SIGN GRU MED RGYINGS 
 
# Tibetan (combining) 
 
0F18..0F19    ; Mn   [2] TIBETAN ASTROLOGICAL SIGN -KHYUD PA..TIBETAN ASTROLOGICAL SIGN SDONG TSHUGS 
0F35          ; Mn       TIBETAN MARK NGAS BZUNG NYI ZLA 
0F37          ; Mn       TIBETAN MARK NGAS BZUNG SGOR RTAGS 
0F39          ; Mn       TIBETAN MARK TSA -PHRU 
0F71..0F7E    ; Mn  [14] TIBETAN VOWEL SIGN AA..TIBETAN SIGN RJES SU NGA RO 
0F7F          ; Mc       TIBETAN SIGN RNAM BCAD 
0F80..0F84    ; Mn   [5] TIBETAN VOWEL SIGN REVERSED I..TIBETAN MARK HALANTA 
0F86..0F87    ; Mn   [2] TIBETAN SIGN LCI RTAGS..TIBETAN SIGN YANG RTAGS 
0F90..0F97    ; Mn   [8] TIBETAN SUBJOINED LETTER KA..TIBETAN SUBJOINED LETTER JA 
0F99..0FBC    ; Mn  [36] TIBETAN SUBJOINED LETTER NYA..TIBETAN SUBJOINED LETTER FIXED-FORM RA 
 
# Myanmar 
 
1000..1021    ; Lo  [34] MYANMAR LETTER KA..MYANMAR LETTER A 
1023..1027    ; Lo   [5] MYANMAR LETTER I..MYANMAR LETTER E 
1029..102A    ; Lo   [2] MYANMAR LETTER O..MYANMAR LETTER AU 
1050..1055    ; Lo   [6] MYANMAR LETTER SHA..MYANMAR LETTER VOCALIC LL 
 
# Myanmar (combining) 
 
102C          ; Mc       MYANMAR VOWEL SIGN AA 
102D..1030    ; Mn   [4] MYANMAR VOWEL SIGN I..MYANMAR VOWEL SIGN UU 
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1031          ; Mc       MYANMAR VOWEL SIGN E 
1032          ; Mn       MYANMAR VOWEL SIGN AI 
1036..1037    ; Mn   [2] MYANMAR SIGN ANUSVARA..MYANMAR SIGN DOT BELOW 
1038          ; Mc       MYANMAR SIGN VISARGA 
1039          ; Mn       MYANMAR SIGN VIRAMA 
1056..1057    ; Mc   [2] MYANMAR VOWEL SIGN VOCALIC R..MYANMAR VOWEL SIGN VOCALIC RR 
1058..1059    ; Mn   [2] MYANMAR VOWEL SIGN VOCALIC L..MYANMAR VOWEL SIGN VOCALIC LL 
 
# Georgian 
 
10A0..10C5    ; L&  [38] GEORGIAN CAPITAL LETTER AN..GEORGIAN CAPITAL LETTER HOE 
10D0..10F6    ; Lo  [39] GEORGIAN LETTER AN..GEORGIAN LETTER FI 
 
# Ethiopic 
 
1200..1206    ; Lo   [7] ETHIOPIC SYLLABLE HA..ETHIOPIC SYLLABLE HO 
1208..1246    ; Lo  [63] ETHIOPIC SYLLABLE LA..ETHIOPIC SYLLABLE QO 
1248          ; Lo       ETHIOPIC SYLLABLE QWA 
124A..124D    ; Lo   [4] ETHIOPIC SYLLABLE QWI..ETHIOPIC SYLLABLE QWE 
1250..1256    ; Lo   [7] ETHIOPIC SYLLABLE QHA..ETHIOPIC SYLLABLE QHO 
1258          ; Lo       ETHIOPIC SYLLABLE QHWA 
125A..125D    ; Lo   [4] ETHIOPIC SYLLABLE QHWI..ETHIOPIC SYLLABLE QHWE 
1260..1286    ; Lo  [39] ETHIOPIC SYLLABLE BA..ETHIOPIC SYLLABLE XO 
1288          ; Lo       ETHIOPIC SYLLABLE XWA 
128A..128D    ; Lo   [4] ETHIOPIC SYLLABLE XWI..ETHIOPIC SYLLABLE XWE 
1290..12AE    ; Lo  [31] ETHIOPIC SYLLABLE NA..ETHIOPIC SYLLABLE KO 
12B0          ; Lo       ETHIOPIC SYLLABLE KWA 
12B2..12B5    ; Lo   [4] ETHIOPIC SYLLABLE KWI..ETHIOPIC SYLLABLE KWE 
12B8..12BE    ; Lo   [7] ETHIOPIC SYLLABLE KXA..ETHIOPIC SYLLABLE KXO 
12C0          ; Lo       ETHIOPIC SYLLABLE KXWA 
12C2..12C5    ; Lo   [4] ETHIOPIC SYLLABLE KXWI..ETHIOPIC SYLLABLE KXWE 
12C8..12CE    ; Lo   [7] ETHIOPIC SYLLABLE WA..ETHIOPIC SYLLABLE WO 
12D0..12D6    ; Lo   [7] ETHIOPIC SYLLABLE PHARYNGEAL A..ETHIOPIC SYLLABLE PHARYNGEAL O 
12D8..12EE    ; Lo  [23] ETHIOPIC SYLLABLE ZA..ETHIOPIC SYLLABLE YO 
12F0..130E    ; Lo  [31] ETHIOPIC SYLLABLE DA..ETHIOPIC SYLLABLE GO 
1310          ; Lo       ETHIOPIC SYLLABLE GWA 
1312..1315    ; Lo   [4] ETHIOPIC SYLLABLE GWI..ETHIOPIC SYLLABLE GWE 
1318..131E    ; Lo   [7] ETHIOPIC SYLLABLE GGA..ETHIOPIC SYLLABLE GGO 
1320..1346    ; Lo  [39] ETHIOPIC SYLLABLE THA..ETHIOPIC SYLLABLE TZO 
1348..135A    ; Lo  [19] ETHIOPIC SYLLABLE FA..ETHIOPIC SYLLABLE FYA 
 
# Cherokee 
 
13A0..13F4    ; Lo  [85] CHEROKEE LETTER A..CHEROKEE LETTER YV 
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# Canadian Aboriginal Syllabics 
 
1401..166C    ; Lo [620] CANADIAN SYLLABICS E..CANADIAN SYLLABICS CARRIER TTSA 
166F..1676    ; Lo   [8] CANADIAN SYLLABICS QAI..CANADIAN SYLLABICS NNGAA 
 
# Ogham 
 
1681..169A    ; Lo  [26] OGHAM LETTER BEITH..OGHAM LETTER PEITH 
 
# Runic 
 
16A0..16EA    ; Lo  [75] RUNIC LETTER FEHU FEOH FE F..RUNIC LETTER X 
16EE..16F0    ; Nl   [3] RUNIC ARLAUG SYMBOL..RUNIC BELGTHOR SYMBOL 
 
# Khmer 
 
1780..17B3    ; Lo  [52] KHMER LETTER KA..KHMER INDEPENDENT VOWEL QAU 
 
# Khmer (combining) 
 
17B4..17B6    ; Mc   [3] KHMER VOWEL INHERENT AQ..KHMER VOWEL SIGN AA 
17B7..17BD    ; Mn   [7] KHMER VOWEL SIGN I..KHMER VOWEL SIGN UA 
17BE..17C5    ; Mc   [8] KHMER VOWEL SIGN OE..KHMER VOWEL SIGN AU 
17C6          ; Mn       KHMER SIGN NIKAHIT 
17C7..17C8    ; Mc   [2] KHMER SIGN REAHMUK..KHMER SIGN YUUKALEAPINTU 
17C9..17D3    ; Mn  [11] KHMER SIGN MUUSIKATOAN..KHMER SIGN BATHAMASAT 
 
# Mongolian 
 
1820..1842    ; Lo  [35] MONGOLIAN LETTER A..MONGOLIAN LETTER CHI 
1843          ; Lm       MONGOLIAN LETTER TODO LONG VOWEL SIGN 
1844..1877    ; Lo  [52] MONGOLIAN LETTER TODO E..MONGOLIAN LETTER MANCHU ZHA 
1880..18A8    ; Lo  [41] MONGOLIAN LETTER ALI GALI ANUSVARA ONE..MONGOLIAN LETTER MANCHU ALI GALI BHA 
 
# Mongolian (combining) 
 
18A9          ; Mn       MONGOLIAN LETTER ALI GALI DAGALGA 
 
# Hiragana 
 
3041..3094    ; Lo  [84] HIRAGANA LETTER SMALL A..HIRAGANA LETTER VU 
 
# Katakana 
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30A1..30FA    ; Lo  [90] KATAKANA LETTER SMALL A..KATAKANA LETTER VO 
30FB          ; Pc       KATAKANA MIDDLE DOT 
30FC          ; Lm       KATAKANA-HIRAGANA PROLONGED SOUND MARK 
 
# Bopomofo 
 
3105..312C    ; Lo  [40] BOPOMOFO LETTER B..BOPOMOFO LETTER GN 
31A0..31B7    ; Lo  [24] BOPOMOFO LETTER BU..BOPOMOFO FINAL LETTER H 
 
# CJK Unified Ideographs 
 
3400..4DB5    ; Lo [6582] CJK UNIFIED IDEOGRAPH-3400..CJK UNIFIED IDEOGRAPH-4DB5 
4E00..9FA5    ; Lo [20902] CJK UNIFIED IDEOGRAPH-4E00..CJK UNIFIED IDEOGRAPH-9FA5 
FA0E..FA0F    ; Lo   [2] CJK COMPATIBILITY IDEOGRAPH-FA0E..CJK COMPATIBILITY IDEOGRAPH-FA0F 
FA11          ; Lo       CJK COMPATIBILITY IDEOGRAPH-FA11 
FA13..FA14    ; Lo   [2] CJK COMPATIBILITY IDEOGRAPH-FA13..CJK COMPATIBILITY IDEOGRAPH-FA14 
FA1F          ; Lo       CJK COMPATIBILITY IDEOGRAPH-FA1F 
FA21          ; Lo       CJK COMPATIBILITY IDEOGRAPH-FA21 
FA23..FA24    ; Lo   [2] CJK COMPATIBILITY IDEOGRAPH-FA23..CJK COMPATIBILITY IDEOGRAPH-FA24 
FA27..FA29    ; Lo   [3] CJK COMPATIBILITY IDEOGRAPH-FA27..CJK COMPATIBILITY IDEOGRAPH-FA29 
 
# Yi 
 
A000..A48C    ; Lo [1165] YI SYLLABLE IT..YI SYLLABLE YYR 
 
# Hangul 
 
AC00..D7A3    ; Lo [11172] HANGUL SYLLABLE GA..HANGUL SYLLABLE HIH 
 
# Digits 
 
0030..0039    ; Nd  [10] DIGIT ZERO..DIGIT NINE 
0660..0669    ; Nd  [10] ARABIC-INDIC DIGIT ZERO..ARABIC-INDIC DIGIT NINE 
06F0..06F9    ; Nd  [10] EXTENDED ARABIC-INDIC DIGIT ZERO..EXTENDED ARABIC-INDIC DIGIT NINE 
0966..096F    ; Nd  [10] DEVANAGARI DIGIT ZERO..DEVANAGARI DIGIT NINE 
09E6..09EF    ; Nd  [10] BENGALI DIGIT ZERO..BENGALI DIGIT NINE 
0A66..0A6F    ; Nd  [10] GURMUKHI DIGIT ZERO..GURMUKHI DIGIT NINE 
0AE6..0AEF    ; Nd  [10] GUJARATI DIGIT ZERO..GUJARATI DIGIT NINE 
0B66..0B6F    ; Nd  [10] ORIYA DIGIT ZERO..ORIYA DIGIT NINE 
0BE7..0BEF    ; Nd   [9] TAMIL DIGIT ONE..TAMIL DIGIT NINE 
0C66..0C6F    ; Nd  [10] TELUGU DIGIT ZERO..TELUGU DIGIT NINE 
0CE6..0CEF    ; Nd  [10] KANNADA DIGIT ZERO..KANNADA DIGIT NINE 
0D66..0D6F    ; Nd  [10] MALAYALAM DIGIT ZERO..MALAYALAM DIGIT NINE 
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0E50..0E59    ; Nd  [10] THAI DIGIT ZERO..THAI DIGIT NINE 
0ED0..0ED9    ; Nd  [10] LAO DIGIT ZERO..LAO DIGIT NINE 
0F20..0F29    ; Nd  [10] TIBETAN DIGIT ZERO..TIBETAN DIGIT NINE 
1040..1049    ; Nd  [10] MYANMAR DIGIT ZERO..MYANMAR DIGIT NINE 
1369..1371    ; Nd   [9] ETHIOPIC DIGIT ONE..ETHIOPIC DIGIT NINE 
17E0..17E9    ; Nd  [10] KHMER DIGIT ZERO..KHMER DIGIT NINE 
1810..1819    ; Nd  [10] MONGOLIAN DIGIT ZERO..MONGOLIAN DIGIT NINE 
 
# Special characters 
 
00B5          ; L&       MICRO SIGN 
02B0..02B8    ; Lm   [9] MODIFIER LETTER SMALL H..MODIFIER LETTER SMALL Y 
02BB..02C1    ; Lm   [7] MODIFIER LETTER TURNED COMMA..MODIFIER LETTER REVERSED GLOTTAL STOP 
02D0..02D1    ; Lm   [2] MODIFIER LETTER TRIANGULAR COLON..MODIFIER LETTER HALF TRIANGULAR COLON 
02E0..02E4    ; Lm   [5] MODIFIER LETTER SMALL GAMMA..MODIFIER LETTER SMALL REVERSED GLOTTAL STOP 
02EE          ; Lm       MODIFIER LETTER DOUBLE APOSTROPHE 
037A          ; Lm       GREEK YPOGEGRAMMENI 
0559          ; Lm       ARMENIAN MODIFIER LETTER LEFT HALF RING 
1FBE          ; L&       GREEK PROSGEGRAMMENI 
203F..2040    ; Pc   [2] UNDERTIE..CHARACTER TIE 
2102          ; L&       DOUBLE-STRUCK CAPITAL C 
2107          ; L&       EULER CONSTANT 
210A..2113    ; L&  [10] SCRIPT SMALL G..SCRIPT SMALL L 
2115          ; L&       DOUBLE-STRUCK CAPITAL N 
2119..211D    ; L&   [5] DOUBLE-STRUCK CAPITAL P..DOUBLE-STRUCK CAPITAL R 
2124          ; L&       DOUBLE-STRUCK CAPITAL Z 
2126          ; L&       OHM SIGN 
2128          ; L&       BLACK-LETTER CAPITAL Z 
212A..212D    ; L&   [4] KELVIN SIGN..BLACK-LETTER CAPITAL C 
212F..2131    ; L&   [3] SCRIPT SMALL E..SCRIPT CAPITAL F 
2133..2134    ; L&   [2] SCRIPT CAPITAL M..SCRIPT SMALL O 
2135..2138    ; Lo   [4] ALEF SYMBOL..DALET SYMBOL 
2139          ; L&       INFORMATION SOURCE 
2160..2183    ; Nl  [36] ROMAN NUMERAL ONE..ROMAN NUMERAL REVERSED ONE HUNDRED 
3005          ; Lm       IDEOGRAPHIC ITERATION MARK 
3006          ; Lo       IDEOGRAPHIC CLOSING MARK 
3007          ; Nl       IDEOGRAPHIC NUMBER ZERO 
3021..3029    ; Nl   [9] HANGZHOU NUMERAL ONE..HANGZHOU NUMERAL NINE 
3038..303A    ; Nl   [3] HANGZHOU NUMERAL TEN..HANGZHOU NUMERAL THIRTY 
 
********************************************************************************* 
 
# In addition to the above defined list, the Unicode Consortium 
# definition of the ID_Continue property also contains the following 
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# list of characters. 
# 
# ID_Continue is a derived property defined as all characters having 
# the ID_Start property (= Lu+Ll+Lt+Lm+Lo+Nl) plus all characters 
# having a Mn, Mc, Nd, or Pc general category property value. 
# 
# These characters are not included in the main listing for Annex A 
# for several reasons: 
#  1. They may imply Level 3 implementations of combining marks in 10646, 
#        which requires normalization for unique representation. 
#  2. They may consist of compatibility presentation forms. 
#  3. They may be compatibility CJK characters (i.e., compatibility duplicates). 
#  4. They may be special cases (e.g. U+005F LOW LINE). 
 
005F          ; Pc       LOW LINE 
0300..034E    ; Mn  [79] COMBINING GRAVE ACCENT..COMBINING UPWARDS ARROW BELOW 
0360..0362    ; Mn   [3] COMBINING DOUBLE TILDE..COMBINING DOUBLE RIGHTWARDS ARROW BELOW 
0483..0486    ; Mn   [4] COMBINING CYRILLIC TITLO..COMBINING CYRILLIC PSILI PNEUMATA 
0591..05A1    ; Mn  [17] HEBREW ACCENT ETNAHTA..HEBREW ACCENT PAZER 
05A3..05AF    ; Mn  [13] HEBREW ACCENT MUNAH..HEBREW MARK MASORA CIRCLE 
05C4          ; Mn       HEBREW MARK UPPER DOT 
0653..0655    ; Mn   [3] ARABIC MADDAH ABOVE..ARABIC HAMZA BELOW 
06DF..06E4    ; Mn   [6] ARABIC SMALL HIGH ROUNDED ZERO..ARABIC SMALL HIGH MADDA 
0730..074A    ; Mn  [27] SYRIAC PTHAHA ABOVE..SYRIAC BARREKH 
093C          ; Mn       DEVANAGARI SIGN NUKTA 
0953..0954    ; Mn   [2] DEVANAGARI GRAVE ACCENT..DEVANAGARI ACUTE ACCENT 
09BC          ; Mn       BENGALI SIGN NUKTA 
09D7          ; Mc       BENGALI AU LENGTH MARK 
0A3C          ; Mn       GURMUKHI SIGN NUKTA 
0A70..0A71    ; Mn   [2] GURMUKHI TIPPI..GURMUKHI ADDAK 
0ABC          ; Mn       GUJARATI SIGN NUKTA 
0B3C          ; Mn       ORIYA SIGN NUKTA 
0B56          ; Mn       ORIYA AI LENGTH MARK 
0B57          ; Mc       ORIYA AU LENGTH MARK 
0BD7          ; Mc       TAMIL AU LENGTH MARK 
0C55..0C56    ; Mn   [2] TELUGU LENGTH MARK..TELUGU AI LENGTH MARK 
0CD5..0CD6    ; Mc   [2] KANNADA LENGTH MARK..KANNADA AI LENGTH MARK 
0D57          ; Mc       MALAYALAM AU LENGTH MARK 
0F3E..0F3F    ; Mc   [2] TIBETAN SIGN YAR TSHES..TIBETAN SIGN MAR TSHES 
0FC6          ; Mn       TIBETAN SYMBOL PADMA GDAN 
1100..1159    ; Lo  [90] HANGUL CHOSEONG KIYEOK..HANGUL CHOSEONG YEORINHIEUH 
115F..11A2    ; Lo  [68] HANGUL CHOSEONG FILLER..HANGUL JUNGSEONG SSANGARAEA 
11A8..11F9    ; Lo  [82] HANGUL JONGSEONG KIYEOK..HANGUL JONGSEONG YEORINHIEUH 
20D0..20DC    ; Mn  [13] COMBINING LEFT HARPOON ABOVE..COMBINING FOUR DOTS ABOVE 
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20E1          ; Mn       COMBINING LEFT RIGHT ARROW ABOVE 
302A..302F    ; Mn   [6] IDEOGRAPHIC LEVEL TONE MARK..HANGUL DOUBLE DOT TONE MARK 
3031..3035    ; Lm   [5] VERTICAL KANA REPEAT MARK..VERTICAL KANA REPEAT MARK LOWER HALF 
3099..309A    ; Mn   [2] COMBINING KATAKANA-HIRAGANA VOICED SOUND MARK..COMBINING KATAKANA-HIRAGANA SEMI-VOICED SOUND MARK 
309D..309E    ; Lm   [2] HIRAGANA ITERATION MARK..HIRAGANA VOICED ITERATION MARK 
30FD..30FE    ; Lm   [2] KATAKANA ITERATION MARK..KATAKANA VOICED ITERATION MARK 
3131..318E    ; Lo  [94] HANGUL LETTER KIYEOK..HANGUL LETTER ARAEAE 
F900..FA0D    ; Lo [269] CJK COMPATIBILITY IDEOGRAPH-F900..CJK COMPATIBILITY IDEOGRAPH-FA0D 
FA10          ; Lo       CJK COMPATIBILITY IDEOGRAPH-FA10 
FA12          ; Lo       CJK COMPATIBILITY IDEOGRAPH-FA12 
FA13..FA1E    ; Lo  [12] CJK COMPATIBILITY IDEOGRAPH-FA13..CJK COMPATIBILITY IDEOGRAPH-FA1E 
FA20          ; Lo       CJK COMPATIBILITY IDEOGRAPH-FA20 
FA22          ; Lo       CJK COMPATIBILITY IDEOGRAPH-FA22 
FA25..FA26    ; Lo   [2] CJK COMPATIBILITY IDEOGRAPH-FA25..CJK COMPATIBILITY IDEOGRAPH-FA26 
F92A..FA2D    ; Lo   [4] CJK COMPATIBILITY IDEOGRAPH-FA2A..CJK COMPATIBILITY IDEOGRAPH-FA2D 
FB00..FB06    ; L&   [7] LATIN SMALL LIGATURE FF..LATIN SMALL LIGATURE ST 
FB13..FB17    ; L&   [5] ARMENIAN SMALL LIGATURE MEN NOW..ARMENIAN SMALL LIGATURE MEN XEH 
FB1D          ; Lo       HEBREW LETTER YOD WITH HIRIQ 
FB1E          ; Mn       HEBREW POINT JUDEO-SPANISH VARIKA 
FB1F..FB28    ; Lo  [10] HEBREW LIGATURE YIDDISH YOD YOD PATAH..HEBREW LETTER WIDE TAV 
FB2A..FB36    ; Lo  [13] HEBREW LETTER SHIN WITH SHIN DOT..HEBREW LETTER ZAYIN WITH DAGESH 
FB38..FB3C    ; Lo   [5] HEBREW LETTER TET WITH DAGESH..HEBREW LETTER LAMED WITH DAGESH 
FB3E          ; Lo       HEBREW LETTER MEM WITH DAGESH 
FB40..FB41    ; Lo   [2] HEBREW LETTER NUN WITH DAGESH..HEBREW LETTER SAMEKH WITH DAGESH 
FB43..FB44    ; Lo   [2] HEBREW LETTER FINAL PE WITH DAGESH..HEBREW LETTER PE WITH DAGESH 
FB46..FBB1    ; Lo [108] HEBREW LETTER TSADI WITH DAGESH..ARABIC LETTER YEH BARREE WITH HAMZA ABOVE FINAL FORM 
FBD3..FD3D    ; Lo [363] ARABIC LETTER NG ISOLATED FORM..ARABIC LIGATURE ALEF WITH FATHATAN ISOLATED FORM 
FD50..FD8F    ; Lo  [64] ARABIC LIGATURE TEH WITH JEEM WITH MEEM INITIAL FORM..ARABIC LIGATURE MEEM WITH KHAH WITH MEEM 
INITIAL FORM 
FD92..FDC7    ; Lo  [54] ARABIC LIGATURE MEEM WITH JEEM WITH KHAH INITIAL FORM..ARABIC LIGATURE NOON WITH JEEM WITH YEH FINAL 
FORM 
FDF0..FDFB    ; Lo  [12] ARABIC LIGATURE SALLA USED AS KORANIC STOP SIGN ISOLATED FORM..ARABIC LIGATURE JALLAJALALOUHOU 
FE20..FE23    ; Mn   [4] COMBINING LIGATURE LEFT HALF..COMBINING DOUBLE TILDE RIGHT HALF 
FE33..FE34    ; Pc   [2] PRESENTATION FORM FOR VERTICAL LOW LINE..PRESENTATION FORM FOR VERTICAL WAVY LOW LINE 
FE4D..FE4F    ; Pc   [3] DASHED LOW LINE..WAVY LOW LINE 
FE70..FE72    ; Lo   [3] ARABIC FATHATAN ISOLATED FORM..ARABIC DAMMATAN ISOLATED FORM 
FE74          ; Lo       ARABIC KASRATAN ISOLATED FORM 
FE76..FEFC    ; Lo [135] ARABIC FATHA ISOLATED FORM..ARABIC LIGATURE LAM WITH ALEF FINAL FORM 
FF10..FF19    ; Nd  [10] FULLWIDTH DIGIT ZERO..FULLWIDTH DIGIT NINE 
FF21..FF3A    ; L&  [26] FULLWIDTH LATIN CAPITAL LETTER A..FULLWIDTH LATIN CAPITAL LETTER Z 
FF3F          ; Pc       FULLWIDTH LOW LINE 
FF41..FF5A    ; L&  [26] FULLWIDTH LATIN SMALL LETTER A..FULLWIDTH LATIN SMALL LETTER Z 
FF65          ; Pc       HALFWIDTH KATAKANA MIDDLE DOT 
FF66..FF6F    ; Lo  [10] HALFWIDTH KATAKANA LETTER WO..HALFWIDTH KATAKANA LETTER SMALL TU 
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FF70          ; Lm       HALFWIDTH KATAKANA-HIRAGANA PROLONGED SOUND MARK 
FF71..FF9D    ; Lo  [45] HALFWIDTH KATAKANA LETTER A..HALFWIDTH KATAKANA LETTER N 
FF9E..FF9F    ; Lm   [2] HALFWIDTH KATAKANA VOICED SOUND MARK..HALFWIDTH KATAKANA SEMI-VOICED SOUND MARK 
FFA0..FFBE    ; Lo  [31] HALFWIDTH HANGUL FILLER..HALFWIDTH HANGUL LETTER HIEUH 
FFC2..FFC7    ; Lo   [6] HALFWIDTH HANGUL LETTER A..HALFWIDTH HANGUL LETTER E 
FFCA..FFCF    ; Lo   [6] HALFWIDTH HANGUL LETTER YEO..HALFWIDTH HANGUL LETTER OE 
FFD2..FFD7    ; Lo   [6] HALFWIDTH HANGUL LETTER YO..HALFWIDTH HANGUL LETTER YU 
FFDA..FFDC    ; Lo   [3] HALFWIDTH HANGUL LETTER EU..HALFWIDTH HANGUL LETTER I 
 




