
IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

Draft Standard for Information Technology—
Portable Operating System Interface (POSIX®)

Draft Technical Standard: System Interfaces, Issue 7

Prepared by the Austin Group (www.opengroup.org/austin)

Copyright © 2006 The Institute of Electrical & Electronics Engineers, Inc.
3 Park Avenue, New York, NY 10016-5997, USA

Copyright © 2006 The Open Group
Thames Tower, Station Road, Reading, Berkshire RG1 1LX, UK

All rights reserved.

Except as permitted below, no part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form
or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior permission of the copyright
owners. This is an unapproved draft, subject to change. Permission is hereby granted for Austin Group participants to reproduce
this document for purposes of IEEE, The Open Group, and JTC1 standardization activities. Other entities seeking permission to
reproduce this document for standardization purposes or other activities must contact the copyright owners for an appropriate
license. Use of information contained within this unapproved draft is at your own risk.

Portions of this document are derived with permission from copyrighted material owned by Hewlett-Packard Company,
International Business Machines Corporation, Novell Inc., The Open Software Foundation, and Sun Microsystems, Inc.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. i

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

Abstract

This standard defines a standard operating system interface and environment, including a command interpreter (or ‘‘shell’’), and
common utility programs to support applications portability at the source code level. This standard is intended to be used by both
applications developers and system implementors and comprises four major components (each in an associated volume):

• General terms, concepts, and interfaces common to all volumes of this standard, including utility conventions and C-language
header definitions, are included in the Base Definitions volume.

• Definitions for system service functions and subroutines, language-specific system services for the C programming language,
function issues, including portability, error handling, and error recovery, are included in the System Interfaces volume.

• Definitions for a standard source code-level interface to command interpretation services (a ‘‘shell’’) and common utility
programs for application programs are included in the Shell and Utilities volume.

• Extended rationale that did not fit well into the rest of the document structure, which contains historical information
concerning the contents of this standard and why features were included or discarded by the standard developers, is included
in the Rationale (Informative) volume.

The following areas are outside the scope of this standard:

• Graphics interfaces

• Database management system interfaces

• Record I/O considerations

• Object or binary code portability

• System configuration and resource availability

This standard describes the external characteristics and facilities that are of importance to applications developers, rather than the
internal construction techniques employed to achieve these capabilities. Special emphasis is placed on those functions and facilities
that are needed in a wide variety of commercial applications.

Keywords

application program interface (API), argument, asynchronous, basic regular expression (BRE), batch job, batch system, built-in
utility, byte, child, command language interpreter, CPU, extended regular expression (ERE), FIFO, file access control mechanism,
input/output (I/O), job control, network, portable operating system interface (POSIX®), parent, shell, stream, string, synchronous,
system, thread, X/Open System Interface (XSI)

Feedback

This standard has been prepared by the Austin Group. Feedback relating to the material contained in this standard may be
submitted using the Austin Group web site at www.opengroup.org/austin/bugreport.html.

ii System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

http://www.opengroup.org/austin/bugreport.html

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

Contents

Chapter 1 Introduction ... 1
1.1 Scope ... 1
1.2 Conformance.. 1
1.3 Normative References .. 1
1.4 Change History ... 1
1.5 Terminology ... 1
1.6 Definitions.. 3
1.7 Relationship to Other Formal Standards ... 3
1.8 Portability... 3
1.8.1 Codes ... 3
1.9 Format of Entries... 10

Chapter 2 General Information ... 13
2.1 Use and Implementation of Functions... 13
2.2 The Compilation Environment ... 14
2.2.1 POSIX.1 Symbols .. 14
2.2.1.1 The _POSIX_C_SOURCE Feature Test Macro............................... 14
2.2.1.2 The _XOPEN_SOURCE Feature Test Macro 14
2.2.2 The Name Space... 15
2.3 Error Numbers... 21
2.3.1 Additional Error Numbers ... 28
2.4 Signal Concepts ... 28
2.4.1 Signal Generation and Delivery... 28
2.4.2 Realtime Signal Generation and Delivery .. 29
2.4.3 Signal Actions ... 30
2.4.4 Signal Effects on Other Functions.. 33
2.5 Standard I/O Streams .. 34
2.5.1 Interaction of File Descriptors and Standard I/O Streams 35
2.5.2 Stream Orientation and Encoding Rules .. 36
2.6 STREAMS... 38
2.6.1 Accessing STREAMS ... 39
2.7 XSI Interprocess Communication ... 39
2.7.1 IPC General Description ... 39
2.8 Realtime.. 40
2.8.1 Realtime Signals ... 41
2.8.2 Asynchronous I/O... 41
2.8.3 Memory Management ... 42
2.8.3.1 Memory Locking ... 42
2.8.3.2 Memory Mapped Files ... 43
2.8.3.3 Memory Protection ... 43
2.8.3.4 Typed Memory Objects .. 43
2.8.4 Process Scheduling... 44
2.8.5 Clocks and Timers .. 48
2.9 Threads ... 50

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. iii

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

Contents

2.9.1 Thread-Safety .. 50
2.9.2 Thread IDs... 51
2.9.3 Thread Mutexes.. 51
2.9.4 Thread Scheduling ... 52
2.9.5 Thread Cancellation... 54
2.9.5.1 Cancelability States ... 54
2.9.5.2 Cancellation Points ... 55
2.9.5.3 Thread Cancellation Cleanup Handlers .. 57
2.9.5.4 Async-Cancel Safety ... 58
2.9.6 Thread Read-Write Locks.. 58
2.9.7 Thread Interactions with Regular File Operations.......................... 59
2.9.8 Use of Application-Managed Thread Stacks.................................... 59
2.10 Sockets .. 60
2.10.1 Address Families.. 60
2.10.2 Addressing .. 60
2.10.3 Protocols .. 60
2.10.4 Routing .. 60
2.10.5 Interfaces ... 60
2.10.6 Socket Types .. 61
2.10.7 Socket I/O Mode.. 62
2.10.8 Socket Owner .. 62
2.10.9 Socket Queue Limits .. 62
2.10.10 Pending Error ... 62
2.10.11 Socket Receive Queue.. 62
2.10.12 Socket Out-of-Band Data State... 63
2.10.13 Connection Indication Queue .. 63
2.10.14 Signals.. 63
2.10.15 Asynchronous Errors ... 64
2.10.16 Use of Options .. 64
2.10.17 Use of Sockets for Local UNIX Connections 67
2.10.17.1 Headers... 67
2.10.18 Use of Sockets over Internet Protocols .. 67
2.10.19 Use of Sockets over Internet Protocols Based on IPv4.................... 68
2.10.19.1 Headers... 68
2.10.20 Use of Sockets over Internet Protocols Based on IPv6.................... 68
2.10.20.1 Addressing ... 68
2.10.20.2 Compatibility with IPv4... 69
2.10.20.3 Interface Identification ... 70
2.10.20.4 Options ... 70
2.10.20.5 Headers... 71
2.11 Tracing .. 71
2.11.1 Tracing Data Definitions ... 73
2.11.1.1 Structures .. 73
2.11.1.2 Trace Stream Attributes.. 77
2.11.2 Trace Event Type Definitions.. 77
2.11.2.1 System Trace Event Type Definitions... 77
2.11.2.2 User Trace Event Type Definitions ... 80
2.11.3 Trace Functions... 81
2.12 Data Types .. 82
2.12.1 Defined Types ... 82
2.12.2 The char Type .. 83
2.12.3 Pointer Types .. 83

iv System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

Contents

Chapter 3 System Interfaces.. 85
FD_CLR() .. 86
_Exit() .. 87
_longjmp().. 92
_tolower() ... 94
_toupper() .. 95
a64l() .. 96
abort()... 98
abs().. 100
accept() ... 101
access() ... 103
acos() .. 106
acosh() .. 108
acosl() ... 110
aio_cancel() .. 111
aio_error() .. 113
aio_fsync().. 114
aio_read() ... 116
aio_return() .. 119
aio_suspend() ... 121
aio_write().. 123
alarm().. 126
alphasort() .. 128
asctime()... 130
asin() .. 133
asinh() .. 135
asinl() ... 137
assert().. 138
atan().. 139
atan2().. 141
atanf()... 143
atanh().. 144
atanl()... 146
atexit().. 147
atof() ... 149
atoi() ... 150
atol() ... 152
basename() ... 153
bind().. 155
bsearch() ... 157
btowc() ... 160
cabs() .. 161
cacos()... 162
cacosh()... 163
cacosl() ... 164
calloc() .. 165
carg() .. 167
casin()... 168
casinh()... 169
casinl() ... 170
catan() .. 171
catanh() .. 172

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. v

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

Contents

catanl() ... 173
catclose()... 174
catgets().. 175
catopen()... 177
cbrt()... 179
ccos() .. 180
ccosh() .. 181
ccosl() ... 182
ceil() ... 183
cexp().. 185
cfgetispeed() ... 186
cfgetospeed()... 188
cfsetispeed() .. 189
cfsetospeed() ... 190
chdir()... 191
chmod() .. 193
chown() .. 197
cimag() ... 201
clearerr()... 202
clock() ... 203
clock_getcpuclockid() ... 204
clock_getres() ... 205
clock_nanosleep() ... 208
clock_settime() ... 211
clog() .. 212
close() ... 213
closedir()... 216
closelog() .. 218
confstr().. 222
conj() .. 225
connect()... 226
copysign()... 229
cos() .. 230
cosh() .. 232
cosl()... 234
cpow()... 235
cproj() ... 236
creal() ... 237
creat() ... 238
crypt() .. 240
csin() .. 242
csinh() .. 243
csinl() ... 244
csqrt() ... 245
ctan() .. 246
ctanh() .. 247
ctanl()... 248
ctermid()... 249
ctime() .. 251
daylight ... 253
dbm_clearerr().. 254
difftime() .. 258

vi System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

Contents

dirfd() ... 259
dirname().. 261
div().. 263
dlclose() .. 264
dlerror() .. 266
dlopen() .. 268
dlsym() ... 271
dprintf().. 273
drand48() ... 274
dup()... 277
duplocale().. 279
encrypt()... 281
endgrent()... 283
endhostent() ... 285
endnetent() ... 287
endprotoent().. 289
endpwent() ... 291
endservent() ... 293
endutxent() .. 295
environ .. 298
erand48().. 299
erf()... 300
erfc() ... 302
erff().. 304
errno .. 305
exec ... 307
exit() ... 319
exp() ... 320
exp2() ... 322
expm1() .. 324
fabs()... 326
faccessat() ... 328
fattach() .. 329
fchdir() ... 332
fchmod() ... 333
fchmodat() .. 335
fchown() ... 336
fchownat() .. 338
fclose() .. 339
fcntl() ... 341
fdatasync() ... 349
fdetach() ... 350
fdim().. 352
fdopen() .. 354
fdopendir().. 356
feclearexcept()... 359
fegetenv().. 360
fegetexceptflag() ... 361
fegetround().. 362
feholdexcept() ... 364
feof() ... 365
feraiseexcept()... 366

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. vii

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

Contents

ferror() .. 367
fesetenv() .. 368
fesetexceptflag().. 369
fesetround() .. 370
fetestexcept() .. 371
feupdateenv().. 373
fexecve ... 375
fflush().. 376
ffs() ... 379
fgetc() ... 380
fgetpos().. 382
fgets() ... 384
fgetwc() .. 386
fgetws() .. 388
fileno() .. 390
flockfile()... 391
floor().. 393
fma() ... 395
fmax() ... 397
fmemopen() .. 398
fmin() ... 401
fmod() ... 402
fmtmsg()... 404
fnmatch().. 407
fopen() .. 409
fork()... 413
fpathconf() .. 418
fpclassify() .. 423
fprintf() .. 424
fputc()... 436
fputs()... 438
fputwc().. 440
fputws().. 442
fread() ... 443
free() ... 445
freeaddrinfo().. 446
freelocale() .. 450
freopen() ... 452
frexp()... 456
fscanf() ... 458
fseek() ... 465
fsetpos() .. 468
fstat().. 470
fstatat()... 473
fstatvfs() ... 478
fsync() .. 481
ftell()... 483
ftok() ... 485
ftruncate() .. 487
ftrylockfile().. 489
ftw().. 490
funlockfile() .. 493

viii System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

Contents

futimesat().. 494
fwide() .. 495
fwprintf().. 496
fwrite() ... 503
fwscanf()... 505
gai_strerror().. 511
getaddrinfo() .. 512
getc() .. 513
getc_unlocked() .. 514
getchar() ... 516
getchar_unlocked()... 517
getcwd() ... 518
getdate() ... 520
getdelim() ... 525
getegid() ... 527
getenv() .. 528
geteuid() ... 531
getgid() ... 532
getgrent() ... 533
getgrgid() ... 534
getgrnam() ... 537
getgroups() ... 539
gethostent() .. 541
gethostid() .. 542
gethostname()... 543
getitimer() .. 544
getline() .. 546
getlogin().. 547
getmsg() ... 550
getnameinfo() ... 554
getnetbyaddr().. 557
getopt() ... 558
getpeername()... 563
getpgid() ... 565
getpgrp() .. 566
getpid() ... 567
getpmsg() ... 568
getppid() ... 569
getpriority().. 570
getprotobyname() ... 573
getpwent() .. 574
getpwnam() .. 575
getpwuid().. 578
getrlimit()... 581
getrusage() ... 584
gets() .. 586
getservbyname()... 588
getsid() ... 589
getsockname()... 590
getsockopt() .. 591
getsubopt() ... 594
gettimeofday() .. 598

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. ix

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

Contents

getuid()... 599
getutxent() ... 600
getwc() ... 601
getwchar() .. 602
glob() .. 603
gmtime()... 607
grantpt()... 609
hcreate().. 610
htonl() .. 613
hypot().. 614
iconv() .. 616
iconv_close()... 619
iconv_open()... 620
if_freenameindex() ... 622
if_indextoname() .. 623
if_nameindex() ... 624
if_nametoindex() .. 625
ilogb() ... 626
imaxabs().. 628
imaxdiv().. 629
inet_addr() ... 630
inet_ntop() ... 632
initstate().. 634
insque() .. 636
ioctl() .. 639
isalnum().. 650
isalpha().. 652
isascii() ... 654
isastream().. 655
isatty().. 656
isblank() ... 657
iscntrl() .. 658
isdigit()... 660
isfinite().. 662
isgraph() ... 663
isgreater() ... 665
isgreaterequal()... 666
isinf().. 667
isless() .. 668
islessequal() .. 669
islessgreater() ... 670
islower() ... 671
isnan() .. 673
isnormal()... 674
isprint() .. 675
ispunct()... 677
isspace().. 679
isunordered().. 681
isupper() ... 682
iswalnum() ... 684
iswalpha()... 686
iswblank()... 688

x System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

Contents

iswcntrl() ... 690
iswctype()... 692
iswdigit().. 694
iswgraph() .. 696
iswlower() .. 698
iswprint() ... 700
iswpunct() .. 702
iswspace()... 704
iswupper() .. 706
iswxdigit().. 708
isxdigit()... 710
j0().. 712
jrand48() .. 714
kill().. 715
killpg().. 718
l64a() .. 720
labs()... 721
lchown() ... 722
lcong48() .. 724
ldexp() .. 725
ldiv()... 727
lfind() ... 728
lgamma() .. 729
link()... 731
linkat().. 735
lio_listio() ... 736
listen() .. 740
llabs() ... 742
lldiv().. 743
llrint() .. 744
llround() ... 746
localeconv() .. 748
localtime() .. 752
lockf() ... 755
log() .. 758
log10() .. 760
log1p() .. 762
log2() .. 764
logb() .. 766
logf() ... 768
longjmp().. 769
lrand48() .. 771
lrint().. 772
lround() .. 774
lsearch().. 776
lseek() ... 778
lstat().. 780
malloc() .. 781
mblen() ... 783
mbrlen() ... 785
mbrtowc()... 787
mbsinit()... 789

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. xi

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

Contents

mbsnrtowcs() ... 790
mbsrtowcs().. 791
mbstowcs() ... 793
mbtowc() .. 795
memccpy() .. 797
memchr() .. 798
memcmp() .. 799
memcpy() ... 800
memmove()... 801
memset()... 802
mkdir() ... 803
mkdirat() .. 806
mkdtemp() .. 807
mkfifo() ... 809
mkfifoat().. 812
mknod() .. 813
mknodat() ... 817
mkstemp() .. 818
mktime() ... 819
mlock() ... 821
mlockall() ... 823
mmap() ... 825
modf() ... 833
mprotect()... 835
mq_close() .. 837
mq_getattr() ... 838
mq_notify() .. 840
mq_open() .. 842
mq_receive() ... 845
mq_send()... 848
mq_setattr() ... 850
mq_timedreceive() .. 852
mq_timedsend() ... 853
mq_unlink() ... 854
mrand48() .. 856
msgctl() .. 857
msgget() ... 859
msgrcv() ... 861
msgsnd() .. 864
msync() .. 867
munlock() ... 870
munlockall() ... 871
munmap() .. 872
nan()... 874
nanosleep() ... 875
nearbyint() ... 877
newlocale() ... 879
nextafter() .. 882
nftw() ... 884
nice() .. 888
nl_langinfo() .. 890
nrand48() ... 892

xii System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

Contents

ntohl() .. 893
open() ... 894
open_memstream()... 902
open_wmemstream() .. 904
openat() .. 905
opendir()... 906
openlog() .. 907
optarg .. 908
pathconf() ... 909
pause().. 910
pclose() ... 911
perror() ... 913
pipe() .. 915
poll() ... 917
popen() ... 921
posix_fadvise() ... 924
posix_fallocate() ... 926
posix_madvise() ... 928
posix_mem_offset() .. 930
posix_memalign() .. 932
posix_openpt().. 933
posix_spawn() .. 935
posix_spawn_file_actions_addclose() .. 943
posix_spawn_file_actions_adddup2().. 946
posix_spawn_file_actions_addopen() .. 948
posix_spawn_file_actions_destroy() .. 949
posix_spawnattr_destroy() .. 950
posix_spawnattr_getflags().. 952
posix_spawnattr_getpgroup().. 954
posix_spawnattr_getschedparam() .. 956
posix_spawnattr_getschedpolicy()... 958
posix_spawnattr_getsigdefault() ... 960
posix_spawnattr_getsigmask() .. 962
posix_spawnattr_init() .. 964
posix_spawnattr_setflags() .. 965
posix_spawnattr_setpgroup() .. 966
posix_spawnattr_setschedparam()... 967
posix_spawnattr_setschedpolicy() ... 968
posix_spawnattr_setsigdefault().. 969
posix_spawnattr_setsigmask()... 970
posix_spawnp() .. 971
posix_trace_attr_destroy() ... 972
posix_trace_attr_getclockres() ... 974
posix_trace_attr_getinherited() ... 976
posix_trace_attr_getlogsize()... 979
posix_trace_attr_getname() ... 982
posix_trace_attr_getstreamfullpolicy().. 983
posix_trace_attr_getstreamsize() ... 984
posix_trace_attr_init()... 985
posix_trace_attr_setinherited().. 986
posix_trace_attr_setlogsize() ... 987
posix_trace_attr_setname() ... 988

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. xiii

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

Contents

posix_trace_attr_setstreamfullpolicy() .. 989
posix_trace_attr_setstreamsize() ... 990
posix_trace_clear() ... 991
posix_trace_close() ... 993
posix_trace_create() ... 995
posix_trace_event() .. 999
posix_trace_eventid_equal() .. 1001
posix_trace_eventid_open() ... 1003
posix_trace_eventset_add().. 1004
posix_trace_eventtypelist_getnext_id()... 1006
posix_trace_flush()... 1008
posix_trace_get_attr().. 1009
posix_trace_get_filter() .. 1011
posix_trace_get_status() .. 1013
posix_trace_getnext_event() .. 1014
posix_trace_open() ... 1017
posix_trace_set_filter() .. 1018
posix_trace_shutdown()... 1019
posix_trace_start() ... 1020
posix_trace_timedgetnext_event()... 1022
posix_trace_trid_eventid_open() ... 1023
posix_trace_trygetnext_event() ... 1024
posix_typed_mem_get_info()... 1025
posix_typed_mem_open() .. 1027
pow() .. 1030
pread() .. 1033
printf().. 1034
pselect() .. 1035
psiginfo() .. 1040
psignal() ... 1041
pthread_atfork() ... 1042
pthread_attr_destroy() ... 1044
pthread_attr_getdetachstate() .. 1047
pthread_attr_getguardsize() .. 1049
pthread_attr_getinheritsched() .. 1052
pthread_attr_getschedparam() ... 1054
pthread_attr_getschedpolicy() ... 1056
pthread_attr_getscope() ... 1058
pthread_attr_getstack().. 1060
pthread_attr_getstacksize().. 1062
pthread_attr_init() ... 1064
pthread_attr_setdetachstate() .. 1065
pthread_attr_setguardsize()... 1066
pthread_attr_setinheritsched()... 1067
pthread_attr_setschedparam() ... 1068
pthread_attr_setschedpolicy() .. 1069
pthread_attr_setscope().. 1070
pthread_attr_setstack() .. 1071
pthread_attr_setstacksize() .. 1072
pthread_barrier_destroy() .. 1073
pthread_barrier_wait()... 1075
pthread_barrierattr_destroy() .. 1077

xiv System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

Contents

pthread_barrierattr_getpshared()... 1079
pthread_barrierattr_init() .. 1081
pthread_barrierattr_setpshared() ... 1082
pthread_cancel()... 1083
pthread_cleanup_pop() .. 1085
pthread_cond_broadcast() .. 1090
pthread_cond_destroy() ... 1093
pthread_cond_signal() ... 1096
pthread_cond_timedwait() ... 1097
pthread_condattr_destroy() ... 1103
pthread_condattr_getclock() .. 1105
pthread_condattr_getpshared() .. 1107
pthread_condattr_init() ... 1109
pthread_condattr_setclock()... 1110
pthread_condattr_setpshared() .. 1111
pthread_create() ... 1112
pthread_detach() .. 1115
pthread_equal() .. 1117
pthread_exit()... 1118
pthread_getconcurrency() .. 1120
pthread_getcpuclockid() ... 1122
pthread_getschedparam() ... 1123
pthread_getspecific() .. 1126
pthread_join()... 1128
pthread_key_create() .. 1131
pthread_key_delete() .. 1134
pthread_kill().. 1136
pthread_mutex_consistent() .. 1137
pthread_mutex_destroy()... 1139
pthread_mutex_getprioceiling() .. 1144
pthread_mutex_init()... 1146
pthread_mutex_lock() .. 1147
pthread_mutex_setprioceiling() ... 1151
pthread_mutex_timedlock() ... 1152
pthread_mutex_trylock() ... 1155
pthread_mutexattr_destroy()... 1156
pthread_mutexattr_getprioceiling() .. 1161
pthread_mutexattr_getprotocol()... 1163
pthread_mutexattr_getpshared() ... 1166
pthread_mutexattr_getrobust() ... 1168
pthread_mutexattr_gettype()... 1170
pthread_mutexattr_init()... 1172
pthread_mutexattr_setprioceiling() ... 1173
pthread_mutexattr_setprotocol() ... 1174
pthread_mutexattr_setpshared().. 1175
pthread_mutexattr_setrobust() .. 1176
pthread_mutexattr_settype() ... 1177
pthread_once().. 1178
pthread_rwlock_destroy() .. 1180
pthread_rwlock_rdlock() .. 1183
pthread_rwlock_timedrdlock() ... 1186
pthread_rwlock_timedwrlock() .. 1188

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. xv

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

Contents

pthread_rwlock_tryrdlock() ... 1190
pthread_rwlock_trywrlock() .. 1191
pthread_rwlock_unlock() ... 1193
pthread_rwlock_wrlock() ... 1195
pthread_rwlockattr_destroy() .. 1196
pthread_rwlockattr_getpshared()... 1198
pthread_rwlockattr_init() .. 1200
pthread_rwlockattr_setpshared() ... 1201
pthread_self() ... 1202
pthread_setcancelstate()... 1203
pthread_setconcurrency() .. 1205
pthread_setschedparam() ... 1206
pthread_setschedprio() ... 1207
pthread_setspecific()... 1209
pthread_sigmask() .. 1210
pthread_spin_destroy() .. 1214
pthread_spin_lock().. 1216
pthread_spin_unlock() ... 1218
pthread_testcancel() ... 1219
ptsname() ... 1220
putc().. 1221
putc_unlocked() ... 1222
putchar() .. 1223
putchar_unlocked() .. 1224
putenv().. 1225
putmsg()... 1227
puts().. 1231
pututxline().. 1233
putwc()... 1234
putwchar() ... 1235
pwrite() .. 1236
qsort()... 1237
raise() ... 1239
rand() ... 1241
random() .. 1244
read() .. 1245
readdir() ... 1252
readlink() .. 1256
readlinkat()... 1259
readv() .. 1260
realloc() .. 1262
realpath() .. 1264
recv() .. 1266
recvfrom()... 1268
recvmsg().. 1271
regcomp() ... 1274
remainder()... 1281
remove() ... 1283
remque() ... 1285
remquo() ... 1286
rename() ... 1288
renameat() .. 1293

xvi System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

Contents

rewind().. 1294
rewinddir() ... 1295
rint()... 1296
rmdir().. 1298
round() ... 1301
scalbln().. 1303
scandir() ... 1305
scanf()... 1306
sched_get_priority_max() .. 1307
sched_getparam() ... 1308
sched_getscheduler() .. 1309
sched_rr_get_interval() ... 1310
sched_setparam() ... 1311
sched_setscheduler()... 1313
sched_yield() .. 1315
seed48() .. 1316
seekdir().. 1317
select() .. 1319
sem_close() ... 1320
sem_destroy() ... 1322
sem_getvalue() ... 1324
sem_init() ... 1326
sem_open() ... 1328
sem_post() .. 1331
sem_timedwait() .. 1333
sem_trywait()... 1335
sem_unlink() .. 1337
sem_wait().. 1339
semctl()... 1340
semget().. 1343
semop() ... 1346
send().. 1351
sendmsg() ... 1353
sendto() .. 1356
setbuf() ... 1359
setegid().. 1360
setenv()... 1361
seteuid().. 1363
setgid() ... 1364
setgrent() .. 1366
sethostent()... 1367
setitimer()... 1368
setjmp() .. 1369
setkey() ... 1371
setlocale() ... 1372
setlogmask() ... 1376
setnetent() .. 1377
setpgid() ... 1378
setpgrp() ... 1380
setpriority() .. 1381
setprotoent() ... 1382
setpwent() .. 1383

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. xvii

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

Contents

setregid() .. 1384
setreuid() .. 1386
setrlimit() ... 1388
setservent()... 1389
setsid().. 1390
setsockopt()... 1392
setstate() ... 1395
setuid() ... 1396
setutxent().. 1399
setvbuf() ... 1400
shm_open()... 1402
shm_unlink().. 1406
shmat() ... 1408
shmctl() .. 1410
shmdt() ... 1412
shmget() ... 1413
shutdown() ... 1415
sigaction() .. 1417
sigaddset() .. 1424
sigaltstack() .. 1425
sigdelset() ... 1427
sigemptyset().. 1428
sigfillset() ... 1430
sighold() ... 1431
siginterrupt() ... 1434
sigismember()... 1436
siglongjmp() ... 1437
signal() ... 1438
signbit().. 1440
sigpause() ... 1441
sigpending() ... 1442
sigprocmask() ... 1443
sigqueue()... 1444
sigrelse() ... 1446
sigsetjmp().. 1447
sigsuspend() ... 1449
sigtimedwait() .. 1451
sigwait() ... 1455
sigwaitinfo() ... 1457
sin() .. 1458
sinh() .. 1460
sinl() ... 1462
sleep() ... 1463
snprintf().. 1465
sockatmark()... 1466
socket() ... 1468
socketpair()... 1470
sprintf() .. 1472
sqrt()... 1473
srand().. 1475
srand48().. 1476
srandom() ... 1477

xviii System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

Contents

sscanf() ... 1478
stat() ... 1479
statvfs() .. 1480
stdin .. 1481
stpcpy() .. 1483
stpncpy() .. 1484
strcasecmp() ... 1485
strcat().. 1487
strchr() ... 1488
strcmp().. 1489
strcoll() ... 1491
strcpy() ... 1493
strcspn() ... 1496
strdup() .. 1497
strerror()... 1499
strfmon() .. 1501
strftime() .. 1505
strlen().. 1511
strncasecmp() ... 1513
strncat() ... 1514
strncmp() ... 1515
strncpy()... 1516
strndup() .. 1518
strnlen() ... 1519
strpbrk() ... 1520
strptime() ... 1521
strrchr().. 1526
strsignal()... 1527
strspn()... 1528
strstr() .. 1529
strtod() ... 1530
strtoimax() ... 1534
strtok().. 1535
strtol() .. 1538
strtold() .. 1540
strtoll() ... 1541
strtoul() .. 1542
strtoumax() .. 1545
strxfrm()... 1546
swab()... 1548
swprintf() ... 1549
swscanf() .. 1550
symlink() .. 1551
symlinkat() ... 1554
sync() ... 1555
sysconf() ... 1556
syslog() ... 1563
system().. 1564
tan().. 1569
tanh().. 1571
tanl() .. 1573
tcdrain() ... 1574

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. xix

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

Contents

tcflow() ... 1576
tcflush() .. 1578
tcgetattr() ... 1580
tcgetpgrp() ... 1582
tcgetsid() .. 1584
tcsendbreak() .. 1585
tcsetattr() ... 1587
tcsetpgrp() .. 1590
tdelete() .. 1592
telldir() ... 1596
tempnam().. 1597
tfind() ... 1599
tgamma().. 1600
time().. 1602
timer_create() ... 1604
timer_delete() ... 1607
timer_getoverrun() .. 1608
times() .. 1611
timezone() .. 1613
tmpfile().. 1614
tmpnam() ... 1616
toascii()... 1618
tolower() ... 1619
toupper() .. 1621
towctrans()... 1622
towlower() .. 1624
towupper().. 1626
trunc() .. 1628
truncate() ... 1629
truncf()... 1631
tsearch().. 1632
ttyname().. 1633
twalk() .. 1635
tzset() ... 1636
ulimit() ... 1638
umask() .. 1640
uname() .. 1642
ungetc() .. 1644
ungetwc() ... 1646
unlink() .. 1648
unlinkat() ... 1653
unlockpt()... 1654
unsetenv() .. 1655
uselocale()... 1656
utime().. 1658
utimes() .. 1660
va_arg() .. 1663
vfprintf() .. 1664
vfscanf() ... 1665
vfwprintf().. 1666
vfwscanf()... 1667
vprintf().. 1668

xx System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

Contents

vscanf()... 1669
vsnprintf().. 1670
vsscanf() ... 1671
vswprintf() ... 1672
vswscanf() .. 1673
vwprintf()... 1674
vwscanf().. 1675
wait().. 1676
waitid()... 1683
waitpid()... 1685
wcpcpy()... 1686
wcpncpy()... 1687
wcrtomb()... 1688
wcscasecmp().. 1690
wcscat() .. 1692
wcschr().. 1693
wcscmp() .. 1694
wcscoll() ... 1695
wcscpy() ... 1697
wcscspn() ... 1698
wcsdup()... 1699
wcsftime()... 1700
wcslen() .. 1702
wcsncasecmp() ... 1703
wcsncat() .. 1704
wcsncmp() .. 1705
wcsncpy() ... 1706
wcsnlen().. 1708
wcsnrtombs() ... 1709
wcspbrk().. 1710
wcsrchr() .. 1711
wcsrtombs().. 1712
wcsspn() ... 1714
wcsstr() .. 1715
wcstod().. 1716
wcstoimax().. 1720
wcstok() .. 1722
wcstol()... 1724
wcstold()... 1727
wcstoll() ... 1728
wcstombs() ... 1729
wcstoul() .. 1731
wcstoumax()... 1734
wcswidth() ... 1735
wcsxfrm() ... 1736
wctob() ... 1738
wctomb() .. 1739
wctrans() .. 1741
wctype() ... 1743
wcwidth() ... 1745
wmemchr() ... 1746
wmemcmp() ... 1747

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. xxi

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

Contents

wmemcpy()... 1748
wmemmove().. 1749
wmemset().. 1750
wordexp() ... 1751
wprintf()... 1755
write() .. 1756
writev() .. 1764
wscanf().. 1766
y0() ... 1767

Index .. 1769
List of Tables

2-1 Value of Level for Socket Options .. 65
2-2 Socket-Level Options .. 65
2-3 Trace Option: System Trace Events... 79
2-4 Trace and Trace Event Filter Options: System Trace Events 79
2-5 Trace and Trace Log Options: System Trace Events... 80
2-6 Trace, Trace Log, and Trace Event Filter Options: System Trace Events....... 80
2-7 Trace Option: User Trace Event... 81

xxii System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

Foreword

Structure of the Standard

Notes to Reviewers

This section with side shading will not appear in the final copy. - Ed.

This section will be completed in a later draft.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. xxiii

998

999

1000

1001

1002

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

Introduction

Note: This introduction is not part of IEEE Std 1003.1-200x, Standard for Information Technology —
Portable Operating System Interface (POSIX).

This draft standard was developed, and is maintained, by a joint working group of members of
the IEEE Portable Applications Standards Committee, members of The Open Group, and
members of ISO/IEC Joint Technical Committee 1. This joint working group is known as the
Austin Group.1

The Austin Group arose out of discussions amongst the parties which started in early 1998,
leading to an initial meeting and formation of the group in September 1998. The purpose of the
Austin Group is to develop and maintain the core open systems interfaces that are the POSIX®

1003.1 (and former 1003.2) standards, ISO/IEC 9945 Parts 1 to 4, and the core of the Single UNIX
Specification.

The approach to specification development has been one of ‘‘write once, adopt everywhere’’,
with the deliverables being a set of specifications that carry the IEEE POSIX designation, The
Open Group’s Technical Standard designation, and an ISO/IEC designation.

This unique development has combined both the industry-led efforts and the formal
standardization activities into a single initiative, and included a wide spectrum of participants.
The Austin Group continues as the maintenance body for this document.

Anyone wishing to participate in the Austin Group should contact the chair with their request.
There are no fees for participation or membership. You may participate as an observer or as a
contributor. You do not have to attend face-to-face meetings to participate; electronic
participation is most welcome. For more information on the Austin Group and how to
participate, see www.opengroup.org/austin.

Background

The developers of this standard represent a cross section of hardware manufacturers, vendors of
operating systems and other software development tools, software designers, consultants,
academics, authors, applications programmers, and others.

Conceptually, this standard describes a set of fundamental services needed for the efficient
construction of application programs. Access to these services has been provided by defining an
interface, using the C programming language, a command interpreter, and common utility
programs that establish standard semantics and syntax. Since this interface enables application
writers to write portable applications—it was developed with that goal in mind—it has been
designated POSIX,2 an acronym for Portable Operating System Interface.

Although originated to refer to the original IEEE Std 1003.1-1988, the name POSIX more
correctly refers to a family of related standards: IEEE Std 1003.n and the parts of ISO/IEC 9945.
In earlier editions of the IEEE standard, the term POSIX was used as a synonym for
IEEE Std 1003.1-1988. A preferred term, POSIX.1, emerged. This maintained the advantages of
readability of the symbol ‘‘POSIX’’ without being ambiguous with the POSIX family of

1. The Austin Group is named after the location of the inaugural meeting held at the IBM facility in Austin, Texas in September 1998.

2. The name POSIX was suggested by Richard Stallman. It is expected to be pronouncedpahz-icks, as in positive, not poh-six, or other
variations. The pronunciation has been published in an attempt to promulgate a standardized way of referring to a standard operating
system interface.

xxiv System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

http://www.opengroup.org/austin

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

Introduction

standards.

Audience

The intended audience for this standard is all persons concerned with an industry-wide
standard operating system based on the UNIX system. This includes at least four groups of
people:

1. Persons buying hardware and software systems

2. Persons managing companies that are deciding on future corporate computing directions

3. Persons implementing operating systems, and especially

4. Persons developing applications where portability is an objective

Purpose

Several principles guided the development of this standard:

• Application-Oriented

The basic goal was to promote portability of application programs across UNIX system
environments by developing a clear, consistent, and unambiguous standard for the
interface specification of a portable operating system based on the UNIX system
documentation. This standard codifies the common, existing definition of the UNIX
system.

• Interface, Not Implementation

This standard defines an interface, not an implementation. No distinction is made between
library functions and system calls; both are referred to as functions. No details of the
implementation of any function are given (although historical practice is sometimes
indicated in the RATIONALE section). Symbolic names are given for constants (such as
signals and error numbers) rather than numbers.

• Source, Not Object, Portability

This standard has been written so that a program written and translated for execution on
one conforming implementation may also be translated for execution on another
conforming implementation. This standard does not guarantee that executable (object or
binary) code will execute under a different conforming implementation than that for which
it was translated, even if the underlying hardware is identical.

• The C Language

The system interfaces and header definitions are written in terms of the standard C
language as specified in the ISO C standard.

• No Superuser, No System Administration

There was no intention to specify all aspects of an operating system. System
administration facilities and functions are excluded from this standard, and functions
usable only by the superuser have not been included. Still, an implementation of the
standard interface may also implement features not in this standard. This standard is also
not concerned with hardware constraints or system maintenance.

• Minimal Interface, Minimally Defined

In keeping with the historical design principles of the UNIX system, the mandatory core
facilities of this standard have been kept as minimal as possible. Additional capabilities
have been added as optional extensions.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. xxv

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

Introduction

• Broadly Implementable

The developers of this standard endeavored to make all specified functions implementable
across a wide range of existing and potential systems, including:

1. All of the current major systems that are ultimately derived from the original UNIX
system code (Version 7 or later)

2. Compatible systems that are not derived from the original UNIX system code

3. Emulations hosted on entirely different operating systems

4. Networked systems

5. Distributed systems

6. Systems running on a broad range of hardware

No direct references to this goal appear in this standard, but some results of it are
mentioned in the Rationale (Informative) volume.

• Minimal Changes to Historical Implementations

When the original version—IEEE Std 1003.1-1988—was published, there were no known
historical implementations that did not have to change. However, there was a broad
consensus on a set of functions, types, definitions, and concepts that formed an interface
that was common to most historical implementations.

The adoption of the 1988 and 1990 IEEE system interface standards, the 1992 IEEE shell
and utilities standard, the various Open Group (formerly X/Open) specifications, and the
2001 Edition of this standard and its technical corrigenda have have consolidated this
consensus, and this revision reflects the significantly increased level of consensus arrived
at since the original versions. The authors of the original versions tried, as much as
possible, to follow the principles below when creating new specifications:

1. By standardizing an interface like one in an historical implementation; for example,
directories

2. By specifying an interface that is readily implementable in terms of, and backwards-
compatible with, historical implementations, such as the extended tar format
defined in the pax utility

3. By specifying an interface that, when added to an historical implementation, will
not conflict with it; for example, the sigaction() function

This standard is specifically not a codification of a particular vendor’s product.

It should be noted that implementations will have different kinds of extensions. Some will
reflect ‘‘historical usage’’ and will be preserved for execution of pre-existing applications.
These functions should be considered ‘‘obsolescent’’ and the standard functions used for
new applications. Some extensions will represent functions beyond the scope of this
standard. These need to be used with careful management to be able to adapt to future
extensions of this standard and/or port to implementations that provide these services in a
different manner.

• Minimal Changes to Existing Application Code

A goal of this standard was to minimize additional work for the developers of
applications. However, because every known historical implementation will have to
change at least slightly to conform, some applications will have to change.

xxvi System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

Introduction

This Standard

This standard defines the Portable Operating System Interface (POSIX) requirements and
consists of the following volumes:

• Base Definitions

• Shell and Utilities

• System Interfaces (this volume)

• Rationale (Informative)

This Volume

The System Interfaces volume describes the interfaces offered to application programs by
POSIX-conformant systems. Readers are expected to be experienced C language programmers,
and to be familiar with the Base Definitions volume.

This volume is structured as follows:

• Chapter 1 explains the status of this volume and its relationship to other formal standards.

• Chapter 2 contains important concepts, terms, and caveats relating to the rest of this
volume.

• Chapter 3 defines the functional interfaces to the POSIX-conformant system.

Comprehensive references are available in the index.

Typographical Conventions The following typographical conventions are used throughout this
standard. In the text, this standard is referred to as IEEE Std 1003.1-200x, which is technically
identical to The Open Group Base Specifications, Issue 7.

The typographical conventions listed here are for ease of reading only. Editorial inconsistencies
in the use of typography are unintentional and have no normative meaning in this standard.

Reference Example Notes

C-Language Data Structure aiocb
C-Language Data Structure Member aio_lio_opcode
C-Language Data Type long
C-Language External Variable errno
C-Language Function system()
C-Language Function Argument arg1
C-Language Function Family exec
C-Language Header <sys/stat.h>
C-Language Keyword return
C-Language Macro with Argument assert()
C-Language Macro with No Argument INET_ADDRSTRLEN
C-Language Preprocessing Directive #define
Commands within a Utility a, c
Conversion Specification, Specifier/Modifier Character %A, g, E 1
Environment Variable PA TH
Error Number [EINTR]
Example Output Hello, World
Filename /tmp
Literal Character ’c’ , ’\r’ , ’\’ 2
Literal String "abcde" 2

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. xxvii

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

Introduction

Reference Example Notes

Optional Items in Utility Syntax []
Parameter <directory pathname>
Special Character <newline> 3
Symbolic Constant _POSIX_VDISABLE
Symbolic Limit, Configuration Value {LINE_MAX} 4
Syntax #include <sys/stat.h>
User Input and Example Code echo Hello, World 5
Utility Name awk
Utility Operand file_name
Utility Option −c
Utility Option with Option-Argument −w width

Notes:

1. Conversion specifications, specifier characters, and modifier characters are used
primarily in date-related functions and utilities and the fprintf and fscanf formatting
functions.

2. Unless otherwise noted, the quotes shall not be used as input or output. When used in a
list item, the quotes are omitted. For literal characters, ’\’ (or any of the other sequences
such as ’’’) is the same as the C constant ’\\’ (or ’\’’).

3. The style selected for some of the special characters, such as <newline>, matches the
form of the input given to the localedef utility. Generally, the characters selected for this
special treatment are those that are not visually distinct, such as the control characters
<tab> or <newline>.

4. Names surrounded by braces represent symbolic limits or configuration values which
may be declared in appropriate headers by means of the C #define construct.

5. Brackets shown in this font, "[]" , are part of the syntax and do not indicate optional
items. In syntax the ’|’ symbol is used to separate alternatives, and ellipses ("...") are
used to show that additional arguments are optional.

Shading is used to identify extensions and options; see Section 1.8.1 (on page 3).

Footnotes and notes within the body of the normative text are for information only
(informative).

Informative sections (such as Rationale, Change History, Application Usage, and so on) are
denoted by continuous shading bars in the margins.

Ranges of values are indicated with parentheses or brackets as follows:

• (a,b) means the range of all values from a to b, including neither a nor b.

• [a,b] means the range of all values from a to b, including a and b.

• [a,b) means the range of all values from a to b, including a, but not b.

• (a,b] means the range of all values from a to b, including b, but not a.

Notes:

1. Symbolic limits are used in this volume instead of fixed values for portability. The values
of most of these constants are defined in the Base Definitions volume, <limits.h> or
<unistd.h>.

2. The values of errors are defined in the Base Definitions volume, <errno.h>.

xxviii System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

Participants

IEEE Std 1003.1-200x was prepared by the Austin Group, sponsored by the Portable
Applications Standards Committee of the IEEE Computer Society, The Open Group, and
ISO/SC22.

Notes to Reviewers

This section with side shading will not appear in the final copy. - Ed.

This section will be completed once the standard is approved.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. xxix

1215

1216

1217

1218

1219

1220

1221

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

Trademarks

The following information is given for the convenience of users of this standard and does not
constitute endorsement of these products by The Open Group or the IEEE. There may be other
products mentioned in the text that might be covered by trademark protection and readers are
advised to verify them independently.

1003.1™ is a trademark of the Institute of Electrical and Electronic Engineers, Inc.

AIX® is a registered trademark of IBM Corporation.

AT&T® is a registered trademark of AT&T in the U.S.A. and other countries.

BSD™ is a trademark of the University of California, Berkeley, U.S.A.

Hewlett-Packard®, HP®, and HP-UX® are registered trademarks of Hewlett-Packard Company.

IBM® is a registered trademark of International Business Machines Corporation.

Boundaryless Information Flow™ and TOGAF™ are trademarks and Motif®, Making Standards
Work®, OSF/1®, The Open Group®, UNIX®, and the ‘‘X’’ device are registered trademarks of
The Open Group in the United States and other countries.

POSIX® is a registered trademark of the Institute of Electrical and Electronic Engineers, Inc.

Sun® and Sun Microsystems® are registered trademarks of Sun Microsystems, Inc.

/usr/group® is a registered trademark of UniForum, the International Network of UNIX System
Users.

xxx System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

Acknowledgements

The contributions of the following organizations to the development of IEEE Std 1003.1-200x are
gratefully acknowledged:

• AT&T for permission to reproduce portions of its copyrighted System V Interface
Definition (SVID) and material from the UNIX System V Release 2.0 documentation.

• ISO/IEC JTC 1/SC 22/WG 14 C Language Committee

This standard was prepared by the Austin Group, a joint working group of the IEEE, The Open
Group, and ISO/IEC JTC 1/SC 22.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. xxxi

1240

1241

1242

1243

1244

1245

1246

1247

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

Referenced Documents

Normative References

Normative references for this standard are defined in the Base Definitions volume.

Informative References

The following documents are referenced in this standard:

1984 /usr/group Standard
/usr/group Standards Committee, Santa Clara, CA, UniForum 1984.

Almasi and Gottlieb
George S. Almasi and Allan Gottlieb, Highly Parallel Computing, The Benjamin/Cummings
Publishing Company, Inc., 1989, ISBN: 0-8053-0177-1.

ANSI C
American National Standard for Information Systems: Standard X3.159-1989, Programming
Language C.

ANSI X3.226-1994
American National Standard for Information Systems: Standard X3.226-1994, Programming
Language Common LISP.

Brawer
Steven Brawer, Introduction to Parallel Programming, Academic Press, 1989,
ISBN: 0-12-128470-0.

DeRemer and Pennello Article
DeRemer, Frank and Pennello, Thomas J., Efficient Computation of LALR(1) Look-Ahead Sets,
SigPlan Notices, Volume 15, No. 8, August 1979.

Draft ANSI X3J11.1
IEEE Floating Point draft report of ANSI X3J11.1 (NCEG).

FIPS 151-1
Federal Information Procurement Standard (FIPS) 151-1. Portable Operating System
Interface (POSIX)—Part 1: System Application Program Interface (API) [C Language].

FIPS 151-2
Federal Information Procurement Standards (FIPS) 151-2, Portable Operating System
Interface (POSIX)— Part 1: System Application Program Interface (API) [C Language].

HP-UX Manual
Hewlett-Packard HP-UX Release 9.0 Reference Manual, Third Edition, August 1992.

IEC 60559: 1989
IEC 60559: 1989, Binary Floating-Point Arithmetic for Microprocessor Systems (previously
designated IEC 559: 1989).

IEEE Std 754-1985
IEEE Std 754-1985, IEEE Standard for Binary Floating-Point Arithmetic.

xxxii System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

Referenced Documents

IEEE Std 854-1987
IEEE Std 854-1987, IEEE Standard for Radix-Independent Floating-Point Arithmetic.

IEEE Std 1003.9-1992
IEEE Std 1003.9-1992, IEEE Standard for Information Technology — POSIX FORTRAN 77
Language Interfaces — Part 1: Binding for System Application Program Interface API.

IETF RFC 791
Internet Protocol, Version 4 (IPv4), September 1981.

IETF RFC 819
The Domain Naming Convention for Internet User Applications, Z. Su, J. Postel, August
1982.

IETF RFC 822
Standard for the Format of ARPA Internet Text Messages, D.H. Crocker, August 1982.

IETF RFC 919
Broadcasting Internet Datagrams, J. Mogul, October 1984.

IETF RFC 920
Domain Requirements, J. Postel, J. Reynolds, October 1984.

IETF RFC 921
Domain Name System Implementation Schedule, J. Postel, October 1984.

IETF RFC 922
Broadcasting Internet Datagrams in the Presence of Subnets, J. Mogul, October 1984.

IETF RFC 1034
Domain Names — Concepts and Facilities, P. Mockapetris, November 1987.

IETF RFC 1035
Domain Names — Implementation and Specification, P. Mockapetris, November 1987.

IETF RFC 1123
Requirements for Internet Hosts — Application and Support, R. Braden, October 1989.

IETF RFC 1886
DNS Extensions to Support Internet Protocol, Version 6 (IPv6), C. Huitema, S. Thomson,
December 1995.

IETF RFC 2045
Multipurpose Internet Mail Extensions (MIME), Part 1: Format of Internet Message Bodies,
N. Freed, N. Borenstein, November 1996.

IETF RFC 2181
Clarifications to the DNS Specification, R. Elz, R. Bush, July 1997.

IETF RFC 2373
Internet Protocol, Version 6 (IPv6) Addressing Architecture, S. Deering, R. Hinden, July
1998.

IETF RFC 2460
Internet Protocol, Version 6 (IPv6), S. Deering, R. Hinden, December 1998.

Internationalisation Guide
Guide, July 1993, Internationalisation Guide, Version 2 (ISBN: 1-859120-02-4, G304),
published by The Open Group.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

Referenced Documents

ISO C (1990)
ISO/IEC 9899: 1990, Programming Languages — C, including Amendment 1: 1995 (E), C
Integrity (Multibyte Support Extensions (MSE) for ISO C).

ISO 2375: 1985
ISO 2375: 1985, Data Processing — Procedure for Registration of Escape Sequences.

ISO 8652: 1987
ISO 8652: 1987, Programming Languages — Ada (technically identical to ANSI standard
1815A-1983).

ISO/IEC 1539: 1990
ISO/IEC 1539: 1990, Information Technology — Programming Languages — Fortran
(technically identical to the ANSI X3.9-1978 standard [FORTRAN 77]).

ISO/IEC 4873: 1991
ISO/IEC 4873: 1991, Information Technology — ISO 8-bit Code for Information Interchange
— Structure and Rules for Implementation.

ISO/IEC 6429: 1992
ISO/IEC 6429: 1992, Information Technology — Control Functions for Coded Character
Sets.

ISO/IEC 6937: 1994
ISO/IEC 6937: 1994, Information Technology — Coded Character Set for Text
Communication — Latin Alphabet.

ISO/IEC 8802-3: 1996
ISO/IEC 8802-3: 1996, Information Technology — Telecommunications and Information
Exchange Between Systems — Local and Metropolitan Area Networks — Specific
Requirements — Part 3: Carrier Sense Multiple Access with Collision Detection
(CSMA/CD) Access Method and Physical Layer Specifications.

ISO/IEC 8859
ISO/IEC 8859, Information Technology — 8-Bit Single-Byte Coded Graphic Character Sets:

Part 1: Latin Alphabet No. 1
Part 2: Latin Alphabet No. 2
Part 3: Latin Alphabet No. 3
Part 4: Latin Alphabet No. 4
Part 5: Latin/Cyrillic Alphabet
Part 6: Latin/Arabic Alphabet
Part 7: Latin/Greek Alphabet
Part 8: Latin/Hebrew Alphabet
Part 9: Latin Alphabet No. 5
Part 10: Latin Alphabet No. 6
Part 11: Latin/Thai Alphabet
Part 13: Latin Alphabet No. 7
Part 14: Latin Alphabet No. 8
Part 15: Latin Alphabet No. 9
Part 16: Latin Alphabet No. 10

ISO POSIX-1: 1996
ISO/IEC 9945-1: 1996, Information Technology — Portable Operating System Interface
(POSIX) — Part 1: System Application Program Interface (API) [C Language] (identical to
ANSI/IEEE Std 1003.1-1996). Incorporating ANSI/IEEE Stds 1003.1-1990, 1003.1b-1993,
1003.1c-1995, and 1003.1i-1995.

xxxiv System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

Referenced Documents

ISO POSIX-2: 1993
ISO/IEC 9945-2: 1993, Information Technology — Portable Operating System Interface
(POSIX) — Part 2: Shell and Utilities (identical to ANSI/IEEE Std 1003.2-1992, as amended
by ANSI/IEEE Std 1003.2a-1992).

Issue 1
X/Open Portability Guide, July 1985 (ISBN: 0-444-87839-4).

Issue 2
X/Open Portability Guide, January 1987:

• Volume 1: XVS Commands and Utilities (ISBN: 0-444-70174-5)

• Volume 2: XVS System Calls and Libraries (ISBN: 0-444-70175-3)

Issue 3
X/Open Specification, 1988, 1989, February 1992:

• Commands and Utilities, Issue 3 (ISBN: 1-872630-36-7, C211); this specification was
formerly X/Open Portability Guide, Issue 3, Volume 1, January 1989, XSI Commands
and Utilities (ISBN: 0-13-685835-X, XO/XPG/89/002)

• System Interfaces and Headers, Issue 3 (ISBN: 1-872630-37-5, C212); this specification
was formerly X/Open Portability Guide, Issue 3, Volume 2, January 1989, XSI System
Interface and Headers (ISBN: 0-13-685843-0, XO/XPG/89/003)

• Curses Interface, Issue 3, contained in Supplementary Definitions, Issue 3
(ISBN: 1-872630-38-3, C213), Chapters 9 to 14 inclusive; this specification was formerly
X/Open Portability Guide, Issue 3, Volume 3, January 1989, XSI Supplementary
Definitions (ISBN: 0-13-685850-3, XO/XPG/89/004)

• Headers Interface, Issue 3, contained in Supplementary Definitions, Issue 3
(ISBN: 1-872630-38-3, C213), Chapter 19, Cpio and Tar Headers; this specification was
formerly X/Open Portability Guide Issue 3, Volume 3, January 1989, XSI
Supplementary Definitions (ISBN: 0-13-685850-3, XO/XPG/89/004)

Issue 4
CAE Specification, July 1992, published by The Open Group:

• System Interface Definitions (XBD), Issue 4 (ISBN: 1-872630-46-4, C204)

• Commands and Utilities (XCU), Issue 4 (ISBN: 1-872630-48-0, C203)

• System Interfaces and Headers (XSH), Issue 4 (ISBN: 1-872630-47-2, C202)

Issue 4, Version 2
CAE Specification, August 1994, published by The Open Group:

• System Interface Definitions (XBD), Issue 4, Version 2 (ISBN: 1-85912-036-9, C434)

• Commands and Utilities (XCU), Issue 4, Version 2 (ISBN: 1-85912-034-2, C436)

• System Interfaces and Headers (XSH), Issue 4, Version 2 (ISBN: 1-85912-037-7, C435)

Issue 5
Technical Standard, February 1997, published by The Open Group:

• System Interface Definitions (XBD), Issue 5 (ISBN: 1-85912-186-1, C605)

• Commands and Utilities (XCU), Issue 5 (ISBN: 1-85912-191-8, C604)

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. xxxv

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

Referenced Documents

• System Interfaces and Headers (XSH), Issue 5 (ISBN: 1-85912-181-0, C606)

Issue 6
Technical Standard, April 2004, published by The Open Group:

• Base Definitions (XBD), Issue 6 (ISBN: 1-931624-43-7, C046)

• System Interfaces (XSH), Issue 6 (ISBN: 1-931624-44-5, C047)

• Shell and Utilities (XCU), Issue 6 (ISBN: 1-931624-45-3, C048)

Knuth Article
Knuth, Donald E., On the Translation of Languages from Left to Right, Information and Control,
Volume 8, No. 6, October 1965.

KornShell
Bolsky, Morris I. and Korn, David G., The New KornShell Command and Programming
Language, March 1995, Prentice Hall.

MSE Working Draft
Working draft of ISO/IEC 9899: 1990/Add3: Draft, Addendum 3 — Multibyte Support
Extensions (MSE) as documented in the ISO Working Paper SC22/WG14/N205 dated 31
March 1992.

POSIX.0: 1995
IEEE Std 1003.0-1995, IEEE Guide to the POSIX Open System Environment (OSE) (identical
to ISO/IEC TR 14252).

POSIX.1: 1988
IEEE Std 1003.1-1988, IEEE Standard for Information Technology — Portable Operating
System Interface (POSIX) — Part 1: System Application Program Interface (API) [C
Language].

POSIX.1: 1990
IEEE Std 1003.1-1990, IEEE Standard for Information Technology — Portable Operating
System Interface (POSIX) — Part 1: System Application Program Interface (API) [C
Language].

POSIX.1a
P1003.1a, Standard for Information Technology — Portable Operating System Interface
(POSIX) — Part 1: System Application Program Interface (API) — (C Language)
Amendment.

POSIX.1d: 1999
IEEE Std 1003.1d-1999, IEEE Standard for Information Technology — Portable Operating
System Interface (POSIX) — Part 1: System Application Program Interface (API) —
Amendment 4: Additional Realtime Extensions [C Language].

POSIX.1g: 2000
IEEE Std 1003.1g-2000, IEEE Standard for Information Technology — Portable Operating
System Interface (POSIX) — Part 1: System Application Program Interface (API) —
Amendment 6: Protocol-Independent Interfaces (PII).

POSIX.1j: 2000
IEEE Std 1003.1j-2000, IEEE Standard for Information Technology — Portable Operating
System Interface (POSIX) — Part 1: System Application Program Interface (API) —
Amendment 5: Advanced Realtime Extensions [C Language].

xxxvi System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

Referenced Documents

POSIX.1q: 2000
IEEE Std 1003.1q-2000, IEEE Standard for Information Technology — Portable Operating
System Interface (POSIX) — Part 1: System Application Program Interface (API) —
Amendment 7: Tracing [C Language].

POSIX.2b
P1003.2b, Standard for Information Technology — Portable Operating System Interface
(POSIX) — Part 2: Shell and Utilities — Amendment.

POSIX.2d:-1994
IEEE Std 1003.2d-1994, IEEE Standard for Information Technology — Portable Operating
System Interface (POSIX) — Part 2: Shell and Utilities — Amendment 1: Batch Environment.

POSIX.13:-1998
IEEE Std 1003.13: 1998, IEEE Standard for Information Technology — Standardized
Application Environment Profile (AEP) — POSIX Realtime Application Support.

Sarwate Article
Sarwate, Dilip V., Computation of Cyclic Redundancy Checks via Table Lookup, Communications
of the ACM, Volume 30, No. 8, August 1988.

Sprunt, Sha, and Lehoczky
Sprunt, B., Sha, L., and Lehoczky, J.P., Aperiodic Task Scheduling for Hard Real-Time Systems,
The Journal of Real-Time Systems, Volume 1, 1989, Pages 27-60.

SVID, Issue 1
American Telephone and Telegraph Company, System V Interface Definition (SVID), Issue
1; Morristown, NJ, UNIX Press, 1985.

SVID, Issue 2
American Telephone and Telegraph Company, System V Interface Definition (SVID), Issue
2; Morristown, NJ, UNIX Press, 1986.

SVID, Issue 3
American Telephone and Telegraph Company, System V Interface Definition (SVID), Issue
3; Morristown, NJ, UNIX Press, 1989.

The AWK Programming Language
Aho, Alfred V., Kernighan, Brian W., and Weinberger, Peter J., The AWK Programming
Language, Reading, MA, Addison-Wesley 1988.

UNIX Programmer ’s Manual
American Telephone and Telegraph Company, UNIX Time-Sharing System: UNIX
Programmer ’s Manual, 7th Edition, Murray Hill, NJ, Bell Telephone Laboratories, January
1979.

XNS, Issue 4
CAE Specification, August 1994, Networking Services, Issue 4 (ISBN: 1-85912-049-0, C438),
published by The Open Group.

XNS, Issue 5
CAE Specification, February 1997, Networking Services, Issue 5 (ISBN: 1-85912-165-9, C523),
published by The Open Group.

XNS, Issue 5.2
Technical Standard, January 2000, Networking Services (XNS), Issue 5.2
(ISBN: 1-85912-241-8, C808), published by The Open Group.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. xxxvii

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

Referenced Documents

X/Open Curses, Issue 4, Version 2
CAE Specification, May 1996, X/Open Curses, Issue 4, Version 2 (ISBN: 1-85912-171-3,
C610), published by The Open Group.

Yacc
Yacc: Yet Another Compiler Compiler, Stephen C. Johnson, 1978.

Source Documents

Parts of the following documents were used to create the base documents for this standard:

AIX 3.2 Manual
AIX Version 3.2 For RISC System/6000, Technical Reference: Base Operating System and
Extensions, 1990, 1992 (Part No. SC23-2382-00).

OSF/1
OSF/1 Programmer ’s Reference, Release 1.2 (ISBN: 0-13-020579-6).

OSF AES
Application Environment Specification (AES) Operating System Programming Interfaces
Volume, Revision A (ISBN: 0-13-043522-8).

System V Release 2.0

— UNIX System V Release 2.0 Programmer ’s Reference Manual (April 1984 - Issue 2).

— UNIX System V Release 2.0 Programming Guide (April 1984 - Issue 2).

System V Release 4.2
Operating System API Reference, UNIX® SVR4.2 (1992) (ISBN: 0-13-017658-3).

xxxviii System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

Chapter 1

Introduction

1.1 Scope

The scope of IEEE Std 1003.1-200x is described in the Base Definitions volume of
IEEE Std 1003.1-200x.

1.2 Conformance

Conformance requirements for IEEE Std 1003.1-200x are defined in the Base Definitions volume
of IEEE Std 1003.1-200x, Chapter 2, Conformance.

1.3 Normative References

Normative references for IEEE Std 1003.1-200x are defined in the Base Definitions volume of
IEEE Std 1003.1-200x.

1.4 Change History

Change history is described in the Rationale (Informative) volume of IEEE Std 1003.1-200x, and
in the CHANGE HISTORY section of reference pages.

1.5 Terminology

This section appears in the Base Definitions volume of IEEE Std 1003.1-200x, but is repeated here
for convenience:

For the purposes of IEEE Std 1003.1-200x, the following terminology definitions apply:

can
Describes a permissible optional feature or behavior available to the user or application. The
feature or behavior is mandatory for an implementation that conforms to
IEEE Std 1003.1-200x. An application can rely on the existence of the feature or behavior.

implementation-defined
Describes a value or behavior that is not defined by IEEE Std 1003.1-200x but is selected by
an implementor. The value or behavior may vary among implementations that conform to
IEEE Std 1003.1-200x. An application should not rely on the existence of the value or
behavior. An application that relies on such a value or behavior cannot be assured to be
portable across conforming implementations.

The implementor shall document such a value or behavior so that it can be used correctly
by an application.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

Terminology Introduction

legacy
Describes a feature or behavior that is being retained for compatibility with older
applications, but which has limitations which make it inappropriate for developing portable
applications. New applications should use alternative means of obtaining equivalent
functionality.

may
Describes a feature or behavior that is optional for an implementation that conforms to
IEEE Std 1003.1-200x. An application should not rely on the existence of the feature or
behavior. An application that relies on such a feature or behavior cannot be assured to be
portable across conforming implementations.

To avoid ambiguity, the opposite of may is expressed as need not, instead of may not.

shall
For an implementation that conforms to IEEE Std 1003.1-200x, describes a feature or
behavior that is mandatory. An application can rely on the existence of the feature or
behavior.

For an application or user, describes a behavior that is mandatory.

should
For an implementation that conforms to IEEE Std 1003.1-200x, describes a feature or
behavior that is recommended but not mandatory. An application should not rely on the
existence of the feature or behavior. An application that relies on such a feature or behavior
cannot be assured to be portable across conforming implementations.

For an application, describes a feature or behavior that is recommended programming
practice for optimum portability.

undefined
Describes the nature of a value or behavior not defined by IEEE Std 1003.1-200x which
results from use of an invalid program construct or invalid data input.

The value or behavior may vary among implementations that conform to
IEEE Std 1003.1-200x. An application should not rely on the existence or validity of the
value or behavior. An application that relies on any particular value or behavior cannot be
assured to be portable across conforming implementations.

unspecified
Describes the nature of a value or behavior not specified by IEEE Std 1003.1-200x which
results from use of a valid program construct or valid data input.

The value or behavior may vary among implementations that conform to
IEEE Std 1003.1-200x. An application should not rely on the existence or validity of the
value or behavior. An application that relies on any particular value or behavior cannot be
assured to be portable across conforming implementations.

2 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

Introduction Definitions

1.6 Definitions

Concepts and definitions are defined in the Base Definitions volume of IEEE Std 1003.1-200x.

1.7 Relationship to Other Formal Standards

Great care has been taken to ensure that this volume of IEEE Std 1003.1-200x is fully aligned
with the following standards:

ISO C (1999)
ISO/IEC 9899: 1999, Programming Languages — C.

Parts of the ISO/IEC 9899: 1999 standard (hereinafter referred to as the ISO C standard) are
referenced to describe requirements also mandated by this volume of IEEE Std 1003.1-200x.
Some functions and headers included within this volume of IEEE Std 1003.1-200x have a version
in the ISO C standard; in this case CX markings are added as appropriate to show where the
ISO C standard has been extended (see Section 1.8.1 (on page 3)). Any conflict between this
volume of IEEE Std 1003.1-200x and the ISO C standard is unintentional.

This volume of IEEE Std 1003.1-200x also allows, but does not require, mathematics functions to
support IEEE Std 754-1985 and IEEE Std 854-1987.

1.8 Portability

Some of the utilities in the Shell and Utilities volume of IEEE Std 1003.1-200x and functions in
the System Interfaces volume of IEEE Std 1003.1-200x describe functionality that might not be
fully portable to systems meeting the requirements for POSIX conformance (see the Base
Definitions volume of IEEE Std 1003.1-200x, Chapter 2, Conformance).

Where optional, enhanced, or reduced functionality is specified, the text is shaded and a code in
the margin identifies the nature of the option, extension, or warning (see Section 1.8.1 (on page
3)). For maximum portability, an application should avoid such functionality.

1.8.1 Codes

Margin codes and their meanings are listed in the Base Definitions volume of
IEEE Std 1003.1-200x, but are repeated here for convenience:

ADV Advisory Information
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the ADV margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the ADV
margin legend.

BE Batch Environment Services and Utilities
The functionality described is optional.

Where applicable, utilities are marked with the BE margin legend in the SYNOPSIS section.
Where additional semantics apply to a utility, the material is identified by use of the BE margin
legend.

CD C-Language Development Utilities
The functionality described is optional.

Where applicable, utilities are marked with the CD margin legend in the SYNOPSIS section.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 3

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

Introduction Portability

This is a shorthand notation for combinations of multiple option codes.

Where applicable, functions are marked with the MC1 margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the MC1
margin legend.

Refer to the Base Definitions volume of IEEE Std 1003.1-200x, Section 1.5.2, Margin Code
Notation.

ML Process Memory Locking
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the ML margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the ML
margin legend.

MLR Range Memory Locking
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the MLR margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the MLR
margin legend.

MON Monotonic Clock
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the MON margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the MON
margin legend.

MSG Message Passing
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the MSG margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the MSG
margin legend.

MX IEC 60559 Floating-Point
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the MX margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the MX
margin legend.

OB Obsolescent
The functionality described may be withdrawn in a future version of this volume of
IEEE Std 1003.1-200x. Strictly Conforming POSIX Applications and Strictly Conforming XSI
Applications shall not use obsolescent features.

Where applicable, the material is identified by use of the OB margin legend.

OF Output Format Incompletely Specified
The functionality described is an XSI extension. The format of the output produced by the
utility is not fully specified. It is therefore not possible to post-process this output in a consistent
fashion. Typical problems include unknown length of strings and unspecified field delimiters.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 5

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

Portability Introduction

Where applicable, the material is identified by use of the OF margin legend.

OH Optional Header
In the SYNOPSIS section of some interfaces in the System Interfaces volume of
IEEE Std 1003.1-200x an included header is marked as in the following example:

OH #include <sys/types.h>
#include <grp.h>
struct group *getgrnam(const char *name);

The OH margin legend indicates that the marked header is not required on XSI-conformant
systems.

PIO Prioritized Input and Output
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the PIO margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the PIO
margin legend.

PS Process Scheduling
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the PS margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the PS
margin legend.

RPI Robust Mutex Priority Inheritance
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the RPI margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the RPI
margin legend.

RPP Robust Mutex Priority Protection
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the RPP margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the RPP
margin legend.

RS Raw Sockets
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the RS margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the RS
margin legend.

SD Software Development Utilities
The functionality described is optional.

Where applicable, utilities are marked with the SD margin legend in the SYNOPSIS section.
Where additional semantics apply to a utility, the material is identified by use of the SD margin
legend.

6 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

Introduction Portability

SHM Shared Memory Objects
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the SHM margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the SHM
margin legend.

SIO Synchronized Input and Output
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the SIO margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the SIO
margin legend.

SPN Spawn
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the SPN margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the SPN
margin legend.

SS Process Sporadic Server
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the SS margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the SS
margin legend.

TCT Thread CPU-Time Clocks
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the TCT margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the TCT
margin legend.

TEF Trace Event Filter
The functionality described is optional. This functionality is dependent on support for the Trace
option. The functionality described is also an extension to the ISO C standard.

Where applicable, functions are marked with the TEF margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the TEF
margin legend.

TPI Non-Robust Mutex Priority Inheritance
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the TPI margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the TPI
margin legend.

TPP Non-Robust Mutex Priority Protection
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 7

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

Portability Introduction

Where applicable, functions are marked with the TPP margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the TPP
margin legend.

TPS Thread Execution Scheduling
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the TPS margin legend for the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the TPS
margin legend.

TRC Trace
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the TRC margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the TRC
margin legend.

TRI Trace Inherit
The functionality described is optional. This functionality is dependent on support for the Trace
option. The functionality described is also an extension to the ISO C standard.

Where applicable, functions are marked with the TRI margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the TRI
margin legend.

TRL Trace Log
The functionality described is optional. This functionality is dependent on support for the Trace
option. The functionality described is also an extension to the ISO C standard.

Where applicable, functions are marked with the TRL margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the TRL
margin legend.

TSA Thread Stack Address Attribute
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the TSA margin legend for the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the TSA
margin legend.

TSH Thread Process-Shared Synchronization
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the TSH margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the TSH
margin legend.

TSP Thread Sporadic Server
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the TSP margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the TSP
margin legend.

8 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

Introduction Portability

TSS Thread Stack Size Attribute
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the TSS margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the TSS
margin legend.

TYM Typed Memory Objects
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the TYM margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the TYM
margin legend.

UP User Portability Utilities
The functionality described is optional.

Where applicable, utilities are marked with the UP margin legend in the SYNOPSIS section.
Where additional semantics apply to a utility, the material is identified by use of the UP margin
legend.

UU UUCP Utilities
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the UU margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the UU
margin legend.

XSI X/Open System Interfaces
The functionality described is part of the X/Open Systems Interfaces option. Functionality
marked XSI is an extension to the ISO C standard. Application writers may confidently make
use of such extensions on all systems supporting the X/Open System Interfaces option.

If an entire SYNOPSIS section is shaded and marked XSI, all the functionality described in that
reference page is an extension. See the Base Definitions volume of IEEE Std 1003.1-200x, Section
3.439, XSI.

XSR XSI STREAMS
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the XSR margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the XSR
margin legend.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 9

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

Format of Entries Introduction

1.9 Format of Entries

The entries in Chapter 3 are based on a common format as follows. The only sections relating to
conformance are the SYNOPSIS, DESCRIPTION, RETURN VALUE, and ERRORS sections.

NAME
This section gives the name or names of the entry and briefly states its purpose.

SYNOPSIS
This section summarizes the use of the entry being described. If it is necessary to
include a header to use this function, the names of such headers are shown, for
example:

#include <stdio.h>

DESCRIPTION
This section describes the functionality of the function or header.

RETURN VALUE
This section indicates the possible return values, if any.

If the implementation can detect errors, ‘‘successful completion’’ means that no error
has been detected during execution of the function. If the implementation does detect
an error, the error is indicated.

For functions where no errors are defined, ‘‘successful completion’’ means that if the
implementation checks for errors, no error has been detected. If the implementation can
detect errors, and an error is detected, the indicated return value is returned and errno
may be set.

ERRORS
This section gives the symbolic names of the error values returned by a function or
stored into a variable accessed through the symbol errno if an error occurs.

‘‘No errors are defined’’ means that error values returned by a function or stored into a
variable accessed through the symbol errno, if any, depend on the implementation.

EXAMPLES
This section is informative.

This section gives examples of usage, where appropriate. In the event of conflict
between an example and a normative part of this volume of IEEE Std 1003.1-200x, the
normative material is to be taken as correct.

APPLICATION USAGE
This section is informative.

This section gives warnings and advice to application writers about the entry. In the
event of conflict between warnings and advice and a normative part of this volume of
IEEE Std 1003.1-200x, the normative material is to be taken as correct.

RATIONALE
This section is informative.

This section contains historical information concerning the contents of this volume of
IEEE Std 1003.1-200x and why features were included or discarded by the standard
developers.

10 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

Introduction Format of Entries

FUTURE DIRECTIONS
This section is informative.

This section provides comments which should be used as a guide to current thinking;
there is not necessarily a commitment to adopt these future directions.

SEE ALSO
This section is informative.

This section gives references to related information.

CHANGE HISTORY
This section is informative.

This section shows the derivation of the entry and any significant changes that have
been made to it.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 11

407

408

409

410

411

412

413

414

415

416

417

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

Introduction

12 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

Chapter 2

General Information

This chapter covers information that is relevant to all the functions specified in Chapter 3 and
the Base Definitions volume of IEEE Std 1003.1-200x, Chapter 13, Headers.

2.1 Use and Implementation of Functions

Each of the following statements shall apply unless explicitly stated otherwise in the detailed
descriptions that follow:

1. If an argument to a function has an invalid value (such as a value outside the domain of
the function, or a pointer outside the address space of the program, or a null pointer), the
behavior is undefined.

2. Any function declared in a header may also be implemented as a macro defined in the
header, so a function should not be declared explicitly if its header is included. Any
macro definition of a function can be suppressed locally by enclosing the name of the
function in parentheses, because the name is then not followed by the left parenthesis that
indicates expansion of a macro function name. For the same syntactic reason, it is
permitted to take the address of a function even if it is also defined as a macro. The use of
the C-language #undef construct to remove any such macro definition shall also ensure
that an actual function is referred to.

3. Any invocation of a function that is implemented as a macro shall expand to code that
evaluates each of its arguments exactly once, fully protected by parentheses where
necessary, so it is generally safe to use arbitrary expressions as arguments. Likewise,
those function-like macros described in the following sections may be invoked in an
expression anywhere a function with a compatible return type could be called.

4. Provided that a function can be declared without reference to any type defined in a
header, it is also permissible to declare the function explicitly and use it without including
its associated header.

5. If a function that accepts a variable number of arguments is not declared (explicitly or by
including its associated header), the behavior is undefined.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 13

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

The Compilation Environment General Information

2.2 The Compilation Environment

2.2.1 POSIX.1 Symbols

Certain symbols in this volume of IEEE Std 1003.1-200x are defined in headers (see the Base
Definitions volume of IEEE Std 1003.1-200x, Chapter 13, Headers). Some of those headers could
also define symbols other than those defined by IEEE Std 1003.1-200x, potentially conflicting
with symbols used by the application. Also, IEEE Std 1003.1-200x defines symbols that are not
permitted by other standards to appear in those headers without some control on the visibility
of those symbols.

Symbols called ‘‘feature test macros’’ are used to control the visibility of symbols that might be
included in a header. Implementations, future versions of IEEE Std 1003.1-200x, and other
standards may define additional feature test macros.

In the compilation of an application that #defines a feature test macro specified by
IEEE Std 1003.1-200x, no header defined by IEEE Std 1003.1-200x shall be included prior to the
definition of the feature test macro. This restriction also applies to any implementation-
provided header in which these feature test macros are used. If the definition of the macro does
not precede the #include, the result is undefined.

Feature test macros shall begin with the underscore character (’_’).

2.2.1.1 The _POSIX_C_SOURCE Feature Test Macro

A POSIX-conforming application should ensure that the feature test macro _POSIX_C_SOURCE
is defined before inclusion of any header.

When an application includes a header described by IEEE Std 1003.1-200x, and when this feature
test macro is defined to have the value 200xxxL:

1. All symbols required by IEEE Std 1003.1-200x to appear when the header is included shall
be made visible.

2. Symbols that are explicitly permitted, but not required, by IEEE Std 1003.1-200x to appear
in that header (including those in reserved name spaces) may be made visible.

3. Additional symbols not required or explicitly permitted by IEEE Std 1003.1-200x to be in
that header shall not be made visible, except when enabled by another feature test macro.

Identifiers in IEEE Std 1003.1-200x may only be undefined using the #undef directive as
described in Section 2.1 or Section 2.2.2 (on page 15). These #undef directives shall follow all
#include directives of any header in IEEE Std 1003.1-200x.

Note: The POSIX.1-1990 standard specified a macro called _POSIX_SOURCE. This has been
superseded by _POSIX_C_SOURCE.

2.2.1.2 The _XOPEN_SOURCE Feature Test Macro

XSI An XSI-conforming application should ensure that the feature test macro _XOPEN_SOURCE is
defined with the value 700 before inclusion of any header. This is needed to enable the
functionality described in Section 2.2.1.1 and to ensure that the XSI option is enabled.

Since this volume of IEEE Std 1003.1-200x is aligned with the ISO C standard, and since all
functionality enabled by _POSIX_C_SOURCE set equal to 200xxxL is enabled by
_XOPEN_SOURCE set equal to 700, there should be no need to define _POSIX_C_SOURCE if
_XOPEN_SOURCE is so defined. Therefore, if _XOPEN_SOURCE is set equal to 700 and
_POSIX_C_SOURCE is set equal to 200xxxL, the behavior is the same as if only
_XOPEN_SOURCE is defined and set equal to 700. However, should _POSIX_C_SOURCE be set

14 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

General Information The Compilation Environment

to a value greater than 200xxxL, the behavior is unspecified.

If _XOPEN_SOURCE is defined with the value 700 and _POSIX_C_SOURCE is undefined before
inclusion of any header, then the header may define the _POSIX_C_SOURCE macro with the
value 200xxxL.

2.2.2 The Name Space

All identifiers in this volume of IEEE Std 1003.1-200x, except environ, are defined in at least one
of the headers, as shown in the Base Definitions volume of IEEE Std 1003.1-200x, Chapter 13,

XSI Headers. When _XOPEN_SOURCE or _POSIX_C_SOURCE is defined, each header defines or
declares some identifiers, potentially conflicting with identifiers used by the application. The set
of identifiers visible to the application consists of precisely those identifiers from the header
pages of the included headers, as well as additional identifiers reserved for the implementation.
In addition, some headers may make visible identifiers from other headers as indicated on the
relevant header pages.

Implementations may also add members to a structure or union without controlling the
visibility of those members with a feature test macro, as long as a user-defined macro with the
same name cannot interfere with the correct interpretation of the program. The identifiers
reserved for use by the implementation are described below:

1. Each identifier with external linkage described in the header section is reserved for use as
an identifier with external linkage if the header is included.

2. Each macro described in the header section is reserved for any use if the header is
included.

3. Each identifier with file scope described in the header section is reserved for use as an
identifier with file scope in the same name space if the header is included.

The prefixes posix_, POSIX_, and _POSIX_ are reserved for use by IEEE Std 1003.1-200x and
other POSIX standards. Implementations may add symbols to the headers shown in the
following table, provided the identifiers for those symbols either:

1. Begin with the corresponding reserved prefixes in the table, or

2. Have one of the corresponding complete names in the table, or

3. End in the string indicated as a reserved suffix in the table and do not use the reserved
prefixes posix_, POSIX_, or _POSIX_, as long as the reserved suffix is in that part of the
name considered significant by the implementation.

Symbols that use the reserved prefix _POSIX_ may be made visible by implementations in any
header defined by IEEE Std 1003.1-200x.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 15

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

The Compilation Environment General Information

Complete
Header Prefix Suffix Name

<aio.h> aio_, lio_, AIO_, LIO_
<arpa/inet.h> in_, inet_
<ctype.h> to[a-z], is[a-z]
<dirent.h> d_
<errno.h> E[0-9], E[A-Z]
<fcntl.h> l_
<fenv.h> FE_[A-Z]
<glob.h> gl_
<grp.h> gr_
<inttypes.h> int[0-9a-z_]*_t,

uint[0-9a-z_]*_t
<limits.h> _MAX, _MIN
<locale.h> LC_[A-Z]

MSG <mqueue.h> mq_, MQ_
XSI <ndbm.h> dbm_

<netdb.h> ai_, h_, n_, p_, s_
<net/if.h> if_
<netinet/in.h> in_, ip_, s_, sin_

IP6 in6_, s6_, sin6_
XSI <poll.h> pd_, ph_, ps_

<pthread.h> pthread_, PTHREAD_
<pwd.h> pw_
<regex.h> re_, rm_

PS <sched.h> sched_, SCHED_
<semaphore.h> sem_, SEM_
<signal.h> sa_, si_, SI_, SIG[A-Z],

SIG_[A-Z], sigev_, SIGEV_, sival_, uc_,
XSI ss_, sv_
OB XSR <stropts.h> bi_, ic_, l_, sl_, str_

<stdint.h> int[0-9a-z_]*_t,
uint[0-9a-z_]*_t

<stdlib.h> str[a-z]
<string.h> str[a-z], mem[a-z], wcs[a-z]

XSI <sys/ipc.h> ipc_ key, pad, seq
<sys/mman.h> shm_, MAP_, MCL_, MS_,

PROT_
XSI <sys/msg.h> msg msg
XSI <sys/resource.h> rlim_, ru_

<sys/select.h> fd_, fds_, FD_
XSI <sys/sem.h> sem sem
XSI <sys/shm.h> shm

<sys/socket.h> ss_, sa_, if_, ifc_, ifru_, infu_,
ifra_, msg_, cmsg_, l_

<sys/stat.h> st_
<sys/statvfs.h> f_

XSI <sys/time.h> fds_, it_, tv_, FD_
<sys/times.h> tms_

16 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

General Information The Compilation Environment

Complete
Header Prefix Suffix Name

XSI <sys/uio.h> iov_ UIO_MAXIOV
<sys/un.h> sun_
<sys/utsname.h> uts_

XSI <sys/wait.h> si_, W[A-Z], P_
<termios.h> c_
<time.h> tm_

clock_, timer_, it_, tv_,
CLOCK_, TIMER_

XSI <ulimit.h> UL_
<utime.h> utim_

XSI <utmpx.h> ut_ _LVL, _TIME,
_PROCESS

<wchar.h> wcs[a-z]
<wctype.h> is[a-z], to[a-z]
<wordexp.h> we_
ANY header _t

Note: The notation [A−Z] indicates any uppercase letter in the portable character set. The notation
[a−z] indicates any lowercase letter in the portable character set. Commas and spaces in the lists
of prefixes and complete names in the above table are not part of any prefix or complete name.

If any header in the following table is included, macros with the prefixes shown may be defined.
After the last inclusion of a given header, an application may use identifiers with the
corresponding prefixes for its own purpose, provided their use is preceded by a #undef of the
corresponding macro.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 17

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

The Compilation Environment General Information

Header Prefix

<dlfcn.h> RTLD_
<fcntl.h> F_, O_, S_, SEEK_

XSI <fmtmsg.h> MM_
<fnmatch.h> FNM_

XSI <ftw.h> FTW
<glob.h> GLOB_
<inttypes.h> PRI[Xa-z], SCN[Xa-z]
<math.h> FP_[A-Z]

XSI <ndbm.h> DBM_
<net/if.h> IF_
<netinet/in.h> IMPLINK_, IN_, INADDR_, IP_, IPPORT_, IPPROTO_, SOCK_

IP6 IPV6_, IN6_
<netinet/tcp.h> TCP_
<nl_types.h> NL_
<poll.h> POLL
<regex.h> REG_
<signal.h> BUS_, CLD_, FPE_, ILL_, SA_, SEGV_, SI_, SIG_[0-9a-z_],

XSI SS_, SV_, TRAP_
OB XSR POLL_
CX <stdio.h> SEEK_
OB XSR <stropts.h> FLUSH[A-Z], I_, M_, MUXID_R[A-Z], S_, SND[A-Z], STR
XSI <syslog.h> LOG_
XSI <sys/ipc.h> IPC_
XSI <sys/mman.h> PROT_, MAP_, MS_
XSI <sys/msg.h> MSG[A-Z], MSG_[A-Z]
XSI <sys/resource.h> PRIO_, RLIM_, RLIMIT_, RUSAGE_
XSI <sys/sem.h> SEM_
XSI <sys/shm.h> SHM[A-Z], SHM_[A-Z]
XSI <sys/socket.h> AF_, CMSG_, MSG_, PF_, SCM_, SHUT_, SO

<sys/stat.h> S_
<sys/statvfs.h> ST_

XSI <sys/time.h> FD_, ITIMER_
XSI <sys/uio.h> IOV_
XSI <sys/wait.h> BUS_, CLD_, FPE_, ILL_, POLL_, SEGV_, SI_, TRAP_

<termios.h> V, I, O, TC, B[0-9] (See below.)
<unistd.h> SEEK_
<wordexp.h> WRDE_

The following are used to reserve complete names for the <stdint.h> header:

INT[0-9A-Za-z_]*_MIN
INT[0-9A-Za-z_]*_MAX
INT[0-9A-Za-z_]*_C
UINT[0-9A-Za-z_]*_MIN
UINT[0-9A-Za-z_]*_MAX
UINT[0-9A-Za-z_]*_C

Note: The notation [0−9] indicates any digit. The notation [A−Z] indicates any uppercase letter in the
portable character set. The notation [0−9a−z_] indicates any digit, any lowercase letter in the
portable character set, or underscore.

18 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

General Information The Compilation Environment

XSI The following reserved names are used as exact matches for <termios.h>:

CBAUD EXTB VDSUSP
DEFECHO FLUSHO VLNEXT
ECHOCTL LOBLK VREPRINT
ECHOKE PENDIN VSTATUS
ECHOPRT SWTCH VWERASE
EXTA VDISCARD

The following identifiers are reserved regardless of the inclusion of headers:

1. With the exception of identifiers beginning with the prefix _POSIX_, all identifiers that
begin with an underscore and either an uppercase letter or another underscore are always
reserved for any use by the implementation.

2. All identifiers that begin with an underscore are always reserved for use as identifiers with
file scope in both the ordinary identifier and tag name spaces.

3. All identifiers in the table below are reserved for use as identifiers with external linkage.
Some of these identifiers do not appear in this volume of IEEE Std 1003.1-200x, but are
reserved for future use by the ISO C standard.

_Exit
abort
abs
acos
acosf
acosh
acoshf
acoshl
acosl
acosl
asctime
asin
asinf
asinh
asinhf
asinhl
asinl
asinl
atan
atan2
atan2f
atan2l
atanf
atanf
atanh
atanh
atanhf
atanhl
atanl
atanl
atexit

atof
atoi
atol
atoll
bsearch
cabs
cabsf
cabsl
cacos
cacosf
cacosh
cacoshf
cacoshl
cacosl
calloc
carg
cargf
cargl
casin
casinf
casinh
casinhf
casinhl
casinl
catan
catanf
catanh
catanh
catanhf
catanhf
catanhl

catanhl
catanl
cbrt
cbrtf
cbrtl
ccos
ccosf
ccosh
ccoshf
ccoshl
ccosl
ceil
ceilf
ceilf
ceill
ceill
cerf
cerfc
cerfcf
cerfcl
cerff
cerfl
cexmp1
cexmp1f
cexmp1l
cexp
cexp2
cexp2f
cexp2l
cexpf
cexpl

cimag
cimagf
cimagl
clearerr
clgamma
clgammaf
clgammal
clock
clog
clog10
clog10f
clog10l
clog1p
clog1pf
clog1pl
clog2
clog2f
clog2l
clogf
clogl
conj
conjf
conjl
copysign
copysignf
copysignl
cos
cosf
cosh
coshf
coshl

cosl
cpow
cpowf
cpowl
cproj
cprojf
cprojl
creal
crealf
creall
csin
csinf
csinh
csinhf
csinhl
csinl
csqrt
csqrtf
csqrtl
ctan
ctanf
ctanl
ctgamma
ctgammaf
ctgammal
ltime
difftime
div
erfcf
erfcl
erff

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 19

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

The Compilation Environment General Information

erfl
errno
exit
exp
exp2
exp2f
exp2l
expf
expl
expm1
expm1f
expm1l
fabs
fabsf
fabsl
fclose
fdim
fdimf
fdiml
feclearexcept
fegetenv
fegetexceptflag
fegetround
feholdexcept
feof
feraiseexcept
ferror
fesetenv
fesetexceptflag
fesetround
fetestexcept
feupdateenv
fflush
fgetc
fgetpos
fgets
fgetwc
fgetws
floor
floorf
floorl
fma
fmaf
fmal
fmax
fmaxf
fmaxl
fmin
fminf
fminl
fmod
fmodf
fmodl

fopen
fprintf
fputc
fputs
fputwc
fputws
fread
free
freopen
frexp
frexpf
frexpl
fscanf
fseek
fsetpos
ftell
fwide
fwprintf
fwrite
fwscanf
getc
getchar
getenv
gets
getwc
getwchar
gmtime
hypotf
hypotl
ilogb
ilogbf
ilogbl
imaxabs
imaxdiv
is[a-z]*
isblank
iswblank
labs
ldexp
ldexpf
ldexpl
ldiv
ldiv
lgammaf
lgammal
llabs
llrint
llrintf
llrintl
llround
llroundf
llroundl
localeconv

localtime
log
log10
log10f
log10l
log1p
log1pf
log1pl
log2
log2f
log2l
logb
logbf
logbl
logf
logl
longjmp
lrint
lrintf
lrintl
lround
lroundf
lroundl
malloc
mblen
mbrlen
mbrtowc
mbsinit
mbsrtowcs
mbstowcs
mbtowc
mem[a-z]*
mktime
modf
modff
modfl
nan
nanf
nanl
nearbyint
nearbyintf
nearbyintl
nextafterf
nextafterl
nexttoward
nexttowardf
nexttowardl
perror
pow
powf
powl
printf
putc

putchar
puts
putwc
putwchar
qsort
raise
rand
realloc
remainderf
remainderl
remove
remquo
remquof
remquol
rename
rewind
rint
rintf
rintl
round
roundf
roundl
scalbln
scalblnf
scalblnl
scalbn
scalbnf
scalbnl
scanf
setbuf
setjmp
setlocale
setvbuf
signal
sin
sinf
sinh
sinhf
sinhl
sinl
sprintf
sqrt
sqrtf
sqrtl
srand
sscanf
str[a-z]*
strtof
strtoimax
strtold
strtoll
strtoull
strtoumax

swprintf
swscanf
system
tan
tanf
tanh
tanhf
tanhl
tanl
tgamma
tgammaf
tgammal
time
tmpfile
tmpnam
to[a-z]*
trunc
truncf
truncl
ungetc
ungetwc
va_end
vfprintf
vfscanf
vfwprintf
vfwscanf
vprintf
vscanf
vsprintf
vsscanf
vswprintf
vswscanf
vwprintf
vwscanf
wcrtomb
wcs[a-z]*
wcstof
wcstoimax
wcstold
wcstoll
wcstoull
wcstoumax
wctob
wctomb
wctrans
wctype
wcwidth
wmem[a-z]*
wprintf
wscanf

20 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

General Information The Compilation Environment

Note: The notation [a−z] indicates any lowercase letter in the portable character set. The notation ’*’
indicates any combination of digits, letters in the portable character set, or underscore.

4. All functions and external identifiers defined in the Base Definitions volume of
IEEE Std 1003.1-200x, Chapter 13, Headers are reserved for use as identifiers with external
linkage.

5. All the identifiers defined in this volume of IEEE Std 1003.1-200x that have external linkage
are always reserved for use as identifiers with external linkage.

No other identifiers are reserved.

Applications shall not declare or define identifiers with the same name as an identifier reserved
in the same context. Since macro names are replaced whenever found, independent of scope and
name space, macro names matching any of the reserved identifier names shall not be defined by
an application if any associated header is included.

Except that the effect of each inclusion of <assert.h> depends on the definition of NDEBUG,
headers may be included in any order, and each may be included more than once in a given
scope, with no difference in effect from that of being included only once.

If used, the application shall ensure that a header is included outside of any external declaration
or definition, and it shall be first included before the first reference to any type or macro it
defines, or to any function or object it declares. However, if an identifier is declared or defined in
more than one header, the second and subsequent associated headers may be included after the
initial reference to the identifier. Prior to the inclusion of a header, the application shall not
define any macros with names lexically identical to symbols defined by that header.

2.3 Error Numbers

Most functions can provide an error number. The means by which each function provides its
error numbers is specified in its description.

Some functions provide the error number in a variable accessed through the symbol errno. The
symbol errno, defined by including the <errno.h> header, expands to a modifiable lvalue of type
int. It is unspecified whether errno is a macro or an identifier declared with external linkage. If a
macro definition is suppressed in order to access an actual object, or a program defines an
identifier with the name errno, the behavior is undefined.

The value of errno should only be examined when it is indicated to be valid by a function’s
return value. No function in this volume of IEEE Std 1003.1-200x shall set errno to zero. For each
thread of a process, the value of errno shall not be affected by function calls or assignments to
errno by other threads.

Some functions return an error number directly as the function value. These functions return a
value of zero to indicate success.

If more than one error occurs in processing a function call, any one of the possible errors may be
returned, as the order of detection is undefined.

Implementations may support additional errors not included in this list, may generate errors
included in this list under circumstances other than those described here, or may contain
extensions or limitations that prevent some errors from occurring. The ERRORS section on each
reference page specifies whether an error shall be returned, or whether it may be returned.
Implementations shall not generate a different error number from the ones described here for
error conditions described in this volume of IEEE Std 1003.1-200x, but may generate additional
errors unless explicitly disallowed for a particular function.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 21

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

Error Numbers General Information

Each implementation shall document, in the conformance document, situations in which each of
the optional conditions defined in IEEE Std 1003.1-200x is detected. The conformance document
may also contain statements that one or more of the optional error conditions are not detected.

Certain threads-related functions are not allowed to return an error code of [EINTR]. Where this
applies it is stated in the ERRORS section on the individual function pages.

The following symbolic names identify the possible error numbers, in the context of the
functions specifically defined in this volume of IEEE Std 1003.1-200x; these general descriptions
are more precisely defined in the ERRORS sections of the functions that return them. Only these
symbolic names should be used in programs, since the actual value of the error number is
unspecified. All values listed in this section shall be unique integer constant expressions with
type int suitable for use in #if preprocessing directives, except as noted below. The values for all
these names shall be found in the <errno.h> header defined in the Base Definitions volume of
IEEE Std 1003.1-200x. The actual values are unspecified by this volume of IEEE Std 1003.1-200x.

[E2BIG]
Argument list too long. The sum of the number of bytes used by the new process image’s
argument list and environment list is greater than the system-imposed limit of {ARG_MAX}
bytes.

or:

Lack of space in an output buffer.

or:

Argument is greater than the system-imposed maximum.

[EACCES]
Permission denied. An attempt was made to access a file in a way forbidden by its file
access permissions.

[EADDRINUSE]
Address in use. The specified address is in use.

[EADDRNOTAVAIL]
Address not available. The specified address is not available from the local system.

[EAFNOSUPPORT]
Address family not supported. The implementation does not support the specified address
family, or the specified address is not a valid address for the address family of the specified
socket.

[EAGAIN]
Resource temporarily unavailable. This is a temporary condition and later calls to the same
routine may complete normally.

[EALREADY]
Connection already in progress. A connection request is already in progress for the specified
socket.

[EBADF]
Bad file descriptor. A file descriptor argument is out of range, refers to no open file, or a
read (write) request is made to a file that is only open for writing (reading).

[EBADMSG]
OB XSR Bad message. During a read(), getmsg(), getpmsg(), or ioctl() I_RECVFD request to a

STREAMS device, a message arrived at the head of the STREAM that is inappropriate for
the function receiving the message.

22 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

General Information Error Numbers

read() Message waiting to be read on a STREAM is not a data message.

getmsg() or getpmsg()
A file descriptor was received instead of a control message.

ioctl() Control or data information was received instead of a file descriptor when
I_RECVFD was specified.

or:

Bad Message. The implementation has detected a corrupted message.

[EBUSY]
Resource busy. An attempt was made to make use of a system resource that is not currently
available, as it is being used by another process in a manner that would have conflicted
with the request being made by this process.

[ECANCELED]
Operation canceled. The associated asynchronous operation was canceled before
completion.

[ECHILD]
No child process. A wait() or waitpid() function was executed by a process that had no
existing or unwaited-for child process.

[ECONNABORTED]
Connection aborted. The connection has been aborted.

[ECONNREFUSED]
Connection refused. An attempt to connect to a socket was refused because there was no
process listening or because the queue of connection requests was full and the underlying
protocol does not support retransmissions.

[ECONNRESET]
Connection reset. The connection was forcibly closed by the peer.

[EDEADLK]
Resource deadlock would occur. An attempt was made to lock a system resource that would
have resulted in a deadlock situation.

[EDESTADDRREQ]
Destination address required. No bind address was established.

[EDOM]
Domain error. An input argument is outside the defined domain of the mathematical
function (defined in the ISO C standard).

[EDQUOT]
Reserved.

[EEXIST]
File exists. An existing file was mentioned in an inappropriate context; for example, as a
new link name in the link() function.

[EFAULT]
Bad address. The system detected an invalid address in attempting to use an argument of a
call. The reliable detection of this error cannot be guaranteed, and when not detected may
result in the generation of a signal, indicating an address violation, which is sent to the
process.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 23

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

Error Numbers General Information

[EFBIG]
File too large. The size of a file would exceed the maximum file size of an implementation
or offset maximum established in the corresponding file description.

[EHOSTUNREACH]
Host is unreachable. The destination host cannot be reached (probably because the host is
down or a remote router cannot reach it).

[EIDRM]
Identifier removed. Returned during XSI interprocess communication if an identifier has
been removed from the system.

[EILSEQ]
Illegal byte sequence. A wide-character code has been detected that does not correspond to
a valid character, or a byte sequence does not form a valid wide-character code (defined in
the ISO C standard).

[EINPROGRESS]
Operation in progress. This code is used to indicate that an asynchronous operation has not
yet completed.

or:

O_NONBLOCK is set for the socket file descriptor and the connection cannot be
immediately established.

[EINTR]
Interrupted function call. An asynchronous signal was caught by the process during the
execution of an interruptible function. If the signal handler performs a normal return, the
interrupted function call may return this condition (see the Base Definitions volume of
IEEE Std 1003.1-200x, <signal.h>).

[EINVAL]
Invalid argument. Some invalid argument was supplied; for example, specifying an
undefined signal in a signal() function or a kill() function.

[EIO]
Input/output error. Some physical input or output error has occurred. This error may be
reported on a subsequent operation on the same file descriptor. Any other error-causing
operation on the same file descriptor may cause the [EIO] error indication to be lost.

[EISCONN]
Socket is connected. The specified socket is already connected.

[EISDIR]
Is a directory. An attempt was made to open a directory with write mode specified.

[ELOOP]
Symbolic link loop. A loop exists in symbolic links encountered during pathname
resolution. This error may also be returned if more than {SYMLOOP_MAX} symbolic links
are encountered during pathname resolution.

[EMFILE]
File descriptor value too large. An attempt was made to open a file descriptor with a value

XSI greater than or equal to {OPEN_MAX}, or greater than or equal to the soft limit
RLIMIT_NOFILE for the process (if smaller than {OPEN_MAX}).

[EMLINK]
Too many links. An attempt was made to have the link count of a single file exceed
{LINK_MAX}.

24 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

General Information Error Numbers

[EMSGSIZE]
Message too large. A message sent on a transport provider was larger than an internal
message buffer or some other network limit.

or:

Inappropriate message buffer length.

[EMULTIHOP]
Reserved.

[ENAMETOOLONG]
Filename too long. The length of a pathname exceeds {PATH_MAX}, or a pathname
component is longer than {NAME_MAX}. This error may also occur when pathname
substitution, as a result of encountering a symbolic link during pathname resolution, results
in a pathname string the size of which exceeds {PATH_MAX}.

[ENETDOWN]
Network is down. The local network interface used to reach the destination is down.

[ENETRESET]
The connection was aborted by the network.

[ENETUNREACH]
Network unreachable. No route to the network is present.

[ENFILE]
Too many files open in system. Too many files are currently open in the system. The system
has reached its predefined limit for simultaneously open files and temporarily cannot
accept requests to open another one.

[ENOBUFS]
No buffer space available. Insufficient buffer resources were available in the system to
perform the socket operation.

OB XSR [ENODATA]
No message available. No message is available on the STREAM head read queue.

[ENODEV]
No such device. An attempt was made to apply an inappropriate function to a device; for
example, trying to read a write-only device such as a printer.

[ENOENT]
No such file or directory. A component of a specified pathname does not exist, or the
pathname is an empty string.

[ENOEXEC]
Executable file format error. A request is made to execute a file that, although it has the
appropriate permissions, is not in the format required by the implementation for executable
files.

[ENOLCK]
No locks available. A system-imposed limit on the number of simultaneous file and record
locks has been reached and no more are currently available.

[ENOLINK]
Reserved.

[ENOMEM]
Not enough space. The new process image requires more memory than is allowed by the
hardware or system-imposed memory management constraints.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 25

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

Error Numbers General Information

[ENOMSG]
No message of the desired type. The message queue does not contain a message of the
required type during XSI interprocess communication.

[ENOPROTOOPT]
Protocol not available. The protocol option specified to setsockopt() is not supported by the
implementation.

[ENOSPC]
No space left on a device. During the write() function on a regular file or when extending a
directory, there is no free space left on the device.

OB XSR [ENOSR]
No STREAM resources. Insufficient STREAMS memory resources are available to perform a
STREAMS-related function. This is a temporary condition; it may be recovered from if other
processes release resources.

OB XSR [ENOSTR]
Not a STREAM. A STREAM function was attempted on a file descriptor that was not
associated with a STREAMS device.

[ENOSYS]
Function not implemented. An attempt was made to use a function that is not available in
this implementation.

[ENOTCONN]
Socket not connected. The socket is not connected.

[ENOTDIR]
Not a directory. A component of the specified pathname exists, but it is not a directory,
when a directory was expected.

[ENOTEMPTY]
Directory not empty. A directory other than an empty directory was supplied when an
empty directory was expected.

[ENOTSOCK]
Not a socket. The file descriptor does not refer to a socket.

[ENOTSUP]
Not supported. The implementation does not support this feature of the Realtime Option
Group.

[ENOTTY]
Inappropriate I/O control operation. A control function has been attempted for a file or
special file for which the operation is inappropriate.

[ENXIO]
No such device or address. Input or output on a special file refers to a device that does not
exist, or makes a request beyond the capabilities of the device. It may also occur when, for
example, a tape drive is not on-line.

[EOPNOTSUPP]
Operation not supported on socket. The type of socket (address family or protocol) does not
support the requested operation. A conforming implementation may assign the same values
for [EOPNOTSUP] and [ENOTSUP].

[EOVERFLOW]
Value too large to be stored in data type. An operation was attempted which would
generate a value that is outside the range of values that can be represented in the relevant

26 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

General Information Error Numbers

data type or that are allowed for a given data item.

[EPERM]
Operation not permitted. An attempt was made to perform an operation limited to
processes with appropriate privileges or to the owner of a file or other resource.

[EPIPE]
Broken pipe. A write was attempted on a socket, pipe, or FIFO for which there is no process
to read the data.

[EPROTO]
Protocol error. Some protocol error occurred. This error is device-specific, but is generally
not related to a hardware failure.

[EPROTONOSUPPORT]
Protocol not supported. The protocol is not supported by the address family, or the protocol
is not supported by the implementation.

[EPROTOTYPE]
Protocol wrong type for socket. The socket type is not supported by the protocol.

[ERANGE]
Result too large or too small. The result of the function is too large (overflow) or too small
(underflow) to be represented in the available space (defined in the ISO C standard).

[EROFS]
Read-only file system. An attempt was made to modify a file or directory on a file system
that is read-only.

[ESPIPE]
Invalid seek. An attempt was made to access the file offset associated with a pipe or FIFO.

[ESRCH]
No such process. No process can be found corresponding to that specified by the given
process ID.

[ESTALE]
Reserved.

OB XSR [ETIME]
STREAM ioctl() timeout. The timer set for a STREAMS ioctl() call has expired. The cause of
this error is device-specific and could indicate either a hardware or software failure, or a
timeout value that is too short for the specific operation. The status of the ioctl() operation is
unspecified.

[ETIMEDOUT]
Connection timed out. The connection to a remote machine has timed out. If the connection
timed out during execution of the function that reported this error (as opposed to timing
out prior to the function being called), it is unspecified whether the function has completed
some or all of the documented behavior associated with a successful completion of the
function.

or:

Operation timed out. The time limit associated with the operation was exceeded before the
operation completed.

[ETXTBSY]
Text file busy. An attempt was made to execute a pure-procedure program that is currently
open for writing, or an attempt has been made to open for writing a pure-procedure

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 27

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

Error Numbers General Information

program that is being executed.

[EWOULDBLOCK]
Operation would block. An operation on a socket marked as non-blocking has encountered
a situation such as no data available that otherwise would have caused the function to
suspend execution.

A conforming implementation may assign the same values for [EWOULDBLOCK] and
[EAGAIN].

[EXDEV]
Improper link. A link to a file on another file system was attempted.

2.3.1 Additional Error Numbers

Additional implementation-defined error numbers may be defined in <errno.h>.

2.4 Signal Concepts

2.4.1 Signal Generation and Delivery

A signal is said to be ‘‘generated’’ for (or sent to) a process or thread when the event that causes
the signal first occurs. Examples of such events include detection of hardware faults, timer
expiration, signals generated via the sigevent structure and terminal activity, as well as
invocations of the kill() and sigqueue() functions. In some circumstances, the same event
generates signals for multiple processes.

At the time of generation, a determination shall be made whether the signal has been generated
for the process or for a specific thread within the process. Signals which are generated by some
action attributable to a particular thread, such as a hardware fault, shall be generated for the
thread that caused the signal to be generated. Signals that are generated in association with a
process ID or process group ID or an asynchronous event, such as terminal activity, shall be
generated for the process.

Each process has an action to be taken in response to each signal defined by the system (see
Section 2.4.3 (on page 30)). A signal is said to be ‘‘delivered’’ to a process when the appropriate
action for the process and signal is taken. A signal is said to be ‘‘accepted’’ by a process when the
signal is selected and returned by one of the sigwait() functions.

During the time between the generation of a signal and its delivery or acceptance, the signal is
said to be ‘‘pending’’. Ordinarily, this interval cannot be detected by an application. However, a
signal can be ‘‘blocked’’ from delivery to a thread. If the action associated with a blocked signal
is anything other than to ignore the signal, and if that signal is generated for the thread, the
signal shall remain pending until it is unblocked, it is accepted when it is selected and returned
by a call to the sigwait() function, or the action associated with it is set to ignore the signal.
Signals generated for the process shall be delivered to exactly one of those threads within the
process which is in a call to a sigwait() function selecting that signal or has not blocked delivery
of the signal. If there are no threads in a call to a sigwait() function selecting that signal, and if all
threads within the process block delivery of the signal, the signal shall remain pending on the
process until a thread calls a sigwait() function selecting that signal, a thread unblocks delivery
of the signal, or the action associated with the signal is set to ignore the signal. If the action
associated with a blocked signal is to ignore the signal and if that signal is generated for the
process, it is unspecified whether the signal is discarded immediately upon generation or
remains pending.

28 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

General Information Signal Concepts

Each thread has a ‘‘signal mask’’ that defines the set of signals currently blocked from delivery
to it. The signal mask for a thread shall be initialized from that of its parent or creating thread,
or from the corresponding thread in the parent process if the thread was created as the result of a
call to fork(). The pthread_sigmask(), sigaction(), sigprocmask(), and sigsuspend() functions control
the manipulation of the signal mask.

The determination of which action is taken in response to a signal is made at the time the signal
is delivered, allowing for any changes since the time of generation. This determination is
independent of the means by which the signal was originally generated. If a subsequent
occurrence of a pending signal is generated, it is implementation-defined as to whether the
signal is delivered or accepted more than once in circumstances other than those in which
queuing is required. The order in which multiple, simultaneously pending signals outside the
range SIGRTMIN to SIGRTMAX are delivered to or accepted by a process is unspecified.

When any stop signal (SIGSTOP, SIGTSTP, SIGTTIN, SIGTTOU) is generated for a process, any
pending SIGCONT signals for that process shall be discarded. Conversely, when SIGCONT is
generated for a process, all pending stop signals for that process shall be discarded. When
SIGCONT is generated for a process that is stopped, the process shall be continued, even if the
SIGCONT signal is blocked or ignored. If SIGCONT is blocked and not ignored, it shall remain
pending until it is either unblocked or a stop signal is generated for the process.

An implementation shall document any condition not specified by this volume of
IEEE Std 1003.1-200x under which the implementation generates signals.

2.4.2 Realtime Signal Generation and Delivery

This section describes functionality to support realtime signal generation and delivery.

Some signal-generating functions, such as high-resolution timer expiration, asynchronous I/O
completion, interprocess message arrival, and the sigqueue() function, support the specification
of an application-defined value, either explicitly as a parameter to the function or in a sigevent
structure parameter. The sigevent structure is defined in <signal.h> and contains at least the
following members:

Member Type Member Name Description

int sigev_notify Notification type.
int sigev_signo Signal number.
union sigval sigev_value Signal value.
void(*)(union sigval) sigev_notify_function Notification function.
(pthread_attr_t*) sigev_notify_attributes Notification attributes.

The sigev_notify member specifies the notification mechanism to use when an asynchronous
event occurs. This volume of IEEE Std 1003.1-200x defines the following values for the
sigev_notify member:

SIGEV_NONE No asynchronous notification shall be delivered when the event of
interest occurs.

SIGEV_SIGNAL The signal specified in sigev_signo shall be generated for the process when
the event of interest occurs. If the implementation supports the Realtime
Signals Extension option and if the SA_SIGINFO flag is set for that signal
number, then the signal shall be queued to the process and the value
specified in sigev_value shall be the si_value component of the generated
signal. If SA_SIGINFO is not set for that signal number, it is unspecified
whether the signal is queued and what value, if any, is sent.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 29

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

Signal Concepts General Information

SIGEV_THREAD A notification function shall be called to perform notification.

An implementation may define additional notification mechanisms.

The sigev_signo member specifies the signal to be generated. The sigev_value member is the
application-defined value to be passed to the signal-catching function at the time of the signal
delivery or to be returned at signal acceptance as the si_value member of the siginfo_t structure.

The sigval union is defined in <signal.h> and contains at least the following members:

Member Type Member Name Description

int sival_int Integer signal value.
void* sival_ptr Pointer signal value.

The sival_int member shall be used when the application-defined value is of type int; the
sival_ptr member shall be used when the application-defined value is a pointer.

When a signal is generated by the sigqueue() function or any signal-generating function that
supports the specification of an application-defined value, the signal shall be marked pending
and, if the SA_SIGINFO flag is set for that signal, the signal shall be queued to the process along
with the application-specified signal value. Multiple occurrences of signals so generated are
queued in FIFO order. It is unspecified whether signals so generated are queued when the
SA_SIGINFO flag is not set for that signal.

Signals generated by the kill() function or other events that cause signals to occur, such as
detection of hardware faults, alarm() timer expiration, or terminal activity, and for which the
implementation does not support queuing, shall have no effect on signals already queued for the
same signal number.

When multiple unblocked signals, all in the range SIGRTMIN to SIGRTMAX, are pending, the
behavior shall be as if the implementation delivers the pending unblocked signal with the
lowest signal number within that range. No other ordering of signal delivery is specified.

If, when a pending signal is delivered, there are additional signals queued to that signal number,
the signal shall remain pending. Otherwise, the pending indication shall be reset.

Multi-threaded programs can use an alternate event notification mechanism. When a
notification is processed, and the sigev_notify member of the sigevent structure has the value
SIGEV_THREAD, the function sigev_notify_function is called with parameter sigev_value.

The function shall be executed in an environment as if it were the start_routine for a newly
created thread with thread attributes specified by sigev_notify_attributes. If sigev_notify_attributes
is NULL, the behavior shall be as if the thread were created with the detachstate attribute set to
PTHREAD_CREATE_DETACHED. Supplying an attributes structure with a detachstate attribute
of PTHREAD_CREATE_JOINABLE results in undefined behavior. The signal mask of this
thread is implementation-defined.

2.4.3 Signal Actions

There are three types of action that can be associated with a signal: SIG_DFL, SIG_IGN, or a
pointer to a function. Initially, all signals shall be set to SIG_DFL or SIG_IGN prior to entry of
the main() routine (see the exec functions). The actions prescribed by these values are as follows.

30 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

General Information Signal Concepts

SIG_DFL

Signal-specific default action.

The default actions for the signals defined in this volume of IEEE Std 1003.1-200x are specified
under <signal.h>. The default actions for the realtime signals in the range SIGRTMIN to
SIGRTMAX shall be to terminate the process abnormally.

If the default action is to stop the process, the execution of that process is temporarily
suspended. When a process stops, a SIGCHLD signal shall be generated for its parent process,
unless the parent process has set the SA_NOCLDSTOP flag. While a process is stopped, any
additional signals that are sent to the process shall not be delivered until the process is
continued, except SIGKILL which always terminates the receiving process. A process that is a
member of an orphaned process group shall not be allowed to stop in response to the SIGTSTP,
SIGTTIN, or SIGTTOU signals. In cases where delivery of one of these signals would stop such a
process, the signal shall be discarded.

Setting a signal action to SIG_DFL for a signal that is pending, and whose default action is to
ignore the signal (for example, SIGCHLD), shall cause the pending signal to be discarded,
whether or not it is blocked. Any queued values pending shall be discarded and the resources
used to queue them shall be released and returned to the system for other use.

The default action for SIGCONT is to resume execution at the point where the process was
stopped, after first handling any pending unblocked signals.

XSI When a stopped process is continued, a SIGCHLD signal may be generated for its parent
process, unless the parent process has set the SA_NOCLDSTOP flag.

SIG_IGN

Ignore signal.

Delivery of the signal shall have no effect on the process. The behavior of a process is undefined
after it ignores a SIGFPE, SIGILL, SIGSEGV, or SIGBUS signal that was not generated by kill(),
sigqueue(), or raise().

The system shall not allow the action for the signals SIGKILL or SIGSTOP to be set to SIG_IGN.

Setting a signal action to SIG_IGN for a signal that is pending shall cause the pending signal to
be discarded, whether or not it is blocked.

If a process sets the action for the SIGCHLD signal to SIG_IGN, the behavior is unspecified,
XSI except as specified below.

If the action for the SIGCHLD signal is set to SIG_IGN, child processes of the calling processes
shall not be transformed into zombie processes when they terminate. If the calling process
subsequently waits for its children, and the process has no unwaited-for children that were
transformed into zombie processes, it shall block until all of its children terminate, and wait(),
waitid(), and waitpid() shall fail and set errno to [ECHILD].

Any queued values pending shall be discarded and the resources used to queue them shall be
released and made available to queue other signals.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 31

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

Signal Concepts General Information

Pointer to a Function

Catch signal.

On delivery of the signal, the receiving process is to execute the signal-catching function at the
specified address. After returning from the signal-catching function, the receiving process shall
resume execution at the point at which it was interrupted.

If the SA_SIGINFO flag for the signal is cleared, the signal-catching function shall be entered as
a C-language function call as follows:

void func(int signo);

If the SA_SIGINFO flag for the signal is set, the signal-catching function shall be entered as a C-
language function call as follows:

void func(int signo, s iginfo_t * info, v oid * context);

where func is the specified signal-catching function, signo is the signal number of the signal
being delivered, and info is a pointer to a siginfo_t structure defined in <signal.h> containing at
least the following members:

Member Type Member Name Description

int si_signo Signal number.
int si_code Cause of the signal.
union sigval si_value Signal value.

The si_signo member shall contain the signal number. This shall be the same as the signo
parameter. The si_code member shall contain a code identifying the cause of the signal. The
following values are defined for si_code:

SI_USER The signal was sent by the kill() function. The implementation may set si_code
to SI_USER if the signal was sent by the raise() or abort() functions or any
similar functions provided as implementation extensions.

SI_QUEUE The signal was sent by the sigqueue() function.

SI_TIMER The signal was generated by the expiration of a timer set by timer_settime().

SI_ASYNCIO The signal was generated by the completion of an asynchronous I/O request.

MSG SI_MESGQ The signal was generated by the arrival of a message on an empty message
queue.

If the signal was not generated by one of the functions or events listed above, the si_code shall be
set to an implementation-defined value that is not equal to any of the values defined above.

If si_code is one of SI_QUEUE, SI_TIMER, SI_ASYNCIO, or SI_MESGQ, then si_value shall
contain the application-specified signal value. Otherwise, the contents of si_value are undefined.

The behavior of a process is undefined after it returns normally from a signal-catching function
for a SIGBUS, SIGFPE, SIGILL, or SIGSEGV signal that was not generated by kill(), sigqueue(),
or raise().

The system shall not allow a process to catch the signals SIGKILL and SIGSTOP.

If a process establishes a signal-catching function for the SIGCHLD signal while it has a
terminated child process for which it has not waited, it is unspecified whether a SIGCHLD
signal is generated to indicate that child process.

When signal-catching functions are invoked asynchronously with process execution, the
behavior of some of the functions defined by this volume of IEEE Std 1003.1-200x is unspecified

32 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

General Information Signal Concepts

if they are called from a signal-catching function.

The following table defines a set of functions that shall be either reentrant or non-interruptible
by signals and shall be async-signal-safe. Therefore, applications may invoke them, without
restriction, from signal-catching functions:

_Exit()
_exit()
abort()
accept()
access()
aio_error()
aio_return()
aio_suspend()
alarm()
bind()
cfgetispeed()
cfgetospeed()
cfsetispeed()
cfsetospeed()
chdir()
chmod()
chown()
clock_gettime()
close()
connect()
creat()
dup()
dup2()
execl()
execle()
execv()
execve()

faccessat()
fchmod()
fchmodat()
fchown()
fchownat()
fcntl()
fdatasync()
fexecve()
fork()
fpathconf()
fstat()
fstatat()
fsync()
ftruncate()
futimesat()
getegid()
geteuid()
getgid()
getgroups()
getpeername()
getpgrp()
getpid()
getppid()
getsockname()
getsockopt()
getuid()
kill()

link()
linkat()
listen()
lseek()
lstat()
mkdir()
mkdirat()
mkfifo()
mkfifoat()
mknodat()
open()
openat()
pathconf()
pause()
pipe()
poll()
posix_trace_event()
pselect()
raise()
read()
readlink()
readlinkat()
recv()
recvfrom()
recvmsg()
rename()
renameat()

rmdir()
select()
sem_post()
send()
sendmsg()
sendto()
setgid()
setpgid()
setsid()
setsockopt()
setuid()
shutdown()
sigaction()
sigaddset()
sigdelset()
sigemptyset()
sigfillset()
sigismember()
signal()
sigpause()
sigpending()
sigprocmask()
sigqueue()
sigset()
sigsuspend()
sleep()
sockatmark()

socket()
socketpair()
stat()
symlink()
symlinkat()
sysconf()
tcdrain()
tcflow()
tcflush()
tcgetattr()
tcgetpgrp()
tcsendbreak()
tcsetattr()
tcsetpgrp()
time()
timer_getoverrun()
timer_gettime()
timer_settime()
times()
umask()
uname()
unlink()
unlinkat()
utime()
wait()
waitpid()
write()

All functions not in the above table are considered to be unsafe with respect to signals. In the
presence of signals, all functions defined by this volume of IEEE Std 1003.1-200x shall behave as
defined when called from or interrupted by a signal-catching function, with a single exception:
when a signal interrupts an unsafe function and the signal-catching function calls an unsafe
function, the behavior is undefined.

When a signal is delivered to a thread, if the action of that signal specifies termination, stop, or
continue, the entire process shall be terminated, stopped, or continued, respectively.

2.4.4 Signal Effects on Other Functions

Signals affect the behavior of certain functions defined by this volume of IEEE Std 1003.1-200x if
delivered to a process while it is executing such a function. If the action of the signal is to
terminate the process, the process shall be terminated and the function shall not return. If the
action of the signal is to stop the process, the process shall stop until continued or terminated.
Generation of a SIGCONT signal for the process shall cause the process to be continued, and the
original function shall continue at the point the process was stopped. If the action of the signal is
to invoke a signal-catching function, the signal-catching function shall be invoked; in this case
the original function is said to be ‘‘interrupted’’ by the signal. If the signal-catching function
executes a return statement, the behavior of the interrupted function shall be as described
individually for that function, except as noted for unsafe functions. Signals that are ignored shall

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 33

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

Signal Concepts General Information

not affect the behavior of any function; signals that are blocked shall not affect the behavior of
any function until they are unblocked and then delivered, except as specified for the sigpending()
and sigwait() functions.

2.5 Standard I/O Streams

CX A stream is associated with an external file (which may be a physical device) or memory buffer
CX by ‘‘opening’’ a file or buffer. This may involve ‘‘creating’’ a new file. Creating an existing file

causes its former contents to be discarded if necessary. If a file can support positioning requests
(such as a disk file, as opposed to a terminal), then a ‘‘file position indicator’’ associated with the
stream is positioned at the start (byte number 0) of the file, unless the file is opened with append
mode, in which case it is implementation-defined whether the file position indicator is initially
positioned at the beginning or end of the file. The file position indicator is maintained by
subsequent reads, writes, and positioning requests, to facilitate an orderly progression through
the file. All input takes place as if bytes were read by successive calls to fgetc(); all output takes
place as if bytes were written by successive calls to fputc().

When a stream is ‘‘unbuffered’’, bytes are intended to appear from the source or at the
destination as soon as possible; otherwise, bytes may be accumulated and transmitted as a
block. When a stream is ‘‘fully buffered’’, bytes are intended to be transmitted as a block when a
buffer is filled. When a stream is ‘‘line buffered’’, bytes are intended to be transmitted as a block
when a newline byte is encountered. Furthermore, bytes are intended to be transmitted as a
block when a buffer is filled, when input is requested on an unbuffered stream, or when input is
requested on a line-buffered stream that requires the transmission of bytes. Support for these
characteristics is implementation-defined, and may be affected via setbuf() and setvbuf().

A file may be disassociated from a controlling stream by ‘‘closing’’ the file. Output streams are
flushed (any unwritten buffer contents are transmitted) before the stream is disassociated from
the file. The value of a pointer to a FILE object is unspecified after the associated file is closed
(including the standard streams).

A file may be subsequently reopened, by the same or another program execution, and its
contents reclaimed or modified (if it can be repositioned at its start). If the main() function
returns to its original caller, or if the exit() function is called, all open files are closed (hence all
output streams are flushed) before program termination. Other paths to program termination,
such as calling abort(), need not close all files properly.

The address of the FILE object used to control a stream may be significant; a copy of a FILE
object need not necessarily serve in place of the original.

At program start-up, three streams are predefined and need not be opened explicitly: standard
input (for reading conventional input), standard output (for writing conventional output), and
standard error (for writing diagnostic output). When opened, the standard error stream is not
fully buffered; the standard input and standard output streams are fully buffered if and only if
the stream can be determined not to refer to an interactive device.

CX A stream associated with a memory buffer shall have the same operations for text files that a
stream associated with an external file would have. In addition, the stream orientation shall be
determined in exactly the same fashion.

Input and output operations on a stream associated with a memory buffer by a call to
fmemopen() shall be constrained by the implementation to take place within the bounds of the
memory buffer. In the case of a stream opened by open_memstream() or open_wmemstream(), the
memory area shall grow dynamically to accommodate write operations as necessary. For output,
data is moved from the buffer provided by setvbuf() to the memory stream during a flush or
close operation.

34 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

General Information Standard I/O Streams

2.5.1 Interaction of File Descriptors and Standard I/O Streams

CX This section describes the interaction of file descriptors and standard I/O streams. The
functionality described in this section is an extension to the ISO C standard (and the rest of this
section is not further CX shaded).

An open file description may be accessed through a file descriptor, which is created using
functions such as open() or pipe(), or through a stream, which is created using functions such as
fopen() or popen(). Either a file descriptor or a stream is called a ‘‘handle’’ on the open file
description to which it refers; an open file description may have several handles.

Handles can be created or destroyed by explicit user action, without affecting the underlying
open file description. Some of the ways to create them include fcntl(), dup(), fdopen(), fileno(),
and fork(). They can be destroyed by at least fclose(), close(), and the exec functions.

A file descriptor that is never used in an operation that could affect the file offset (for example,
read(), write(), or lseek()) is not considered a handle for this discussion, but could give rise to
one (for example, as a consequence of fdopen(), dup(), or fork()). This exception does not include
the file descriptor underlying a stream, whether created with fopen() or fdopen(), so long as it is
not used directly by the application to affect the file offset. The read() and write() functions
implicitly affect the file offset; lseek() explicitly affects it.

The result of function calls involving any one handle (the ‘‘active handle’’) is defined elsewhere
in this volume of IEEE Std 1003.1-200x, but if two or more handles are used, and any one of
them is a stream, the application shall ensure that their actions are coordinated as described
below. If this is not done, the result is undefined.

A handle which is a stream is considered to be closed when either an fclose() or freopen() is
executed on it (the result of freopen() is a new stream, which cannot be a handle on the same
open file description as its previous value), or when the process owning that stream terminates
with exit(), abort(), or due to a signal. A file descriptor is closed by close(), _exit(), or the exec
functions when FD_CLOEXEC is set on that file descriptor.

For a handle to become the active handle, the application shall ensure that the actions below are
performed between the last use of the handle (the current active handle) and the first use of the
second handle (the future active handle). The second handle then becomes the active handle. All
activity by the application affecting the file offset on the first handle shall be suspended until it
again becomes the active file handle. (If a stream function has as an underlying function one that
affects the file offset, the stream function shall be considered to affect the file offset.)

The handles need not be in the same process for these rules to apply.

Note that after a fork(), two handles exist where one existed before. The application shall ensure
that, if both handles can ever be accessed, they are both in a state where the other could become
the active handle first. The application shall prepare for a fork() exactly as if it were a change of
active handle. (If the only action performed by one of the processes is one of the exec functions or
_exit() (not exit()), the handle is never accessed in that process.)

For the first handle, the first applicable condition below applies. After the actions required
below are taken, if the handle is still open, the application can close it.

• If it is a file descriptor, no action is required.

• If the only further action to be performed on any handle to this open file descriptor is to
close it, no action need be taken.

• If it is a stream which is unbuffered, no action need be taken.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 35

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

Standard I/O Streams General Information

• If it is a stream which is line buffered, and the last byte written to the stream was a
<newline> (that is, as if a:

putc(’\n’)

was the most recent operation on that stream), no action need be taken.

• If it is a stream which is open for writing or appending (but not also open for reading), the
application shall either perform an fflush(), or the stream shall be closed.

• If the stream is open for reading and it is at the end of the file (feof() is true), no action need
be taken.

• If the stream is open with a mode that allows reading and the underlying open file
description refers to a device that is capable of seeking, the application shall either perform
an fflush(), or the stream shall be closed.

Otherwise, the result is undefined.

For the second handle:

• If any previous active handle has been used by a function that explicitly changed the file
offset, except as required above for the first handle, the application shall perform an lseek()
or fseek() (as appropriate to the type of handle) to an appropriate location.

If the active handle ceases to be accessible before the requirements on the first handle, above,
have been met, the state of the open file description becomes undefined. This might occur
during functions such as a fork() or _exit().

The exec functions make inaccessible all streams that are open at the time they are called,
independent of which streams or file descriptors may be available to the new process image.

When these rules are followed, regardless of the sequence of handles used, implementations
shall ensure that an application, even one consisting of several processes, shall yield correct
results: no data shall be lost or duplicated when writing, and all data shall be written in order,
except as requested by seeks. It is implementation-defined whether, and under what conditions,
all input is seen exactly once.

If the rules above are not followed, the result is unspecified.

Each function that operates on a stream is said to have zero or more ‘‘underlying functions’’.
This means that the stream function shares certain traits with the underlying functions, but does
not require that there be any relation between the implementations of the stream function and its
underlying functions.

2.5.2 Stream Orientation and Encoding Rules

For conformance to the ISO/IEC 9899: 1999 standard, the definition of a stream includes an
‘‘orientation’’. After a stream is associated with an external file, but before any operations are
performed on it, the stream is without orientation. Once a wide-character input/output function
has been applied to a stream without orientation, the stream shall become ‘‘wide-oriented’’.
Similarly, once a byte input/output function has been applied to a stream without orientation,
the stream shall become ‘‘byte-oriented’’. Only a call to the freopen() function or the fwide()
function can otherwise alter the orientation of a stream.

A successful call to freopen() shall remove any orientation. The three predefined streams standard
input, standard output, and standard error shall be unoriented at program start-up.

Byte input/output functions cannot be applied to a wide-oriented stream, and wide-character
input/output functions cannot be applied to a byte-oriented stream. The remaining stream

36 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

General Information Standard I/O Streams

operations shall not affect and shall not be affected by a stream’s orientation, except for the
following additional restriction:

• For wide-oriented streams, after a successful call to a file-positioning function that leaves
the file position indicator prior to the end-of-file, a wide-character output function can
overwrite a partial character; any file contents beyond the byte(s) written are henceforth
undefined.

Each wide-oriented stream has an associated mbstate_t object that stores the current parse state
of the stream. A successful call to fgetpos() shall store a representation of the value of this
mbstate_t object as part of the value of the fpos_t object. A later successful call to fsetpos() using
the same stored fpos_t value shall restore the value of the associated mbstate_t object as well as
the position within the controlled stream.

Implementations that support multiple encoding rules associate an encoding rule with the
stream. The encoding rule shall be determined by the setting of the LC_CTYPE category in the
current locale at the time when the stream becomes wide-oriented. As with the stream’s
orientation, the encoding rule associated with a stream cannot be changed once it has been set,
except by a successful call to freopen() which clears the encoding rule and resets the orientation
to unoriented.

Although wide-oriented streams are conceptually sequences of wide characters, the external file
associated with a wide-oriented stream is a sequence of (possibly multi-byte) characters
generalized as follows:

• Multi-byte encodings within files may contain embedded null bytes (unlike multi-byte
encodings valid for use internal to the program).

• A file need not begin nor end in the initial shift state.

Moreover, the encodings used for characters may differ among files. Both the nature and choice
of such encodings are implementation-defined.

The wide-character input functions read characters from the stream and convert them to wide
characters as if they were read by successive calls to the fgetwc() function. Each conversion shall
occur as if by a call to the mbrtowc() function, with the conversion state described by the

CX stream’s own mbstate_t object, except the encoding rule associated with the stream is used
instead of the encoding rule implied by the LC_CTYPE category of the current locale.

The wide-character output functions convert wide characters to (possibly multi-byte) characters
and write them to the stream as if they were written by successive calls to the fputwc() function.
Each conversion shall occur as if by a call to the wcrtomb() function, with the conversion state

CX described by the stream’s own mbstate_t object, except the encoding rule associated with the
stream is used instead of the encoding rule implied by the LC_CTYPE category of the current
locale.

An ‘‘encoding error ’’ shall occur if the character sequence presented to the underlying mbrtowc()
function does not form a valid (generalized) character, or if the code value passed to the
underlying wcrtomb() function does not correspond to a valid (generalized) character. The wide-
character input/output functions and the byte input/output functions store the value of the
macro [EILSEQ] in errno if and only if an encoding error occurs.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 37

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

STREAMS General Information

2.6 STREAMS

OB XSR STREAMS functionality is provided on implementations supporting the XSI STREAMS Option
Group. The functionality described in this section is dependent on support of the XSI STREAMS
option (and the rest of this section is not further shaded for this option).

STREAMS provides a uniform mechanism for implementing networking services and other
character-based I/O. The STREAMS function provides direct access to protocol modules.
STREAMS modules are unspecified objects. Access to STREAMS modules is provided by
interfaces in IEEE Std 1003.1-200x. Creation of STREAMS modules is outside the scope of
IEEE Std 1003.1-200x.

A STREAM is typically a full-duplex connection between a process and an open device or
pseudo-device. However, since pipes may be STREAMS-based, a STREAM can be a full-duplex
connection between two processes. The STREAM itself exists entirely within the implementation
and provides a general character I/O function for processes. It optionally includes one or more
intermediate processing modules that are interposed between the process end of the STREAM
(STREAM head) and a device driver at the end of the STREAM (STREAM end).

STREAMS I/O is based on messages. There are three types of message:

• Data messages containing actual data for input or output

• Control data containing instructions for the STREAMS modules and underlying
implementation

• Other messages, which include file descriptors

The interface between the STREAM and the rest of the implementation is provided by a set of
functions at the STREAM head. When a process calls write(), writev(), putmsg(), putpmsg(), or
ioctl(), messages are sent down the STREAM, and read(), readv(), getmsg(), or getpmsg() accepts
data from the STREAM and passes it to a process. Data intended for the device at the
downstream end of the STREAM is packaged into messages and sent downstream, while data
and signals from the device are composed into messages by the device driver and sent upstream
to the STREAM head.

When a STREAMS-based device is opened, a STREAM shall be created that contains the
STREAM head and the STREAM end (driver). If pipes are STREAMS-based in an
implementation, when a pipe is created, two STREAMS shall be created, each containing a
STREAM head. Other modules are added to the STREAM using ioctl(). New modules are
‘‘pushed’’ onto the STREAM one at a time in last-in, first-out (LIFO) style, as though the
STREAM was a push-down stack.

Priority

Message types are classified according to their queuing priority and may be normal (non-
priority), priority, or high-priority messages. A message belongs to a particular priority band that
determines its ordering when placed on a queue. Normal messages have a priority band of 0
and shall always be placed at the end of the queue following all other messages in the queue.
High-priority messages are always placed at the head of a queue, but shall be discarded if there
is already a high-priority message in the queue. Their priority band shall be ignored; they are
high-priority by virtue of their type. Priority messages have a priority band greater than 0.
Priority messages are always placed after any messages of the same or higher priority. High-
priority and priority messages are used to send control and data information outside the normal
flow of control. By convention, high-priority messages shall not be affected by flow control.
Normal and priority messages have separate flow controls.

38 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

General Information STREAMS

Message Parts

A process may access STREAMS messages that contain a data part, control part, or both. The
data part is that information which is transmitted over the communication medium and the
control information is used by the local STREAMS modules. The other types of messages are
used between modules and are not accessible to processes. Messages containing only a data part
are accessible via putmsg(), putpmsg(), getmsg(), getpmsg(), read(), readv(), write(), or writev().
Messages containing a control part with or without a data part are accessible via calls to
putmsg(), putpmsg(), getmsg(), or getpmsg().

2.6.1 Accessing STREAMS

A process accesses STREAMS-based files using the standard functions close(), ioctl(), getmsg(),
getpmsg(), open(), pipe(), poll(), putmsg(), putpmsg(), read(), or write(). Refer to the applicable
function definitions for general properties and errors.

Calls to ioctl() shall perform control functions on the STREAM associated with the file descriptor
fildes. The control functions may be performed by the STREAM head, a STREAMS module, or
the STREAMS driver for the STREAM.

STREAMS modules and drivers can detect errors, sending an error message to the STREAM
head, thus causing subsequent functions to fail and set errno to the value specified in the
message. In addition, STREAMS modules and drivers can elect to fail a particular ioctl() request
alone by sending a negative acknowledgement message to the STREAM head. This shall cause
just the pending ioctl() request to fail and set errno to the value specified in the message.

2.7 XSI Interprocess Communication

XSI This section describes extensions to support interprocess communication. The functionality
described in this section shall be provided on implementations that support the XSI option (and
the rest of this section is not further shaded).

The following message passing, semaphore, and shared memory services form an XSI
interprocess communication facility. Certain aspects of their operation are common, and are
defined as follows.

IPC Functions

msgctl()
msgget()
msgrcv()
msgsnd()

semctl()
semget()
semop()
shmat()

shmctl()
shmdt()
shmget()

Another interprocess communication facility is provided by functions in the Realtime Option
Group; see Section 2.8 (on page 40).

2.7.1 IPC General Description

Each individual shared memory segment, message queue, and semaphore set shall be identified
by a unique positive integer, called, respectively, a shared memory identifier, shmid, a semaphore
identifier, semid, and a message queue identifier, msqid. The identifiers shall be returned by calls
to shmget(), semget(), and msgget(), respectively.

Associated with each identifier is a data structure which contains data related to the operations
which may be or may have been performed; see the Base Definitions volume of
IEEE Std 1003.1-200x, <sys/shm.h>, <sys/sem.h>, and <sys/msg.h> for their descriptions.

Each of the data structures contains both ownership information and an ipc_perm structure (see

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 39

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

XSI Interprocess Communication General Information

the Base Definitions volume of IEEE Std 1003.1-200x, <sys/ipc.h>) which are used in conjunction
to determine whether or not read/write (read/alter for semaphores) permissions should be
granted to processes using the IPC facilities. The mode member of the ipc_perm structure acts as
a bit field which determines the permissions.

The values of the bits are given below in octal notation.

Bit Meaning

0400 Read by user.
0200 Write by user.
0040 Read by group.
0020 Write by group.
0004 Read by others.
0002 Write by others.

The name of the ipc_perm structure is shm_perm, sem_perm, or msg_perm, depending on which
service is being used. In each case, read and write/alter permissions shall be granted to a
process if one or more of the following are true ("xxx" is replaced by shm, sem, or msg, as
appropriate):

• The process has appropriate privileges.

• The effective user ID of the process matches xxx_perm.cuid or xxx_perm.uid in the data
structure associated with the IPC identifier, and the appropriate bit of the user field in
xxx_perm.mode is set.

• The effective user ID of the process does not match xxx_perm.cuid or xxx_perm.uid but the
effective group ID of the process matches xxx_perm.cgid or xxx_perm.gid in the data
structure associated with the IPC identifier, and the appropriate bit of the group field in
xxx_perm.mode is set.

• The effective user ID of the process does not match xxx_perm.cuid or xxx_perm.uid and the
effective group ID of the process does not match xxx_perm.cgid or xxx_perm.gid in the data
structure associated with the IPC identifier, but the appropriate bit of the other field in
xxx_perm.mode is set.

Otherwise, the permission shall be denied.

2.8 Realtime

This section defines functions to support the source portability of applications with realtime
requirements. The presence of some of these functions is dependent on support for
implementation options described in the text.

The specific functional areas included in this section and their scope include the following. Full
definitions of these terms can be found in the Base Definitions volume of IEEE Std 1003.1-200x,
Chapter 3, Definitions.

• Semaphores

• Process Memory Locking

• Memory Mapped Files and Shared Memory Objects

• Priority Scheduling

40 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

General Information Realtime

• Realtime Signal Extension

• Timers

• Interprocess Communication

• Synchronized Input and Output

• Asynchronous Input and Output

All the realtime functions defined in this volume of IEEE Std 1003.1-200x are portable, although
some of the numeric parameters used by an implementation may have hardware dependencies.

2.8.1 Realtime Signals

See Section 2.4.2 (on page 29).

2.8.2 Asynchronous I/O

An asynchronous I/O control block structure aiocb is used in many asynchronous I/O
functions. It is defined in the Base Definitions volume of IEEE Std 1003.1-200x, <aio.h> and has
at least the following members:

Member Type Member Name Description

int aio_fildes File descriptor.
off_t aio_offset File offset.
volatile void* aio_buf Location of buffer.
size_t aio_nbytes Length of transfer.
int aio_reqprio Request priority offset.
struct sigevent aio_sigevent Signal number and value.
int aio_lio_opcode Operation to be performed.

The aio_fildes element is the file descriptor on which the asynchronous operation is performed.

If O_APPEND is not set for the file descriptor aio_fildes and if aio_fildes is associated with a
device that is capable of seeking, then the requested operation takes place at the absolute
position in the file as given by aio_offset, as if lseek() were called immediately prior to the
operation with an offset argument equal to aio_offset and a whence argument equal to SEEK_SET.
If O_APPEND is set for the file descriptor, or if aio_fildes is associated with a device that is
incapable of seeking, write operations append to the file in the same order as the calls were
made, with the following exception: under implementation-defined circumstances, such as
operation on a multi-processor or when requests of differing priorities are submitted at the same
time, the ordering restriction may be relaxed. Since there is no way for a strictly conforming
application to determine whether this relaxation applies, all strictly conforming applications
which rely on ordering of output shall be written in such a way that they will operate correctly if
the relaxation applies. After a successful call to enqueue an asynchronous I/O operation, the
value of the file offset for the file is unspecified. The aio_nbytes and aio_buf elements are the same
as the nbyte and buf arguments defined by read() and write(), respectively.

If _POSIX_PRIORITIZED_IO and _POSIX_PRIORITY_SCHEDULING are defined, then
asynchronous I/O is queued in priority order, with the priority of each asynchronous operation
based on the current scheduling priority of the calling process. The aio_reqprio member can be
used to lower (but not raise) the asynchronous I/O operation priority and is within the range
zero through {AIO_PRIO_DELTA_MAX}, inclusive. Unless both _POSIX_PRIORITIZED_IO and
_POSIX_PRIORITY_SCHEDULING are defined, the order of processing asynchronous I/O
requests is unspecified. When both _POSIX_PRIORITIZED_IO and
_POSIX_PRIORITY_SCHEDULING are defined, the order of processing of requests submitted
by processes whose schedulers are not SCHED_FIFO, SCHED_RR, or SCHED_SPORADIC is

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 41

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

Realtime General Information

unspecified. The priority of an asynchronous request is computed as (process scheduling
priority) minus aio_reqprio. The priority assigned to each asynchronous I/O request is an
indication of the desired order of execution of the request relative to other asynchronous I/O
requests for this file. If _POSIX_PRIORITIZED_IO is defined, requests issued with the same
priority to a character special file are processed by the underlying device in FIFO order; the
order of processing of requests of the same priority issued to files that are not character special
files is unspecified. Numerically higher priority values indicate requests of higher priority. The
value of aio_reqprio has no effect on process scheduling priority. When prioritized asynchronous
I/O requests to the same file are blocked waiting for a resource required for that I/O operation,
the higher-priority I/O requests shall be granted the resource before lower-priority I/O requests
are granted the resource. The relative priority of asynchronous I/O and synchronous I/O is
implementation-defined. If _POSIX_PRIORITIZED_IO is defined, the implementation shall
define for which files I/O prioritization is supported.

The aio_sigevent determines how the calling process shall be notified upon I/O completion, as
specified in Section 2.4.1 (on page 28). If aio_sigevent.sigev_notify is SIGEV_NONE, then no
signal shall be posted upon I/O completion, but the error status for the operation and the return
status for the operation shall be set appropriately.

The aio_lio_opcode field is used only by the lio_listio() call. The lio_listio() call allows multiple
asynchronous I/O operations to be submitted at a single time. The function takes as an
argument an array of pointers to aiocb structures. Each aiocb structure indicates the operation to
be performed (read or write) via the aio_lio_opcode field.

The address of the aiocb structure is used as a handle for retrieving the error status and return
status of the asynchronous operation while it is in progress.

The aiocb structure and the data buffers associated with the asynchronous I/O operation are
being used by the system for asynchronous I/O while, and only while, the error status of the
asynchronous operation is equal to [EINPROGRESS]. Applications shall not modify the aiocb
structure while the structure is being used by the system for asynchronous I/O.

The return status of the asynchronous operation is the number of bytes transferred by the I/O
operation. If the error status is set to indicate an error completion, then the return status is set to
the return value that the corresponding read(), write(), or fsync() call would have returned.
When the error status is not equal to [EINPROGRESS], the return status shall reflect the return
status of the corresponding synchronous operation.

2.8.3 Memory Management

2.8.3.1 Memory Locking

MLR Range memory locking operations are defined in terms of pages. Implementations may restrict
the size and alignment of range lockings to be on page-size boundaries. The page size, in bytes,
is the value of the configurable system variable {PAGESIZE}. If an implementation has no
restrictions on size or alignment, it may specify a 1-byte page size.

ML|MLR Memory locking guarantees the residence of portions of the address space. It is implementation-
defined whether locking memory guarantees fixed translation between virtual addresses (as
seen by the process) and physical addresses. Per-process memory locks are not inherited across a
fork(), and all memory locks owned by a process are unlocked upon exec or process termination.
Unmapping of an address range removes any memory locks established on that address range
by this process.

42 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

General Information Realtime

2.8.3.2 Memory Mapped Files

Range memory mapping operations are defined in terms of pages. Implementations may
restrict the size and alignment of range mappings to be on page-size boundaries. The page size,
in bytes, is the value of the configurable system variable {PAGESIZE}. If an implementation has
no restrictions on size or alignment, it may specify a 1-byte page size.

Memory mapped files provide a mechanism that allows a process to access files by directly
incorporating file data into its address space. Once a file is mapped into a process address space,
the data can be manipulated as memory. If more than one process maps a file, its contents are
shared among them. If the mappings allow shared write access, then data written into the
memory object through the address space of one process appears in the address spaces of all
processes that similarly map the same portion of the memory object.

SHM Shared memory objects are named regions of storage that may be independent of the file system
and can be mapped into the address space of one or more processes to allow them to share the
associated memory.

SHM An unlink() of a file or shm_unlink() of a shared memory object, while causing the removal of
the name, does not unmap any mappings established for the object. Once the name has been
removed, the contents of the memory object are preserved as long as it is referenced. The
memory object remains referenced as long as a process has the memory object open or has some
area of the memory object mapped.

2.8.3.3 Memory Protection

When an object is mapped, various application accesses to the mapped region may result in
signals. In this context, SIGBUS is used to indicate an error using the mapped object, and
SIGSEGV is used to indicate a protection violation or misuse of an address:

• A mapping may be restricted to disallow some types of access.

• Write attempts to memory that was mapped without write access, or any access to
memory mapped PROT_NONE, shall result in a SIGSEGV signal.

• References to unmapped addresses shall result in a SIGSEGV signal.

• Reference to whole pages within the mapping, but beyond the current length of the object,
shall result in a SIGBUS signal.

• The size of the object is unaffected by access beyond the end of the object (even if a
SIGBUS is not generated).

2.8.3.4 Typed Memory Objects

TYM The functionality described in this section shall be provided on implementations that support
the Typed Memory Objects option (and the rest of this section is not further shaded for this
option).

Implementations may support the Typed Memory Objects option independently of support for
memory mapped files or shared memory objects. Typed memory objects are implementation-
configurable named storage pools accessible from one or more processors in a system, each via
one or more ports, such as backplane buses, LANs, I/O channels, and so on. Each valid
combination of a storage pool and a port is identified through a name that is defined at system
configuration time, in an implementation-defined manner; the name may be independent of the
file system. Using this name, a typed memory object can be opened and mapped into process
address space. For a given storage pool and port, it is necessary to support both dynamic
allocation from the pool as well as mapping at an application-supplied offset within the pool;
when dynamic allocation has been performed, subsequent deallocation must be supported.
Lastly, accessing typed memory objects from different ports requires a method for obtaining the

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 43

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

Realtime General Information

offset and length of contiguous storage of a region of typed memory (dynamically allocated or
not); this allows typed memory to be shared among processes and/or processors while being
accessed from the desired port.

2.8.4 Process Scheduling

PS The functionality described in this section shall be provided on implementations that support
the Process Scheduling option (and the rest of this section is not further shaded for this option).

Scheduling Policies

The scheduling semantics described in this volume of IEEE Std 1003.1-200x are defined in terms
of a conceptual model that contains a set of thread lists. No implementation structures are
necessarily implied by the use of this conceptual model. It is assumed that no time elapses
during operations described using this model, and therefore no simultaneous operations are
possible. This model discusses only processor scheduling for runnable threads, but it should be
noted that greatly enhanced predictability of realtime applications results if the sequencing of
other resources takes processor scheduling policy into account.

There is, conceptually, one thread list for each priority. A runnable thread will be on the thread
list for that thread’s priority. Multiple scheduling policies shall be provided. Each non-empty
thread list is ordered, contains a head as one end of its order, and a tail as the other. The purpose
of a scheduling policy is to define the allowable operations on this set of lists (for example,
moving threads between and within lists).

The POSIX model treats a ‘‘process’’ as an aggregation of system resources, including one or
more threads that may be scheduled by the operating system on the processor(s) it controls.
Although a process has its own set of scheduling attributes, these have an indirect effect (if any)
on the scheduling behavior of individual threads as described below.

Each thread shall be controlled by an associated scheduling policy and priority. These
parameters may be specified by explicit application execution of the pthread_setschedparam()
function. Additionally, the scheduling parameters of a thread (but not its scheduling policy) may
be changed by application execution of the pthread_setschedprio() function.

Each process shall be controlled by an associated scheduling policy and priority. These
parameters may be specified by explicit application execution of the sched_setscheduler() or
sched_setparam() functions.

The effect of the process scheduling attributes on individual threads in the process is dependent
on the scheduling contention scope of the threads (see Section 2.9.4 (on page 52)):

• For threads with system scheduling contention scope, the process scheduling attributes
shall have no effect on the scheduling attributes or behavior either of the thread or an
underlying kernel scheduling entity dedicated to that thread.

• For threads with process scheduling contention scope, the process scheduling attributes
shall have no effect on the scheduling attributes of the thread. However, any underlying
kernel scheduling entity used by these threads shall at all times behave as specified by the
scheduling attributes of the containing process, and this behavior may affect the
scheduling behavior of the process contention scope threads. For example, a process
contention scope thread with scheduling policy SCHED_FIFO and the system maximum
priority H (the value returned by sched_get_priority_max(SCHED_FIFO)) in a process with
scheduling policy SCHED_RR and system minimum priority L (the value returned by
sched_get_priority_min(SCHED_RR)) shall be subject to timeslicing and to preemption by
any thread with an effective priority higher than L.

Associated with each policy is a priority range. Each policy definition shall specify the minimum

44 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

General Information Realtime

priority range for that policy. The priority ranges for each policy may but need not overlap the
priority ranges of other policies.

A conforming implementation shall select the thread that is defined as being at the head of the
highest priority non-empty thread list to become a running thread, regardless of its associated
policy. This thread is then removed from its thread list.

Four scheduling policies are specifically required. Other implementation-defined scheduling
policies may be defined. The following symbols are defined in the Base Definitions volume of
IEEE Std 1003.1-200x, <sched.h>:

SCHED_FIFO First in, first out (FIFO) scheduling policy.

SCHED_RR Round robin scheduling policy.

SS SCHED_SPORADIC Sporadic server scheduling policy.

SCHED_OTHER Another scheduling policy.

The values of these symbols shall be distinct.

SCHED_FIFO

Conforming implementations shall include a scheduling policy called the FIFO scheduling
policy.

Threads scheduled under this policy are chosen from a thread list that is ordered by the time its
threads have been on the list without being executed; generally, the head of the list is the thread
that has been on the list the longest time, and the tail is the thread that has been on the list the
shortest time.

Under the SCHED_FIFO policy, the modification of the definitional thread lists is as follows:

1. When a running thread becomes a preempted thread, it becomes the head of the thread
list for its priority.

2. When a blocked thread becomes a runnable thread, it becomes the tail of the thread list
for its priority.

3. When a running thread calls the sched_setscheduler() function, the process specified in the
function call is modified to the specified policy and the priority specified by the param
argument.

4. When a running thread calls the sched_setparam() function, the priority of the process
specified in the function call is modified to the priority specified by the param argument.

5. When a running thread calls the pthread_setschedparam() function, the thread specified in
the function call is modified to the specified policy and the priority specified by the param
argument.

6. When a running thread calls the pthread_setschedprio() function, the thread specified in the
function call is modified to the priority specified by the prio argument.

7. If a thread whose policy or priority has been modified other than by pthread_setschedprio()
is a running thread or is runnable, it then becomes the tail of the thread list for its new
priority.

8. If a thread whose priority has been modified by pthread_setschedprio() is a running thread
or is runnable, the effect on its position in the thread list depends on the direction of the
modification, as follows:

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 45

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

Realtime General Information

a. If the priority is raised, the thread becomes the tail of the thread list.

b. If the priority is unchanged, the thread does not change position in the thread list.

c. If the priority is lowered, the thread becomes the head of the thread list.

9. When a running thread issues the sched_yield() function, the thread becomes the tail of
the thread list for its priority.

10. At no other time is the position of a thread with this scheduling policy within the thread
lists affected.

For this policy, valid priorities shall be within the range returned by the sched_get_priority_max()
and sched_get_priority_min() functions when SCHED_FIFO is provided as the parameter.
Conforming implementations shall provide a priority range of at least 32 priorities for this
policy.

SCHED_RR

Conforming implementations shall include a scheduling policy called the ‘‘round robin’’
scheduling policy. This policy shall be identical to the SCHED_FIFO policy with the additional
condition that when the implementation detects that a running thread has been executing as a
running thread for a time period of the length returned by the sched_rr_get_interval() function or
longer, the thread shall become the tail of its thread list and the head of that thread list shall be
removed and made a running thread.

The effect of this policy is to ensure that if there are multiple SCHED_RR threads at the same
priority, one of them does not monopolize the processor. An application should not rely only on
the use of SCHED_RR to ensure application progress among multiple threads if the application
includes threads using the SCHED_FIFO policy at the same or higher priority levels or
SCHED_RR threads at a higher priority level.

A thread under this policy that is preempted and subsequently resumes execution as a running
thread completes the unexpired portion of its round robin interval time period.

For this policy, valid priorities shall be within the range returned by the sched_get_priority_max()
and sched_get_priority_min() functions when SCHED_RR is provided as the parameter.
Conforming implementations shall provide a priority range of at least 32 priorities for this
policy.

SCHED_SPORADIC

SS|TSP The functionality described in this section shall be provided on implementations that support
the Process Sporadic Server or Thread Sporadic Server options (and the rest of this section is not
further shaded for these options).

If _POSIX_SPORADIC_SERVER or _POSIX_THREAD_SPORADIC_SERVER is defined, the
implementation shall include a scheduling policy identified by the value SCHED_SPORADIC.

The sporadic server policy is based primarily on two time parameters: the replenishment period
and the available execution capacity. The replenishment period is given by the
sched_ss_repl_period member of the sched_param structure. The available execution capacity is
initialized to the value given by the sched_ss_init_budget member of the same parameter. The
sporadic server policy is identical to the SCHED_FIFO policy with some additional conditions
that cause the thread’s assigned priority to be switched between the values specified by the
sched_priority and sched_ss_low_priority members of the sched_param structure.

The priority assigned to a thread using the sporadic server scheduling policy is determined in
the following manner: if the available execution capacity is greater than zero and the number of

46 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

General Information Realtime

pending replenishment operations is strictly less than sched_ss_max_repl, the thread is assigned
the priority specified by sched_priority; otherwise, the assigned priority shall be
sched_ss_low_priority. If the value of sched_priority is less than or equal to the value of
sched_ss_low_priority, the results are undefined. When active, the thread shall belong to the
thread list corresponding to its assigned priority level, according to the mentioned priority
assignment. The modification of the available execution capacity and, consequently of the
assigned priority, is done as follows:

1. When the thread at the head of the sched_priority list becomes a running thread, its
execution time shall be limited to at most its available execution capacity, plus the
resolution of the execution time clock used for this scheduling policy. This resolution shall
be implementation-defined.

2. Each time the thread is inserted at the tail of the list associated with sched_priority—
because as a blocked thread it became runnable with priority sched_priority or because a
replenishment operation was performed—the time at which this operation is done is
posted as the activation_time.

3. When the running thread with assigned priority equal to sched_priority becomes a
preempted thread, it becomes the head of the thread list for its priority, and the execution
time consumed is subtracted from the available execution capacity. If the available
execution capacity would become negative by this operation, it shall be set to zero.

4. When the running thread with assigned priority equal to sched_priority becomes a blocked
thread, the execution time consumed is subtracted from the available execution capacity,
and a replenishment operation is scheduled, as described in 6 and 7. If the available
execution capacity would become negative by this operation, it shall be set to zero.

5. When the running thread with assigned priority equal to sched_priority reaches the limit
imposed on its execution time, it becomes the tail of the thread list for
sched_ss_low_priority, the execution time consumed is subtracted from the available
execution capacity (which becomes zero), and a replenishment operation is scheduled, as
described in 6 and 7.

6. Each time a replenishment operation is scheduled, the amount of execution capacity to be
replenished, replenish_amount, is set equal to the execution time consumed by the thread
since the activation_time. The replenishment is scheduled to occur at activation_time plus
sched_ss_repl_period. If the scheduled time obtained is before the current time, the
replenishment operation is carried out immediately. Several replenishment operations
may be pending at the same time, each of which will be serviced at its respective
scheduled time. With the above rules, the number of replenishment operations
simultaneously pending for a given thread that is scheduled under the sporadic server
policy shall not be greater than sched_ss_max_repl.

7. A replenishment operation consists of adding the corresponding replenish_amount to the
available execution capacity at the scheduled time. If, as a consequence of this operation,
the execution capacity would become larger than sched_ss_initial_budget, it shall be
rounded down to a value equal to sched_ss_initial_budget. Additionally, if the thread was
runnable or running, and had assigned priority equal to sched_ss_low_priority, then it
becomes the tail of the thread list for sched_priority.

Execution time is defined in Base Definitions volume of IEEE Std 1003.1-200x, Section 3.155,
Execution Time.

For this policy, changing the value of a CPU-time clock via clock_settime() shall have no effect on
its behavior.

For this policy, valid priorities shall be within the range returned by the sched_get_priority_min()

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 47

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

Realtime General Information

and sched_get_priority_max() functions when SCHED_SPORADIC is provided as the parameter.
Conforming implementations shall provide a priority range of at least 32 distinct priorities for
this policy.

If the scheduling policy of the target process is either SCHED_FIFO or SCHED_RR, the
sched_ss_low_priority, sched_ss_repl_period, and sched_ss_init budget members of the param
argument shall have no effect on the scheduling behavior. If the scheduling policy of this process
is not SCHED_FIFO, SCHED_RR, or SCHED_SPORADIC, the effects of these members are
implementation-defined; this case includes the SCHED_OTHER policy.

SCHED_OTHER

Conforming implementations shall include one scheduling policy identified as SCHED_OTHER
(which may execute identically with either the FIFO or round robin scheduling policy). The
effect of scheduling threads with the SCHED_OTHER policy in a system in which other threads

SS are executing under SCHED_FIFO, SCHED_RR, or SCHED_SPORADIC is implementation-
defined.

This policy is defined to allow strictly conforming applications to be able to indicate in a
portable manner that they no longer need a realtime scheduling policy.

For threads executing under this policy, the implementation shall use only priorities within the
range returned by the sched_get_priority_max() and sched_get_priority_min() functions when
SCHED_OTHER is provided as the parameter.

2.8.5 Clocks and Timers

The <time.h> header defines the types and manifest constants used by the timing facility.

Time Value Specification Structures

Many of the timing facility functions accept or return time value specifications. A time value
structure timespec specifies a single time value and includes at least the following members:

Member Type Member Name Description

time_t tv_sec Seconds.
long tv_nsec Nanoseconds.

The tv_nsec member is only valid if greater than or equal to zero, and less than the number of
nanoseconds in a second (1 000 million). The time interval described by this structure is (tv_sec *
109 + tv_nsec) nanoseconds.

A time value structure itimerspec specifies an initial timer value and a repetition interval for use
by the per-process timer functions. This structure includes at least the following members:

Member Type Member Name Description

struct timespec it_interval Timer period.
struct timespec it_value Timer expiration.

If the value described by it_value is non-zero, it indicates the time to or time of the next timer
expiration (for relative and absolute timer values, respectively). If the value described by it_value
is zero, the timer shall be disarmed.

If the value described by it_interval is non-zero, it specifies an interval which shall be used in
reloading the timer when it expires; that is, a periodic timer is specified. If the value described
by it_interval is zero, the timer is disarmed after its next expiration; that is, a one-shot timer is
specified.

48 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

General Information Realtime

Timer Event Notification Control Block

Per-process timers may be created that notify the process of timer expirations by queuing a
realtime extended signal. The sigevent structure, defined in the Base Definitions volume of
IEEE Std 1003.1-200x, <signal.h>, is used in creating such a timer. The sigevent structure
contains the signal number and an application-specific data value which shall be used when
notifying the calling process of timer expiration events.

Manifest Constants

The following constants are defined in the Base Definitions volume of IEEE Std 1003.1-200x,
<time.h>:

CLOCK_REALTIME The identifier for the system-wide realtime clock.

TIMER_ABSTIME Flag indicating time is absolute with respect to the clock associated
with a timer.

MON CLOCK_MONOTONIC The identifier for the system-wide monotonic clock, which is defined
as a clock whose value cannot be set via clock_settime() and which
cannot have backward clock jumps. The maximum possible clock
jump is implementation-defined.

MON The maximum allowable resolution for CLOCK_REALTIME and CLOCK_MONOTONIC clocks
and all time services based on these clocks is represented by {_POSIX_CLOCKRES_MIN} and
shall be defined as 20 ms (1/50 of a second). Implementations may support smaller values of
resolution for these clocks to provide finer granularity time bases. The actual resolution
supported by an implementation for a specific clock is obtained using the clock_getres() function.
If the actual resolution supported for a time service based on one of these clocks differs from the
resolution supported for that clock, the implementation shall document this difference.

MON The minimum allowable maximum value for CLOCK_REALTIME and CLOCK_MONOTONIC
clocks and all absolute time services based on them is the same as that defined by the ISO C
standard for the time_t type. If the maximum value supported by a time service based on one of
these clocks differs from the maximum value supported by that clock, the implementation shall
document this difference.

Execution Time Monitoring

CPT If _POSIX_CPUTIME is defined, process CPU-time clocks shall be supported in addition to the
clocks described in Manifest Constants (on page 49).

TCT If _POSIX_THREAD_CPUTIME is defined, thread CPU-time clocks shall be supported.

CPT|TCT CPU-time clocks measure execution or CPU time, which is defined in the Base Definitions
volume of IEEE Std 1003.1-200x, Section 3.117, CPU Time (Execution Time). The mechanism
used to measure execution time is described in the Base Definitions volume of
IEEE Std 1003.1-200x, Section 4.9, Measurement of Execution Time.

CPT If _POSIX_CPUTIME is defined, the following constant of the type clockid_t is defined in
<time.h>:

CLOCK_PROCESS_CPUTIME_ID
When this value of the type clockid_t is used in a clock() or timer*() function call, it is
interpreted as the identifier of the CPU-time clock associated with the process making the
function call.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 49

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

Realtime General Information

TCT If _POSIX_THREAD_CPUTIME is defined, the following constant of the type clockid_t is
defined in <time.h>:

CLOCK_THREAD_CPUTIME_ID
When this value of the type clockid_t is used in a clock() or timer*() function call, it is
interpreted as the identifier of the CPU-time clock associated with the thread making the
function call.

2.9 Threads

This section defines functionality to support multiple flows of control, called ‘‘threads’’, within a
process. For the definition of threads, see the Base Definitions volume of IEEE Std 1003.1-200x,
Section 3.393, Thread.

The specific functional areas covered by threads and their scope include:

• Thread management: the creation, control, and termination of multiple flows of control in
the same process under the assumption of a common shared address space

• Synchronization primitives optimized for tightly coupled operation of multiple control
flows in a common, shared address space

2.9.1 Thread-Safety

All functions defined by this volume of IEEE Std 1003.1-200x shall be thread-safe, except that the
following functions1 need not be thread-safe.

asctime()
basename()
catgets()
crypt()
ctime()
dbm_clearerr()
dbm_close()
dbm_delete()
dbm_error()
dbm_fetch()
dbm_firstkey()
dbm_nextkey()
dbm_open()
dbm_store()
dirname()
dlerror()
drand48()
encrypt()
endgrent()
endpwent()
endutxent()

ftw()
getc_unlocked()
getchar_unlocked()
getdate()
getenv()
getgrent()
getgrgid()
getgrnam()
gethostent()
getlogin()
getnetbyaddr()
getnetbyname()
getnetent()
getopt()
getprotobyname()
getprotobynumber()
getprotoent()
getpwent()
getpwnam()
getpwuid()
getservbyname()

getservbyport()
getservent()
getutxent()
getutxid()
getutxline()
gmtime()
hcreate()
hdestroy()
hsearch()
inet_ntoa()
l64a()
lgamma()
lgammaf()
lgammal()
localeconv()
localtime()
lrand48()
mrand48()
nftw()
nl_langinfo()
ptsname()

putc_unlocked()
putchar_unlocked()
putenv()
pututxline()
rand()
readdir()
setenv()
setgrent()
setkey()
setpwent()
setutxent()
strerror()
strsignal()
strtok()
system()
ttyname()
unsetenv()
wcstombs()
wctomb()

The ctermid() and tmpnam() functions need not be thread-safe if passed a NULL argument. The
wcrtomb() and wcsrtombs() functions need not be thread-safe if passed a NULL ps argument.

1. The functions in the table are not shaded to denote applicable options. Individual reference pages should be consulted.

50 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

2030

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

2052

2053

2054

2055

2056

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

General Information Threads

Implementations shall provide internal synchronization as necessary in order to satisfy this
requirement.

2.9.2 Thread IDs

Although implementations may have thread IDs that are unique in a system, applications
should only assume that thread IDs are usable and unique within a single process. The effect of
calling any of the functions defined in this volume of IEEE Std 1003.1-200x and passing as an
argument the thread ID of a thread from another process is unspecified. A conforming
implementation is free to reuse a thread ID after the thread terminates if it was created with the
detachstate attribute set to PTHREAD_CREATE_DETACHED or if pthread_detach() or
pthread_join() has been called for that thread. If a thread is detached, its thread ID is invalid for
use as an argument in a call to pthread_detach() or pthread_join().

2.9.3 Thread Mutexes

A thread that has blocked shall not prevent any unblocked thread that is eligible to use the same
processing resources from eventually making forward progress in its execution. Eligibility for
processing resources is determined by the scheduling policy.

A thread shall become the owner of a mutex, m, when one of the following occurs:

• It returns successfully from pthread_mutex_lock() with m as the mutex argument.

• It returns successfully from pthread_mutex_trylock() with m as the mutex argument.

• It returns successfully from pthread_mutex_timedlock() with m as the mutex argument.

• It returns (successfully or not) from pthread_cond_wait() with m as the mutex argument
(except as explicitly indicated otherwise for certain errors).

• It returns (successfully or not) from pthread_cond_timedwait() with m as the mutex
argument (except as explicitly indicated otherwise for certain errors).

The thread shall remain the owner of m until one of the following occurs:

• It executes pthread_mutex_unlock() with m as the mutex argument

• It blocks in a call to pthread_cond_wait() with m as the mutex argument.

• It blocks in a call to pthread_cond_timedwait() with m as the mutex argument.

The implementation shall behave as if at all times there is at most one owner of any mutex.

A thread that becomes the owner of a mutex is said to have ‘‘acquired’’ the mutex and the mutex
is said to have become ‘‘locked’’; when a thread gives up ownership of a mutex it is said to have
‘‘released’’ the mutex and the mutex is said to have become ‘‘unlocked’’.

A problem can occur if a process terminates while one of its threads holds a mutex lock.
Depending on the mutex type, it might be possible for another thread to unlock the mutex and
recover the state of the mutex. However, it is difficult to perform this recovery reliably.

Robust mutexes provide a means to enable the implementation to notify other threads in the
event of a process terminating while one of its threads holds a mutex lock. The next thread that
acquires the mutex is notified about the termination by the return value [EOWNERDEAD] from
the locking function. The notified thread can then attempt to recover the state protected by the
mutex, and if successful mark the state protected by the mutex as consistent by a call to
pthread_mutex_consistent(). If the notified thread is unable to recover the state, it can declare the
state as not recoverable by a call to pthread_mutex_unlock() without a prior call to
pthread_mutex_consistent().

Whether or not the state protected by a mutex can be recovered is dependent solely on the

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 51

2057

2058

2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087

2088

2089

2090

2091

2092

2093

2094

2095

2096

2097

2098

2099

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

Threads General Information

application using robust mutexes. The robust mutex support provided in the implementation
provides notification only that a mutex owner has terminated while holding a lock, or that the
state of the mutex is not recoverable.

2.9.4 Thread Scheduling

TPS The functionality described in this section shall be provided on implementations that support
the Thread Execution Scheduling option (and the rest of this section is not further shaded for
this option).

Thread Scheduling Attributes

In support of the scheduling function, threads have attributes which are accessed through the
pthread_attr_t thread creation attributes object.

The contentionscope attribute defines the scheduling contention scope of the thread to be either
PTHREAD_SCOPE_PROCESS or PTHREAD_SCOPE_SYSTEM.

The inheritsched attribute specifies whether a newly created thread is to inherit the scheduling
attributes of the creating thread or to have its scheduling values set according to the other
scheduling attributes in the pthread_attr_t object.

The schedpolicy attribute defines the scheduling policy for the thread. The schedparam attribute
defines the scheduling parameters for the thread. The interaction of threads having different
policies within a process is described as part of the definition of those policies.

If the Thread Execution Scheduling option is defined, and the schedpolicy attribute specifies one
of the priority-based policies defined under this option, the schedparam attribute contains the
scheduling priority of the thread. A conforming implementation ensures that the priority value
in schedparam is in the range associated with the scheduling policy when the thread attributes
object is used to create a thread, or when the scheduling attributes of a thread are dynamically
modified. The meaning of the priority value in schedparam is the same as that of priority.

TSP If _POSIX_THREAD_SPORADIC_SERVER is defined, the schedparam attribute supports four
new members that are used for the sporadic server scheduling policy. These members are
sched_ss_low_priority, sched_ss_repl_period, sched_ss_init_budget, and sched_ss_max_repl. The
meaning of these attributes is the same as in the definitions that appear under Section 2.8.4 (on
page 44).

When a process is created, its single thread has a scheduling policy and associated attributes
equal to the policy and attributes of the process. The default scheduling contention scope value
is implementation-defined. The default values of other scheduling attributes are
implementation-defined.

Thread Scheduling Contention Scope

The scheduling contention scope of a thread defines the set of threads with which the thread
competes for use of the processing resources. The scheduling operation selects at most one
thread to execute on each processor at any point in time and the thread’s scheduling attributes
(for example, priority), whether under process scheduling contention scope or system scheduling
contention scope, are the parameters used to determine the scheduling decision.

The scheduling contention scope, in the context of scheduling a mixed scope environment,
affects threads as follows:

• A thread created with PTHREAD_SCOPE_SYSTEM scheduling contention scope contends
for resources with all other threads in the same scheduling allocation domain relative to
their system scheduling attributes. The system scheduling attributes of a thread created
with PTHREAD_SCOPE_SYSTEM scheduling contention scope are the scheduling

52 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

2100

2101

2102

2103

2104

2105

2106

2107

2108

2109

2110

2111

2112

2113

2114

2115

2116

2117

2118

2119

2120

2121

2122

2123

2124

2125

2126

2127

2128

2129

2130

2131

2132

2133

2134

2135

2136

2137

2138

2139

2140

2141

2142

2143

2144

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

General Information Threads

attributes with which the thread was created. The system scheduling attributes of a thread
created with PTHREAD_SCOPE_PROCESS scheduling contention scope are the
implementation-defined mapping into system attribute space of the scheduling attributes
with which the thread was created.

• Threads created with PTHREAD_SCOPE_PROCESS scheduling contention scope contend
directly with other threads within their process that were created with
PTHREAD_SCOPE_PROCESS scheduling contention scope. The contention is resolved
based on the threads’ scheduling attributes and policies. It is unspecified how such threads
are scheduled relative to threads in other processes or threads with
PTHREAD_SCOPE_SYSTEM scheduling contention scope.

• Conforming implementations shall support the PTHREAD_SCOPE_PROCESS scheduling
contention scope, the PTHREAD_SCOPE_SYSTEM scheduling contention scope, or both.

Scheduling Allocation Domain

Implementations shall support scheduling allocation domains containing one or more
processors. It should be noted that the presence of multiple processors does not automatically
indicate a scheduling allocation domain size greater than one. Conforming implementations on
multi-processors may map all or any subset of the CPUs to one or multiple scheduling allocation
domains, and could define these scheduling allocation domains on a per-thread, per-process, or
per-system basis, depending on the types of applications intended to be supported by the
implementation. The scheduling allocation domain is independent of scheduling contention
scope, as the scheduling contention scope merely defines the set of threads with which a thread
contends for processor resources, while scheduling allocation domain defines the set of
processors for which it contends. The semantics of how this contention is resolved among
threads for processors is determined by the scheduling policies of the threads.

The choice of scheduling allocation domain size and the level of application control over
scheduling allocation domains is implementation-defined. Conforming implementations may
change the size of scheduling allocation domains and the binding of threads to scheduling
allocation domains at any time.

For application threads with scheduling allocation domains of size equal to one, the scheduling
rules defined for SCHED_FIFO and SCHED_RR shall be used; see Scheduling Policies (on page
44). All threads with system scheduling contention scope, regardless of the processes in which
they reside, compete for the processor according to their priorities. Threads with process
scheduling contention scope compete only with other threads with process scheduling
contention scope within their process.

For application threads with scheduling allocation domains of size greater than one, the rules
TSP defined for SCHED_FIFO, SCHED_RR, and SCHED_SPORADIC shall be used in an

implementation-defined manner. Each thread with system scheduling contention scope
competes for the processors in its scheduling allocation domain in an implementation-defined
manner according to its priority. Threads with process scheduling contention scope are
scheduled relative to other threads within the same scheduling contention scope in the process.

TSP If _POSIX_THREAD_SPORADIC_SERVER is defined, the rules defined for SCHED_SPORADIC
in Scheduling Policies shall be used in an implementation-defined manner for application
threads whose scheduling allocation domain size is greater than one.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 53

2145

2146

2147

2148

2149

2150

2151

2152

2153

2154

2155

2156

2157

2158

2159

2160

2161

2162

2163

2164

2165

2166

2167

2168

2169

2170

2171

2172

2173

2174

2175

2176

2177

2178

2179

2180

2181

2182

2183

2184

2185

2186

2187

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

Threads General Information

Scheduling Documentation

If _POSIX_PRIORITY_SCHEDULING is defined, then any scheduling policies beyond
TSP SCHED_OTHER, SCHED_FIFO, SCHED_RR, and SCHED_SPORADIC, as well as the effects of

the scheduling policies indicated by these other values, and the attributes required in order to
support such a policy, are implementation-defined. Furthermore, the implementation shall
document the effect of all processor scheduling allocation domain values supported for these
policies.

2.9.5 Thread Cancellation

The thread cancellation mechanism allows a thread to terminate the execution of any other
thread in the process in a controlled manner. The target thread (that is, the one that is being
canceled) is allowed to hold cancellation requests pending in a number of ways and to perform
application-specific cleanup processing when the notice of cancellation is acted upon.

Cancellation is controlled by the cancellation control functions. Each thread maintains its own
cancelability state. Cancellation may only occur at cancellation points or when the thread is
asynchronously cancelable.

The thread cancellation mechanism described in this section depends upon programs having set
deferred cancelability state, which is specified as the default. Applications shall also carefully
follow static lexical scoping rules in their execution behavior. For example, use of setjmp(),
return, goto, and so on, to leave user-defined cancellation scopes without doing the necessary
scope pop operation results in undefined behavior.

Use of asynchronous cancelability while holding resources which potentially need to be released
may result in resource loss. Similarly, cancellation scopes may only be safely manipulated
(pushed and popped) when the thread is in the deferred or disabled cancelability states.

2.9.5.1 Cancelability States

The cancelability state of a thread determines the action taken upon receipt of a cancellation
request. The thread may control cancellation in a number of ways.

Each thread maintains its own cancelability state, which may be encoded in two bits:

1. Cancelability-Enable: When cancelability is PTHREAD_CANCEL_DISABLE (as defined
in the Base Definitions volume of IEEE Std 1003.1-200x, <pthread.h>), cancellation
requests against the target thread are held pending. By default, cancelability is set to
PTHREAD_CANCEL_ENABLE (as defined in <pthread.h>).

2. Cancelability Type: When cancelability is enabled and the cancelability type is
PTHREAD_CANCEL_ASYNCHRONOUS (as defined in <pthread.h>), new or pending
cancellation requests may be acted upon at any time. When cancelability is enabled and
the cancelability type is PTHREAD_CANCEL_DEFERRED (as defined in <pthread.h>),
cancellation requests are held pending until a cancellation point (see below) is reached. If
cancelability is disabled, the setting of the cancelability type has no immediate effect as all
cancellation requests are held pending; however, once cancelability is enabled again the
new type is in effect. The cancelability type is PTHREAD_CANCEL_DEFERRED in all
newly created threads including the thread in which main() was first invoked.

54 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

2188

2189

2190

2191

2192

2193

2194

2195

2196

2197

2198

2199

2200

2201

2202

2203

2204

2205

2206

2207

2208

2209

2210

2211

2212

2213

2214

2215

2216

2217

2218

2219

2220

2221

2222

2223

2224

2225

2226

2227

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

General Information Threads

2.9.5.2 Cancellation Points

Cancellation points shall occur when a thread is executing the following functions:

accept()
aio_suspend()
clock_nanosleep()
close()
connect()
creat()
fcntl()†
fdatasync()
fsync()
getmsg()
getpmsg()
lockf()
mq_receive()
mq_send()
mq_timedreceive()
mq_timedsend()
msgrcv()
msgsnd()
msync()

nanosleep()
open()
openat()
pause()
poll()
pread()
pselect()
pthread_cond_timedwait()
pthread_cond_wait()
pthread_join()
pthread_testcancel()
putmsg()
putpmsg()
pwrite()
read()
readv()
recv()
recvfrom()
recvmsg()

select()
sem_timedwait()
sem_wait()
send()
sendmsg()
sendto()
sigsuspend()
sigtimedwait()
sigwait()
sigwaitinfo()
sleep()
system()
tcdrain()
wait()
waitid()
waitpid()
write()
writev()

† When thecmd argument is F_SETLKW.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 55

2228

2229

2230

2231

2232

2233

2234

2235

2236

2237

2238

2239

2240

2241

2242

2243

2244

2245

2246

2247

2248

2249

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

Threads General Information

A cancellation point may also occur when a thread is executing the following functions:

access()
asctime()
asctime_r()
catclose()
catgets()
catopen()
chmod()
chown()
closedir()
closelog()
ctermid()
ctime()
ctime_r()
dbm_close()
dbm_delete()
dbm_fetch()
dbm_nextkey()
dbm_open()
dbm_store()
dlclose()
dlopen()
dprintf()
endgrent()
endhostent()
endnetent()
endprotoent()
endpwent()
endservent()
endutxent()
faccessat()
fchmod()
fchmodat()
fchown()
fchownat()
fclose()
fcntl()†
fflush()
fgetc()
fgetpos()
fgets()
fgetwc()
fgetws()
fmtmsg()
fopen()
fpathconf()
fprintf()
fputc()
fputs()
fputwc()
fputws()

fread()
freopen()
fscanf()
fseek()
fseeko()
fsetpos()
fstat()
fstatat()
ftell()
ftello()
ftw()
futimesat()
fwprintf()
fwrite()
fwscanf()
getaddrinfo()
getc()
getc_unlocked()
getchar()
getchar_unlocked()
getcwd()
getdate()
getdelim()
getgrent()
getgrgid()
getgrgid_r()
getgrnam()
getgrnam_r()
gethostent()
gethostid()
gethostname()
getline()
getlogin()
getlogin_r()
getnameinfo()
getnetbyaddr()
getnetbyname()
getnetent()
getopt()††
getprotobyname()
getprotobynumber()
getprotoent()
getpwent()
getpwnam()
getpwnam_r()
getpwuid()
getpwuid_r()
gets()
getservbyname()
getservbyport()

getservent()
getutxent()
getutxid()
getutxline()
getwc()
getwchar()
glob()
iconv_close()
iconv_open()
ioctl()
link()
linkat()
lio_listio()
localtime()
localtime_r()
lseek()
lstat()
mkdir()
mkdirat()
mkdtemp()
mkfifo()
mkfifoat()
mknod()
mknodat()
mkstemp()
mktime()
nftw()
opendir()
openlog()
pathconf()
pclose()
perror()
popen()
posix_fadvise()
posix_fallocate()
posix_madvise()
posix_openpt()
posix_spawn()
posix_spawnp()
posix_trace_clear()
posix_trace_close()
posix_trace_create()
posix_trace_create_withlog()
posix_trace_eventtypelist_getnext_id()
posix_trace_eventtypelist_rewind()
posix_trace_flush()
posix_trace_get_attr()
posix_trace_get_filter()
posix_trace_get_status()
posix_trace_getnext_event()

56 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

2250

2251

2252

2253

2254

2255

2256

2257

2258

2259

2260

2261

2262

2263

2264

2265

2266

2267

2268

2269

2270

2271

2272

2273

2274

2275

2276

2277

2278

2279

2280

2281

2282

2283

2284

2285

2286

2287

2288

2289

2290

2291

2292

2293

2294

2295

2296

2297

2298

2299

2300

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

General Information Threads

posix_trace_open()
posix_trace_rewind()
posix_trace_set_filter()
posix_trace_shutdown()
posix_trace_timedgetnext_event()
posix_typed_mem_open()
printf()
psiginfo()
psignal()
pthread_rwlock_rdlock()
pthread_rwlock_timedrdlock()
pthread_rwlock_timedwrlock()
pthread_rwlock_wrlock()
putc()
putc_unlocked()
putchar()
putchar_unlocked()
puts()
pututxline()
putwc()
putwchar()
readdir()
readdir_r()

readlink()
readlinkat()
remove()
rename()
renameat()
rewind()
rewinddir()
scandir()
scanf()
seekdir()
semop()
setgrent()
sethostent()
setnetent()
setprotoent()
setpwent()
setservent()
setutxent()
sigpause()
stat()
strerror()
strerror_r()
strftime()

symlink()
symlinkat()
sync()
syslog()
tmpfile()
tmpnam()
ttyname()
ttyname_r()
tzset()
ungetc()
ungetwc()
unlink()
unlinkat()
utime()
utimes()
vfprintf()
vfwprintf()
vprintf()
vwprintf()
wcsftime()
wordexp()
wprintf()
wscanf()

An implementation shall not introduce cancellation points into any other functions specified in
this volume of IEEE Std 1003.1-200x.

The side effects of acting upon a cancellation request while suspended during a call of a function
are the same as the side effects that may be seen in a single-threaded program when a call to a
function is interrupted by a signal and the given function returns [EINTR]. Any such side
effects occur before any cancellation cleanup handlers are called.

Whenever a thread has cancelability enabled and a cancellation request has been made with that
thread as the target, and the thread then calls any function that is a cancellation point (such as
pthread_testcancel() or read()), the cancellation request shall be acted upon before the function
returns. If a thread has cancelability enabled and a cancellation request is made with the thread
as a target while the thread is suspended at a cancellation point, the thread shall be awakened
and the cancellation request shall be acted upon. However, if the thread is suspended at a
cancellation point and the event for which it is waiting occurs before the cancellation request is
acted upon, it is unspecified whether the cancellation request is acted upon or whether the
cancellation request remains pending and the thread resumes normal execution.

2.9.5.3 Thread Cancellation Cleanup Handlers

Each thread maintains a list of cancellation cleanup handlers. The programmer uses the
pthread_cleanup_push() and pthread_cleanup_pop() functions to place routines on and remove
routines from this list.

When a cancellation request is acted upon, or when a thread calls pthread_exit(), the thread first
disables cancellation by setting its cancelability state to PTHREAD_CANCEL_DISABLE and its
cancelability type to PTHREAD_CANCEL_DEFERRED. The cancelability state shall remain set
to PTHREAD_CANCEL_DISABLE until the thread has terminated. The behavior is undefined if

† For any value of thecmd argument.

†† If opterr is non-zero.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 57

2301

2302

2303

2304

2305

2306

2307

2308

2309

2310

2311

2312

2313

2314

2315

2316

2317

2318

2319

2320

2321

2322

2323

2324

2325

2326

2327

2328

2329

2330

2331

2332

2333

2334

2335

2336

2337

2338

2339

2340

2341

2342

2343

2344

2345

2346

2347

2348

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

Threads General Information

a cancellation cleanup handler or thread-specific data destructor routine changes the
cancelability state to PTHREAD_CANCEL_ENABLE.

The routines in the thread’s list of cancellation cleanup handlers are invoked one by one in LIFO
sequence; that is, the last routine pushed onto the list (Last In) is the first to be invoked (First
Out). When the cancellation cleanup handler for a scope is invoked, the storage for that scope
remains valid. If the last cancellation cleanup handler returns, thread-specific data destructors (if
any) associated with thread-specific data keys for which the thread has non-NULL values will
be run, in unspecified order, as described for pthread_key_create().

After all cancellation cleanup handlers and thread-specific data destructors have returned,
thread execution is terminated. If the thread has terminated because of a call to pthread_exit(),
the value_ptr argument is made available to any threads joining with the target. If the thread has
terminated by acting on a cancellation request, a status of PTHREAD_CANCELED is made
available to any threads joining with the target. The symbolic constant PTHREAD_CANCELED
expands to a constant expression of type (void *) whose value matches no pointer to an object in
memory nor the value NULL.

A side effect of acting upon a cancellation request while in a condition variable wait is that the
mutex is re-acquired before calling the first cancellation cleanup handler. In addition, the thread
is no longer considered to be waiting for the condition and the thread shall not have consumed
any pending condition signals on the condition.

A cancellation cleanup handler cannot exit via longjmp() or siglongjmp().

2.9.5.4 Async-Cancel Safety

The pthread_cancel(), pthread_setcancelstate(), and pthread_setcanceltype() functions are defined to
be async-cancel safe.

No other functions in this volume of IEEE Std 1003.1-200x are required to be async-cancel-safe.

2.9.6 Thread Read-Write Locks

Multiple readers, single writer (read-write) locks allow many threads to have simultaneous
read-only access to data while allowing only one thread to have exclusive write access at any
given time. They are typically used to protect data that is read more frequently than it is
changed.

One or more readers acquire read access to the resource by performing a read lock operation on
the associated read-write lock. A writer acquires exclusive write access by performing a write
lock operation. Basically, all readers exclude any writers and a writer excludes all readers and
any other writers.

A thread that has blocked on a read-write lock (for example, has not yet returned from a
pthread_rwlock_rdlock() or pthread_rwlock_wrlock() call) shall not prevent any unblocked thread
that is eligible to use the same processing resources from eventually making forward progress in
its execution. Eligibility for processing resources shall be determined by the scheduling policy.

Read-write locks can be used to synchronize threads in the current process and other processes if
they are allocated in memory that is writable and shared among the cooperating processes and
have been initialized for this behavior.

58 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

2349

2350

2351

2352

2353

2354

2355

2356

2357

2358

2359

2360

2361

2362

2363

2364

2365

2366

2367

2368

2369

2370

2371

2372

2373

2374

2375

2376

2377

2378

2379

2380

2381

2382

2383

2384

2385

2386

2387

2388

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

General Information Threads

2.9.7 Thread Interactions with Regular File Operations

All of the following functions shall be atomic with respect to each other in the effects specified in
IEEE Std 1003.1-200x when they operate on regular files or symbolic links:

chmod()
chown()
close()
creat()
dup2()
fchmod()
fchmodat()
fchown()

fchownat()
fcntl()
fstat()
fstatat()
ftruncate()
futimesat()
lchown()
link()

linkat()
lseek()
lstat()
open()
openat()
pread()
read()
pwrite()

readlink()
readv()
rename()
renameat()
stat()
symlink()
truncate()
unlink()

unlinkat()
utime()
utimes()
write()
writev()

If two threads each call one of these functions, each call shall either see all of the specified effects
of the other call, or none of them.

2.9.8 Use of Application-Managed Thread Stacks

An ‘‘application-managed thread stack’’ is a region of memory allocated by the application—for
example, memory returned by the malloc() or mmap() functions—and designated as a stack
through the act of passing the address and size of the stack, respectively, as the stackaddr and
stacksize arguments to pthread_attr_setstack(). Application-managed stacks allow the application
to precisely control the placement and size of a stack.

The application grants to the implementation permanent ownership of and control over the
application-managed stack when the attributes object in which the stack or stackaddr attribute has
been set is used, either by presenting that attribute’s object as the attr argument in a call to
pthread_create() that completes successfully, or by storing a pointer to the attributes object in the
sigev_notify_attributes member of a struct sigevent and passing that struct sigevent to a function
accepting such argument that completes successfully. The application may thereafter utilize the
memory within the stack only within the normal context of stack usage within or properly
synchronized with a thread that has been scheduled by the implementation with stack pointer
value(s) that are within the range of that stack. In particular, the region of memory cannot be
freed, nor can it be later specified as the stack for another thread.

When specifying an attributes object with an application-managed stack through the
sigev_notify_attributes member of a struct sigevent, the results are undefined if the requested
signal is generated multiple times (as for a repeating timer).

Until an attributes object in which the stack or stackaddr attribute has been set is used, the
application retains ownership of and control over the memory allocated to the stack. It may free
or reuse the memory as long as it either deletes the attributes object, or before using the
attributes object replaces the stack by making an additional call to pthread_attr_setstack(), that
was used originally to designate the stack. There is no mechanism to retract the reference to an
application-managed stack by an existing attributes object.

Once an attributes object with an application-managed stack has been used, that attributes object
cannot be used again by a subsequent call to pthread_create() or any function accepting a struct
sigevent with sigev_notify_attributes containing a pointer to the attributes object, without
designating an unused application-managed stack by making an additional call to
pthread_attr_setstack().

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 59

2389

2390

2391

2392

2393

2394

2395

2396

2397

2398

2399

2400

2401

2402

2403

2404

2405

2406

2407

2408

2409

2410

2411

2412

2413

2414

2415

2416

2417

2418

2419

2420

2421

2422

2423

2424

2425

2426

2427

2428

2429

2430

2431

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

Sockets General Information

2.10 Sockets

A socket is an endpoint for communication using the facilities described in this section. A socket
is created with a specific socket type, described in Section 2.10.6 (on page 61), and is associated
with a specific protocol, detailed in Section 2.10.3 (on page 60). A socket is accessed via a file
descriptor obtained when the socket is created.

2.10.1 Address Families

All network protocols are associated with a specific address family. An address family provides
basic services to the protocol implementation to allow it to function within a specific network
environment. These services may include packet fragmentation and reassembly, routing,
addressing, and basic transport. An address family is normally comprised of a number of
protocols, one per socket type. Each protocol is characterized by an abstract socket type. It is not
required that an address family support all socket types. An address family may contain
multiple protocols supporting the same socket abstraction.

Section 2.10.17 (on page 67), Section 2.10.19 (on page 68), and Section 2.10.20 (on page 68),
respectively, describe the use of sockets for local UNIX connections, for Internet protocols based
on IPv4, and for Internet protocols based on IPv6.

2.10.2 Addressing

An address family defines the format of a socket address. All network addresses are described
using a general structure, called a sockaddr, as defined in the Base Definitions volume of
IEEE Std 1003.1-200x, <sys/socket.h>. However, each address family imposes finer and more
specific structure, generally defining a structure with fields specific to the address family. The
field sa_family in the sockaddr structure contains the address family identifier, specifying the
format of the sa_data area. The size of the sa_data area is unspecified.

2.10.3 Protocols

A protocol supports one of the socket abstractions detailed in Section 2.10.6 (on page 61).
Selecting a protocol involves specifying the address family, socket type, and protocol number to
the socket() function. Certain semantics of the basic socket abstractions are protocol-specific. All
protocols are expected to support the basic model for their particular socket type, but may, in
addition, provide non-standard facilities or extensions to a mechanism.

2.10.4 Routing

Sockets provides packet routing facilities. A routing information database is maintained, which
is used in selecting the appropriate network interface when transmitting packets.

2.10.5 Interfaces

Each network interface in a system corresponds to a path through which messages can be sent
and received. A network interface usually has a hardware device associated with it, though
certain interfaces such as the loopback interface, do not.

60 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

2432

2433

2434

2435

2436

2437

2438

2439

2440

2441

2442

2443

2444

2445

2446

2447

2448

2449

2450

2451

2452

2453

2454

2455

2456

2457

2458

2459

2460

2461

2462

2463

2464

2465

2466

2467

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

General Information Sockets

2.10.6 Socket Types

A socket is created with a specific type, which defines the communication semantics and which
RS allows the selection of an appropriate communication protocol. Four types are defined:

SOCK_RAW, SOCK_STREAM, SOCK_SEQPACKET, and SOCK_DGRAM. Implementations
may specify additional socket types.

The SOCK_STREAM socket type provides reliable, sequenced, full-duplex octet streams
between the socket and a peer to which the socket is connected. A socket of type
SOCK_STREAM must be in a connected state before any data may be sent or received. Record
boundaries are not maintained; data sent on a stream socket using output operations of one size
may be received using input operations of smaller or larger sizes without loss of data. Data may
be buffered; successful return from an output function does not imply that the data has been
delivered to the peer or even transmitted from the local system. If data cannot be successfully
transmitted within a given time then the connection is considered broken, and subsequent
operations shall fail. A SIGPIPE signal is raised if a thread sends on a broken stream (one that is
no longer connected). Support for an out-of-band data transmission facility is protocol-specific.

The SOCK_SEQPACKET socket type is similar to the SOCK_STREAM type, and is also
connection-oriented. The only difference between these types is that record boundaries are
maintained using the SOCK_SEQPACKET type. A record can be sent using one or more output
operations and received using one or more input operations, but a single operation never
transfers parts of more than one record. Record boundaries are visible to the receiver via the
MSG_EOR flag in the received message flags returned by the recvmsg() function. It is protocol-
specific whether a maximum record size is imposed.

The SOCK_DGRAM socket type supports connectionless data transfer which is not necessarily
acknowledged or reliable. Datagrams may be sent to the address specified (possibly multicast or
broadcast) in each output operation, and incoming datagrams may be received from multiple
sources. The source address of each datagram is available when receiving the datagram. An
application may also pre-specify a peer address, in which case calls to output functions that do
not specify a peer address shall send to the pre-specified peer. If a peer has been specified, only
datagrams from that peer shall be received. A datagram must be sent in a single output
operation, and must be received in a single input operation. The maximum size of a datagram is
protocol-specific; with some protocols, the limit is implementation-defined. Output datagrams
may be buffered within the system; thus, a successful return from an output function does not
guarantee that a datagram is actually sent or received. However, implementations should
attempt to detect any errors possible before the return of an output function, reporting any error
by an unsuccessful return value.

RS The SOCK_RAW socket type is similar to the SOCK_DGRAM type. It differs in that it is
normally used with communication providers that underlie those used for the other socket
types. For this reason, the creation of a socket with type SOCK_RAW shall require appropriate
privilege. The format of datagrams sent and received with this socket type generally include
specific protocol headers, and the formats are protocol-specific and implementation-defined.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 61

2468

2469

2470

2471

2472

2473

2474

2475

2476

2477

2478

2479

2480

2481

2482

2483

2484

2485

2486

2487

2488

2489

2490

2491

2492

2493

2494

2495

2496

2497

2498

2499

2500

2501

2502

2503

2504

2505

2506

2507

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

Sockets General Information

2.10.7 Socket I/O Mode

The I/O mode of a socket is described by the O_NONBLOCK file status flag which pertains to
the open file description for the socket. This flag is initially off when a socket is created, but may
be set and cleared by the use of the F_SETFL command of the fcntl() function.

When the O_NONBLOCK flag is set, functions that would normally block until they are
complete shall either return immediately with an error, or shall complete asynchronously to the
execution of the calling process. Data transfer operations (the read(), write(), send(), and recv()
functions) shall complete immediately, transfer only as much as is available, and then return
without blocking, or return an error indicating that no transfer could be made without blocking.
The connect() function initiates a connection and shall return without blocking when
O_NONBLOCK is set; it shall return the error [EINPROGRESS] to indicate that the connection
was initiated successfully, but that it has not yet completed.

2.10.8 Socket Owner

The owner of a socket is unset when a socket is created. The owner may be set to a process ID or
process group ID using the F_SETOWN command of the fcntl() function.

2.10.9 Socket Queue Limits

The transmit and receive queue sizes for a socket are set when the socket is created. The default
sizes used are both protocol-specific and implementation-defined. The sizes may be changed
using the setsockopt() function.

2.10.10 Pending Error

Errors may occur asynchronously, and be reported to the socket in response to input from the
network protocol. The socket stores the pending error to be reported to a user of the socket at the
next opportunity. The error is returned in response to a subsequent send(), recv(), or getsockopt()
operation on the socket, and the pending error is then cleared.

2.10.11 Socket Receive Queue

A socket has a receive queue that buffers data when it is received by the system until it is
removed by a receive call. Depending on the type of the socket and the communication provider,
the receive queue may also contain ancillary data such as the addressing and other protocol data
associated with the normal data in the queue, and may contain out-of-band or expedited data.
The limit on the queue size includes any normal, out-of-band data, datagram source addresses,
and ancillary data in the queue. The description in this section applies to all sockets, even
though some elements cannot be present in some instances.

The contents of a receive buffer are logically structured as a series of data segments with
associated ancillary data and other information. A data segment may contain normal data or
out-of-band data, but never both. A data segment may complete a record if the protocol
supports records (always true for types SOCK_SEQPACKET and SOCK_DGRAM). A record
may be stored as more than one segment; the complete record might never be present in the
receive buffer at one time, as a portion might already have been returned to the application, and
another portion might not yet have been received from the communications provider. A data
segment may contain ancillary protocol data, which is logically associated with the segment.
Ancillary data is received as if it were queued along with the first normal data octet in the
segment (if any). A segment may contain ancillary data only, with no normal or out-of-band
data. For the purposes of this section, a datagram is considered to be a data segment that
terminates a record, and that includes a source address as a special type of ancillary data. Data
segments are placed into the queue as data is delivered to the socket by the protocol. Normal
data segments are placed at the end of the queue as they are delivered. If a new segment

62 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

2508

2509

2510

2511

2512

2513

2514

2515

2516

2517

2518

2519

2520

2521

2522

2523

2524

2525

2526

2527

2528

2529

2530

2531

2532

2533

2534

2535

2536

2537

2538

2539

2540

2541

2542

2543

2544

2545

2546

2547

2548

2549

2550

2551

2552

2553

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

General Information Sockets

contains the same type of data as the preceding segment and includes no ancillary data, and if
the preceding segment does not terminate a record, the segments are logically merged into a
single segment.

The receive queue is logically terminated if an end-of-file indication has been received or a
connection has been terminated. A segment shall be considered to be terminated if another
segment follows it in the queue, if the segment completes a record, or if an end-of-file or other
connection termination has been reported. The last segment in the receive queue shall also be
considered to be terminated while the socket has a pending error to be reported.

A receive operation shall never return data or ancillary data from more than one segment.

2.10.12 Socket Out-of-Band Data State

The handling of received out-of-band data is protocol-specific. Out-of-band data may be placed
in the socket receive queue, either at the end of the queue or before all normal data in the queue.
In this case, out-of-band data is returned to an application program by a normal receive call.
Out-of-band data may also be queued separately rather than being placed in the socket receive
queue, in which case it shall be returned only in response to a receive call that requests out-of-
band data. It is protocol-specific whether an out-of-band data mark is placed in the receive
queue to demarcate data preceding the out-of-band data and following the out-of-band data. An
out-of-band data mark is logically an empty data segment that cannot be merged with other
segments in the queue. An out-of-band data mark is never returned in response to an input
operation. The sockatmark() function can be used to test whether an out-of-band data mark is the
first element in the queue. If an out-of-band data mark is the first element in the queue when an
input function is called without the MSG_PEEK option, the mark is removed from the queue
and the following data (if any) is processed as if the mark had not been present.

2.10.13 Connection Indication Queue

Sockets that are used to accept incoming connections maintain a queue of outstanding
connection indications. This queue is a list of connections that are awaiting acceptance by the
application; see listen().

2.10.14 Signals

One category of event at the socket interface is the generation of signals. These signals report
protocol events or process errors relating to the state of the socket. The generation or delivery of
a signal does not change the state of the socket, although the generation of the signal may have
been caused by a state change.

The SIGPIPE signal shall be sent to a thread that attempts to send data on a socket that is no
longer able to send. In addition, the send operation fails with the error [EPIPE].

If a socket has an owner, the SIGURG signal is sent to the owner of the socket when it is notified
of expedited or out-of-band data. The socket state at this time is protocol-dependent, and the
status of the socket is specified in Section 2.10.17 (on page 67), Section 2.10.19 (on page 68), and
Section 2.10.20 (on page 68). Depending on the protocol, the expedited data may or may not
have arrived at the time of signal generation.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 63

2554

2555

2556

2557

2558

2559

2560

2561

2562

2563

2564

2565

2566

2567

2568

2569

2570

2571

2572

2573

2574

2575

2576

2577

2578

2579

2580

2581

2582

2583

2584

2585

2586

2587

2588

2589

2590

2591

2592

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

Sockets General Information

2.10.15 Asynchronous Errors

If any of the following conditions occur asynchronously for a socket, the corresponding value
listed below shall become the pending error for the socket:

[ECONNABORTED]
The connection was aborted locally.

[ECONNREFUSED]
For a connection-mode socket attempting a non-blocking connection, the attempt to connect
was forcefully rejected. For a connectionless-mode socket, an attempt to deliver a datagram
was forcefully rejected.

[ECONNRESET]
The peer has aborted the connection.

[EHOSTDOWN]
The destination host has been determined to be down or disconnected.

[EHOSTUNREACH]
The destination host is not reachable.

[EMSGSIZE]
For a connectionless-mode socket, the size of a previously sent datagram prevented
delivery.

[ENETDOWN]
The local network connection is not operational.

[ENETRESET]
The connection was aborted by the network.

[ENETUNREACH]
The destination network is not reachable.

2.10.16 Use of Options

There are a number of socket options which either specialize the behavior of a socket or provide
useful information. These options may be set at different protocol levels and are always present
at the uppermost ‘‘socket’’ level.

Socket options are manipulated by two functions, getsockopt() and setsockopt(). These functions
allow an application program to customize the behavior and characteristics of a socket to
provide the desired effect.

All of the options have default values. The type and meaning of these values is defined by the
protocol level to which they apply. Instead of using the default values, an application program
may choose to customize one or more of the options. However, in the bulk of cases, the default
values are sufficient for the application.

Some of the options are used to enable or disable certain behavior within the protocol modules
(for example, turn on debugging) while others may be used to set protocol-specific information
(for example, IP time-to-live on all the application’s outgoing packets). As each of the options is
introduced, its effect on the underlying protocol modules is described.

Table 2-1 shows the value for the socket level.

64 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

2593

2594

2595

2596

2597

2598

2599

2600

2601

2602

2603

2604

2605

2606

2607

2608

2609

2610

2611

2612

2613

2614

2615

2616

2617

2618

2619

2620

2621

2622

2623

2624

2625

2626

2627

2628

2629

2630

2631

2632

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

General Information Sockets

Table 2-1 Value of Level for Socket Options

Name Description

SOL_SOCKET Options are intended for the sockets level.

Table 2-2 lists those options present at the socket level; that is, when the level parameter of the
getsockopt() or setsockopt() function is SOL_SOCKET, the types of the option value parameters
associated with each option, and a brief synopsis of the meaning of the option value parameter.
Unless otherwise noted, each may be examined with getsockopt() and set with setsockopt() on all
types of socket.

Table 2-2 Socket-Level Options

Option Parameter Type Parameter Meaning

SO_BROADCAST int Non-zero requests permission to transmit
broadcast datagrams (SOCK_DGRAM sockets
only).

SO_DEBUG int Non-zero requests debugging in underlying
protocol modules.

SO_DONTROUTE int Non-zero requests bypass of normal routing;
route based on destination address only.

SO_ERROR int Requests and clears pending error information
on the socket (getsockopt() only).

SO_KEEPALIVE int Non-zero requests periodic transmission of
keepalive messages (protocol-specific).

SO_LINGER struct linger Specify actions to be taken for queued, unsent
data on close(): linger on/off and linger time in
seconds.

SO_OOBINLINE int Non-zero requests that out-of-band data be
placed into normal data input queue as received.

SO_RCVBUF int Size of receive buffer (in bytes).
SO_RCVLOWAT int Minimum amount of data to return to

application for input operations (in bytes).
SO_RCVTIMEO struct timeval Timeout value for a socket receive operation.
SO_REUSEADDR int Non-zero requests reuse of local addresses in

bind() (protocol-specific).
SO_SNDBUF int Size of send buffer (in bytes).
SO_SNDLOWAT int Minimum amount of data to send for output

operations (in bytes).
SO_SNDTIMEO struct timeval Timeout value for a socket send operation.
SO_TYPE int Identify socket type (getsockopt() only).

The SO_BROADCAST option requests permission to send broadcast datagrams on the socket.
Support for SO_BROADCAST is protocol-specific. The default for SO_BROADCAST is that the
ability to send broadcast datagrams on a socket is disabled.

The SO_DEBUG option enables debugging in the underlying protocol modules. This can be
useful for tracing the behavior of the underlying protocol modules during normal system
operation. The semantics of the debug reports are implementation-defined. The default value for
SO_DEBUG is for debugging to be turned off.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 65

2633

2634

2635

2636

2637

2638

2639

2640

2641

2642

2643

2644

2645

2646

2647

2648

2649

2650

2651

2652

2653

2654

2655

2656

2657

2658

2659

2660

2661

2662

2663

2664

2665

2666

2667

2668

2669

2670

2671

2672

2673

2674

2675

2676

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

Sockets General Information

The SO_DONTROUTE option requests that outgoing messages bypass the standard routing
facilities. The destination must be on a directly-connected network, and messages are directed to
the appropriate network interface according to the destination address. It is protocol-specific
whether this option has any effect and how the outgoing network interface is chosen. Support
for this option with each protocol is implementation-defined.

The SO_ERROR option is used only on getsockopt(). When this option is specified, getsockopt()
shall return any pending error on the socket and clear the error status. It shall return a value of 0
if there is no pending error. SO_ERROR may be used to check for asynchronous errors on
connected connectionless-mode sockets or for other types of asynchronous errors. SO_ERROR
has no default value.

The SO_KEEPALIVE option enables the periodic transmission of messages on a connected
socket. The behavior of this option is protocol-specific. The default value for SO_KEEPALIVE is
zero, specifying that this capability is turned off.

The SO_LINGER option controls the action of the interface when unsent messages are queued
on a socket and a close() is performed. The details of this option are protocol-specific. The
default value for SO_LINGER is zero, or off, for the l_onoff element of the option value and zero
seconds for the linger time specified by the l_linger element.

The SO_OOBINLINE option is valid only on protocols that support out-of-band data. The
SO_OOBINLINE option requests that out-of-band data be placed in the normal data input
queue as received; it is then accessible using the read() or recv() functions without the
MSG_OOB flag set. The default for SO_OOBINLINE is off; that is, for out-of-band data not to be
placed in the normal data input queue.

The SO_RCVBUF option requests that the buffer space allocated for receive operations on this
socket be set to the value, in bytes, of the option value. Applications may wish to increase buffer
size for high volume connections, or may decrease buffer size to limit the possible backlog of
incoming data. The default value for the SO_RCVBUF option value is implementation-defined,
and may vary by protocol.

The SO_RCVLOWAT option sets the minimum number of bytes to process for socket input
operations. In general, receive calls block until any (non-zero) amount of data is received, then
return the smaller of the amount available or the amount requested. The default value for
SO_RCVLOWAT is 1, and does not affect the general case. If SO_RCVLOWAT is set to a larger
value, blocking receive calls normally wait until they have received the smaller of the low water
mark value or the requested amount. Receive calls may still return less than the low water mark
if an error occurs, a signal is caught, or the type of data next in the receive queue is different
from that returned (for example, out-of-band data). As mentioned previously, the default value
for SO_RCVLOWAT is 1 byte. It is implementation-defined whether the SO_RCVLOWAT option
can be set.

The SO_RCVTIMEO option is an option to set a timeout value for input operations. It accepts a
timeval structure with the number of seconds and microseconds specifying the limit on how
long to wait for an input operation to complete. If a receive operation has blocked for this much
time without receiving additional data, it shall return with a partial count or errno shall be set to
[EWOULDBLOCK] if no data were received. The default for this option is the value zero, which
indicates that a receive operation will not time out. It is implementation-defined whether the
SO_RCVTIMEO option can be set.

The SO_REUSEADDR option indicates that the rules used in validating addresses supplied in a
bind() should allow reuse of local addresses. Operation of this option is protocol-specific. The
default value for SO_REUSEADDR is off; that is, reuse of local addresses is not permitted.

The SO_SNDBUF option requests that the buffer space allocated for send operations on this

66 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

2677

2678

2679

2680

2681

2682

2683

2684

2685

2686

2687

2688

2689

2690

2691

2692

2693

2694

2695

2696

2697

2698

2699

2700

2701

2702

2703

2704

2705

2706

2707

2708

2709

2710

2711

2712

2713

2714

2715

2716

2717

2718

2719

2720

2721

2722

2723

2724

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

General Information Sockets

socket be set to the value, in bytes, of the option value. The default value for the SO_SNDBUF
option value is implementation-defined, and may vary by protocol.

The SO_SNDLOWAT option sets the minimum number of bytes to process for socket output
operations. Most output operations process all of the data supplied by the call, delivering data to
the protocol for transmission and blocking as necessary for flow control. Non-blocking output
operations process as much data as permitted subject to flow control without blocking, but
process no data if flow control does not allow the smaller of the send low water mark value or
the entire request to be processed. A select() operation testing the ability to write to a socket shall
return true only if the send low water mark could be processed. The default value for
SO_SNDLOWAT is implementation-defined and protocol-specific. It is implementation-defined
whether the SO_SNDLOWAT option can be set.

The SO_SNDTIMEO option is an option to set a timeout value for the amount of time that an
output function shall block because flow control prevents data from being sent. As noted in
Table 2-2 (on page 65), the option value is a timeval structure with the number of seconds and
microseconds specifying the limit on how long to wait for an output operation to complete. If a
send operation has blocked for this much time, it shall return with a partial count or errno set to
[EWOULDBLOCK] if no data were sent. The default for this option is the value zero, which
indicates that a send operation will not time out. It is implementation-defined whether the
SO_SNDTIMEO option can be set.

The SO_TYPE option is used only on getsockopt(). When this option is specified, getsockopt()
shall return the type of the socket (for example, SOCK_STREAM). This option is useful to
servers that inherit sockets on start-up. SO_TYPE has no default value.

2.10.17 Use of Sockets for Local UNIX Connections

Support for UNIX domain sockets is mandatory.

UNIX domain sockets provide process-to-process communication in a single system.

2.10.17.1 Headers

The symbolic constant AF_UNIX defined in the <sys/socket.h> header is used to identify the
UNIX domain address family. The <sys/un.h> header contains other definitions used in
connection with UNIX domain sockets. See the Base Definitions volume of IEEE Std 1003.1-200x,
Chapter 13, Headers.

The sockaddr_storage structure defined in <sys/socket.h> shall be large enough to
accommodate a sockaddr_un structure (see the <sys/un.h> header defined in the Base
Definitions volume of IEEE Std 1003.1-200x, Chapter 13, Headers) and shall be aligned at an
appropriate boundary so that pointers to it can be cast as pointers to sockaddr_un structures
and used to access the fields of those structures without alignment problems. When a
sockaddr_storage structure is cast as a sockaddr_un structure, the ss_family field maps onto the
sun_family field.

2.10.18 Use of Sockets over Internet Protocols

When a socket is created in the Internet family with a protocol value of zero, the implementation
shall use the protocol listed below for the type of socket created.

SOCK_STREAM IPPROTO_TCP.

SOCK_DGRAM IPPROTO_UDP.

RS SOCK_RAW IPPROTO_RAW.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 67

2725

2726

2727

2728

2729

2730

2731

2732

2733

2734

2735

2736

2737

2738

2739

2740

2741

2742

2743

2744

2745

2746

2747

2748

2749

2750

2751

2752

2753

2754

2755

2756

2757

2758

2759

2760

2761

2762

2763

2764

2765

2766

2767

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

Sockets General Information

SOCK_SEQPACKET Unspecified.

RS A raw interface to IP is available by creating an Internet socket of type SOCK_RAW. The default
protocol for type SOCK_RAW shall be identified in the IP header with the value
IPPROTO_RAW. Applications should not use the default protocol when creating a socket with
type SOCK_RAW, but should identify a specific protocol by value. The ICMP control protocol is
accessible from a raw socket by specifying a value of IPPROTO_ICMP for protocol.

2.10.19 Use of Sockets over Internet Protocols Based on IPv4

Support for sockets over Internet protocols based on IPv4 is mandatory.

2.10.19.1 Headers

The symbolic constant AF_INET defined in the <sys/socket.h> header is used to identify the
IPv4 Internet address family. The <netinet/in.h> header contains other definitions used in
connection with IPv4 Internet sockets. See the Base Definitions volume of IEEE Std 1003.1-200x,
Chapter 13, Headers.

The sockaddr_storage structure defined in <sys/socket.h> shall be large enough to
accommodate a sockaddr_in structure (see the <netinet/in.h> header defined in the Base
Definitions volume of IEEE Std 1003.1-200x, Chapter 13, Headers) and shall be aligned at an
appropriate boundary so that pointers to it can be cast as pointers to sockaddr_in structures and
used to access the fields of those structures without alignment problems. When a
sockaddr_storage structure is cast as a sockaddr_in structure, the ss_family field maps onto the
sin_family field.

2.10.20 Use of Sockets over Internet Protocols Based on IPv6

IP6 This section describes extensions to support sockets over Internet protocols based on IPv6. The
functionality described in this section shall be provided on implementations that support the
IPV6 option (and the rest of this section is not further shaded for this option).

To enable smooth transition from IPv4 to IPv6, the features defined in this section may, in certain
circumstances, also be used in connection with IPv4; see Section 2.10.20.2 (on page 69).

2.10.20.1 Addressing

IPv6 overcomes the addressing limitations of previous versions by using 128-bit addresses
instead of 32-bit addresses. The IPv6 address architecture is described in RFC 2373.

There are three kinds of IPv6 address:

Unicast
Identifies a single interface.

A unicast address can be global, link-local (designed for use on a single link), or site-local
(designed for systems not connected to the Internet). Link-local and site-local addresses
need not be globally unique.

Anycast
Identifies a set of interfaces such that a packet sent to the address can be delivered to any
member of the set.

An anycast address is similar to a unicast address; the nodes to which an anycast address is
assigned must be explicitly configured to know that it is an anycast address.

Multicast
Identifies a set of interfaces such that a packet sent to the address should be delivered to
every member of the set.

68 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

2768

2769

2770

2771

2772

2773

2774

2775

2776

2777

2778

2779

2780

2781

2782

2783

2784

2785

2786

2787

2788

2789

2790

2791

2792

2793

2794

2795

2796

2797

2798

2799

2800

2801

2802

2803

2804

2805

2806

2807

2808

2809

2810

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

General Information Sockets

An application can send multicast datagrams by simply specifying an IPv6 multicast
address in the address argument of sendto(). To receive multicast datagrams, an application
must join the multicast group (using setsockopt() with IPV6_JOIN_GROUP) and must bind
to the socket the UDP port on which datagrams will be received. Some applications should
also bind the multicast group address to the socket, to prevent other datagrams destined to
that port from being delivered to the socket.

A multicast address can be global, node-local, link-local, site-local, or organization-local.

The following special IPv6 addresses are defined:

Unspecified
An address that is not assigned to any interface and is used to indicate the absence of an
address.

Loopback
A unicast address that is not assigned to any interface and can be used by a node to send
packets to itself.

Two sets of IPv6 addresses are defined to correspond to IPv4 addresses:

IPv4-compatible addresses
These are assigned to nodes that support IPv6 and can be used when traffic is ‘‘tunneled’’
through IPv4.

IPv4-mapped addresses
These are used to represent IPv4 addresses in IPv6 address format; see Section 2.10.20.2 (on
page 69).

Note that the unspecified address and the loopback address must not be treated as
IPv4-compatible addresses.

2.10.20.2 Compatibility with IPv4

The API provides the ability for IPv6 applications to interoperate with applications using IPv4,
by using IPv4-mapped IPv6 addresses. These addresses can be generated automatically by the
getaddrinfo() function when the specified host has only IPv4 addresses.

Applications can use AF_INET6 sockets to open TCP connections to IPv4 nodes, or send UDP
packets to IPv4 nodes, by simply encoding the destination’s IPv4 address as an IPv4-mapped
IPv6 address, and passing that address, within a sockaddr_in6 structure, in the connect(),
sendto(), or sendmsg() function. When applications use AF_INET6 sockets to accept TCP
connections from IPv4 nodes, or receive UDP packets from IPv4 nodes, the system shall return
the peer’s address to the application in the accept(), recvfrom(), recvmsg(), or getpeername()
function using a sockaddr_in6 structure encoded this way. If a node has an IPv4 address, then
the implementation shall allow applications to communicate using that address via an
AF_INET6 socket. In such a case, the address will be represented at the API by the
corresponding IPv4-mapped IPv6 address. Also, the implementation may allow an AF_INET6
socket bound to in6addr_any to receive inbound connections and packets destined to one of the
node’s IPv4 addresses.

An application can use AF_INET6 sockets to bind to a node’s IPv4 address by specifying the
address as an IPv4-mapped IPv6 address in a sockaddr_in6 structure in the bind() function. For
an AF_INET6 socket bound to a node’s IPv4 address, the system shall return the address in the
getsockname() function as an IPv4-mapped IPv6 address in a sockaddr_in6 structure.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 69

2811

2812

2813

2814

2815

2816

2817

2818

2819

2820

2821

2822

2823

2824

2825

2826

2827

2828

2829

2830

2831

2832

2833

2834

2835

2836

2837

2838

2839

2840

2841

2842

2843

2844

2845

2846

2847

2848

2849

2850

2851

2852

2853

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

Sockets General Information

2.10.20.3 Interface Identification

Each local interface is assigned a unique positive integer as a numeric index. Indexes start at 1;
zero is not used. There may be gaps so that there is no current interface for a particular positive
index. Each interface also has a unique implementation-defined name.

2.10.20.4 Options

The following options apply at the IPPROTO_IPV6 level:

IPV6_JOIN_GROUP
When set via setsockopt(), it joins the application to a multicast group on an interface
(identified by its index) and addressed by a given multicast address, enabling packets sent
to that address to be read via the socket. If the interface index is specified as zero, the
system selects the interface (for example, by looking up the address in a routing table and
using the resulting interface).

An attempt to read this option using getsockopt() shall result in an [EOPNOTSUPP] error.

The parameter type of this option is a pointer to an ipv6_mreq structure.

IPV6_LEAVE_GROUP
When set via setsockopt(), it removes the application from the multicast group on an
interface (identified by its index) and addressed by a given multicast address.

An attempt to read this option using getsockopt() shall result in an [EOPNOTSUPP] error.

The parameter type of this option is a pointer to an ipv6_mreq structure.

IPV6_MULTICAST_HOPS
The value of this option is the hop limit for outgoing multicast IPv6 packets sent via the
socket. Its possible values are the same as those of IPV6_UNICAST_HOPS. If the
IPV6_MULTICAST_HOPS option is not set, a value of 1 is assumed. This option can be set
via setsockopt() and read via getsockopt().

The parameter type of this option is a pointer to an int. (Default value: 1)

IPV6_MULTICAST_IF
The index of the interface to be used for outgoing multicast packets. It can be set via
setsockopt() and read via getsockopt(). If the interface index is specified as zero, the system
selects the interface (for example, by looking up the address in a routing table and using the
resulting interface).

The parameter type of this option is a pointer to an unsigned int. (Default value: 0)

IPV6_MULTICAST_LOOP
This option controls whether outgoing multicast packets should be delivered back to the
local application when the sending interface is itself a member of the destination multicast
group. If it is set to 1 they are delivered. If it is set to 0 they are not. Other values result in an
[EINVAL] error. This option can be set via setsockopt() and read via getsockopt().

The parameter type of this option is a pointer to an unsigned int which is used as a Boolean
value. (Default value: 1)

IPV6_UNICAST_HOPS
The value of this option is the hop limit for outgoing unicast IPv6 packets sent via the
socket. If the option is not set, or is set to −1, the system selects a default value. Attempts to
set a value less than −1 or greater than 255 shall result in an [EINVAL] error. This option can
be set via setsockopt() and read via getsockopt().

The parameter type of this option is a pointer to an int. (Default value: Unspecified)

70 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

2854

2855

2856

2857

2858

2859

2860

2861

2862

2863

2864

2865

2866

2867

2868

2869

2870

2871

2872

2873

2874

2875

2876

2877

2878

2879

2880

2881

2882

2883

2884

2885

2886

2887

2888

2889

2890

2891

2892

2893

2894

2895

2896

2897

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

General Information Sockets

IPV6_V6ONLY
This socket option restricts AF_INET6 sockets to IPv6 communications only. AF_INET6
sockets may be used for both IPv4 and IPv6 communications. Some applications may want
to restrict their use of an AF_INET6 socket to IPv6 communications only. For these
applications, the IPv6_V6ONLY socket option is defined. When this option is turned on, the
socket can be used to send and receive IPv6 packets only. This is an IPPROTO_IPV6-level
option.

The parameter type of this option is a pointer to an int which is used as a Boolean value.
(Default value: 0)

An [EOPNOTSUPP] error shall result if IPV6_JOIN_GROUP or IPV6_LEAVE_GROUP is used
with getsockopt().

2.10.20.5 Headers

The symbolic constant AF_INET6 is defined in the <sys/socket.h> header to identify the IPv6
Internet address family. See the Base Definitions volume of IEEE Std 1003.1-200x, Chapter 13,
Headers.

The sockaddr_storage structure defined in <sys/socket.h> shall be large enough to
accommodate a sockaddr_in6 structure (see the <netinet/in.h> header defined in the Base
Definitions volume of IEEE Std 1003.1-200x, Chapter 13, Headers) and shall be aligned at an
appropriate boundary so that pointers to it can be cast as pointers to sockaddr_in6 structures
and used to access the fields of those structures without alignment problems. When a
sockaddr_storage structure is cast as a sockaddr_in6 structure, the ss_family field maps onto the
sin6_family field.

The <netinet/in.h>, <arpa/inet.h>, and <netdb.h> headers contain other definitions used in
connection with IPv6 Internet sockets; see the Base Definitions volume of IEEE Std 1003.1-200x,
Chapter 13, Headers.

2.11 Tracing

OB TRC This section describes extensions to support tracing of user applications. The functionality
described in this section is dependent on support of the Trace option (and the rest of this section
is not further shaded for this option).

The tracing facilities defined in IEEE Std 1003.1-200x allow a process to select a set of trace event
types, to activate a trace stream of the selected trace events as they occur in the flow of
execution, and to retrieve the recorded trace events.

The tracing operation relies on three logically different components: the traced process, the
controller process, and the analyzer process. During the execution of the traced process, when a
trace point is reached, a trace event is recorded into the trace streams created for that process in
which the associated trace event type identifier is not being filtered out. The controller process
controls the operation of recording the trace events into the trace stream. It shall be able to:

• Initialize the attributes of a trace stream

• Create the trace stream (for a specified traced process) using those attributes

• Start and stop tracing for the trace stream

• Filter the type of trace events to be recorded, if the Trace Event Filter option is supported

• Shut a trace stream down

These operations can be done for an active trace stream. The analyzer process retrieves the

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 71

2898

2899

2900

2901

2902

2903

2904

2905

2906

2907

2908

2909

2910

2911

2912

2913

2914

2915

2916

2917

2918

2919

2920

2921

2922

2923

2924

2925

2926

2927

2928

2929

2930

2931

2932

2933

2934

2935

2936

2937

2938

2939

2940

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

Tr acing General Information

traced events either at runtime, when the trace stream has not yet been shut down, but is still
recording trace events; or after opening a trace log that had been previously recorded and shut
down. These three logically different operations can be performed by the same process, or can
be distributed into different processes.

A trace stream identifier can be created by a call to posix_trace_create(),
posix_trace_create_withlog(), or posix_trace_open(). The posix_trace_create() and
posix_trace_create_withlog() functions should be used by a controller process. The
posix_trace_open() should be used by an analyzer process.

The tracing functions can serve different purposes. One purpose is debugging the possibly pre-
instrumented code, while another is post-mortem fault analysis. These two potential uses differ
in that the first requires pre-filtering capabilities to avoid overwhelming the trace stream and
permits focusing on expected information; while the second needs comprehensive trace
capabilities in order to be able to record all types of information.

The events to be traced belong to two classes:

1. User trace events (generated by the application instrumentation)

2. System trace events (generated by the operating system)

The trace interface defines several system trace event types associated with control of and
operation of the trace stream. This small set of system trace events includes the minimum
required to interpret correctly the trace event information present in the stream. Other desirable
system trace events for some particular application profile may be implemented and are
encouraged; for example, process and thread scheduling, signal occurrence, and so on.

Each traced process shall have a mapping of the trace event names to trace event type identifiers
that have been defined for that process. Each active trace stream shall have a mapping that
incorporates all the trace event type identifiers predefined by the trace system plus all the
mappings of trace event names to trace event type identifiers of the processes that are being
traced into that trace stream. These mappings are defined from the instrumented application by
calling the posix_trace_eventid_open() function and from the controller process by calling the
posix_trace_trid_eventid_open() function. For a pre-recorded trace stream, the list of trace event
types is obtained from the pre-recorded trace log.

The st_ctime and st_mtime fields of a file associated with an active trace stream shall be marked
for update every time any of the tracing operations modifies that file.

The st_atime field of a file associated with a trace stream shall be marked for update every time
any of the tracing operations causes data to be read from that file.

Results are undefined if the application performs any operation on a file descriptor associated
with an active or pre-recorded trace stream until posix_trace_shutdown() or posix_trace_close() is
called for that trace stream. Results are also undefined if the analyzer process and the traced
process do not share the same programming environment (see c99, Programming Environments
in the Shell and Utilities volume of IEEE Std 1003.1-200x.

The main purpose of this option is to define a complete set of functions and concepts that allow
a conforming application to be traced from creation to termination, whatever its realtime
constraints and properties.

72 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

2941

2942

2943

2944

2945

2946

2947

2948

2949

2950

2951

2952

2953

2954

2955

2956

2957

2958

2959

2960

2961

2962

2963

2964

2965

2966

2967

2968

2969

2970

2971

2972

2973

2974

2975

2976

2977

2978

2979

2980

2981

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

General Information Tr acing

2.11.1 Tracing Data Definitions

2.11.1.1 Structures

The <trace.h> header shall define the posix_trace_status_info and posix_trace_event_info structures
described below. Implementations may add extensions to these structures.

posix_trace_status_info Structure

To facilitate control of a trace stream, information about the current state of an active trace
stream can be obtained dynamically. This structure is returned by a call to the
posix_trace_get_status() function.

The posix_trace_status_info structure defined in <trace.h> shall contain at least the following
members:

Member Type Member Name Description

int posix_stream_status The operating mode of the trace stream.
int posix_stream_full_status The full status of the trace stream.
int posix_stream_overrun_status Indicates whether trace events were

lost in the trace stream.

If the Trace Log option is supported in addition to the Trace option, the posix_trace_status_info
structure defined in <trace.h> shall contain at least the following additional members:

Member Type Member Name Description

int posix_stream_flush_status Indicates whether a flush is in progress.
int posix_stream_flush_error Indicates whether any error occurred

during the last flush operation.
int posix_log_overrun_status Indicates whether trace events were

lost in the trace log.
int posix_log_full_status The full status of the trace log.

The posix_stream_status member indicates the operating mode of the trace stream and shall have
one of the following values defined by manifest constants in the <trace.h> header:

POSIX_TRACE_RUNNING
Tracing is in progress; that is, the trace stream is accepting trace events.

POSIX_TRACE_SUSPENDED
The trace stream is not accepting trace events. The tracing operation has not yet started or
has stopped, either following a posix_trace_stop() function call or because the trace resources
are exhausted.

The posix_stream_full_status member indicates the full status of the trace stream, and it shall have
one of the following values defined by manifest constants in the <trace.h> header:

POSIX_TRACE_FULL
The space in the trace stream for trace events is exhausted.

POSIX_TRACE_NOT_FULL
There is still space available in the trace stream.

The combination of the posix_stream_status and posix_stream_full_status members also indicates
the actual status of the stream. The status shall be interpreted as follows:

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 73

2982

2983

2984

2985

2986

2987

2988

2989

2990

2991

2992

2993

2994

2995

2996

2997

2998

2999

3000

3001

3002

3003

3004

3005

3006

3007

3008

3009

3010

3011

3012

3013

3014

3015

3016

3017

3018

3019

3020

3021

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

Tr acing General Information

POSIX_TRACE_RUNNING and POSIX_TRACE_NOT_FULL
This status combination indicates that tracing is in progress, and there is space available for
recording more trace events.

POSIX_TRACE_RUNNING and POSIX_TRACE_FULL
This status combination indicates that tracing is in progress and that the trace stream is full
of trace events. This status combination cannot occur unless the stream-full-policy is set to
POSIX_TRACE_LOOP. The trace stream contains trace events recorded during a moving
time window of prior trace events, and some older trace events may have been overwritten
and thus lost.

POSIX_TRACE_SUSPENDED and POSIX_TRACE_NOT_FULL
This status combination indicates that tracing has not yet been started, has been stopped by
the posix_trace_stop() function, or has been cleared by the posix_trace_clear() function.

POSIX_TRACE_SUSPENDED and POSIX_TRACE_FULL
This status combination indicates that tracing has been stopped by the implementation
because the stream-full-policy attribute was POSIX_TRACE_UNTIL_FULL and trace
resources were exhausted, or that the trace stream was stopped by the function
posix_trace_stop() at a time when trace resources were exhausted.

The posix_stream_overrun_status member indicates whether trace events were lost in the trace
stream, and shall have one of the following values defined by manifest constants in the
<trace.h> header:

POSIX_TRACE_OVERRUN
At least one trace event was lost and thus was not recorded in the trace stream.

POSIX_TRACE_NO_OVERRUN
No trace events were lost.

When the corresponding trace stream is created, the posix_stream_overrun_status member shall be
set to POSIX_TRACE_NO_OVERRUN.

Whenever an overrun occurs, the posix_stream_overrun_status member shall be set to
POSIX_TRACE_OVERRUN.

An overrun occurs when:

• The policy is POSIX_TRACE_LOOP and a recorded trace event is overwritten.

• The policy is POSIX_TRACE_UNTIL_FULL and the trace stream is full when a trace event
is generated.

• If the Trace Log option is supported, the policy is POSIX_TRACE_FLUSH and at least one
trace event is lost while flushing the trace stream to the trace log.

The posix_stream_overrun_status member is reset to zero after its value is read.

If the Trace Log option is supported in addition to the Trace option, the posix_stream_flush_status,
posix_stream_flush_error, posix_log_overrun_status, and posix_log_full_status members are defined
as follows; otherwise, they are undefined.

The posix_stream_flush_status member indicates whether a flush operation is being performed
and shall have one of the following values defined by manifest constants in the header
<trace.h>:

POSIX_TRACE_FLUSHING
The trace stream is currently being flushed to the trace log.

74 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

3022

3023

3024

3025

3026

3027

3028

3029

3030

3031

3032

3033

3034

3035

3036

3037

3038

3039

3040

3041

3042

3043

3044

3045

3046

3047

3048

3049

3050

3051

3052

3053

3054

3055

3056

3057

3058

3059

3060

3061

3062

3063

3064

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

General Information Tr acing

POSIX_TRACE_NOT_FLUSHING
No flush operation is in progress.

The posix_stream_flush_status member shall be set to POSIX_TRACE_FLUSHING if a flush
operation is in progress either due to a call to the posix_trace_flush() function (explicit or caused
by a trace stream shutdown operation) or because the trace stream has become full with the
stream-full-policy attribute set to POSIX_TRACE_FLUSH. The posix_stream_flush_status member
shall be set to POSIX_TRACE_NOT_FLUSHING if no flush operation is in progress.

The posix_stream_flush_error member shall be set to zero if no error occurred during flushing. If
an error occurred during a previous flushing operation, the posix_stream_flush_error member
shall be set to the value of the first error that occurred. If more than one error occurs while
flushing, error values after the first shall be discarded. The posix_stream_flush_error member is
reset to zero after its value is read.

The posix_log_overrun_status member indicates whether trace events were lost in the trace log,
and shall have one of the following values defined by manifest constants in the <trace.h>
header:

POSIX_TRACE_OVERRUN
At least one trace event was lost.

POSIX_TRACE_NO_OVERRUN
No trace events were lost.

When the corresponding trace stream is created, the posix_log_overrun_status member shall be set
to POSIX_TRACE_NO_OVERRUN. Whenever an overrun occurs, this status shall be set to
POSIX_TRACE_OVERRUN. The posix_log_overrun_status member is reset to zero after its value
is read.

The posix_log_full_status member indicates the full status of the trace log, and it shall have one of
the following values defined by manifest constants in the <trace.h> header:

POSIX_TRACE_FULL
The space in the trace log is exhausted.

POSIX_TRACE_NOT_FULL
There is still space available in the trace log.

The posix_log_full_status member is only meaningful if the log-full-policy attribute is either
POSIX_TRACE_UNTIL_FULL or POSIX_TRACE_LOOP.

For an active trace stream without log, that is created by the posix_trace_create() function, the
posix_log_overrun_status member shall be set to POSIX_TRACE_NO_OVERRUN and the
posix_log_full_status member shall be set to POSIX_TRACE_NOT_FULL.

posix_trace_event_info Structure

The trace event structure posix_trace_event_info contains the information for one recorded
trace event. This structure is returned by the set of functions posix_trace_getnext_event(),
posix_trace_timedgetnext_event(), and posix_trace_trygetnext_event().

The posix_trace_event_info structure defined in <trace.h> shall contain at least the following
members:

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 75

3065

3066

3067

3068

3069

3070

3071

3072

3073

3074

3075

3076

3077

3078

3079

3080

3081

3082

3083

3084

3085

3086

3087

3088

3089

3090

3091

3092

3093

3094

3095

3096

3097

3098

3099

3100

3101

3102

3103

3104

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

Tr acing General Information

Member Type Member Name Description

trace_event_id_t posix_event_id Trace event type identification.
pid_t posix_pid Process ID of the process that generated the

trace event.
void * posix_prog_address Address at which the trace point was invoked.
int posix_truncation_status Status about the truncation of the data

associated with this trace event.
struct timespec posix_timestamp Time at which the trace event was generated.

In addition, the posix_trace_event_info structure defined in <trace.h> shall contain the
following additional member:

Member Type Member Name Description

pthread_t posix_thread_id Thread ID of the thread
that generated the trace
event.

The posix_event_id member represents the identification of the trace event type and its value is
not directly defined by the user. This identification is returned by a call to one of the following
functions: posix_trace_trid_eventid_open(), posix_trace_eventtypelist_getnext_id(), or
posix_trace_eventid_open(). The name of the trace event type can be obtained by calling
posix_trace_eventid_get_name().

The posix_pid is the process identifier of the traced process which generated the trace event. If
the posix_event_id member is one of the implementation-defined system trace events and that
trace event is not associated with any process, the posix_pid member shall be set to zero.

For a user trace event, the posix_prog_address member is the process mapped address of the point
at which the associated call to the posix_trace_event() function was made. For a system trace
event, if the trace event is caused by a system service explicitly called by the application, the
posix_prog_address member shall be the address of the process at the point where the call to that
system service was made.

The posix_truncation_status member defines whether the data associated with a trace event has
been truncated at the time the trace event was generated, or at the time the trace event was read
from the trace stream, or (if the Trace Log option is supported) from the trace log (see the event
argument from the posix_trace_getnext_event() function). The posix_truncation_status member
shall have one of the following values defined by manifest constants in the <trace.h> header:

POSIX_TRACE_NOT_TRUNCATED
All the traced data is available.

POSIX_TRACE_TRUNCATED_RECORD
Data was truncated at the time the trace event was generated.

POSIX_TRACE_TRUNCATED_READ
Data was truncated at the time the trace event was read from a trace stream or a trace log
because the reader ’s buffer was too small. This truncation status overrides the
POSIX_TRACE_TRUNCATED_RECORD status.

The posix_timestamp member shall be the time at which the trace event was generated. The clock
used is implementation-defined, but the resolution of this clock can be retrieved by a call to the
posix_trace_attr_getclockres() function.

The posix_thread_id member is the identifier of the thread that generated the trace event. If the
posix_event_id member is one of the implementation-defined system trace events and that trace
event is not associated with any thread, the posix_thread_id member shall be set to zero.

76 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

3105

3106

3107

3108

3109

3110

3111

3112

3113

3114

3115

3116

3117

3118

3119

3120

3121

3122

3123

3124

3125

3126

3127

3128

3129

3130

3131

3132

3133

3134

3135

3136

3137

3138

3139

3140

3141

3142

3143

3144

3145

3146

3147

3148

3149

3150

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

General Information Tr acing

2.11.1.2 Trace Stream Attributes

Trace streams have attributes that compose the posix_trace_attr_t trace stream attributes object.
This object shall contain at least the following attributes:

• The generation-version attribute identifies the origin and version of the trace system.

• The trace-name attribute is a character string defined by the trace controller, and that
identifies the trace stream.

• The creation-time attribute represents the time of the creation of the trace stream.

• The clock-resolution attribute defines the clock resolution of the clock used to generate
timestamps.

• The stream-min-size attribute defines the minimum size in bytes of the trace stream strictly
reserved for the trace events.

• The stream-full-policy attribute defines the policy followed when the trace stream is full; its
value is POSIX_TRACE_LOOP, POSIX_TRACE_UNTIL_FULL, or POSIX_TRACE_FLUSH.

• The max-data-size attribute defines the maximum record size in bytes of a trace event.

In addition, if the Trace option and the Trace Inherit option are both supported, the
posix_trace_attr_t trace stream creation attributes object shall contain at least the following
attributes:

• The inheritance attribute specifies whether a newly created trace stream will inherit tracing
in its parent’s process trace stream. It is either POSIX_TRACE_INHERITED or
POSIX_TRACE_CLOSE_FOR_CHILD.

In addition, if the Trace option and the Trace Log option are both supported, the
posix_trace_attr_t trace stream creation attributes object shall contain at least the following
attribute:

• If the file type corresponding to the trace log supports the POSIX_TRACE_LOOP or the
POSIX_TRACE_UNTIL_FULL policies, the log-max-size attribute defines the maximum
size in bytes of the trace log associated with an active trace stream. Other stream data—for
example, trace attribute values—shall not be included in this size.

• The log-full-policy attribute defines the policy of a trace log associated with an active trace
stream to be POSIX_TRACE_LOOP, POSIX_TRACE_UNTIL_FULL, or
POSIX_TRACE_APPEND.

2.11.2 Trace Event Type Definitions

2.11.2.1 System Trace Event Type Definitions

The following system trace event types, defined in the <trace.h> header, track the invocation of
the trace operations:

• POSIX_TRACE_START shall be associated with a trace start operation.

• POSIX_TRACE_STOP shall be associated with a trace stop operation.

• If the Trace Event Filter option is supported, POSIX_TRACE_FILTER shall be associated
with a trace event type filter change operation.

The following system trace event types, defined in the <trace.h> header, report operational trace
events:

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 77

3151

3152

3153

3154

3155

3156

3157

3158

3159

3160

3161

3162

3163

3164

3165

3166

3167

3168

3169

3170

3171

3172

3173

3174

3175

3176

3177

3178

3179

3180

3181

3182

3183

3184

3185

3186

3187

3188

3189

3190

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

Tr acing General Information

• POSIX_TRACE_OVERFLOW shall mark the beginning of a trace overflow condition.

• POSIX_TRACE_RESUME shall mark the end of a trace overflow condition.

• If the Trace Log option is supported, POSIX_TRACE_FLUSH_START shall mark the
beginning of a flush operation.

• If the Trace Log option is supported, POSIX_TRACE_FLUSH_STOP shall mark the end of
a flush operation.

• If an implementation-defined trace error condition is reported, it shall be marked
POSIX_TRACE_ERROR.

The interpretation of a trace stream or a trace log by a trace analyzer process relies on the
information recorded for each trace event, and also on system trace events that indicate the
invocation of trace control operations and trace system operational trace events.

The POSIX_TRACE_START and POSIX_TRACE_STOP trace events specify the time windows
during which the trace stream is running.

• The POSIX_TRACE_STOP trace event with an associated data that is equal to zero
indicates a call of the function posix_trace_stop().

• The POSIX_TRACE_STOP trace event with an associated data that is different from zero
indicates an automatic stop of the trace stream (see posix_trace_attr_getstreamfullpolicy()).

The POSIX_TRACE_FILTER trace event indicates that a trace event type filter value changed
while the trace stream was running.

The POSIX_TRACE_ERROR serves to inform the analyzer process that an implementation-
defined internal error of the trace system occurred.

The POSIX_TRACE_OVERFLOW trace event shall be reported with a timestamp equal to the
timestamp of the first trace event overwritten. This is an indication that some generated trace
events have been lost.

The POSIX_TRACE_RESUME trace event shall be reported with a timestamp equal to the
timestamp of the first valid trace event reported after the overflow condition ends and shall be
reported before this first valid trace event. This is an indication that the trace system is reliably
recording trace events after an overflow condition.

Each of these trace event types shall be defined by a constant trace event name and a
trace_event_id_t constant; trace event data is associated with some of these trace events.

If the Trace option is supported and the Trace Event Filter option and the Trace Log option are
not supported, the following predefined system trace events in Table 2-3 shall be defined:

78 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

3191

3192

3193

3194

3195

3196

3197

3198

3199

3200

3201

3202

3203

3204

3205

3206

3207

3208

3209

3210

3211

3212

3213

3214

3215

3216

3217

3218

3219

3220

3221

3222

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

General Information Tr acing

Table 2-3 Trace Option: System Trace Events

Event Name Constant Associated Data

Data Type

posix_trace_error POSIX_TRACE_ERROR error

int

posix_trace_start POSIX_TRACE_START None.

posix_trace_stop POSIX_TRACE_STOP auto

int

posix_trace_overflow POSIX_TRACE_OVERFLOW None.

posix_trace_resume POSIX_TRACE_RESUME None.

If the Trace option and the Trace Event Filter option are both supported, and if the Trace Log
option is not supported, the following predefined system trace events in Table 2-4 shall be
defined:

Table 2-4 Trace and Trace Event Filter Options: System Trace Events

Event Name Constant Associated Data

Data Type

posix_trace_error POSIX_TRACE_ERROR error

int

posix_trace_start POSIX_TRACE_START event_filter

trace_event_set_t

posix_trace_stop POSIX_TRACE_STOP auto

int

posix_trace_filter POSIX_TRACE_FILTER old_event_filter
new_event_filter

trace_event_set_t

posix_trace_overflow POSIX_TRACE_OVERFLOW None.

posix_trace_resume POSIX_TRACE_RESUME None.

If the Trace option and the Trace Log option are both supported, and if the Trace Event Filter
option is not supported, the following predefined system trace events in Table 2-5 shall be
defined:

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 79

3223

3224

3225

3226

3227

3228

3229

3230

3231

3232

3233

3234

3235

3236

3237

3238

3239

3240

3241

3242

3243

3244

3245

3246

3247

3248

3249

3250

3251

3252

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

Tr acing General Information

Table 2-5 Trace and Trace Log Options: System Trace Events

Event Name Constant Associated Data

Data Type

posix_trace_error POSIX_TRACE_ERROR error

int

posix_trace_start POSIX_TRACE_START None.

posix_trace_stop POSIX_TRACE_STOP auto

int

posix_trace_overflow POSIX_TRACE_OVERFLOW None.

posix_trace_resume POSIX_TRACE_RESUME None.

posix_trace_flush_start POSIX_TRACE_FLUSH_START None.

posix_trace_flush_stop POSIX_TRACE_FLUSH_STOP None.

If the Trace option, the Trace Event Filter option, and the Trace Log option are all supported, the
following predefined system trace events in Table 2-6 shall be defined:

Table 2-6 Trace, Trace Log, and Trace Event Filter Options: System Trace Events

Event Name Constant Associated Data

Data Type

posix_trace_error POSIX_TRACE_ERROR error

int

posix_trace_start POSIX_TRACE_START event_filter

trace_event_set_t

posix_trace_stop POSIX_TRACE_STOP auto

int

posix_trace_filter POSIX_TRACE_FILTER old_event_filter
new_event_filter

trace_event_set_t

posix_trace_overflow POSIX_TRACE_OVERFLOW None.

posix_trace_resume POSIX_TRACE_RESUME None.

posix_trace_flush_start POSIX_TRACE_FLUSH_START None.

posix_trace_flush_stop POSIX_TRACE_FLUSH_STOP None.

2.11.2.2 User Trace Event Type Definitions

The user trace event POSIX_TRACE_UNNAMED_USEREVENT is defined in the <trace.h>
header. If the limit of per-process user trace event names represented by
{TRACE_USER_EVENT_MAX} has already been reached, this predefined user event shall be
returned when the application tries to register more events than allowed. The data associated
with this trace event is application-defined.

The following predefined user trace event in Table 2-7 shall be defined:

80 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

3253

3254

3255

3256

3257

3258

3259

3260

3261

3262

3263

3264

3265

3266

3267

3268

3269

3270

3271

3272

3273

3274

3275

3276

3277

3278

3279

3280

3281

3282

3283

3284

3285

3286

3287

3288

3289

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

General Information Tr acing

Table 2-7 Trace Option: User Trace Event

Event Name Constant

posix_trace_unnamed_userevent POSIX_TRACE_UNNAMED_USEREVENT

2.11.3 Trace Functions

The trace interface is built and structured to improve portability through use of trace data of
opaque type. The object-oriented approach for the manipulation of trace attributes and trace
event type identifiers requires definition of many constructor and selector functions which
operate on these opaque types. Also, the trace interface must support several different tracing
roles. To facilitate reading the trace interface, the trace functions are grouped into small
functional sets supporting the three different roles:

• A trace controller process requires functions to set up and customize all the resources
needed to run a trace stream, including:

— Attribute initialization and destruction (posix_trace_attr_init())

— Identification information manipulation (posix_trace_attr_getgenversion())

— Trace system behavior modification (posix_trace_attr_getinherited())

— Trace stream and trace log size set (posix_trace_attr_getmaxusereventsize())

— Trace stream creation, flush, and shutdown (posix_trace_create())

— Trace stream and trace log clear (posix_trace_clear())

— Trace event type identifier manipulation (posix_trace_trid_eventid_open())

— Trace event type identifier list exploration (posix_trace_eventtypelist_getnext_id())

— Trace event type set manipulation (posix_trace_eventset_empty())

— Trace event type filter set (posix_trace_set_filter())

— Trace stream start and stop (posix_trace_start())

— Trace stream information and status read (posix_trace_get_attr())

• A traced process requires functions to instrument trace points:

— Trace event type identifiers definition and trace points insertion (posix_trace_event())

• A trace analyzer process requires functions to retrieve information from a trace stream and
trace log:

— Identification information read (posix_trace_attr_getgenversion())

— Trace system behavior information read (posix_trace_attr_getinherited())

— Trace stream and trace log size get (posix_trace_attr_getmaxusereventsize())

— Trace event type identifier manipulation (posix_trace_trid_eventid_open())

— Trace event type identifier list exploration (posix_trace_eventtypelist_getnext_id())

— Trace log open, rewind, and close (posix_trace_open())

— Trace stream information and status read (posix_trace_get_attr())

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 81

3290

3291

3292

3293

3294

3295

3296

3297

3298

3299

3300

3301

3302

3303

3304

3305

3306

3307

3308

3309

3310

3311

3312

3313

3314

3315

3316

3317

3318

3319

3320

3321

3322

3323

3324

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

Tr acing General Information

— Trace event read (posix_trace_getnext_event())

2.12 Data Types

2.12.1 Defined Types

All of the data types used by various functions are defined by the implementation. The
following table describes some of these types. Other types referenced in the description of a
function, not mentioned here, can be found in the appropriate header for that function.

Defined Type Description

cc_t Type used for terminal special characters.
clock_t Integer or real-floating type used for processor times, as defined in

the ISO C standard.
clockid_t Used for clock ID type in some timer functions.
dev_t Arithmetic type used for device numbers.
DIR Type representing a directory stream.
div_t Structure type returned by the div() function.
FILE Structure containing information about a file.
glob_t Structure type used in pathname pattern matching.
fpos_t Type containing all information needed to specify uniquely every

position within a file.
gid_t Integer type used for group IDs.
iconv_t Type used for conversion descriptors.
id_t Integer type used as a general identifier; can be used to contain

at least the largest of a pid_t, uid_t, or gid_t.
ino_t Unsigned integer type used for file serial numbers.
key_t Arithmetic type used for XSI interprocess communication.
ldiv_t Structure type returned by the ldiv() function.
mode_t Integer type used for file attributes.
mqd_t Used for message queue descriptors.
nfds_t Integer type used for the number of file descriptors.
nlink_t Integer type used for link counts.
off_t Signed integer type used for file sizes.
pid_t Signed integer type used for process and process group IDs.
pthread_attr_t Used to identify a thread attribute object.
pthread_cond_t Used for condition variables.
pthread_condattr_t Used to identify a condition attribute object.
pthread_key_t Used for thread-specific data keys.
pthread_mutex_t Used for mutexes.
pthread_mutexattr_t Used to identify a mutex attribute object.
pthread_once_t Used for dynamic package initialization.
pthread_rwlock_t Used for read-write locks.
pthread_rwlockattr_t Used for read-write lock attributes.
pthread_t Used to identify a thread.
ptrdiff_t Signed integer type of the result of subtracting two pointers.
regex_t Structure type used in regular expression matching.
regmatch_t Structure type used in regular expression matching.
rlim_t Unsigned integer type used for limit values, to which objects of

82 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

3325

3326

3327

3328

3329

3330

3331

3332

3333

3334

3335

3336

3337

3338

3339

3340

3341

3342

3343

3344

3345

3346

3347

3348

3349

3350

3351

3352

3353

3354

3355

3356

3357

3358

3359

3360

3361

3362

3363

3364

3365

3366

3367

3368

3369

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

General Information Data Types

Defined Type Description

type int and off_t can be cast without loss of value.
sem_t Type used in performing semaphore operations.
sig_atomic_t Integer type of an object that can be accessed as an atomic

entity, even in the presence of asynchronous interrupts.
sigset_t Integer or structure type of an object used to represent sets

of signals.
size_t Unsigned integer type used for size of objects.
speed_t Type used for terminal baud rates.
ssize_t Signed integer type used for a count of bytes or an error

indication.
suseconds_t Signed integer type used for time in microseconds.
tcflag_t Type used for terminal modes.
time_t Integer or real-floating type used for time in seconds, as defined in

the ISO C standard.
timer_t Used for timer ID returned by the timer_create() function.
uid_t Integer type used for user IDs.
va_list Type used for traversing variable argument lists.
wchar_t Integer type whose range of values can represent distinct codes for

all members of the largest extended character set specified by the
supported locales.

wctype_t Scalar type which represents a character class descriptor.
wint_t Integer type capable of storing any valid value of wchar_t or

WEOF.
wordexp_t Structure type used in word expansion.

2.12.2 The char Type

The type char is defined as a single byte; see the Base Definitions volume of
IEEE Std 1003.1-200x, Chapter 3, Definitions (Byte and Character).

2.12.3 Pointer Types

Conforming implementations shall support conversion of pointers of any type to void * and
back without loss of information.

Note: The ISO C standard does not require this, but it is required for POSIX conformance.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 83

3370

3371

3372

3373

3374

3375

3376

3377

3378

3379

3380

3381

3382

3383

3384

3385

3386

3387

3388

3389

3390

3391

3392

3393

3394

3395

3396

3397

3398

3399

3400

3401

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

General Information

84 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

Chapter 3

System Interfaces

This chapter describes the functions, macros, and external variables to support applications
portability at the C-language source level.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 85

3402

3403

3404

3405

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

FD_CLR() System Interfaces

NAME
FD_CLR — macros for synchronous I/O multiplexing

SYNOPSIS
#include <sys/time.h>

FD_CLR(int fd, f d_set * fdset);
FD_ISSET(int fd, f d_set * fdset);
FD_SET(int fd, f d_set * fdset);
FD_ZERO(fd_set * fdset);

DESCRIPTION
Refer to pselect().

86 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

3406

3407

3408

3409

3410

3411

3412

3413

3414

3415

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces _Exit()

NAME
_Exit, _exit — terminate a process

SYNOPSIS
#include <stdlib.h>

void _Exit(int status);

#include <unistd.h>

void _exit(int status);

DESCRIPTION
CX For _Exit(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of IEEE Std 1003.1-200x defers to the ISO C standard.

CX The value of status may be 0, EXIT_SUCCESS, EXIT_FAILURE, or any other value, though only
the least significant 8 bits (that is, status & 0377) shall be available to a waiting parent process.

CX The _Exit() and _exit() functions shall be functionally equivalent.

CX The _Exit() and _exit() functions shall not call functions registered with atexit() nor any
CX registered signal handlers. Open streams shall not be flushed. Whether open streams are

closed (without flushing) is implementation-defined. Finally, the calling process is terminated
with the consequences described below.

Consequences of Process Termination

CX These functions shall terminate the calling process with the following consequences:

Note: These consequences are all extensions to the ISO C standard and are not further CX shaded.
However, functionality relating to the XSI option is shaded.

• All of the file descriptors, directory streams, conversion descriptors, and message catalog
descriptors open in the calling process shall be closed.

XSI • If the parent process of the calling process is executing a wait() or waitpid(), and has
neither set its SA_NOCLDWAIT flag nor set SIGCHLD to SIG_IGN, it shall be notified of
termination of the calling process and the low-order eight bits (that is, bits 0377) of status
shall be made available to it. If the parent is not waiting, the child’s status shall be made
available to it when the parent subsequently executes wait() or waitpid().

The semantics of the waitid() function shall be equivalent to wait().

XSI • If the parent process of the calling process is not executing a wait() or waitpid(), and has
neither set its SA_NOCLDWAIT flag nor set SIGCHLD to SIG_IGN, the calling process
shall be transformed into a zombie process. A zombie process is an inactive process and it
shall be deleted at some later time when its parent process executes wait() or waitpid().

XSI The semantics of the waitid() function shall be equivalent to wait().

• Termination of a process does not directly terminate its children. The sending of a SIGHUP
signal as described below indirectly terminates children in some circumstances.

• Either:

If the implementation supports the SIGCHLD signal, a SIGCHLD shall be sent to the
parent process.

Or:

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 87

3416

3417

3418

3419

3420

3421

3422

3423

3424

3425

3426

3427

3428

3429

3430

3431

3432

3433

3434

3435

3436

3437

3438

3439

3440

3441

3442

3443

3444

3445

3446

3447

3448

3449

3450

3451

3452

3453

3454

3455

3456

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

_Exit() System Interfaces

XSI If the parent process has set its SA_NOCLDWAIT flag, or set SIGCHLD to SIG_IGN, the
status shall be discarded, and the lifetime of the calling process shall end immediately. If
SA_NOCLDWAIT is set, it is implementation-defined whether a SIGCHLD signal is sent to
the parent process.

• The parent process ID of all of the existing child processes and zombie processes of the
calling process shall be set to the process ID of an implementation-defined system process.
That is, these processes shall be inherited by a special system process.

XSI • Each attached shared-memory segment is detached and the value of shm_nattch (see
shmget()) in the data structure associated with its shared memory ID shall be decremented
by 1.

XSI • For each semaphore for which the calling process has set a semadj value (see semop()), that
value shall be added to the semval of the specified semaphore.

• If the process is a controlling process, the SIGHUP signal shall be sent to each process in
the foreground process group of the controlling terminal belonging to the calling process.

• If the process is a controlling process, the controlling terminal associated with the session
shall be disassociated from the session, allowing it to be acquired by a new controlling
process.

• If the exit of the process causes a process group to become orphaned, and if any member of
the newly-orphaned process group is stopped, then a SIGHUP signal followed by a
SIGCONT signal shall be sent to each process in the newly-orphaned process group.

• All open named semaphores in the calling process shall be closed as if by appropriate calls
to sem_close().

ML • Any memory locks established by the process via calls to mlockall() or mlock() shall be
removed. If locked pages in the address space of the calling process are also mapped into
the address spaces of other processes and are locked by those processes, the locks
established by the other processes shall be unaffected by the call by this process to _Exit()
or _exit().

• Memory mappings that were created in the process shall be unmapped before the process
is destroyed.

TYM • Any blocks of typed memory that were mapped in the calling process shall be unmapped,
as if munmap() was implicitly called to unmap them.

MSG • All open message queue descriptors in the calling process shall be closed as if by
appropriate calls to mq_close().

• Any outstanding cancelable asynchronous I/O operations may be canceled. Those
asynchronous I/O operations that are not canceled shall complete as if the _Exit() or
_exit() operation had not yet occurred, but any associated signal notifications shall be
suppressed. The _Exit() or _exit() operation may block awaiting such I/O completion.
Whether any I/O is canceled, and which I/O may be canceled upon _Exit() or _exit(), is
implementation-defined.

• Threads terminated by a call to _Exit() or _exit() shall not invoke their cancellation
cleanup handlers or per-thread data destructors.

OB TRC • If the calling process is a trace controller process, any trace streams that were created by
the calling process shall be shut down as described by the posix_trace_shutdown() function,
and mapping of trace event names to trace event type identifiers of any process built for
these trace streams may be deallocated.

88 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

3457

3458

3459

3460

3461

3462

3463

3464

3465

3466

3467

3468

3469

3470

3471

3472

3473

3474

3475

3476

3477

3478

3479

3480

3481

3482

3483

3484

3485

3486

3487

3488

3489

3490

3491

3492

3493

3494

3495

3496

3497

3498

3499

3500

3501

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces _Exit()

RETURN VALUE
These functions do not return.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
Normally applications should use exit() rather than _Exit() or _exit().

RATIONALE

Process Termination

Early proposals drew a distinction between normal and abnormal process termination.
Abnormal termination was caused only by certain signals and resulted in implementation-
defined ‘‘actions’’, as discussed below. Subsequent proposals distinguished three types of
termination: normal termination (as in the current specification), simple abnormal termination, and
abnormal termination with actions. Again the distinction between the two types of abnormal
termination was that they were caused by different signals and that implementation-defined
actions would result in the latter case. Given that these actions were completely implementation-
defined, the early proposals were only saying when the actions could occur and how their
occurrence could be detected, but not what they were. This was of little or no use to conforming
applications, and thus the distinction is not made in this volume of IEEE Std 1003.1-200x.

The implementation-defined actions usually include, in most historical implementations, the
creation of a file named core in the current working directory of the process. This file contains an
image of the memory of the process, together with descriptive information about the process,
perhaps sufficient to reconstruct the state of the process at the receipt of the signal.

There is a potential security problem in creating a core file if the process was set-user-ID and the
current user is not the owner of the program, if the process was set-group-ID and none of the
user ’s groups match the group of the program, or if the user does not have permission to write
in the current directory. In this situation, an implementation either should not create a core file
or should make it unreadable by the user.

Despite the silence of this volume of IEEE Std 1003.1-200x on this feature, applications are
advised not to create files named core because of potential conflicts in many implementations.
Some implementations use a name other than core for the file; for example, by appending the
process ID to the filename.

Terminating a Process

It is important that the consequences of process termination as described occur regardless of
whether the process called _exit() (perhaps indirectly through exit()) or instead was terminated
due to a signal or for some other reason. Note that in the specific case of exit() this means that
the status argument to exit() is treated in the same way as the status argument to _exit().

A language other than C may have other termination primitives than the C-language exit()
function, and programs written in such a language should use its native termination primitives,
but those should have as part of their function the behavior of _exit() as described.
Implementations in languages other than C are outside the scope of this version of this volume
of IEEE Std 1003.1-200x, however.

As required by the ISO C standard, using return from main() has the same behavior (other than
with respect to language scope issues) as calling exit() with the returned value. Reaching the end
of the main() function has the same behavior as calling exit(0).

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 89

3502

3503

3504

3505

3506

3507

3508

3509

3510

3511

3512

3513

3514

3515

3516

3517

3518

3519

3520

3521

3522

3523

3524

3525

3526

3527

3528

3529

3530

3531

3532

3533

3534

3535

3536

3537

3538

3539

3540

3541

3542

3543

3544

3545

3546

3547

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

_Exit() System Interfaces

A value of zero (or EXIT_SUCCESS, which is required to be zero) for the argument status
conventionally indicates successful termination. This corresponds to the specification for exit()
in the ISO C standard. The convention is followed by utilities such as make and various shells,
which interpret a zero status from a child process as success. For this reason, applications should
not call exit(0) or _exit(0) when they terminate unsuccessfully; for example, in signal-catching
functions.

Historically, the implementation-defined process that inherits children whose parents have
terminated without waiting on them is called init and has a process ID of 1.

The sending of a SIGHUP to the foreground process group when a controlling process
terminates corresponds to somewhat different historical implementations. In System V, the
kernel sends a SIGHUP on termination of (essentially) a controlling process. In 4.2 BSD, the
kernel does not send SIGHUP in a case like this, but the termination of a controlling process is
usually noticed by a system daemon, which arranges to send a SIGHUP to the foreground
process group with the vhangup() function. However, in 4.2 BSD, due to the behavior of the
shells that support job control, the controlling process is usually a shell with no other processes
in its process group. Thus, a change to make _exit() behave this way in such systems should not
cause problems with existing applications.

The termination of a process may cause a process group to become orphaned in either of two
ways. The connection of a process group to its parent(s) outside of the group depends on both
the parents and their children. Thus, a process group may be orphaned by the termination of the
last connecting parent process outside of the group or by the termination of the last direct
descendant of the parent process(es). In either case, if the termination of a process causes a
process group to become orphaned, processes within the group are disconnected from their job
control shell, which no longer has any information on the existence of the process group.
Stopped processes within the group would languish forever. In order to avoid this problem,
newly orphaned process groups that contain stopped processes are sent a SIGHUP signal and a
SIGCONT signal to indicate that they have been disconnected from their session. The SIGHUP
signal causes the process group members to terminate unless they are catching or ignoring
SIGHUP. Under most circumstances, all of the members of the process group are stopped if any
of them are stopped.

The action of sending a SIGHUP and a SIGCONT signal to members of a newly orphaned
process group is similar to the action of 4.2 BSD, which sends SIGHUP and SIGCONT to each
stopped child of an exiting process. If such children exit in response to the SIGHUP, any
additional descendants receive similar treatment at that time. In this volume of
IEEE Std 1003.1-200x, the signals are sent to the entire process group at the same time. Also, in
this volume of IEEE Std 1003.1-200x, but not in 4.2 BSD, stopped processes may be orphaned,
but may be members of a process group that is not orphaned; therefore, the action taken at
_exit() must consider processes other than child processes.

It is possible for a process group to be orphaned by a call to setpgid() or setsid(), as well as by
process termination. This volume of IEEE Std 1003.1-200x does not require sending SIGHUP and
SIGCONT in those cases, because, unlike process termination, those cases are not caused
accidentally by applications that are unaware of job control. An implementation can choose to
send SIGHUP and SIGCONT in those cases as an extension; such an extension must be
documented as required in <signal.h>.

The ISO/IEC 9899: 1999 standard adds the _Exit() function that results in immediate program
termination without triggering signals or atexit()-registered functions. In IEEE Std 1003.1-200x,
this is equivalent to the _exit() function.

90 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

3548

3549

3550

3551

3552

3553

3554

3555

3556

3557

3558

3559

3560

3561

3562

3563

3564

3565

3566

3567

3568

3569

3570

3571

3572

3573

3574

3575

3576

3577

3578

3579

3580

3581

3582

3583

3584

3585

3586

3587

3588

3589

3590

3591

3592

3593

3594

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces _Exit()

FUTURE DIRECTIONS
None.

SEE ALSO
atexit(), exit(), mlock(), mlockall(), mq_close(), munmap(), posix_trace_shutdown(), sem_close(),
semop(), setpgid(), setsid(), shmget(), wait(), the Base Definitions volume of IEEE Std 1003.1-200x,
<stdlib.h>, <unistd.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The DESCRIPTION is updated for alignment with the POSIX Realtime Extension and the POSIX
Threads Extension.

Interactions with the SA_NOCLDWAIT flag and SIGCHLD signal are further clarified.

The values of status from exit() are better described.

Issue 6
Extensions beyond the ISO C standard are marked.

The DESCRIPTION is updated for alignment with IEEE Std 1003.1j-2000 by adding semantics
for typed memory.

The following changes are made for alignment with the ISO/IEC 9899: 1999 standard:

• The _Exit() function is included.

• The DESCRIPTION is updated.

The description of tracing semantics is added for alignment with IEEE Std 1003.1q-2000.

References to the wait3() function are removed.

IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/16 is applied, correcting grammar in the
DESCRIPTION.

Issue 7
Austin Group Interpretation 1003.1-2001 #031 is applied, separating these functions from the
exit() function.

Austin Group Interpretation 1003.1-2001 #085 is applied, clarifying the text regarding flushing of
streams and closing of temporary files.

Functionality relating to the Asynchronous Input and Output, Memory Mapped Files, and
Semaphores options is moved to the Base.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 91

3595

3596

3597

3598

3599

3600

3601

3602

3603

3604

3605

3606

3607

3608

3609

3610

3611

3612

3613

3614

3615

3616

3617

3618

3619

3620

3621

3622

3623

3624

3625

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

_longjmp() System Interfaces

NAME
_longjmp, _setjmp — non-local goto

SYNOPSIS
OB XSI #include <setjmp.h>

void _longjmp(jmp_buf env, i nt val);
int _setjmp(jmp_buf env);

DESCRIPTION
The _longjmp() and _setjmp() functions shall be equivalent to longjmp() and setjmp(),
respectively, with the additional restriction that _longjmp() and _setjmp() shall not manipulate
the signal mask.

If _longjmp() is called even though env was never initialized by a call to _setjmp(), or when the
last such call was in a function that has since returned, the results are undefined.

RETURN VALUE
Refer to longjmp() and setjmp().

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
If _longjmp() is executed and the environment in which _setjmp() was executed no longer exists,
errors can occur. The conditions under which the environment of the _setjmp() no longer exists
include exiting the function that contains the _setjmp() call, and exiting an inner block with
temporary storage. This condition might not be detectable, in which case the _longjmp() occurs
and, if the environment no longer exists, the contents of the temporary storage of an inner block
are unpredictable. This condition might also cause unexpected process termination. If the
function has returned, the results are undefined.

Passing longjmp() a pointer to a buffer not created by setjmp(), passing _longjmp() a pointer to a
buffer not created by _setjmp(), passing siglongjmp() a pointer to a buffer not created by
sigsetjmp(), or passing any of these three functions a buffer that has been modified by the user
can cause all the problems listed above, and more.

The _longjmp() and _setjmp() functions are included to support programs written to historical
system interfaces. New applications should use siglongjmp() and sigsetjmp() respectively.

RATIONALE
None.

FUTURE DIRECTIONS
The _longjmp() and _setjmp() functions may be removed in a future version.

SEE ALSO
longjmp(), setjmp(), siglongjmp(), sigsetjmp(), the Base Definitions volume of
IEEE Std 1003.1-200x, <setjmp.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

92 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

3626

3627

3628

3629

3630

3631

3632

3633

3634

3635

3636

3637

3638

3639

3640

3641

3642

3643

3644

3645

3646

3647

3648

3649

3650

3651

3652

3653

3654

3655

3656

3657

3658

3659

3660

3661

3662

3663

3664

3665

3666

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces _longjmp()

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Issue 7
The _longjmp() and _setjmp() functions are marked obsolescent.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 93

3667

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

_tolower() System Interfaces

NAME
_tolower — transliterate uppercase characters to lowercase

SYNOPSIS
OB XSI #include <ctype.h>

int _tolower(int c);

DESCRIPTION
The _tolower() macro shall be equivalent to tolower(c) except that the application shall ensure
that the argument c is an uppercase letter.

RETURN VALUE
Upon successful completion, _tolower() shall return the lowercase letter corresponding to the
argument passed.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
Applications should use the tolower() function instead of the obsolescent _tolower() function.

RATIONALE
None.

FUTURE DIRECTIONS
The _tolower() function may be removed in a future version.

SEE ALSO
tolower(), isupper(), the Base Definitions volume of IEEE Std 1003.1-200x, Chapter 7, Locale,
<ctype.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

Issue 7
The _tolower() function is marked obsolescent.

94 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

3671

3672

3673

3674

3675

3676

3677

3678

3679

3680

3681

3682

3683

3684

3685

3686

3687

3688

3689

3690

3691

3692

3693

3694

3695

3696

3697

3698

3699

3700

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces _toupper()

NAME
_toupper — transliterate lowercase characters to uppercase

SYNOPSIS
OB XSI #include <ctype.h>

int _toupper(int c);

DESCRIPTION
The _toupper() macro shall be equivalent to toupper() except that the application shall ensure
that the argument c is a lowercase letter.

RETURN VALUE
Upon successful completion, _toupper() shall return the uppercase letter corresponding to the
argument passed.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
Applications should use the toupper() function instead of the obsolescent _toupper() function.

RATIONALE
None.

FUTURE DIRECTIONS
The _toupper() function may be removed in a future version.

SEE ALSO
islower(), toupper(), the Base Definitions volume of IEEE Std 1003.1-200x, Chapter 7, Locale,
<ctype.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

Issue 7
The _toupper() function is marked obsolescent.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 95

3701

3702

3703

3704

3705

3706

3707

3708

3709

3710

3711

3712

3713

3714

3715

3716

3717

3718

3719

3720

3721

3722

3723

3724

3725

3726

3727

3728

3729

3730

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

a64l() System Interfaces

NAME
a64l, l64a — convert between a 32-bit integer and a radix-64 ASCII string

SYNOPSIS
XSI #include <stdlib.h>

long a64l(const char * s);
char *l64a(long value);

DESCRIPTION
These functions maintain numbers stored in radix-64 ASCII characters. This is a notation by
which 32-bit integers can be represented by up to six characters; each character represents a digit
in radix-64 notation. If the type long contains more than 32 bits, only the low-order 32 bits shall
be used for these operations.

The characters used to represent digits are ’.’ (dot) for 0, ’/’ for 1, ’0’ through ’9’ for [2,11],
’A’ through ’Z’ for [12,37], and ’a’ through ’z’ for [38,63].

The a64l() function shall take a pointer to a radix-64 representation, in which the first digit is the
least significant, and return the corresponding long value. If the string pointed to by s contains
more than six characters, a64l() shall use the first six. If the first six characters of the string
contain a null terminator, a64l() shall use only characters preceding the null terminator. The
a64l() function shall scan the character string from left to right with the least significant digit on
the left, decoding each character as a 6-bit radix-64 number. If the type long contains more than
32 bits, the resulting value is sign-extended. The behavior of a64l() is unspecified if s is a null
pointer or the string pointed to by s was not generated by a previous call to l64a().

The l64a() function shall take a long argument and return a pointer to the corresponding
radix-64 representation. The behavior of l64a() is unspecified if value is negative.

The value returned by l64a() may be a pointer into a static buffer. Subsequent calls to l64a() may
overwrite the buffer.

The l64a() function need not be thread-safe. A function that is not required to be thread-safe is
not required to be reentrant.

RETURN VALUE
Upon successful completion, a64l() shall return the long value resulting from conversion of the
input string. If a string pointed to by s is an empty string, a64l() shall return 0L.

The l64a() function shall return a pointer to the radix-64 representation. If value is 0L, l64a() shall
return a pointer to an empty string.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
If the type long contains more than 32 bits, the result of a64l(l64a(x)) is x in the low-order 32 bits.

RATIONALE
This is not the same encoding as used by either encoding variant of the uuencode utility.

96 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

3731

3732

3733

3734

3735

3736

3737

3738

3739

3740

3741

3742

3743

3744

3745

3746

3747

3748

3749

3750

3751

3752

3753

3754

3755

3756

3757

3758

3759

3760

3761

3762

3763

3764

3765

3766

3767

3768

3769

3770

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces a64l()

FUTURE DIRECTIONS
None.

SEE ALSO
strtoul(), the Base Definitions volume of IEEE Std 1003.1-200x, <stdlib.h>, the Shell and Utilities
volume of IEEE Std 1003.1-200x, uuencode

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Normative text previously in the APPLICATION USAGE section is moved to the
DESCRIPTION.

A note indicating that the l64a() function need not be reentrant is added to the DESCRIPTION.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 97

3771

3772

3773

3774

3775

3776

3777

3778

3779

3780

3781

3782

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

abort() System Interfaces

NAME
abort — generate an abnormal process abort

SYNOPSIS
#include <stdlib.h>

void abort(void);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

The abort() function shall cause abnormal process termination to occur, unless the signal
SIGABRT is being caught and the signal handler does not return.

CX The abnormal termination processing shall include the default actions defined for SIGABRT and
may include an attempt to effect fclose() on all open streams.

The SIGABRT signal shall be sent to the calling process as if by means of raise() with the
argument SIGABRT.

CX The status made available to wait() or waitpid() by abort() shall be that of a process terminated
by the SIGABRT signal. The abort() function shall override blocking or ignoring the SIGABRT
signal.

RETURN VALUE
The abort() function shall not return.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
Catching the signal is intended to provide the application writer with a portable means to abort
processing, free from possible interference from any implementation-supplied functions.

RATIONALE
The ISO/IEC 9899: 1999 standard requires the abort() function to be async-signal-safe. Since
IEEE Std 1003.1-200x defers to the ISO C standard, this required a change to the DESCRIPTION
from ‘‘shall include the effect of fclose()’’ to ‘‘may include an attempt to effect fclose().’’

The revised wording permits some backwards-compatibility and avoids a potential deadlock
situation.

The Open Group Base Resolution bwg2002-003 is applied, removing the following XSI shaded
paragraph from the DESCRIPTION:

‘‘On XSI-conformant systems, in addition the abnormal termination processing shall include the
effect of fclose() on message catalog descriptors.’’

There were several reasons to remove this paragraph:

• No special processing of open message catalogs needs to be performed prior to abnormal
process termination.

• The main reason to specifically mention that abort() includes the effect of fclose() on open
streams is to flush output queued on the stream. Message catalogs in this context are read-
only and, therefore, do not need to be flushed.

98 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

3783

3784

3785

3786

3787

3788

3789

3790

3791

3792

3793

3794

3795

3796

3797

3798

3799

3800

3801

3802

3803

3804

3805

3806

3807

3808

3809

3810

3811

3812

3813

3814

3815

3816

3817

3818

3819

3820

3821

3822

3823

3824

3825

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces abort()

• The effect of fclose() on a message catalog descriptor is unspecified. Message catalog
descriptors are allowed, but not required to be implemented using a file descriptor, but
there is no mention in IEEE Std 1003.1-200x of a message catalog descriptor using a
standard I/O stream FILE object as would be expected by fclose().

FUTURE DIRECTIONS
None.

SEE ALSO
exit(), kill(), raise(), signal(), wait(), waitpid(), the Base Definitions volume of
IEEE Std 1003.1-200x, <stdlib.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
Extensions beyond the ISO C standard are marked.

Changes are made to the DESCRIPTION for alignment with the ISO/IEC 9899: 1999 standard.

The Open Group Base Resolution bwg2002-003 is applied.

IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/10 is applied, changing the
DESCRIPTION of abnormal termination processing and adding to the RATIONALE section.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/9 is applied, changing ‘‘implementation-
defined functions’’ to ‘‘implementation-supplied functions’’ in the APPLICATION USAGE
section.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 99

3826

3827

3828

3829

3830

3831

3832

3833

3834

3835

3836

3837

3838

3839

3840

3841

3842

3843

3844

3845

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

abs() System Interfaces

NAME
abs — return an integer absolute value

SYNOPSIS
#include <stdlib.h>

int abs(int i);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

The abs() function shall compute the absolute value of its integer operand, i. If the result cannot
be represented, the behavior is undefined.

RETURN VALUE
The abs() function shall return the absolute value of its integer operand.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
In two’s-complement representation, the absolute value of the negative integer with largest
magnitude {INT_MIN} might not be representable.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fabs(), labs(), the Base Definitions volume of IEEE Std 1003.1-200x, <stdlib.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
Extensions beyond the ISO C standard are marked.

100 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

3846

3847

3848

3849

3850

3851

3852

3853

3854

3855

3856

3857

3858

3859

3860

3861

3862

3863

3864

3865

3866

3867

3868

3869

3870

3871

3872

3873

3874

3875

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces accept()

NAME
accept — accept a new connection on a socket

SYNOPSIS
#include <sys/socket.h>

int accept(int socket, s truct sockaddr *restrict address,
socklen_t *restrict address_len);

DESCRIPTION
The accept() function shall extract the first connection on the queue of pending connections,
create a new socket with the same socket type protocol and address family as the specified
socket, and allocate a new file descriptor for that socket.

The accept() function takes the following arguments:

socket Specifies a socket that was created with socket(), has been bound to an address
with bind(), and has issued a successful call to listen().

address Either a null pointer, or a pointer to a sockaddr structure where the address of
the connecting socket shall be returned.

address_len Points to a socklen_t structure which on input specifies the length of the
supplied sockaddr structure, and on output specifies the length of the stored
address.

If address is not a null pointer, the address of the peer for the accepted connection shall be stored
in the sockaddr structure pointed to by address, and the length of this address shall be stored in
the object pointed to by address_len.

If the actual length of the address is greater than the length of the supplied sockaddr structure,
the stored address shall be truncated.

If the protocol permits connections by unbound clients, and the peer is not bound, then the
value stored in the object pointed to by address is unspecified.

If the listen queue is empty of connection requests and O_NONBLOCK is not set on the file
descriptor for the socket, accept() shall block until a connection is present. If the listen() queue is
empty of connection requests and O_NONBLOCK is set on the file descriptor for the socket,
accept() shall fail and set errno to [EAGAIN] or [EWOULDBLOCK].

The accepted socket cannot itself accept more connections. The original socket remains open and
can accept more connections.

RETURN VALUE
Upon successful completion, accept() shall return the non-negative file descriptor of the accepted
socket. Otherwise, −1 shall be returned and errno set to indicate the error.

ERRORS
The accept() function shall fail if:

[EAGAIN] or [EWOULDBLOCK]
O_NONBLOCK is set for the socket file descriptor and no connections are
present to be accepted.

[EBADF] The socket argument is not a valid file descriptor.

[ECONNABORTED]
A connection has been aborted.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 101

3876

3877

3878

3879

3880

3881

3882

3883

3884

3885

3886

3887

3888

3889

3890

3891

3892

3893

3894

3895

3896

3897

3898

3899

3900

3901

3902

3903

3904

3905

3906

3907

3908

3909

3910

3911

3912

3913

3914

3915

3916

3917

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

accept() System Interfaces

[EINTR] The accept() function was interrupted by a signal that was caught before a
valid connection arrived.

[EINVAL] The socket is not accepting connections.

[EMFILE] All file descriptors available to the process are currently open.

[ENFILE] The maximum number of file descriptors in the system are already open.

[ENOBUFS] No buffer space is available.

[ENOMEM] There was insufficient memory available to complete the operation.

[ENOTSOCK] The socket argument does not refer to a socket.

[EOPNOTSUPP] The socket type of the specified socket does not support accepting
connections.

The accept() function may fail if:

OB XSR [EPROTO] A protocol error has occurred; for example, the STREAMS protocol stack has
not been initialized.

EXAMPLES
None.

APPLICATION USAGE
When a connection is available, select() indicates that the file descriptor for the socket is ready
for reading.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
bind(), connect(), listen(), socket(), the Base Definitions volume of IEEE Std 1003.1-200x,
<sys/socket.h>

CHANGE HISTORY
First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

The restrict keyword is added to the accept() prototype for alignment with the
ISO/IEC 9899: 1999 standard.

Issue 7
SD5-XBD-ERN-4 is applied, changing the definition of the [EMFILE] error.

Austin Group Interpretation 1003.1-2001 #044 is applied, changing the ‘‘may fail’’ [ENOBUFS]
and [ENOMEM] errors to become ‘‘shall fail’’ errors.

Functionality relating to XSI STREAMS is marked obsolescent.

102 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

3918

3919

3920

3921

3922

3923

3924

3925

3926

3927

3928

3929

3930

3931

3932

3933

3934

3935

3936

3937

3938

3939

3940

3941

3942

3943

3944

3945

3946

3947

3948

3949

3950

3951

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces access()

NAME
access, faccessat — determine accessibility of a file relative to directory file descriptor

SYNOPSIS
#include <unistd.h>

int access(const char * path, i nt amode);
int faccessat(int fd, c onst char * path, i nt amode, i nt flag);

DESCRIPTION
The access() function shall check the file named by the pathname pointed to by the path
argument for accessibility according to the bit pattern contained in amode, using the real user ID
in place of the effective user ID and the real group ID in place of the effective group ID.

The value of amode is either the bitwise-inclusive OR of the access permissions to be checked
(R_OK, W_OK, X_OK) or the existence test (F_OK).

If any access permissions are checked, each shall be checked individually, as described in the
Base Definitions volume of IEEE Std 1003.1-200x, Section 4.4, File Access Permissions, except
that where that description refers to execute permission for a process with appropriate
privileges, an implementation may indicate success for X_OK even if execute permission is not
granted to any user.

The faccessat() function shall be equivalent to the access() function, except in the case where path
specifies a relative path. In this case the file whose accessibility is to be determined shall be
located relative to the directory associated with the file descriptor fd instead of the current
working directory. It is unspecified whether directory searches are permitted based on whether
the file was opened with search permission or on the current permissions of the directory
underlying the file descriptor.

If faccessat() is passed the special value AT_FDCWD in the fd parameter, the current working
directory is used and the behavior shall be identical to a call to access().

Values for flag are constructed by a bitwise-inclusive OR of flags from the following list, defined
in <fcntl.h>:

AT_EACCESS The checks for accessibility are performed using the effective user and group
IDs instead of the real user and group ID as required in a call to access().

RETURN VALUE
Upon successful completion, these functions shall return 0. Otherwise, these functions shall
return −1 and set errno to indicate the error.

ERRORS
These functions shall fail if:

[EACCES] Permission bits of the file mode do not permit the requested access, or search
permission is denied on a component of the path prefix.

[ELOOP] A loop exists in symbolic links encountered during resolution of the path
argument.

[ENAMETOOLONG]
The length of the path argument exceeds {PATH_MAX} or a pathname
component is longer than {NAME_MAX}.

[ENOENT] A component of path does not name an existing file or path is an empty string.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 103

3952

3953

3954

3955

3956

3957

3958

3959

3960

3961

3962

3963

3964

3965

3966

3967

3968

3969

3970

3971

3972

3973

3974

3975

3976

3977

3978

3979

3980

3981

3982

3983

3984

3985

3986

3987

3988

3989

3990

3991

3992

3993

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

access() System Interfaces

[ENOTDIR] A component of the path prefix is not a directory.

[EROFS] Write access is requested for a file on a read-only file system.

The faccessat() function shall fail if:

[EBADF] The path argument does not specify an absolute path and the fd argument is
neither AT_FDCWD nor a valid file descriptor.

These functions may fail if:

[EINVAL] The value of the amode argument is invalid.

[ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during
resolution of the path argument.

[ENAMETOOLONG]
As a result of encountering a symbolic link in resolution of the path argument,
the length of the substituted pathname string exceeded {PATH_MAX}.

[ETXTBSY] Write access is requested for a pure procedure (shared text) file that is being
executed.

The faccessat() function may fail if:

[EINVAL] The value of the flag argument is not valid.

[ENOTDIR] The path argument is not an absolute path and fd is neither AT_FDCWD nor a
file descriptor associated with a directory.

EXAMPLES

Testing for the Existence of a File

The following example tests whether a file named myfile exists in the /tmp directory.

#include <unistd.h>
...
int result;
const char *filename = "/tmp/myfile";

result = access (filename, F_OK);

APPLICATION USAGE
Additional values of amode other than the set defined in the description may be valid; for
example, if a system has extended access controls.

The use of the AT_EACCESS value for flag enables functionality not available in access().

RATIONALE
In early proposals, some inadequacies in the access() function led to the creation of an eaccess()
function because:

1. Historical implementations of access() do not test file access correctly when the process’
real user ID is superuser. In particular, they always return zero when testing execute
permissions without regard to whether the file is executable.

2. The superuser has complete access to all files on a system. As a consequence, programs
started by the superuser and switched to the effective user ID with lesser privileges
cannot use access() to test their file access permissions.

However, the historical model of eaccess() does not resolve problem (1), so this volume of
IEEE Std 1003.1-200x now allows access() to behave in the desired way because several
implementations have corrected the problem. It was also argued that problem (2) is more easily
solved by using open(), chdir(), or one of the exec functions as appropriate and responding to the

104 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

3994

3995

3996

3997

3998

3999

4000

4001

4002

4003

4004

4005

4006

4007

4008

4009

4010

4011

4012

4013

4014

4015

4016

4017

4018

4019

4020

4021

4022

4023

4024

4025

4026

4027

4028

4029

4030

4031

4032

4033

4034

4035

4036

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces access()

error, rather than creating a new function that would not be as reliable. Therefore, eaccess() is not
included in this volume of IEEE Std 1003.1-200x.

The sentence concerning appropriate privileges and execute permission bits reflects the two
possibilities implemented by historical implementations when checking superuser access for
X_OK.

New implementations are discouraged from returning X_OK unless at least one execution
permission bit is set.

The purpose of the faccessat() function is to enable the checking of the accessibility of files in
directories other than the current working directory without exposure to race conditions. Any
part of the path of a file could be changed in parallel to a call to access(), resulting in unspecified
behavior. By opening a file descriptor for the target directory and using the faccessat() function it
can be guaranteed that the file tested for accessibility is located relative to the desired directory.

FUTURE DIRECTIONS
None.

SEE ALSO
chmod(), fstatat(), the Base Definitions volume of IEEE Std 1003.1-200x, <fcntl.h>, <unistd.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The [ELOOP] mandatory error condition is added.

• A second [ENAMETOOLONG] is added as an optional error condition.

• The [ETXTBSY] optional error condition is added.

The following changes were made to align with the IEEE P1003.1a draft standard:

• The [ELOOP] optional error condition is added.

Issue 7
Austin Group Interpretation 1003.1-2001 #046 is applied.

The faccessat() function is added from The Open Group Technical Standard, 2006, Extended API
Set Part 2.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 105

4037

4038

4039

4040

4041

4042

4043

4044

4045

4046

4047

4048

4049

4050

4051

4052

4053

4054

4055

4056

4057

4058

4059

4060

4061

4062

4063

4064

4065

4066

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

acos() System Interfaces

NAME
acos, acosf, acosl — arc cosine functions

SYNOPSIS
#include <math.h>

double acos(double x);
float acosf(float x);
long double acosl(long double x);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

These functions shall compute the principal value of the arc cosine of their argument x. The
value of x should be in the range [−1,1].

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-
zero, an error has occurred.

RETURN VALUE
Upon successful completion, these functions shall return the arc cosine of x, in the range [0,π]
radians.

MX For finite values of x not in the range [−1,1], a domain error shall occur, and either a NaN (if
supported), or an implementation-defined value shall be returned.

MX If x is NaN, a NaN shall be returned.

If x is +1, +0 shall be returned.

If x is ±Inf, a domain error shall occur, and either a NaN (if supported), or an implementation-
defined value shall be returned.

ERRORS
These functions shall fail if:

MX Domain Error The x argument is finite and is not in the range [−1,1], or is ±Inf.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [EDOM]. If the integer expression (math_errhandling
& MATH_ERREXCEPT) is non-zero, then the invalid floating-point exception
shall be raised.

EXAMPLES
None.

APPLICATION USAGE
On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling &
MATH_ERREXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
None.

106 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

4067

4068

4069

4070

4071

4072

4073

4074

4075

4076

4077

4078

4079

4080

4081

4082

4083

4084

4085

4086

4087

4088

4089

4090

4091

4092

4093

4094

4095

4096

4097

4098

4099

4100

4101

4102

4103

4104

4105

4106

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces acos()

FUTURE DIRECTIONS
None.

SEE ALSO
cos(), feclearexcept(), fetestexcept(), isnan(), the Base Definitions volume of IEEE Std 1003.1-200x,
Section 4.18, Treatment of Error Conditions for Mathematical Functions, <math.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The DESCRIPTION is updated to indicate how an application should check for an error. This
text was previously published in the APPLICATION USAGE section.

Issue 6
The acosf() and acosl() functions are added for alignment with the ISO/IEC 9899: 1999 standard.

The DESCRIPTION, RETURN VALUE, ERRORS, and APPLICATION USAGE sections are
revised to align with the ISO/IEC 9899: 1999 standard.

IEC 60559: 1989 standard floating-point extensions over the ISO/IEC 9899: 1999 standard are
marked.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 107

4107

4108

4109

4110

4111

4112

4113

4114

4115

4116

4117

4118

4119

4120

4121

4122

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

acosh() System Interfaces

NAME
acosh, acoshf, acoshl — inverse hyperbolic cosine functions

SYNOPSIS
#include <math.h>

double acosh(double x);
float acoshf(float x);
long double acoshl(long double x);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

These functions shall compute the inverse hyperbolic cosine of their argument x.

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-
zero, an error has occurred.

RETURN VALUE
Upon successful completion, these functions shall return the inverse hyperbolic cosine of their
argument.

MX For finite values of x < 1, a domain error shall occur, and either a NaN (if supported), or an
implementation-defined value shall be returned.

MX If x is NaN, a NaN shall be returned.

If x is +1, +0 shall be returned.

If x is +Inf, +Inf shall be returned.

If x is −Inf, a domain error shall occur, and either a NaN (if supported), or an implementation-
defined value shall be returned.

ERRORS
These functions shall fail if:

MX Domain Error The x argument is finite and less than +1.0, or is −Inf.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [EDOM]. If the integer expression (math_errhandling
& MATH_ERREXCEPT) is non-zero, then the invalid floating-point exception
shall be raised.

EXAMPLES
None.

APPLICATION USAGE
On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling &
MATH_ERREXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
None.

108 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

4123

4124

4125

4126

4127

4128

4129

4130

4131

4132

4133

4134

4135

4136

4137

4138

4139

4140

4141

4142

4143

4144

4145

4146

4147

4148

4149

4150

4151

4152

4153

4154

4155

4156

4157

4158

4159

4160

4161

4162

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces acosh()

FUTURE DIRECTIONS
None.

SEE ALSO
cosh(), feclearexcept(), fetestexcept(), the Base Definitions volume of IEEE Std 1003.1-200x, Section
4.18, Treatment of Error Conditions for Mathematical Functions, <math.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Issue 6
The acosh() function is no longer marked as an extension.

The acoshf() and acoshl() functions are added for alignment with the ISO/IEC 9899: 1999
standard.

The DESCRIPTION, RETURN VALUE, ERRORS, and APPLICATION USAGE sections are
revised to align with the ISO/IEC 9899: 1999 standard.

IEC 60559: 1989 standard floating-point extensions over the ISO/IEC 9899: 1999 standard are
marked.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 109

4163

4164

4165

4166

4167

4168

4169

4170

4171

4172

4173

4174

4175

4176

4177

4178

4179

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

acosl() System Interfaces

NAME
acosl — arc cosine functions

SYNOPSIS
#include <math.h>

long double acosl(long double x);

DESCRIPTION
Refer to acos().

110 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

4180

4181

4182

4183

4184

4185

4186

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces aio_cancel()

NAME
aio_cancel — cancel an asynchronous I/O request

SYNOPSIS
#include <aio.h>

int aio_cancel(int fildes, s truct aiocb * aiocbp);

DESCRIPTION
The aio_cancel() function shall attempt to cancel one or more asynchronous I/O requests
currently outstanding against file descriptor fildes. The aiocbp argument points to the
asynchronous I/O control block for a particular request to be canceled. If aiocbp is NULL, then
all outstanding cancelable asynchronous I/O requests against fildes shall be canceled.

Normal asynchronous notification shall occur for asynchronous I/O operations that are
successfully canceled. If there are requests that cannot be canceled, then the normal
asynchronous completion process shall take place for those requests when they are completed.

For requested operations that are successfully canceled, the associated error status shall be set to
[ECANCELED] and the return status shall be −1. For requested operations that are not
successfully canceled, the aiocbp shall not be modified by aio_cancel().

If aiocbp is not NULL, then if fildes does not have the same value as the file descriptor with which
the asynchronous operation was initiated, unspecified results occur.

Which operations are cancelable is implementation-defined.

RETURN VALUE
The aio_cancel() function shall return the value AIO_CANCELED if the requested operation(s)
were canceled. The value AIO_NOTCANCELED shall be returned if at least one of the
requested operation(s) cannot be canceled because it is in progress. In this case, the state of the
other operations, if any, referenced in the call to aio_cancel() is not indicated by the return value
of aio_cancel(). The application may determine the state of affairs for these operations by using
aio_error(). The value AIO_ALLDONE is returned if all of the operations have already
completed. Otherwise, the function shall return −1 and set errno to indicate the error.

ERRORS
The aio_cancel() function shall fail if:

[EBADF] The fildes argument is not a valid file descriptor.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
aio_read(), aio_write(), the Base Definitions volume of IEEE Std 1003.1-200x, <aio.h>

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 111

4187

4188

4189

4190

4191

4192

4193

4194

4195

4196

4197

4198

4199

4200

4201

4202

4203

4204

4205

4206

4207

4208

4209

4210

4211

4212

4213

4214

4215

4216

4217

4218

4219

4220

4221

4222

4223

4224

4225

4226

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

aio_cancel() System Interfaces

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

Issue 6
The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Asynchronous Input and Output option.

The APPLICATION USAGE section is added.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/10 is applied, removing the words ‘‘to the
calling process’’ in the RETURN VALUE section. The term was unnecessary and precluded
threads.

Issue 7
The aio_cancel() function is moved from the Asynchronous Input and Output option to the Base.

112 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

4227

4228

4229

4230

4231

4232

4233

4234

4235

4236

4237

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces aio_error()

NAME
aio_error — retrieve errors status for an asynchronous I/O operation

SYNOPSIS
#include <aio.h>

int aio_error(const struct aiocb * aiocbp);

DESCRIPTION
The aio_error() function shall return the error status associated with the aiocb structure
referenced by the aiocbp argument. The error status for an asynchronous I/O operation is the

SIO errno value that would be set by the corresponding read(), write(), fdatasync(), or fsync()
operation. If the operation has not yet completed, then the error status shall be equal to
[EINPROGRESS].

If the aiocb structure pointed to by aiocbp is not associated with an operation that has been
scheduled, the results are undefined.

RETURN VALUE
If the asynchronous I/O operation has completed successfully, then 0 shall be returned. If the
asynchronous operation has completed unsuccessfully, then the error status, as described for

SIO read(), write(), fdatasync(), and fsync(), shall be returned. If the asynchronous I/O operation has
not yet completed, then [EINPROGRESS] shall be returned.

ERRORS
The aio_error() function may fail if:

[EINVAL] The aiocbp argument does not refer to an asynchronous operation whose
return status has not yet been retrieved.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
aio_cancel(), aio_fsync(), aio_read(), aio_return(), aio_write(), close(), exec , exit(), fork(), lio_listio(),
lseek(), read(), the Base Definitions volume of IEEE Std 1003.1-200x, <aio.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

Issue 6
The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Asynchronous Input and Output option.

The APPLICATION USAGE section is added.

Issue 7
Austin Group Interpretation 1003.1-2001 #045 is applied.

The aio_error() function is moved from the Asynchronous Input and Output option to the Base.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 113

4238

4239

4240

4241

4242

4243

4244

4245

4246

4247

4248

4249

4250

4251

4252

4253

4254

4255

4256

4257

4258

4259

4260

4261

4262

4263

4264

4265

4266

4267

4268

4269

4270

4271

4272

4273

4274

4275

4276

4277

4278

4279

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

aio_error() System Interfaces

NAME
aio_fsync — asynchronous file synchronization

SYNOPSIS
#include <aio.h>

int aio_fsync(int op, s truct aiocb * aiocbp);

DESCRIPTION
The aio_fsync() function shall asynchronously force all I/O operations associated with the file
indicated by the file descriptor aio_fildes member of the aiocb structure referenced by the aiocbp
argument and queued at the time of the call to aio_fsync() to the synchronized I/O completion
state. The function call shall return when the synchronization request has been initiated or
queued to the file or device (even when the data cannot be synchronized immediately).

If op is O_DSYNC, all currently queued I/O operations shall be completed as if by a call to
fdatasync(); that is, as defined for synchronized I/O data integrity completion. If op is O_SYNC,
all currently queued I/O operations shall be completed as if by a call to fsync(); that is, as
defined for synchronized I/O file integrity completion. If the aio_fsync() function fails, or if the
operation queued by aio_fsync() fails, then, as for fsync() and fdatasync(), outstanding I/O
operations are not guaranteed to have been completed.

If aio_fsync() succeeds, then it is only the I/O that was queued at the time of the call to
aio_fsync() that is guaranteed to be forced to the relevant completion state. The completion of
subsequent I/O on the file descriptor is not guaranteed to be completed in a synchronized
fashion.

The aiocbp argument refers to an asynchronous I/O control block. The aiocbp value may be used
as an argument to aio_error() and aio_return() in order to determine the error status and return
status, respectively, of the asynchronous operation while it is proceeding. When the request is
queued, the error status for the operation is [EINPROGRESS]. When all data has been
successfully transferred, the error status shall be reset to reflect the success or failure of the
operation. If the operation does not complete successfully, the error status for the operation shall
be set to indicate the error. The aio_sigevent member determines the asynchronous notification to
occur as specified in Section 2.4.1 when all operations have achieved synchronized I/O
completion. All other members of the structure referenced by aiocbp are ignored. If the control
block referenced by aiocbp becomes an illegal address prior to asynchronous I/O completion,
then the behavior is undefined.

If the aio_fsync() function fails or aiocbp indicates an error condition, data is not guaranteed to
have been successfully transferred.

RETURN VALUE
The aio_fsync() function shall return the value 0 if the I/O operation is successfully queued;
otherwise, the function shall return the value −1 and set errno to indicate the error.

ERRORS
The aio_fsync() function shall fail if:

[EAGAIN] The requested asynchronous operation was not queued due to temporary
resource limitations.

[EBADF] The aio_fildes member of the aiocb structure referenced by the aiocbp argument
is not a valid file descriptor open for writing.

[EINVAL] This implementation does not support synchronized I/O for this file.

114 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

4280

4281

4282

4283

4284

4285

4286

4287

4288

4289

4290

4291

4292

4293

4294

4295

4296

4297

4298

4299

4300

4301

4302

4303

4304

4305

4306

4307

4308

4309

4310

4311

4312

4313

4314

4315

4316

4317

4318

4319

4320

4321

4322

4323

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces aio_fsync()

[EINVAL] A value of op other than O_DSYNC or O_SYNC was specified.

In the event that any of the queued I/O operations fail, aio_fsync() shall return the error
condition defined for read() and write(). The error is returned in the error status for the
asynchronous fsync() operation, which can be retrieved using aio_error().

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fcntl(), fdatasync(), fsync(), open(), read(), write(), the Base Definitions volume of
IEEE Std 1003.1-200x, <aio.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

Issue 6
The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Asynchronous Input and Output option.

The APPLICATION USAGE section is added.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/11 is applied, removing the words ‘‘to the
calling process’’ in the RETURN VALUE section. The term was unnecessary and precluded
threads.

Issue 7
The aio_fsync() function is moved from the Asynchronous Input and Output option to the Base.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 115

4324

4325

4326

4327

4328

4329

4330

4331

4332

4333

4334

4335

4336

4337

4338

4339

4340

4341

4342

4343

4344

4345

4346

4347

4348

4349

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

aio_read() System Interfaces

NAME
aio_read — asynchronous read from a file

SYNOPSIS
#include <aio.h>

int aio_read(struct aiocb * aiocbp);

DESCRIPTION
The aio_read() function shall read aiocbp−>aio_nbytes from the file associated with
aiocbp−>aio_fildes into the buffer pointed to by aiocbp−>aio_buf. The function call shall return
when the read request has been initiated or queued to the file or device (even when the data
cannot be delivered immediately).

PIO If prioritized I/O is supported for this file, then the asynchronous operation shall be submitted
at a priority equal to a base scheduling priority minus aiocbp−>aio_reqprio. If Thread Execution
Scheduling is not supported, then the base scheduling priority is that of the calling process;

PIO TPS otherwise, the base scheduling priority is that of the calling thread.

The aiocbp value may be used as an argument to aio_error() and aio_return() in order to
determine the error status and return status, respectively, of the asynchronous operation while it
is proceeding. If an error condition is encountered during queuing, the function call shall return
without having initiated or queued the request. The requested operation takes place at the
absolute position in the file as given by aio_offset, as if lseek() were called immediately prior to
the operation with an offset equal to aio_offset and a whence equal to SEEK_SET. After a
successful call to enqueue an asynchronous I/O operation, the value of the file offset for the file
is unspecified.

The aio_sigevent member specifies the notification which occurs when the request is completed.

The aiocbp−>aio_lio_opcode field shall be ignored by aio_read().

The aiocbp argument points to an aiocb structure. If the buffer pointed to by aiocbp−>aio_buf or
the control block pointed to by aiocbp becomes an illegal address prior to asynchronous I/O
completion, then the behavior is undefined.

Simultaneous asynchronous operations using the same aiocbp produce undefined results.

SIO If synchronized I/O is enabled on the file associated with aiocbp−>aio_fildes, the behavior of this
function shall be according to the definitions of synchronized I/O data integrity completion and
synchronized I/O file integrity completion.

For any system action that changes the process memory space while an asynchronous I/O is
outstanding to the address range being changed, the result of that action is undefined.

For regular files, no data transfer shall occur past the offset maximum established in the open
file description associated with aiocbp−>aio_fildes.

RETURN VALUE
The aio_read() function shall return the value zero if the I/O operation is successfully queued;
otherwise, the function shall return the value −1 and set errno to indicate the error.

ERRORS
The aio_read() function shall fail if:

[EAGAIN] The requested asynchronous I/O operation was not queued due to system
resource limitations.

Each of the following conditions may be detected synchronously at the time of the call to
aio_read(), or asynchronously. If any of the conditions below are detected synchronously, the

116 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

4350

4351

4352

4353

4354

4355

4356

4357

4358

4359

4360

4361

4362

4363

4364

4365

4366

4367

4368

4369

4370

4371

4372

4373

4374

4375

4376

4377

4378

4379

4380

4381

4382

4383

4384

4385

4386

4387

4388

4389

4390

4391

4392

4393

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces aio_read()

aio_read() function shall return −1 and set errno to the corresponding value. If any of the
conditions below are detected asynchronously, the return status of the asynchronous operation
is set to −1, and the error status of the asynchronous operation is set to the corresponding value.

[EBADF] The aiocbp−>aio_fildes argument is not a valid file descriptor open for reading.

[EINVAL] The file offset value implied by aiocbp−>aio_offset would be invalid,
PIO aiocbp−>aio_reqprio is not a valid value, or aiocbp−>aio_nbytes is an invalid

value.

In the case that the aio_read() successfully queues the I/O operation but the operation is
subsequently canceled or encounters an error, the return status of the asynchronous operation is
one of the values normally returned by the read() function call. In addition, the error status of
the asynchronous operation is set to one of the error statuses normally set by the read() function
call, or one of the following values:

[EBADF] The aiocbp−>aio_fildes argument is not a valid file descriptor open for reading.

[ECANCELED] The requested I/O was canceled before the I/O completed due to an explicit
aio_cancel() request.

[EINVAL] The file offset value implied by aiocbp−>aio_offset would be invalid.

The following condition may be detected synchronously or asynchronously:

[EOVERFLOW] The file is a regular file, aiobcp−>aio_nbytes is greater than 0, and the starting
offset in aiobcp−>aio_offset is before the end-of-file and is at or beyond the
offset maximum in the open file description associated with aiocbp−>aio_fildes.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
aio_cancel(), aio_error(), lio_listio(), aio_return(), aio_write(), close(), exec , exit(), fork(), lseek(),
read(), the Base Definitions volume of IEEE Std 1003.1-200x, <aio.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

Large File Summit extensions are added.

Issue 6
The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Asynchronous Input and Output option.

The APPLICATION USAGE section is added.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 117

4394

4395

4396

4397

4398

4399

4400

4401

4402

4403

4404

4405

4406

4407

4408

4409

4410

4411

4412

4413

4414

4415

4416

4417

4418

4419

4420

4421

4422

4423

4424

4425

4426

4427

4428

4429

4430

4431

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

aio_read() System Interfaces

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• In the DESCRIPTION, text is added to indicate setting of the offset maximum in the open
file description. This change is to support large files.

• In the ERRORS section, the [EOVERFLOW] condition is added. This change is to support
large files.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/12 is applied, rewording the
DESCRIPTION when prioritized I/O is supported to account for threads, and removing the
words ‘‘to the calling process’’ in the RETURN VALUE section.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/13 is applied, updating the [EINVAL]
error, so that detection of an [EINVAL] error for an invalid value of aiocbp−>aio_reqprio is only
required if the Prioritized Input and Output option is supported.

Issue 7
Austin Group Interpretation 1003.1-2001 #082 is applied.

The aio_read() function is moved from the Asynchronous Input and Output option to the Base.

118 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

4432

4433

4434

4435

4436

4437

4438

4439

4440

4441

4442

4443

4444

4445

4446

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces aio_return()

NAME
aio_return — retrieve return status of an asynchronous I/O operation

SYNOPSIS
#include <aio.h>

ssize_t aio_return(struct aiocb * aiocbp);

DESCRIPTION
The aio_return() function shall return the return status associated with the aiocb structure
referenced by the aiocbp argument. The return status for an asynchronous I/O operation is the
value that would be returned by the corresponding read(), write(), or fsync() function call. If the
error status for the operation is equal to [EINPROGRESS], then the return status for the
operation is undefined. The aio_return() function may be called exactly once to retrieve the
return status of a given asynchronous operation; thereafter, if the same aiocb structure is used in
a call to aio_return() or aio_error(), an error may be returned. When the aiocb structure referred
to by aiocbp is used to submit another asynchronous operation, then aio_return() may be
successfully used to retrieve the return status of that operation.

RETURN VALUE
If the asynchronous I/O operation has completed, then the return status, as described for read(),
write(), and fsync(), shall be returned. If the asynchronous I/O operation has not yet completed,
the results of aio_return() are undefined.

ERRORS
The aio_return() function may fail if:

[EINVAL] The aiocbp argument does not refer to an asynchronous operation whose
return status has not yet been retrieved.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
aio_cancel(), aio_error(), aio_fsync(), aio_read(), aio_write(), close(), exec , exit(), fork(), lio_listio(),
lseek(), read(), the Base Definitions volume of IEEE Std 1003.1-200x, <aio.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

Issue 6
The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Asynchronous Input and Output option.

The APPLICATION USAGE section is added.

The [EINVAL] error condition is made optional. This is for consistency with the DESCRIPTION.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 119

4447

4448

4449

4450

4451

4452

4453

4454

4455

4456

4457

4458

4459

4460

4461

4462

4463

4464

4465

4466

4467

4468

4469

4470

4471

4472

4473

4474

4475

4476

4477

4478

4479

4480

4481

4482

4483

4484

4485

4486

4487

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

aio_return() System Interfaces

Issue 7
The aio_return() function is moved from the Asynchronous Input and Output option to the Base.

120 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

4488

4489

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces aio_suspend()

NAME
aio_suspend — wait for an asynchronous I/O request

SYNOPSIS
#include <aio.h>

int aio_suspend(const struct aiocb * const list[], int nent,
const struct timespec * timeout);

DESCRIPTION
The aio_suspend() function shall suspend the calling thread until at least one of the asynchronous
I/O operations referenced by the list argument has completed, until a signal interrupts the
function, or, if timeout is not NULL, until the time interval specified by timeout has passed. If any
of the aiocb structures in the list correspond to completed asynchronous I/O operations (that is,
the error status for the operation is not equal to [EINPROGRESS]) at the time of the call, the
function shall return without suspending the calling thread. The list argument is an array of
pointers to asynchronous I/O control blocks. The nent argument indicates the number of
elements in the array. Each aiocb structure pointed to has been used in initiating an
asynchronous I/O request via aio_read(), aio_write(), or lio_listio(). This array may contain
NULL pointers, which are ignored. If this array contains pointers that refer to aiocb structures
that have not been used in submitting asynchronous I/O, the effect is undefined.

If the time interval indicated in the timespec structure pointed to by timeout passes before any of
the I/O operations referenced by list are completed, then aio_suspend() shall return with an error.

MON If the Monotonic Clock option is supported, the clock that shall be used to measure this time
interval shall be the CLOCK_MONOTONIC clock.

RETURN VALUE
If the aio_suspend() function returns after one or more asynchronous I/O operations have
completed, the function shall return zero. Otherwise, the function shall return a value of −1 and
set errno to indicate the error.

The application may determine which asynchronous I/O completed by scanning the associated
error and return status using aio_error() and aio_return(), respectively.

ERRORS
The aio_suspend() function shall fail if:

[EAGAIN] No asynchronous I/O indicated in the list referenced by list completed in the
time interval indicated by timeout.

[EINTR] A signal interrupted the aio_suspend() function. Note that, since each
asynchronous I/O operation may possibly provoke a signal when it
completes, this error return may be caused by the completion of one (or more)
of the very I/O operations being awaited.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 121

4490

4491

4492

4493

4494

4495

4496

4497

4498

4499

4500

4501

4502

4503

4504

4505

4506

4507

4508

4509

4510

4511

4512

4513

4514

4515

4516

4517

4518

4519

4520

4521

4522

4523

4524

4525

4526

4527

4528

4529

4530

4531

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

aio_suspend() System Interfaces

FUTURE DIRECTIONS
None.

SEE ALSO
aio_read(), aio_write(), lio_listio(), the Base Definitions volume of IEEE Std 1003.1-200x, <aio.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

Issue 6
The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Asynchronous Input and Output option.

The APPLICATION USAGE section is added.

The DESCRIPTION is updated for alignment with IEEE Std 1003.1j-2000 by specifying that the
CLOCK_MONOTONIC clock, if supported, is used.

Issue 7
The aio_suspend() function is moved from the Asynchronous Input and Output option to the
Base.

122 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

4532

4533

4534

4535

4536

4537

4538

4539

4540

4541

4542

4543

4544

4545

4546

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces aio_write()

NAME
aio_write — asynchronous write to a file

SYNOPSIS
#include <aio.h>

int aio_write(struct aiocb * aiocbp);

DESCRIPTION
The aio_write() function shall write aiocbp−>aio_nbytes to the file associated with
aiocbp−>aio_fildes from the buffer pointed to by aiocbp−>aio_buf. The function shall return when
the write request has been initiated or, at a minimum, queued to the file or device.

PIO If prioritized I/O is supported for this file, then the asynchronous operation shall be submitted
at a priority equal to a base scheduling priority minus aiocbp−>aio_reqprio. If Thread Execution
Scheduling is not supported, then the base scheduling priority is that of the calling process;

PIO TPS otherwise, the base scheduling priority is that of the calling thread.

The aiocbp argument may be used as an argument to aio_error() and aio_return() in order to
determine the error status and return status, respectively, of the asynchronous operation while it
is proceeding.

The aiocbp argument points to an aiocb structure. If the buffer pointed to by aiocbp−>aio_buf or
the control block pointed to by aiocbp becomes an illegal address prior to asynchronous I/O
completion, then the behavior is undefined.

If O_APPEND is not set for the file descriptor aio_fildes, then the requested operation shall take
place at the absolute position in the file as given by aio_offset, as if lseek() were called
immediately prior to the operation with an offset equal to aio_offset and a whence equal to
SEEK_SET. If O_APPEND is set for the file descriptor, write operations append to the file in the
same order as the calls were made. After a successful call to enqueue an asynchronous I/O
operation, the value of the file offset for the file is unspecified.

The aio_sigevent member specifies the notification which occurs when the request is completed.

The aiocbp−>aio_lio_opcode field shall be ignored by aio_write().

Simultaneous asynchronous operations using the same aiocbp produce undefined results.

SIO If synchronized I/O is enabled on the file associated with aiocbp−>aio_fildes, the behavior of this
function shall be according to the definitions of synchronized I/O data integrity completion, and
synchronized I/O file integrity completion.

For any system action that changes the process memory space while an asynchronous I/O is
outstanding to the address range being changed, the result of that action is undefined.

For regular files, no data transfer shall occur past the offset maximum established in the open
file description associated with aiocbp−>aio_fildes.

RETURN VALUE
The aio_write() function shall return the value zero if the I/O operation is successfully queued;
otherwise, the function shall return the value −1 and set errno to indicate the error.

ERRORS
The aio_write() function shall fail if:

[EAGAIN] The requested asynchronous I/O operation was not queued due to system
resource limitations.

Each of the following conditions may be detected synchronously at the time of the call to

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 123

4547

4548

4549

4550

4551

4552

4553

4554

4555

4556

4557

4558

4559

4560

4561

4562

4563

4564

4565

4566

4567

4568

4569

4570

4571

4572

4573

4574

4575

4576

4577

4578

4579

4580

4581

4582

4583

4584

4585

4586

4587

4588

4589

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

aio_write() System Interfaces

aio_write(), or asynchronously. If any of the conditions below are detected synchronously, the
aio_write() function shall return −1 and set errno to the corresponding value. If any of the
conditions below are detected asynchronously, the return status of the asynchronous operation
shall be set to −1, and the error status of the asynchronous operation is set to the corresponding
value.

[EBADF] The aiocbp−>aio_fildes argument is not a valid file descriptor open for writing.

[EINVAL] The file offset value implied by aiocbp−>aio_offset would be invalid,
PIO aiocbp−>aio_reqprio is not a valid value, or aiocbp−>aio_nbytes is an invalid

value.

In the case that the aio_write() successfully queues the I/O operation, the return status of the
asynchronous operation shall be one of the values normally returned by the write() function call.
If the operation is successfully queued but is subsequently canceled or encounters an error, the
error status for the asynchronous operation contains one of the values normally set by the
write() function call, or one of the following:

[EBADF] The aiocbp−>aio_fildes argument is not a valid file descriptor open for writing.

[EINVAL] The file offset value implied by aiocbp−>aio_offset would be invalid.

[ECANCELED] The requested I/O was canceled before the I/O completed due to an explicit
aio_cancel() request.

The following condition may be detected synchronously or asynchronously:

[EFBIG] The file is a regular file, aiobcp−>aio_nbytes is greater than 0, and the starting
offset in aiobcp−>aio_offset is at or beyond the offset maximum in the open file
description associated with aiocbp−>aio_fildes.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
aio_cancel(), aio_error(), aio_read(), aio_return(), close(), exec , exit(), fork(), lio_listio(), lseek(),
write(), the Base Definitions volume of IEEE Std 1003.1-200x, <aio.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

Large File Summit extensions are added.

Issue 6
The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Asynchronous Input and Output option.

The APPLICATION USAGE section is added.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• In the DESCRIPTION, text is added to indicate that for regular files no data transfer occurs
past the offset maximum established in the open file description associated with
aiocbp−>aio_fildes.

124 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

4590

4591

4592

4593

4594

4595

4596

4597

4598

4599

4600

4601

4602

4603

4604

4605

4606

4607

4608

4609

4610

4611

4612

4613

4614

4615

4616

4617

4618

4619

4620

4621

4622

4623

4624

4625

4626

4627

4628

4629

4630

4631

4632

4633

4634

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces aio_write()

• The [EFBIG] error is added as part of the large file support extensions.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/14 is applied, rewording the
DESCRIPTION when prioritized I/O is supported to account for threads, and removing the
words ‘‘to the calling process’’ in the RETURN VALUE section.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/15 is applied, updating the [EINVAL]
error, so that detection of an [EINVAL] error for an invalid value of aiocbp−>aio_reqprio is only
required if the Prioritized Input and Output option is supported.

Issue 7
Austin Group Interpretation 1003.1-2001 #082 is applied.

The aio_write() function is moved from the Asynchronous Input and Output option to the Base.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 125

4635

4636

4637

4638

4639

4640

4641

4642

4643

4644

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

alarm() System Interfaces

NAME
alarm — schedule an alarm signal

SYNOPSIS
#include <unistd.h>

unsigned alarm(unsigned seconds);

DESCRIPTION
The alarm() function shall cause the system to generate a SIGALRM signal for the process after
the number of realtime seconds specified by seconds have elapsed. Processor scheduling delays
may prevent the process from handling the signal as soon as it is generated.

If seconds is 0, a pending alarm request, if any, is canceled.

Alarm requests are not stacked; only one SIGALRM generation can be scheduled in this manner.
If the SIGALRM signal has not yet been generated, the call shall result in rescheduling the time
at which the SIGALRM signal is generated.

XSI Interactions between alarm() and setitimer() are unspecified.

RETURN VALUE
If there is a previous alarm() request with time remaining, alarm() shall return a non-zero value
that is the number of seconds until the previous request would have generated a SIGALRM
signal. Otherwise, alarm() shall return 0.

ERRORS
The alarm() function is always successful, and no return value is reserved to indicate an error.

EXAMPLES
None.

APPLICATION USAGE
The fork() function clears pending alarms in the child process. A new process image created by
one of the exec functions inherits the time left to an alarm signal in the image of the old process.

Application writers should note that the type of the argument seconds and the return value of
alarm() is unsigned. That means that a Strictly Conforming POSIX System Interfaces
Application cannot pass a value greater than the minimum guaranteed value for {UINT_MAX},
which the ISO C standard sets as 65 535, and any application passing a larger value is restricting
its portability. A different type was considered, but historical implementations, including those
with a 16-bit int type, consistently use either unsigned or int.

Application writers should be aware of possible interactions when the same process uses both
the alarm() and sleep() functions.

RATIONALE
Many historical implementations (including Version 7 and System V) allow an alarm to occur up
to a second early. Other implementations allow alarms up to half a second or one clock tick
early or do not allow them to occur early at all. The latter is considered most appropriate, since it
gives the most predictable behavior, especially since the signal can always be delayed for an
indefinite amount of time due to scheduling. Applications can thus choose the seconds argument
as the minimum amount of time they wish to have elapse before the signal.

The term ‘‘realtime’’ here and elsewhere (sleep(), times()) is intended to mean ‘‘wall clock’’ time
as common English usage, and has nothing to do with ‘‘realtime operating systems’’. It is in
contrast to virtual time, which could be misinterpreted if just time were used.

In some implementations, including 4.3 BSD, very large values of the seconds argument are

126 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

4645

4646

4647

4648

4649

4650

4651

4652

4653

4654

4655

4656

4657

4658

4659

4660

4661

4662

4663

4664

4665

4666

4667

4668

4669

4670

4671

4672

4673

4674

4675

4676

4677

4678

4679

4680

4681

4682

4683

4684

4685

4686

4687

4688

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces alarm()

silently rounded down to an implementation-specific maximum value. This maximum is large
enough (to the order of several months) that the effect is not noticeable.

There were two possible choices for alarm generation in multi-threaded applications: generation
for the calling thread or generation for the process. The first option would not have been
particularly useful since the alarm state is maintained on a per-process basis and the alarm that
is established by the last invocation of alarm() is the only one that would be active.

Furthermore, allowing generation of an asynchronous signal for a thread would have
introduced an exception to the overall signal model. This requires a compelling reason in order
to be justified.

FUTURE DIRECTIONS
None.

SEE ALSO
alarm(), exec , fork(), getitimer(), pause(), sigaction(), sleep(), the Base Definitions volume of
IEEE Std 1003.1-200x, <signal.h>, <unistd.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The DESCRIPTION is updated to indicate that interactions with the setitimer(), ualarm(),
and usleep() functions are unspecified.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/16 is applied, replacing ‘‘an
implementation-defined maximum value’’ with ‘‘an implementation-specific maximum value’’
in the RATIONALE.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 127

4689

4690

4691

4692

4693

4694

4695

4696

4697

4698

4699

4700

4701

4702

4703

4704

4705

4706

4707

4708

4709

4710

4711

4712

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

alphasort() System Interfaces

NAME
alphasort, scandir — scan a directory

SYNOPSIS
#include <dirent.h>

int alphasort(const struct dirent ** d1, c onst struct dirent ** d2);
int scandir(const char * dir, s truct dirent *** namelist,

int (* sel)(const struct dirent *),
int (* compar)(const struct dirent **, const struct dirent **));

DESCRIPTION
The alphasort() function can be used as the comparison function for the scandir() function to sort
the directory entries into alphabetical order. Sorting happens as if by calling the strcoll()
function on the d_name element of the dirent structures passed as the two parameters. Its
parameters are the two directory entries, d1 and d2, to compare.

The scandir() function shall scan the directory dir, calling the function referenced by sel on each
directory entry. Entries for which the function referenced by sel returns non-zero shall be stored
in strings allocated as if by a call to malloc(), and sorted using qsort() with the comparison
function compar, and collected in array namelist which shall be allocated as if by a call to malloc().
If sel is a null pointer, all entries shall be selected.

RETURN VALUE
Upon successful completion, the alphasort() function shall return an integer greater than, equal
to, or less than 0, according to whether the name of the directory entry pointed to by d1 is
lexically greater than, equal to, or less than the directory pointed to by d2 when both are
interpreted as appropriate to the current locale. There is no return value reserved to indicate an
error.

Upon successful completion, the scandir() function shall return the number of entries in the
array and a pointer to the array through the parameter namelist. Otherwise, the scandir()
function shall return −1.

ERRORS
The scandir() function shall fail if:

[EACCES] Search permission is denied for the component of the path prefix of dir or read
permission is denied for dir.

[ELOOP] A loop exists in symbolic links encountered during resolution of the dir
argument.

[ENAMETOOLONG]
The length of the dir argument exceeds {PATH_MAX} or a pathname
component is longer than {NAME_MAX}.

[ENOENT] A component of dir does not name an existing directory or dir is an empty
string.

[ENOMEM] Insufficient storage space is available.

[ENOTDIR] A component of dir is not a directory.

The scandir() function may fail if:

[ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during
resolution of the dir argument.

128 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

4713

4714

4715

4716

4717

4718

4719

4720

4721

4722

4723

4724

4725

4726

4727

4728

4729

4730

4731

4732

4733

4734

4735

4736

4737

4738

4739

4740

4741

4742

4743

4744

4745

4746

4747

4748

4749

4750

4751

4752

4753

4754

4755

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces alphasort()

[EMFILE] {OPEN_MAX} file descriptors are currently open in the calling process.

[ENAMETOOLONG]
As a result of encountering a symbolic link in resolution of the dir argument,
the length of the substituted pathname string exceeded {PATH_MAX}.

[ENFILE] Too many files are currently open in the system.

EXAMPLES
An example to print the files in the current directory:

#include <dirent.h>
#include <stdio.h>
...
struct dirent **namelist;
int i,n;

n = s candir(".", &namelist, 0, alphasort);
if (n < 0)

perror("scandir");
else {

for (i = 0; i < n; i++) {
printf("%s\n", namelist[i]->d_name);
free(namelist[i]);
}

}
free(namelist);

...

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
malloc(), qsort(), strcoll(), the Base Definitions volume of IEEE Std 1003.1-200x, <dirent.h>

CHANGE HISTORY
First released in Issue 7.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 129

4756

4757

4758

4759

4760

4761

4762

4763

4764

4765

4766

4767

4768

4769

4770

4771

4772

4773

4774

4775

4776

4777

4778

4779

4780

4781

4782

4783

4784

4785

4786

4787

4788

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

asctime() System Interfaces

NAME
asctime, asctime_r — convert date and time to a string

SYNOPSIS
OB #include <time.h>

char *asctime(const struct tm * timeptr);
OB CX char *asctime_r(const struct tm *restrict tm, c har *restrict buf);

DESCRIPTION
CX For asctime(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of IEEE Std 1003.1-200x defers to the ISO C standard.

The asctime() function shall convert the broken-down time in the structure pointed to by timeptr
into a string in the form:

Sun Sep 16 01:03:52 1973\n\0

using the equivalent of the following algorithm:

char *asctime(const struct tm *timeptr)
{

static char wday_name[7][3] = {
"Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat"

};
static char mon_name[12][3] = {

"Jan", "Feb", "Mar", "Apr", "May", "Jun",
"Jul", "Aug", "Sep", "Oct", "Nov", "Dec"

};
static char result[26];

sprintf(result, "%.3s %.3s%3d %.2d:%.2d:%.2d %d\n",
wday_name[timeptr->tm_wday],
mon_name[timeptr->tm_mon],
timeptr->tm_mday, timeptr->tm_hour,
timeptr->tm_min, timeptr->tm_sec,
1900 + timeptr->tm_year);

return result;
}

However, the behavior is undefined if timeptr−>tm_wday or timeptr−>tm_mon are not within the
normal ranges as defined in <time.h>, or if timeptr−>tm_year exceeds {INT_MAX}−1990, or if the
above algorithm would attempt to generate more than 26 bytes of output (including the
terminating null).

The tm structure is defined in the <time.h> header.

CX The asctime(), ctime(), gmtime(), and localtime() functions shall return values in one of two static
objects: a broken-down time structure and an array of type char. Execution of any of the
functions may overwrite the information returned in either of these objects by any of the other
functions.

The asctime() function need not be thread-safe. A function that is not required to be thread-safe
is not required to be reentrant.

The asctime_r() function shall convert the broken-down time in the structure pointed to by tm

130 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

4789

4790

4791

4792

4793

4794

4795

4796

4797

4798

4799

4800

4801

4802

4803

4804

4805

4806

4807

4808

4809

4810

4811

4812

4813

4814

4815

4816

4817

4818

4819

4820

4821

4822

4823

4824

4825

4826

4827

4828

4829

4830

4831

4832

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces asctime()

into a string (of the same form as that returned by asctime(), and with the same undefined
behavior when input or output is out of range) that is placed in the user-supplied buffer pointed
to by buf (which shall contain at least 26 bytes) and then return buf .

RETURN VALUE
CX Upon successful completion, asctime() shall return a pointer to the string. If the function is

unsuccessful, it shall return NULL.

Upon successful completion, asctime_r() shall return a pointer to a character string containing
the date and time. This string is pointed to by the argument buf . If the function is unsuccessful,
it shall return NULL.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
These functions are included only for compatibility with older implementations. They have
undefined behavior if the resulting string would be too long, so the use of these functions
should be discouraged. On implementations that do not detect output string length overflow, it
is possible to overflow the output buffers in such a way as to cause applications to fail, or
possible system security violations. Also, these functions do not support localized date and time
formats. To avoid these problems, applications should use strftime() to generate strings from
broken-down times.

Values for the broken-down time structure can be obtained by calling gmtime() or localtime().

The asctime_r() function is thread-safe and shall return values in a user-supplied buffer instead
of possibly using a static data area that may be overwritten by each call.

RATIONALE
The standards developers decided to mark the asctime() and asctime_r() functions obsolescent
even though they are in the ISO C standard due to the possibility of buffer overflow. The ISO C
standard also provides the strftime() function which can be used to avoid these problems.

FUTURE DIRECTIONS
These functions may be removed in a future version.

SEE ALSO
clock(), ctime(), difftime(), gmtime(), localtime(), mktime(), strftime(), strptime(), time(), utime(),
the Base Definitions volume of IEEE Std 1003.1-200x, <time.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
Normative text previously in the APPLICATION USAGE section is moved to the
DESCRIPTION.

The asctime_r() function is included for alignment with the POSIX Threads Extension.

A note indicating that the asctime() function need not be reentrant is added to the
DESCRIPTION.

Issue 6
The asctime_r() function is marked as part of the Thread-Safe Functions option.

Extensions beyond the ISO C standard are marked.

The APPLICATION USAGE section is updated to include a note on the thread-safe function and
its avoidance of possibly using a static data area.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 131

4833

4834

4835

4836

4837

4838

4839

4840

4841

4842

4843

4844

4845

4846

4847

4848

4849

4850

4851

4852

4853

4854

4855

4856

4857

4858

4859

4860

4861

4862

4863

4864

4865

4866

4867

4868

4869

4870

4871

4872

4873

4874

4875

4876

4877

4878

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

asctime() System Interfaces

The DESCRIPTION of asctime_r() is updated to describe the format of the string returned.

The restrict keyword is added to the asctime_r() prototype for alignment with the
ISO/IEC 9899: 1999 standard.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/17 is applied, adding the CX extension in
the RETURN VALUE section requiring that if the asctime() function is unsuccessful it returns
NULL.

Issue 7
Austin Group Interpretation 1003.1-2001 #053 is applied, marking these functions obsolescent.

The asctime_r() function is moved from the Thread-Safe Functions option to the Base.

132 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

4879

4880

4881

4882

4883

4884

4885

4886

4887

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces asin()

NAME
asin, asinf, asinl — arc sine function

SYNOPSIS
#include <math.h>

double asin(double x);
float asinf(float x);
long double asinl(long double x);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

These functions shall compute the principal value of the arc sine of their argument x. The value
of x should be in the range [−1,1].

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-
zero, an error has occurred.

RETURN VALUE
Upon successful completion, these functions shall return the arc sine of x, in the range
[−π/2,π/2] radians.

MX For finite values of x not in the range [−1,1], a domain error shall occur, and either a NaN (if
supported), or an implementation-defined value shall be returned.

MX If x is NaN, a NaN shall be returned.

If x is ±0, x shall be returned.

If x is ±Inf, a domain error shall occur, and either a NaN (if supported), or an implementation-
defined value shall be returned.

If x is subnormal, a range error may occur and x should be returned.

ERRORS
These functions shall fail if:

MX Domain Error The x argument is finite and is not in the range [−1,1], or is ±Inf.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [EDOM]. If the integer expression (math_errhandling
& MATH_ERREXCEPT) is non-zero, then the invalid floating-point exception
shall be raised.

These functions may fail if:

MX Range Error The value of x is subnormal.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the underflow
floating-point exception shall be raised.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 133

4888

4889

4890

4891

4892

4893

4894

4895

4896

4897

4898

4899

4900

4901

4902

4903

4904

4905

4906

4907

4908

4909

4910

4911

4912

4913

4914

4915

4916

4917

4918

4919

4920

4921

4922

4923

4924

4925

4926

4927

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

asin() System Interfaces

EXAMPLES
None.

APPLICATION USAGE
On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling &
MATH_ERREXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
feclearexcept(), fetestexcept(), isnan(), sin(), the Base Definitions volume of IEEE Std 1003.1-200x,
Section 4.18, Treatment of Error Conditions for Mathematical Functions, <math.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The DESCRIPTION is updated to indicate how an application should check for an error. This
text was previously published in the APPLICATION USAGE section.

Issue 6
The asinf() and asinl() functions are added for alignment with the ISO/IEC 9899: 1999 standard.

The DESCRIPTION, RETURN VALUE, ERRORS, and APPLICATION USAGE sections are
revised to align with the ISO/IEC 9899: 1999 standard.

IEC 60559: 1989 standard floating-point extensions over the ISO/IEC 9899: 1999 standard are
marked.

134 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

4928

4929

4930

4931

4932

4933

4934

4935

4936

4937

4938

4939

4940

4941

4942

4943

4944

4945

4946

4947

4948

4949

4950

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces asinh()

NAME
asinh, asinhf, asinhl — inverse hyperbolic sine functions

SYNOPSIS
#include <math.h>

double asinh(double x);
float asinhf(float x);
long double asinhl(long double x);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

These functions shall compute the inverse hyperbolic sine of their argument x.

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-
zero, an error has occurred.

RETURN VALUE
Upon successful completion, these functions shall return the inverse hyperbolic sine of their
argument.

MX If x is NaN, a NaN shall be returned.

If x is ±0, or ±Inf, x shall be returned.

If x is subnormal, a range error may occur and x should be returned.

ERRORS
These functions may fail if:

MX Range Error The value of x is subnormal.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the underflow
floating-point exception shall be raised.

EXAMPLES
None.

APPLICATION USAGE
On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling &
MATH_ERREXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
feclearexcept(), fetestexcept(), sinh(), the Base Definitions volume of IEEE Std 1003.1-200x, Section
4.18, Treatment of Error Conditions for Mathematical Functions, <math.h>

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 135

4951

4952

4953

4954

4955

4956

4957

4958

4959

4960

4961

4962

4963

4964

4965

4966

4967

4968

4969

4970

4971

4972

4973

4974

4975

4976

4977

4978

4979

4980

4981

4982

4983

4984

4985

4986

4987

4988

4989

4990

4991

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

asinh() System Interfaces

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Issue 6
The asinh() function is no longer marked as an extension.

The asinhf() and asinhl() functions are added for alignment with the ISO/IEC 9899: 1999
standard.

The DESCRIPTION, RETURN VALUE, ERRORS, and APPLICATION USAGE sections are
revised to align with the ISO/IEC 9899: 1999 standard.

IEC 60559: 1989 standard floating-point extensions over the ISO/IEC 9899: 1999 standard are
marked.

136 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

4992

4993

4994

4995

4996

4997

4998

4999

5000

5001

5002

5003

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces asinl()

NAME
asinl — arc sine function

SYNOPSIS
#include <math.h>

long double asinl(long double x);

DESCRIPTION
Refer to asin().

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 137

5004

5005

5006

5007

5008

5009

5010

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

assert() System Interfaces

NAME
assert — insert program diagnostics

SYNOPSIS
#include <assert.h>

void assert(scalar expression);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

The assert() macro shall insert diagnostics into programs; it shall expand to a void expression.
When it is executed, if expression (which shall have a scalar type) is false (that is, compares equal
to 0), assert() shall write information about the particular call that failed on stderr and shall call
abort().

The information written about the call that failed shall include the text of the argument, the
name of the source file, the source file line number, and the name of the enclosing function; the
latter are, respectively, the values of the preprocessing macros _ _FILE_ _ and _ _LINE_ _ and of
the identifier _ _func_ _.

Forcing a definition of the name NDEBUG, either from the compiler command line or with the
preprocessor control statement #define NDEBUG ahead of the #include <assert.h> statement,
shall stop assertions from being compiled into the program.

RETURN VALUE
The assert() macro shall not return a value.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
abort(), stderr, the Base Definitions volume of IEEE Std 1003.1-200x, <assert.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
The prototype for the expression argument to assert() is changed from int to scalar for alignment
with the ISO/IEC 9899: 1999 standard.

The DESCRIPTION of assert() is updated for alignment with the ISO/IEC 9899: 1999 standard.

138 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

5011

5012

5013

5014

5015

5016

5017

5018

5019

5020

5021

5022

5023

5024

5025

5026

5027

5028

5029

5030

5031

5032

5033

5034

5035

5036

5037

5038

5039

5040

5041

5042

5043

5044

5045

5046

5047

5048

5049

5050

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces atan()

NAME
atan, atanf, atanl — arc tangent function

SYNOPSIS
#include <math.h>

double atan(double x);
float atanf(float x);
long double atanl(long double x);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

These functions shall compute the principal value of the arc tangent of their argument x.

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-
zero, an error has occurred.

RETURN VALUE
Upon successful completion, these functions shall return the arc tangent of x in the range
[−π/2,π/2] radians.

MX If x is NaN, a NaN shall be returned.

If x is ±0, x shall be returned.

If x is ±Inf, ±π/2 shall be returned.

If x is subnormal, a range error may occur and x should be returned.

ERRORS
These functions may fail if:

MX Range Error The value of x is subnormal.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the underflow
floating-point exception shall be raised.

EXAMPLES
None.

APPLICATION USAGE
On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling &
MATH_ERREXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
None.

FUTURE DIRECTIONS
None.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 139

5051

5052

5053

5054

5055

5056

5057

5058

5059

5060

5061

5062

5063

5064

5065

5066

5067

5068

5069

5070

5071

5072

5073

5074

5075

5076

5077

5078

5079

5080

5081

5082

5083

5084

5085

5086

5087

5088

5089

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

atan() System Interfaces

SEE ALSO
atan2(), feclearexcept(), fetestexcept(), isnan(), tan(), the Base Definitions volume of
IEEE Std 1003.1-200x, Section 4.18, Treatment of Error Conditions for Mathematical Functions,
<math.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The DESCRIPTION is updated to indicate how an application should check for an error. This
text was previously published in the APPLICATION USAGE section.

Issue 6
The atanf() and atanl() functions are added for alignment with the ISO/IEC 9899: 1999 standard.

The DESCRIPTION, RETURN VALUE, ERRORS, and APPLICATION USAGE sections are
revised to align with the ISO/IEC 9899: 1999 standard.

IEC 60559: 1989 standard floating-point extensions over the ISO/IEC 9899: 1999 standard are
marked.

140 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

5090

5091

5092

5093

5094

5095

5096

5097

5098

5099

5100

5101

5102

5103

5104

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces atan2()

NAME
atan2, atan2f, atan2l — arc tangent functions

SYNOPSIS
#include <math.h>

double atan2(double y, d ouble x);
float atan2f(float y, f loat x);
long double atan2l(long double y, l ong double x);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

These functions shall compute the principal value of the arc tangent of y/x, using the signs of
both arguments to determine the quadrant of the return value.

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-
zero, an error has occurred.

RETURN VALUE
Upon successful completion, these functions shall return the arc tangent of y/x in the range
[−π,π] radians.

If y is ±0 and x is < 0, ±π shall be returned.

If y is ±0 and x is > 0, ±0 shall be returned.

If y is < 0 and x is ±0, −π/2 shall be returned.

If y is > 0 and x is ±0, π/2 shall be returned.

If x is 0, a pole error shall not occur.

MX If either x or y is NaN, a NaN shall be returned.

If the result underflows, a range error may occur and y/x should be returned.

If y is ±0 and x is −0, ±π shall be returned.

If y is ±0 and x is +0, ±0 shall be returned.

For finite values of ±y > 0, if x is −Inf, ±π shall be returned.

For finite values of ±y > 0, if x is +Inf, ±0 shall be returned.

For finite values of x, if y is ±Inf, ±π/2 shall be returned.

If y is ±Inf and x is −Inf, ±3π/4 shall be returned.

If y is ±Inf and x is +Inf, ±π/4 shall be returned.

If both arguments are 0, a domain error shall not occur.

ERRORS
These functions may fail if:

MX Range Error The result underflows.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 141

5105

5106

5107

5108

5109

5110

5111

5112

5113

5114

5115

5116

5117

5118

5119

5120

5121

5122

5123

5124

5125

5126

5127

5128

5129

5130

5131

5132

5133

5134

5135

5136

5137

5138

5139

5140

5141

5142

5143

5144

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

atan2() System Interfaces

(math_errhandling & MATH_ERREXCEPT) is non-zero, then the underflow
floating-point exception shall be raised.

EXAMPLES

Converting Cartesian to Polar Coordinates System

The function below uses atan2() to convert a 2d vector expressed in cartesian coordinates (x,y) to
the polar coordinates (rho,theta). There are other ways to compute the angle theta, using asin()
acos(), or atan(). However, atan2() presents here two advantages:

• The angle’s quadrant is automatically determined.

• The singular cases (0,y) are taken into account.

Finally, this example uses hypot() rather than sqrt() since it is better for special cases; see hypot()
for more information.

#include <math.h>

void
cartesian_to_polar(const double x, const double y,

double *rho, double *theta
)

{
rho = hypot (x,y); / better than sqrt(x*x+y*y) */
*theta = atan2 (y,x);

}

APPLICATION USAGE
On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling &
MATH_ERREXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
acos(), asin(), atan(), feclearexcept(), fetestexcept(), hypot(), isnan(), sqrt(), tan(), the Base
Definitions volume of IEEE Std 1003.1-200x, Section 4.18, Treatment of Error Conditions for
Mathematical Functions, <math.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The DESCRIPTION is updated to indicate how an application should check for an error. This
text was previously published in the APPLICATION USAGE section.

Issue 6
The atan2f() and atan2l() functions are added for alignment with the ISO/IEC 9899: 1999
standard.

The DESCRIPTION, RETURN VALUE, ERRORS, and APPLICATION USAGE sections are
revised to align with the ISO/IEC 9899: 1999 standard, and the IEC 60559: 1989 standard
floating-point extensions over the ISO/IEC 9899: 1999 standard are marked.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/18 is applied, adding to the EXAMPLES
section.

142 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

5145

5146

5147

5148

5149

5150

5151

5152

5153

5154

5155

5156

5157

5158

5159

5160

5161

5162

5163

5164

5165

5166

5167

5168

5169

5170

5171

5172

5173

5174

5175

5176

5177

5178

5179

5180

5181

5182

5183

5184

5185

5186

5187

5188

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces atan2()

NAME
atanf — arc tangent function

SYNOPSIS
#include <math.h>

float atanf(float x);

DESCRIPTION
Refer to atan().

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 143

5189

5190

5191

5192

5193

5194

5195

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

atanh() System Interfaces

NAME
atanh, atanhf, atanhl — inverse hyperbolic tangent functions

SYNOPSIS
#include <math.h>

double atanh(double x);
float atanhf(float x);
long double atanhl(long double x);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

These functions shall compute the inverse hyperbolic tangent of their argument x.

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-
zero, an error has occurred.

RETURN VALUE
Upon successful completion, these functions shall return the inverse hyperbolic tangent of their
argument.

If x is ±1, a pole error shall occur, and atanh(), atanhf(), and atanhl() shall return the value of the
macro HUGE_VAL, HUGE_VALF, and HUGE_VALL, respectively, with the same sign as the
correct value of the function.

MX For finite |x|>1, a domain error shall occur, and either a NaN (if supported), or an
implementation-defined value shall be returned.

MX If x is NaN, a NaN shall be returned.

If x is ±0, x shall be returned.

If x is ±Inf, a domain error shall occur, and either a NaN (if supported), or an implementation-
defined value shall be returned.

If x is subnormal, a range error may occur and x should be returned.

ERRORS
These functions shall fail if:

MX Domain Error The x argument is finite and not in the range [−1,1], or is ±Inf.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [EDOM]. If the integer expression (math_errhandling
& MATH_ERREXCEPT) is non-zero, then the invalid floating-point exception
shall be raised.

Pole Error The x argument is ±1.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the divide-by-zero
floating-point exception shall be raised.

144 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

5196

5197

5198

5199

5200

5201

5202

5203

5204

5205

5206

5207

5208

5209

5210

5211

5212

5213

5214

5215

5216

5217

5218

5219

5220

5221

5222

5223

5224

5225

5226

5227

5228

5229

5230

5231

5232

5233

5234

5235

5236

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces atanh()

These functions may fail if:

MX Range Error The value of x is subnormal.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the underflow
floating-point exception shall be raised.

EXAMPLES
None.

APPLICATION USAGE
On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling &
MATH_ERREXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
feclearexcept(), fetestexcept(), tanh(), the Base Definitions volume of IEEE Std 1003.1-200x, Section
4.18, Treatment of Error Conditions for Mathematical Functions, <math.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Issue 6
The atanh() function is no longer marked as an extension.

The atanhf() and atanhl() functions are added for alignment with the ISO/IEC 9899: 1999
standard.

The DESCRIPTION, RETURN VALUE, ERRORS, and APPLICATION USAGE sections are
revised to align with the ISO/IEC 9899: 1999 standard.

IEC 60559: 1989 standard floating-point extensions over the ISO/IEC 9899: 1999 standard are
marked.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 145

5237

5238

5239

5240

5241

5242

5243

5244

5245

5246

5247

5248

5249

5250

5251

5252

5253

5254

5255

5256

5257

5258

5259

5260

5261

5262

5263

5264

5265

5266

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

atanl() System Interfaces

NAME
atanl — arc tangent function

SYNOPSIS
#include <math.h>

long double atanl(long double x);

DESCRIPTION
Refer to atan().

146 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

5267

5268

5269

5270

5271

5272

5273

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces atexit()

NAME
atexit — register a function to run at process termination

SYNOPSIS
#include <stdlib.h>

int atexit(void (* func)(void));

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

The atexit() function shall register the function pointed to by func, to be called without
arguments at normal program termination. At normal program termination, all functions
registered by the atexit() function shall be called, in the reverse order of their registration, except
that a function is called after any previously registered functions that had already been called at
the time it was registered. Normal termination occurs either by a call to exit() or a return from
main().

At least 32 functions can be registered with atexit().

CX After a successful call to any of the exec functions, any functions previously registered by atexit()
shall no longer be registered.

RETURN VALUE
Upon successful completion, atexit() shall return 0; otherwise, it shall return a non-zero value.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
The functions registered by a call to atexit() must return to ensure that all registered functions
are called.

The application should call sysconf() to obtain the value of {ATEXIT_MAX}, the number of
functions that can be registered. There is no way for an application to tell how many functions
have already been registered with atexit().

Since the behavior is undefined if the exit() function is called more than once, portable
applications calling atexit() must ensure that the exit() function is not called at normal process
termination when all functions registered by the atexit() function are called.

All functions registered by the atexit() function are called at normal process termination, which
occurs by a call to the exit() function or a return from main() or on the last thread termination,
when the behavior is as if the implementation called exit() with a zero argument at thread
termination time.

If, at normal process termination, a function registered by the atexit() function is called and a
portable application needs to stop further exit() processing, it must call the _exit() function or
the _Exit() function or one of the functions which cause abnormal process termination.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 147

5274

5275

5276

5277

5278

5279

5280

5281

5282

5283

5284

5285

5286

5287

5288

5289

5290

5291

5292

5293

5294

5295

5296

5297

5298

5299

5300

5301

5302

5303

5304

5305

5306

5307

5308

5309

5310

5311

5312

5313

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

atexit() System Interfaces

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
exec , exit(), sysconf(), the Base Definitions volume of IEEE Std 1003.1-200x, <stdlib.h>

CHANGE HISTORY
First released in Issue 4. Derived from the ANSI C standard.

Issue 6
Extensions beyond the ISO C standard are marked.

The DESCRIPTION is updated for alignment with the ISO/IEC 9899: 1999 standard.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/19 is applied, adding further clarification
to the APPLICATION USAGE section.

148 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

5314

5315

5316

5317

5318

5319

5320

5321

5322

5323

5324

5325

5326

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces atof()

NAME
atof — convert a string to a double-precision number

SYNOPSIS
#include <stdlib.h>

double atof(const char * str);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

The call atof (str) shall be equivalent to:

strtod(str,(char **)NULL),

except that the handling of errors may differ. If the value cannot be represented, the behavior is
undefined.

RETURN VALUE
The atof() function shall return the converted value if the value can be represented.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
The atof() function is subsumed by strtod() but is retained because it is used extensively in
existing code. If the number is not known to be in range, strtod() should be used because atof()
is not required to perform any error checking.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
strtod(), the Base Definitions volume of IEEE Std 1003.1-200x, <stdlib.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 149

5327

5328

5329

5330

5331

5332

5333

5334

5335

5336

5337

5338

5339

5340

5341

5342

5343

5344

5345

5346

5347

5348

5349

5350

5351

5352

5353

5354

5355

5356

5357

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

atoi() System Interfaces

NAME
atoi — convert a string to an integer

SYNOPSIS
#include <stdlib.h>

int atoi(const char * str);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

The call atoi(str) shall be equivalent to:

(int) strtol(str, (char **)NULL, 10)

except that the handling of errors may differ. If the value cannot be represented, the behavior is
undefined.

RETURN VALUE
The atoi() function shall return the converted value if the value can be represented.

ERRORS
No errors are defined.

EXAMPLES

Converting an Argument

The following example checks for proper usage of the program. If there is an argument and the
decimal conversion of this argument (obtained using atoi()) is greater than 0, then the program
has a valid number of minutes to wait for an event.

#include <stdlib.h>
#include <stdio.h>
...
int minutes_to_event;
...
if (argc < 2 || ((minutes_to_event = atoi (argv[1]))) <= 0) {

fprintf(stderr, "Usage: %s minutes\n", argv[0]); exit(1);
}
...

APPLICATION USAGE
The atoi() function is subsumed by strtol() but is retained because it is used extensively in
existing code. If the number is not known to be in range, strtol() should be used because atoi() is
not required to perform any error checking.

RATIONALE
None.

FUTURE DIRECTIONS
None.

150 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

5358

5359

5360

5361

5362

5363

5364

5365

5366

5367

5368

5369

5370

5371

5372

5373

5374

5375

5376

5377

5378

5379

5380

5381

5382

5383

5384

5385

5386

5387

5388

5389

5390

5391

5392

5393

5394

5395

5396

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces atoi()

SEE ALSO
strtol(), the Base Definitions volume of IEEE Std 1003.1-200x, <stdlib.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 151

5397

5398

5399

5400

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

atol() System Interfaces

NAME
atol, atoll — convert a string to a long integer

SYNOPSIS
#include <stdlib.h>

long atol(const char * str);
long long atoll(const char * nptr);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

The call atol(str) shall be equivalent to:

strtol(str, (char **)NULL, 10)

The call atoll(nptr) shall be equivalent to:

strtoll(nptr, (char **)NULL, 10)

except that the handling of errors may differ. If the value cannot be represented, the behavior is
undefined.

RETURN VALUE
These functions shall return the converted value if the value can be represented.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
The atol() function is subsumed by strtol() but is retained because it is used extensively in
existing code. If the number is not known to be in range, strtol() should be used because atol() is
not required to perform any error checking.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
strtol(), the Base Definitions volume of IEEE Std 1003.1-200x, <stdlib.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
The atoll() function is added for alignment with the ISO/IEC 9899: 1999 standard.

Issue 7
SD5-XSH-ERN-61 is applied, correcting the DESCRIPTION of atoll().

152 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

5401

5402

5403

5404

5405

5406

5407

5408

5409

5410

5411

5412

5413

5414

5415

5416

5417

5418

5419

5420

5421

5422

5423

5424

5425

5426

5427

5428

5429

5430

5431

5432

5433

5434

5435

5436

5437

5438

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces basename()

NAME
basename — return the last component of a pathname

SYNOPSIS
XSI #include <libgen.h>

char *basename(char * path);

DESCRIPTION
The basename() function shall take the pathname pointed to by path and return a pointer to the
final component of the pathname, deleting any trailing ’/’ characters.

If the string pointed to by path consists entirely of the ’/’ character, basename() shall return a
pointer to the string "/" . If the string pointed to by path is exactly "//" , it is implementation-
defined whether ’/’ or "//" is returned.

If path is a null pointer or points to an empty string, basename() shall return a pointer to the
string "." .

The basename() function may modify the string pointed to by path, and may return a pointer to
static storage that may then be overwritten by a subsequent call to basename().

The basename() function need not be thread-safe. A function that is not required to be thread-safe
is not required to be reentrant.

RETURN VALUE
The basename() function shall return a pointer to the final component of path.

ERRORS
No errors are defined.

EXAMPLES

Using basename()

The following program fragment returns a pointer to the value lib, which is the base name of
/usr/lib.

#include <libgen.h>
...
char *name = "/usr/lib";
char *base;

base = basename(name);
...

Sample Input and Output Strings for basename()

In the following table, the input string is the value pointed to by path, and the output string is
the return value of the basename() function.

Input String Output String

"/usr/lib" "lib"
"/usr/" "usr"
"/" "/"
"///" "/"
"//usr//lib//" "lib"

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 153

5439

5440

5441

5442

5443

5444

5445

5446

5447

5448

5449

5450

5451

5452

5453

5454

5455

5456

5457

5458

5459

5460

5461

5462

5463

5464

5465

5466

5467

5468

5469

5470

5471

5472

5473

5474

5475

5476

5477

5478

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

basename() System Interfaces

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
dirname(), the Base Definitions volume of IEEE Std 1003.1-200x, <libgen.h>, the Shell and
Utilities volume of IEEE Std 1003.1-200x, basename

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Normative text previously in the APPLICATION USAGE section is moved to the
DESCRIPTION.

A note indicating that this function need not be reentrant is added to the DESCRIPTION.

Issue 6
In the DESCRIPTION, the note about reentrancy is expanded to cover thread-safety.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/20 is applied, changing the
DESCRIPTION to make it clear that the string referenced is the string pointed to by path.

154 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

5479

5480

5481

5482

5483

5484

5485

5486

5487

5488

5489

5490

5491

5492

5493

5494

5495

5496

5497

5498

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces bind()

NAME
bind — bind a name to a socket

SYNOPSIS
#include <sys/socket.h>

int bind(int socket, c onst struct sockaddr * address,
socklen_t address_len);

DESCRIPTION
The bind() function shall assign a local socket address address to a socket identified by descriptor
socket that has no local socket address assigned. Sockets created with the socket() function are
initially unnamed; they are identified only by their address family.

The bind() function takes the following arguments:

socket Specifies the file descriptor of the socket to be bound.

address Points to a sockaddr structure containing the address to be bound to the
socket. The length and format of the address depend on the address family of
the socket.

address_len Specifies the length of the sockaddr structure pointed to by the address
argument.

The socket specified by socket may require the process to have appropriate privileges to use the
bind() function.

RETURN VALUE
Upon successful completion, bind() shall return 0; otherwise, −1 shall be returned and errno set
to indicate the error.

ERRORS
The bind() function shall fail if:

[EADDRINUSE] The specified address is already in use.

[EADDRNOTAVAIL]
The specified address is not available from the local machine.

[EAFNOSUPPORT]
The specified address is not a valid address for the address family of the
specified socket.

[EBADF] The socket argument is not a valid file descriptor.

[EINVAL] The socket is already bound to an address, and the protocol does not support
binding to a new address; or the socket has been shut down.

[ENOBUFS] Insufficient resources were available to complete the call.

[ENOTSOCK] The socket argument does not refer to a socket.

[EOPNOTSUPP] The socket type of the specified socket does not support binding to an address.

If the address family of the socket is AF_UNIX, then bind() shall fail if:

[EACCES] A component of the path prefix denies search permission, or the requested
name requires writing in a directory with a mode that denies write
permission.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 155

5499

5500

5501

5502

5503

5504

5505

5506

5507

5508

5509

5510

5511

5512

5513

5514

5515

5516

5517

5518

5519

5520

5521

5522

5523

5524

5525

5526

5527

5528

5529

5530

5531

5532

5533

5534

5535

5536

5537

5538

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

bind() System Interfaces

[EDESTADDRREQ] or [EISDIR]
The address argument is a null pointer.

[EIO] An I/O error occurred.

[ELOOP] A loop exists in symbolic links encountered during resolution of the pathname
in address.

[ENAMETOOLONG]
A component of a pathname exceeded {NAME_MAX} characters, or an entire
pathname exceeded {PATH_MAX} characters.

[ENOENT] A component of the pathname does not name an existing file or the pathname
is an empty string.

[ENOTDIR] A component of the path prefix of the pathname in address is not a directory.

[EROFS] The name would reside on a read-only file system.

The bind() function may fail if:

[EACCES] The specified address is protected and the current user does not have
permission to bind to it.

[EINVAL] The address_len argument is not a valid length for the address family.

[EISCONN] The socket is already connected.

[ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during
resolution of the pathname in address.

[ENAMETOOLONG]
Pathname resolution of a symbolic link produced an intermediate result
whose length exceeds {PATH_MAX}.

EXAMPLES
None.

APPLICATION USAGE
An application program can retrieve the assigned socket name with the getsockname() function.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
connect(), getsockname(), listen(), socket(), the Base Definitions volume of IEEE Std 1003.1-200x,
<sys/socket.h>

CHANGE HISTORY
First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

Issue 7
Austin Group Interpretation 1003.1-2001 #044 is applied, changing the ‘‘may fail’’ [ENOBUFS]
error to become a ‘‘shall fail’’ error.

156 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

5539

5540

5541

5542

5543

5544

5545

5546

5547

5548

5549

5550

5551

5552

5553

5554

5555

5556

5557

5558

5559

5560

5561

5562

5563

5564

5565

5566

5567

5568

5569

5570

5571

5572

5573

5574

5575

5576

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces bsearch()

NAME
bsearch — binary search a sorted table

SYNOPSIS
#include <stdlib.h>

void *bsearch(const void * key, c onst void * base, s ize_t nel,
size_t width, i nt (* compar)(const void *, const void *));

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

The bsearch() function shall search an array of nel objects, the initial element of which is pointed
to by base, for an element that matches the object pointed to by key. The size of each element in
the array is specified by width. If the nel argument has the value zero, the comparison function
pointed to by compar shall not be called and no match shall be found.

The comparison function pointed to by compar shall be called with two arguments that point to
the key object and to an array element, in that order.

The application shall ensure that the comparison function pointed to by compar does not alter the
contents of the array. The implementation may reorder elements of the array between calls to the
comparison function, but shall not alter the contents of any individual element.

The implementation shall ensure that the first argument is always a pointer to the key.

When the same objects (consisting of width bytes, irrespective of their current positions in the
array) are passed more than once to the comparison function, the results shall be consistent with
one another. That is, the same object shall always compare the same way with the key.

The application shall ensure that the function returns an integer less than, equal to, or greater
than 0 if the key object is considered, respectively, to be less than, to match, or to be greater than
the array element. The application shall ensure that the array consists of all the elements that
compare less than, all the elements that compare equal to, and all the elements that compare
greater than the key object, in that order.

RETURN VALUE
The bsearch() function shall return a pointer to a matching member of the array, or a null pointer
if no match is found. If two or more members compare equal, which member is returned is
unspecified.

ERRORS
No errors are defined.

EXAMPLES
The example below searches a table containing pointers to nodes consisting of a string and its
length. The table is ordered alphabetically on the string in the node pointed to by each entry.

The code fragment below reads in strings and either finds the corresponding node and prints
out the string and its length, or prints an error message.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define TABSIZE 1000

struct node { /* These are stored in the table. */

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 157

5577

5578

5579

5580

5581

5582

5583

5584

5585

5586

5587

5588

5589

5590

5591

5592

5593

5594

5595

5596

5597

5598

5599

5600

5601

5602

5603

5604

5605

5606

5607

5608

5609

5610

5611

5612

5613

5614

5615

5616

5617

5618

5619

5620

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

bsearch() System Interfaces

char *string;
int length;

};
struct node table[TABSIZE]; /* Table to be searched. */

.

.

.
{

struct node *node_ptr, node;
/* Routine to compare 2 nodes. */
int node_compare(const void *, const void *);
char str_space[20]; /* Space to read string into. */
.
.
.
node.string = str_space;
while (scanf("%s", node.string) != EOF) {

node_ptr = (struct node *)bsearch((void *)(&node),
(void *)table, TABSIZE,
sizeof(struct node), node_compare);

if (node_ptr != NULL) {
(void)printf("string = %20s, length = %d\n",

node_ptr->string, node_ptr->length);
} e lse {

(void)printf("not found: %s\n", node.string);
}

}
}
/*

This routine compares two nodes based on an
alphabetical ordering of the string field.

*/
int
node_compare(const void *node1, const void *node2)
{

return strcoll(((const struct node *)node1)->string,
((const struct node *)node2)->string);

}

APPLICATION USAGE
The pointers to the key and the element at the base of the table should be of type pointer-to-
element.

The comparison function need not compare every byte, so arbitrary data may be contained in
the elements in addition to the values being compared.

In practice, the array is usually sorted according to the comparison function.

RATIONALE
The requirement that the second argument (hereafter referred to as p) to the comparison function
is a pointer to an element of the array implies that for every call all of the following expressions
are non-zero:

((char *)p − (char *(base) % width == 0
(char *)p >= (char *)base
(char *)p < (char *)base + nel * width

158 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

5621

5622

5623

5624

5625

5626

5627

5628

5629

5630

5631

5632

5633

5634

5635

5636

5637

5638

5639

5640

5641

5642

5643

5644

5645

5646

5647

5648

5649

5650

5651

5652

5653

5654

5655

5656

5657

5658

5659

5660

5661

5662

5663

5664

5665

5666

5667

5668

5669

5670

5671

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces bsearch()

FUTURE DIRECTIONS
None.

SEE ALSO
hcreate(), lsearch(), qsort(), tsearch(), the Base Definitions volume of IEEE Std 1003.1-200x,
<stdlib.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/11 is applied, adding to the
DESCRIPTION the last sentence of the first non-shaded paragraph, and the following three
paragraphs. The RATIONALE section is also updated. These changes are for alignment with the
ISO C standard.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 159

5672

5673

5674

5675

5676

5677

5678

5679

5680

5681

5682

5683

5684

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

btowc() System Interfaces

NAME
btowc — single byte to wide character conversion

SYNOPSIS
#include <stdio.h>
#include <wchar.h>

wint_t btowc(int c);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

The btowc() function shall determine whether c constitutes a valid (one-byte) character in the
initial shift state.

The behavior of this function shall be affected by the LC_CTYPE category of the current locale.

RETURN VALUE
The btowc() function shall return WEOF if c has the value EOF or if (unsigned char) c does not
constitute a valid (one-byte) character in the initial shift state. Otherwise, it shall return the
wide-character representation of that character.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
wctob(), the Base Definitions volume of IEEE Std 1003.1-200x, <wchar.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with ISO/IEC 9899: 1990/Amendment 1: 1995
(E).

160 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

5685

5686

5687

5688

5689

5690

5691

5692

5693

5694

5695

5696

5697

5698

5699

5700

5701

5702

5703

5704

5705

5706

5707

5708

5709

5710

5711

5712

5713

5714

5715

5716

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces cabs()

NAME
cabs, cabsf, cabsl — return a complex absolute value

SYNOPSIS
#include <complex.h>

double cabs(double complex z);
float cabsf(float complex z);
long double cabsl(long double complex z);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

These functions shall compute the complex absolute value (also called norm, modulus, or
magnitude) of z.

RETURN VALUE
These functions shall return the complex absolute value.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
The Base Definitions volume of IEEE Std 1003.1-200x, <complex.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 161

5717

5718

5719

5720

5721

5722

5723

5724

5725

5726

5727

5728

5729

5730

5731

5732

5733

5734

5735

5736

5737

5738

5739

5740

5741

5742

5743

5744

5745

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

cacos() System Interfaces

NAME
cacos, cacosf, cacosl — complex arc cosine functions

SYNOPSIS
#include <complex.h>

double complex cacos(double complex z);
float complex cacosf(float complex z);
long double complex cacosl(long double complex z);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

These functions shall compute the complex arc cosine of z, with branch cuts outside the interval
[−1, +1] along the real axis.

RETURN VALUE
These functions shall return the complex arc cosine value, in the range of a strip mathematically
unbounded along the imaginary axis and in the interval [0, π] along the real axis.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
ccos(), the Base Definitions volume of IEEE Std 1003.1-200x, <complex.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

162 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

5746

5747

5748

5749

5750

5751

5752

5753

5754

5755

5756

5757

5758

5759

5760

5761

5762

5763

5764

5765

5766

5767

5768

5769

5770

5771

5772

5773

5774

5775

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces cacosh()

NAME
cacosh, cacoshf, cacoshl — complex arc hyperbolic cosine functions

SYNOPSIS
#include <complex.h>

double complex cacosh(double complex z);
float complex cacoshf(float complex z);
long double complex cacoshl(long double complex z);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

These functions shall compute the complex arc hyperbolic cosine of z, with a branch cut at
values less than 1 along the real axis.

RETURN VALUE
These functions shall return the complex arc hyperbolic cosine value, in the range of a half-strip
of non-negative values along the real axis and in the interval [−iπ, +iπ] along the imaginary axis.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
ccosh(), the Base Definitions volume of IEEE Std 1003.1-200x, <complex.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 163

5776

5777

5778

5779

5780

5781

5782

5783

5784

5785

5786

5787

5788

5789

5790

5791

5792

5793

5794

5795

5796

5797

5798

5799

5800

5801

5802

5803

5804

5805

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

cacosl() System Interfaces

NAME
cacosl — complex arc cosine functions

SYNOPSIS
#include <complex.h>

long double complex cacosl(long double complex z);

DESCRIPTION
Refer to cacos().

164 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

5806

5807

5808

5809

5810

5811

5812

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces calloc()

NAME
calloc — a memory allocator

SYNOPSIS
#include <stdlib.h>

void *calloc(size_t nelem, s ize_t elsize);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

The calloc() function shall allocate unused space for an array of nelem elements each of whose
size in bytes is elsize. The space shall be initialized to all bits 0.

The order and contiguity of storage allocated by successive calls to calloc() is unspecified. The
pointer returned if the allocation succeeds shall be suitably aligned so that it may be assigned to
a pointer to any type of object and then used to access such an object or an array of such objects
in the space allocated (until the space is explicitly freed or reallocated). Each such allocation shall
yield a pointer to an object disjoint from any other object. The pointer returned shall point to the
start (lowest byte address) of the allocated space. If the space cannot be allocated, a null pointer
shall be returned. If the size of the space requested is 0, the behavior is implementation-defined:
the value returned shall be either a null pointer or a unique pointer.

RETURN VALUE
Upon successful completion with both nelem and elsize non-zero, calloc() shall return a pointer to
the allocated space. If either nelem or elsize is 0, then either a null pointer or a unique pointer
value that can be successfully passed to free() shall be returned. Otherwise, it shall return a null

CX pointer and set errno to indicate the error.

ERRORS
The calloc() function shall fail if:

CX [ENOMEM] Insufficient memory is available.

EXAMPLES
None.

APPLICATION USAGE
There is now no requirement for the implementation to support the inclusion of <malloc.h>.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
free(), malloc(), realloc(), the Base Definitions volume of IEEE Std 1003.1-200x, <stdlib.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
Extensions beyond the ISO C standard are marked.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 165

5813

5814

5815

5816

5817

5818

5819

5820

5821

5822

5823

5824

5825

5826

5827

5828

5829

5830

5831

5832

5833

5834

5835

5836

5837

5838

5839

5840

5841

5842

5843

5844

5845

5846

5847

5848

5849

5850

5851

5852

5853

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

calloc() System Interfaces

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The setting of errno and the [ENOMEM] error condition are mandatory if an insufficient
memory condition occurs.

166 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

5854

5855

5856

5857

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces carg()

NAME
carg, cargf, cargl — complex argument functions

SYNOPSIS
#include <complex.h>

double carg(double complex z);
float cargf(float complex z);
long double cargl(long double complex z);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

These functions shall compute the argument (also called phase angle) of z, with a branch cut
along the negative real axis.

RETURN VALUE
These functions shall return the value of the argument in the interval [−π, +π].

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
cimag(), conj(), cproj(), the Base Definitions volume of IEEE Std 1003.1-200x, <complex.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 167

5858

5859

5860

5861

5862

5863

5864

5865

5866

5867

5868

5869

5870

5871

5872

5873

5874

5875

5876

5877

5878

5879

5880

5881

5882

5883

5884

5885

5886

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

casin() System Interfaces

NAME
casin, casinf, casinl — complex arc sine functions

SYNOPSIS
#include <complex.h>

double complex casin(double complex z);
float complex casinf(float complex z);
long double complex casinl(long double complex z);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

These functions shall compute the complex arc sine of z, with branch cuts outside the interval
[−1, +1] along the real axis.

RETURN VALUE
These functions shall return the complex arc sine value, in the range of a strip mathematically
unbounded along the imaginary axis and in the interval [−π/2, +π/2] along the real axis.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
csin(), the Base Definitions volume of IEEE Std 1003.1-200x, <complex.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

168 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

5887

5888

5889

5890

5891

5892

5893

5894

5895

5896

5897

5898

5899

5900

5901

5902

5903

5904

5905

5906

5907

5908

5909

5910

5911

5912

5913

5914

5915

5916

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces casinh()

NAME
casinh, casinhf, casinhl — complex arc hyperbolic sine functions

SYNOPSIS
#include <complex.h>

double complex casinh(double complex z);
float complex casinhf(float complex z);
long double complex casinhl(long double complex z);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

These functions shall compute the complex arc hyperbolic sine of z, with branch cuts outside the
interval [−i, +i] along the imaginary axis.

RETURN VALUE
These functions shall return the complex arc hyperbolic sine value, in the range of a strip
mathematically unbounded along the real axis and in the interval [−iπ/2, +iπ/2] along the
imaginary axis.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
csinh(), the Base Definitions volume of IEEE Std 1003.1-200x, <complex.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 169

5917

5918

5919

5920

5921

5922

5923

5924

5925

5926

5927

5928

5929

5930

5931

5932

5933

5934

5935

5936

5937

5938

5939

5940

5941

5942

5943

5944

5945

5946

5947

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

casinl() System Interfaces

NAME
casinl — complex arc sine functions

SYNOPSIS
#include <complex.h>

long double complex casinl(long double complex z);

DESCRIPTION
Refer to casin().

170 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

5948

5949

5950

5951

5952

5953

5954

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces catan()

NAME
catan, catanf, catanl — complex arc tangent functions

SYNOPSIS
#include <complex.h>

double complex catan(double complex z);
float complex catanf(float complex z);
long double complex catanl(long double complex z);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

These functions shall compute the complex arc tangent of z, with branch cuts outside the
interval [−i, +i] along the imaginary axis.

RETURN VALUE
These functions shall return the complex arc tangent value, in the range of a strip
mathematically unbounded along the imaginary axis and in the interval [−π/2, +π/2] along the
real axis.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
ctan(), the Base Definitions volume of IEEE Std 1003.1-200x, <complex.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 171

5955

5956

5957

5958

5959

5960

5961

5962

5963

5964

5965

5966

5967

5968

5969

5970

5971

5972

5973

5974

5975

5976

5977

5978

5979

5980

5981

5982

5983

5984

5985

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

catanh() System Interfaces

NAME
catanh, catanhf, catanhl — complex arc hyperbolic tangent functions

SYNOPSIS
#include <complex.h>

double complex catanh(double complex z);
float complex catanhf(float complex z);
long double complex catanhl(long double complex z);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

These functions shall compute the complex arc hyperbolic tangent of z, with branch cuts outside
the interval [−1, +1] along the real axis.

RETURN VALUE
These functions shall return the complex arc hyperbolic tangent value, in the range of a strip
mathematically unbounded along the real axis and in the interval [−iπ/2, +iπ/2] along the
imaginary axis.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
ctanh(), the Base Definitions volume of IEEE Std 1003.1-200x, <complex.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

172 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

5986

5987

5988

5989

5990

5991

5992

5993

5994

5995

5996

5997

5998

5999

6000

6001

6002

6003

6004

6005

6006

6007

6008

6009

6010

6011

6012

6013

6014

6015

6016

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces catanl()

NAME
catanl — complex arc tangent functions

SYNOPSIS
#include <complex.h>

long double complex catanl(long double complex z);

DESCRIPTION
Refer to catan().

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 173

6017

6018

6019

6020

6021

6022

6023

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

catclose() System Interfaces

NAME
catclose — close a message catalog descriptor

SYNOPSIS
#include <nl_types.h>

int catclose(nl_catd catd);

DESCRIPTION
The catclose() function shall close the message catalog identified by catd. If a file descriptor is
used to implement the type nl_catd, that file descriptor shall be closed.

RETURN VALUE
Upon successful completion, catclose() shall return 0; otherwise, −1 shall be returned, and errno
set to indicate the error.

ERRORS
The catclose() function may fail if:

[EBADF] The catalog descriptor is not valid.

[EINTR] The catclose() function was interrupted by a signal.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
catgets(), catopen(), the Base Definitions volume of IEEE Std 1003.1-200x, <nl_types.h>

CHANGE HISTORY
First released in Issue 2.

Issue 7
The catclose() function is moved from the XSI option to the Base.

174 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

6024

6025

6026

6027

6028

6029

6030

6031

6032

6033

6034

6035

6036

6037

6038

6039

6040

6041

6042

6043

6044

6045

6046

6047

6048

6049

6050

6051

6052

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces catgets()

NAME
catgets — read a program message

SYNOPSIS
#include <nl_types.h>

char *catgets(nl_catd catd, i nt s et_id, i nt msg_id, c onst char * s);

DESCRIPTION
The catgets() function shall attempt to read message msg_id, in set set_id, from the message
catalog identified by catd. The catd argument is a message catalog descriptor returned from an
earlier call to catopen(). The results are undefined if catd is not a value returned by catopen() for
a message catalog still open in the process. The s argument points to a default message string
which shall be returned by catgets() if it cannot retrieve the identified message.

The catgets() function need not be thread-safe. A function that is not required to be thread-safe is
not required to be reentrant.

RETURN VALUE
If the identified message is retrieved successfully, catgets() shall return a pointer to an internal
buffer area containing the null-terminated message string. If the call is unsuccessful for any
reason, s shall be returned and errno shall be set to indicate the error.

ERRORS
The catgets() function shall fail if:

[EINTR] The read operation was terminated due to the receipt of a signal, and no data
was transferred.

[ENOMSG] The message identified by set_id and msg_id is not in the message catalog.

The catgets() function may fail if:

[EBADF] The catd argument is not a valid message catalog descriptor open for reading.

[EBADMSG] The message identified by set_id and msg_id in the specified message catalog
did not satisfy implementation-defined security criteria.

[EINVAL] The message catalog identified by catd is corrupted.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
catclose(), catopen(), the Base Definitions volume of IEEE Std 1003.1-200x, <nl_types.h>

CHANGE HISTORY
First released in Issue 2.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 175

6053

6054

6055

6056

6057

6058

6059

6060

6061

6062

6063

6064

6065

6066

6067

6068

6069

6070

6071

6072

6073

6074

6075

6076

6077

6078

6079

6080

6081

6082

6083

6084

6085

6086

6087

6088

6089

6090

6091

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

catgets() System Interfaces

Issue 5
A note indicating that this function need not be reentrant is added to the DESCRIPTION.

Issue 6
In the DESCRIPTION, the note about reentrancy is expanded to cover thread-safety.

Issue 7
Austin Group Interpretation 1003.1-2001 #044 is applied, changing the ‘‘may fail’’ [EINTR] and
[ENOMSG] errors to become ‘‘shall fail’’ errors, updating the RETURN VALUE section, and
updating the DESCRIPTION to note that: ‘‘The results are undefined if catd is not a value
returned by catopen() for a message catalog still open in the process.

The catgets() function is moved from the XSI option to the Base.

176 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

6092

6093

6094

6095

6096

6097

6098

6099

6100

6101

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces catopen()

NAME
catopen — open a message catalog

SYNOPSIS
#include <nl_types.h>

nl_catd catopen(const char * name, i nt oflag);

DESCRIPTION
The catopen() function shall open a message catalog and return a message catalog descriptor.
The name argument specifies the name of the message catalog to be opened. If name contains a
’/’ , then name specifies a complete name for the message catalog. Otherwise, the environment
variable NLSPATH is used with name substituted for the %Nconversion specification (see the
Base Definitions volume of IEEE Std 1003.1-200x, Chapter 8, Environment Variables). If
NLSPATH exists in the environment when the process starts, then if the process has appropriate
privileges, the behavior of catopen() is undefined. If NLSPATH does not exist in the environment,
or if a message catalog cannot be found in any of the components specified by NLSPATH, then
an implementation-defined default path shall be used. This default may be affected by the
setting of LC_MESSAGES if the value of oflag is NL_CAT_LOCALE, or the LANG environment
variable if oflag is 0.

A message catalog descriptor shall remain valid in a process until that process closes it, or a
successful call to one of the exec functions. A change in the setting of the LC_MESSAGES
category may invalidate existing open catalogs.

If a file descriptor is used to implement message catalog descriptors, the FD_CLOEXEC flag
shall be set; see <fcntl.h>.

If the value of the oflag argument is 0, the LANG environment variable is used to locate the
catalog without regard to the LC_MESSAGES category. If the oflag argument is
NL_CAT_LOCALE, the LC_MESSAGES category is used to locate the message catalog (see the
Base Definitions volume of IEEE Std 1003.1-200x, Section 8.2, Internationalization Variables).

RETURN VALUE
Upon successful completion, catopen() shall return a message catalog descriptor for use on
subsequent calls to catgets() and catclose(). Otherwise, catopen() shall return (nl_catd) −1 and set
errno to indicate the error.

ERRORS
The catopen() function may fail if:

[EACCES] Search permission is denied for the component of the path prefix of the
message catalog or read permission is denied for the message catalog.

[EMFILE] All file descriptors available to the process are currently open.

[ENAMETOOLONG]
The length of a pathname of the message catalog exceeds {PATH_MAX} or a
pathname component is longer than {NAME_MAX}.

[ENAMETOOLONG]
Pathname resolution of a symbolic link produced an intermediate result
whose length exceeds {PATH_MAX}.

[ENFILE] Too many files are currently open in the system.

[ENOENT] The message catalog does not exist or the name argument points to an empty
string.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 177

6102

6103

6104

6105

6106

6107

6108

6109

6110

6111

6112

6113

6114

6115

6116

6117

6118

6119

6120

6121

6122

6123

6124

6125

6126

6127

6128

6129

6130

6131

6132

6133

6134

6135

6136

6137

6138

6139

6140

6141

6142

6143

6144

6145

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

catopen() System Interfaces

[ENOMEM] Insufficient storage space is available.

[ENOTDIR] A component of the path prefix of the message catalog is not a directory.

EXAMPLES
None.

APPLICATION USAGE
Some implementations of catopen() use malloc() to allocate space for internal buffer areas. The
catopen() function may fail if there is insufficient storage space available to accommodate these
buffers.

Conforming applications must assume that message catalog descriptors are not valid after a call
to one of the exec functions.

Application writers should be aware that guidelines for the location of message catalogs have
not yet been developed. Therefore they should take care to avoid conflicting with catalogs used
by other applications and the standard utilities.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
catclose(), catgets(), the Base Definitions volume of IEEE Std 1003.1-200x, <fcntl.h>,
<nl_types.h>, the Shell and Utilities volume of IEEE Std 1003.1-200x

CHANGE HISTORY
First released in Issue 2.

Issue 7
SD5-XBD-ERN-4 is applied, changing the definition of the [EMFILE] error.

The catopen() function is moved from the XSI option to the Base.

178 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

6146

6147

6148

6149

6150

6151

6152

6153

6154

6155

6156

6157

6158

6159

6160

6161

6162

6163

6164

6165

6166

6167

6168

6169

6170

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces cbrt()

NAME
cbrt, cbrtf, cbrtl — cube root functions

SYNOPSIS
#include <math.h>

double cbrt(double x);
float cbrtf(float x);
long double cbrtl(long double x);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

These functions shall compute the real cube root of their argument x.

RETURN VALUE
Upon successful completion, these functions shall return the cube root of x.

MX If x is NaN, a NaN shall be returned.

If x is ±0 or ±Inf, x shall be returned.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
For some applications, a true cube root function, which returns negative results for negative
arguments, is more appropriate than pow(x, 1.0/3.0), which returns a NaN for x less than 0.

FUTURE DIRECTIONS
None.

SEE ALSO
The Base Definitions volume of IEEE Std 1003.1-200x, <math.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Issue 6
The cbrt() function is no longer marked as an extension.

The cbrtf() and cbrtl() functions are added for alignment with the ISO/IEC 9899: 1999 standard.

The DESCRIPTION, RETURN VALUE, ERRORS, and APPLICATION USAGE sections are
revised to align with the ISO/IEC 9899: 1999 standard.

IEC 60559: 1989 standard floating-point extensions over the ISO/IEC 9899: 1999 standard are
marked.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 179

6171

6172

6173

6174

6175

6176

6177

6178

6179

6180

6181

6182

6183

6184

6185

6186

6187

6188

6189

6190

6191

6192

6193

6194

6195

6196

6197

6198

6199

6200

6201

6202

6203

6204

6205

6206

6207

6208

6209

6210

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

ccos() System Interfaces

NAME
ccos, ccosf, ccosl — complex cosine functions

SYNOPSIS
#include <complex.h>

double complex ccos(double complex z);
float complex ccosf(float complex z);
long double complex ccosl(long double complex z);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

These functions shall compute the complex cosine of z.

RETURN VALUE
These functions shall return the complex cosine value.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
cacos(), the Base Definitions volume of IEEE Std 1003.1-200x, <complex.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

180 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

6211

6212

6213

6214

6215

6216

6217

6218

6219

6220

6221

6222

6223

6224

6225

6226

6227

6228

6229

6230

6231

6232

6233

6234

6235

6236

6237

6238

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces ccosh()

NAME
ccosh, ccoshf, ccoshl — complex hyperbolic cosine functions

SYNOPSIS
#include <complex.h>

double complex ccosh(double complex z);
float complex ccoshf(float complex z);
long double complex ccoshl(long double complex z);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

These functions shall compute the complex hyperbolic cosine of z.

RETURN VALUE
These functions shall return the complex hyperbolic cosine value.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
cacosh(), the Base Definitions volume of IEEE Std 1003.1-200x, <complex.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 181

6239

6240

6241

6242

6243

6244

6245

6246

6247

6248

6249

6250

6251

6252

6253

6254

6255

6256

6257

6258

6259

6260

6261

6262

6263

6264

6265

6266

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

ccosl() System Interfaces

NAME
ccosl — complex cosine functions

SYNOPSIS
#include <complex.h>

long double complex ccosl(long double complex z);

DESCRIPTION
Refer to ccos().

182 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

6267

6268

6269

6270

6271

6272

6273

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces ceil()

NAME
ceil, ceilf, ceill — ceiling value function

SYNOPSIS
#include <math.h>

double ceil(double x);
float ceilf(float x);
long double ceill(long double x);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

These functions shall compute the smallest integral value not less than x.

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-
zero, an error has occurred.

RETURN VALUE
Upon successful completion, ceil(), ceilf(), and ceill() shall return the smallest integral value not
less than x, expressed as a type double, float, or long double, respectively.

MX If x is NaN, a NaN shall be returned.

If x is ±0 or ±Inf, x shall be returned.

XSI If the correct value would cause overflow, a range error shall occur and ceil(), ceilf(), and ceill()
shall return the value of the macro HUGE_VAL, HUGE_VALF, and HUGE_VALL, respectively.

ERRORS
These functions shall fail if:

XSI Range Error The result overflows.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the overflow
floating-point exception shall be raised.

EXAMPLES
None.

APPLICATION USAGE
The integral value returned by these functions need not be expressible as an int or long. The
return value should be tested before assigning it to an integer type to avoid the undefined
results of an integer overflow.

The ceil() function can only overflow when the floating-point representation has
DBL_MANT_DIG > DBL_MAX_EXP.

On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling &
MATH_ERREXCEPT) are independent of each other, but at least one of them must be non-zero.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 183

6274

6275

6276

6277

6278

6279

6280

6281

6282

6283

6284

6285

6286

6287

6288

6289

6290

6291

6292

6293

6294

6295

6296

6297

6298

6299

6300

6301

6302

6303

6304

6305

6306

6307

6308

6309

6310

6311

6312

6313

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

ceil() System Interfaces

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
feclearexcept(), fetestexcept(), floor(), isnan(), the Base Definitions volume of IEEE Std 1003.1-200x,
Section 4.18, Treatment of Error Conditions for Mathematical Functions, <math.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The DESCRIPTION is updated to indicate how an application should check for an error. This
text was previously published in the APPLICATION USAGE section.

Issue 6
The ceilf() and ceill() functions are added for alignment with the ISO/IEC 9899: 1999 standard.

The DESCRIPTION, RETURN VALUE, ERRORS, and APPLICATION USAGE sections are
revised to align with the ISO/IEC 9899: 1999 standard.

IEC 60559: 1989 standard floating-point extensions over the ISO/IEC 9899: 1999 standard are
marked.

184 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

6314

6315

6316

6317

6318

6319

6320

6321

6322

6323

6324

6325

6326

6327

6328

6329

6330

6331

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces cexp()

NAME
cexp, cexpf, cexpl — complex exponential functions

SYNOPSIS
#include <complex.h>

double complex cexp(double complex z);
float complex cexpf(float complex z);
long double complex cexpl(long double complex z);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

These functions shall compute the complex exponent of z, defined as ez.

RETURN VALUE
These functions shall return the complex exponential value of z.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
clog(), the Base Definitions volume of IEEE Std 1003.1-200x, <complex.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 185

6332

6333

6334

6335

6336

6337

6338

6339

6340

6341

6342

6343

6344

6345

6346

6347

6348

6349

6350

6351

6352

6353

6354

6355

6356

6357

6358

6359

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

cfgetispeed() System Interfaces

NAME
cfgetispeed — get input baud rate

SYNOPSIS
#include <termios.h>

speed_t cfgetispeed(const struct termios * termios_p);

DESCRIPTION
The cfgetispeed() function shall extract the input baud rate from the termios structure to which
the termios_p argument points.

This function shall return exactly the value in the termios data structure, without interpretation.

RETURN VALUE
Upon successful completion, cfgetispeed() shall return a value of type speed_t representing the
input baud rate.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
The term ‘‘baud’’ is used historically here, but is not technically correct. This is properly ‘‘bits per
second’’, which may not be the same as baud. However, the term is used because of the
historical usage and understanding.

The cfgetospeed(), cfgetispeed(), cfsetospeed(), and cfsetispeed() functions do not take arguments as
numbers, but rather as symbolic names. There are two reasons for this:

1. Historically, numbers were not used because of the way the rate was stored in the data
structure. This is retained even though a function is now used.

2. More importantly, only a limited set of possible rates is at all portable, and this constrains
the application to that set.

There is nothing to prevent an implementation accepting as an extension a number (such as 126),
and since the encoding of the Bxxx symbols is not specified, this can be done to avoid
introducing ambiguity.

Setting the input baud rate to zero was a mechanism to allow for split baud rates. Clarifications
in this volume of IEEE Std 1003.1-200x have made it possible to determine whether split rates
are supported and to support them without having to treat zero as a special case. Since this
functionality is also confusing, it has been declared obsolescent. The 0 argument referred to is
the literal constant 0, not the symbolic constant B0. This volume of IEEE Std 1003.1-200x does not
preclude B0 from being defined as the value 0; in fact, implementations would likely benefit
from the two being equivalent. This volume of IEEE Std 1003.1-200x does not fully specify
whether the previous cfsetispeed() value is retained after a tcgetattr() as the actual value or as
zero. Therefore, conforming applications should always set both the input speed and output
speed when setting either.

In historical implementations, the baud rate information is traditionally kept in c_cflag.
Applications should be written to presume that this might be the case (and thus not blindly copy
c_cflag), but not to rely on it in case it is in some other field of the structure. Setting the c_cflag

186 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

6360

6361

6362

6363

6364

6365

6366

6367

6368

6369

6370

6371

6372

6373

6374

6375

6376

6377

6378

6379

6380

6381

6382

6383

6384

6385

6386

6387

6388

6389

6390

6391

6392

6393

6394

6395

6396

6397

6398

6399

6400

6401

6402

6403

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces cfgetispeed()

field absolutely after setting a baud rate is a non-portable action because of this. In general, the
unused parts of the flag fields might be used by the implementation and should not be blindly
copied from the descriptions of one terminal device to another.

FUTURE DIRECTIONS
None.

SEE ALSO
cfgetospeed(), cfsetispeed(), cfsetospeed(), tcgetattr(), the Base Definitions volume of
IEEE Std 1003.1-200x, Chapter 11, General Terminal Interface, <termios.h>

CHANGE HISTORY
First released in Issue 3. Included for alignment with the POSIX.1-1988 standard.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 187

6404

6405

6406

6407

6408

6409

6410

6411

6412

6413

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

cfgetospeed() System Interfaces

NAME
cfgetospeed — get output baud rate

SYNOPSIS
#include <termios.h>

speed_t cfgetospeed(const struct termios * termios_p);

DESCRIPTION
The cfgetospeed() function shall extract the output baud rate from the termios structure to which
the termios_p argument points.

This function shall return exactly the value in the termios data structure, without interpretation.

RETURN VALUE
Upon successful completion, cfgetospeed() shall return a value of type speed_t representing the
output baud rate.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
Refer to cfgetispeed().

FUTURE DIRECTIONS
None.

SEE ALSO
cfgetispeed(), cfsetispeed(), cfsetospeed(), tcgetattr(), the Base Definitions volume of
IEEE Std 1003.1-200x, Chapter 11, General Terminal Interface, <termios.h>

CHANGE HISTORY
First released in Issue 3. Included for alignment with the POSIX.1-1988 standard.

188 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

6414

6415

6416

6417

6418

6419

6420

6421

6422

6423

6424

6425

6426

6427

6428

6429

6430

6431

6432

6433

6434

6435

6436

6437

6438

6439

6440

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces cfsetispeed()

NAME
cfsetispeed — set input baud rate

SYNOPSIS
#include <termios.h>

int cfsetispeed(struct termios * termios_p, s peed_t speed);

DESCRIPTION
The cfsetispeed() function shall set the input baud rate stored in the structure pointed to by
termios_p to speed.

There shall be no effect on the baud rates set in the hardware until a subsequent successful call
to tcsetattr() with the same termios structure. Similarly, errors resulting from attempts to set
baud rates not supported by the terminal device need not be detected until the tcsetattr()
function is called.

RETURN VALUE
Upon successful completion, cfsetispeed() shall return 0; otherwise, −1 shall be returned, and
errno may be set to indicate the error.

ERRORS
The cfsetispeed() function may fail if:

[EINVAL] The speed value is not a valid baud rate.

[EINVAL] The value of speed is outside the range of possible speed values as specified in
<termios.h>.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
Refer to cfgetispeed().

FUTURE DIRECTIONS
None.

SEE ALSO
cfgetispeed(), cfgetospeed(), cfsetospeed(), tcsetattr(), the Base Definitions volume of
IEEE Std 1003.1-200x, Chapter 11, General Terminal Interface, <termios.h>

CHANGE HISTORY
First released in Issue 3. Included for alignment with the POSIX.1-1988 standard.

Issue 6
The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The optional setting of errno and the [EINVAL] error conditions are added.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 189

6441

6442

6443

6444

6445

6446

6447

6448

6449

6450

6451

6452

6453

6454

6455

6456

6457

6458

6459

6460

6461

6462

6463

6464

6465

6466

6467

6468

6469

6470

6471

6472

6473

6474

6475

6476

6477

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

cfsetospeed() System Interfaces

NAME
cfsetospeed — set output baud rate

SYNOPSIS
#include <termios.h>

int cfsetospeed(struct termios * termios_p, s peed_t speed);

DESCRIPTION
The cfsetospeed() function shall set the output baud rate stored in the structure pointed to by
termios_p to speed.

There shall be no effect on the baud rates set in the hardware until a subsequent successful call
to tcsetattr() with the same termios structure. Similarly, errors resulting from attempts to set
baud rates not supported by the terminal device need not be detected until the tcsetattr()
function is called.

RETURN VALUE
Upon successful completion, cfsetospeed() shall return 0; otherwise, it shall return −1 and errno
may be set to indicate the error.

ERRORS
The cfsetospeed() function may fail if:

[EINVAL] The speed value is not a valid baud rate.

[EINVAL] The value of speed is outside the range of possible speed values as specified in
<termios.h>.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
Refer to cfgetispeed().

FUTURE DIRECTIONS
None.

SEE ALSO
cfgetispeed(), cfgetospeed(), cfsetispeed(), tcsetattr(), the Base Definitions volume of
IEEE Std 1003.1-200x, Chapter 11, General Terminal Interface, <termios.h>

CHANGE HISTORY
First released in Issue 3. Included for alignment with the POSIX.1-1988 standard.

Issue 6
The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The optional setting of errno and the [EINVAL] error conditions are added.

190 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

6478

6479

6480

6481

6482

6483

6484

6485

6486

6487

6488

6489

6490

6491

6492

6493

6494

6495

6496

6497

6498

6499

6500

6501

6502

6503

6504

6505

6506

6507

6508

6509

6510

6511

6512

6513

6514

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces chdir()

NAME
chdir — change working directory

SYNOPSIS
#include <unistd.h>

int chdir(const char * path);

DESCRIPTION
The chdir() function shall cause the directory named by the pathname pointed to by the path
argument to become the current working directory; that is, the starting point for path searches
for pathnames not beginning with ’/’ .

RETURN VALUE
Upon successful completion, 0 shall be returned. Otherwise, −1 shall be returned, the current
working directory shall remain unchanged, and errno shall be set to indicate the error.

ERRORS
The chdir() function shall fail if:

[EACCES] Search permission is denied for any component of the pathname.

[ELOOP] A loop exists in symbolic links encountered during resolution of the path
argument.

[ENAMETOOLONG]
The length of the path argument exceeds {PATH_MAX} or a pathname
component is longer than {NAME_MAX}.

[ENOENT] A component of path does not name an existing directory or path is an empty
string.

[ENOTDIR] A component of the pathname is not a directory.

The chdir() function may fail if:

[ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during
resolution of the path argument.

[ENAMETOOLONG]
As a result of encountering a symbolic link in resolution of the path argument,
the length of the substituted pathname string exceeded {PATH_MAX}.

EXAMPLES

Changing the Current Working Directory

The following example makes the value pointed to by directory, /tmp, the current working
directory.

#include <unistd.h>
...
char *directory = "/tmp";
int ret;

ret = chdir (directory);

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 191

6515

6516

6517

6518

6519

6520

6521

6522

6523

6524

6525

6526

6527

6528

6529

6530

6531

6532

6533

6534

6535

6536

6537

6538

6539

6540

6541

6542

6543

6544

6545

6546

6547

6548

6549

6550

6551

6552

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

chdir() System Interfaces

APPLICATION USAGE
None.

RATIONALE
The chdir() function only affects the working directory of the current process.

FUTURE DIRECTIONS
None.

SEE ALSO
getcwd(), the Base Definitions volume of IEEE Std 1003.1-200x, <unistd.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
The APPLICATION USAGE section is added.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The [ELOOP] mandatory error condition is added.

• A second [ENAMETOOLONG] is added as an optional error condition.

The following changes were made to align with the IEEE P1003.1a draft standard:

• The [ELOOP] optional error condition is added.

192 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

6553

6554

6555

6556

6557

6558

6559

6560

6561

6562

6563

6564

6565

6566

6567

6568

6569

6570

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces chmod()

NAME
chmod, fchmodat — change mode of a file relative to directory file descriptor

SYNOPSIS
#include <sys/stat.h>

int chmod(const char * path, mode_t mode);
int fchmodat(int fd, c onst char * path, mode_t mode, i nt flag);

DESCRIPTION
XSI The chmod() function shall change S_ISUID, S_ISGID, S_ISVTX, and the file permission bits of

the file named by the pathname pointed to by the path argument to the corresponding bits in the
mode argument. The application shall ensure t

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

chmod() System Interfaces

[ENOTDIR] A component of the path prefix is not a directory.

[ENOENT] A component of path does not name an existing file or path is an empty string.

[EPERM] The effective user ID does not match the owner of the file and the process does
not have appropriate privileges.

[EROFS] The named file resides on a read-only file system.

The fchmodat() function shall fail if:

[EBADF] The path argument does not specify an absolute path and the fd argument is
neither AT_FDCWD nor a valid file descriptor open for searching.

These functions may fail if:

[EINTR] A signal was caught during execution of the function.

[EINVAL] The value of the mode argument is invalid.

[ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during
resolution of the path argument.

[ENAMETOOLONG]
As a result of encountering a symbolic link in resolution of the path argument,
the length of the substituted pathname strings exceeded {PATH_MAX}.

The fchmodat() function may fail if:

[EINVAL] The value of the flag argument is invalid.

[ENOTDIR] The path argument is not an absolute path and fd is neither AT_FDCWD nor a
file descriptor associated with a directory.

[EOPNOTSUPP] The AT_SYMLINK_NOFOLLOW bit is set in the flag argument, path names a
symbolic link, and the system does not support changing the mode of a
symbolic link.

EXAMPLES

Setting Read Permissions for User, Group, and Others

The following example sets read permissions for the owner, group, and others.

#include <sys/stat.h>

const char *path;
...
chmod(path, S_IRUSR|S_IRGRP|S_IROTH);

Setting Read, Write, and Execute Permissions for the Owner Only

The following example sets read, write, and execute permissions for the owner, and no
permissions for group and others.

#include <sys/stat.h>

const char *path;
...
chmod(path, S_IRWXU);

194 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

6614

6615

6616

6617

6618

6619

6620

6621

6622

6623

6624

6625

6626

6627

6628

6629

6630

6631

6632

6633

6634

6635

6636

6637

6638

6639

6640

6641

6642

6643

6644

6645

6646

6647

6648

6649

6650

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces chmod()

Setting Different Permissions for Owner, Group, and Other

The following example sets owner permissions for CHANGEFILE to read, write, and execute,
group permissions to read and execute, and other permissions to read.

#include <sys/stat.h>

#define CHANGEFILE "/etc/myfile"
...
chmod(CHANGEFILE, S_IRWXU|S_IRGRP|S_IXGRP|S_IROTH);

Setting and Checking File Permissions

The following example sets the file permission bits for a file named /home/cnd/mod1, then calls
the stat() function to verify the permissions.

#include <sys/types.h>
#include <sys/stat.h>

int status;
struct stat buffer
...
chmod("home/cnd/mod1", S_IRWXU|S_IRWXG|S_IROTH|S_IWOTH);
status = stat("home/cnd/mod1", &buffer;);

APPLICATION USAGE
In order to ensure that the S_ISUID and S_ISGID bits are set, an application requiring this
should use stat() after a successful chmod() to verify this.

Any file descriptors currently open by any process on the file could possibly become invalid if
the mode of the file is changed to a value which would deny access to that process. One
situation where this could occur is on a stateless file system. This behavior will not occur in a
conforming environment.

RATIONALE
This volume of IEEE Std 1003.1-200x specifies that the S_ISGID bit is cleared by chmod() on a
regular file under certain conditions. This is specified on the assumption that regular files may
be executed, and the system should prevent users from making executable setgid() files perform
with privileges that the caller does not have. On implementations that support execution of
other file types, the S_ISGID bit should be cleared for those file types under the same
circumstances.

Implementations that use the S_ISUID bit to indicate some other function (for example,
mandatory record locking) on non-executable files need not clear this bit on writing. They
should clear the bit for executable files and any other cases where the bit grants special powers
to processes that change the file contents. Similar comments apply to the S_ISGID bit.

The purpose of the fchmodat() function is to enable changing the mode of files in directories
other than the current working directory without exposure to race conditions. Any part of the
path of a file could be changed in parallel to a call to chmod(), resulting in unspecified behavior.
By opening a file descriptor for the target directory and using the fchmodat() function it can be
guaranteed that the changed file is located relative to the desired directory. Some
implementations might allow changing the mode of symbolic links. This is not supported by the
interfaces in the POSIX specification. Systems with such support provide an interface named
lchmod(). To support such implementations fchmodat() has a flag parameter.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 195

6651

6652

6653

6654

6655

6656

6657

6658

6659

6660

6661

6662

6663

6664

6665

6666

6667

6668

6669

6670

6671

6672

6673

6674

6675

6676

6677

6678

6679

6680

6681

6682

6683

6684

6685

6686

6687

6688

6689

6690

6691

6692

6693

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

chmod() System Interfaces

FUTURE DIRECTIONS
None.

SEE ALSO
access(), chown(), exec , fstatat(), mkdir(), mkfifo(), mknod(), open(), statvfs(), the Base Definitions
volume of IEEE Std 1003.1-200x, <fcntl.h>, <sys/stat.h>, <sys/types.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
required for conforming implementations of previous POSIX specifications, it was not
required for UNIX applications.

• The [EINVAL] and [EINTR] optional error conditions are added.

• A second [ENAMETOOLONG] is added as an optional error condition.

The following changes were made to align with the IEEE P1003.1a draft standard:

• The [ELOOP] optional error condition is added.

The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

Issue 7
The fchmodat() function is added from The Open Group Technical Standard, 2006, Extended API
Set Part 2.

196 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

6694

6695

6696

6697

6698

6699

6700

6701

6702

6703

6704

6705

6706

6707

6708

6709

6710

6711

6712

6713

6714

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces chown()

NAME
chown, fchownat — change owner and group of a file relative to directory file descriptor

SYNOPSIS
#include <unistd.h>

int chown(const char * path, u id_t owner, g id_t group);
int fchownat(int fd, c onst char * path, u id_t owner, g id_t group,

int flag);

DESCRIPTION
The chown() function shall change the user and group ownership of a file.

The path argument points to a pathname naming a file. The user ID and group ID of the named
file shall be set to the numeric values contained in owner and group, respectively.

Only processes with an effective user ID equal to the user ID of the file or with appropriate
privileges may change the ownership of a file. If _POSIX_CHOWN_RESTRICTED is in effect for
path:

• Changing the user ID is restricted to processes with appropriate privileges.

• Changing the group ID is permitted to a process with an effective user ID equal to the user
ID of the file, but without appropriate privileges, if and only if owner is equal to the file’s
user ID or (uid_t)−1 and group is equal either to the calling process’ effective group ID or to
one of its supplementary group IDs.

If the specified file is a regular file, one or more of the S_IXUSR, S_IXGRP, or S_IXOTH bits of
the file mode are set, and the process does not have appropriate privileges, the set-user-ID
(S_ISUID) and set-group-ID (S_ISGID) bits of the file mode shall be cleared upon successful
return from chown(). If the specified file is a regular file, one or more of the S_IXUSR, S_IXGRP,
or S_IXOTH bits of the file mode are set, and the process has appropriate privileges, it is
implementation-defined whether the set-user-ID and set-group-ID bits are altered. If the chown()
function is successfully invoked on a file that is not a regular file and one or more of the
S_IXUSR, S_IXGRP, or S_IXOTH bits of the file mode are set, the set-user-ID and set-group-ID
bits may be cleared.

If owner or group is specified as (uid_t)−1 or (gid_t)−1, respectively, the corresponding ID of the
file shall not be changed. If both owner and group are −1, the times need not be updated.

Upon successful completion, chown() shall mark for update the st_ctime field of the file.

The fchownat() function shall be equivalent to the chown() and lchown() functions except in the
case where path specifies a relative path. In this case the file to be changed is determined relative
to the directory associated with the file descriptor fd instead of the current working directory. It
is unspecified whether directory searches are permitted based on whether the file was opened
with search permission or on the current permissions of the directory underlying the file
descriptor.

Values for flag are constructed by a bitwise-inclusive OR of flags from the following list, defined
in <fcntl.h>:

AT_SYMLINK_NOFOLLOW
If path names a symbolic link, ownership of the symbolic link is changed.

If fchownat() is passed the special value AT_FDCWD in the fd parameter, the current working
directory is used and the behavior shall be identical to a call to chown() or lchown() respectively,
depending on whether or not the AT_SYMLINK_NOFOLLOW bit is set in the flag argument.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 197

6715

6716

6717

6718

6719

6720

6721

6722

6723

6724

6725

6726

6727

6728

6729

6730

6731

6732

6733

6734

6735

6736

6737

6738

6739

6740

6741

6742

6743

6744

6745

6746

6747

6748

6749

6750

6751

6752

6753

6754

6755

6756

6757

6758

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

chown() System Interfaces

RETURN VALUE
Upon successful completion, these functions shall return 0. Otherwise, these functions shall
return −1 and set errno to indicate the error. If −1 is returned, no changes are made in the user ID
and group ID of the file.

ERRORS
These functions shall fail if:

[EACCES] Search permission is denied on a component of the path prefix.

[ELOOP] A loop exists in symbolic links encountered during resolution of the path
argument.

[ENAMETOOLONG]
The length of the path argument exceeds {PATH_MAX} or a pathname
component is longer than {NAME_MAX}.

[ENOTDIR] A component of the path prefix is not a directory.

[ENOENT] A component of path does not name an existing file or path is an empty string.

[EPERM] The effective user ID does not match the owner of the file, or the calling
process does not have appropriate privileges and
_POSIX_CHOWN_RESTRICTED indicates that such privilege is required.

[EROFS] The named file resides on a read-only file system.

The fchownat() function shall fail if:

[EBADF] The path argument does not specify an absolute path and the fd argument is
neither AT_FDCWD nor a valid file descriptor open for searching.

These functions may fail if:

[EIO] An I/O error occurred while reading or writing to the file system.

[EINTR] The chown() function was interrupted by a signal which was caught.

[EINVAL] The owner or group ID supplied is not a value supported by the
implementation.

[ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during
resolution of the path argument.

[ENAMETOOLONG]
As a result of encountering a symbolic link in resolution of the path argument,
the length of the substituted pathname string exceeded {PATH_MAX}.

The fchownat() function may fail if:

[EINVAL] The value of the flag argument is not valid.

[ENOTDIR] The path argument is not an absolute path and fd is neither AT_FDCWD nor a
file descriptor associated with a directory.

[EOPNOTSUPP] The path argument names a symbolic link and the implementation does not
support setting the owner or group of a symbolic link.

198 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

6759

6760

6761

6762

6763

6764

6765

6766

6767

6768

6769

6770

6771

6772

6773

6774

6775

6776

6777

6778

6779

6780

6781

6782

6783

6784

6785

6786

6787

6788

6789

6790

6791

6792

6793

6794

6795

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

chown() System Interfaces

• The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
required for conforming implementations of previous POSIX specifications, it was not
required for UNIX applications.

• The value for owner of (uid_t)−1 allows the use of −1 by the owner of a file to change the
group ID only. A corresponding change is made for group.

• The [ELOOP] mandatory error condition is added.

• The [EIO] and [EINTR] optional error conditions are added.

• A second [ENAMETOOLONG] is added as an optional error condition.

The following changes were made to align with the IEEE P1003.1a draft standard:

• Clarification is added that the S_ISUID and S_ISGID bits do not need to be cleared when
the process has appropriate privileges.

• The [ELOOP] optional error condition is added.

Issue 7
The fchownat() function is added from The Open Group Technical Standard, 2006, Extended API
Set Part 2.

200 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

6843

6844

6845

6846

6847

6848

6849

6850

6851

6852

6853

6854

6855

6856

6857

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces cimag()

NAME
cimag, cimagf, cimagl — complex imaginary functions

SYNOPSIS
#include <complex.h>

double cimag(double complex z);
float cimagf(float complex z);
long double cimagl(long double complex z);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

These functions shall compute the imaginary part of z.

RETURN VALUE
These functions shall return the imaginary part value (as a real).

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
For a variable z of complex type:

z == c real(z) + cimag(z)*I

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
carg(), conj(), cproj(), creal(), the Base Definitions volume of IEEE Std 1003.1-200x, <complex.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 201

6858

6859

6860

6861

6862

6863

6864

6865

6866

6867

6868

6869

6870

6871

6872

6873

6874

6875

6876

6877

6878

6879

6880

6881

6882

6883

6884

6885

6886

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

clearerr() System Interfaces

NAME
clearerr — clear indicators on a stream

SYNOPSIS
#include <stdio.h>

void clearerr(FILE * stream);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

The clearerr() function shall clear the end-of-file and error indicators for the stream to which
stream points.

RETURN VALUE
The clearerr() function shall not return a value.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
The Base Definitions volume of IEEE Std 1003.1-200x, <stdio.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

202 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

6887

6888

6889

6890

6891

6892

6893

6894

6895

6896

6897

6898

6899

6900

6901

6902

6903

6904

6905

6906

6907

6908

6909

6910

6911

6912

6913

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces clock()

NAME
clock — report CPU time used

SYNOPSIS
#include <time.h>

clock_t clock(void);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

The clock() function shall return the implementation’s best approximation to the processor time
used by the process since the beginning of an implementation-defined era related only to the
process invocation.

RETURN VALUE
To determine the time in seconds, the value returned by clock() should be divided by the value

XSI of the macro CLOCKS_PER_SEC. CLOCKS_PER_SEC is defined to be one million in <time.h>.
If the processor time used is not available or its value cannot be represented, the function shall
return the value (clock_t)−1.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
In order to measure the time spent in a program, clock() should be called at the start of the
program and its return value subtracted from the value returned by subsequent calls. The value
returned by clock() is defined for compatibility across systems that have clocks with different
resolutions. The resolution on any particular system need not be to microsecond accuracy.

The value returned by clock() may wrap around on some implementations. For example, on a
machine with 32-bit values for clock_t, it wraps after 2 147 seconds or 36 minutes.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
asctime(), ctime(), difftime(), gmtime(), localtime(), mktime(), strftime(), strptime(), time(), utime(),
the Base Definitions volume of IEEE Std 1003.1-200x, <time.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 203

6914

6915

6916

6917

6918

6919

6920

6921

6922

6923

6924

6925

6926

6927

6928

6929

6930

6931

6932

6933

6934

6935

6936

6937

6938

6939

6940

6941

6942

6943

6944

6945

6946

6947

6948

6949

6950

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

clock_getcpuclockid() System Interfaces

NAME
clock_getcpuclockid — access a process CPU-time clock (ADVANCED REALTIME)

SYNOPSIS
CPT #include <time.h>

int clock_getcpuclockid(pid_t pid, c lockid_t * clock_id);

DESCRIPTION
The clock_getcpuclockid() function shall return the clock ID of the CPU-time clock of the process
specified by pid. If the process described by pid exists and the calling process has permission, the
clock ID of this clock shall be returned in clock_id.

If pid is zero, the clock_getcpuclockid() function shall return the clock ID of the CPU-time clock of
the process making the call, in clock_id.

The conditions under which one process has permission to obtain the CPU-time clock ID of
other processes are implementation-defined.

RETURN VALUE
Upon successful completion, clock_getcpuclockid() shall return zero; otherwise, an error number
shall be returned to indicate the error.

ERRORS
The clock_getcpuclockid() function shall fail if:

[EPERM] The requesting process does not have permission to access the CPU-time clock
for the process.

The clock_getcpuclockid() function may fail if:

[ESRCH] No process can be found corresponding to the process specified by pid.

EXAMPLES
None.

APPLICATION USAGE
The clock_getcpuclockid() function is part of the Process CPU-Time Clocks option and need not be
provided on all implementations.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
clock_getres(), timer_create(), the Base Definitions volume of IEEE Std 1003.1-200x, <time.h>

CHANGE HISTORY
First released in Issue 6. Derived from IEEE Std 1003.1d-1999.

In the SYNOPSIS, the inclusion of <sys/types.h> is no longer required.

204 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

6951

6952

6953

6954

6955

6956

6957

6958

6959

6960

6961

6962

6963

6964

6965

6966

6967

6968

6969

6970

6971

6972

6973

6974

6975

6976

6977

6978

6979

6980

6981

6982

6983

6984

6985

6986

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces clock_getres()

NAME
clock_getres, clock_gettime, clock_settime — clock and timer functions

SYNOPSIS
CX #include <time.h>

int clock_getres(clockid_t clock_id, s truct timespec * res);
int clock_gettime(clockid_t clock_id, s truct timespec * tp);
int clock_settime(clockid_t clock_id, c onst struct timespec * tp);

DESCRIPTION
The clock_getres() function shall return the resolution of any clock. Clock resolutions are
implementation-defined and cannot be set by a process. If the argument res is not NULL, the
resolution of the specified clock shall be stored in the location pointed to by res. If res is NULL,
the clock resolution is not returned. If the time argument of clock_settime() is not a multiple of res,
then the value is truncated to a multiple of res.

The clock_gettime() function shall return the current value tp for the specified clock, clock_id.

The clock_settime() function shall set the specified clock, clock_id, to the value specified by tp.
Time values that are between two consecutive non-negative integer multiples of the resolution of
the specified clock shall be truncated down to the smaller multiple of the resolution.

A clock may be system-wide (that is, visible to all processes) or per-process (measuring time that
is meaningful only within a process). All implementations shall support a clock_id of
CLOCK_REALTIME as defined in <time.h>. This clock represents the realtime clock for the
system. For this clock, the values returned by clock_gettime() and specified by clock_settime()
represent the amount of time (in seconds and nanoseconds) since the Epoch. An implementation
may also support additional clocks. The interpretation of time values for these clocks is
unspecified.

If the value of the CLOCK_REALTIME clock is set via clock_settime(), the new value of the clock
shall be used to determine the time of expiration for absolute time services based upon the
CLOCK_REALTIME clock. This applies to the time at which armed absolute timers expire. If the
absolute time requested at the invocation of such a time service is before the new value of the
clock, the time service shall expire immediately as if the clock had reached the requested time
normally.

Setting the value of the CLOCK_REALTIME clock via clock_settime() shall have no effect on
threads that are blocked waiting for a relative time service based upon this clock, including the
nanosleep() function; nor on the expiration of relative timers based upon this clock.
Consequently, these time services shall expire when the requested relative interval elapses,
independently of the new or old value of the clock.

MON If the Monotonic Clock option is supported, all implementations shall support a clock_id of
CLOCK_MONOTONIC defined in <time.h>. This clock represents the monotonic clock for the
system. For this clock, the value returned by clock_gettime() represents the amount of time (in
seconds and nanoseconds) since an unspecified point in the past (for example, system start-up
time, or the Epoch). This point does not change after system start-up time. The value of the
CLOCK_MONOTONIC clock cannot be set via clock_settime(). This function shall fail if it is
invoked with a clock_id argument of CLOCK_MONOTONIC.

The effect of setting a clock via clock_settime() on armed per-process timers associated with a
clock other than CLOCK_REALTIME is implementation-defined.

If the value of the CLOCK_REALTIME clock is set via clock_settime(), the new value of the clock

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 205

6987

6988

6989

6990

6991

6992

6993

6994

6995

6996

6997

6998

6999

7000

7001

7002

7003

7004

7005

7006

7007

7008

7009

7010

7011

7012

7013

7014

7015

7016

7017

7018

7019

7020

7021

7022

7023

7024

7025

7026

7027

7028

7029

7030

7031

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

clock_getres() System Interfaces

shall be used to determine the time at which the system shall awaken a thread blocked on an
absolute clock_nanosleep() call based upon the CLOCK_REALTIME clock. If the absolute time
requested at the invocation of such a time service is before the new value of the clock, the call
shall return immediately as if the clock had reached the requested time normally.

Setting the value of the CLOCK_REALTIME clock via clock_settime() shall have no effect on any
thread that is blocked on a relative clock_nanosleep() call. Consequently, the call shall return
when the requested relative interval elapses, independently of the new or old value of the clock.

The appropriate privilege to set a particular clock is implementation-defined.

CPT If _POSIX_CPUTIME is defined, implementations shall support clock ID values obtained by
invoking clock_getcpuclockid(), which represent the CPU-time clock of a given process.
Implementations shall also support the special clockid_t value
CLOCK_PROCESS_CPUTIME_ID, which represents the CPU-time clock of the calling process
when invoking one of the clock_*() or timer_*() functions. For these clock IDs, the values
returned by clock_gettime() and specified by clock_settime() represent the amount of execution
time of the process associated with the clock. Changing the value of a CPU-time clock via
clock_settime() shall have no effect on the behavior of the sporadic server scheduling policy (see
Scheduling Policies (on page 44)).

TCT If _POSIX_THREAD_CPUTIME is defined, implementations shall support clock ID values
obtained by invoking pthread_getcpuclockid(), which represent the CPU-time clock of a given
thread. Implementations shall also support the special clockid_t value
CLOCK_THREAD_CPUTIME_ID, which represents the CPU-time clock of the calling thread
when invoking one of the clock_*() or timer_*() functions. For these clock IDs, the values
returned by clock_gettime() and specified by clock_settime() shall represent the amount of
execution time of the thread associated with the clock. Changing the value of a CPU-time clock
via clock_settime() shall have no effect on the behavior of the sporadic server scheduling policy
(see Scheduling Policies (on page 44)).

RETURN VALUE
A return value of 0 shall indicate that the call succeeded. A return value of −1 shall indicate that
an error occurred, and errno shall be set to indicate the error.

ERRORS
The clock_getres(), clock_gettime(), and clock_settime() functions shall fail if:

[EINVAL] The clock_id argument does not specify a known clock.

The clock_settime() function shall fail if:

[EINVAL] The tp argument to clock_settime() is outside the range for the given clock ID.

[EINVAL] The tp argument specified a nanosecond value less than zero or greater than or
equal to 1 000 million.

MON [EINVAL] The value of the clock_id argument is CLOCK_MONOTONIC.

The clock_settime() function may fail if:

[EPERM] The requesting process does not have the appropriate privilege to set the
specified clock.

206 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

7032

7033

7034

7035

7036

7037

7038

7039

7040

7041

7042

7043

7044

7045

7046

7047

7048

7049

7050

7051

7052

7053

7054

7055

7056

7057

7058

7059

7060

7061

7062

7063

7064

7065

7066

7067

7068

7069

7070

7071

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces clock_getres()

EXAMPLES
None.

APPLICATION USAGE
Note that the absolute value of the monotonic clock is meaningless (because its origin is
arbitrary), and thus there is no need to set it. Furthermore, realtime applications can rely on the
fact that the value of this clock is never set and, therefore, that time intervals measured with this
clock will not be affected by calls to clock_settime().

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
clock_getcpuclockid(), clock_nanosleep(), ctime(), mq_timedreceive(), mq_timedsend(), nanosleep(),
pthread_mutex_timedlock(), sem_timedwait(), time(), timer_create(), timer_getoverrun(), the Base
Definitions volume of IEEE Std 1003.1-200x, <time.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

Issue 6
The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Timers option.

The APPLICATION USAGE section is added.

The following changes were made to align with the IEEE P1003.1a draft standard:

• Clarification is added of the effect of resetting the clock resolution.

CPU-time clocks and the clock_getcpuclockid() function are added for alignment with IEEE Std
1003.1d-1999.

The following changes are added for alignment with IEEE Std 1003.1j-2000:

• The DESCRIPTION is updated as follows:

— The value returned by clock_gettime() for CLOCK_MONOTONIC is specified.

— The clock_settime() function failing for CLOCK_MONOTONIC is specified.

— The effects of clock_settime() on the clock_nanosleep() function with respect to
CLOCK_REALTIME are specified.

• An [EINVAL] error is added to the ERRORS section, indicating that clock_settime() fails for
CLOCK_MONOTONIC.

• The APPLICATION USAGE section notes that the CLOCK_MONOTONIC clock need not
and shall not be set by clock_settime() since the absolute value of the
CLOCK_MONOTONIC clock is meaningless.

• The clock_nanosleep(), mq_timedreceive(), mq_timedsend(), pthread_mutex_timedlock(),
sem_timedwait(), timer_create(), and timer_settime() functions are added to the SEE ALSO
section.

Issue 7
Functionality relating to the Clock Selection option is moved to the Base.

The clock_getres(), clock_gettime(), and clock_settime() functions are moved from the Timers
option to the Base.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 207

7072

7073

7074

7075

7076

7077

7078

7079

7080

7081

7082

7083

7084

7085

7086

7087

7088

7089

7090

7091

7092

7093

7094

7095

7096

7097

7098

7099

7100

7101

7102

7103

7104

7105

7106

7107

7108

7109

7110

7111

7112

7113

7114

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

clock_getres() System Interfaces

NAME
clock_nanosleep — high resolution sleep with specifiable clock

SYNOPSIS
CX #include <time.h>

int clock_nanosleep(clockid_t clock_id, i nt flags,
const struct timespec * rqtp, s truct timespec * rmtp);

DESCRIPTION
If the flag TIMER_ABSTIME is not set in the flags argument, the clock_nanosleep() function shall
cause the current thread to be suspended from execution until either the time interval specified
by the rqtp argument has elapsed, or a signal is delivered to the calling thread and its action is to
invoke a signal-catching function, or the process is terminated. The clock used to measure the
time shall be the clock specified by clock_id.

If the flag TIMER_ABSTIME is set in the flags argument, the clock_nanosleep() function shall
cause the current thread to be suspended from execution until either the time value of the clock
specified by clock_id reaches the absolute time specified by the rqtp argument, or a signal is
delivered to the calling thread and its action is to invoke a signal-catching function, or the
process is terminated. If, at the time of the call, the time value specified by rqtp is less than or
equal to the time value of the specified clock, then clock_nanosleep() shall return immediately
and the calling process shall not be suspended.

The suspension time caused by this function may be longer than requested because the
argument value is rounded up to an integer multiple of the sleep resolution, or because of the
scheduling of other activity by the system. But, except for the case of being interrupted by a
signal, the suspension time for the relative clock_nanosleep() function (that is, with the
TIMER_ABSTIME flag not set) shall not be less than the time interval specified by rqtp, as
measured by the corresponding clock. The suspension for the absolute clock_nanosleep() function
(that is, with the TIMER_ABSTIME flag set) shall be in effect at least until the value of the
corresponding clock reaches the absolute time specified by rqtp, except for the case of being
interrupted by a signal.

The use of the clock_nanosleep() function shall have no effect on the action or blockage of any
signal.

The clock_nanosleep() function shall fail if the clock_id argument refers to the CPU-time clock of
the calling thread. It is unspecified whether clock_id values of other CPU-time clocks are allowed.

RETURN VALUE
If the clock_nanosleep() function returns because the requested time has elapsed, its return value
shall be zero.

If the clock_nanosleep() function returns because it has been interrupted by a signal, it shall
return the corresponding error value. For the relative clock_nanosleep() function, if the rmtp
argument is non-NULL, the timespec structure referenced by it shall be updated to contain the
amount of time remaining in the interval (the requested time minus the time actually slept). If
the rmtp argument is NULL, the remaining time is not returned. The absolute clock_nanosleep()
function has no effect on the structure referenced by rmtp.

If clock_nanosleep() fails, it shall return the corresponding error value.

208 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

7115

7116

7117

7118

7119

7120

7121

7122

7123

7124

7125

7126

7127

7128

7129

7130

7131

7132

7133

7134

7135

7136

7137

7138

7139

7140

7141

7142

7143

7144

7145

7146

7147

7148

7149

7150

7151

7152

7153

7154

7155

7156

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces clock_nanosleep()

ERRORS
The clock_nanosleep() function shall fail if:

[EINTR] The clock_nanosleep() function was interrupted by a signal.

[EINVAL] The rqtp argument specified a nanosecond value less than zero or greater than
or equal to 1 000 million; or the TIMER_ABSTIME flag was specified in flags
and the rqtp argument is outside the range for the clock specified by clock_id;
or the clock_id argument does not specify a known clock, or specifies the CPU-
time clock of the calling thread.

[ENOTSUP] The clock_id argument specifies a clock for which clock_nanosleep() is not
supported, such as a CPU-time clock.

EXAMPLES
None.

APPLICATION USAGE
Calling clock_nanosleep() with the value TIMER_ABSTIME not set in the flags argument and with
a clock_id of CLOCK_REALTIME is equivalent to calling nanosleep() with the same rqtp and rmtp
arguments.

RATIONALE
The nanosleep() function specifies that the system-wide clock CLOCK_REALTIME is used to
measure the elapsed time for this time service. However, with the introduction of the monotonic
clock CLOCK_MONOTONIC a new relative sleep function is needed to allow an application to
take advantage of the special characteristics of this clock.

There are many applications in which a process needs to be suspended and then activated
multiple times in a periodic way; for example, to poll the status of a non-interrupting device or
to refresh a display device. For these cases, it is known that precise periodic activation cannot be
achieved with a relative sleep() or nanosleep() function call. Suppose, for example, a periodic
process that is activated at time T0, executes for a while, and then wants to suspend itself until
time T0+T, the period being T. If this process wants to use the nanosleep() function, it must first
call clock_gettime() to get the current time, then calculate the difference between the current time
and T0+T and, finally, call nanosleep() using the computed interval. However, the process could
be preempted by a different process between the two function calls, and in this case the interval
computed would be wrong; the process would wake up later than desired. This problem would
not occur with the absolute clock_nanosleep() function, since only one function call would be
necessary to suspend the process until the desired time. In other cases, however, a relative sleep
is needed, and that is why both functionalities are required.

Although it is possible to implement periodic processes using the timers interface, this
implementation would require the use of signals, and the reservation of some signal numbers. In
this regard, the reasons for including an absolute version of the clock_nanosleep() function in
IEEE Std 1003.1-200x are the same as for the inclusion of the relative nanosleep().

It is also possible to implement precise periodic processes using pthread_cond_timedwait(), in
which an absolute timeout is specified that takes effect if the condition variable involved is never
signaled. However, the use of this interface is unnatural, and involves performing other
operations on mutexes and condition variables that imply an unnecessary overhead.
Furthermore, pthread_cond_timedwait() is not available in implementations that do not support
threads.

Although the interface of the relative and absolute versions of the new high resolution sleep
service is the same clock_nanosleep() function, the rmtp argument is only used in the relative
sleep. This argument is needed in the relative clock_nanosleep() function to reissue the function
call if it is interrupted by a signal, but it is not needed in the absolute clock_nanosleep() function
call; if the call is interrupted by a signal, the absolute clock_nanosleep() function can be invoked

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 209

7157

7158

7159

7160

7161

7162

7163

7164

7165

7166

7167

7168

7169

7170

7171

7172

7173

7174

7175

7176

7177

7178

7179

7180

7181

7182

7183

7184

7185

7186

7187

7188

7189

7190

7191

7192

7193

7194

7195

7196

7197

7198

7199

7200

7201

7202

7203

7204

7205

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

clock_nanosleep() System Interfaces

again with the same rqtp argument used in the interrupted call.

FUTURE DIRECTIONS
None.

SEE ALSO
clock_getres(), nanosleep(), pthread_cond_timedwait(), sleep(), the Base Definitions volume of
IEEE Std 1003.1-200x, <time.h>

CHANGE HISTORY
First released in Issue 6. Derived from IEEE Std 1003.1j-2000.

Issue 7
The clock_nanosleep() function is moved from the Clock Selection option to the Base.

210 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

7206

7207

7208

7209

7210

7211

7212

7213

7214

7215

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces clock_settime()

NAME
clock_settime — clock and timer functions

SYNOPSIS
CX #include <time.h>

int clock_settime(clockid_t clock_id, c onst struct timespec * tp);

DESCRIPTION
Refer to clock_getres().

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 211

7216

7217

7218

7219

7220

7221

7222

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

clog() System Interfaces

NAME
clog, clogf, clogl — complex natural logarithm functions

SYNOPSIS
#include <complex.h>

double complex clog(double complex z);
float complex clogf(float complex z);
long double complex clogl(long double complex z);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

These functions shall compute the complex natural (base e) logarithm of z, with a branch cut
along the negative real axis.

RETURN VALUE
These functions shall return the complex natural logarithm value, in the range of a strip
mathematically unbounded along the real axis and in the interval [−iπ, +iπ] along the imaginary
axis.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
cexp(), the Base Definitions volume of IEEE Std 1003.1-200x, <complex.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

212 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

7223

7224

7225

7226

7227

7228

7229

7230

7231

7232

7233

7234

7235

7236

7237

7238

7239

7240

7241

7242

7243

7244

7245

7246

7247

7248

7249

7250

7251

7252

7253

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces close()

NAME
close — close a file descriptor

SYNOPSIS
#include <unistd.h>

int close(int fildes);

DESCRIPTION
The close() function shall deallocate the file descriptor indicated by fildes. To deallocate means to
make the file descriptor available for return by subsequent calls to open() or other functions that
allocate file descriptors. All outstanding record locks owned by the process on the file associated
with the file descriptor shall be removed (that is, unlocked).

If close() is interrupted by a signal that is to be caught, it shall return −1 with errno set to [EINTR]
and the state of fildes is unspecified. If an I/O error occurred while reading from or writing to
the file system during close(), it may return −1 with errno set to [EIO]; if this error is returned, the
state of fildes is unspecified.

When all file descriptors associated with a pipe or FIFO special file are closed, any data
remaining in the pipe or FIFO shall be discarded.

When all file descriptors associated with an open file description have been closed, the open file
description shall be freed.

If the link count of the file is 0, when all file descriptors associated with the file are closed, the
space occupied by the file shall be freed and the file shall no longer be accessible.

OB XSR If a STREAMS-based fildes is closed and the calling process was previously registered to receive
a SIGPOLL signal for events associated with that STREAM, the calling process shall be
unregistered for events associated with the STREAM. The last close() for a STREAM shall cause
the STREAM associated with fildes to be dismantled. If O_NONBLOCK is not set and there have
been no signals posted for the STREAM, and if there is data on the module’s write queue, close()
shall wait for an unspecified time (for each module and driver) for any output to drain before
dismantling the STREAM. The time delay can be changed via an I_SETCLTIME ioctl() request. If
the O_NONBLOCK flag is set, or if there are any pending signals, close() shall not wait for
output to drain, and shall dismantle the STREAM immediately.

If the implementation supports STREAMS-based pipes, and fildes is associated with one end of a
pipe, the last close() shall cause a hangup to occur on the other end of the pipe. In addition, if the
other end of the pipe has been named by fattach(), then the last close() shall force the named end
to be detached by fdetach(). If the named end has no open file descriptors associated with it and
gets detached, the STREAM associated with that end shall also be dismantled.

XSI If fildes refers to the master side of a pseudo-terminal, and this is the last close, a SIGHUP signal
shall be sent to the controlling process, if any, for which the slave side of the pseudo-terminal is
the controlling terminal. It is unspecified whether closing the master side of the pseudo-terminal
flushes all queued input and output.

OB XSR If fildes refers to the slave side of a STREAMS-based pseudo-terminal, a zero-length message
may be sent to the master.

When there is an outstanding cancelable asynchronous I/O operation against fildes when close()
is called, that I/O operation may be canceled. An I/O operation that is not canceled completes
as if the close() operation had not yet occurred. All operations that are not canceled shall
complete as if the close() blocked until the operations completed. The close() operation itself
need not block awaiting such I/O completion. Whether any I/O operation is canceled, and
which I/O operation may be canceled upon close(), is implementation-defined.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 213

7254

7255

7256

7257

7258

7259

7260

7261

7262

7263

7264

7265

7266

7267

7268

7269

7270

7271

7272

7273

7274

7275

7276

7277

7278

7279

7280

7281

7282

7283

7284

7285

7286

7287

7288

7289

7290

7291

7292

7293

7294

7295

7296

7297

7298

7299

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

close() System Interfaces

SHM If a memory mapped file or a shared memory object remains referenced at the last close (that is,
a process has it mapped), then the entire contents of the memory object shall persist until the

SHM memory object becomes unreferenced. If this is the last close of a memory mapped file or a
shared memory object and the close results in the memory object becoming unreferenced, and
the memory object has been unlinked, then the memory object shall be removed.

If fildes refers to a socket, close() shall cause the socket to be destroyed. If the socket is in
connection-mode, and the SO_LINGER option is set for the socket with non-zero linger time,
and the socket has untransmitted data, then close() shall block for up to the current linger
interval until all data is transmitted.

RETURN VALUE
Upon successful completion, 0 shall be returned; otherwise, −1 shall be returned and errno set to
indicate the error.

ERRORS
The close() function shall fail if:

[EBADF] The fildes argument is not a valid file descriptor.

[EINTR] The close() function was interrupted by a signal.

The close() function may fail if:

[EIO] An I/O error occurred while reading from or writing to the file system.

EXAMPLES

Reassigning a File Descriptor

The following example closes the file descriptor associated with standard output for the current
process, re-assigns standard output to a new file descriptor, and closes the original file descriptor
to clean up. This example assumes that the file descriptor 0 (which is the descriptor for standard
input) is not closed.

#include <unistd.h>
...
int pfd;
...
close(1);
dup(pfd);
close(pfd);
...

Incidentally, this is exactly what could be achieved using:

dup2(pfd, 1);
close(pfd);

Closing a File Descriptor

In the following example, close() is used to close a file descriptor after an unsuccessful attempt is
made to associate that file descriptor with a stream.

#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>

#define LOCKFILE "/etc/ptmp"
...
int pfd;

214 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

7300

7301

7302

7303

7304

7305

7306

7307

7308

7309

7310

7311

7312

7313

7314

7315

7316

7317

7318

7319

7320

7321

7322

7323

7324

7325

7326

7327

7328

7329

7330

7331

7332

7333

7334

7335

7336

7337

7338

7339

7340

7341

7342

7343

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces close()

FILE *fpfd;
...
if ((fpfd = fdopen (pfd, "w")) == NULL) {

close(pfd);
unlink(LOCKFILE);
exit(1);

}
...

APPLICATION USAGE
An application that had used the stdio routine fopen() to open a file should use the
corresponding fclose() routine rather than close(). Once a file is closed, the file descriptor no
longer exists, since the integer corresponding to it no longer refers to a file.

RATIONALE
The use of interruptible device close routines should be discouraged to avoid problems with the
implicit closes of file descriptors by exec and exit(). This volume of IEEE Std 1003.1-200x only
intends to permit such behavior by specifying the [EINTR] error condition.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.6 (on page 38), exec , fattach(), fclose(), fdetach(), fopen(), ioctl(), open(), unlink(), the
Base Definitions volume of IEEE Std 1003.1-200x, <unistd.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The DESCRIPTION is updated for alignment with the POSIX Realtime Extension.

Issue 6
The DESCRIPTION related to a STREAMS-based file or pseudo-terminal is marked as part of
the XSI STREAMS Option Group.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The [EIO] error condition is added as an optional error.

• The DESCRIPTION is updated to describe the state of the fildes file descriptor as
unspecified if an I/O error occurs and an [EIO] error condition is returned.

Text referring to sockets is added to the DESCRIPTION.

The DESCRIPTION is updated for alignment with IEEE Std 1003.1j-2000 by specifying that
shared memory objects and memory mapped files (and not typed memory objects) are the types
of memory objects to which the paragraph on last closes applies.

IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/12 is applied, correcting the XSH shaded
text relating to the master side of a pseudo-terminal. The reason for the change is that the
behavior of pseudo-terminals and regular terminals should be as much alike as possible in this
case; the change achieves that and matches historical behavior.

Issue 7
Functionality relating to the XSI STREAMS option is marked obsolescent.

Functionality relating to the Asynchronous Input and Output and Memory Mapped Files
options is moved to the Base.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 215

7344

7345

7346

7347

7348

7349

7350

7351

7352

7353

7354

7355

7356

7357

7358

7359

7360

7361

7362

7363

7364

7365

7366

7367

7368

7369

7370

7371

7372

7373

7374

7375

7376

7377

7378

7379

7380

7381

7382

7383

7384

7385

7386

7387

7388

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

closedir() System Interfaces

NAME
closedir — close a directory stream

SYNOPSIS
#include <dirent.h>

int closedir(DIR * dirp);

DESCRIPTION
The closedir() function shall close the directory stream referred to by the argument dirp. Upon
return, the value of dirp may no longer point to an accessible object of the type DIR. If a file
descriptor is used to implement type DIR, that file descriptor shall be closed.

RETURN VALUE
Upon successful completion, closedir() shall return 0; otherwise, −1 shall be returned and errno
set to indicate the error.

ERRORS
The closedir() function may fail if:

[EBADF] The dirp argument does not refer to an open directory stream.

[EINTR] The closedir() function was interrupted by a signal.

EXAMPLES

Closing a Directory Stream

The following program fragment demonstrates how the closedir() function is used.

...
DIR *dir;
struct dirent *dp;

...
if ((dir = opendir (".")) == NULL) {

...
}

while ((dp = readdir (dir)) != NULL) {
...

}

closedir(dir);
...

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
dirfd(), fdopendir(), the Base Definitions volume of IEEE Std 1003.1-200x, <dirent.h>

216 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

7389

7390

7391

7392

7393

7394

7395

7396

7397

7398

7399

7400

7401

7402

7403

7404

7405

7406

7407

7408

7409

7410

7411

7412

7413

7414

7415

7416

7417

7418

7419

7420

7421

7422

7423

7424

7425

7426

7427

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces closedir()

CHANGE HISTORY
First released in Issue 2.

Issue 6
In the SYNOPSIS, the optional include of the <sys/types.h> header is removed.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
required for conforming implementations of previous POSIX specifications, it was not
required for UNIX applications.

• The [EINTR] error condition is added as an optional error condition.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 217

7428

7429

7430

7431

7432

7433

7434

7435

7436

7437

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

closelog() System Interfaces

NAME
closelog, openlog, setlogmask, syslog — control system log

SYNOPSIS
XSI #include <syslog.h>

void closelog(void);
void openlog(const char * ident, i nt logopt, i nt facility);
int setlogmask(int maskpri);
void syslog(int priority, c onst char * message, . .. /* arguments */);

DESCRIPTION
The syslog() function shall send a message to an implementation-defined logging facility, which
may log it in an implementation-defined system log, write it to the system console, forward it to
a list of users, or forward it to the logging facility on another host over the network. The logged
message shall include a message header and a message body. The message header contains at
least a timestamp and a tag string.

The message body is generated from the message and following arguments in the same manner
as if these were arguments to printf(), except that the additional conversion specification %m
shall be recognized; it shall convert no arguments, shall cause the output of the error message
string associated with the value of errno on entry to syslog(), and may be mixed with argument
specifications of the "%n$" form. If a complete conversion specification with the mconversion
specifier character is not just %m, the behavior is undefined. A trailing <newline> may be added
if needed.

Values of the priority argument are formed by OR’ing together a severity-level value and an
optional facility value. If no facility value is specified, the current default facility value is used.

Possible values of severity level include:

LOG_EMERG A panic condition.

LOG_ALERT A condition that should be corrected immediately, such as a corrupted system
database.

LOG_CRIT Critical conditions, such as hard device errors.

LOG_ERR Errors.

LOG_WARNING
Warning messages.

LOG_NOTICE Conditions that are not error conditions, but that may require special
handling.

LOG_INFO Informational messages.

LOG_DEBUG Messages that contain information normally of use only when debugging a
program.

The facility indicates the application or system component generating the message. Possible
facility values include:

LOG_USER Messages generated by arbitrary processes. This is the default facility
identifier if none is specified.

218 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

7438

7439

7440

7441

7442

7443

7444

7445

7446

7447

7448

7449

7450

7451

7452

7453

7454

7455

7456

7457

7458

7459

7460

7461

7462

7463

7464

7465

7466

7467

7468

7469

7470

7471

7472

7473

7474

7475

7476

7477

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces closelog()

LOG_LOCAL0 Reserved for local use.

LOG_LOCAL1 Reserved for local use.

LOG_LOCAL2 Reserved for local use.

LOG_LOCAL3 Reserved for local use.

LOG_LOCAL4 Reserved for local use.

LOG_LOCAL5 Reserved for local use.

LOG_LOCAL6 Reserved for local use.

LOG_LOCAL7 Reserved for local use.

The openlog() function shall set process attributes that affect subsequent calls to syslog(). The
ident argument is a string that is prepended to every message. The logopt argument indicates
logging options. Values for logopt are constructed by a bitwise-inclusive OR of zero or more of
the following:

LOG_PID Log the process ID with each message. This is useful for identifying specific
processes.

LOG_CONS Write messages to the system console if they cannot be sent to the logging
facility. The syslog() function ensures that the process does not acquire the
console as a controlling terminal in the process of writing the message.

LOG_NDELAY Open the connection to the logging facility immediately. Normally the open is
delayed until the first message is logged. This is useful for programs that need
to manage the order in which file descriptors are allocated.

LOG_ODELAY Delay open until syslog() is called.

LOG_NOWAIT Do not wait for child processes that may have been created during the course
of logging the message. This option should be used by processes that enable
notification of child termination using SIGCHLD, since syslog() may
otherwise block waiting for a child whose exit status has already been
collected.

The facility argument encodes a default facility to be assigned to all messages that do not have an
explicit facility already encoded. The initial default facility is LOG_USER.

The openlog() and syslog() functions may allocate a file descriptor. It is not necessary to call
openlog() prior to calling syslog().

The closelog() function shall close any open file descriptors allocated by previous calls to
openlog() or syslog().

The setlogmask() function shall set the log priority mask for the current process to maskpri and
return the previous mask. If the maskpri argument is 0, the current log mask is not modified.
Calls by the current process to syslog() with a priority not set in maskpri shall be rejected. The
default log mask allows all priorities to be logged. A call to openlog() is not required prior to
calling setlogmask().

Symbolic constants for use as values of the logopt, facility, priority, and maskpri arguments are
defined in the <syslog.h> header.

RETURN VALUE
The setlogmask() function shall return the previous log priority mask. The closelog(), openlog(),
and syslog() functions shall not return a value.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 219

7478

7479

7480

7481

7482

7483

7484

7485

7486

7487

7488

7489

7490

7491

7492

7493

7494

7495

7496

7497

7498

7499

7500

7501

7502

7503

7504

7505

7506

7507

7508

7509

7510

7511

7512

7513

7514

7515

7516

7517

7518

7519

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

closelog() System Interfaces

ERRORS
No errors are defined.

EXAMPLES

Using openlog()

The following example causes subsequent calls to syslog() to log the process ID with each
message, and to write messages to the system console if they cannot be sent to the logging
facility.

#include <syslog.h>

char *ident = "Process demo";
int logopt = LOG_PID | LOG_CONS;
int facility = LOG_USER;
...
openlog(ident, logopt, facility);

Using setlogmask()

The following example causes subsequent calls to syslog() to accept error messages, and to reject
all other messages.

#include <syslog.h>

int result;
int mask = LOG_MASK (LOG_ERR);
...
result = setlogmask(mask);

Using syslog

The following example sends the message "This is a message" to the default logging
facility, marking the message as an error message generated by random processes.

#include <syslog.h>

char *message = "This is a message";
int priority = LOG_ERR | LOG_USER;
...
syslog(priority, message);

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
printf(), the Base Definitions volume of IEEE Std 1003.1-200x, <syslog.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

220 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

7520

7521

7522

7523

7524

7525

7526

7527

7528

7529

7530

7531

7532

7533

7534

7535

7536

7537

7538

7539

7540

7541

7542

7543

7544

7545

7546

7547

7548

7549

7550

7551

7552

7553

7554

7555

7556

7557

7558

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces closelog()

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Issue 6
IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/13 is applied, correcting the EXAMPLES
section.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 221

7559

7560

7561

7562

7563

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

confstr() System Interfaces

NAME
confstr — get configurable variables

SYNOPSIS
#include <unistd.h>

size_t confstr(int name, c har * buf, s ize_t len);

DESCRIPTION
The confstr() function shall return configuration-defined string values. Its use and purpose are
similar to sysconf(), but it is used where string values rather than numeric values are returned.

The name argument represents the system variable to be queried. The implementation shall
support the following name values, defined in <unistd.h>. It may support others:

_CS_PATH
_CS_POSIX_V7_ILP32_OFF32_CFLAGS
_CS_POSIX_V7_ILP32_OFF32_LDFLAGS
_CS_POSIX_V7_ILP32_OFF32_LIBS
_CS_POSIX_V7_ILP32_OFFBIG_CFLAGS
_CS_POSIX_V7_ILP32_OFFBIG_LDFLAGS
_CS_POSIX_V7_ILP32_OFFBIG_LIBS
_CS_POSIX_V7_LP64_OFF64_CFLAGS
_CS_POSIX_V7_LP64_OFF64_LDFLAGS
_CS_POSIX_V7_LP64_OFF64_LIBS
_CS_POSIX_V7_LPBIG_OFFBIG_CFLAGS
_CS_POSIX_V7_LPBIG_OFFBIG_LDFLAGS
_CS_POSIX_V7_LPBIG_OFFBIG_LIBS
_CS_POSIX_V7_WIDTH_RESTRICTED_ENVS
_CS_V7_ENV

OB _CS_POSIX_V6_ILP32_OFF32_CFLAGS
_CS_POSIX_V6_ILP32_OFF32_LDFLAGS
_CS_POSIX_V6_ILP32_OFF32_LIBS
_CS_POSIX_V6_ILP32_OFFBIG_CFLAGS
_CS_POSIX_V6_ILP32_OFFBIG_LDFLAGS
_CS_POSIX_V6_ILP32_OFFBIG_LIBS
_CS_POSIX_V6_LP64_OFF64_CFLAGS
_CS_POSIX_V6_LP64_OFF64_LDFLAGS
_CS_POSIX_V6_LP64_OFF64_LIBS
_CS_POSIX_V6_LPBIG_OFFBIG_CFLAGS
_CS_POSIX_V6_LPBIG_OFFBIG_LDFLAGS
_CS_POSIX_V6_LPBIG_OFFBIG_LIBS
_CS_POSIX_V6_WIDTH_RESTRICTED_ENVS
_CS_V6_ENV

If len is not 0, and if name has a configuration-defined value, confstr() shall copy that value into
the len-byte buffer pointed to by buf. If the string to be returned is longer than len bytes,
including the terminating null, then confstr() shall truncate the string to len−1 bytes and null-
terminate the result. The application can detect that the string was truncated by comparing the
value returned by confstr() with len.

If len is 0 and buf is a null pointer, then confstr() shall still return the integer value as defined
below, but shall not return a string. If len is 0 but buf is not a null pointer, the result is
unspecified.

222 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

7564

7565

7566

7567

7568

7569

7570

7571

7572

7573

7574

7575

7576

7577

7578

7579

7580

7581

7582

7583

7584

7585

7586

7587

7588

7589

7590

7591

7592

7593

7594

7595

7596

7597

7598

7599

7600

7601

7602

7603

7604

7605

7606

7607

7608

7609

7610

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces confstr()

After a call to:

confstr(_CS_V7_ENV, buf, sizeof(buf))

the string stored in buf will contain the space-separated list of variable=value environment
variable pairs required by the implementation to create a conforming environment, as described
in the implementations’ conformance documentation.

If the implementation supports the POSIX shell option, the string stored in buf after a call to:

confstr(_CS_PATH, buf, sizeof(buf))

can be used as a value of the PA TH environment variable that accesses all of the standard
utilities of IEEE Std 1003.1-200x, if the return value is less than or equal to sizeof (buf).

RETURN VALUE
If name has a configuration-defined value, confstr() shall return the size of buffer that would be
needed to hold the entire configuration-defined value including the terminating null. If this
return value is greater than len, the string returned in buf is truncated.

If name is invalid, confstr() shall return 0 and set errno to indicate the error.

If name does not have a configuration-defined value, confstr() shall return 0 and leave errno
unchanged.

ERRORS
The confstr() function shall fail if:

[EINVAL] The value of the name argument is invalid.

EXAMPLES
None.

APPLICATION USAGE
An application can distinguish between an invalid name parameter value and one that
corresponds to a configurable variable that has no configuration-defined value by checking if
errno is modified. This mirrors the behavior of sysconf().

The original need for this function was to provide a way of finding the configuration-defined
default value for the environment variable PA TH. Since PA TH can be modified by the user to
include directories that could contain utilities replacing the standard utilities in the Shell and
Utilities volume of IEEE Std 1003.1-200x, applications need a way to determine the system-
supplied PA TH environment variable value that contains the correct search path for the standard
utilities.

An application could use:

confstr(name, (char *)NULL, (size_t)0)

to find out how big a buffer is needed for the string value; use malloc() to allocate a buffer to
hold the string; and call confstr() again to get the string. Alternately, it could allocate a fixed,
static buffer that is big enough to hold most answers (perhaps 512 or 1 024 bytes), but then use
malloc() to allocate a larger buffer if it finds that this is too small.

RATIONALE
Application developers can normally determine any configuration variable by means of reading
from the stream opened by a call to:

popen("command -p getconf variable", "r");

The confstr() function with a name argument of _CS_PATH returns a string that can be used as a
PA TH environment variable setting that will reference the standard shell and utilities as
described in the Shell and Utilities volume of IEEE Std 1003.1-200x.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 223

7611

7612

7613

7614

7615

7616

7617

7618

7619

7620

7621

7622

7623

7624

7625

7626

7627

7628

7629

7630

7631

7632

7633

7634

7635

7636

7637

7638

7639

7640

7641

7642

7643

7644

7645

7646

7647

7648

7649

7650

7651

7652

7653

7654

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

confstr() System Interfaces

The confstr() function copies the returned string into a buffer supplied by the application instead
of returning a pointer to a string. This allows a cleaner function in some implementations (such
as those with lightweight threads) and resolves questions about when the application must copy
the string returned.

FUTURE DIRECTIONS
None.

SEE ALSO
exec , pathconf(), sysconf(), the Base Definitions volume of IEEE Std 1003.1-200x, <unistd.h>, the
Shell and Utilities volume of IEEE Std 1003.1-200x, c99

CHANGE HISTORY
First released in Issue 4. Derived from the ISO POSIX-2 standard.

Issue 5
A table indicating the permissible values of name is added to the DESCRIPTION. All those
marked EX are new in this issue.

Issue 6
The Open Group Corrigendum U033/7 is applied. The return value for the case returning the
size of the buffer now explicitly states that this includes the terminating null.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The DESCRIPTION is updated with new arguments which can be used to determine
configuration strings for C compiler flags, linker/loader flags, and libraries for each
different supported programming environment. This is a change to support data size
neutrality.

The following changes were made to align with the IEEE P1003.1a draft standard:

• The DESCRIPTION is updated to include text describing how _CS_PATH can be used to
obtain a PA TH to access the standard utilities.

The macros associated with the c89 programming models are marked LEGACY and new
equivalent macros associated with c99 are introduced.

Issue 7
Austin Group Interpretation 1003.1-2001 #047 is applied, adding the _CS_V7_ENV variable.

The V6 variables for the supported programming environments are marked obsolescent.

The variables for the supported programming environments are updated to be V7.

The LEGACY variables and obsolescent values are removed.

224 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

7655

7656

7657

7658

7659

7660

7661

7662

7663

7664

7665

7666

7667

7668

7669

7670

7671

7672

7673

7674

7675

7676

7677

7678

7679

7680

7681

7682

7683

7684

7685

7686

7687

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces conj()

NAME
conj, conjf, conjl — complex conjugate functions

SYNOPSIS
#include <complex.h>

double complex conj(double complex z);
float complex conjf(float complex z);
long double complex conjl(long double complex z);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

These functions shall compute the complex conjugate of z, by reversing the sign of its imaginary
part.

RETURN VALUE
These functions return the complex conjugate value.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
carg(), cimag(), cproj(), creal(), the Base Definitions volume of IEEE Std 1003.1-200x,
<complex.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 225

7688

7689

7690

7691

7692

7693

7694

7695

7696

7697

7698

7699

7700

7701

7702

7703

7704

7705

7706

7707

7708

7709

7710

7711

7712

7713

7714

7715

7716

7717

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

connect() System Interfaces

NAME
connect — connect a socket

SYNOPSIS
#include <sys/socket.h>

int connect(int socket, c onst struct sockaddr * address,
socklen_t address_len);

DESCRIPTION
The connect() function shall attempt to make a connection on a connection-mode socket or to set
or reset the peer address of a connectionless-mode socket. The function takes the following
arguments:

socket Specifies the file descriptor associated with the socket.

address Points to a sockaddr structure containing the peer address. The length and
format of the address depend on the address family of the socket.

address_len Specifies the length of the sockaddr structure pointed to by the address
argument.

If the socket has not already been bound to a local address, connect() shall bind it to an address
which, unless the socket’s address family is AF_UNIX, is an unused local address.

If the initiating socket is not connection-mode, then connect() shall set the socket’s peer address,
and no connection is made. For SOCK_DGRAM sockets, the peer address identifies where all
datagrams are sent on subsequent send() functions, and limits the remote sender for subsequent
recv() functions. If address is a null address for the protocol, the socket’s peer address shall be
reset. Note that despite no connection being made, the term ‘‘connected’’ is used to describe a
connectionless-mode socket for which a peer address has been set.

If the initiating socket is connection-mode, then connect() shall attempt to establish a connection
to the address specified by the address argument. If the connection cannot be established
immediately and O_NONBLOCK is not set for the file descriptor for the socket, connect() shall
block for up to an unspecified timeout interval until the connection is established. If the timeout
interval expires before the connection is established, connect() shall fail and the connection
attempt shall be aborted. If connect() is interrupted by a signal that is caught while blocked
waiting to establish a connection, connect() shall fail and set errno to [EINTR], but the connection
request shall not be aborted, and the connection shall be established asynchronously.

If the connection cannot be established immediately and O_NONBLOCK is set for the file
descriptor for the socket, connect() shall fail and set errno to [EINPROGRESS], but the connection
request shall not be aborted, and the connection shall be established asynchronously. Subsequent
calls to connect() for the same socket, before the connection is established, shall fail and set errno
to [EALREADY].

When the connection has been established asynchronously, select() and poll() shall indicate that
the file descriptor for the socket is ready for writing.

The socket in use may require the process to have appropriate privileges to use the connect()
function.

RETURN VALUE
Upon successful completion, connect() shall return 0; otherwise, −1 shall be returned and errno
set to indicate the error.

226 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

7718

7719

7720

7721

7722

7723

7724

7725

7726

7727

7728

7729

7730

7731

7732

7733

7734

7735

7736

7737

7738

7739

7740

7741

7742

7743

7744

7745

7746

7747

7748

7749

7750

7751

7752

7753

7754

7755

7756

7757

7758

7759

7760

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces connect()

ERRORS
The connect() function shall fail if:

[EADDRNOTAVAIL]
The specified address is not available from the local machine.

[EAFNOSUPPORT]
The specified address is not a valid address for the address family of the
specified socket.

[EALREADY] A connection request is already in progress for the specified socket.

[EBADF] The socket argument is not a valid file descriptor.

[ECONNREFUSED]
The target address was not listening for connections or refused the connection
request.

[EINPROGRESS] O_NONBLOCK is set for the file descriptor for the socket and the connection
cannot be immediately established; the connection shall be established
asynchronously.

[EINTR] The attempt to establish a connection was interrupted by delivery of a signal
that was caught; the connection shall be established asynchronously.

[EISCONN] The specified socket is connection-mode and is already connected.

[ENETUNREACH]
No route to the network is present.

[ENOTSOCK] The socket argument does not refer to a socket.

[EPROTOTYPE] The specified address has a different type than the socket bound to the
specified peer address.

[ETIMEDOUT] The attempt to connect timed out before a connection was made.

If the address family of the socket is AF_UNIX, then connect() shall fail if:

[EIO] An I/O error occurred while reading from or writing to the file system.

[ELOOP] A loop exists in symbolic links encountered during resolution of the pathname
in address.

[ENAMETOOLONG]
A component of a pathname exceeded {NAME_MAX} characters, or an entire
pathname exceeded {PATH_MAX} characters.

[ENOENT] A component of the pathname does not name an existing file or the pathname
is an empty string.

[ENOTDIR] A component of the path prefix of the pathname in address is not a directory.

The connect() function may fail if:

[EACCES] Search permission is denied for a component of the path prefix; or write access
to the named socket is denied.

[EADDRINUSE] Attempt to establish a connection that uses addresses that are already in use.

[ECONNRESET] Remote host reset the connection request.

[EHOSTUNREACH]
The destination host cannot be reached (probably because the host is down or
a remote router cannot reach it).

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 227

7761

7762

7763

7764

7765

7766

7767

7768

7769

7770

7771

7772

7773

7774

7775

7776

7777

7778

7779

7780

7781

7782

7783

7784

7785

7786

7787

7788

7789

7790

7791

7792

7793

7794

7795

7796

7797

7798

7799

7800

7801

7802

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

connect() System Interfaces

[EINVAL] The address_len argument is not a valid length for the address family; or
invalid address family in the sockaddr structure.

[ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during
resolution of the pathname in address.

[ENAMETOOLONG]
Pathname resolution of a symbolic link produced an intermediate result
whose length exceeds {PATH_MAX}.

[ENETDOWN] The local network interface used to reach the destination is down.

[ENOBUFS] No buffer space is available.

[EOPNOTSUPP] The socket is listening and cannot be connected.

EXAMPLES
None.

APPLICATION USAGE
If connect() fails, the state of the socket is unspecified. Conforming applications should close the
file descriptor and create a new socket before attempting to reconnect.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
accept(), bind(), close(), getsockname(), poll(), select(), send(), shutdown(), socket(), the Base
Definitions volume of IEEE Std 1003.1-200x, <sys/socket.h>

CHANGE HISTORY
First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

The wording of the mandatory [ELOOP] error condition is updated, and a second optional
[ELOOP] error condition is added.

Issue 7
Austin Group Interpretation 1003.1-2001 #035 is applied, clarifying the description of connected
sockets.

228 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

7803

7804

7805

7806

7807

7808

7809

7810

7811

7812

7813

7814

7815

7816

7817

7818

7819

7820

7821

7822

7823

7824

7825

7826

7827

7828

7829

7830

7831

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces copysign()

NAME
copysign, copysignf, copysignl — number manipulation function

SYNOPSIS
#include <math.h>

double copysign(double x, d ouble y);
float copysignf(float x, f loat y);
long double copysignl(long double x, l ong double y);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

These functions shall produce a value with the magnitude of x and the sign of y. On
implementations that represent a signed zero but do not treat negative zero consistently in
arithmetic operations, these functions regard the sign of zero as positive.

RETURN VALUE
Upon successful completion, these functions shall return a value with the magnitude of x and
the sign of y.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
signbit(), the Base Definitions volume of IEEE Std 1003.1-200x, <math.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 229

7832

7833

7834

7835

7836

7837

7838

7839

7840

7841

7842

7843

7844

7845

7846

7847

7848

7849

7850

7851

7852

7853

7854

7855

7856

7857

7858

7859

7860

7861

7862

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

cos() System Interfaces

NAME
cos, cosf, cosl — cosine function

SYNOPSIS
#include <math.h>

double cos(double x);
float cosf(float x);
long double cosl(long double x);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

These functions shall compute the cosine of their argument x, measured in radians.

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-
zero, an error has occurred.

RETURN VALUE
Upon successful completion, these functions shall return the cosine of x.

MX If x is NaN, a NaN shall be returned.

If x is ±0, the value 1.0 shall be returned.

If x is ±Inf, a domain error shall occur, and either a NaN (if supported), or an implementation-
defined value shall be returned.

ERRORS
These functions shall fail if:

MX Domain Error The x argument is ±Inf.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [EDOM]. If the integer expression (math_errhandling
& MATH_ERREXCEPT) is non-zero, then the invalid floating-point exception
shall be raised.

EXAMPLES

Taking the Cosine of a 45-Degree Angle

#include <math.h>
...
double radians = 45 * M_PI / 180;
double result;
...
result = cos(radians);

APPLICATION USAGE
These functions may lose accuracy when their argument is near an odd multiple of π/2 or is far
from 0.

On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling &
MATH_ERREXCEPT) are independent of each other, but at least one of them must be non-zero.

230 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

7863

7864

7865

7866

7867

7868

7869

7870

7871

7872

7873

7874

7875

7876

7877

7878

7879

7880

7881

7882

7883

7884

7885

7886

7887

7888

7889

7890

7891

7892

7893

7894

7895

7896

7897

7898

7899

7900

7901

7902

7903

7904

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces cos()

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
acos(), feclearexcept(), fetestexcept(), isnan(), sin(), tan(), the Base Definitions volume of
IEEE Std 1003.1-200x, Section 4.18, Treatment of Error Conditions for Mathematical Functions,
<math.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The DESCRIPTION is updated to indicate how an application should check for an error. This
text was previously published in the APPLICATION USAGE section.

Issue 6
The cosf() and cosl() functions are added for alignment with the ISO/IEC 9899: 1999 standard.

The DESCRIPTION, RETURN VALUE, ERRORS, and APPLICATION USAGE sections are
revised to align with the ISO/IEC 9899: 1999 standard.

IEC 60559: 1989 standard floating-point extensions over the ISO/IEC 9899: 1999 standard are
marked.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 231

7905

7906

7907

7908

7909

7910

7911

7912

7913

7914

7915

7916

7917

7918

7919

7920

7921

7922

7923

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

cosh() System Interfaces

NAME
cosh, coshf, coshl — hyperbolic cosine functions

SYNOPSIS
#include <math.h>

double cosh(double x);
float coshf(float x);
long double coshl(long double x);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

These functions shall compute the hyperbolic cosine of their argument x.

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-
zero, an error has occurred.

RETURN VALUE
Upon successful completion, these functions shall return the hyperbolic cosine of x.

If the correct value would cause overflow, a range error shall occur and cosh(), coshf(), and
coshl() shall return the value of the macro HUGE_VAL, HUGE_VALF, and HUGE_VALL,
respectively.

MX If x is NaN, a NaN shall be returned.

If x is ±0, the value 1.0 shall be returned.

If x is ±Inf, +Inf shall be returned.

ERRORS
These functions shall fail if:

Range Error The result would cause an overflow.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the overflow
floating-point exception shall be raised.

EXAMPLES
None.

APPLICATION USAGE
On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling &
MATH_ERREXCEPT) are independent of each other, but at least one of them must be non-zero.

For IEEE Std 754-1985 double, 710.5 < |x| implies that cosh(x) has overflowed.

RATIONALE
None.

232 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

7924

7925

7926

7927

7928

7929

7930

7931

7932

7933

7934

7935

7936

7937

7938

7939

7940

7941

7942

7943

7944

7945

7946

7947

7948

7949

7950

7951

7952

7953

7954

7955

7956

7957

7958

7959

7960

7961

7962

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces cosh()

FUTURE DIRECTIONS
None.

SEE ALSO
acosh(), feclearexcept(), fetestexcept(), isnan(), sinh(), tanh(), the Base Definitions volume of
IEEE Std 1003.1-200x, Section 4.18, Treatment of Error Conditions for Mathematical Functions,
<math.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The DESCRIPTION is updated to indicate how an application should check for an error. This
text was previously published in the APPLICATION USAGE section.

Issue 6
The coshf() and coshl() functions are added for alignment with the ISO/IEC 9899: 1999 standard.

The DESCRIPTION, RETURN VALUE, ERRORS, and APPLICATION USAGE sections are
revised to align with the ISO/IEC 9899: 1999 standard.

IEC 60559: 1989 standard floating-point extensions over the ISO/IEC 9899: 1999 standard are
marked.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 233

7963

7964

7965

7966

7967

7968

7969

7970

7971

7972

7973

7974

7975

7976

7977

7978

7979

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

cosl() System Interfaces

NAME
cosl — cosine function

SYNOPSIS
#include <math.h>

long double cosl(long double x);

DESCRIPTION
Refer to cos().

234 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

7980

7981

7982

7983

7984

7985

7986

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces cpow()

NAME
cpow, cpowf, cpowl — complex power functions

SYNOPSIS
#include <complex.h>

double complex cpow(double complex x, d ouble complex y);
float complex cpowf(float complex x, f loat complex y);
long double complex cpowl(long double complex x,

long double complex y);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

These functions shall compute the complex power function xy, with a branch cut for the first
parameter along the negative real axis.

RETURN VALUE
These functions shall return the complex power function value.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
cabs(), csqrt(), the Base Definitions volume of IEEE Std 1003.1-200x, <complex.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 235

7987

7988

7989

7990

7991

7992

7993

7994

7995

7996

7997

7998

7999

8000

8001

8002

8003

8004

8005

8006

8007

8008

8009

8010

8011

8012

8013

8014

8015

8016

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

cproj() System Interfaces

NAME
cproj, cprojf, cprojl — complex projection functions

SYNOPSIS
#include <complex.h>

double complex cproj(double complex z);
float complex cprojf(float complex z);
long double complex cprojl(long double complex z);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

These functions shall compute a projection of z onto the Riemann sphere: z projects to z, except
that all complex infinities (even those with one infinite part and one NaN part) project to
positive infinity on the real axis. If z has an infinite part, then cproj(z) shall be equivalent to:

INFINITY + I * copysign(0.0, cimag(z))

RETURN VALUE
These functions shall return the value of the projection onto the Riemann sphere.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
Two topologies are commonly used in complex mathematics: the complex plane with its
continuum of infinities, and the Riemann sphere with its single infinity. The complex plane is
better suited for transcendental functions, the Riemann sphere for algebraic functions. The
complex types with their multiplicity of infinities provide a useful (though imperfect) model for
the complex plane. The cproj() function helps model the Riemann sphere by mapping all
infinities to one, and should be used just before any operation, especially comparisons, that
might give spurious results for any of the other infinities. Note that a complex value with one
infinite part and one NaN part is regarded as an infinity, not a NaN, because if one part is
infinite, the complex value is infinite independent of the value of the other part. For the same
reason, cabs() returns an infinity if its argument has an infinite part and a NaN part.

FUTURE DIRECTIONS
None.

SEE ALSO
carg(), cimag(), conj(), creal(), the Base Definitions volume of IEEE Std 1003.1-200x,
<complex.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

236 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

8017

8018

8019

8020

8021

8022

8023

8024

8025

8026

8027

8028

8029

8030

8031

8032

8033

8034

8035

8036

8037

8038

8039

8040

8041

8042

8043

8044

8045

8046

8047

8048

8049

8050

8051

8052

8053

8054

8055

8056

8057

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces creal()

NAME
creal, crealf, creall — complex real functions

SYNOPSIS
#include <complex.h>

double creal(double complex z);
float crealf(float complex z);
long double creall(long double complex z);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

These functions shall compute the real part of z.

RETURN VALUE
These functions shall return the real part value.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
For a variable z of type complex:

z == c real(z) + cimag(z)*I

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
carg(), cimag(), conj(), cproj(), the Base Definitions volume of IEEE Std 1003.1-200x,
<complex.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 237

8058

8059

8060

8061

8062

8063

8064

8065

8066

8067

8068

8069

8070

8071

8072

8073

8074

8075

8076

8077

8078

8079

8080

8081

8082

8083

8084

8085

8086

8087

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

creat() System Interfaces

NAME
creat — create a new file or rewrite an existing one

SYNOPSIS
OH #include <sys/stat.h>

#include <fcntl.h>

int creat(const char * path, mode_t mode);

DESCRIPTION
The function call:

creat(path, mode)

shall be equivalent to:

open(path, O_WRONLY|O_CREAT|O_TRUNC, mode)

RETURN VALUE
Refer to open().

ERRORS
Refer to open().

EXAMPLES

Creating a File

The following example creates the file /tmp/file with read and write permissions for the file
owner and read permission for group and others. The resulting file descriptor is assigned to the
fd variable.

#include <fcntl.h>
...
int fd;
mode_t mode = S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH;
char *filename = "/tmp/file";
...
fd = creat(filename, mode);
...

APPLICATION USAGE
None.

RATIONALE
The creat() function is redundant. Its services are also provided by the open() function. It has
been included primarily for historical purposes since many existing applications depend on it. It
is best considered a part of the C binding rather than a function that should be provided in other
languages.

FUTURE DIRECTIONS
None.

SEE ALSO
mknod(), open(), the Base Definitions volume of IEEE Std 1003.1-200x, <fcntl.h>, <sys/stat.h>,
<sys/types.h>

238 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

8088

8089

8090

8091

8092

8093

8094

8095

8096

8097

8098

8099

8100

8101

8102

8103

8104

8105

8106

8107

8108

8109

8110

8111

8112

8113

8114

8115

8116

8117

8118

8119

8120

8121

8122

8123

8124

8125

8126

8127

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces creat()

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
In the SYNOPSIS, the optional include of the <sys/types.h> header is removed.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
required for conforming implementations of previous POSIX specifications, it was not
required for UNIX applications.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 239

8128

8129

8130

8131

8132

8133

8134

8135

8136

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

crypt() System Interfaces

NAME
crypt — string encoding function (CRYPT)

SYNOPSIS
XSI #include <unistd.h>

char *crypt(const char * key, c onst char * salt);

DESCRIPTION
The crypt() function is a string encoding function. The algorithm is implementation-defined.

The key argument points to a string to be encoded. The salt argument is a string chosen from the
set:

a b c d e f g h i j k l m n o p q r s t u v w x y z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0 1 2 3 4 5 6 7 8 9 . /

The first two characters of this string may be used to perturb the encoding algorithm.

The return value of crypt() points to static data that is overwritten by each call.

The crypt() function need not be thread-safe. A function that is not required to be thread-safe is
not required to be reentrant.

RETURN VALUE
Upon successful completion, crypt() shall return a pointer to the encoded string. The first two
characters of the returned value shall be those of the salt argument. Otherwise, it shall return a
null pointer and set errno to indicate the error.

ERRORS
The crypt() function shall fail if:

[ENOSYS] The functionality is not supported on this implementation.

EXAMPLES

Encoding Passwords

The following example finds a user database entry matching a particular user name and changes
the current password to a new password. The crypt() function generates an encoded version of
each password. The first call to crypt() produces an encoded version of the old password; that
encoded password is then compared to the password stored in the user database. The second
call to crypt() encodes the new password before it is stored.

The putpwent() function, used in the following example, is not part of IEEE Std 1003.1-200x.

#include <unistd.h>
#include <pwd.h>
#include <string.h>
#include <stdio.h>
...
int valid_change;
int pfd; /* Integer for file descriptor returned by open(). */
FILE *fpfd; /* File pointer for use in putpwent(). */
struct passwd *p;
char user[100];
char oldpasswd[100];

240 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

8137

8138

8139

8140

8141

8142

8143

8144

8145

8146

8147

8148

8149

8150

8151

8152

8153

8154

8155

8156

8157

8158

8159

8160

8161

8162

8163

8164

8165

8166

8167

8168

8169

8170

8171

8172

8173

8174

8175

8176

8177

8178

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces crypt()

char newpasswd[100];
char savepasswd[100];
...
valid_change = 0;
while ((p = getpwent()) != NULL) {

/* Change entry if found. */
if (strcmp(p->pw_name, user) == 0) {

if (strcmp(p->pw_passwd, crypt(oldpasswd, p->pw_passwd)) == 0) {
strcpy(savepasswd, crypt(newpasswd, user));
p->pw_passwd = savepasswd;
valid_change = 1;

}
else {

fprintf(stderr, "Old password is not valid\n");
}

}
/* Put passwd entry into ptmp. */
putpwent(p, fpfd);

}

APPLICATION USAGE
The values returned by this function need not be portable among XSI-conformant systems.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
encrypt(), setkey(), the Base Definitions volume of IEEE Std 1003.1-200x, <unistd.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
Normative text previously in the APPLICATION USAGE section is moved to the
DESCRIPTION.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 241

8179

8180

8181

8182

8183

8184

8185

8186

8187

8188

8189

8190

8191

8192

8193

8194

8195

8196

8197

8198

8199

8200

8201

8202

8203

8204

8205

8206

8207

8208

8209

8210

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

csin() System Interfaces

NAME
csin, csinf, csinl — complex sine functions

SYNOPSIS
#include <complex.h>

double complex csin(double complex z);
float complex csinf(float complex z);
long double complex csinl(long double complex z);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

These functions shall compute the complex sine of z.

RETURN VALUE
These functions shall return the complex sine value.

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces csinh()

NAME
csinh, csinhf, csinhl — complex hyperbolic sine functions

SYNOPSIS
#include <complex.h>

double complex csinh(double complex z);
float complex csinhf(float complex z);
long double complex csinhl(long double complex z);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

These functions shall compute the complex hyperbolic sine of z.

RETURN VALUE
These functions shall return the complex hyperbolic sine value.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
casinh(), the Base Definitions volume of IEEE Std 1003.1-200x, <complex.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 243

8239

8240

8241

8242

8243

8244

8245

8246

8247

8248

8249

8250

8251

8252

8253

8254

8255

8256

8257

8258

8259

8260

8261

8262

8263

8264

8265

8266

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

csinl() System Interfaces

NAME
csinl — complex sine functions

SYNOPSIS
#include <complex.h>

long double complex csinl(long double complex z);

DESCRIPTION
Refer to csin().

244 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

8267

8268

8269

8270

8271

8272

8273

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces csqrt()

NAME
csqrt, csqrtf, csqrtl — complex square root functions

SYNOPSIS
#include <complex.h>

double complex csqrt(double complex z);
float complex csqrtf(float complex z);
long double complex csqrtl(long double complex z);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

These functions shall compute the complex square root of z, with a branch cut along the negative
real axis.

RETURN VALUE
These functions shall return the complex square root value, in the range of the right half-plane
(including the imaginary axis).

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
cabs(), cpow(), the Base Definitions volume of IEEE Std 1003.1-200x, <complex.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 245

8274

8275

8276

8277

8278

8279

8280

8281

8282

8283

8284

8285

8286

8287

8288

8289

8290

8291

8292

8293

8294

8295

8296

8297

8298

8299

8300

8301

8302

8303

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

ctan() System Interfaces

NAME
ctan, ctanf, ctanl — complex tangent functions

SYNOPSIS
#include <complex.h>

double complex ctan(double complex z);
float complex ctanf(float complex z);
long double complex ctanl(long double complex z);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

These functions shall compute the complex tangent of z.

RETURN VALUE
These functions shall return the complex tangent value.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
catan(), the Base Definitions volume of IEEE Std 1003.1-200x, <complex.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

246 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

8304

8305

8306

8307

8308

8309

8310

8311

8312

8313

8314

8315

8316

8317

8318

8319

8320

8321

8322

8323

8324

8325

8326

8327

8328

8329

8330

8331

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces ctanh()

NAME
ctanh, ctanhf, ctanhl — complex hyperbolic tangent functions

SYNOPSIS
#include <complex.h>

double complex ctanh(double complex z);
float complex ctanhf(float complex z);
long double complex ctanhl(long double complex z);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

These functions shall compute the complex hyperbolic tangent of z.

RETURN VALUE
These functions shall return the complex hyperbolic tangent value.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
catanh(), the Base Definitions volume of IEEE Std 1003.1-200x, <complex.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 247

8332

8333

8334

8335

8336

8337

8338

8339

8340

8341

8342

8343

8344

8345

8346

8347

8348

8349

8350

8351

8352

8353

8354

8355

8356

8357

8358

8359

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

ctanl() System Interfaces

NAME
ctanl — complex tangent functions

SYNOPSIS
#include <complex.h>

long double complex ctanl(long double complex z);

DESCRIPTION
Refer to ctan().

248 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

8360

8361

8362

8363

8364

8365

8366

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces ctermid()

NAME
ctermid — generate a pathname for the controlling terminal

SYNOPSIS
CX #include <stdio.h>

char *ctermid(char * s);

DESCRIPTION
The ctermid() function shall generate a string that, when used as a pathname, refers to the
current controlling terminal for the current process. If ctermid() returns a pathname, access to the
file is not guaranteed.

If the application uses any of the _POSIX_THREAD_SAFE_FUNCTIONS or _POSIX_THREADS
functions, it shall ensure that the ctermid() function is called with a non-NULL parameter.

RETURN VALUE
If s is a null pointer, the string shall be generated in an area that may be static (and therefore may
be overwritten by each call), the address of which shall be returned. Otherwise, s is assumed to
point to a character array of at least L_ctermid bytes; the string is placed in this array and the
value of s shall be returned. The symbolic constant L_ctermid is defined in <stdio.h>, and shall
have a value greater than 0.

The ctermid() function shall return an empty string if the pathname that would refer to the
controlling terminal cannot be determined, or if the function is unsuccessful.

ERRORS
No errors are defined.

EXAMPLES

Determining the Controlling Terminal for the Current Process

The following example returns a pointer to a string that identifies the controlling terminal for the
current process. The pathname for the terminal is stored in the array pointed to by the ptr
argument, which has a size of L_ctermid bytes, as indicated by the term argument.

#include <stdio.h>
...
char term[L_ctermid];
char *ptr;

ptr = ctermid(term);

APPLICATION USAGE
The difference between ctermid() and ttyname() is that ttyname() must be handed a file
descriptor and return a path of the terminal associated with that file descriptor, while ctermid()
returns a string (such as "/dev/tty") that refers to the current controlling terminal if used as a
pathname.

RATIONALE
L_ctermid must be defined appropriately for a given implementation and must be greater than
zero so that array declarations using it are accepted by the compiler. The value includes the
terminating null byte.

Conforming applications that use threads cannot call ctermid() with NULL as the parameter if
either _POSIX_THREAD_SAFE_FUNCTIONS or _POSIX_THREADS is defined. If s is not
NULL, the ctermid() function generates a string that, when used as a pathname, refers to the

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 249

8367

8368

8369

8370

8371

8372

8373

8374

8375

8376

8377

8378

8379

8380

8381

8382

8383

8384

8385

8386

8387

8388

8389

8390

8391

8392

8393

8394

8395

8396

8397

8398

8399

8400

8401

8402

8403

8404

8405

8406

8407

8408

8409

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

ctermid() System Interfaces

current controlling terminal for the current process. If s is NULL, the return value of ctermid() is
undefined.

There is no additional burden on the programmer—changing to use a hypothetical thread-safe
version of ctermid() along with allocating a buffer is more of a burden than merely allocating a
buffer. Application code should not assume that the returned string is short, as some
implementations have more than two pathname components before reaching a logical device
name.

FUTURE DIRECTIONS
None.

SEE ALSO
ttyname(), the Base Definitions volume of IEEE Std 1003.1-200x, <stdio.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The DESCRIPTION is updated for alignment with the POSIX Threads Extension.

Issue 6
The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

250 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

8410

8411

8412

8413

8414

8415

8416

8417

8418

8419

8420

8421

8422

8423

8424

8425

8426

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces ctime()

NAME
ctime, ctime_r — convert a time value to a date and time string

SYNOPSIS
OB #include <time.h>

char *ctime(const time_t * clock);
OB CX char *ctime_r(const time_t * clock, c har * buf);

DESCRIPTION
CX For ctime(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of IEEE Std 1003.1-200x defers to the ISO C standard.

The ctime() function shall convert the time pointed to by clock, representing time in seconds
since the Epoch, to local time in the form of a string. It shall be equivalent to:

asctime(localtime(clock))

CX The asctime(), ctime(), gmtime(), and localtime() functions shall return values in one of two static
objects: a broken-down time structure and an array of char. Execution of any of the functions
may overwrite the information returned in either of these objects by any of the other functions.

The ctime() function need not be thread-safe. A function that is not required to be thread-safe is
not required to be reentrant.

The ctime_r() function shall convert the calendar time pointed to by clock to local time in exactly
the same form as ctime() and put the string into the array pointed to by buf (which shall be at
least 26 bytes in size) and return buf .

Unlike ctime(), the thread-safe version ctime_r() is not required to set tzname.

RETURN VALUE
The ctime() function shall return the pointer returned by asctime() with that broken-down time
as an argument.

CX Upon successful completion, ctime_r() shall return a pointer to the string pointed to by buf .
When an error is encountered, a null pointer shall be returned.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
These functions are included only for compatibility with older implementations. They have
undefined behavior if the resulting string would be too long, so the use of these functions
should be discouraged. On implementations that do not detect output string length overflow, it
is possible to overflow the output buffers in such a way as to cause applications to fail, or
possible system security violations. Also, these functions do not support localized date and time
formats. To avoid these problems, applications should use strftime() to generate strings from
broken-down times.

Values for the broken-down time structure can be obtained by calling gmtime() or localtime().

The ctime_r() function is thread-safe and shall return values in a user-supplied buffer instead of
possibly using a static data area that may be overwritten by each call.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 251

8427

8428

8429

8430

8431

8432

8433

8434

8435

8436

8437

8438

8439

8440

8441

8442

8443

8444

8445

8446

8447

8448

8449

8450

8451

8452

8453

8454

8455

8456

8457

8458

8459

8460

8461

8462

8463

8464

8465

8466

8467

8468

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

ctime() System Interfaces

Attempts to use ctime() or ctime_r() for times before the Epoch or for times beyond the year 9999
produce undefined results. Refer to asctime() (on page 130).

RATIONALE
The standards developers decided to mark the ctime() and ctime_r() functions obsolescent even
though they are in the ISO C standard due to the possibility of buffer overflow. The ISO C
standard also provides the strftime() function which can be used to avoid these problems.

FUTURE DIRECTIONS
These functions may be removed in a future version.

SEE ALSO
asctime(), clock(), difftime(), gmtime(), localtime(), mktime(), strftime(), strptime(), time(), utime(),
the Base Definitions volume of IEEE Std 1003.1-200x, <time.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
Normative text previously in the APPLICATION USAGE section is moved to the
DESCRIPTION.

The ctime_r() function is included for alignment with the POSIX Threads Extension.

A note indicating that the ctime() function need not be reentrant is added to the DESCRIPTION.

Issue 6
Extensions beyond the ISO C standard are marked.

In the DESCRIPTION, the note about reentrancy is expanded to cover thread-safety.

The APPLICATION USAGE section is updated to include a note on the thread-safe function and
its avoidance of possibly using a static data area.

Issue 7
SD5-XSH-ERN-25 is applied, updating the APPLICATION USAGE.

Austin Group Interpretation 1003.1-2001 #053 is applied, marking these functions obsolescent.

The ctime_r() function is moved from the Thread-Safe Functions option to the Base.

252 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

8469

8470

8471

8472

8473

8474

8475

8476

8477

8478

8479

8480

8481

8482

8483

8484

8485

8486

8487

8488

8489

8490

8491

8492

8493

8494

8495

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces daylight

NAME
daylight — daylight savings time flag

SYNOPSIS
XSI #include <time.h>

extern int daylight;

DESCRIPTION
Refer to tzset().

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 253

8496

8497

8498

8499

8500

8501

8502

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

dbm_clearerr() System Interfaces

NAME
dbm_clearerr, dbm_close, dbm_delete, dbm_error, dbm_fetch, dbm_firstkey, dbm_nextkey,
dbm_open, dbm_store — database functions

SYNOPSIS
XSI #include <ndbm.h>

int dbm_clearerr(DBM * db);
void dbm_close(DBM * db);
int dbm_delete(DBM * db, d atum key);
int dbm_error(DBM * db);
datum dbm_fetch(DBM * db, d atum key);
datum dbm_firstkey(DBM * db);
datum dbm_nextkey(DBM * db);
DBM *dbm_open(const char * file, i nt open_flags, mode_t file_mode);
int dbm_store(DBM * db, d atum key, d atum content, i nt store_mode);

DESCRIPTION
These functions create, access, and modify a database.

A datum consists of at least two members, dptr and dsize. The dptr member points to an object
that is dsize bytes in length. Arbitrary binary data, as well as character strings, may be stored in
the object pointed to by dptr.

A database shall be stored in one or two files. When one file is used, the name of the database
file shall be formed by appending the suffix .db to the file argument given to dbm_open(). When
two files are used, the names of the database files shall be formed by appending the suffixes .dir
and .pag respectively to the file argument.

The dbm_open() function shall open a database. The file argument to the function is the
pathname of the database. The open_flags argument has the same meaning as the flags argument
of open() except that a database opened for write-only access opens the files for read and write
access and the behavior of the O_APPEND flag is unspecified. The file_mode argument has the
same meaning as the third argument of open().

The dbm_open() function need not accept pathnames longer than {PATH_MAX}−4 bytes
(including the terminating null), or pathnames with a last component longer than
{NAME_MAX}−4 bytes (excluding the terminating null).

The dbm_close() function shall close a database. The application shall ensure that argument db is
a pointer to a dbm structure that has been returned from a call to dbm_open().

These database functions shall support an internal block size large enough to support
key/content pairs of at least 1 023 bytes.

The dbm_fetch() function shall read a record from a database. The argument db is a pointer to a
database structure that has been returned from a call to dbm_open(). The argument key is a
datum that has been initialized by the application to the value of the key that matches the key of
the record the program is fetching.

The dbm_store() function shall write a record to a database. The argument db is a pointer to a
database structure that has been returned from a call to dbm_open(). The argument key is a
datum that has been initialized by the application to the value of the key that identifies (for
subsequent reading, writing, or deleting) the record the application is writing. The argument
content is a datum that has been initialized by the application to the value of the record the
program is writing. The argument store_mode controls whether dbm_store() replaces any pre-

254 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

8503

8504

8505

8506

8507

8508

8509

8510

8511

8512

8513

8514

8515

8516

8517

8518

8519

8520

8521

8522

8523

8524

8525

8526

8527

8528

8529

8530

8531

8532

8533

8534

8535

8536

8537

8538

8539

8540

8541

8542

8543

8544

8545

8546

8547

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces dbm_clearerr()

existing record that has the same key that is specified by the key argument. The application shall
set store_mode to either DBM_INSERT or DBM_REPLACE. If the database contains a record that
matches the key argument and store_mode is DBM_REPLACE, the existing record shall be
replaced with the new record. If the database contains a record that matches the key argument
and store_mode is DBM_INSERT, the existing record shall be left unchanged and the new record
ignored. If the database does not contain a record that matches the key argument and store_mode
is either DBM_INSERT or DBM_REPLACE, the new record shall be inserted in the database.

If the sum of a key/content pair exceeds the internal block size, the result is unspecified.
Moreover, the application shall ensure that all key/content pairs that hash together fit on a
single block. The dbm_store() function shall return an error in the event that a disk block fills
with inseparable data.

The dbm_delete() function shall delete a record and its key from the database. The argument db is
a pointer to a database structure that has been returned from a call to dbm_open(). The argument
key is a datum that has been initialized by the application to the value of the key that identifies
the record the program is deleting.

The dbm_firstkey() function shall return the first key in the database. The argument db is a
pointer to a database structure that has been returned from a call to dbm_open().

The dbm_nextkey() function shall return the next key in the database. The argument db is a
pointer to a database structure that has been returned from a call to dbm_open(). The application
shall ensure that the dbm_firstkey() function is called before calling dbm_nextkey(). Subsequent
calls to dbm_nextkey() return the next key until all of the keys in the database have been
returned.

The dbm_error() function shall return the error condition of the database. The argument db is a
pointer to a database structure that has been returned from a call to dbm_open().

The dbm_clearerr() function shall clear the error condition of the database. The argument db is a
pointer to a database structure that has been returned from a call to dbm_open().

The dptr pointers returned by these functions may point into static storage that may be changed
by subsequent calls.

These functions need not be thread-safe. A function that is not required to be thread-safe is not
required to be reentrant.

RETURN VALUE
The dbm_store() and dbm_delete() functions shall return 0 when they succeed and a negative
value when they fail.

The dbm_store() function shall return 1 if it is called with a flags value of DBM_INSERT and the
function finds an existing record with the same key.

The dbm_error() function shall return 0 if the error condition is not set and return a non-zero
value if the error condition is set.

The return value of dbm_clearerr() is unspecified.

The dbm_firstkey() and dbm_nextkey() functions shall return a key datum. When the end of the
database is reached, the dptr member of the key is a null pointer. If an error is detected, the dptr
member of the key shall be a null pointer and the error condition of the database shall be set.

The dbm_fetch() function shall return a content datum. If no record in the database matches the
key or if an error condition has been detected in the database, the dptr member of the content
shall be a null pointer.

The dbm_open() function shall return a pointer to a database structure. If an error is detected
during the operation, dbm_open() shall return a (DBM *)0.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 255

8548

8549

8550

8551

8552

8553

8554

8555

8556

8557

8558

8559

8560

8561

8562

8563

8564

8565

8566

8567

8568

8569

8570

8571

8572

8573

8574

8575

8576

8577

8578

8579

8580

8581

8582

8583

8584

8585

8586

8587

8588

8589

8590

8591

8592

8593

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

dbm_clearerr() System Interfaces

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
The following code can be used to traverse the database:

for(key = dbm_firstkey(db); key.dptr != NULL; key = dbm_nextkey(db))

The dbm_* functions provided in this library should not be confused in any way with those of a
general-purpose database management system. These functions do not provide for multiple
search keys per entry, they do not protect against multi-user access (in other words they do not
lock records or files), and they do not provide the many other useful database functions that are
found in more robust database management systems. Creating and updating databases by use of
these functions is relatively slow because of data copies that occur upon hash collisions. These
functions are useful for applications requiring fast lookup of relatively static information that is
to be indexed by a single key.

Note that a strictly conforming application is extremely limited by these functions: since there is
no way to determine that the keys in use do not all hash to the same value (although that would
be rare), a strictly conforming application cannot be guaranteed that it can store more than one
block’s worth of data in the database. As long as a key collision does not occur, additional data
may be stored, but because there is no way to determine whether an error is due to a key
collision or some other error condition (dbm_error() being effectively a Boolean), once an error is
detected, the application is effectively limited to guessing what the error might be if it wishes to
continue using these functions.

The dbm_delete() function need not physically reclaim file space, although it does make it
available for reuse by the database.

After calling dbm_store() or dbm_delete() during a pass through the keys by dbm_firstkey() and
dbm_nextkey(), the application should reset the database by calling dbm_firstkey() before again
calling dbm_nextkey(). The contents of these files are unspecified and may not be portable.

Applications should take care that database pathname arguments specified to dbm_open() are
not prefixes of unrelated files. This might be done, for example, by placing databases in a
separate directory.

Since some implementations use three characters for a suffix and others use four characters for a
suffix, applications should ensure that the maximum portable pathname length passed to
dbm_open() is no greater than {PATH_MAX}−4 bytes, with the last component of the pathname
no greater than {NAME_MAX}−4 bytes.

RATIONALE
Previously the standard required the database to be stored in two files, one file being a directory
containing a bitmap of keys and having .dir as its suffix. The second file containing all data and
having .pag as its suffix. This has been changed not to specify the use of the files and to allow
newer implementations of the Berkeley DB interface using a single file that have evolved while
remaining compatible with the application programming interface. The standard developers
considered removing the specific suffixes altogether but decided to retain them so as not to
pollute the application file name space more than necessary and to allow for portable backups of
the database.

FUTURE DIRECTIONS
None.

256 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

8594

8595

8596

8597

8598

8599

8600

8601

8602

8603

8604

8605

8606

8607

8608

8609

8610

8611

8612

8613

8614

8615

8616

8617

8618

8619

8620

8621

8622

8623

8624

8625

8626

8627

8628

8629

8630

8631

8632

8633

8634

8635

8636

8637

8638

8639

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces dbm_clearerr()

SEE ALSO
open(), the Base Definitions volume of IEEE Std 1003.1-200x, <ndbm.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Normative text previously in the APPLICATION USAGE section is moved to the
DESCRIPTION.

A note indicating that these functions need not be reentrant is added to the DESCRIPTION.

Issue 6
The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

Issue 7
Austin Group Interpretation 1003.1-2001 #042 is applied so that the DESCRIPTION permits
newer implementations of the Berkeley DB interface.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 257

8640

8641

8642

8643

8644

8645

8646

8647

8648

8649

8650

8651

8652

8653

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

difftime() System Interfaces

NAME
difftime — compute the difference between two calendar time values

SYNOPSIS
#include <time.h>

double difftime(time_t time1, t ime_t time0);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standar

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces dirfd()

NAME
dirfd — extract the file descriptor used by a DIR stream

SYNOPSIS
#include <dirent.h>

int dirfd(DIR * dirp);

DESCRIPTION
The dirfd() function shall return a file descriptor referring to the same directory as the dirp
argument. This file descriptor shall be closed by a call to closedir(). The behavior of future calls
to readdir() and readdir_r() is undefined if the application attempts to alter the file position
indicator using the returned file descriptor. The behavior of future calls to closedir(), readdir(),
and readdir_r() is undefined if the application attempts to close the file descriptor.

RETURN VALUE
Upon successful completion, the dirfd() function shall return an integer which contains a file
descriptor for the stream pointed to by dirp. Otherwise, it shall return −1 and may set errno to
indicate the error.

ERRORS
The dirfd() function may fail if:

[EINVAL] The dirp argument does not refer to a valid directory stream.

[ENOTSUP] The implementation does not support the association of a file descriptor with
a directory.

EXAMPLES
None.

APPLICATION USAGE
The dirfd() function is intended to be a mechanism by which an application may obtain a file
descriptor to use for the fchdir() function.

RATIONALE
This interface was introduced because the Base Definitions volume of IEEE Std 1003.1-200x does
not make public the DIR data structure. Applications tend to use the fchdir() function on the file
descriptor returned by this interface, and this has proven useful for security reasons; in
particular, it is a better technique than others where directory names might change.

The description uses the term ‘‘a file descriptor’’ rather than ‘‘the file descriptor’’. The
implication intended is that an implementation that does not use an fd for diropen() could still
open() the directory to implement the dirfd() function. Such a descriptor must be closed later
during a call to closedir().

An implementation that does not support file descriptors referring to directories may fail with
[ENOTSUP].

If it is necessary to allocate an fd to be returned by dirfd(), it should be done at the time of a call
to opendir().

FUTURE DIRECTIONS
None.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 259

8682

8683

8684

8685

8686

8687

8688

8689

8690

8691

8692

8693

8694

8695

8696

8697

8698

8699

8700

8701

8702

8703

8704

8705

8706

8707

8708

8709

8710

8711

8712

8713

8714

8715

8716

8717

8718

8719

8720

8721

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

dirfd() System Interfaces

SEE ALSO
closedir(), fchdir(), fdopendir(), fileno(), open(), opendir(), readdir(), the Base Definitions volume
of IEEE Std 1003.1-200x, <dirent.h>

CHANGE HISTORY
First released in Issue 7.

260 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

8722

8723

8724

8725

8726

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces dirname()

NAME
dirname — report the parent directory name of a file pathname

SYNOPSIS
XSI #include <libgen.h>

char *dirname(char * path);

DESCRIPTION
The dirname() function shall take a pointer to a character string that contains a pathname, and
return a pointer to a string that is a pathname of the parent directory of that file. Trailing ’/’
characters in the path are not counted as part of the path.

If path does not contain a ’/’ , then dirname() shall return a pointer to the string "." . If path is a
null pointer or points to an empty string, dirname() shall return a pointer to the string "." .

The dirname() function need not be thread-safe. A function that is not required to be thread-safe
is not required to be reentrant.

RETURN VALUE
The dirname() function shall return a pointer to a string that is the parent directory of path. If
path is a null pointer or points to an empty string, a pointer to a string "." is returned.

The dirname() function may modify the string pointed to by path, and may return a pointer to
static storage that may then be overwritten by subsequent calls to dirname().

ERRORS
No errors are defined.

EXAMPLES
The following code fragment reads a pathname, changes the current working directory to the
parent directory, and opens the file.

char path[PATH_MAX], *pathcopy;
int fd;
fgets(path, PATH_MAX, stdin);
pathcopy = strdup(path);
chdir(dirname(pathcopy));
fd = open(basename(path), O_RDONLY);

Sample Input and Output Strings for dirname()

In the following table, the input string is the value pointed to by path, and the output string is
the return value of the dirname() function.

Input String Output String

"/usr/lib" "/usr"
"/usr/" "/"
"usr" "."
"/" "/"
"." "."
".." "."

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 261

8727

8728

8729

8730

8731

8732

8733

8734

8735

8736

8737

8738

8739

8740

8741

8742

8743

8744

8745

8746

8747

8748

8749

8750

8751

8752

8753

8754

8755

8756

8757

8758

8759

8760

8761

8762

8763

8764

8765

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

dirname() System Interfaces

Changing the Current Directory to the Parent Directory

The following program fragment reads a pathname, changes the current working directory to
the parent directory, and opens the file.

#include <unistd.h>
#include <limits.h>
#include <stdio.h>
#include <fcntl.h>
#include <string.h>
#include <libgen.h>
...
char path[PATH_MAX], *pathcopy;
int fd;
...
fgets(path, PATH_MAX, stdin);
pathcopy = strdup(path);
chdir(dirname(pathcopy));
fd = open(basename(path), O_RDONLY);

APPLICATION USAGE
The dirname() and basename() functions together yield a complete pathname. The expression
dirname(path) obtains the pathname of the directory where basename(path) is found.

Since the meaning of the leading "//" is implementation-defined, dirname("//foo) may return
either "//" or ’/’ (but nothing else).

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
basename(), the Base Definitions volume of IEEE Std 1003.1-200x, <libgen.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Normative text previously in the APPLICATION USAGE section is moved to the
DESCRIPTION.

A note indicating that this function need not be reentrant is added to the DESCRIPTION.

262 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

8766

8767

8768

8769

8770

8771

8772

8773

8774

8775

8776

8777

8778

8779

8780

8781

8782

8783

8784

8785

8786

8787

8788

8789

8790

8791

8792

8793

8794

8795

8796

8797

8798

8799

8800

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces div()

NAME
div — compute the quotient and remainder of an integer division

SYNOPSIS
#include <stdlib.h>

div_t div(int numer, i nt denom);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

The div() function shall compute the quotient and remainder of the division of the numerator
numer by the denominator denom. If the division is inexact, the resulting quotient is the integer
of lesser magnitude that is the nearest to the algebraic quotient. If the result cannot be
represented, the behavior is undefined; otherwise, quot*denom+rem shall equal numer.

RETURN VALUE
The div() function shall return a structure of type div_t, comprising both the quotient and the
remainder. The structure includes the following members, in any order:

int quot; /* quotient */
int rem; /* remainder */

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
ldiv(), the Base Definitions volume of IEEE Std 1003.1-200x, <stdlib.h>

CHANGE HISTORY
First released in Issue 4. Derived from the ISO C standard.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 263

8801

8802

8803

8804

8805

8806

8807

8808

8809

8810

8811

8812

8813

8814

8815

8816

8817

8818

8819

8820

8821

8822

8823

8824

8825

8826

8827

8828

8829

8830

8831

8832

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

dlclose() System Interfaces

NAME
dlclose — close a dlopen() object

SYNOPSIS
#include <dlfcn.h>

int dlclose(void * handle);

DESCRIPTION
The dlclose() function shall inform the system that the object referenced by a handle returned
from a previous dlopen() invocation is no longer needed by the application.

The use of dlclose() reflects a statement of intent on the part of the process, but does not create
any requirement upon the implementation, such as removal of the code or symbols referenced
by handle. Once an object has been closed using dlclose() an application should assume that its
symbols are no longer available to dlsym(). All objects loaded automatically as a result of
invoking dlopen() on the referenced object shall also be closed if this is the last reference to it.

Although a dlclose() operation is not required to remove structures from an address space,
neither is an implementation prohibited from doing so. The only restriction on such a removal is
that no object shall be removed to which references have been relocated, until or unless all such
references are removed. For instance, an object that had been loaded with a dlopen() operation
specifying the RTLD_GLOBAL flag might provide a target for dynamic relocations performed in
the processing of other objects—in such environments, an application may assume that no
relocation, once made, shall be undone or remade unless the object requiring the relocation has
itself been removed.

RETURN VALUE
If the referenced object was successfully closed, dlclose() shall return 0. If the object could not be
closed, or if handle does not refer to an open object, dlclose() shall return a non-zero value. More
detailed diagnostic information shall be available through dlerror().

ERRORS
No errors are defined.

EXAMPLES
The following example illustrates use of dlopen() and dlclose():

...
/* Open a dynamic library and then close it ... */

#include <dlfcn.h>
void *mylib;
int eret;

mylib = dlopen("mylib.so", RTLD_LOCAL | RTLD_LAZY);
...
eret = dlclose(mylib);
...

APPLICATION USAGE
A conforming application should employ a handle returned from a dlopen() invocation only
within a given scope bracketed by the dlopen() and dlclose() operations. Implementations are
free to use reference counting or other techniques such that multiple calls to dlopen() referencing
the same object may return the same object for handle. Implementations are also free to reuse a
handle. For these reasons, the value of a handle must be treated as an opaque object by the
application, used only in calls to dlsym() and dlclose().

264 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

8833

8834

8835

8836

8837

8838

8839

8840

8841

8842

8843

8844

8845

8846

8847

8848

8849

8850

8851

8852

8853

8854

8855

8856

8857

8858

8859

8860

8861

8862

8863

8864

8865

8866

8867

8868

8869

8870

8871

8872

8873

8874

8875

8876

8877

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces dlclose()

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
dlerror(), dlopen(), dlsym(), the Base Definitions volume of IEEE Std 1003.1-200x, <dlfcn.h>

CHANGE HISTORY
First released in Issue 5.

Issue 6
The DESCRIPTION is updated to say that the referenced object is closed ‘‘if this is the last
reference to it’’.

Issue 7
The dlopen() function is moved from the XSI option to Base.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 265

8878

8879

8880

8881

8882

8883

8884

8885

8886

8887

8888

8889

8890

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

dlerror() System Interfaces

NAME
dlerror — get diagnostic information

SYNOPSIS
#include <dlfcn.h>

char *dlerror(void);

DESCRIPTION
The dlerror() function shall return a null-terminated character string (with no trailing
<newline>) that describes the last error that occurred during dynamic linking processing. If no
dynamic linking errors have occurred since the last invocation of dlerror(), dlerror() shall return
NULL. Thus, invoking dlerror() a second time, immediately following a prior invocation, shall
result in NULL being returned.

The dlerror() function need not be thread-safe. A function that is not required to be thread-safe is
not required to be reentrant.

RETURN VALUE
If successful, dlerror() shall return a null-terminated character string; otherwise, NULL shall be
returned.

ERRORS
No errors are defined.

EXAMPLES
The following example prints out the last dynamic linking error:

...
#include <dlfcn.h>

char *errstr;

errstr = dlerror();
if (errstr != NULL)
printf ("A dynamic linking error occurred: (%s)\n", errstr);
...

APPLICATION USAGE
The messages returned by dlerror() may reside in a static buffer that is overwritten on each call
to dlerror(). Application code should not write to this buffer. Programs wishing to preserve an
error message should make their own copies of that message. Depending on the application
environment with respect to asynchronous execution events, such as signals or other
asynchronous computation sharing the address space, conforming applications should use a
critical section to retrieve the error pointer and buffer.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
dlclose(), dlopen(), dlsym(), the Base Definitions volume of IEEE Std 1003.1-200x, <dlfcn.h>

266 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

8891

8892

8893

8894

8895

8896

8897

8898

8899

8900

8901

8902

8903

8904

8905

8906

8907

8908

8909

8910

8911

8912

8913

8914

8915

8916

8917

8918

8919

8920

8921

8922

8923

8924

8925

8926

8927

8928

8929

8930

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces dlerror()

CHANGE HISTORY
First released in Issue 5.

Issue 6
In the DESCRIPTION the note about reentrancy and thread-safety is added.

Issue 7
The dlerror() function is moved from the XSI option to the Base.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 267

8931

8932

8933

8934

8935

8936

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

dlopen() System Interfaces

NAME
dlopen — gain access to an executable object file

SYNOPSIS
#include <dlfcn.h>

void *dlopen(const char * file, i nt mode);

DESCRIPTION
The dlopen() function shall make an executable object file specified by file available to the calling
program. The class of files eligible for this operation and the manner of their construction are
implementation-defined, though typically such files are executable objects such as shared
libraries, relocatable files, or programs. Note that some implementations permit the construction
of dependencies between such objects that are embedded within files. In such cases, a dlopen()
operation shall load such dependencies in addition to the object referenced by file.
Implementations may also impose specific constraints on the construction of programs that can
employ dlopen() and its related services.

A successful dlopen() shall return a handle which the caller may use on subsequent calls to
dlsym() and dlclose(). The value of this handle should not be interpreted in any way by the caller.

The file argument is used to construct a pathname to the object file. If file contains a slash
character, the file argument is used as the pathname for the file. Otherwise, file is used in an
implementation-defined manner to yield a pathname.

If the value of file is 0, dlopen() shall provide a handle on a global symbol object. This object shall
provide access to the symbols from an ordered set of objects consisting of the original program
image file, together with any objects loaded at program start-up as specified by that process
image file (for example, shared libraries), and the set of objects loaded using a dlopen() operation
together with the RTLD_GLOBAL flag. As the latter set of objects can change during execution,
the set identified by handle can also change dynamically.

Only a single copy of an object file is brought into the address space, even if dlopen() is invoked
multiple times in reference to the file, and even if different pathnames are used to reference the
file.

The mode parameter describes how dlopen() shall operate upon file with respect to the processing
of relocations and the scope of visibility of the symbols provided within file. When an object is
brought into the address space of a process, it may contain references to symbols whose
addresses are not known until the object is loaded. These references shall be relocated before the
symbols can be accessed. The mode parameter governs when these relocations take place and
may have the following values:

RTLD_LAZY Relocations shall be performed at an implementation-defined time,
ranging from the time of the dlopen() call until the first reference to a
given symbol occurs. Specifying RTLD_LAZY should improve
performance on implementations supporting dynamic symbol binding as
a process may not reference all of the functions in any given object. And,
for systems supporting dynamic symbol resolution for normal process
execution, this behavior mimics the normal handling of process
execution.

RTLD_NOW All necessary relocations shall be performed when the object is first
loaded. This may waste some processing if relocations are performed for
functions that are never referenced. This behavior may be useful for
applications that need to know as soon as an object is loaded that all
symbols referenced during execution are available.

268 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

8937

8938

8939

8940

8941

8942

8943

8944

8945

8946

8947

8948

8949

8950

8951

8952

8953

8954

8955

8956

8957

8958

8959

8960

8961

8962

8963

8964

8965

8966

8967

8968

8969

8970

8971

8972

8973

8974

8975

8976

8977

8978

8979

8980

8981

8982

8983

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces dlopen()

Any object loaded by dlopen() that requires relocations against global symbols can reference the
symbols in the original process image file, any objects loaded at program start-up, from the
object itself as well as any other object included in the same dlopen() invocation, and any objects
that were loaded in any dlopen() invocation and which specified the RTLD_GLOBAL flag. To
determine the scope of visibility for the symbols loaded with a dlopen() invocation, the mode
parameter should be a bitwise-inclusive OR with one of the following values:

RTLD_GLOBAL The object’s symbols shall be made available for the relocation processing
of any other object. In addition, symbol lookup using dlopen(0, mode) and
an associated dlsym() allows objects loaded with this mode to be searched.

RTLD_LOCAL The object’s symbols shall not be made available for the relocation
processing of any other object.

If neither RTLD_GLOBAL nor RTLD_LOCAL are specified, then the default behavior is
unspecified.

If a file is specified in multiple dlopen() invocations, mode is interpreted at each invocation. Note,
however, that once RTLD_NOW has been specified all relocations shall have been completed
rendering further RTLD_NOW operations redundant and any further RTLD_LAZY operations
irrelevant. Similarly, note that once RTLD_GLOBAL has been specified the object shall maintain
the RTLD_GLOBAL status regardless of any previous or future specification of RTLD_LOCAL,
as long as the object remains in the address space (see dlclose()).

Symbols introduced into a program through calls to dlopen() may be used in relocation activities.
Symbols so introduced may duplicate symbols already defined by the program or previous
dlopen() operations. To resolve the ambiguities such a situation might present, the resolution of a
symbol reference to symbol definition is based on a symbol resolution order. Two such
resolution orders are defined: load or dependency ordering. Load order establishes an ordering
among symbol definitions, such that the definition first loaded (including definitions from the
image file and any dependent objects loaded with it) has priority over objects added later (via
dlopen()). Load ordering is used in relocation processing. Dependency ordering uses a breadth-
first order starting with a given object, then all of its dependencies, then any dependents of
those, iterating until all dependencies are satisfied. With the exception of the global symbol
object obtained via a dlopen() operation on a file of 0, dependency ordering is used by the
dlsym() function. Load ordering is used in dlsym() operations upon the global symbol object.

When an object is first made accessible via dlopen() it and its dependent objects are added in
dependency order. Once all the objects are added, relocations are performed using load order.
Note that if an object or its dependencies had been previously loaded, the load and dependency
orders may yield different resolutions.

The symbols introduced by dlopen() operations and available through dlsym() are at a minimum
those which are exported as symbols of global scope by the object. Typically such symbols shall
be those that were specified in (for example) C source code as having extern linkage. The precise
manner in which an implementation constructs the set of exported symbols for a dlopen() object
is specified by that implementation.

RETURN VALUE
If file cannot be found, cannot be opened for reading, is not of an appropriate object format for
processing by dlopen(), or if an error occurs during the process of loading file or relocating its
symbolic references, dlopen() shall return NULL. More detailed diagnostic information shall be
available through dlerror().

ERRORS
No errors are defined.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 269

8984

8985

8986

8987

8988

8989

8990

8991

8992

8993

8994

8995

8996

8997

8998

8999

9000

9001

9002

9003

9004

9005

9006

9007

9008

9009

9010

9011

9012

9013

9014

9015

9016

9017

9018

9019

9020

9021

9022

9023

9024

9025

9026

9027

9028

9029

9030

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

dlopen() System Interfaces

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
dlclose(), dlerror(), dlsym(), the Base Definitions volume of IEEE Std 1003.1-200x, <dlfcn.h>

CHANGE HISTORY
First released in Issue 5.

Issue 6
IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/21 is applied, changing the default
behavior in the DESCRIPTION when neither RTLD_GLOBAL nor RTLD_LOCAL are specified
from implementation-defined to unspecified.

Issue 7
The dlopen() function is moved from the XSI option to the Base.

270 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

9031

9032

9033

9034

9035

9036

9037

9038

9039

9040

9041

9042

9043

9044

9045

9046

9047

9048

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces dlsym()

NAME
dlsym — obtain the address of a symbol from a dlopen() object

SYNOPSIS
#include <dlfcn.h>

void *dlsym(void *restrict handle, c onst char *restrict name);

DESCRIPTION
The dlsym() function shall obtain the address of a symbol defined within an object made
accessible through a dlopen() call. The handle argument is the value returned from a call to
dlopen() (and which has not since been released via a call to dlclose()), and name is the symbol’s
name as a character string.

The dlsym() function shall search for the named symbol in all objects loaded automatically as a
result of loading the object referenced by handle (see dlopen()). Load ordering is used in dlsym()
operations upon the global symbol object. The symbol resolution algorithm used shall be
dependency order as described in dlopen().

The RTLD_DEFAULT and RTLD_NEXT flags are reserved for future use.

RETURN VALUE
If handle does not refer to a valid object opened by dlopen(), or if the named symbol cannot be
found within any of the objects associated with handle, dlsym() shall return NULL. More
detailed diagnostic information shall be available through dlerror().

ERRORS
No errors are defined.

EXAMPLES
The following example shows how dlopen() and dlsym() can be used to access either function or
data objects. For simplicity, error checking has been omitted.

void *handle;
int *iptr, (*fptr)(int);

/* open the needed object */
handle = dlopen("/usr/home/me/libfoo.so", RTLD_LOCAL | RTLD_LAZY);

/* find the address of function and data objects */
*(void **)(&fptr) = dlsym(handle, "my_function");
iptr = (int *)dlsym(handle, "my_object");

/* invoke function, passing value of integer as a parameter */
(*fptr)(*iptr);

APPLICATION USAGE
Special purpose values for handle are reserved for future use. These values and their meanings
are:

RTLD_DEFAULT The symbol lookup happens in the normal global scope; that is, a search for a
symbol using this handle would find the same definition as a direct use of this
symbol in the program code.

RTLD_NEXT Specifies the next object after this one that defines name. This one refers to the
object containing the invocation of dlsym(). The next object is the one found
upon the application of a load order symbol resolution algorithm (see
dlopen()). The next object is either one of global scope (because it was
introduced as part of the original process image or because it was added with

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 271

9049

9050

9051

9052

9053

9054

9055

9056

9057

9058

9059

9060

9061

9062

9063

9064

9065

9066

9067

9068

9069

9070

9071

9072

9073

9074

9075

9076

9077

9078

9079

9080

9081

9082

9083

9084

9085

9086

9087

9088

9089

9090

9091

9092

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

dlsym() System Interfaces

a dlopen() operation including the RTLD_GLOBAL flag), or is an object that
was included in the same dlopen() operation that loaded this one.

The RTLD_NEXT flag is useful to navigate an intentionally created hierarchy
of multiply-defined symbols created through interposition. For example, if a
program wished to create an implementation of malloc() that embedded some
statistics gathering about memory allocations, such an implementation could
use the real malloc() definition to perform the memory allocation—and itself
only embed the necessary logic to implement the statistics gathering function.

RATIONALE
The ISO C standard does not require that pointers to functions can be cast back and forth to
pointers to data. However, POSIX-conforming implementations are required to support his, as
noted in Section 2.12.3 (on page 83). The result of converting a pointer to a function into a
pointer to another data type (except void *) is still undefined, however.

Note that compilers conforming to the ISO C standard are required to generate a warning if a
conversion from a void * pointer to a function pointer is attempted as in:

fptr = (int (*)(int))dlsym(handle, "my_function");

FUTURE DIRECTIONS
None.

SEE ALSO
dlclose(), dlerror(), dlopen(), the Base Definitions volume of IEEE Std 1003.1-200x, <dlfcn.h>

CHANGE HISTORY
First released in Issue 5.

Issue 6
The restrict keyword is added to the dlsym() prototype for alignment with the
ISO/IEC 9899: 1999 standard.

The RTLD_DEFAULT and RTLD_NEXT flags are reserved for future use.

IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/14 is applied, correcting an example, and
adding text to the RATIONALE describing issues related to conversion of pointers to functions
and back again.

Issue 7
The dlsym() function is moved from the XSI option to the Base.

272 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

9093

9094

9095

9096

9097

9098

9099

9100

9101

9102

9103

9104

9105

9106

9107

9108

9109

9110

9111

9112

9113

9114

9115

9116

9117

9118

9119

9120

9121

9122

9123

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces dprintf()

NAME
dprintf — print formatted output

SYNOPSIS
CX #include <stdio.h>

int dprintf(int fildes, c onst char * format, . ..);

DESCRIPTION
Refer to fprintf().

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 273

9124

9125

9126

9127

9128

9129

9130

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces drand48()

provide storage for the successive X i values in the array specified as an argument when the
functions are invoked. That is why these routines do not have to be initialized; the calling
program merely has to place the desired initial value of X i into the array and pass it as an
argument. By using different arguments, erand48(), nrand48(), and jrand48() allow separate
modules of a large program to generate several independent streams of pseudo-random numbers;
that is, the sequence of numbers in each stream shall not depend upon how many times the
routines are called to generate numbers for the other streams.

The initializer function srand48() sets the high-order 32 bits of X i to the low-order 32 bits
contained in its argument. The low-order 16 bits of X i are set to the arbitrary value 330E16.

The initializer function seed48() sets the value of X i to the 48-bit value specified in the argument
array. The low-order 16 bits of X i are set to the low-order 16 bits of seed16v[0]. The mid-order 16
bits of X i are set to the low-order 16 bits of seed16v[1]. The high-order 16 bits of X i are set to the
low-order 16 bits of seed16v[2]. In addition, the previous value of X i is copied into a 48-bit
internal buffer, used only by seed48(), and a pointer to this buffer is the value returned by
seed48(). This returned pointer, which can just be ignored if not needed, is useful if a program is
to be restarted from a given point at some future time—use the pointer to get at and store the
last X i value, and then use this value to reinitialize via seed48() when the program is restarted.

The initializer function lcong48() allows the user to specify the initial X i , the multiplier value a,
and the addend value c. Argument array elements param[0-2] specify X i , param[3-5] specify the
multiplier a, and param[6] specifies the 16-bit addend c. After lcong48() is called, a subsequent
call to either srand48() or seed48() shall restore the standard multiplier and addend values, a and
c, specified above.

The drand48(), lrand48(), and mrand48() function need not be thread-safe. A function that is not
required to be thread-safe is not required to be reentrant.

RETURN VALUE
As described in the DESCRIPTION above.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
rand(), the Base Definitions volume of IEEE Std 1003.1-200x, <stdlib.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
A note indicating that the drand48(), lrand48(), and mrand48() functions need not be reentrant is
added to the DESCRIPTION.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 275

9174

9175

9176

9177

9178

9179

9180

9181

9182

9183

9184

9185

9186

9187

9188

9189

9190

9191

9192

9193

9194

9195

9196

9197

9198

9199

9200

9201

9202

9203

9204

9205

9206

9207

9208

9209

9210

9211

9212

9213

9214

9215

9216

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

drand48() System Interfaces

Issue 6
The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

276 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

9217

9218

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces dup()

NAME
dup, dup2 — duplicate an open file descriptor

SYNOPSIS
#include <unistd.h>

int dup(int fildes);
int dup2(int fildes, i nt fildes2);

DESCRIPTION
The dup() and dup2() functions provide an alternative interface to the service provided by
fcntl() using the F_DUPFD command. The call:

fid = dup(fildes);

shall be equivalent to:

fid = fcntl(fildes, F _DUPFD, 0);

The call:

fid = dup2(fildes, fildes2);

shall be equivalent to:

close(fildes2);
fid = fcntl(fildes, F _DUPFD, fildes2);

except for the following:

• If fildes2 is less than 0 or greater than or equal to {OPEN_MAX}, dup2() shall return −1 with
errno set to [EBADF].

• If fildes is a valid file descriptor and is equal to fildes2, dup2() shall return fildes2 without
closing it.

• If fildes is not a valid file descriptor, dup2() shall return −1 and shall not close fildes2.

• The value returned shall be equal to the value of fildes2 upon successful completion, or −1
upon failure.

RETURN VALUE
Upon successful completion a non-negative integer, namely the file descriptor, shall be returned;
otherwise, −1 shall be returned and errno set to indicate the error.

ERRORS
The dup() function shall fail if:

[EBADF] The fildes argument is not a valid open file descriptor.

[EMFILE] All file descriptors available to the process are currently open.

The dup2() function shall fail if:

[EBADF] The fildes argument is not a valid open file descriptor or the argument fildes2 is
negative or greater than or equal to {OPEN_MAX}.

[EINTR] The dup2() function was interrupted by a signal.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 277

9219

9220

9221

9222

9223

9224

9225

9226

9227

9228

9229

9230

9231

9232

9233

9234

9235

9236

9237

9238

9239

9240

9241

9242

9243

9244

9245

9246

9247

9248

9249

9250

9251

9252

9253

9254

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

dup() System Interfaces

EXAMPLES

Redirecting Standard Output to a File

The following example closes standard output for the current processes, re-assigns standard
output to go to the file referenced by pfd, and closes the original file descriptor to clean up.

#include <unistd.h>
...
int pfd;
...
close(1);
dup(pfd);
close(pfd);
...

Redirecting Error Messages

The following example redirects messages from stderr to stdout.

#include <unistd.h>
...
dup2(1, 2);
...

APPLICATION USAGE
None.

RATIONALE
The dup() and dup2() functions are redundant. Their services are also provided by the fcntl()
function. They have been included in this volume of IEEE Std 1003.1-200x primarily for
historical reasons, since many existing applications use them.

While the brief code segment shown is very similar in behavior to dup2(), a conforming
implementation based on other functions defined in this volume of IEEE Std 1003.1-200x is
significantly more complex. Least obvious is the possible effect of a signal-catching function that
could be invoked between steps and allocate or deallocate file descriptors. This could be avoided
by blocking signals.

The dup2() function is not marked obsolescent because it presents a type-safe version of
functionality provided in a type-unsafe version by fcntl(). It is used in the POSIX Ada binding.

The dup2() function is not intended for use in critical regions as a synchronization mechanism.

In the description of [EBADF], the case of fildes being out of range is covered by the given case of
fildes not being valid. The descriptions for fildes and fildes2 are different because the only kind of
invalidity that is relevant for fildes2 is whether it is out of range; that is, it does not matter
whether fildes2 refers to an open file when the dup2() call is made.

FUTURE DIRECTIONS
None.

SEE ALSO
close(), fcntl(), open(), the Base Definitions volume of IEEE Std 1003.1-200x, <unistd.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

278 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

9255

9256

9257

9258

9259

9260

9261

9262

9263

9264

9265

9266

9267

9268

9269

9270

9271

9272

9273

9274

9275

9276

9277

9278

9279

9280

9281

9282

9283

9284

9285

9286

9287

9288

9289

9290

9291

9292

9293

9294

9295

9296

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces duplocale()

NAME
duplocale — duplicate a locale object

SYNOPSIS
CX #include <locale.h>

locale_t duplocale(locale_t locobj);

DESCRIPTION
The duplocale() function shall create a duplicate copy of the locale object referenced by the locobj
argument.

RETURN VALUE
Upon successful completion, the duplocale() function shall return a handle for a new locale
object. Otherwise, duplocale() shall return (locale_t)0 and set errno to indicate the error.

ERRORS
The duplocale() function shall fail if:

[ENOMEM] There is not enough memory available to create the locale object or load the
locale data.

The duplocale() function may fail if:

[EINVAL] locobj is not a handle for a locale object.

EXAMPLES

Constructing an Altered Version of an Existing Locale Object

The following example shows a code fragment to create a slightly altered version of an existing
locale object. The function takes a locale object and a locale name and it replaces the LC_TIME
category data in the locale object with that from the named locale.

#include <locale.h>
...

locale_t
with_changed_lc_time (locale_t obj, const char *name)
{

locale_t retval = duplocale (obj);
if (retval != (locale_t) 0)
{

locale_t changed = newlocale (LC_TIME_MASK, name, retval);
if (changed == (locale_t) 0)

/* An error occurred. Free all allocated resources. */
freelocale (retval);

retval = changed;
}
return retval; }

}

APPLICATION USAGE
The use of the duplocale() function is recommended for situations where a locale object is being
used in multiple places, and it is possible that the lifetime of the locale object might end before
all uses are finished. Another reason to duplicate a locale object is if a slightly modified form is
needed. This can be achieved by a call to newlocale() following the duplocale() call.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 279

9297

9298

9299

9300

9301

9302

9303

9304

9305

9306

9307

9308

9309

9310

9311

9312

9313

9314

9315

9316

9317

9318

9319

9320

9321

9322

9323

9324

9325

9326

9327

9328

9329

9330

9331

9332

9333

9334

9335

9336

9337

9338

9339

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

duplocale() System Interfaces

As with the newlocale() function, handles for locale objects created by the duplocale() function
should be released by a corresponding call to freelocale().

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
freelocale(), newlocale(), uselocale(), the Base Definitions volume of IEEE Std 1003.1-200x,
<locale.h>

CHANGE HISTORY
First released in Issue 7.

280 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

9340

9341

9342

9343

9344

9345

9346

9347

9348

9349

9350

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces encrypt()

NAME
encrypt — encoding function (CRYPT)

SYNOPSIS
XSI #include <unistd.h>

void encrypt(char block[64], int edflag);

DESCRIPTION
The encrypt() function shall provide access to an implementation-defined encoding algorithm.
The key generated by setkey() is used to encrypt the string block with encrypt().

The block argument to encrypt() shall be an array of length 64 bytes containing only the bytes
with values of 0 and 1. The array is modified in place to a similar array using the key set by
setkey(). If edflag is 0, the argument is encoded. If edflag is 1, the argument may be decoded (see
the APPLICATION USAGE section); if the argument is not decoded, errno shall be set to
[ENOSYS].

The encrypt() function shall not change the setting of errno if successful. An application wishing
to check for error situations should set errno to 0 before calling encrypt(). If errno is non-zero on
return, an error has occurred.

The encrypt() function need not be thread-safe. A function that is not required to be thread-safe
is not required to be reentrant.

RETURN VALUE
The encrypt() function shall not return a value.

ERRORS
The encrypt() function shall fail if:

[ENOSYS] The functionality is not supported on this implementation.

EXAMPLES
None.

APPLICATION USAGE
Historical implementations of the encrypt() function used a rather primitive encoding algorithm.

In some environments, decoding might not be implemented. This is related to some Government
restrictions on encryption and decryption routines. Historical practice has been to ship a
different version of the encryption library without the decryption feature in the routines
supplied. Thus the exported version of encrypt() does encoding but not decoding.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
crypt(), setkey(), the Base Definitions volume of IEEE Std 1003.1-200x, <unistd.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

System Interfaces, Issue 7— C

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

encrypt() System Interfaces

Issue 5
A note indicating that this function need not be reentrant is added to the DESCRIPTION.

Issue 6
In the DESCRIPTION, the note about reentrancy is expanded to cover thread-safety.

282 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

9390

9391

9392

9393

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces endgrent()

NAME
endgrent, getgrent, setgrent — group database entry functions

SYNOPSIS
XSI #include <grp.h>

void endgrent(void);
struct group *getgrent(void);
void setgrent(void);

DESCRIPTION
The getgrent() function shall return a pointer to a structure containing the broken-out fields of an
entry in the group database. When first called, getgrent() shall return a pointer to a group
structure containing the first entry in the group database. Thereafter, it shall return a pointer to a
group structure containing the next group structure in the group database, so successive calls
may be used to search the entire database.

An implementation that provides extended security controls may impose further
implementation-defined restrictions on accessing the group database. In particular, the system
may deny the existence of some or all of the group database entries associated with groups other
than those groups associated with the caller and may omit users other than the caller from the
list of members of groups in database entries that are returned.

The setgrent() function shall rewind the group database to allow repeated searches.

The endgrent() function may be called to close the group database when processing is complete.

These functions need not be thread-safe. A function that is not required to be thread-safe is not
required to be reentrant.

RETURN VALUE
When first called, getgrent() shall return a pointer to the first group structure in the group
database. Upon subsequent calls it shall return the next group structure in the group database.
The getgrent() function shall return a null pointer on end-of-file or an error and errno may be set
to indicate the error.

The return value may point to a static area which is overwritten by a subsequent call to
getgrgid(), getgrnam(), or getgrent().

ERRORS
The getgrent() function may fail if:

[EINTR] A signal was caught during the operation.

[EIO] An I/O error has occurred.

[EMFILE] All file descriptors available to the process are currently open.

[ENFILE] The maximum allowable number of files is currently open in the system.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 283

9394

9395

9396

9397

9398

9399

9400

9401

9402

9403

9404

9405

9406

9407

9408

9409

9410

9411

9412

9413

9414

9415

9416

9417

9418

9419

9420

9421

9422

9423

9424

9425

9426

9427

9428

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

endgrent() System Interfaces

EXAMPLES
None.

APPLICATION USAGE
These functions are provided due to their historical usage. Applications should avoid
dependencies on fields in the group database, whether the database is a single file, or where in
the file system name space the database resides. Applications should use getgrnam() and
getgrgid() whenever possible because it avoids these dependencies.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
getgrgid(), getgrnam(), getlogin(), getpwent(), the Base Definitions volume of
IEEE Std 1003.1-200x, <grp.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Normative text previously in the APPLICATION USAGE section is moved to the RETURN
VALUE section.

A note indicating that these functions need not be reentrant is added to the DESCRIPTION.

Issue 6
In the DESCRIPTION, the note about reentrancy is expanded to cover thread-safety.

Issue 7
SD5-XBD-ERN-4 is applied, changing the definition of the [EMFILE] error.

284 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

9429

9430

9431

9432

9433

9434

9435

9436

9437

9438

9439

9440

9441

9442

9443

9444

9445

9446

9447

9448

9449

9450

9451

9452

9453

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces endhostent()

NAME
endhostent, gethostent, sethostent — network host database functions

SYNOPSIS
#include <netdb.h>

void endhostent(void);
struct hostent *gethostent(void);
void sethostent(int stayopen);

DESCRIPTION
These functions shall retrieve information about hosts. This information is considered to be
stored in a database that can be accessed sequentially or randomly. The implementation of this
database is unspecified.

Note: In many cases this database is implemented by the Domain Name System, as documented in
RFC 1034, RFC 1035, and RFC 1886.

The sethostent() function shall open a connection to the database and set the next entry for
retrieval to the first entry in the database. If the stayopen argument is non-zero, the connection
shall not be closed by a call to gethostent(), and the implementation may maintain an open file
descriptor.

The gethostent() function shall read the next entry in the database, opening and closing a
connection to the database as necessary.

Entries shall be returned in hostent structures.

The endhostent() function shall close the connection to the database, releasing any open file
descriptor.

These functions need not be thread-safe. A function that is not required to be thread-safe is not
required to be reentrant.

RETURN VALUE
Upon successful completion, the gethostent() function shall return a pointer to a hostent
structure if the requested entry was found, and a null pointer if the end of the database was
reached or the requested entry was not found.

ERRORS
No errors are defined for endhostent(), gethostent(), and sethostent().

EXAMPLES
None.

APPLICATION USAGE
The gethostent() function may return pointers to static data, which may be overwritten by
subsequent calls to any of these functions.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
endservent(), the Base Definitions volume of IEEE Std 1003.1-200x, <netdb.h>

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 285

9454

9455

9456

9457

9458

9459

9460

9461

9462

9463

9464

9465

9466

9467

9468

9469

9470

9471

9472

9473

9474

9475

9476

9477

9478

9479

9480

9481

9482

9483

9484

9485

9486

9487

9488

9489

9490

9491

9492

9493

9494

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

endhostent() System Interfaces

CHANGE HISTORY
First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

286 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

9495

9496

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces endnetent()

NAME
endnetent, getnetbyaddr, getnetbyname, getnetent, setnetent — network database functions

SYNOPSIS
#include <netdb.h>

void endnetent(void);
struct netent *getnetbyaddr(uint32_t net, i nt type);
struct netent *getnetbyname(const char * name);
struct netent *getnetent(void);
void setnetent(int stayopen);

DESCRIPTION
These functions shall retrieve information about networks. This information is considered to be
stored in a database that can be accessed sequentially or randomly. The implementation of this
database is unspecified.

The setnetent() function shall open and rewind the database. If the stayopen argument is non-
zero, the connection to the net database shall not be closed after each call to getnetent() (either
directly, or indirectly through one of the other getnet*() functions), and the implementation may
maintain an open file descriptor to the database.

The getnetent() function shall read the next entry of the database, opening and closing a
connection to the database as necessary.

The getnetbyaddr() function shall search the database from the beginning, and find the first entry
for which the address family specified by type matches the n_addrtype member and the network
number net matches the n_net member, opening and closing a connection to the database as
necessary. The net argument shall be the network number in host byte order.

The getnetbyname() function shall search the database from the beginning and find the first entry
for which the network name specified by name matches the n_name member, opening and
closing a connection to the database as necessary.

The getnetbyaddr(), getnetbyname(), and getnetent() functions shall each return a pointer to a
netent structure, the members of which shall contain the fields of an entry in the network
database.

The endnetent() function shall close the database, releasing any open file descriptor.

These functions need not be thread-safe. A function that is not required to be thread-safe is not
required to be reentrant.

RETURN VALUE
Upon successful completion, getnetbyaddr(), getnetbyname(), and getnetent() shall return a
pointer to a netent structure if the requested entry was found, and a null pointer if the end of the
database was reached or the requested entry was not found. Otherwise, a null pointer shall be
returned.

ERRORS
No errors are defined.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 287

9497

9498

9499

9500

9501

9502

9503

9504

9505

9506

9507

9508

9509

9510

9511

9512

9513

9514

9515

9516

9517

9518

9519

9520

9521

9522

9523

9524

9525

9526

9527

9528

9529

9530

9531

9532

9533

9534

9535

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

endnetent() System Interfaces

EXAMPLES
None.

APPLICATION USAGE
The getnetbyaddr(), getnetbyname(), and getnetent() functions may return pointers to static data,
which may be overwritten by subsequent calls to any of these functions.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
The Base Definitions volume of IEEE Std 1003.1-200x, <netdb.h>

CHANGE HISTORY
First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

288 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

9536

9537

9538

9539

9540

9541

9542

9543

9544

9545

9546

9547

9548

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces endprotoent()

NAME
endprotoent, getprotobyname, getprotobynumber, getprotoent, setprotoent — network protocol
database functions

SYNOPSIS
#include <netdb.h>

void endprotoent(void);
struct protoent *getprotobyname(const char * name);
struct protoent *getprotobynumber(int proto);
struct protoent *getprotoent(void);
void setprotoent(int stayopen);

DESCRIPTION
These functions shall retrieve information about protocols. This information is considered to be
stored in a database that can be accessed sequentially or randomly. The implementation of this
database is unspecified.

The setprotoent() function shall open a connection to the database, and set the next entry to the
first entry. If the stayopen argument is non-zero, the connection to the network protocol database
shall not be closed after each call to getprotoent() (either directly, or indirectly through one of the
other getproto*() functions), and the implementation may maintain an open file descriptor for
the database.

The getprotobyname() function shall search the database from the beginning and find the first
entry for which the protocol name specified by name matches the p_name member, opening and
closing a connection to the database as necessary.

The getprotobynumber() function shall search the database from the beginning and find the first
entry for which the protocol number specified by proto matches the p_proto member, opening
and closing a connection to the database as necessary.

The getprotoent() function shall read the next entry of the database, opening and closing a
connection to the database as necessary.

The getprotobyname(), getprotobynumber(), and getprotoent() functions shall each return a pointer
to a protoent structure, the members of which shall contain the fields of an entry in the network
protocol database.

The endprotoent() function shall close the connection to the database, releasing any open file
descriptor.

These functions need not be thread-safe. A function that is not required to be thread-safe is not
required to be reentrant.

RETURN VALUE
Upon successful completion, getprotobyname(), getprotobynumber(), and getprotoent() return a
pointer to a protoent structure if the requested entry was found, and a null pointer if the end of
the database was reached or the requested entry was not found. Otherwise, a null pointer is
returned.

ERRORS
No errors are defined.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 289

9549

9550

9551

9552

9553

9554

9555

9556

9557

9558

9559

9560

9561

9562

9563

9564

9565

9566

9567

9568

9569

9570

9571

9572

9573

9574

9575

9576

9577

9578

9579

9580

9581

9582

9583

9584

9585

9586

9587

9588

9589

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

endprotoent() System Interfaces

EXAMPLES
None.

APPLICATION USAGE
The getprotobyname(), getprotobynumber(), and getprotoent() functions may return pointers to
static data, which may be overwritten by subsequent calls to any of these functions.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
The Base Definitions volume of IEEE Std 1003.1-200x, <netdb.h>

CHANGE HISTORY
First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

290 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

9590

9591

9592

9593

9594

9595

9596

9597

9598

9599

9600

9601

9602

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces endpwent()

NAME
endpwent, getpwent, setpwent — user database functions

SYNOPSIS
XSI #include <pwd.h>

void endpwent(void);
struct passwd *getpwent(void);
void setpwent(void);

DESCRIPTION
These functions shall retrieve information about users.

The getpwent() function shall return a pointer to a structure containing the broken-out fields of
an entry in the user database. Each entry in the user database contains a passwd structure. When
first called, getpwent() shall return a pointer to a passwd structure containing the first entry in
the user database. Thereafter, it shall return a pointer to a passwd structure containing the next
entry in the user database. Successive calls can be used to search the entire user database.

If an end-of-file or an error is encountered on reading, getpwent() shall return a null pointer.

An implementation that provides extended security controls may impose further
implementation-defined restrictions on accessing the user database. In particular, the system
may deny the existence of some or all of the user database entries associated with users other
than the caller.

The setpwent() function effectively rewinds the user database to allow repeated searches.

The endpwent() function may be called to close the user database when processing is complete.

These functions need not be thread-safe. A function that is not required to be thread-safe is not
required to be reentrant.

RETURN VALUE
The getpwent() function shall return a null pointer on end-of-file or error.

ERRORS
The getpwent(), setpwent(), and endpwent() functions may fail if:

[EIO] An I/O error has occurred.

In addition, getpwent() and setpwent() may fail if:

[EMFILE] All file descriptors available to the process are currently open.

[ENFILE] The maximum allowable number of files is currently open in the system.

The return value may point to a static area which is overwritten by a subsequent call to
getpwuid(), getpwnam(), or getpwent().

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 291

9603

9604

9605

9606

9607

9608

9609

9610

9611

9612

9613

9614

9615

9616

9617

9618

9619

9620

9621

9622

9623

9624

9625

9626

9627

9628

9629

9630

9631

9632

9633

9634

9635

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

endpwent() System Interfaces

EXAMPLES

Searching the User Database

The following example uses the getpwent() function to get successive entries in the user
database, returning a pointer to a passwd structure that contains information about each user.
The call to endpwent() closes the user database and cleans up.

#include <pwd.h>
...
struct passwd *p;
...
while ((p = getpwent ()) != NULL) {
...
}

endpwent();
...

APPLICATION USAGE
These functions are provided due to their historical usage. Applications should avoid
dependencies on fields in the password database, whether the database is a single file, or where
in the file system name space the database resides. Applications should use getpwuid()
whenever possible because it avoids these dependencies.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
endgrent(), getlogin(), getpwnam(), getpwuid(), the Base Definitions volume of
IEEE Std 1003.1-200x, <pwd.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Normative text previously in the APPLICATION USAGE section is moved to the RETURN
VALUE section.

A note indicating that these functions need not be reentrant is added to the DESCRIPTION.

Issue 6
In the DESCRIPTION, the note about reentrancy is expanded to cover thread-safety.

Issue 7
SD5-XBD-ERN-4 is applied, changing the definition of the [EMFILE] error.

292 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

9636

9637

9638

9639

9640

9641

9642

9643

9644

9645

9646

9647

9648

9649

9650

9651

9652

9653

9654

9655

9656

9657

9658

9659

9660

9661

9662

9663

9664

9665

9666

9667

9668

9669

9670

9671

9672

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces endservent()

NAME
endservent, getservbyname, getservbyport, getservent, setservent — network services database
functions

SYNOPSIS
#include <netdb.h>

void endservent(void);
struct servent *getservbyname(const char * name, c onst char * proto);
struct servent *getservbyport(int port, c onst char * proto);
struct servent *getservent(void);
void setservent(int stayopen);

DESCRIPTION
These functions shall retrieve information about network services. This information is
considered to be stored in a database that can be accessed sequentially or randomly. The
implementation of this database is unspecified.

The setservent() function shall open a connection to the database, and set the next entry to the
first entry. If the stayopen argument is non-zero, the net database shall not be closed after each
call to the getservent() function (either directly, or indirectly through one of the other getserv*()
functions), and the implementation may maintain an open file descriptor for the database.

The getservent() function shall read the next entry of the database, opening and closing a
connection to the database as necessary.

The getservbyname() function shall search the database from the beginning and find the first
entry for which the service name specified by name matches the s_name member and the protocol
name specified by proto matches the s_proto member, opening and closing a connection to the
database as necessary. If proto is a null pointer, any value of the s_proto member shall be
matched.

The getservbyport() function shall search the database from the beginning and find the first entry
for which the port specified by port matches the s_port member and the protocol name specified
by proto matches the s_proto member, opening and closing a connection to the database as
necessary. If proto is a null pointer, any value of the s_proto member shall be matched. The port
argument shall be a value obtained by converting a uint16_t in network byte order to int.

The getservbyname(), getservbyport(), and getservent() functions shall each return a pointer to a
servent structure, the members of which shall contain the fields of an entry in the network
services database.

The endservent() function shall close the database, releasing any open file descriptor.

These functions need not be thread-safe. A function that is not required to be thread-safe is not
required to be reentrant.

RETURN VALUE
Upon successful completion, getservbyname(), getservbyport(), and getservent() return a pointer to
a servent structure if the requested entry was found, and a null pointer if the end of the database
was reached or the requested entry was not found. Otherwise, a null pointer is returned.

ERRORS
No errors are defined.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 293

9673

9674

9675

9676

9677

9678

9679

9680

9681

9682

9683

9684

9685

9686

9687

9688

9689

9690

9691

9692

9693

9694

9695

9696

9697

9698

9699

9700

9701

9702

9703

9704

9705

9706

9707

9708

9709

9710

9711

9712

9713

9714

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

endservent() System Interfaces

EXAMPLES
None.

APPLICATION USAGE
The port argument of getservbyport() need not be compatible with the port values of all address
families.

The getservbyname(), getservbyport(), and getservent() functions may return pointers to static
data, which may be overwritten by subsequent calls to any of these functions.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
endhostent(), endprotoent(), htonl(), inet_addr(), the Base Definitions volume of
IEEE Std 1003.1-200x, <netdb.h>

CHANGE HISTORY
First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

Issue 7
SD5-XBD-ERN-14 is applied.

294 System Interfaces, Issue 7— C

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces endutxent()

NAME
endutxent, getutxent, getutxid, getutxline, pututxline, setutxent — user accounting database
functions

SYNOPSIS
XSI #include <utmpx.h>

void endutxent(void);
struct utmpx *getutxent(void);
struct utmpx *getutxid(const struct utmpx * id);
struct utmpx *getutxline(const struct utmpx * line);
struct utmpx *pututxline(const struct utmpx * utmpx);
void setutxent(void);

DESCRIPTION
These functions shall provide access to the user accounting database.

The getutxent() function shall read the next entry from the user accounting database. If the
database is not already open, it shall open it. If it reaches the end of the database, it shall fail.

The getutxid() function shall search forward from the current point in the database. If the
ut_type value of the utmpx structure pointed to by id is BOOT_TIME, OLD_TIME, or
NEW_TIME, then it shall stop when it finds an entry with a matching ut_type value. If the
ut_type value is INIT_PROCESS, LOGIN_PROCESS, USER_PROCESS, or DEAD_PROCESS,
then it shall stop when it finds an entry whose type is one of these four and whose ut_id member
matches the ut_id member of the utmpx structure pointed to by id. If the end of the database is
reached without a match, getutxid() shall fail.

The getutxline() function shall search forward from the current point in the database until it
finds an entry of the type LOGIN_PROCESS or USER_PROCESS which also has a ut_line value
matching that in the utmpx structure pointed to by line. If the end of the database is reached
without a match, getutxline() shall fail.

The getutxid() or getutxline() function may cache data. For this reason, to use getutxline() to
search for multiple occurrences, the application shall zero out the static data after each success,
or getutxline() may return a pointer to the same utmpx structure.

There is one exception to the rule about clearing the structure before further reads are done. The
implicit read done by pututxline() (if it finds that it is not already at the correct place in the user
accounting database) shall not modify the static structure returned by getutxent(), getutxid(), or
getutxline(), if the application has modified this structure and passed the pointer back to
pututxline().

For all entries that match a request, the ut_type member indicates the type of the entry. Other
members of the entry shall contain meaningful data based on the value of the ut_type member as
follows:

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 295

9733

9734

9735

9736

9737

9738

9739

9740

9741

9742

9743

9744

9745

9746

9747

9748

9749

9750

9751

9752

9753

9754

9755

9756

9757

9758

9759

9760

9761

9762

9763

9764

9765

9766

9767

9768

9769

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

endutxent() System Interfaces

ut_type Member Other Members with Meaningful Data

EMPTY No others
BOOT_TIME ut_tv
OLD_TIME ut_tv
NEW_TIME ut_tv
USER_PROCESS ut_id, ut_user (login name of the user), ut_line, ut_pid, ut_tv
INIT_PROCESS ut_id, ut_pid, ut_tv
LOGIN_PROCESS ut_id, ut_user (implementation-defined name of the login

process), ut_pid, ut_tv
DEAD_PROCESS ut_id, ut_pid, ut_tv

An implementation that provides extended security controls may impose implementation-
defined restrictions on accessing the user accounting database. In particular, the system may
deny the existence of some or all of the user accounting database entries associated with users
other than the caller.

If the process has appropriate privileges, the pututxline() function shall write out the structure
into the user accounting database. It shall use getutxid() to search for a record that satisfies the
request. If this search succeeds, then the entry shall be replaced. Otherwise, a new entry shall be
made at the end of the user accounting database.

The endutxent() function shall close the user accounting database.

The setutxent() function shall reset the input to the beginning of the database. This should be
done before each search for a new entry if it is desired that the entire database be examined.

These functions need not be thread-safe. A function that is not required to be thread-safe is not
required to be reentrant.

RETURN VALUE
Upon successful completion, getutxent(), getutxid(), and getutxline() shall return a pointer to a
utmpx structure containing a copy of the requested entry in the user accounting database.
Otherwise, a null pointer shall be returned.

The return value may point to a static area which is overwritten by a subsequent call to
getutxid() or getutxline().

Upon successful completion, pututxline() shall return a pointer to a utmpx structure containing a
copy of the entry added to the user accounting database. Otherwise, a null pointer shall be
returned.

The endutxent() and setutxent() functions shall not return a value.

ERRORS
No errors are defined for the endutxent(), getutxent(), getutxid(), getutxline(), and setutxent()
functions.

The pututxline() function may fail if:

[EPERM] The process does not have appropriate privileges.

296 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

9770

9771

9772

9773

9774

9775

9776

9777

9778

9779

9780

9781

9782

9783

9784

9785

9786

9787

9788

9789

9790

9791

9792

9793

9794

9795

9796

9797

9798

9799

9800

9801

9802

9803

9804

9805

9806

9807

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces endutxent()

EXAMPLES
None.

APPLICATION USAGE
The sizes of the arrays in the structure can be found using the sizeof operator.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
The Base Definitions volume of IEEE Std 1003.1-200x, <utmpx.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Normative text previously in the APPLICATION USAGE section is moved to the
DESCRIPTION.

A note indicating that these functions need not be reentrant is added to the DESCRIPTION.

Issue 6
In the DESCRIPTION, the note about reentrancy is expanded to cover thread-safety.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 297

9808

9809

9810

9811

9812

9813

9814

9815

9816

9817

9818

9819

9820

9821

9822

9823

9824

9825

9826

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

environ System Interfaces

NAME
environ — array of character pointers to the environment strings

SYNOPSIS
extern char **environ;

DESCRIPTION
Refer to the Base Definitions volume of IEEE Std 1003.1-200x, Chapter 8, Environment Variables
and exec .

298 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

9827

9828

9829

9830

9831

9832

9833

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces erand48()

NAME
erand48 — generate uniformly distributed pseudo-random numbers

SYNOPSIS
XSI #include <stdlib.h>

double erand48(unsigned short xsubi[3]);

DESCRIPTION
Refer to drand48().

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 299

9834

9835

9836

9837

9838

9839

9840

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

erf() System Interfaces

NAME
erf, erff, erfl — error functions

SYNOPSIS
#include <math.h>

double erf(double x);
float erff(float x);
long double erfl(long double x);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

These functions shall compute the error function of their argument x, defined as:

2

√ π

x

0
∫ e−t2

dt

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-
zero, an error has occurred.

RETURN VALUE
Upon successful completion, these functions shall return the value of the error function.

MX If x is NaN, a NaN shall be returned.

If x is ±0, ±0 s

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces erf()

}

APPLICATION USAGE
Underflow occurs when |x| < DBL_MIN * (sqrt(π)/2).

On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling &
MATH_ERREXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
erfc(), feclearexcept(), fetestexcept(), isnan(), the Base Definitions volume of IEEE Std 1003.1-200x,
Section 4.18, Treatment of Error Conditions for Mathematical Functions, <math.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The DESCRIPTION is updated to indicate how an application should check for an error. This
text was previously published in the APPLICATION USAGE section.

Issue 6
The erf() function is no longer marked as an extension.

The erfc() function is split out onto its own reference page.

The erff() and erfl() functions are added for alignment with the ISO/IEC 9899: 1999 standard.

The DESCRIPTION, RETURN VALUE, ERRORS, and APPLICATION USAGE sections are
revised to align with the ISO/IEC 9899: 1999 standard.

IEC 60559: 1989 standard floating-point extensions over the ISO/IEC 9899: 1999 standard are
marked.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/22 is applied, adding the example to the
EXAMPLES section.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 301

9882

9883

9884

9885

9886

9887

9888

9889

9890

9891

9892

9893

9894

9895

9896

9897

9898

9899

9900

9901

9902

9903

9904

9905

9906

9907

9908

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

erfc() System Interfaces

NAME
erfc, erfcf, erfcl — complementary error functions

SYNOPSIS
#include <math.h>

double erfc(double x);
float erfcf(float x);
long double erfcl(long double x);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

These functions shall compute the complementary error function 1.0 − erf (x).

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-
zero, an error has occurred.

RETURN VALUE
Upon successful completion, these functions shall return the value of the complementary error
function.

If the correct value would cause underflow and is not representable, a range error may occur
MX and either 0.0 (if representable), or an implementation-defined value shall be returned.

MX If x is NaN, a NaN shall be returned.

If x is ±0, +1 shall be returned.

If x is −Inf, +2 shall be returned.

If x is +Inf, +0 shall be returned.

If the correct value would cause underflow and is representable, a range error may occur and
the correct value shall be returned.

ERRORS
These functions may fail if:

Range Error The result underflows.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the underflow
floating-point exception shall be raised.

EXAMPLES
None.

APPLICATION USAGE
The erfc() function is provided because of the extreme loss of relative accuracy if erf (x) is called
for large x and the result subtracted from 1.0.

Note for IEEE Std 754-1985 double, 26.55 < x implies erfc(x) has underflowed.

On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling &
MATH_ERREXCEPT) are independent of each other, but at least one of them must be non-zero.

302 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

9909

9910

9911

9912

9913

9914

9915

9916

9917

9918

9919

9920

9921

9922

9923

9924

9925

9926

9927

9928

9929

9930

9931

9932

9933

9934

9935

9936

9937

9938

9939

9940

9941

9942

9943

9944

9945

9946

9947

9948

9949

9950

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces erfc()

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
erf(), feclearexcept(), fetestexcept(), isnan(), the Base Definitions volume of IEEE Std 1003.1-200x,
Section 4.18, Treatment of Error Conditions for Mathematical Functions, <math.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The DESCRIPTION is updated to indicate how an application should check for an error. This
text was previously published in the APPLICATION USAGE section.

Issue 6
The erfc() function is no longer marked as an extension.

These functions are split out from the erf() reference page.

The DESCRIPTION, RETURN VALUE, ERRORS, and APPLICATION USAGE sections are
revised to align with the ISO/IEC 9899: 1999 standard.

IEC 60559: 1989 standard floating-point extensions over the ISO/IEC 9899: 1999 standard are
marked.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 303

9951

9952

9953

9954

9955

9956

9957

9958

9959

9960

9961

9962

9963

9964

9965

9966

9967

9968

9969

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

erff() System Interfaces

NAME
erff, erfl — error functions

SYNOPSIS
#include <math.h>

float erff(float x);
long double erfl(long double x);

DESCRIPTION
Refer to erf().

304 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

9970

9971

9972

9973

9974

9975

9976

9977

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces errno

NAME
errno — error return value

SYNOPSIS
#include <errno.h>

DESCRIPTION
The lvalue errno is used by many functions to return error values.

Many functions provide an error number in errno, which has type int and is defined in
<errno.h>. The value of errno shall be defined only after a call to a function for which it is
explicitly stated to be set and until it is changed by the next function call or if the application
assigns it a value. The value of errno should only be examined when it is indicated to be valid by
a function’s return value. Applications shall obtain the definition of errno by the inclusion of
<errno.h>. No function in this volume of IEEE Std 1003.1-200x shall set errno to 0. The setting of
errno after a successful call to a function is unspecified unless the description of that function
specifies that errno shall not be modified.

It is unspecified whether errno is a macro or an identifier declared with external linkage. If a
macro definition is suppressed in order to access an actual object, or a program defines an
identifier with the name errno, the behavior is undefined.

The symbolic values stored in errno are documented in the ERRORS sections on all relevant
pages.

RETURN VALUE
None.

ERRORS
None.

EXAMPLES
None.

APPLICATION USAGE
Previously both POSIX and X/Open documents were more restrictive than the ISO C standard
in that they required errno to be defined as an external variable, whereas the ISO C standard
required only that errno be defined as a modifiable lvalue with type int.

An application that needs to examine the value of errno to determine the error should set it to 0
before a function call, then inspect it before a subsequent function call.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.3, the Base Definitions volume of IEEE Std 1003.1-200x, <errno.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The following sentence is deleted from the DESCRIPTION: ‘‘The value of errno is 0 at program
start-up, but is never set to 0 by any XSI function’’. The DESCRIPTION also no longer states that
conforming implementations may support the declaration:

extern int errno;

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 305

9978

9979

9980

9981

9982

9983

9984

9985

9986

9987

9988

9989

9990

9991

9992

9993

9994

9995

9996

9997

9998

9999

10000

10001

10002

10003

10004

10005

10006

10007

10008

10009

10010

10011

10012

10013

10014

10015

10016

10017

10018

10019

10020

10021

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

errno System Interfaces

Issue 6
Obsolescent text regarding defining errno as:

extern int errno

is removed.

Text regarding no function setting errno to zero to indicate an error is changed to no function
shall set errno to zero. This is for alignment with the ISO/IEC 9899: 1999 standard.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/23 is applied, adding text to the
DESCRIPTION stating that the setting of errno after a successful call to a function is unspecified
unless the description of the function requires that it will not be modified.

306 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

10022

10023

10024

10025

10026

10027

10028

10029

10030

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces exec

NAME
environ, execl, execv, execle, execve, execlp, execvp, fexecve — execute a file

SYNOPSIS
#include <unistd.h>

extern char **environ;
int execl(const char * path, c onst char * arg0, . .. /*, (char *)0 */);
int execv(const char * path, c har *const argv[]);
int execle(const char * path, c onst char * arg0, . .. /*,

(char *)0, char *const envp[]*/);
int execve(const char * path, c har *const argv[], char *const envp[]);
int execlp(const char * file, c onst char * arg0, . .. /*, (char *)0 */);
int execvp(const char * file, c har *const argv[]);
int fexecve(int fd, c har *const argv[], c har *const envp[]);

DESCRIPTION
The exec family of functions shall replace the current process image with a new process image.
The new image shall be constructed from a regular, executable file called the new process image
file. There shall be no return from a successful exec, because the calling process image is overlaid
by the new process image.

The fexecve() function shall be equivalent to the execve() function except that the file to be
executed is determined by the file descriptor fd instead of a pathname. The file offset of fd is
ignored.

When a C-language program is executed as a result of a call to one of the exec family of
functions, it shall be entered as a C-language function call as follows:

int main (int argc, char *argv[]);

where argc is the argument count and argv is an array of character pointers to the arguments
themselves. In addition, the following variable:

extern char **environ;

is initialized as a pointer to an array of character pointers to the environment strings. The argv
and environ arrays are each terminated by a null pointer. The null pointer terminating the argv
array is not counted in argc.

Conforming multi-threaded applications shall not use the environ variable to access or modify
any environment variable while any other thread is concurrently modifying any environment
variable. A call to any function dependent on any environment variable shall be considered a
use of the environ variable to access that environment variable.

The arguments specified by a program with one of the exec functions shall be passed on to the
new process image in the corresponding main() arguments.

The argument path points to a pathname that identifies the new process image file.

The argument file is used to construct a pathname that identifies the new process image file. If
the file argument contains a slash character, the file argument shall be used as the pathname for
this file. Otherwise, the path prefix for this file is obtained by a search of the directories passed
as the environment variable PA TH (see the Base Definitions volume of IEEE Std 1003.1-200x,
Chapter 8, Environment Variables). If this environment variable is not present, the results of the
search are implementation-defined.

There are two distinct ways in which the contents of the process image file may cause the
execution to fail, distinguished by the setting of errno to either [ENOEXEC] or [EINVAL] (see the

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 307

10031

10032

10033

10034

10035

10036

10037

10038

10039

10040

10041

10042

10043

10044

10045

10046

10047

10048

10049

10050

10051

10052

10053

10054

10055

10056

10057

10058

10059

10060

10061

10062

10063

10064

10065

10066

10067

10068

10069

10070

10071

10072

10073

10074

10075

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

exec System Interfaces

ERRORS section). In the cases where the other members of the exec family of functions would
fail and set errno to [ENOEXEC], the execlp() and execvp() functions shall execute a command
interpreter and the environment of the executed command shall be as if the process invoked the
sh utility using execl() as follows:

execl(<shell path>, arg0, file, arg1, ..., (char *)0);

where <shell path> is an unspecified pathname for the sh utility, file is the process image file, and
for execvp(), where arg0, arg1, and so on correspond to the values passed to execvp() in argv[0],
argv[1], and so on.

The arguments represented by arg0, . . . are pointers to null-terminated character strings. These
strings shall constitute the argument list available to the new process image. The list is
terminated by a null pointer. The argument arg0 should point to a filename that is associated
with the process being started by one of the exec functions.

The argument argv is an array of character pointers to null-terminated strings. The application
shall ensure that the last member of this array is a null pointer. These strings shall constitute the
argument list available to the new process image. The value in argv[0] should point to a filename
that is associated with the process being started by one of the exec functions.

The argument envp is an array of character pointers to null-terminated strings. These strings
shall constitute the environment for the new process image. The envp array is terminated by a
null pointer.

For those forms not containing an envp pointer (execl(), execv(), execlp(), and execvp()), the
environment for the new process image shall be taken from the external variable environ in the
calling process.

The number of bytes available for the new process’ combined argument and environment lists is
{ARG_MAX}. It is implementation-defined whether null terminators, pointers, and/or any
alignment bytes are included in this total.

File descriptors open in the calling process image shall remain open in the new process image,
except for those whose close-on-exec flag FD_CLOEXEC is set. For those file descriptors that
remain open, all attributes of the open file description remain unchanged. For any file descriptor
that is closed for this reason, file locks are removed as a result of the close as described in close().
Locks that are not removed by closing of file descriptors remain unchanged.

If file descriptors 0, 1, and 2 would otherwise be closed after a successful call to one of the exec
family of functions, and the new process image file has the set-user-ID or set-group-ID file mode

XSI bits set, and the ST_NOSUID bit is not set for the file system containing the new process image
file, implementations may open an unspecified file for each of these file descriptors in the new
process image.

Directory streams open in the calling process image shall be closed in the new process image.

The state of the floating-point environment in the initial thread of the new process image shall
be set to the default.

The state of conversion descriptors and message catalog descriptors in the new process image is
undefined.

For the new process image, the equivalent of:

setlocale(LC_ALL, "C")

shall be executed at start-up.

Signals set to the default action (SIG_DFL) in the calling process image shall be set to the default
action in the new process image. Except for SIGCHLD, signals set to be ignored (SIG_IGN) by
the calling process image shall be set to be ignored by the new process image. Signals set to be

308 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

10076

10077

10078

10079

10080

10081

10082

10083

10084

10085

10086

10087

10088

10089

10090

10091

10092

10093

10094

10095

10096

10097

10098

10099

10100

10101

10102

10103

10104

10105

10106

10107

10108

10109

10110

10111

10112

10113

10114

10115

10116

10117

10118

10119

10120

10121

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces exec

caught by the calling process image shall be set to the default action in the new process image
(see <signal.h>).

If the SIGCHLD signal is set to be ignored by the calling process image, it is unspecified whether
the SIGCHLD signal is set to be ignored or to the default action in the new process image.

XSI After a successful call to any of the exec functions, alternate signal stacks are not preserved and
the SA_ONSTACK flag shall be cleared for all signals.

After a successful call to any of the exec functions, any functions previously registered by the
atexit() or pthread_atfork() functions are no longer registered.

XSI If the ST_NOSUID bit is set for the file system containing the new process image file, then the
effective user ID, effective group ID, saved set-user-ID, and saved set-group-ID are unchanged
in the new process image. Otherwise, if the set-user-ID mode bit of the new process image file is
set, the effective user ID of the new process image shall be set to the user ID of the new process
image file. Similarly, if the set-group-ID mode bit of the new process image file is set, the
effective group ID of the new process image shall be set to the group ID of the new process
image file. The real user ID, real group ID, and supplementary group IDs of the new process
image shall remain the same as those of the calling process image. The effective user ID and
effective group ID of the new process image shall be saved (as the saved set-user-ID and the
saved set-group-ID) for use by setuid().

XSI Any shared memory segments attached to the calling process image shall not be attached to the
new process image.

Any named semaphores open in the calling process shall be closed as if by appropriate calls to
sem_close().

TYM Any blocks of typed memory that were mapped in the calling process are unmapped, as if
munmap() was implicitly called to unmap them.

ML Memory locks established by the calling process via calls to mlockall() or mlock() shall be
removed. If locked pages in the address space of the calling process are also mapped into the
address spaces of other processes and are locked by those processes, the locks established by the
other processes shall be unaffected by the call by this process to the exec function. If the exec
function fails, the effect on memory locks is unspecified.

Memory mappings created in the process are unmapped before the address space is rebuilt for
the new process image.

When the calling process image does not use the SCHED_FIFO, SCHED_RR, or
SCHED_SPORADIC scheduling policies, the scheduling policy and parameters of the new
process image and the initial thread in that new process image are implementation-defined.

PS When the calling process image uses the SCHED_FIFO, SCHED_RR, or SCHED_SPORADIC
scheduling policies, the process policy and scheduling parameter settings shall not be changed

TPS by a call to an exec function. The initial thread in the new process image shall inherit the process
scheduling policy and parameters. It shall have the default system contention scope, but shall
inherit its allocation domain from the calling process image.

Per-process timers created by the calling process shall be deleted before replacing the current
process image with the new process image.

MSG All open message queue descriptors in the calling process shall be closed, as described in
mq_close().

Any outstanding asynchronous I/O operations may be canceled. Those asynchronous I/O
operations that are not canceled shall complete as if the exec function had not yet occurred, but
any associated signal notifications shall be suppressed. It is unspecified whether the exec
function itself blocks awaiting such I/O completion. In no event, however, shall the new process

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 309

10122

10123

10124

10125

10126

10127

10128

10129

10130

10131

10132

10133

10134

10135

10136

10137

10138

10139

10140

10141

10142

10143

10144

10145

10146

10147

10148

10149

10150

10151

10152

10153

10154

10155

10156

10157

10158

10159

10160

10161

10162

10163

10164

10165

10166

10167

10168

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

exec System Interfaces

image created by the exec function be affected by the presence of outstanding asynchronous I/O
operations at the time the exec function is called. Whether any I/O is canceled, and which I/O
may be canceled upon exec, is implementation-defined.

CPT The new process image shall inherit the CPU-time clock of the calling process image. This
inheritance means that the process CPU-time clock of the process being exec-ed shall not be
reinitialized or altered as a result of the exec function other than to reflect the time spent by the
process executing the exec function itself.

TCT The initial value of the CPU-time clock of the initial thread of the new process image shall be set
to zero.

OB TRC If the calling process is being traced, the new process image shall continue to be traced into the
same trace stream as the original process image, but the new process image shall not inherit the
mapping of trace event names to trace event type identifiers that was defined by calls to the
posix_trace_eventid_open() or the posix_trace_trid_eventid_open() functions in the calling process
image.

If the calling process is a trace controller process, any trace streams that were created by the
calling process shall be shut down as described in the posix_trace_shutdown() function.

The thread ID of the initial thread in the new process image is unspecified.

The size and location of the stack on which the initial thread in the new process image runs is
unspecified.

The initial thread in the new process image shall have its cancellation type set to
PTHREAD_CANCEL_DEFERRED and its cancellation state set to
PTHREAD_CANCEL_ENABLED.

The initial thread in the new process image shall have all thread-specific data values set to
NULL and all thread-specific data keys shall be removed by the call to exec without running
destructors.

The initial thread in the new process image shall be joinable, as if created with the detachstate
attribute set to PTHREAD_CREATE_JOINABLE.

The new process shall inherit at least the following attributes from the calling process image:

XSI • Nice value (see nice())

XSI • semadj values (see semop())

• Process ID

• Parent process ID

• Process group ID

• Session membership

• Real user ID

• Real group ID

• Supplementary group IDs

• Time left until an alarm clock signal (see alarm())

• Current working directory

• Root directory

• File mode creation mask (see umask())

310 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

10169

10170

10171

10172

10173

10174

10175

10176

10177

10178

10179

10180

10181

10182

10183

10184

10185

10186

10187

10188

10189

10190

10191

10192

10193

10194

10195

10196

10197

10198

10199

10200

10201

10202

10203

10204

10205

10206

10207

10208

10209

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces exec

XSI • File size limit (see ulimit())

• Process signal mask (see sigprocmask())

• Pending signal (see sigpending())

• tms_utime, tms_stime, tms_cutime, and tms_cstime (see times())

XSI • Resource limits

• Controlling terminal

XSI • Interval timers

The initial thread of the new process shall inherit at least the following attributes from the
calling thread:

• Signal mask (see sigprocmask() and pthread_sigmask())

• Pending signals (see sigpending())

All other process attributes defined in this volume of IEEE Std 1003.1-200x shall be inherited in
the new process image from the old process image. All other thread attributes defined in this
volume of IEEE Std 1003.1-200x shall be inherited in the initial thread in the new process image
from the calling thread in the old process image. The inheritance of process or thread attributes
not defined by this volume of IEEE Std 1003.1-200x is implementation-defined.

A call to any exec function from a process with more than one thread shall result in all threads
being terminated and the new executable image being loaded and executed. No destructor
functions or cleanup handlers shall be called.

Upon successful completion, the exec functions shall mark for update the st_atime field of the file.
If an exec function failed but was able to locate the process image file, whether the st_atime field
is marked for update is unspecified. Should the exec function succeed, the process image file
shall be considered to have been opened with open(). The corresponding close() shall be
considered to occur at a time after this open, but before process termination or successful
completion of a subsequent call to one of the exec functions, posix_spawn(), or posix_spawnp().
The argv[] and envp[] arrays of pointers and the strings to which those arrays point shall not be
modified by a call to one of the exec functions, except as a consequence of replacing the process
image.

XSI The saved resource limits in the new process image are set to be a copy of the process’
corresponding hard and soft limits.

RETURN VALUE
If one of the exec functions returns to the calling process image, an error has occurred; the return
value shall be −1, and errno shall be set to indicate the error.

ERRORS
The exec functions shall fail if:

[E2BIG] The number of bytes used by the new process image’s argument list and
environment list is greater than the system-imposed limit of {ARG_MAX}
bytes.

[EACCES] Search permission is denied for a directory listed in the new process image
file’s path prefix, or the new process image file denies execution permission,
or the new process image file is not a regular file and the implementation does
not support execution of files of its type.

[EINVAL] The new process image file has the appropriate permission and has a
recognized executable binary format, but the system does not support
execution of a file with this format.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 311

10210

10211

10212

10213

10214

10215

10216

10217

10218

10219

10220

10221

10222

10223

10224

10225

10226

10227

10228

10229

10230

10231

10232

10233

10234

10235

10236

10237

10238

10239

10240

10241

10242

10243

10244

10245

10246

10247

10248

10249

10250

10251

10252

10253

10254

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

exec System Interfaces

[ELOOP] A loop exists in symbolic links encountered during resolution of the path or file
argument.

[ENAMETOOLONG]
The length of the path or file arguments exceeds {PATH_MAX} or a pathname
component is longer than {NAME_MAX}.

[ENOENT] A component of path or file does not name an existing file or path or file is an
empty string.

[ENOTDIR] A component of the new process image file’s path prefix is not a directory.

The exec functions, except for execlp() and execvp(), shall fail if:

[ENOEXEC] The new process image file has the appropriate access permission but has an
unrecognized format.

The fexecve() function shall fail if:

[EBADF] The fd argument is not a valid file descriptor open for executing.

The exec functions may fail if:

[ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during
resolution of the path or file argument.

[ENAMETOOLONG]
As a result of encountering a symbolic link in resolution of the path argument,
the length of the substituted pathname string exceeded {PATH_MAX}.

[ENOMEM] The new process image requires more memory than is allowed by the
hardware or system-imposed memory management constraints.

[ETXTBSY] The new process image file is a pure procedure (shared text) file that is
currently open for writing by some process.

EXAMPLES

Using execl()

The following example executes the ls command, specifying the pathname of the executable
(/bin/ls) and using arguments supplied directly to the command to produce single-column
output.

#include <unistd.h>

int ret;
...
ret = execl ("/bin/ls", "ls", "-1", (char *)0);

Using execle()

The following example is similar to Using execl() (on page 312). In addition, it specifies the
environment for the new process image using the env argument.

#include <unistd.h>

int ret;
char *env[] = { "HOME=/usr/home", "LOGNAME=home", (char *)0 };
...
ret = execle ("/bin/ls", "ls", "-l", (char *)0, env);

312 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

10255

10256

10257

10258

10259

10260

10261

10262

10263

10264

10265

10266

10267

10268

10269

10270

10271

10272

10273

10274

10275

10276

10277

10278

10279

10280

10281

10282

10283

10284

10285

10286

10287

10288

10289

10290

10291

10292

10293

10294

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces exec

Using execlp()

The following example searches for the location of the ls command among the directories
specified by the PA TH environment variable.

#include <unistd.h>

int ret;
...
ret = execlp ("ls", "ls", "-l", (char *)0);

Using execv()

The following example passes arguments to the ls command in the cmd array.

#include <unistd.h>

int ret;
char *cmd[] = { "ls", "-l", (char *)0 };
...
ret = execv ("/bin/ls", cmd);

Using execve()

The following example passes arguments to the ls command in the cmd array, and specifies the
environment for the new process image using the env argument.

#include <unistd.h>

int ret;
char *cmd[] = { "ls", "-l", (char *)0 };
char *env[] = { "HOME=/usr/home", "LOGNAME=home", (char *)0 };
...
ret = execve ("/bin/ls", cmd, env);

Using execvp()

The following example searches for the location of the ls command among the directories
specified by the PA TH environment variable, and passes arguments to the ls command in the
cmd array.

#include <unistd.h>

int ret;
char *cmd[] = { "ls", "-l", (char *)0 };
...
ret = execvp ("ls", cmd);

APPLICATION USAGE
As the state of conversion descriptors and message catalog descriptors in the new process image
is undefined, conforming applications should not rely on their use and should close them prior
to calling one of the exec functions.

Applications that require other than the default POSIX locale should call setlocale() with the
appropriate parameters to establish the locale of the new process.

The environ array should not be accessed directly by the application.

The new process might be invoked in a non-conforming environment if the envp array does not
contain implementation-defined variables required by the implementation to provide a
conforming environment. See the _CS_V7_ENV entry in <unistd.h> and confstr() for details.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 313

10295

10296

10297

10298

10299

10300

10301

10302

10303

10304

10305

10306

10307

10308

10309

10310

10311

10312

10313

10314

10315

10316

10317

10318

10319

10320

10321

10322

10323

10324

10325

10326

10327

10328

10329

10330

10331

10332

10333

10334

10335

10336

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

exec System Interfaces

Applications should not depend on file descriptors 0, 1, and 2 being closed after an exec. A
future version may allow these file descriptors to be automatically opened for any process.

If an application wants to perform a checksum test of the file being executed before executing it,
the file will need to be opened with read permission to perform the checksum test.

Since execute permission is checked by fexecve(), the file description fd need not have been
opened with the O_EXEC flag. However, if the file to be executed denies read and write
permission for the process preparing to do the exec, the only way to provide the fd to fexecve()
will be to use the O_EXEC flag when opening fd. In this case, the application will not be able to
perform a checksum test since it will not be able to read the contents of the file.

Note that when a file descriptor is opened with O_RDONLY, O_RDWR, or O_WRONLY mode,
the file descriptor can be used to read, read and write, or write the file, respectively, even if the
mode of the file changes after the file was opened. Using the O_EXEC open mode is different;
fexecve() will ignore the mode that was used when the file descriptor was opened and the exec
will fail if the mode of the file associated with fd does not grant execute permission to the calling
process at the time fexecve() is called.

RATIONALE
Early proposals required that the value of argc passed to main() be ‘‘one or greater ’’. This was
driven by the same requirement in drafts of the ISO C standard. In fact, historical
implementations have passed a value of zero when no arguments are supplied to the caller of
the exec functions. This requirement was removed from the ISO C standard and subsequently
removed from this volume of IEEE Std 1003.1-200x as well. The wording, in particular the use of
the word should, requires a Strictly Conforming POSIX Application to pass at least one argument
to the exec function, thus guaranteeing that argc be one or greater when invoked by such an
application. In fact, this is good practice, since many existing applications reference argv[0]
without first checking the value of argc.

The requirement on a Strictly Conforming POSIX Application also states that the value passed as
the first argument be a filename associated with the process being started. Although some
existing applications pass a pathname rather than a filename in some circumstances, a filename
is more generally useful, since the common usage of argv[0] is in printing diagnostics. In some
cases the filename passed is not the actual filename of the file; for example, many
implementations of the login utility use a convention of prefixing a hyphen (’ −’) to the actual
filename, which indicates to the command interpreter being invoked that it is a ‘‘login shell’’.

Historically there have been two ways that implementations can exec shell scripts.

One common historical implementation is that the execl(), execv(), execle(), and execve()
functions return an [ENOEXEC] error for any file not recognizable as executable, including a
shell script. When the execlp() and execvp() functions encounter such a file, they assume the file
to be a shell script and invoke a known command interpreter to interpret such files. This is now
required by IEEE Std 1003.1-200x. These implementations of execvp() and execlp() only give the
[ENOEXEC] error in the rare case of a problem with the command interpreter ’s executable file.
Because of these implementations, the [ENOEXEC] error is not mentioned for execlp() or
execvp(), although implementations can still give it.

Another way that some historical implementations handle shell scripts is by recognizing the first
two bytes of the file as the character string "#!" and using the remainder of the first line of the
file as the name of the command interpreter to execute.

One potential source of confusion noted by the standard developers is over how the contents of
a process image file affect the behavior of the exec family of functions. The following is a
description of the actions taken:

314 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

10337

10338

10339

10340

10341

10342

10343

10344

10345

10346

10347

10348

10349

10350

10351

10352

10353

10354

10355

10356

10357

10358

10359

10360

10361

10362

10363

10364

10365

10366

10367

10368

10369

10370

10371

10372

10373

10374

10375

10376

10377

10378

10379

10380

10381

10382

10383

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces exec

1. If the process image file is a valid executable (in a format that is executable and valid and
having appropriate permission) for this system, then the system executes the file.

2. If the process image file has appropriate permission and is in a format that is executable
but not valid for this system (such as a recognized binary for another architecture), then
this is an error and errno is set to [EINVAL] (see later RATIONALE on [EINVAL]).

3. If the process image file has appropriate permission but is not otherwise recognized:

a. If this is a call to execlp() or execvp(), then they invoke a command interpreter
assuming that the process image file is a shell script.

b. If this is not a call to execlp() or execvp(), then an error occurs and errno is set to
[ENOEXEC].

Applications that do not require to access their arguments may use the form:

main(void)

as specified in the ISO C standard. However, the implementation will always provide the two
arguments argc and argv, even if they are not used.

Some implementations provide a third argument to main() called envp. This is defined as a
pointer to the environment. The ISO C standard specifies invoking main() with two arguments,
so implementations must support applications written this way. Since this volume of
IEEE Std 1003.1-200x defines the global variable environ, which is also provided by historical
implementations and can be used anywhere that envp could be used, there is no functional need
for the envp argument. Applications should use the getenv() function rather than accessing the
environment directly via either envp or environ. Implementations are required to support the
two-argument calling sequence, but this does not prohibit an implementation from supporting
envp as an optional third argument.

This volume of IEEE Std 1003.1-200x specifies that signals set to SIG_IGN remain set to
SIG_IGN, and that the new process image inherits the signal mask of the thread that called exec
in the old process image. This is consistent with historical implementations, and it permits some
useful functionality, such as the nohup command. However, it should be noted that many
existing applications wrongly assume that they start with certain signals set to the default action
and/or unblocked. In particular, applications written with a simpler signal model that does not
include blocking of signals, such as the one in the ISO C standard, may not behave properly if
invoked with some signals blocked. Therefore, it is best not to block or ignore signals across
execs without explicit reason to do so, and especially not to block signals across execs of arbitrary
(not closely co-operating) programs.

The exec functions always save the value of the effective user ID and effective group ID of the
process at the completion of the exec, whether or not the set-user-ID or the set-group-ID bit of
the process image file is set.

The statement about argv[] and envp[] being constants is included to make explicit to future
writers of language bindings that these objects are completely constant. Due to a limitation of
the ISO C standard, it is not possible to state that idea in standard C. Specifying two levels of
const−qualification for the argv[] and envp[] parameters for the exec functions may seem to be the
natural choice, given that these functions do not modify either the array of pointers or the
characters to which the function points, but this would disallow existing correct code. Instead,
only the array of pointers is noted as constant. The table of assignment compatibility for dst=src
derived from the ISO C standard summarizes the compatibility:

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 315

10384

10385

10386

10387

10388

10389

10390

10391

10392

10393

10394

10395

10396

10397

10398

10399

10400

10401

10402

10403

10404

10405

10406

10407

10408

10409

10410

10411

10412

10413

10414

10415

10416

10417

10418

10419

10420

10421

10422

10423

10424

10425

10426

10427

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

exec System Interfaces

dst: char *[] const char *[] char *const[] const char *const[]

src:
char *[] VALID — VALID —
const char *[] — VALID — VALID
char * const [] — — VALID —
const char *const[] — — — VALID

Since all existing code has a source type matching the first row, the column that gives the most
valid combinations is the third column. The only other possibility is the fourth column, but
using it would require a cast on the argv or envp arguments. It is unfortunate that the fourth
column cannot be used, because the declaration a non-expert would naturally use would be that
in the second row.

The ISO C standard and this volume of IEEE Std 1003.1-200x do not conflict on the use of
environ, but some historical implementations of environ may cause a conflict. As long as environ is
treated in the same way as an entry point (for example, fork()), it conforms to both standards. A
library can contain fork(), but if there is a user-provided fork(), that fork() is given precedence
and no problem ensues. The situation is similar for environ: the definition in this volume of
IEEE Std 1003.1-200x is to be used if there is no user-provided environ to take precedence. At
least three implementations are known to exist that solve this problem.

[E2BIG] The limit {ARG_MAX} applies not just to the size of the argument list, but to
the sum of that and the size of the environment list.

[EFAULT] Some historical systems return [EFAULT] rather than [ENOEXEC] when the
new process image file is corrupted. They are non-conforming.

[EINVAL] This error condition was added to IEEE Std 1003.1-200x to allow an
implementation to detect executable files generated for different architectures,
and indicate this situation to the application. Historical implementations of
shells, execvp(), and execlp() that encounter an [ENOEXEC] error will execute
a shell on the assumption that the file is a shell script. This will not produce
the desired effect when the file is a valid executable for a different architecture.
An implementation may now choose to avoid this problem by returning
[EINVAL] when a valid executable for a different architecture is encountered.
Some historical implementations return [EINVAL] to indicate that the path
argument contains a character with the high order bit set. The standard
developers chose to deviate from historical practice for the following reasons:

1. The new utilization of [EINVAL] will provide some measure of utility
to the user community.

2. Historical use of [EINVAL] is not acceptable in an internationalized
operating environment.

[ENAMETOOLONG]
Since the file pathname may be constructed by taking elements in the PA TH
variable and putting them together with the filename, the
[ENAMETOOLONG] error condition could also be reached this way.

[ETXTBSY] System V returns this error when the executable file is currently open for
writing by some process. This volume of IEEE Std 1003.1-200x neither requires
nor prohibits this behavior.

Other systems (such as System V) may return [EINTR] from exec. This is not addressed by this
volume of IEEE Std 1003.1-200x, but implementations may have a window between the call to
exec and the time that a signal could cause one of the exec calls to return with [EINTR].

An explicit statement regarding the floating-point environment (as defined in the <fenv.h>

316 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

10428

10429

10430

10431

10432

10433

10434

10435

10436

10437

10438

10439

10440

10441

10442

10443

10444

10445

10446

10447

10448

10449

10450

10451

10452

10453

10454

10455

10456

10457

10458

10459

10460

10461

10462

10463

10464

10465

10466

10467

10468

10469

10470

10471

10472

10473

10474

10475

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces exec

header) was added to make it clear that the floating-point environment is set to its default when
a call to one of the exec functions succeeds. The requirements for inheritance or setting to the
default for other process and thread start-up functions is covered by more generic statements in
their descriptions and can be summarized as follows:

posix_spawn() Set to default.

fork() Inherit.

pthread_create() Inherit.

The purpose of the fexecve() function is to enable executing a file which has been verified to be
the intended file. It is possible to actively check the file by reading from the file descriptor and be
sure that the file is not exchanged for another between the reading and the execution.
Alternatively, an function like openat() can be used to open a file which has been found by
reading the content of a directory using readdir().

FUTURE DIRECTIONS
None.

SEE ALSO
alarm(), atexit(), chmod(), close(), confstr(), exit(), fcntl(), fork(), fstatvfs(), getenv(), getitimer(),
getrlimit(), mknod(), mmap(), nice(), open(), posix_spawn(), posix_trace_create(),
posix_trace_event(), posix_trace_eventid_equal(), pthread_atfork(), pthread_sigmask(), putenv(),
readdir(), semop(), setlocale(), shmat(), sigaction(), sigaltstack(), sigpending(), system(), times(),
ulimit(), umask(), the Base Definitions volume of IEEE Std 1003.1-200x, <unistd.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The DESCRIPTION is updated for alignment with the POSIX Realtime Extension and the POSIX
Threads Extension.

Large File Summit extensions are added.

Issue 6
The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• In the DESCRIPTION, behavior is defined for when the process image file is not a valid
executable.

• In this issue, _POSIX_SAVED_IDS is mandated, thus the effective user ID and effective
group ID of the new process image shall be saved (as the saved set-user-ID and the saved
set-group-ID) for use by the setuid() function.

• The [ELOOP] mandatory error condition is added.

• A second [ENAMETOOLONG] is added as an optional error condition.

• The [ETXTBSY] optional error condition is added.

The following changes were made to align with the IEEE P1003.1a draft standard:

• The [EINVAL] mandatory error condition is added.

• The [ELOOP] optional error condition is added.

The description of CPU-time clock semantics is added for alignment with IEEE Std 1003.1d-1999.

The DESCRIPTION is updated for alignment with IEEE Std 1003.1j-2000 by adding semantics
for typed memory.

The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 317

10476

10477

10478

10479

10480

10481

10482

10483

10484

10485

10486

10487

10488

10489

10490

10491

10492

10493

10494

10495

10496

10497

10498

10499

10500

10501

10502

10503

10504

10505

10506

10507

10508

10509

10510

10511

10512

10513

10514

10515

10516

10517

10518

10519

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

exec System Interfaces

The description of tracing semantics is added for alignment with IEEE Std 1003.1q-2000.

IEEE PASC Interpretation 1003.1 #132 is applied.

The DESCRIPTION is updated to make it explicit that the floating-point environment in the new
process image is set to the default.

The DESCRIPTION and RATIONALE are updated to include clarifications of how the contents
of a process image file affect the behavior of the exec functions.

IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/15 is applied, adding a new paragraph to
the DESCRIPTION and text to the end of the APPLICATION USAGE section. This change
addresses a security concern, where implementations may want to reopen file descriptors 0, 1,
and 2 for programs with the set-user-id or set-group-id file mode bits calling the exec family of
functions.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/24 is applied, applying changes to the
DESCRIPTION, addressing which attributes are inherited by threads, and behavioral
requirements for threads attributes.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/25 is applied, updating text in the
RATIONALE from ‘‘the process signal mask be unchanged across an exec’’ to ‘‘the new process
image inherits the signal mask of the thread that called exec in the old process image’’.

Issue 7
Austin Group Interpretation 1003.1-2001 #047 is applied, adding the description of _CS_V7_ENV
to the APPLICATION USAGE.

The fexecve() function is added from The Open Group Technical Standard, 2006, Extended API
Set Part 2.

Functionality relating to the Asynchronous Input and Output, Memory Mapped Files, Threads,
and Timers options is moved to the Base.

318 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

10520

10521

10522

10523

10524

10525

10526

10527

10528

10529

10530

10531

10532

10533

10534

10535

10536

10537

10538

10539

10540

10541

10542

10543

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces exit()

NAME
exit — terminate a process

SYNOPSIS
#include <stdlib.h>

void exit(int status);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

CX The value of status may be 0, EXIT_SUCCESS, EXIT_FAILURE, or any other value, though only
the least significant 8 bits (that is, status & 0377) shall be available to a waiting parent process.

The exit() function shall first call all functions registered by atexit(), in the reverse order of their
registration, except that a function is called after any previously registered functions that had
already been called at the time it was registered. Each function is called as many times as it was
registered. If, during the call to any such function, a call to the longjmp() function is made that
would terminate the call to the registered function, the behavior is undefined.

If a function registered by a call to atexit() fails to return, the remaining registered functions shall
not be called and the rest of the exit() processing shall not be completed. If exit() is called more
than once, the behavior is undefined.

The exit() function shall then flush all open streams with unwritten buffered data and close all
CX open streams. Finally, the process shall be terminated with the same consequences as described

in Consequences of Process Termination (on page 87).

RETURN VALUE
The exit() function does not return.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
See _Exit().

FUTURE DIRECTIONS
None.

SEE ALSO
_Exit(), atexit(), exec , longjmp(), tmpfile(), the Base Definitions volume of IEEE Std 1003.1-200x,
<stdlib.h>

CHANGE HISTORY

Issue 7
Austin Group Interpretation 1003.1-2001 #031 is applied, separating the _Exit() and _exit()
functions from the exit() function.

Austin Group Interpretation 1003.1-2001 #085 is applied.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 319

10544

10545

10546

10547

10548

10549

10550

10551

10552

10553

10554

10555

10556

10557

10558

10559

10560

10561

10562

10563

10564

10565

10566

10567

10568

10569

10570

10571

10572

10573

10574

10575

10576

10577

10578

10579

10580

10581

10582

10583

10584

10585

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

exit() System Interfaces

NAME
exp, expf, expl — exponential function

SYNOPSIS
#include <math.h>

double exp(double x);
float expf(float x);
long double expl(long double x);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

These functions shall compute the base-e exponential of x.

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-
zero, an error has occurred.

RETURN VALUE
Upon successful completion, these functions shall return the exponential value of x.

If the correct value would cause overflow, a range error shall occur and exp(), expf(), and expl()
shall return the value of the macro HUGE_VAL, HUGE_VALF, and HUGE_VALL, respectively.

If the correct value would cause underflow, and is not representable, a range error may occur,
MX and either 0.0 (if supported), or an implementation-defined value shall be returned.

MX If x is NaN, a NaN shall be returned.

If x is ±0, 1 shall be returned.

If x is −Inf, +0 shall be returned.

If x is +Inf, x shall be returned.

If the correct value would cause underflow, and is representable, a range error may occur and
the correct value shall be returned.

ERRORS
These functions shall fail if:

Range Error The result overflows.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the overflow
floating-point exception shall be raised.

These functions may fail if:

Range Error The result underflows.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the underflow
floating-point exception shall be raised.

320 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

10586

10587

10588

10589

10590

10591

10592

10593

10594

10595

10596

10597

10598

10599

10600

10601

10602

10603

10604

10605

10606

10607

10608

10609

10610

10611

10612

10613

10614

10615

10616

10617

10618

10619

10620

10621

10622

10623

10624

10625

10626

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces exp()

EXAMPLES

Computing the Density of the Standard Normal Distribution

This function shows an implementation for the density of the standard normal distribution
using exp(). This example uses the constant M_PI which is part of the XSI option.

#include <math.h>

double
normal_density (double x)
{

return exp(−x*x/2) / sqrt (2*M_PI);
}

APPLICATION USAGE
Note that for IEEE Std 754-1985 double, 709.8 < x implies exp(x) has overflowed. The value
x< −708.4 implies exp(x) has underflowed.

On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling &
MATH_ERREXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
feclearexcept(), fetestexcept(), isnan(), log(), the Base Definitions volume of IEEE Std 1003.1-200x,
Section 4.18, Treatment of Error Conditions for Mathematical Functions, <math.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The DESCRIPTION is updated to indicate how an application should check for an error. This
text was previously published in the APPLICATION USAGE section.

Issue 6
The expf() and expl() functions are added for alignment with the ISO/IEC 9899: 1999 standard.

The DESCRIPTION, RETURN VALUE, ERRORS, and APPLICATION USAGE sections are
revised to align with the ISO/IEC 9899: 1999 standard.

IEC 60559: 1989 standard floating-point extensions over the ISO/IEC 9899: 1999 standard are
marked.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/26 is applied, adding the example to the
EXAMPLES section.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 321

10627

10628

10629

10630

10631

10632

10633

10634

10635

10636

10637

10638

10639

10640

10641

10642

10643

10644

10645

10646

10647

10648

10649

10650

10651

10652

10653

10654

10655

10656

10657

10658

10659

10660

10661

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

exp2() System Interfaces

NAME
exp2, exp2f, exp2l — exponential base 2 functions

SYNOPSIS
#include <math.h>

double exp2(double x);
float exp2f(float x);
long double exp2l(long double x);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

These functions shall compute the base-2 exponential of x.

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-
zero, an error has occurred.

RETURN VALUE
Upon successful completion, these functions shall return 2x.

If the correct value would cause overflow, a range error shall occur and exp2(), exp2f(), and
exp2l() shall return the value of the macro HUGE_VAL, HUGE_VALF, and HUGE_VALL,
respectively.

If the correct value would cause underflow, and is not representable, a range error may occur,
MX and either 0.0 (if supported), or an implementation-defined value shall be returned.

MX If x is NaN, a NaN shall be returned.

If x is ±0, 1 shall be returned.

If x is −Inf, +0 shall be returned.

If x is +Inf, x shall be returned.

If the correct value would cause underflow, and is representable, a range error may occur and
the correct value shall be returned.

ERRORS
These functions shall fail if:

Range Error The result overflows.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the overflow
floating-point exception shall be raised.

These functions may fail if:

Range Error The result underflows.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the underflow
floating-point exception shall be raised.

322 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

10662

10663

10664

10665

10666

10667

10668

10669

10670

10671

10672

10673

10674

10675

10676

10677

10678

10679

10680

10681

10682

10683

10684

10685

10686

10687

10688

10689

10690

10691

10692

10693

10694

10695

10696

10697

10698

10699

10700

10701

10702

10703

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces exp2()

EXAMPLES
None.

APPLICATION USAGE
For IEEE Std 754-1985 double, 1024 <= x implies exp2(x) has overflowed. The value x< −1022
implies exp(x) has underflowed.

On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling &
MATH_ERREXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
exp(), feclearexcept(), fetestexcept(), isnan(), log(), the Base Definitions volume of
IEEE Std 1003.1-200x, Section 4.18, Treatment of Error Conditions for Mathematical Functions,
<math.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 323

10704

10705

10706

10707

10708

10709

10710

10711

10712

10713

10714

10715

10716

10717

10718

10719

10720

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

expm1() System Interfaces

NAME
expm1, expm1f, expm1l — compute exponential functions

SYNOPSIS
#include <math.h>

double expm1(double x);
float expm1f(float x);
long double expm1l(long double x);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

These functions shall compute ex−1.0.

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-
zero, an error has occurred.

RETURN VALUE
Upon successful completion, these functions return ex−1.0.

If the correct value would cause overflow, a range error shall occur and expm1(), expm1f(), and
expm1l() shall return the value of the macro HUGE_VAL, HUGE_VALF, and HUGE_VALL,
respectively.

MX If x is NaN, a NaN shall be returned.

If x is ±0, ±0 shall be returned.

If x is −Inf, −1 shall be returned.

If x is +Inf, x shall be returned.

If x is subnormal, a range error may occur and x should be returned.

ERRORS
These functions shall fail if:

Range Error The result overflows.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the overflow
floating-point exception shall be raised.

These functions may fail if:

MX Range Error The value of x is subnormal.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the underflow
floating-point exception shall be raised.

324 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

10721

10722

10723

10724

10725

10726

10727

10728

10729

10730

10731

10732

10733

10734

10735

10736

10737

10738

10739

10740

10741

10742

10743

10744

10745

10746

10747

10748

10749

10750

10751

10752

10753

10754

10755

10756

10757

10758

10759

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces expm1()

EXAMPLES
None.

APPLICATION USAGE
The value of expm1(x) may be more accurate than exp(x)−1.0 for small values of x.

The expm1() and log1p() functions are useful for financial calculations of ((1+x)n−1)/x, namely:

expm1(n * l og1p(x))/ x

when x is very small (for example, when calculating small daily interest rates). These functions
also simplify writing accurate inverse hyperbolic functions.

For IEEE Std 754-1985 double, 709.8 < x implies expm1(x) has overflowed.

On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling &
MATH_ERREXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
exp(), feclearexcept(), fetestexcept(), ilogb(), log1p(), the Base Definitions volume of
IEEE Std 1003.1-200x, Section 4.18, Treatment of Error Conditions for Mathematical Functions,
<math.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Issue 6
The expm1f() and expm1l() functions are added for alignment with the ISO/IEC 9899: 1999
standard.

The expm1() function is no longer marked as an extension.

The DESCRIPTION, RETURN VALUE, ERRORS, and APPLICATION USAGE sections are
revised to align with the ISO/IEC 9899: 1999 standard.

IEC 60559: 1989 standard floating-point extensions over the ISO/IEC 9899: 1999 standard are
marked.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 325

10760

10761

10762

10763

10764

10765

10766

10767

10768

10769

10770

10771

10772

10773

10774

10775

10776

10777

10778

10779

10780

10781

10782

10783

10784

10785

10786

10787

10788

10789

10790

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

fabs() System Interfaces

NAME
fabs, fabsf, fabsl — absolute value function

SYNOPSIS
#include <math.h>

double fabs(double x);
float fabsf(float x);
long double fabsl(long double x);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

These functions shall compute the absolute value of their argument x,|x|.

RETURN VALUE
Upon successful completion, these functions shall return the absolute value of x.

MX If x is NaN, a NaN shall be returned.

If x is ±0, +0 shall be returned.

If x is ±Inf, +Inf shall be returned.

ERRORS
No errors are defined.

EXAMPLES

Computing the 1-Norm of a Floating-Point Vector

This example shows the use of fabs() to compute the 1-norm of a vector defined as follows:

norm1(v) = |v[0]| + |v[1]| + ... + |v[n −1]|

where |x| denotes the absolute value of x, n denotes the vector’s dimension v[i] denotes the i-th
component of v (0≤i<n).

#include <math.h>

double
norm1(const double v[], const int n)
{

int i;
double n1_v; /* 1-norm of v */

n1_v = 0;
for (i=0; i<n; i++) {

n1_v += fabs (v[i]);
}

return n1_v;
}

APPLICATION USAGE
None.

326 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

10791

10792

10793

10794

10795

10796

10797

10798

10799

10800

10801

10802

10803

10804

10805

10806

10807

10808

10809

10810

10811

10812

10813

10814

10815

10816

10817

10818

10819

10820

10821

10822

10823

10824

10825

10826

10827

10828

10829

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces fabs()

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
isnan(), the Base Definitions volume of IEEE Std 1003.1-200x, <math.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The DESCRIPTION is updated to indicate how an application should check for an error. This
text was previously published in the APPLICATION USAGE section.

Issue 6
The fabsf() and fabsl() functions are added for alignment with the ISO/IEC 9899: 1999 standard.

The DESCRIPTION, RETURN VALUE, ERRORS, and APPLICATION USAGE sections are
revised to align with the ISO/IEC 9899: 1999 standard.

IEC 60559: 1989 standard floating-point extensions over the ISO/IEC 9899: 1999 standard are
marked.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/27 is applied, adding the example to the
EXAMPLES section.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 327

10830

10831

10832

10833

10834

10835

10836

10837

10838

10839

10840

10841

10842

10843

10844

10845

10846

10847

10848

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

faccessat() System Interfaces

NAME
faccessat — determine accessibility of a file relative to directory file descriptor

SYNOPSIS
#include <unistd.h>

int faccessat(int fd, c onst char * path, i nt amode, i nt flag);

DESCRIPTION
Refer to access().

328 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

10849

10850

10851

10852

10853

10854

10855

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces fattach()

NAME
fattach — attach a STREAMS-based file descriptor to a file in the file system name space
(STREAMS)

SYNOPSIS
OB XSR #include <stropts.h>

int fattach(int fildes, c onst char * path);

DESCRIPTION
The fattach() function shall attach a STREAMS-based file descriptor to a file, effectively
associating a pathname with fildes. The application shall ensure that the fildes argument is a
valid open file descriptor associated with a STREAMS file. The path argument points to a
pathname of an existing file. The application shall have the appropriate privileges or be the
owner of the file named by path and have write permission. A successful call to fattach() shall
cause all pathnames that name the file named by path to name the STREAMS file associated with
fildes, until the STREAMS file is detached from the file. A STREAMS file can be attached to more
than one file and can have several pathnames associated with it.

The attributes of the named STREAMS file shall be initialized as follows: the permissions, user
ID, group ID, and times are set to those of the file named by path, the number of links is set to 1,
and the size and device identifier are set to those of the STREAMS file associated with fildes. If
any attributes of the named STREAMS file are subsequently changed (for example, by chmod()),
neither the attributes of the underlying file nor the attributes of the STREAMS file to which fildes
refers shall be affected.

File descriptors referring to the underlying file, opened prior to an fattach() call, shall continue to
refer to the underlying file.

RETURN VALUE
Upon successful completion, fattach() shall return 0. Otherwise, −1 shall be returned and errno
set to indicate the error.

ERRORS
The fattach() function shall fail if:

[EACCES] Search permission is denied for a component of the path prefix, or the process
is the owner of path but does not have write permissions on the file named by
path.

[EBADF] The fildes argument is not a valid open file descriptor.

[EBUSY] The file named by path is currently a mount point or has a STREAMS file
attached to it.

[ELOOP] A loop exists in symbolic links encountered during resolution of the path
argument.

[ENAMETOOLONG]
The size of path exceeds {PATH_MAX} or a component of path is longer than
{NAME_MAX}.

[ENOENT] A component of path does not name an existing file or path is an empty string.

[ENOTDIR] A component of the path prefix is not a directory.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 329

10856

10857

10858

10859

10860

10861

10862

10863

10864

10865

10866

10867

10868

10869

10870

10871

10872

10873

10874

10875

10876

10877

10878

10879

10880

10881

10882

10883

10884

10885

10886

10887

10888

10889

10890

10891

10892

10893

10894

10895

10896

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

fattach() System Interfaces

[EPERM] The effective user ID of the process is not the owner of the file named by path
and the process does not have appropriate privilege.

The fattach() function may fail if:

[EINVAL] The fildes argument does not refer to a STREAMS file.

[ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during
resolution of the path argument.

[ENAMETOOLONG]
Pathname resolution of a symbolic link produced an intermediate result
whose length exceeds {PATH_MAX}.

[EXDEV] A link to a file on another file system was attempted.

EXAMPLES

Attaching a File Descriptor to a File

In the following example, fd refers to an open STREAMS file. The call to fattach() associates this
STREAM with the file /tmp/named-STREAM, such that any future calls to open /tmp/named-
STREAM, prior to breaking the attachment via a call to fdetach(), will instead create a new file
handle referring to the STREAMS file associated with fd.

#include <stropts.h>
...

int fd;
char *filename = "/tmp/named-STREAM";
int ret;

ret = fattach(fd, filename);

APPLICATION USAGE
The fattach() function behaves similarly to the traditional mount() function in the way a file is
temporarily replaced by the root directory of the mounted file system. In the case of fattach(), the
replaced file need not be a directory and the replacing file is a STREAMS file.

RATIONALE
The file attributes of a file which has been the subject of an fattach() call are specifically set
because of an artefact of the original implementation. The internal mechanism was the same as
for the mount() function. Since mount() is typically only applied to directories, the effects when
applied to a regular file are a little surprising, especially as regards the link count which rigidly
remains one, even if there were several links originally and despite the fact that all original links
refer to the STREAM as long as the fattach() remains in effect.

FUTURE DIRECTIONS
The fattach() function may be removed in a future version.

SEE ALSO
fdetach(), isastream(), the Base Definitions volume of IEEE Std 1003.1-200x, <stropts.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

The [EXDEV] error is added to the list of optional errors in the ERRORS section.

330 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

10897

10898

10899

10900

10901

10902

10903

10904

10905

10906

10907

10908

10909

10910

10911

10912

10913

10914

10915

10916

10917

10918

10919

10920

10921

10922

10923

10924

10925

10926

10927

10928

10929

10930

10931

10932

10933

10934

10935

10936

10937

10938

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces fattach()

Issue 6
This function is marked as part of the XSI STREAMS Option Group.

The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

The wording of the mandatory [ELOOP] error condition is updated, and a second optional
[ELOOP] error condition is added.

Issue 7
The fattach() function is marked obsolescent.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 331

10939

10940

10941

10942

10943

10944

10945

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

fchdir() System Interfaces

NAME
fchdir — change working directory

SYNOPSIS
#include <unistd.h>

int fchdir(int fildes);

DESCRIPTION
The fchdir() function shall be equivalent to chdir() except that the directory that is to be the new
current working directory is specified by the file descriptor fildes.

A conforming application can obtain a file descriptor for a file of type directory using open(),
provided that the file status flags and access modes do not contain O_WRONLY or O_RDWR.

RETURN VALUE
Upon successful completion, fchdir() shall return 0. Otherwise, it shall return −1 and set errno to
indicate the error. On failure the current working directory shall remain unchanged.

ERRORS
The fchdir() function shall fail if:

[EACCES] Search permission is denied for the directory referenced by fildes.

[EBADF] The fildes argument is not an open file descriptor.

[ENOTDIR] The open file descriptor fildes does not refer to a directory.

The fchdir() may fail if:

[EINTR] A signal was caught during the execution of fchdir().

[EIO] An I/O error occurred while reading from or writing to the file system.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
chdir(), dirfd(), the Base Definitions volume of IEEE Std 1003.1-200x, <unistd.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Issue 7
The fchdir() function is moved from the XSI option to the Base.

332 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

10946

10947

10948

10949

10950

10951

10952

10953

10954

10955

10956

10957

10958

10959

10960

10961

10962

10963

10964

10965

10966

10967

10968

10969

10970

10971

10972

10973

10974

10975

10976

10977

10978

10979

10980

10981

10982

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces fchmod()

NAME
fchmod — change mode of a file

SYNOPSIS
#include <sys/stat.h>

int fchmod(int fildes, mode_t mode);

DESCRIPTION
The fchmod() function shall be equivalent to chmod() except that the file whose permissions are
changed is specified by the file descriptor fildes.

SHM If fildes references a shared memory object, the fchmod() function need only affect the S_IRUSR,
S_IWUSR, S_IRGRP, S_IWGRP, S_IROTH, and S_IWOTH file permission bits.

TYM If fildes references a typed memory object, the behavior of fchmod() is unspecified.

If fildes refers to a socket, the behavior of fchmod() is unspecified.

OB XSR If fildes refers to a STREAM (which is fattach()-ed into the file system name space) the call
returns successfully, doing nothing.

RETURN VALUE
Upon successful completion, fchmod() shall return 0. Otherwise, it shall return −1 and set errno to
indicate the error.

ERRORS
The fchmod() function shall fail if:

[EBADF] The fildes argument is not an open file descriptor.

[EPERM] The effective user ID does not match the owner of the file and the process does
not have appropriate privilege.

[EROFS] The file referred to by fildes resides on a read-only file system.

The fchmod() function may fail if:

XSI [EINTR] The fchmod() function was interrupted by a signal.

XSI [EINVAL] The value of the mode argument is invalid.

[EINVAL] The fildes argument refers to a pipe and the implementation disallows
execution of fchmod() on a pipe.

EXAMPLES

Changing the Current Permissions for a File

The following example shows how to change the permissions for a file named /home/cnd/mod1
so that the owner and group have read/write/execute permissions, but the world only has
read/write permissions.

#include <sys/stat.h>
#include <fcntl.h>

mode_t mode;
int fildes;
...
fildes = open("/home/cnd/mod1", O_RDWR);
fchmod(fildes, S_IRWXU | S_IRWXG | S_IROTH | S_IWOTH);

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 333

10983

10984

10985

10986

10987

10988

10989

10990

10991

10992

10993

10994

10995

10996

10997

10998

10999

11000

11001

11002

11003

11004

11005

11006

11007

11008

11009

11010

11011

11012

11013

11014

11015

11016

11017

11018

11019

11020

11021

11022

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

fchmod() System Interfaces

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
chmod(), chown(), creat(), fcntl(), fstatat(), fstatvfs(), mknod(), open(), read(), write(), the Base
Definitions volume of IEEE Std 1003.1-200x, <sys/stat.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE and aligned with fchmod() in the POSIX
Realtime Extension. Specifically, the second paragraph of the DESCRIPTION is added and a
second instance of [EINVAL] is defined in the list of optional errors.

Issue 6
The DESCRIPTION is updated for alignment with IEEE Std 1003.1j-2000 by stating that fchmod()
behavior is unspecified for typed memory objects.

334 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

11023

11024

11025

11026

11027

11028

11029

11030

11031

11032

11033

11034

11035

11036

11037

11038

11039

11040

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces fchmodat()

NAME
fchmodat — change mode of a file relative to directory file descriptor

SYNOPSIS
#include <sys/stat.h>

int fchmodat(int fd, c onst char * path, mode_t mode, i nt flag);

DESCRIPTION
Refer to chmod().,i

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

fchown() System Interfaces

NAME
fchown — change owner and group of a file

SYNOPSIS
#include <unistd.h>

int fchown(int fildes, u id_t owner, g id_t group);

DESCRIPTION
The fchown() function shall be equivalent to chown() except that the file whose owner and group
are changed is specified by the file descriptor fildes.

RETURN VALUE
Upon successful completion, fchown() shall return 0. Otherwise, it shall return −1 and set errno to
indicate the error.

ERRORS
The fchown() function shall fail if:

[EBADF] The fildes argument is not an open file descriptor.

[EPERM] The effective user ID does not match the owner of the file or the process does
not have appropriate privilege and _POSIX_CHOWN_RESTRICTED indicates
that such privilege is required.

[EROFS] The file referred to by fildes resides on a read-only file system.

The fchown() function may fail if:

[EINVAL] The owner or group ID is not a value supported by the implementation. The
OB XSR fildes argument refers to a pipe or socket or an fattach()-ed STREAM and the

implementation disallows execution of fchown() on a pipe.

[EIO] A physical I/O error has occurred.

[EINTR] The fchown() function was interrupted by a signal which was caught.

EXAMPLES

Changing the Current Owner of a File

The following example shows how to change the owner of a file named /home/cnd/mod1 to
‘‘jones’’ and the group to ‘‘cnd’’.

The numeric value for the user ID is obtained by extracting the user ID from the user database
entry associated with ‘‘jones’’. Similarly, the numeric value for the group ID is obtained by
extracting the group ID from the group database entry associated with ‘‘cnd’’. This example
assumes the calling program has appropriate privileges.

#include <sys/types.h>
#include <unistd.h>
#include <fcntl.h>
#include <pwd.h>
#include <grp.h>

struct passwd *pwd;
struct group *grp;
int fildes;
...
fildes = open("/home/cnd/mod1", O_RDWR);

336 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

11048

11049

11050

11051

11052

11053

11054

11055

11056

11057

11058

11059

11060

11061

11062

11063

11064

11065

11066

11067

11068

11069

11070

11071

11072

11073

11074

11075

11076

11077

11078

11079

11080

11081

11082

11083

11084

11085

11086

11087

11088

11089

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces fchown()

pwd = getpwnam("jones");
grp = getgrnam("cnd");
fchown(fildes, pwd->pw_uid, grp->gr_gid);

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
chown(), the Base Definitions volume of IEEE Std 1003.1-200x, <unistd.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Issue 6
The following changes were made to align with the IEEE P1003.1a draft standard:

• Clarification is added that a call to fchown() may not be allowed on a pipe.

The fchown() function is defined as mandatory.

Issue 7
Functionality relating to XSI STREAMS is marked obsolescent.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 337

11090

11091

11092

11093

11094

11095

11096

11097

11098

11099

11100

11101

11102

11103

11104

11105

11106

11107

11108

11109

11110

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

fchownat() System Interfaces

NAME
fchownat — change owner and group of a file relative to directory file descriptor

SYNOPSIS
#include <unistd.h>

int fchownat(int fd, c onst char * path, u id_t owner, g id_t group,
int flag);

DESCRIPTION
Refer to chown().

338 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

11111

11112

11113

11114

11115

11116

11117

11118

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces fclose()

NAME
fclose — close a stream

SYNOPSIS
#include <stdio.h>

int fclose(FILE * stream);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

The fclose() function shall cause the stream pointed to by stream to be flushed and the associated
file to be closed. Any unwritten buffered data for the stream shall be written to the file; any
unread buffered data shall be discarded. Whether or not the call succeeds, the stream shall be
disassociated from the file and any buffer set by the setbuf() or setvbuf() function shall be
disassociated from the stream. If the associated buffer was automatically allocated, it shall be
deallocated.

CX If the file is not already at EOF, and the file is one capable of seeking, the file offset of the
underlying open file description shall be adjusted so that the next operation on the open file
description deals with the byte after the last one read from or written to the stream being closed.

The fclose() function shall mark for update the st_ctime and st_mtime fields of the underlying file,
if the stream was writable, and if buffered data remains that has not yet been written to the file.
The fclose() function shall perform the equivalent of a close() on the file descriptor that is
associated with the stream pointed to by stream.

After the call to fclose(), any use of stream results in undefined behavior.

RETURN VALUE
CX Upon successful completion, fclose() shall return 0; otherwise, it shall return EOF and set errno

to indicate the error.

ERRORS
The fclose() function shall fail if:

CX [EAGAIN] The O_NONBLOCK flag is set for the file descriptor underlying stream and
the thread would be delayed in the write operation.

CX [EBADF] The file descriptor underlying stream is not valid.

CX [EFBIG] An attempt was made to write a file that exceeds the maximum file size.

XSI [EFBIG] An attempt was made to write a file that exceeds the file size limit of the
process.

CX [EFBIG] The file is a regular file and an attempt was made to write at or beyond the
offset maximum associated with the corresponding stream.

CX [EINTR] The fclose() function was interrupted by a signal.

CX [EIO] The process is a member of a background process group attempting to write to
its controlling terminal, TOSTOP is set, the process is neither ignoring nor
blocking SIGTTOU, and the process group of the process is orphaned. This
error may also be returned under implementation-defined conditions.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 339

11119

11120

11121

11122

11123

11124

11125

11126

11127

11128

11129

11130

11131

11132

11133

11134

11135

11136

11137

11138

11139

11140

11141

11142

11143

11144

11145

11146

11147

11148

11149

11150

11151

11152

11153

11154

11155

11156

11157

11158

11159

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

fclose() System Interfaces

CX [ENOMEM] The underlying stream was created by open_memstream() or
open_wmemstream() and insufficient memory is available.

CX [ENOSPC] There was no free space remaining on the device containing the file or in the
buffer used by the fmemopen() function.

CX [EPIPE] An attempt is made to write to a pipe or FIFO that is not open for reading by
any process. A SIGPIPE signal shall also be sent to the thread.

The fclose() function may fail if:

CX [ENXIO] A request was made of a nonexistent device, or the request was outside the
capabilities of the device.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
close(), fmemopen(), fopen(), getrlimit(), open_memstream(), ulimit(), the Base Definitions volume
of IEEE Std 1003.1-200x, <stdio.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
Large File Summit extensions are added.

Issue 6
Extensions beyond the ISO C standard are marked.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The [EFBIG] error is added as part of the large file support extensions.

• The [ENXIO] optional error condition is added.

The DESCRIPTION is updated to note that the stream and any buffer are disassociated whether
or not the call succeeds. This is for alignment with the ISO/IEC 9899: 1999 standard.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/28 is applied, updating the [EAGAIN]
error in the ERRORS section from ‘‘the process would be delayed’’ to ‘‘the thread would be
delayed’’.

Issue 7
Austin Group Interpretation 1003.1-2001 #002 is applied, clarifying the interaction of file
descriptors and streams.

The [ENOSPC] error condition is updated and the [ENOMEM] error is added from The Open
Group Technical Standard, 2006, Extended API Set Part 1.

340 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

11160

11161

11162

11163

11164

11165

11166

11167

11168

11169

11170

11171

11172

11173

11174

11175

11176

11177

11178

11179

11180

11181

11182

11183

11184

11185

11186

11187

11188

11189

11190

11191

11192

11193

11194

11195

11196

11197

11198

11199

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces fcntl()

NAME
fcntl — file control

SYNOPSIS
#include <fcntl.h>

int fcntl(int fildes, i nt cmd, . ..);

DESCRIPTION
The fcntl() function shall perform the operations described below on open files. The fildes
argument is a file descriptor.

The available values for cmd are defined in <fcntl.h> and are as follows:

F_DUPFD Return a new file descriptor which shall be the lowest numbered available
(that is, not already open) file descriptor greater than or equal to the third
argument, arg, taken as an integer of type int. The new file descriptor shall
refer to the same open file description as the original file descriptor, and shall
share any locks. The FD_CLOEXEC flag associated with the new file
descriptor shall be cleared to keep the file open across calls to one of the exec
functions.

F_GETFD Get the file descriptor flags defined in <fcntl.h> that are associated with the
file descriptor fildes. File descriptor flags are associated with a single file
descriptor and do not affect other file descriptors that refer to the same file.

F_SETFD Set the file descriptor flags defined in <fcntl.h>, that are associated with fildes,
to the third argument, arg, taken as type int. If the FD_CLOEXEC flag in the
third argument is 0, the file shall remain open across the exec functions;
otherwise, the file shall be closed upon successful execution of one of the exec
functions.

F_GETFL Get the file status flags and file access modes, defined in <fcntl.h>, for the file
description associated with fildes. The file access modes can be extracted from
the return value using the mask O_ACCMODE, which is defined in <fcntl.h>.
File status flags and file access modes are associated with the file description
and do not affect other file descriptors that refer to the same file with different
open file descriptions.

F_SETFL Set the file status flags, defined in <fcntl.h>, for the file description associated
with fildes from the corresponding bits in the third argument, arg, taken as
type int. Bits corresponding to the file access mode and the file creation flags,
as defined in <fcntl.h>, that are set in arg shall be ignored. If any bits in arg
other than those mentioned here are changed by the application, the result is
unspecified.

F_GETOWN If fildes refers to a socket, get the process or process group ID specified to
receive SIGURG signals when out-of-band data is available. Positive values
indicate a process ID; negative values, other than −1, indicate a process group
ID. If fildes does not refer to a socket, the results are unspecified.

F_SETOWN If fildes refers to a socket, set the process or process group ID specified to
receive SIGURG signals when out-of-band data is available, using the value of
the third argument, arg, taken as type int. Positive values indicate a process
ID; negative values, other than −1, indicate a process group ID. If fildes does
not refer to a socket, the results are unspecified.

The following values for cmd are available for advisory record locking. Record locking shall be

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 341

11200

11201

11202

11203

11204

11205

11206

11207

11208

11209

11210

11211

11212

11213

11214

11215

11216

11217

11218

11219

11220

11221

11222

11223

11224

11225

11226

11227

11228

11229

11230

11231

11232

11233

11234

11235

11236

11237

11238

11239

11240

11241

11242

11243

11244

11245

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

fcntl() System Interfaces

supported for regular files, and may be supported for other files.

F_GETLK Get the first lock which blocks the lock description pointed to by the third
argument, arg, taken as a pointer to type struct flock, defined in <fcntl.h>.
The information retrieved shall overwrite the information passed to fcntl() in
the structure flock. If no lock is found that would prevent this lock from
being created, then the structure shall be left unchanged except for the lock
type which shall be set to F_UNLCK.

F_SETLK Set or clear a file segment lock according to the lock description pointed to by
the third argument, arg, taken as a pointer to type struct flock, defined in
<fcntl.h>. F_SETLK can establish shared (or read) locks (F_RDLCK) or
exclusive (or write) locks (F_WRLCK), as well as to remove either type of lock
(F_UNLCK). F_RDLCK, F_WRLCK, and F_UNLCK are defined in <fcntl.h>.
If a shared or exclusive lock cannot be set, fcntl() shall return immediately
with a return value of −1.

F_SETLKW This command shall be equivalent to F_SETLK except that if a shared or
exclusive lock is blocked by other locks, the thread shall wait until the request
can be satisfied. If a signal that is to be caught is received while fcntl() is
waiting for a region, fcntl() shall be interrupted. Upon return from the signal
handler, fcntl() shall return −1 with errno set to [EINTR], and the lock
operation shall not be done.

Additional implementation-defined values for cmd may be defined in <fcntl.h>. Their names
shall start with F_.

When a shared lock is set on a segment of a file, other processes shall be able to set shared locks
on that segment or a portion of it. A shared lock prevents any other process from setting an
exclusive lock on any portion of the protected area. A request for a shared lock shall fail if the
file descriptor was not opened with read access.

An exclusive lock shall prevent any other process from setting a shared lock or an exclusive lock
on any portion of the protected area. A request for an exclusive lock shall fail if the file
descriptor was not opened with write access.

The structure flock describes the type (l_type), starting offset (l_whence), relative offset (l_start),
size (l_len), and process ID (l_pid) of the segment of the file to be affected.

The value of l_whence is SEEK_SET, SEEK_CUR, or SEEK_END, to indicate that the relative
offset l_start bytes shall be measured from the start of the file, current position, or end of the file,
respectively. The value of l_len is the number of consecutive bytes to be locked. The value of l_len
may be negative (where the definition of off_t permits negative values of l_len). The l_pid field
is only used with F_GETLK to return the process ID of the process holding a blocking lock. After
a successful F_GETLK request, when a blocking lock is found, the values returned in the flock
structure shall be as follows:

l_type Type of blocking lock found.

l_whence SEEK_SET.

l_start Start of the blocking lock.

l_len Length of the blocking lock.

l_pid Process ID of the process that holds the blocking lock.

If the command is F_SETLKW and the process must wait for another process to release a lock,
then the range of bytes to be locked shall be determined before the fcntl() function blocks. If the
file size or file descriptor seek offset change while fcntl() is blocked, this shall not affect the
range of bytes locked.

342 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

11246

11247

11248

11249

11250

11251

11252

11253

11254

11255

11256

11257

11258

11259

11260

11261

11262

11263

11264

11265

11266

11267

11268

11269

11270

11271

11272

11273

11274

11275

11276

11277

11278

11279

11280

11281

11282

11283

11284

11285

11286

11287

11288

11289

11290

11291

11292

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces fcntl()

If l_len is positive, the area affected shall start at l_start and end at l_start+l_len−1. If l_len is
negative, the area affected shall start at l_start+l_len and end at l_start−1. Locks may start and
extend beyond the current end of a file, but shall not extend before the beginning of the file. A
lock shall be set to extend to the largest possible value of the file offset for that file by setting
l_len to 0. If such a lock also has l_start set to 0 and l_whence is set to SEEK_SET, the whole file
shall be locked.

There shall be at most one type of lock set for each byte in the file. Before a successful return
from an F_SETLK or an F_SETLKW request when the calling process has previously existing
locks on bytes in the region specified by the request, the previous lock type for each byte in the
specified region shall be replaced by the new lock type. As specified above under the
descriptions of shared locks and exclusive locks, an F_SETLK or an F_SETLKW request
(respectively) shall fail or block when another process has existing locks on bytes in the specified
region and the type of any of those locks conflicts with the type specified in the request.

All locks associated with a file for a given process shall be removed when a file descriptor for
that file is closed by that process or the process holding that file descriptor terminates. Locks are
not inherited by a child process.

A potential for deadlock occurs if a process controlling a locked region is put to sleep by
attempting to lock the locked region of another process. If the system detects that sleeping until
a locked region is unlocked would cause a deadlock, fcntl() shall fail with an [EDEADLK] error.

An unlock (F_UNLCK) request in which l_len is non-zero and the offset of the last byte of the
requested segment is the maximum value for an object of type off_t, when the process has an
existing lock in which l_len is 0 and which includes the last byte of the requested segment, shall
be treated as a request to unlock from the start of the requested segment with an l_len equal to 0.
Otherwise, an unlock (F_UNLCK) request shall attempt to unlock only the requested segment.

SHM When the file descriptor fildes refers to a shared memory object, the behavior of fcntl() shall be
the same as for a regular file except the effect of the following values for the argument cmd shall
be unspecified: F_SETFL, F_GETLK, F_SETLK, and F_SETLKW.

TYM If fildes refers to a typed memory object, the result of the fcntl() function is unspecified.

RETURN VALUE
Upon successful completion, the value returned shall depend on cmd as follows:

F_DUPFD A new file descriptor.

F_GETFD Value of flags defined in <fcntl.h>. The return value shall not be negative.

F_SETFD Value other than −1.

F_GETFL Value of file status flags and access modes. The return value is not negative.

F_SETFL Value other than −1.

F_GETLK Value other than −1.

F_SETLK Value other than −1.

F_SETLKW Value other than −1.

F_GETOWN Value of the socket owner process or process group; this will not be −1.

F_SETOWN Value other than −1.

Otherwise, −1 shall be returned and errno set to indicate the error.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 343

11293

11294

11295

11296

11297

11298

11299

11300

11301

11302

11303

11304

11305

11306

11307

11308

11309

11310

11311

11312

11313

11314

11315

11316

11317

11318

11319

11320

11321

11322

11323

11324

11325

11326

11327

11328

11329

11330

11331

11332

11333

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

fcntl() System Interfaces

ERRORS
The fcntl() function shall fail if:

[EACCES] or [EAGAIN]
The cmd argument is F_SETLK; the type of lock (l_type) is a shared (F_RDLCK)
or exclusive (F_WRLCK) lock and the segment of a file to be locked is already
exclusive-locked by another process, or the type is an exclusive lock and some
portion of the segment of a file to be locked is already shared-locked or
exclusive-locked by another process.

[EBADF] The fildes argument is not a valid open file descriptor, or the argument cmd is
F_SETLK or F_SETLKW, the type of lock, l_type, is a shared lock (F_RDLCK),
and fildes is not a valid file descriptor open for reading, or the type of lock,
l_type, is an exclusive lock (F_WRLCK), and fildes is not a valid file descriptor
open for writing.

[EINTR] The cmd argument is F_SETLKW and the function was interrupted by a signal.

[EINVAL] The cmd argument is invalid, or the cmd argument is F_DUPFD and arg is
negative or greater than or equal to {OPEN_MAX}, or the cmd argument is
F_GETLK, F_SETLK, or F_SETLKW and the data pointed to by arg is not
valid, or fildes refers to a file that does not support locking.

[EMFILE] The argument cmd is F_DUPFD and all file descriptors available to the process
are currently open, or no file descriptors greater than or equal to arg are
available.

[ENOLCK] The argument cmd is F_SETLK or F_SETLKW and satisfying the lock or unlock
request would result in the number of locked regions in the system exceeding
a system-imposed limit.

[EOVERFLOW] One of the values to be returned cannot be represented correctly.

[EOVERFLOW] The cmd argument is F_GETLK, F_SETLK, or F_SETLKW and the smallest or,
if l_len is non-zero, the largest offset of any byte in the requested segment
cannot be represented correctly in an object of type off_t.

The fcntl() function may fail if:

[EDEADLK] The cmd argument is F_SETLKW, the lock is blocked by a lock from another
process, and putting the calling process to sleep to wait for that lock to become
free would cause a deadlock.

EXAMPLES

Locking and Unlocking a File

The following example demonstrates how to place a lock on bytes 100 to 109 of a file and then
later remove it. F_SETLK is used to perform a non-blocking lock request so that the process does
not have to wait if an incompatible lock is held by another process; instead the process can take
some other action.

#include <stdlib.h>
#include <unistd.h>
#include <fcntl.h>
#include <errno.h>

int
main(int argc, char *argv[])
{

int fd;

344 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

11334

11335

11336

11337

11338

11339

11340

11341

11342

11343

11344

11345

11346

11347

11348

11349

11350

11351

11352

11353

11354

11355

11356

11357

11358

11359

11360

11361

11362

11363

11364

11365

11366

11367

11368

11369

11370

11371

11372

11373

11374

11375

11376

11377

11378

11379

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces fcntl()

struct flock fl;

fd = open("testfile", O_RDWR);
if (fd == -1)

/* Handle error */;

/* Make a non-blocking request to place a write lock
on bytes 100-109 of testfile */

fl.l_type = F_WRLCK;
fl.l_whence = SEEK_SET;
fl.l_start = 100;
fl.l_len = 10;

if (fcntl(fd, F_SETLK, &fl) == −1) {
if (errno == EACCES || errno == EAGAIN) {

printf("Already locked by another process\n");

/* We can’t get the lock at the moment */

} e lse {
/* Handle unexpected error */;

}
} e lse { /* Lock was granted... */

/* Perform I/O on bytes 100 to 109 of file */

/* Unlock the locked bytes */

fl.l_type = F_UNLCK;
fl.l_whence = SEEK_SET;
fl.l_start = 100;
fl.l_len = 10;
if (fcntl(fd, F_SETLK, &fl) == −1)

/* Handle error */;
}
exit(EXIT_SUCCESS);

} /* m ain */

Setting the Close-on-Exec Flag

The following example demonstrates how to set the close-on-exec flag for the file descriptor fd.

#include <unistd.h>
#include <fcntl.h>
...

int flags;

flags = fcntl(fd, F_GETFD);
if (flags == −1)

/* Handle error */;
flags |= FD_CLOEXEC;
if (fcntl(fd, F_SETFD, flags) == −1)

/* Handle error */;"

APPLICATION USAGE
None.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 345

11380

11381

11382

11383

11384

11385

11386

11387

11388

11389

11390

11391

11392

11393

11394

11395

11396

11397

11398

11399

11400

11401

11402

11403

11404

11405

11406

11407

11408

11409

11410

11411

11412

11413

11414

11415

11416

11417

11418

11419

11420

11421

11422

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

fcntl() System Interfaces

RATIONALE
The ellipsis in the SYNOPSIS is the syntax specified by the ISO C standard for a variable number
of arguments. It is used because System V uses pointers for the implementation of file locking
functions.

The arg values to F_GETFD, F_SETFD, F_GETFL, and F_SETFL all represent flag values to allow
for future growth. Applications using these functions should do a read-modify-write operation
on them, rather than assuming that only the values defined by this volume of
IEEE Std 1003.1-200x are valid. It is a common error to forget this, particularly in the case of
F_SETFD.

This volume of IEEE Std 1003.1-200x permits concurrent read and write access to file data using
the fcntl() function; this is a change from the 1984 /usr/group standard and early proposals.
Without concurrency controls, this feature may not be fully utilized without occasional loss of
data.

Data losses occur in several ways. One case occurs when several processes try to update the
same record, without sequencing controls; several updates may occur in parallel and the last
writer ‘‘wins’’. Another case is a bit-tree or other internal list-based database that is undergoing
reorganization. Without exclusive use to the tree segment by the updating process, other reading
processes chance getting lost in the database when the index blocks are split, condensed,
inserted, or deleted. While fcntl() is useful for many applications, it is not intended to be overly
general and does not handle the bit-tree example well.

This facility is only required for regular files because it is not appropriate for many devices such
as terminals and network connections.

Since fcntl() works with ‘‘any file descriptor associated with that file, however it is obtained’’,
the file descriptor may have been inherited through a fork() or exec operation and thus may
affect a file that another process also has open.

The use of the open file description to identify what to lock requires extra calls and presents
problems if several processes are sharing an open file description, but there are too many
implementations of the existing mechanism for this volume of IEEE Std 1003.1-200x to use
different specifications.

Another consequence of this model is that closing any file descriptor for a given file (whether or
not it is the same open file description that created the lock) causes the locks on that file to be
relinquished for that process. Equivalently, any close for any file/process pair relinquishes the
locks owned on that file for that process. But note that while an open file description may be
shared through fork(), locks are not inherited through fork(). Yet locks may be inherited through
one of the exec functions.

The identification of a machine in a network environment is outside the scope of this volume of
IEEE Std 1003.1-200x. Thus, an l_sysid member, such as found in System V, is not included in the
locking structure.

Changing of lock types can result in a previously locked region being split into smaller regions.

Mandatory locking was a major feature of the 1984 /usr/group standard.

For advisory file record locking to be effective, all processes that have access to a file must
cooperate and use the advisory mechanism before doing I/O on the file. Enforcement-mode
record locking is important when it cannot be assumed that all processes are cooperating. For
example, if one user uses an editor to update a file at the same time that a second user executes
another process that updates the same file and if only one of the two processes is using advisory
locking, the processes are not cooperating. Enforcement-mode record locking would protect
against accidental collisions.

Secondly, advisory record locking requires a process using locking to bracket each I/O operation

346 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

11423

11424

11425

11426

11427

11428

11429

11430

11431

11432

11433

11434

11435

11436

11437

11438

11439

11440

11441

11442

11443

11444

11445

11446

11447

11448

11449

11450

11451

11452

11453

11454

11455

11456

11457

11458

11459

11460

11461

11462

11463

11464

11465

11466

11467

11468

11469

11470

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces fcntl()

with lock (or test) and unlock operations. With enforcement-mode file and record locking, a
process can lock the file once and unlock when all I/O operations have been completed.
Enforcement-mode record locking provides a base that can be enhanced; for example, with
sharable locks. That is, the mechanism could be enhanced to allow a process to lock a file so
other processes could read it, but none of them could write it.

Mandatory locks were omitted for several reasons:

1. Mandatory lock setting was done by multiplexing the set-group-ID bit in most
implementations; this was confusing, at best.

2. The relationship to file truncation as supported in 4.2 BSD was not well specified.

3. Any publicly readable file could be locked by anyone. Many historical implementations
keep the password database in a publicly readable file. A malicious user could thus
prohibit logins. Another possibility would be to hold open a long-distance telephone line.

4. Some demand-paged historical implementations offer memory mapped files, and
enforcement cannot be done on that type of file.

Since sleeping on a region is interrupted with any signal, alarm() may be used to provide a
timeout facility in applications requiring it. This is useful in deadlock detection. Since
implementation of full deadlock detection is not always feasible, the [EDEADLK] error was
made optional.

FUTURE DIRECTIONS
None.

SEE ALSO
alarm(), close(), exec , open(), sigaction(), the Base Definitions volume of IEEE Std 1003.1-200x,
<fcntl.h>, <signal.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The DESCRIPTION is updated for alignment with the POSIX Realtime Extension and the POSIX
Threads Extension.

Large File Summit extensions are added.

Issue 6
In the SYNOPSIS, the optional include of the <sys/types.h> header is removed.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
required for conforming implementations of previous POSIX specifications, it was not
required for UNIX applications.

• In the DESCRIPTION, sentences describing behavior when l_len is negative are now
mandated, and the description of unlock (F_UNLOCK) when l_len is non-negative is
mandated.

• In the ERRORS section, the [EINVAL] error condition has the case mandated when the cmd
is invalid, and two [EOVERFLOW] error conditions are added.

The F_GETOWN and F_SETOWN values are added for sockets.

The following changes were made to align with the IEEE P1003.1a draft standard:

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 347

11471

11472

11473

11474

11475

11476

11477

11478

11479

11480

11481

11482

11483

11484

11485

11486

11487

11488

11489

11490

11491

11492

11493

11494

11495

11496

11497

11498

11499

11500

11501

11502

11503

11504

11505

11506

11507

11508

11509

11510

11511

11512

11513

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

fcntl() System Interfaces

• Clarification is added that the extent of the bytes locked is determined prior to the
blocking action.

The DESCRIPTION is updated for alignment with IEEE Std 1003.1j-2000 by specifying that
fcntl() results are unspecified for typed memory objects.

The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/29 is applied, adding the example to the
EXAMPLES section.

Issue 7
The optional <unistd.h> header is removed from this function, since <fcntl.h> now defines
SEEK_SET, SEEK_CUR, and SEEK_END as part of the Base.

348 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

11514

11515

11516

11517

11518

11519

11520

11521

11522

11523

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces fdatasync()

NAME
fdatasync — synchronize the data of a file (REALTIME)

SYNOPSIS
SIO #include <unistd.h>

int fdatasync(int fildes);

DESCRIPTION
The fdatasync() function shall force all currently queued I/O operations associated with the file
indicated by file descriptor fildes to the synchronized I/O completion state.

The functionality shall be equivalent to fsync() with the symbol _POSIX_SYNCHRONIZED_IO
defined, with the exception that all I/O operations shall be completed as defined for
synchronized I/O data integrity completion.

RETURN VALUE
If successful, the fdatasync() function shall return the value 0; otherwise, the function shall return
the value −1 and set errno to indicate the error. If the fdatasync() function fails, outstanding I/O
operations are not guaranteed to have been completed.

ERRORS
The fdatasync() function shall fail if:

[EBADF] The fildes argument is not a valid file descriptor open for writing.

[EINVAL] This implementation does not support synchronized I/O for this file.

In the event that any of the queued I/O operations fail, fdatasync() shall return the error
conditions defined for read() and write().

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
aio_fsync(), fcntl(), fsync(), open(), read(), write(), the Base Definitions volume of
IEEE Std 1003.1-200x, <unistd.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

Issue 6
The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Synchronized Input and Output option.

The fdatasync() function is marked as part of the Synchronized Input and Output option.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 349

11524

11525

11526

11527

11528

11529

11530

11531

11532

11533

11534

11535

11536

11537

11538

11539

11540

11541

11542

11543

11544

11545

11546

11547

11548

11549

11550

11551

11552

11553

11554

11555

11556

11557

11558

11559

11560

11561

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

fdetach() System Interfaces

NAME
fdetach — detach a name from a STREAMS-based file descriptor (STREAMS)

SYNOPSIS
OB XSR #include <stropts.h>

int fdetach(const char * path);

DESCRIPTION
The fdetach() function shall detach a STREAMS-based file from the file to which it was attached
by a previous call to fattach(). The path argument points to the pathname of the attached
STREAMS file. The process shall have appropriate privileges or be the owner of the file. A
successful call to fdetach() shall cause all pathnames that named the attached STREAMS file to
again name the file to which the STREAMS file was attached. All subsequent operations on path
shall operate on the underlying file and not on the STREAMS file.

All open file descriptions established while the STREAMS file was attached to the file referenced
by path shall still refer to the STREAMS file after the fdetach() has taken effect.

If there are no open file descriptors or other references to the STREAMS file, then a successful
call to fdetach() shall be equivalent to performing the last close() on the attached file.

RETURN VALUE
Upon successful completion, fdetach() shall return 0; otherwise, it shall return −1 and set errno to
indicate the error.

ERRORS
The fdetach() function shall fail if:

[EACCES] Search permission is denied on a component of the path prefix.

[EINVAL] The path argument names a file that is not currently attached.

[ELOOP] A loop exists in symbolic links encountered during resolution of the path
argument.

[ENAMETOOLONG]
The size of a pathname exceeds {PATH_MAX} or a pathname component is
longer than {NAME_MAX}.

[ENOENT] A component of path does not name an existing file or path is an empty string.

[ENOTDIR] A component of the path prefix is not a directory.

[EPERM] The effective user ID is not the owner of path and the process does not have
appropriate privileges.

The fdetach() function may fail if:

[ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during
resolution of the path argument.

[ENAMETOOLONG]
Pathname resolution of a symbolic link produced an intermediate result
whose length exceeds {PATH_MAX}.

350 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

11562

11563

11564

11565

11566

11567

11568

11569

11570

11571

11572

11573

11574

11575

11576

11577

11578

11579

11580

11581

11582

11583

11584

11585

11586

11587

11588

11589

11590

11591

11592

11593

11594

11595

11596

11597

11598

11599

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces fdetach()

EXAMPLES

Detaching a File

The following example detaches the STREAMS-based file /tmp/named-STREAM from the file to
which it was attached by a previous, successful call to fattach(). Subsequent calls to open this
file refer to the underlying file, not to the STREAMS file.

#include <stropts.h>
...

char *filename = "/tmp/named-STREAM";
int ret;

ret = fdetach(filename);

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
The fdetach() function may be removed in a future version.

SEE ALSO
fattach(), the Base Definitions volume of IEEE Std 1003.1-200x, <stropts.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Issue 6
The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

The wording of the mandatory [ELOOP] error condition is updated, and a second optional
[ELOOP] error condition is added.

Issue 7
The fdetach() function is marked obsolescent.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 351

11600

11601

11602

11603

11604

11605

11606

11607

11608

11609

11610

11611

11612

11613

11614

11615

11616

11617

11618

11619

11620

11621

11622

11623

11624

11625

11626

11627

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

fdim() System Interfaces

NAME
fdim, fdimf, fdiml — compute positive difference between two floating-point numbers

SYNOPSIS
#include <math.h>

double fdim(double x, d ouble y);
float fdimf(float x, f loat y);
long double fdiml(long double x, l ong double y);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

These functions shall determine the positive difference between their arguments. If x is greater
than y, x−y is returned. If x is less than or equal to y, +0 is returned.

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-
zero, an error has occurred.

RETURN VALUE
Upon successful completion, these functions shall return the positive difference value.

If x−y is positive and overflows, a range error shall occur and fdim(), fdimf(), and fdiml() shall
return the value of the macro HUGE_VAL, HUGE_VALF, and HUGE_VALL, respectively.

XSI If x−y is positive and underflows, a range error may occur, and either (x−y) (if representable), or
0.0 (if supported), or an implementation-defined value shall be returned.

MX If x or y is NaN, a NaN shall be returned.

ERRORS
The fdim() function shall fail if:

Range Error The result overflows.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the overflow
floating-point exception shall be raised.

The fdim() function may fail if:

Range Error The result underflows.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the underflow
floating-point exception shall be raised.

352 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

11628

11629

11630

11631

11632

11633

11634

11635

11636

11637

11638

11639

11640

11641

11642

11643

11644

11645

11646

11647

11648

11649

11650

11651

11652

11653

11654

11655

11656

11657

11658

11659

11660

11661

11662

11663

11664

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces fdim()

EXAMPLES
None.

APPLICATION USAGE
On implementations supporting IEEE Std 754-1985, x−y cannot underflow, and hence the 0.0
return value is shaded as an extension for implementations supporting the XSI option rather
than an MX extension.

On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling &
MATH_ERREXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
feclearexcept(), fetestexcept(), fmax(), fmin(), the Base Definitions volume of IEEE Std 1003.1-200x,
Section 4.18, Treatment of Error Conditions for Mathematical Functions, <math.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 353

11665

11666

11667

11668

11669

11670

11671

11672

11673

11674

11675

11676

11677

11678

11679

11680

11681

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

fdopen() System Interfaces

NAME
fdopen — associate a stream with a file descriptor

SYNOPSIS
CX #include <stdio.h>

FILE *fdopen(int fildes, c onst char * mode);

DESCRIPTION
The fdopen() function shall associate a stream with a file descriptor.

The mode argument is a character string having one of the following values:

r or rb Open a file for reading.

w or wb Open a file for writing.

a or ab Open a file for writing at end-of-file.

r+ or rb+ or r+b Open a file for update (reading and writing).

w+ or wb+ or w+b Open a file for update (reading and writing).

a+ or ab+ or a+b Open a file for update (reading and writing) at end-of-file.

The meaning of these flags is exactly as specified in fopen(), except that modes beginning with w
shall not cause truncation of the file.

Additional values for the mode argument may be supported by an implementation.

The application shall ensure that the mode of the stream as expressed by the mode argument is
allowed by the file access mode of the open file description to which fildes refers. The file
position indicator associated with the new stream is set to the position indicated by the file offset
associated with the file descriptor.

The error and end-of-file indicators for the stream shall be cleared. The fdopen() function may
cause the st_atime field of the underlying file to be marked for update.

SHM If fildes refers to a shared memory object, the result of the fdopen() function is unspecified.

TYM If fildes refers to a typed memory object, the result of the fdopen() function is unspecified.

The fdopen() function shall preserve the offset maximum previously set for the open file
description corresponding to fildes.

RETURN VALUE
Upon successful completion, fdopen() shall return a pointer to a stream; otherwise, a null pointer
shall be returned and errno set to indicate the error.

ERRORS
The fdopen() function may fail if:

[EBADF] The fildes argument is not a valid file descriptor.

[EINVAL] The mode argument is not a valid mode.

[EMFILE] {FOPEN_MAX} streams are currently open in the calling process.

[EMFILE] {STREAM_MAX} streams are currently open in the calling process.

[ENOMEM] Insufficient space to allocate a buffer.

354 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

11682

11683

11684

11685

11686

11687

11688

11689

11690

11691

11692

11693

11694

11695

11696

11697

11698

11699

11700

11701

11702

11703

11704

11705

11706

11707

11708

11709

11710

11711

11712

11713

11714

11715

11716

11717

11718

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces fdopen()

EXAMPLES
None.

APPLICATION USAGE
File descriptors are obtained from calls like open(), dup(), creat(), or pipe(), which open files but
do not return streams.

RATIONALE
The file descriptor may have been obtained from open(), creat(), pipe(), dup(), fcntl(), or socket();
inherited through fork(), posix_spawn(), or exec; or perhaps obtained by other means.

The meanings of the mode arguments of fdopen() and fopen() differ. With fdopen(), open for write
(w or w+) does not truncate, and append (a or a+) cannot create for writing. The mode argument
formats that include a b are allowed for consistency with the ISO C standard function fopen().
The b has no effect on the resulting stream. Although not explicitly required by this volume of
IEEE Std 1003.1-200x, a good implementation of append (a) mode would cause the O_APPEND
flag to be set.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.5.1 (on page 35), fclose(), fmemopen(), fopen(), open(), open_memstream(), posix_spawn(),
socket(), the Base Definitions volume of IEEE Std 1003.1-200x, <stdio.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The DESCRIPTION is updated for alignment with the POSIX Realtime Extension.

Large File Summit extensions are added.

Issue 6
The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• In the DESCRIPTION, the use and setting of the mode argument are changed to include
binary streams.

• In the DESCRIPTION, text is added for large file support to indicate setting of the offset
maximum in the open file description.

• All errors identified in the ERRORS section are added.

• In the DESCRIPTION, text is added that the fdopen() function may cause st_atime to be
updated.

The following changes were made to align with the IEEE P1003.1a draft standard:

• Clarification is added that it is the responsibility of the application to ensure that the mode
is compatible with the open file descriptor.

The DESCRIPTION is updated for alignment with IEEE Std 1003.1j-2000 by specifying that
fdopen() results are unspecified for typed memory objects.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/30 is applied, making corrections to the
RATIONALE.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 355

11719

11720

11721

11722

11723

11724

11725

11726

11727

11728

11729

11730

11731

11732

11733

11734

11735

11736

11737

11738

11739

11740

11741

11742

11743

11744

11745

11746

11747

11748

11749

11750

11751

11752

11753

11754

11755

11756

11757

11758

11759

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

fdopendir() System Interfaces

NAME
fdopendir, opendir — open directory associated with file descriptor

SYNOPSIS
#include <dirent.h>

DIR *fdopendir(int fd);
DIR *opendir(const char * dirname);

DESCRIPTION
The fdopendir() function shall be equivalent to the opendir() function except that the directory is
specified by a file descriptor rather than by a name. The file offset associated with the file
descriptor at the time of the call determines which entries are returned.

Upon successful return from fdopendir(), the file descriptor is under the control of the system,
and if any attempt is made to close the file descriptor, or to modify the state of the associated
description other than by means of closedir(), readdir(), readdir_r(), or rewinddir(), the behavior is
implementation-defined. Upon calling closedir() the file descriptor shall be closed.

It is unspecified whether the FD_CLOEXEC flag will be set on the file descriptor by a successful
call to fdopendir().

The opendir() function shall open a directory stream corresponding to the directory named by
the dirname argument. The directory stream is positioned at the first entry. If the type DIR is
implemented using a file descriptor, applications shall only be able to open up to a total of
{OPEN_MAX} files and directories.

If the type DIR is implemented using a file descriptor, the descriptor shall be obtained as if the
O_DIRECTORY flag was passed to open().

RETURN VALUE
Upon successful completion, these functions shall return a pointer to an object of type DIR.
Otherwise, these functions shall return a null pointer and set errno to indicate the error.

ERRORS
The fdopendir() function shall fail if:

[EBADF] The fd argument is not a valid file descriptor open for searching.

[ENOTDIR] The descriptor fd is not associated with a directory.

The opendir() function shall fail if:

[EACCES] Search permission is denied for the component of the path prefix of dirname or
read permission is denied for dirname.

[ELOOP] A loop exists in symbolic links encountered during resolution of the dirname
argument.

[ENAMETOOLONG]
The length of the dirname argument exceeds {PATH_MAX} or a pathname
component is longer than {NAME_MAX}.

[ENOENT] A component of dirname does not name an existing directory or dirname is an
empty string.

[ENOTDIR] A component of dirname is not a directory.

356 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

11760

11761

11762

11763

11764

11765

11766

11767

11768

11769

11770

11771

11772

11773

11774

11775

11776

11777

11778

11779

11780

11781

11782

11783

11784

11785

11786

11787

11788

11789

11790

11791

11792

11793

11794

11795

11796

11797

11798

11799

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces fdopendir()

The opendir() function may fail if:

[ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during
resolution of the dirname argument.

[EMFILE] All file descriptors available to the process are currently open.

[ENAMETOOLONG]
As a result of encountering a symbolic link in resolution of the dirname
argument, the length of the substituted pathname string exceeded
{PATH_MAX}.

[ENFILE] Too many files are currently open in the system.

EXAMPLES

Open a Directory Stream

The following program fragment demonstrates how the opendir() function is used.

#include <sys/types.h>
#include <dirent.h>
#include <libgen.h>
...

DIR *dir;
struct dirent *dp;

...
if ((dir = opendir (".")) == NULL) {

perror ("Cannot open .");
exit (1);

}

while ((dp = readdir (dir)) != NULL) {
...

APPLICATION USAGE
The opendir() function should be used in conjunction with readdir(), closedir(), and rewinddir() to
examine the contents of the directory (see the EXAMPLES section in readdir()). This method is
recommended for portability.

RATIONALE
The purpose of the fdopendir() function is to enable opening files in directories other than the
current working directory without exposure to race conditions. Any part of the path of a file
could be changed in parallel to a call to opendir(), resulting in unspecified behavior.

Based on historical implementations, the rules about file descriptors apply to directory streams
as well. However, this volume of IEEE Std 1003.1-200x does not mandate that the directory
stream be implemented using file descriptors. The description of closedir() clarifies that if a file
descriptor is used for the directory stream, it is mandatory that closedir() deallocate the file
descriptor. When a file descriptor is used to implement the directory stream, it behaves as if the
FD_CLOEXEC had been set for the file descriptor.

The directory entries for dot and dot-dot are optional. This volume of IEEE Std 1003.1-200x does
not provide a way to test a priori for their existence because an application that is portable must
be written to look for (and usually ignore) those entries. Writing code that presumes that they
are the first two entries does not always work, as many implementations permit them to be
other than the first two entries, with a ‘‘normal’’ entry preceding them. There is negligible value
in providing a way to determine what the implementation does because the code to deal with
dot and dot-dot must be written in any case and because such a flag would add to the list of
those flags (which has proven in itself to be objectionable) and might be abused.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 357

11800

11801

11802

11803

11804

11805

11806

11807

11808

11809

11810

11811

11812

11813

11814

11815

11816

11817

11818

11819

11820

11821

11822

11823

11824

11825

11826

11827

11828

11829

11830

11831

11832

11833

11834

11835

11836

11837

11838

11839

11840

11841

11842

11843

11844

11845

11846

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

fdopendir() System Interfaces

Since the structure and buffer allocation, if any, for directory operations are defined by the
implementation, this volume of IEEE Std 1003.1-200x imposes no portability requirements for
erroneous program constructs, erroneous data, or the use of unspecified values such as the use
or referencing of a dirp value or a dirent structure value after a directory stream has been closed
or after a fork() or one of the exec function calls.

FUTURE DIRECTIONS
None.

SEE ALSO
closedir(), dirfd(), fstatat(), open(), readdir(), rewinddir(), symlink(), the Base Definitions volume
of IEEE Std 1003.1-200x, <dirent.h>, <limits.h>, <sys/types.h>

CHANGE HISTORY
First released in Issue 2.

Issue 6
In the SYNOPSIS, the optional include of the <sys/types.h> header is removed.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
required for conforming implementations of previous POSIX specifications, it was not
required for UNIX applications.

• The [ELOOP] mandatory error condition is added.

• A second [ENAMETOOLONG] is added as an optional error condition.

The following changes were made to align with the IEEE P1003.1a draft standard:

• The [ELOOP] optional error condition is added.

Issue 7
SD5-XBD-ERN-4 is applied, changing the definition of the [EMFILE] error.

The fdopendir() function is added from The Open Group Technical Standard, 2006, Extended API
Set Part 2.

358 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

11847

11848

11849

11850

11851

11852

11853

11854

11855

11856

11857

11858

11859

11860

11861

11862

11863

11864

11865

11866

11867

11868

11869

11870

11871

11872

11873

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces feclearexcept()

NAME
feclearexcept — clear floating-point exception

SYNOPSIS
#include <fenv.h>

int feclearexcept(int excepts);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

The feclearexcept() function shall attempt to clear the supported floating-point exceptions
represented by excepts.

RETURN VALUE
If the argument is zero or if all the specified exceptions were successfully cleared, feclearexcept()
shall return zero. Otherwise, it shall return a non-zero value.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fegetexceptflag(), feraiseexcept(), fesetexceptflag(), fetestexcept(), the Base Definitions volume of
IEEE Std 1003.1-200x, <fenv.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

ISO/IEC 9899: 1999 standard, Technical Corrigendum 1 is incorporated.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 359

11874

11875

11876

11877

11878

11879

11880

11881

11882

11883

11884

11885

11886

11887

11888

11889

11890

11891

11892

11893

11894

11895

11896

11897

11898

11899

11900

11901

11902

11903

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

fegetenv() System Interfaces

NAME
fegetenv, fesetenv — get and set current floating-point environment

SYNOPSIS
#include <fenv.h>

int fegetenv(fenv_t * envp);
int fesetenv(const fenv_t * envp);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

The fegetenv() function shall attempt to store the current floating-point environment in the object
pointed to by envp.

The fesetenv() function shall attempt to establish the floating-point environment represented by
the object pointed to by envp. The argument envp shall point to an object set by a call to
fegetenv() or feholdexcept(), or equal a floating-point environment macro. The fesetenv() function
does not raise floating-point exceptions, but only installs the state of the floating-point status
flags represented through its argument.

RETURN VALUE
If the representation was successfully stored, fegetenv() shall return zero. Otherwise, it shall
return a non-zero value. If the environment was successfully established, fesetenv() shall return
zero. Otherwise, it shall return a non-zero value.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
feholdexcept(), feupdateenv(), the Base Definitions volume of IEEE Std 1003.1-200x, <fenv.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

ISO/IEC 9899: 1999 standard, Technical Corrigendum 1 is incorporated.

360 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

11904

11905

11906

11907

11908

11909

11910

11911

11912

11913

11914

11915

11916

11917

11918

11919

11920

11921

11922

11923

11924

11925

11926

11927

11928

11929

11930

11931

11932

11933

11934

11935

11936

11937

11938

11939

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces fegetexceptflag()

NAME
fegetexceptflag, fesetexceptflag — get and set floating-point status flags

SYNOPSIS
#include <fenv.h>

int fegetexceptflag(fexcept_t * flagp, i nt excepts);
int fesetexceptflag(const fexcept_t * flagp, i nt excepts);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

The fegetexceptflag() function shall attempt to store an implementation-defined representation of
the states of the floating-point status flags indicated by the argument excepts in the object
pointed to by the argument flagp.

The fesetexceptflag() function shall attempt to set the floating-point status flags indicated by the
argument excepts to the states stored in the object pointed to by flagp. The value pointed to by
flagp shall have been set by a previous call to fegetexceptflag() whose second argument
represented at least those floating-point exceptions represented by the argument excepts. This
function does not raise floating-point exceptions, but only sets the state of the flags.

RETURN VALUE
If the representation was successfully stored, fegetexceptflag() shall return zero. Otherwise, it
shall return a non-zero value. If the excepts argument is zero or if all the specified exceptions
were successfully set, fesetexceptflag() shall return zero. Otherwise, it shall return a non-zero
value.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
feclearexcept(), feraiseexcept(), fetestexcept(), the Base Definitions volume of IEEE Std 1003.1-200x,
<fenv.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

ISO/IEC 9899: 1999 standard, Technical Corrigendum 1 is incorporated.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 361

11940

11941

11942

11943

11944

11945

11946

11947

11948

11949

11950

11951

11952

11953

11954

11955

11956

11957

11958

11959

11960

11961

11962

11963

11964

11965

11966

11967

11968

11969

11970

11971

11972

11973

11974

11975

11976

11977

11978

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

fegetround() System Interfaces

NAME
fegetround, fesetround — get and set current rounding direction

SYNOPSIS
#include <fenv.h>

int fegetround(void);
int fesetround(int round);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

The fegetround() function shall get the current rounding direction.

The fesetround() function shall establish the rounding direction represented by its argument
round. If the argument is not equal to the value of a rounding direction macro, the rounding
direction is not changed.

RETURN VALUE
The fegetround() function shall return the value of the rounding direction macro representing the
current rounding direction or a negative value if there is no such rounding direction macro or
the current rounding direction is not determinable.

The fesetround() function shall return a zero value if and only if the requested rounding direction
was established.

ERRORS
No errors are defined.

EXAMPLES
The following example saves, sets, and restores the rounding direction, reporting an error and
aborting if setting the rounding direction fails:

#include <fenv.h>
#include <assert.h>
void f(int round_dir)
{

#pragma STDC FENV_ACCESS ON
int save_round;
int setround_ok;
save_round = fegetround();
setround_ok = fesetround(round_dir);
assert(setround_ok == 0);
/* ... */
fesetround(save_round);
/* ... */

}

APPLICATION USAGE
None.

RATIONALE
None.

362 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

11979

11980

11981

11982

11983

11984

11985

11986

11987

11988

11989

11990

11991

11992

11993

11994

11995

11996

11997

11998

11999

12000

12001

12002

12003

12004

12005

12006

12007

12008

12009

12010

12011

12012

12013

12014

12015

12016

12017

12018

12019

12020

12021

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces fegetround()

FUTURE DIRECTIONS
None.

SEE ALSO
The Base Definitions volume of IEEE Std 1003.1-200x, <fenv.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

ISO/IEC 9899: 1999 standard, Technical Corrigendum 1 is incorporated.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 363

12022

12023

12024

12025

12026

12027

12028

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

feholdexcept() System Interfaces

NAME
feholdexcept — save current floating-point environment

SYNOPSIS
#include <fenv.h>

int feholdexcept(fenv_t * envp);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

The feholdexcept() function shall save the current floating-point environment in the object
pointed to by envp, clear the floating-point status flags, and then install a non-stop (continue on
floating-point exceptions) mode, if available, for all floating-point exceptions.

RETURN VALUE
The feholdexcept() function shall return zero if and only if non-stop floating-point exception
handling was successfully installed.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
The feholdexcept() function should be effective on typical IEC 60559: 1989 standard
implementations which have the default non-stop mode and at least one other mode for trap
handling or aborting. If the implementation provides only the non-stop mode, then installing the
non-stop mode is trivial.

FUTURE DIRECTIONS
None.

SEE ALSO
fegetenv(), fesetenv(), feupdateenv(), the Base Definitions volume of IEEE Std 1003.1-200x,
<fenv.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

364 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

12029

12030

12031

12032

12033

12034

12035

12036

12037

12038

12039

12040

12041

12042

12043

12044

12045

12046

12047

12048

12049

12050

12051

12052

12053

12054

12055

12056

12057

12058

12059

12060

12061

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces feof()

NAME
feof — test end-of-file indicator on a stream

SYNOPSIS
#include <stdio.h>

int feof(FILE * stream);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

The feof() function shall test the end-of-file indicator for the stream pointed to by stream.

RETURN VALUE
The feof() function shall return non-zero if and only if the end-of-file indicator is set for stream.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
clearerr(), ferror(), fopen(), the Base Definitions volume of IEEE Std 1003.1-200x, <stdio.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 365

12062

12063

12064

12065

12066

12067

12068

12069

12070

12071

12072

12073

12074

12075

12076

12077

12078

12079

12080

12081

12082

12083

12084

12085

12086

12087

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

feraiseexcept() System Interfaces

NAME
feraiseexcept — raise floating-point exception

SYNOPSIS
#include <fenv.h>

int feraiseexcept(int excepts);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

The feraiseexcept() function shall attempt to raise the supported floating-point exceptions
represented by the argument excepts. The order in which these floating-point exceptions are
raised is unspecified. Whether the feraiseexcept() function additionally raises the inexact floating-
point exception whenever it raises the overflow or underflow floating-point exception is
implementation-defined.

RETURN VALUE
If the argument is zero or if all the specified exceptions were successfully raised, feraiseexcept()
shall return zero. Otherwise, it shall return a non-zero value.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
The effect is intended to be similar to that of floating-point exceptions raised by arithmetic
operations. Hence, enabled traps for floating-point exceptions raised by this function are taken.

RATIONALE
Raising overflow or underflow is allowed to also raise inexact because on some architectures the
only practical way to raise an exception is to execute an instruction that has the exception as a
side effect. The function is not restricted to accept only valid coincident expressions for atomic
operations, so the function can be used to raise exceptions accrued over several operations.

FUTURE DIRECTIONS
None.

SEE ALSO
feclearexcept(), fegetexceptflag(), fesetexceptflag(), fetestexcept(), the Base Definitions volume of
IEEE Std 1003.1-200x, <fenv.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

ISO/IEC 9899: 1999 standard, Technical Corrigendum 1 is incorporated.

366 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

12088

12089

12090

12091

12092

12093

12094

12095

12096

12097

12098

12099

12100

12101

12102

12103

12104

12105

12106

12107

12108

12109

12110

12111

12112

12113

12114

12115

12116

12117

12118

12119

12120

12121

12122

12123

12124

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces ferror()

NAME
ferror — test error indicator on a stream

SYNOPSIS
#include <stdio.h>

int ferror(FILE * stream);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

The ferror() function shall test the error indicator for the stream pointed to by stream.

RETURN VALUE
The ferror() function shall return non-zero if and only if the error indicator is set for stream.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
clearerr(), feof(), fopen(), the Base Definitions volume of IEEE Std 1003.1-200x, <stdio.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 367

12125

12126

12127

12128

12129

12130

12131

12132

12133

12134

12135

12136

12137

12138

12139

12140

12141

12142

12143

12144

12145

12146

12147

12148

12149

12150

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

fesetenv() System Interfaces

NAME
fesetenv — set current floating-point environment

SYNOPSIS
#include <fenv.h>

int fesetenv(const fenv_t * envp);

DESCRIPTION
Refer to fegetenv().

368 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

12151

12152

12153

12154

12155

12156

12157

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces fesetexceptflag()

NAME
fesetexceptflag — set floating-point status flags

SYNOPSIS
#include <fenv.h>

int fesetexceptflag(const fexcept_t * flagp, i nt excepts);

DESCRIPTION
Refer to fegetexceptflag().

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 369

12158

12159

12160

12161

12162

12163

12164

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

fesetround() System Interfaces

NAME
fesetround — set current rounding direction

SYNOPSIS
#include <fenv.h>

int fesetround(int round);

DESCRIPTION
Refer to fegetround().

370 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

12165

12166

12167

12168

12169

12170

12171

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces fetestexcept()

NAME
fetestexcept — test floating-point exception flags

SYNOPSIS
#include <fenv.h>

int fetestexcept(int excepts);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

The fetestexcept() function shall determine which of a specified subset of the floating-point
exception flags are currently set. The excepts argument specifies the floating-point status flags to
be queried.

RETURN VALUE
The fetestexcept() function shall return the value of the bitwise-inclusive OR of the floating-point
exception macros corresponding to the currently set floating-point exceptions included in
excepts.

ERRORS
No errors are defined.

EXAMPLES
The following example calls function f() if an invalid exception is set, and then function g() if an
overflow exception is set:

#include <fenv.h>
/* ... */
{

#pragma STDC FENV_ACCESS ON
int set_excepts;
feclearexcept(FE_INVALID | FE_OVERFLOW);
// maybe raise exceptions
set_excepts = fetestexcept(FE_INVALID | FE_OVERFLOW);
if (set_excepts & FE_INVALID) f();
if (set_excepts & FE_OVERFLOW) g();
/* ... */

}

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
feclearexcept(), fegetexceptflag(), feraiseexcept(), the Base Definitions volume of
IEEE Std 1003.1-200x, <fenv.h>

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 371

12172

12173

12174

12175

12176

12177

12178

12179

12180

12181

12182

12183

12184

12185

12186

12187

12188

12189

12190

12191

12192

12193

12194

12195

12196

12197

12198

12199

12200

12201

12202

12203

12204

12205

12206

12207

12208

12209

12210

12211

12212

12213

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

fetestexcept() System Interfaces

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

372 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

12214

12215

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces feupdateenv()

NAME
feupdateenv — update floating-point environment

SYNOPSIS
#include <fenv.h>

int feupdateenv(const fenv_t * envp);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

The feupdateenv() function shall attempt to save the currently raised floating-point exceptions in
its automatic storage, attempt to install the floating-point environment represented by the object
pointed to by envp, and then attempt to raise the saved floating-point exceptions. The argument
envp shall point to an object set by a call to feholdexcept() or fegetenv(), or equal a floating-point
environment macro.

RETURN VALUE
The feupdateenv() function shall return a zero value if and only if all the required actions were
successfully carried out.

ERRORS
No errors are defined.

EXAMPLES
The following example shows sample code to hide spurious underflow floating-point
exceptions:

#include <fenv.h>
double f(double x)
{

#pragma STDC FENV_ACCESS ON
double result;
fenv_t save_env;
feholdexcept(&save_env);
// compute result
if (/* test spurious underflow */)
feclearexcept(FE_UNDERFLOW);
feupdateenv(&save_env);
return result;

}

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fegetenv(), feholdexcept(), the Base Definitions volume of IEEE Std 1003.1-200x, <fenv.h>

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 373

12216

12217

12218

12219

12220

12221

12222

12223

12224

12225

12226

12227

12228

12229

12230

12231

12232

12233

12234

12235

12236

12237

12238

12239

12240

12241

12242

12243

12244

12245

12246

12247

12248

12249

12250

12251

12252

12253

12254

12255

12256

12257

12258

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

feupdateenv() System Interfaces

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

ISO/IEC 9899: 1999 standard, Technical Corrigendum 1 is incorporated.

374 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

12259

12260

12261

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces fexecve

NAME
fexecve — execute a file

SYNOPSIS
#include <unistd.h>

int fexecve(int fd, c har *const argv[], c har *const envp[]);

DESCRIPTION
Refer to exec .

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 375

12262

12263

12264

12265

12266

12267

12268

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

fflush() System Interfaces

NAME
fflush — flush a stream

SYNOPSIS
#include <stdio.h>

int fflush(FILE * stream);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

If stream points to an output stream or an update stream in which the most recent operation was
CX not input, fflush() shall cause any unwritten data for that stream to be written to the file, and the

st_ctime and st_mtime fields of the underlying file shall be marked for update.

If stream is a null pointer, fflush() shall perform this flushing action on all streams for which the
behavior is defined above.

CX For a stream open for reading, if the file is not already at EOF, and the file is one capable of
seeking, the file offset of the underlying open file description shall be adjusted so that the next
operation on the open file description deals with the byte after the last one read from or written
to the stream being flushed.

RETURN VALUE
Upon successful completion, fflush() shall return 0; otherwise, it shall set the error indicator for

CX the stream, return EOF, and set errno to indicate the error.

ERRORS
The fflush() function shall fail if:

CX [EAGAIN] The O_NONBLOCK flag is set for the file descriptor underlying stream and
the thread would be delayed in the write operation.

CX [EBADF] The file descriptor underlying stream is not valid.

CX [EFBIG] An attempt was made to write a file that exceeds the maximum file size.

XSI [EFBIG] An attempt was made to write a file that exceeds the file size limit of the
process.

CX [EFBIG] The file is a regular file and an attempt was made to write at or beyond the
offset maximum associated with the corresponding stream.

CX [EINTR] The fflush() function was interrupted by a signal.

CX [EIO] The process is a member of a background process group attempting to write to
its controlling terminal, TOSTOP is set, the process is neither ignoring nor
blocking SIGTTOU, and the process group of the process is orphaned. This
error may also be returned under implementation-defined conditions.

CX [ENOMEM] The underlying stream was created by open_memstream() or
open_wmemstream() and insufficient memory is available.

CX [ENOSPC] There was no free space remaining on the device containing the file or in the
buffer used by the fmemopen() function.

CX [EPIPE] An attempt is made to write to a pipe or FIFO that is not open for reading by
any process. A SIGPIPE signal shall also be sent to the thread.

376 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

12269

12270

12271

12272

12273

12274

12275

12276

12277

12278

12279

12280

12281

12282

12283

12284

12285

12286

12287

12288

12289

12290

12291

12292

12293

12294

12295

12296

12297

12298

12299

12300

12301

12302

12303

12304

12305

12306

12307

12308

12309

12310

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces fflush()

The fflush() function may fail if:

CX [ENXIO] A request was made of a nonexistent device, or the request was outside the
capabilities of the device.

EXAMPLES

Sending Prompts to Standard Output

The following example uses printf() calls to print a series of prompts for information the user
must enter from standard input. The fflush() calls force the output to standard output. The
fflush() function is used because standard output is usually buffered and the prompt may not
immediately be printed on the output or terminal. The gets() calls read strings from standard
input and place the results in variables, for use later in the program.

#include <stdio.h>
...
char user[100];
char oldpasswd[100];
char newpasswd[100];
...
printf("User name: ");
fflush(stdout);
gets(user);

printf("Old password: ");
fflush(stdout);
gets(oldpasswd);

printf("New password: ");
fflush(stdout);
gets(newpasswd);
...

APPLICATION USAGE
None.

RATIONALE
Data buffered by the system may make determining the validity of the position of the current
file descriptor impractical. Thus, enforcing the repositioning of the file descriptor after fflush()
on streams open for read() is not mandated by IEEE Std 1003.1-200x.

FUTURE DIRECTIONS
None.

SEE ALSO
fmemopen(), getrlimit(), open_memstream(), ulimit(), the Base Definitions volume of
IEEE Std 1003.1-200x, <stdio.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
Large File Summit extensions are added.

Issue 6
Extensions beyond the ISO C standard are marked.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 377

12311

12312

12313

12314

12315

12316

12317

12318

12319

12320

12321

12322

12323

12324

12325

12326

12327

12328

12329

12330

12331

12332

12333

12334

12335

12336

12337

12338

12339

12340

12341

12342

12343

12344

12345

12346

12347

12348

12349

12350

12351

12352

12353

12354

12355

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

fflush() System Interfaces

• The [EFBIG] error is added as part of the large file support extensions.

• The [ENXIO] optional error condition is added.

The RETURN VALUE section is updated to note that the error indicator shall be set for the
stream. This is for alignment with the ISO/IEC 9899: 1999 standard.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/31 is applied, updating the [EAGAIN]
error in the ERRORS section from ‘‘the process would be delayed’’ to ‘‘the thread would be
delayed’’.

Issue 7
Austin Group Interpretation 1003.1-2001 #002 is applied, clarifying the interaction of file
descriptors and streams.

The [ENOSPC] error condition is updated and the [ENOMEM] error is added from The Open
Group Technical Standard, 2006, Extended API Set Part 1.

378 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

12356

12357

12358

12359

12360

12361

12362

12363

12364

12365

12366

12367

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces ffs()

NAME
ffs — find first set bit

SYNOPSIS
XSI #include <strings.h>

int ffs(int i);

DESCRIPTION
The ffs() function shall find the first bit set (beginning with the least significant bit) in i, and
return the index of that bit. Bits are numbered starting at one (the least significant bit).

RETURN VALUE
The ffs() function shall return the index of the first bit set. If i is 0, then ffs() shall return 0.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
The Base Definitions volume of IEEE Std 1003.1-200x, <strings.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 379

12368

12369

12370

12371

12372

12373

12374

12375

12376

12377

12378

12379

12380

12381

12382

12383

12384

12385

12386

12387

12388

12389

12390

12391

12392

12393

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

fgetc() System Interfaces

NAME
fgetc — get a byte from a stream

SYNOPSIS
#include <stdio.h>

int fgetc(FILE * stream);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

If the end-of-file indicator for the input stream pointed to by stream is not set and a next byte is
present, the fgetc() function shall obtain the next byte as an unsigned char converted to an int,
from the input stream pointed to by stream, and advance the associated file position indicator for
the stream (if defined). Since fgetc() operates on bytes, reading a character consisting of multiple
bytes (or ‘‘a multi-byte character’’) may require multiple calls to fgetc().

CX The fgetc() function may mark the st_atime field of the file associated with stream for update. The
st_atime field shall be marked for update by the first successful execution of fgetc(), fgets(),
fread(), fscanf(), getc(), getchar(), gets(), or scanf() using stream that returns data not supplied by
a prior call to ungetc().

RETURN VALUE
Upon successful completion, fgetc() shall return the next byte from the input stream pointed to
by stream. If the end-of-file indicator for the stream is set, or if the stream is at end-of-file, the
end-of-file indicator for the stream shall be set and fgetc() shall return EOF. If a read error occurs,

CX the error indicator for the stream shall be set, fgetc() shall return EOF, and shall set errno to
indicate the error.

ERRORS
The fgetc() function shall fail if data needs to be read and:

CX [EAGAIN] The O_NONBLOCK flag is set for the file descriptor underlying stream and
the thread would be delayed in the fgetc() operation.

CX [EBADF] The file descriptor underlying stream is not a valid file descriptor open for
reading.

CX [EINTR] The read operation was terminated due to the receipt of a signal, and no data
was transferred.

CX [EIO] A physical I/O error has occurred, or the process is in a background process
group attempting to read from its controlling terminal, and either the process
is ignoring or blocking the SIGTTIN signal or the process group is orphaned.
This error may also be generated for implementation-defined reasons.

CX [EOVERFLOW] The file is a regular file and an attempt was made to read at or beyond the
offset maximum associated with the corresponding stream.

The fgetc() function may fail if:

CX [ENOMEM] Insufficient storage space is available.

CX [ENXIO] A request was made of a nonexistent device, or the request was outside the
capabilities of the device.

380 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

12394

12395

12396

12397

12398

12399

12400

12401

12402

12403

12404

12405

12406

12407

12408

12409

12410

12411

12412

12413

12414

12415

12416

12417

12418

12419

12420

12421

12422

12423

12424

12425

12426

12427

12428

12429

12430

12431

12432

12433

12434

12435

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces fgetc()

EXAMPLES
None.

APPLICATION USAGE
If the integer value returned by fgetc() is stored into a variable of type char and then compared
against the integer constant EOF, the comparison may never succeed, because sign-extension of
a variable of type char on widening to integer is implementation-defined.

The ferror() or feof() functions must be used to distinguish between an error condition and an
end-of-file condition.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
feof(), ferror(), fgets(), fread(), fscanf(), getchar(), getc(), gets(), scanf(), ungetc(), the Base
Definitions volume of IEEE Std 1003.1-200x, <stdio.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
Large File Summit extensions are added.

Issue 6
Extensions beyond the ISO C standard are marked.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The [EIO] and [EOVERFLOW] mandatory error conditions are added.

• The [ENOMEM] and [ENXIO] optional error conditions are added.

The following changes are made for alignment with the ISO/IEC 9899: 1999 standard:

• The DESCRIPTION is updated to clarify the behavior when the end-of-file indicator for the
input stream is not set.

• The RETURN VALUE section is updated to note that the error indicator shall be set for the
stream.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/32 is applied, updating the [EAGAIN]
error in the ERRORS section from ‘‘the process would be delayed’’ to ‘‘the thread would be
delayed’’.

Issue 7
Austin Group Interpretation 1003.1-2001 #051 is applied, updating the list of functions that mark
the st_atime field for update.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 381

12436

12437

12438

12439

12440

12441

12442

12443

12444

12445

12446

12447

12448

12449

12450

12451

12452

12453

12454

12455

12456

12457

12458

12459

12460

12461

12462

12463

12464

12465

12466

12467

12468

12469

12470

12471

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

fgetpos() System Interfaces

NAME
fgetpos — get current file position information

SYNOPSIS
#include <stdio.h>

int fgetpos(FILE *restrict stream, f pos_t *restrict pos);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

The fgetpos() function shall store the current values of the parse state (if any) and file position
indicator for the stream pointed to by stream in the object pointed to by pos. The value stored
contains unspecified information usable by fsetpos() for repositioning the stream to its position
at the time of the call to fgetpos().

RETURN VALUE
Upon successful completion, fgetpos() shall return 0; otherwise, it shall return a non-zero value
and set errno to indicate the error.

ERRORS
The fgetpos() function shall fail if:

CX [EOVERFLOW] The current value of the file position cannot be represented correctly in an
object of type fpos_t.

The fgetpos() function may fail if:

CX [EBADF] The file descriptor underlying stream is not valid.

CX [ESPIPE] The file descriptor underlying stream is associated with a pipe, FIFO, or socket.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fopen(), ftell(), re

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces fgetpos()

Issue 6
Extensions beyond the ISO C standard are marked.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The [EBADF] and [ESPIPE] optional error conditions are added.

An additional [ESPIPE] error condition is added for sockets.

The prototype for fgetpos() is changed for alignment with the ISO/IEC 9899: 1999 standard.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 383

12510

12511

12512

12513

12514

12515

12516

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

fgets() System Interfaces

NAME
fgets — get a string from a stream

SYNOPSIS
#include <stdio.h>

char *fgets(char *restrict s, i nt n, F ILE *restrict stream);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

The fgets() function shall read bytes from stream into the array pointed to by s, until n−1 bytes
are read, or a <newline> is read and transferred to s, or an end-of-file condition is encountered.
The string is then terminated with a null byte.

CX The fgets() function may mark the st_atime field of the file associated with stream for update. The
st_atime field shall be marked for update by the first successful execution of fgetc(), fgets(),
fread(), fscanf(), getc(), getchar(), gets(), or scanf() using stream that returns data not supplied by
a prior call to ungetc().

RETURN VALUE
Upon successful completion, fgets() shall return s. If the stream is at end-of-file, the end-of-file
indicator for the stream shall be set and fgets() shall return a null pointer. If a read error occurs,

CX the error indicator for the stream shall be set, fgets() shall return a null pointer, and shall set
errno to indicate the error.

ERRORS
Refer to fgetc().

EXAMPLES

Reading Input

The following example uses fgets() to read each line of input. {LINE_MAX}, which defines the
maximum size of the input line, is defined in the <limits.h> header.

#include <stdio.h>
...
char line[LINE_MAX];
...
while (fgets(line, LINE_MAX, fp) != NULL) {
...
}
...

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

384 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

12517

12518

12519

12520

12521

12522

12523

12524

12525

12526

12527

12528

12529

12530

12531

12532

12533

12534

12535

12536

12537

12538

12539

12540

12541

12542

12543

12544

12545

12546

12547

12548

12549

12550

12551

12552

12553

12554

12555

12556

12557

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces fgets()

SEE ALSO
fgetc(), fopen(), fread(), fscanf(), getc(), getchar(), getdelim(), gets(), scanf(), ungetc(), the Base
Definitions volume of IEEE Std 1003.1-200x, <stdio.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
Extensions beyond the ISO C standard are marked.

The prototype for fgets() is changed for alignment with the ISO/IEC 9899: 1999 standard.

Issue 7
Austin Group Interpretation 1003.1-2001 #051 is applied, updating the list of functions that mark
the st_atime field for update.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 385

12558

12559

12560

12561

12562

12563

12564

12565

12566

12567

12568

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

fgetwc() System Interfaces

NAME
fgetwc — get a wide-character code from a stream

SYNOPSIS
#include <stdio.h>
#include <wchar.h>

wint_t fgetwc(FILE * stream);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

The fgetwc() function shall obtain the next character (if present) from the input stream pointed to
by stream, convert that to the corresponding wide-character code, and advance the associated file
position indicator for the stream (if defined).

If an error occurs, the resulting value of the file position indicator for the stream is unspecified.

CX The fgetwc() function may mark the st_atime field of the file associated with stream for update.
The st_atime field shall be marked for update by the first successful execution of fgetc(), fgets(),
fgetwc(), fgetws(), fread(), fscanf(), getc(), getchar(), gets(), or scanf() using stream that returns
data not supplied by a prior call to ungetc() or ungetwc().

RETURN VALUE
Upon successful completion, the fgetwc() function shall return the wide-character code of the
character read from the input stream pointed to by stream converted to a type wint_t. If the end-
of-file indicator for the stream is set, or if the stream is at end-of-file, the end-of-file indicator for
the stream shall be set and fgetwc() shall return WEOF. If a read error occurs, the error indicator

CX for the stream shall be set, fgetwc() shall return WEOF, and shall set errno to indicate the error. If
an encoding error occurs, the error indicator for the stream shall be set, fgetwc() shall return
WEOF, and shall set errno to indicate the error.

ERRORS
The fgetwc() function shall fail if data needs to be read and:

CX [EAGAIN] The O_NONBLOCK flag is set for the file descriptor underlying stream and
the thread would be delayed in the fgetwc() operation.

CX [EBADF] The file descriptor underlying stream is not a valid file descriptor open for
reading.

[EILSEQ] The data obtained from the input stream does not form a valid character.

CX [EINTR] The read operation was terminated due to the receipt of a signal, and no data
was transferred.

CX [EIO] A physical I/O error has occurred, or the process is in a background process
group attempting to read from its controlling terminal, and either the process
is ignoring or blocking the SIGTTIN signal or the process group is orphaned.
This error may also be generated for implementation-defined reasons.

CX [EOVERFLOW] The file is a regular file and an attempt was made to read at or beyond the
offset maximum associated with the corresponding stream.

386 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

12569

12570

12571

12572

12573

12574

12575

12576

12577

12578

12579

12580

12581

12582

12583

12584

12585

12586

12587

12588

12589

12590

12591

12592

12593

12594

12595

12596

12597

12598

12599

12600

12601

12602

12603

12604

12605

12606

12607

12608

12609

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces fgetwc()

The fgetwc() function may fail if:

CX [ENOMEM] Insufficient storage space is available.

CX [ENXIO] A request was made of a nonexistent device, or the request was outside the
capabilities of the device.

EXAMPLES
None.

APPLICATION USAGE
The ferror() or feof() functions must be used to distinguish between an error condition and an
end-of-file condition.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
feof(), ferror(), fopen(), the Base Definitions volume of IEEE Std 1003.1-200x, <stdio.h>,
<wchar.h>

CHANGE HISTORY
First released in Issue 4. Derived from the MSE working draft.

Issue 5
The Optional Header (OH) marking is removed from <stdio.h>.

Large File Summit extensions are added.

Issue 6
Extensions beyond the ISO C standard are marked.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The [EIO] and [EOVERFLOW] mandatory error conditions are added.

• The [ENOMEM] and [ENXIO] optional error conditions are added.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/33 is applied, updating the [EAGAIN]
error in the ERRORS section from ‘‘the process would be delayed’’ to ‘‘the thread would be
delayed’’.

Issue 7
Austin Group Interpretation 1003.1-2001 #051 is applied, clarifying the RETURN VALUE section.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 387

12610

12611

12612

12613

12614

12615

12616

12617

12618

12619

12620

12621

12622

12623

12624

12625

12626

12627

12628

12629

12630

12631

12632

12633

12634

12635

12636

12637

12638

12639

12640

12641

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

fgetws() System Interfaces

NAME
fgetws — get a wide-character string from a stream

SYNOPSIS
#include <stdio.h>
#include <wchar.h>

wchar_t *fgetws(wchar_t *restrict ws, i nt n,
FILE *restrict stream);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

The fgetws() function shall read characters from the stream, convert these to the corresponding
wide-character codes, place them in the wchar_t array pointed to by ws, until n−1 characters are
read, or a <newline> is read, converted, and transferred to ws, or an end-of-file condition is
encountered. The wide-character string, ws, shall then be terminated with a null wide-character
code.

If an error occurs, the resulting value of the file position indicator for the stream is unspecified.

CX The fgetws() function may mark the st_atime field of the file associated with stream for update.
The st_atime field shall be marked for update by the first successful execution of fgetc(), fgets(),
fgetwc(), fgetws(), fread(), fscanf(), getc(), getchar(), gets(), or scanf() using stream that returns
data not supplied by a prior call to ungetc() or ungetwc().

RETURN VALUE
Upon successful completion, fgetws() shall return ws. If the end-of-file indicator for the stream is
set, or if the stream is at end-of-file, the end-of-file indicator for the stream shall be set and
fgetws() shall return a null pointer. If a read error occurs, the error indicator for the stream shall

CX be set, fgetws() shall return a null pointer, and shall set errno to indicate the error.

ERRORS
Refer to fgetwc().

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fopen(), fread(), the Base Definitions volume of IEEE Std 1003.1-200x, <stdio.h>, <wchar.h>

CHANGE HISTORY
First released in Issue 4. Derived from the MSE working draft.

388 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

12642

12643

12644

12645

12646

12647

12648

12649

12650

12651

12652

12653

12654

12655

12656

12657

12658

12659

12660

12661

12662

12663

12664

12665

12666

12667

12668

12669

12670

12671

12672

12673

12674

12675

12676

12677

12678

12679

12680

12681

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces fgetws()

Issue 5
The Optional Header (OH) marking is removed from <stdio.h>.

Issue 6
Extensions beyond the ISO C standard are marked.

The prototype for fgetws() is changed for alignment with the ISO/IEC 9899: 1999 standard.

Issue 7
Austin Group Interpretation 1003.1-2001 #051 is applied, clarifying the RETURN VALUE section.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 389

12682

12683

12684

12685

12686

12687

12688

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

fileno() System Interfaces

NAME
fileno — map a stream pointer to a file descriptor

SYNOPSIS
CX #include <stdio.h>

int fileno(FILE * stream);

DESCRIPTION
The fileno() function shall return the integer file descriptor associated with the stream pointed to
by stream.

RETURN VALUE
Upon successful completion, fileno() shall return the integer value of the file descriptor
associated with stream. Otherwise, the value −1 shall be returned and errno set to indicate the
error.

ERRORS
The fileno() function may fail if:

[EBADF] The stream argument is not a valid stream.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
Without some specification of which file descriptors are associated with these streams, it is
impossible for an application to set up the streams for another application it starts with fork()
and exec. In particular, it would not be possible to write a portable version of the sh command
interpreter (although there may be other constraints that would prevent that portability).

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.5.1 (on page 35), dirfd(), fdopen(), fopen(), stdin , the Base Definitions volume of
IEEE Std 1003.1-200x, <stdio.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The [EBADF] optional error condition is added.

390 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

12689

12690

12691

12692

12693

12694

12695

12696

12697

12698

12699

12700

12701

12702

12703

12704

12705

12706

12707

12708

12709

12710

12711

12712

12713

12714

12715

12716

12717

12718

12719

12720

12721

12722

12723

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces flockfile()

NAME
flockfile, ftrylockfile, funlockfile — stdio locking functions

SYNOPSIS
CX #include <stdio.h>

void flockfile(FILE * file);
int ftrylockfile(FILE * file);
void funlockfile(FILE * file);

DESCRIPTION
These functions shall provide for explicit application-level locking of stdio (FILE *) objects.
These functions can be used by a thread to delineate a sequence of I/O statements that are
executed as a unit.

The flockfile() function shall acquire for a thread ownership of a (FILE *) object.

The ftrylockfile() function shall acquire for a thread ownership of a (FILE *) object if the object is
available; ftrylockfile() is a non-blocking version of flockfile().

The funlockfile() function shall relinquish the ownership granted to the thread. The behavior is
undefined if a thread other than the current owner calls the funlockfile() function.

The functions shall behave as if there is a lock count associated with each (FILE *) object. This
count is implicitly initialized to zero when the (FILE *) object is created. The (FILE *) object is
unlocked when the count is zero. When the count is positive, a single thread owns the (FILE *)
object. When the flockfile() function is called, if the count is zero or if the count is positive and
the caller owns the (FILE *) object, the count shall be incremented. Otherwise, the calling thread
shall be suspended, waiting for the count to return to zero. Each call to funlockfile() shall
decrement the count. This allows matching calls to flockfile() (or successful calls to ftrylockfile())
and funlockfile() to be nested.

All functions that reference (FILE *) objects shall behave as if they use flockfile() and funlockfile()
internally to obtain ownership of these (FILE *) objects.

RETURN VALUE
None for flockfile() and funlockfile().

The ftrylockfile() function shall return zero for success and non-zero to indicate that the lock
cannot be acquired.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
Applications using these functions may be subject to priority inversion, as discussed in the Base
Definitions volume of IEEE Std 1003.1-200x, Section 3.285, Priority Inversion.

RATIONALE
The flockfile() and funlockfile() functions provide an orthogonal mutual-exclusion lock for each
FILE. The ftrylockfile() function provides a non-blocking attempt to acquire a file lock,
analogous to pthread_mutex_trylock().

These locks behave as if they are the same as those used internally by stdio for thread-safety.
This both provides thread-safety of these functions without requiring a second level of internal

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 391

12724

12725

12726

12727

12728

12729

12730

12731

12732

12733

12734

12735

12736

12737

12738

12739

12740

12741

12742

12743

12744

12745

12746

12747

12748

12749

12750

12751

12752

12753

12754

12755

12756

12757

12758

12759

12760

12761

12762

12763

12764

12765

12766

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

flockfile() System Interfaces

locking and allows functions in stdio to be implemented in terms of other stdio functions.

Application writers and implementors should be aware that there are potential deadlock
problems on FILE objects. For example, the line-buffered flushing semantics of stdio (requested
via {_IOLBF}) require that certain input operations sometimes cause the buffered contents of
implementation-defined line-buffered output streams to be flushed. If two threads each hold the
lock on the other’s FILE, deadlock ensues. This type of deadlock can be avoided by acquiring
FILE locks in a consistent order. In particular, the line-buffered output stream deadlock can
typically be avoided by acquiring locks on input streams before locks on output streams if a
thread would be acquiring both.

In summary, threads sharing stdio streams with other threads can use flockfile() and funlockfile()
to cause sequences of I/O performed by a single thread to be kept bundled. The only case where
the use of flockfile() and funlockfile() is required is to provide a scope protecting uses of the
*_unlocked functions/macros. This moves the cost/performance tradeoff to the optimal point.

FUTURE DIRECTIONS
None.

SEE ALSO
getc_unlocked(), putc_unlocked(), the Base Definitions volume of IEEE Std 1003.1-200x, <stdio.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Threads Extension.

Issue 6
These functions are marked as part of the Thread-Safe Functions option.

Issue 7
The flockfile(), ftrylockfile(), and funlockfile() functions are moved from the Thread-Safe Functions
option to the Base.

392 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

12767

12768

12769

12770

12771

12772

12773

12774

12775

12776

12777

12778

12779

12780

12781

12782

12783

12784

12785

12786

12787

12788

12789

12790

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces floor()

NAME
floor, floorf, floorl — floor function

SYNOPSIS
#include <math.h>

double floor(double x);
float floorf(float x);
long double floorl(long double x);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

These functions shall compute the largest integral value not greater than x.

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-
zero, an error has occurred.

RETURN VALUE
Upon successful completion, these functions shall return the largest integral value not greater
than x, expressed as a double, float, or long double, as appropriate for the return type of the
function.

MX If x is NaN, a NaN shall be returned.

If x is ±0 or ±Inf, x shall be returned.

XSI If the correct value would cause overflow, a range error shall occur and floor(), floorf(), and
floorl() shall return the value of the macro −HUGE_VAL, −HUGE_VALF, and −HUGE_VALL,
respectively.

ERRORS
These functions shall fail if:

XSI Range Error The result would cause an overflow.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the overflow
floating-point exception shall be raised.

EXAMPLES
None.

APPLICATION USAGE
The integral value returned by these functions might not be expressible as an int or long. The
return value should be tested before assigning it to an integer type to avoid the undefined
results of an integer overflow.

The floor() function can only overflow when the floating-point representation has
DBL_MANT_DIG > DBL_MAX_EXP.

On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling &
MATH_ERREXCEPT) are independent of each other, but at least one of them must be non-zero.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 393

12791

12792

12793

12794

12795

12796

12797

12798

12799

12800

12801

12802

12803

12804

12805

12806

12807

12808

12809

12810

12811

12812

12813

12814

12815

12816

12817

12818

12819

12820

12821

12822

12823

12824

12825

12826

12827

12828

12829

12830

12831

12832

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

floor() System Interfaces

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
ceil(), feclearexcept(), fetestexcept(), isnan(), the Base Definitions volume of IEEE Std 1003.1-200x,
Section 4.18, Treatment of Error Conditions for Mathematical Functions, <math.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The DESCRIPTION is updated to indicate how an application should check for an error. This
text was previously published in the APPLICATION USAGE section.

Issue 6
The floorf() and floorl() functions are added for alignment with the ISO/IEC 9899: 1999 standard.

The DESCRIPTION, RETURN VALUE, ERRORS, and APPLICATION USAGE sections are
revised to align with the ISO/IEC 9899: 1999 standard.

IEC 60559: 1989 standard floating-point extensions over the ISO/IEC 9899: 1999 standard are
marked.

394 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

12833

12834

12835

12836

12837

12838

12839

12840

12841

12842

12843

12844

12845

12846

12847

12848

12849

12850

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces fma()

NAME
fma, fmaf, fmal — floating-point multiply-add

SYNOPSIS
#include <math.h>

double fma(double x, d ouble y, d ouble z);
float fmaf(float x, f loat y, f loat z);
long double fmal(long double x, l ong double y, l ong double z);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

These functions shall compute (x * y) + z, rounded as one ternary operation: they shall compute
the value (as if) to infinite precision and round once to the result format, according to the
rounding mode characterized by the value of FLT_ROUNDS.

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-
zero, an error has occurred.

RETURN VALUE
Upon successful completion, these functions shall return (x * y) + z, rounded as one ternary
operation.

MX If the result overflows or underflows, a range error may occur. On systems that support the IEC
60559 Floating-Point option, if the result overflows a range error shall occur.

If x or y are NaN, a NaN shall be returned.

If x multiplied by y is an exact infinity and z is also an infinity but with the opposite sign, a
domain error shall occur, and either a NaN (if supported), or an implementation-defined value
shall be returned.

If one of x and y is infinite, the other is zero, and z is not a NaN, a domain error shall occur, and
either a NaN (if supported), or an implementation-defined value shall be returned.

If one of x and y is infinite, the other is zero, and z is a NaN, a NaN shall be returned and a
domain error may occur.

If x*y is not 0*Inf nor Inf*0 and z is a NaN, a NaN shall be returned.

ERRORS
These functions shall fail if:

MX Domain Error The value of x*y+z is invalid, or the value x*y is invalid and z is not a NaN.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [EDOM]. If the integer expression (math_errhandling
& MATH_ERREXCEPT) is non-zero, then the invalid floating-point exception
shall be raised.

MX Range Error The result overflows.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the overflow

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 395

12851

12852

12853

12854

12855

12856

12857

12858

12859

12860

12861

12862

12863

12864

12865

12866

12867

12868

12869

12870

12871

12872

12873

12874

12875

12876

12877

12878

12879

12880

12881

12882

12883

12884

12885

12886

12887

12888

12889

12890

12891

12892

12893

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

fma() System Interfaces

floating-point exception shall be raised.

These functions may fail if:

MX Domain Error The value x*y is invalid and z is a NaN.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [EDOM]. If the integer expression (math_errhandling
& MATH_ERREXCEPT) is non-zero, then the invalid floating-point exception
shall be raised.

Range Error The result underflows.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the underflow
floating-point exception shall be raised.

Range Error The result overflows.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the overflow
floating-point exception shall be raised.

EXAMPLES
None.

APPLICATION USAGE
On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling &
MATH_ERREXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
In many cases, clever use of floating (fused) multiply-add leads to much improved code; but its
unexpected use by the compiler can undermine carefully written code. The FP_CONTRACT
macro can be used to disallow use of floating multiply-add; and the fma() function guarantees
its use where desired. Many current machines provide hardware floating multiply-add
instructions; software implementation can be used for others.

FUTURE DIRECTIONS
None.

SEE ALSO
feclearexcept(), fetestexcept(), the Base Definitions volume of IEEE Std 1003.1-200x, Section 4.18,
Tr eatment of Error Conditions for Mathematical Functions, <math.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7
ISO/IEC 9899: 1999 standard, Technical Corrigendum 2 #57 (SD5-XSH-ERN-69) is applied,
adding a ‘‘may fail’’ range error for non-MX systems.

396 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

12894

12895

12896

12897

12898

12899

12900

12901

12902

12903

12904

12905

12906

12907

12908

12909

12910

12911

12912

12913

12914

12915

12916

12917

12918

12919

12920

12921

12922

12923

12924

12925

12926

12927

12928

12929

12930

12931

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces fmax()

NAME
fmax, fmaxf, fmaxl — determine maximum numeric value of two floating-point numbers

SYNOPSIS
#include <math.h>

double fmax(double x, d ouble y);
float fmaxf(float x, f loat y);
long double fmaxl(long double x, l ong double y);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

MX These functions shall determine the maximum numeric value of their arguments. NaN
arguments shall be treated as missing data: if one argument is a NaN and the other numeric,
then these functions shall choose the numeric value.

RETURN VALUE
Upon successful completion, these functions shall return the maximum numeric value of their
arguments.

MX If just one argument is a NaN, the other argument shall be returned.

If x and y are NaN, a NaN shall be returned.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fdim(), fmin(), the Base Definitions volume of IEEE Std 1003.1-200x, <math.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7
Austin Group Interpretation 1003.1-2001 #007 is applied.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 397

12932

12933

12934

12935

12936

12937

12938

12939

12940

12941

12942

12943

12944

12945

12946

12947

12948

12949

12950

12951

12952

12953

12954

12955

12956

12957

12958

12959

12960

12961

12962

12963

12964

12965

12966

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

fmemopen() System Interfaces

NAME
fmemopen — open a memory buffer stream

SYNOPSIS
CX #include <stdio.h>

FILE *fmemopen(void *restrict buf, s ize_t size,
const char *restrict mode);

DESCRIPTION
The fmemopen() function shall associate the buffer given by the buf and size arguments with a
stream. The buf argument shall be either a null pointer or point to a buffer that is at least size
bytes long.

The mode argument is a character string having one of the following values:

r or rb Open the stream for reading.

w or wb Open the stream for writing.

a or ab Append; open the stream for writing at the first null byte.

r+ or rb+ or r+b Open the stream for update (reading and writing).

w+ or wb+ or w+b Open the stream for update (reading and writing). Truncate the buffer
contents.

a+ or ab+ or a+b Append; open the stream for update (reading and writing); the initial
position is at the first null byte.

The character ’b’ shall have no effect.

If a null pointer is specified as the buf argument, fmemopen() shall allocate size bytes of memory
as if by a call to malloc(). This buffer shall be automatically freed when the stream is closed.
Because this feature is only useful when the stream is opened for updating (because there is no
way to get a pointer to the buffer) the fmemopen() call may fail if the mode argument does not
include a ’+’ .

The stream maintains a current position in the buffer. This position is initially set to either the
beginning of the buffer (for r and w modes) or to the first null byte in the buffer (for a modes). If
no null byte is found in append mode, the initial position is set to one byte after the end of the
buffer.

If buf is a null pointer, the initial position shall always be set to the beginning of the buffer.

The stream also maintains the size of the current buffer contents. For modes r and r+ the size is
set to the value given by the size argument. For modes w and w+ the initial size is zero and for
modes a and a+ the initial size is either the position of the first null byte in the buffer or the value
of the size argument if no null byte is found.

A read operation on the stream cannot advance the current buffer position behind the current
buffer size. Reaching the buffer size in a read operation counts as ‘‘end-of-file’’. Null bytes in the
buffer have no special meaning for reads. The read operation starts at the current buffer position
of the stream.

A write operation starts either at the current position of the stream (if mode has not specified
’a’ as the first character) or at the current size of the stream (if mode had ’a’ as the first
character). If the current position at the end of the write is larger than the current buffer size, the
current buffer size is set to the current position. A write operation on the stream cannot advance

398 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

12967

12968

12969

12970

12971

12972

12973

12974

12975

12976

12977

12978

12979

12980

12981

12982

12983

12984

12985

12986

12987

12988

12989

12990

12991

12992

12993

12994

12995

12996

12997

12998

12999

13000

13001

13002

13003

13004

13005

13006

13007

13008

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces fmemopen()

the current buffer size behind the size given in the size argument.

When a stream open for writing is flushed or closed, a null byte is written at the current position
or at the end of the buffer, depending on the size of the contents. If a stream open for update is
flushed or closed and the last write has advanced the current buffer size, a null byte is written at
the end of the buffer if it fits.

An attempt to seek a memory buffer stream to a negative position or to a position larger than the
buffer size given in the size argument shall fail.

RETURN VALUE
Upon successful completion, fmemopen() shall return a pointer to the object controlling the
stream. Otherwise, a null pointer shall be returned, and errno shall be set to indicate the error.

ERRORS
The fmemopen() function shall fail if:

[EINVAL] The size argument specifies a buffer size of zero.

The fmemopen() function may fail if:

[EINVAL] The value of the mode argument is not valid.

[EINVAL] The buf argument is a null pointer and the mode argument does not include a
’+’ character.

[ENOMEM] The buf argument is a null pointer and the allocation of a buffer of length size
has failed.

[EMFILE] {FOPEN_MAX} streams are currently open in the calling process.

EXAMPLES

#include <stdio.h>

static char buffer[] = "foobar";

int
main (void)
{

int ch;
FILE *stream;

stream = fmemopen(buffer, strlen (buffer), "r");
if (stream == NULL)

/* handle error */;

while ((ch = fgetc(stream)) != EOF)
printf("Got %c\n", ch);

fclose(stream);
return (0);

}

This program produces the following output:

Got f
Got o
Got o
Got b
Got a
Got r

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 399

13009

13010

13011

13012

13013

13014

13015

13016

13017

13018

13019

13020

13021

13022

13023

13024

13025

13026

13027

13028

13029

13030

13031

13032

13033

13034

13035

13036

13037

13038

13039

13040

13041

13042

13043

13044

13045

13046

13047

13048

13049

13050

13051

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

fmemopen() System Interfaces

APPLICATION USAGE
None.

RATIONALE
This interface has been introduced to eliminate many of the errors encountered in the
construction of strings, notably overflowing of strings. This interface prevents overflow.

FUTURE DIRECTIONS
None.

SEE ALSO
fdopen(), fopen(), freopen(), malloc(), open_memstream(), the Base Definitions volume of
IEEE Std 1003.1-200x, <stdio.h>

CHANGE HISTORY
First released in Issue 7.

400 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

13052

13053

13054

13055

13056

13057

13058

13059

13060

13061

13062

13063

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces fmin()

NAME
fmin, fminf, fminl — determine minimum numeric value of two floating-point numbers

SYNOPSIS
#include <math.h>

double fmin(double x, d ouble y);
float fminf(float x, f loat y);
long double fminl(long double x, l ong double y);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

MX These functions shall determine the minimum numeric value of their arguments. NaN
arguments shall be treated as missing data: if one argument is a NaN and the other numeric,
then these functions shall choose the numeric value.

RETURN VALUE
Upon successful completion, these functions shall return the minimum numeric value of their
arguments.

MX If just one argument is a NaN, the other argument shall be returned.

If x and y are NaN, a NaN shall be returned.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fdim(), fmax(), the Base Definitions volume of IEEE Std 1003.1-200x, <math.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7
Austin Group Interpretation 1003.1-2001 #008 is applied.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 401

13064

13065

13066

13067

13068

13069

13070

13071

13072

13073

13074

13075

13076

13077

13078

13079

13080

13081

13082

13083

13084

13085

13086

13087

13088

13089

13090

13091

13092

13093

13094

13095

13096

13097

13098

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

fmod() System Interfaces

NAME
fmod, fmodf, fmodl — floating-point remainder value function

SYNOPSIS
#include <math.h>

double fmod(double x, d ouble y);
float fmodf(float x, f loat y);
long double fmodl(long double x, l ong double y);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

These functions shall return the floating-point remainder of the division of x by y.

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-
zero, an error has occurred.

RETURN VALUE
These functions shall return the value x−i*y, for some integer i such that, if y is non-zero, the
result has the same sign as x and magnitude less than the magnitude of y.

If the correct value would cause underflow, and is not representable, a range error may occur,
MX and either 0.0 (if supported), or an implementation-defined value shall be returned.

MX If x or y is NaN, a NaN shall be returned.

If y is zero, a domain error shall occur, and either a NaN (if supported), or an implementation-
defined value shall be returned.

If x is infinite, a domain error shall occur, and either a NaN (if supported), or an
implementation-defined value shall be returned.

If x is ±0 and y is not zero, ±0 shall be returned.

If x is not infinite and y is ±Inf, x shall be returned.

If the correct value would cause underflow, and is representable, a range error may occur and
the correct value shall be returned.

ERRORS
These functions shall fail if:

MX Domain Error The x argument is infinite or y is zero.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [EDOM]. If the integer expression (math_errhandling
& MATH_ERREXCEPT) is non-zero, then the invalid floating-point exception
shall be raised.

These functions may fail if:

Range Error The result underflows.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the underflow

402 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

13099

13100

13101

13102

13103

13104

13105

13106

13107

13108

13109

13110

13111

13112

13113

13114

13115

13116

13117

13118

13119

13120

13121

13122

13123

13124

13125

13126

13127

13128

13129

13130

13131

13132

13133

13134

13135

13136

13137

13138

13139

13140

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces fmod()

floating-point exception shall be raised.

EXAMPLES
None.

APPLICATION USAGE
On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling &
MATH_ERREXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
feclearexcept(), fetestexcept(), isnan(), the Base Definitions volume of IEEE Std 1003.1-200x,
Section 4.18, Treatment of Error Conditions for Mathematical Functions, <math.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The DESCRIPTION is updated to indicate how an application should check for an error. This
text was previously published in the APPLICATION USAGE section.

Issue 6
The behavior for when the y argument is zero is now defined.

The fmodf() and fmodl() functions are added for alignment with the ISO/IEC 9899: 1999
standard.

The DESCRIPTION, RETURN VALUE, ERRORS, and APPLICATION USAGE sections are
revised to align with the ISO/IEC 9899: 1999 standard.

IEC 60559: 1989 standard floating-point extensions over the ISO/IEC 9899: 1999 standard are
marked.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 403

13141

13142

13143

13144

13145

13146

13147

13148

13149

13150

13151

13152

13153

13154

13155

13156

13157

13158

13159

13160

13161

13162

13163

13164

13165

13166

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

fmtmsg() System Interfaces

NAME
fmtmsg — display a message in the specified format on standard error and/or a system console

SYNOPSIS
XSI #include <fmtmsg.h>

int fmtmsg(long classification, c onst char * label, i nt severity,
const char * text, c onst char * action, c onst char * tag);

DESCRIPTION
The fmtmsg() function shall display messages in a specified format instead of the traditional
printf() function.

Based on a message’s classification component, fmtmsg() shall write a formatted message either
to standard error, to the console, or to both.

A formatted message consists of up to five components as defined below. The component
classification is not part of a message displayed to the user, but defines the source of the message
and directs the display of the formatted message.

classification Contains the sum of identifying values constructed from the constants defined
below. Any one identifier from a subclass may be used in combination with a
single identifier from a different subclass. Two or more identifiers from the
same subclass should not be used together, with the exception of identifiers
from the display subclass. (Both display subclass identifiers may be used so
that messages can be displayed to both standard error and the system
console.)

Major Classifications
Identifies the source of the condition. Identifiers are: MM_HARD
(hardware), MM_SOFT (software), and MM_FIRM (firmware).

Message Source Subclassifications
Identifies the type of software in which the problem is detected.
Identifiers are: MM_APPL (application), MM_UTIL (utility), and
MM_OPSYS (operating system).

Display Subclassifications
Indicates where the message is to be displayed. Identifiers are:
MM_PRINT to display the message on the standard error stream,
MM_CONSOLE to display the message on the system console. One or
both identifiers may be used.

Status Subclassifications
Indicates whether the application can recover from the condition.
Identifiers are: MM_RECOVER (recoverable) and MM_NRECOV (non-
recoverable).

An additional identifier, MM_NULLMC, indicates that no classification
component is supplied for the message.

label Identifies the source of the message. The format is two fields separated by a
colon. The first field is up to 10 bytes, the second is up to 14 bytes.

severity Indicates the seriousness of the condition. Identifiers for the levels of severity
are:

404 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

13167

13168

13169

13170

13171

13172

13173

13174

13175

13176

13177

13178

13179

13180

13181

13182

13183

13184

13185

13186

13187

13188

13189

13190

13191

13192

13193

13194

13195

13196

13197

13198

13199

13200

13201

13202

13203

13204

13205

13206

13207

13208

13209

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces fmtmsg()

MM_HALT Indicates that the application has encountered a severe fault
and is halting. Produces the string "HALT" .

MM_ERROR Indicates that the application has detected a fault. Produces
the string "ERROR".

MM_WARNING Indicates a condition that is out of the ordinary, that might
be a problem, and should be watched. Produces the string
"WARNING".

MM_INFO Provides information about a condition that is not in error.
Produces the string "INFO" .

MM_NOSEV Indicates that no severity level is supplied for the message.

text Describes the error condition that produced the message. The character string
is not limited to a specific size. If the character string is empty, then the text
produced is unspecified.

action Describes the first step to be taken in the error-recovery process. The fmtmsg()
function precedes the action string with the prefix: "TO FIX:" . The action
string is not limited to a specific size.

tag An identifier that references on-line documentation for the message.
Suggested usage is that tag includes the label and a unique identifying number.
A sample tag is "XSI:cat:146" .

The MSGVERB environment variable (for message verbosity) shall determine for fmtmsg()
which message components it is to select when writing messages to standard error. The value of
MSGVERB shall be a colon-separated list of optional keywords. Valid keywords are: label,
severity, text, action, and tag. If MSGVERB contains a keyword for a component and the
component’s value is not the component’s null value, fmtmsg() shall include that component in
the message when writing the message to standard error. If MSGVERB does not include a
keyword for a message component, that component shall not be included in the display of the
message. The keywords may appear in any order. If MSGVERB is not defined, if its value is the
null string, if its value is not of the correct format, or if it contains keywords other than the valid
ones listed above, fmtmsg() shall select all components.

MSGVERB shall determine which components are selected for display to standard error. All
message components shall be included in console messages.

RETURN VALUE
The fmtmsg() function shall return one of the following values:

MM_OK The function succeeded.

MM_NOTOK The function failed completely.

MM_NOMSG The function was unable to generate a message on standard error, but
otherwise succeeded.

MM_NOCON The function was unable to generate a console message, but otherwise
succeeded.

ERRORS
None.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 405

13210

13211

13212

13213

13214

13215

13216

13217

13218

13219

13220

13221

13222

13223

13224

13225

13226

13227

13228

13229

13230

13231

13232

13233

13234

13235

13236

13237

13238

13239

13240

13241

13242

13243

13244

13245

13246

13247

13248

13249

13250

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

fmtmsg() System Interfaces

EXAMPLES

1. The following example of fmtmsg():

fmtmsg(MM_PRINT, "XSI:cat", MM_ERROR, "illegal option",
"refer to cat in user’s reference manual", "XSI:cat:001")

produces a complete message in the specified message format:

XSI:cat: ERROR: illegal option
TO FIX: refer to cat in user’s reference manual XSI:cat:001

2. When the environment variable MSGVERB is set as follows:

MSGVERB=severity:text:action

and Example 1 is used, fmtmsg() produces:

ERROR: illegal option
TO FIX: refer to cat in user’s reference manual

APPLICATION USAGE
One or more message components may be systematically omitted from messages generated by
an application by using the null value of the argument for that component.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
printf(), the Base Definitions volume of IEEE Std 1003.1-200x, <fmtmsg.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

406 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

13251

13252

13253

13254

13255

13256

13257

13258

13259

13260

13261

13262

13263

13264

13265

13266

13267

13268

13269

13270

13271

13272

13273

13274

13275

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces fnmatch()

NAME
fnmatch — match a filename or a pathname

SYNOPSIS
#include <fnmatch.h>

int fnmatch(const char * pattern, c onst char * string, i nt flags);

DESCRIPTION
The fnmatch() function shall match patterns as described in the Shell and Utilities volume of
IEEE Std 1003.1-200x, Section 2.13.1, Patterns Matching a Single Character, and Section 2.13.2,
Patterns Matching Multiple Characters. It checks the string specified by the string argument to
see if it matches the pattern specified by the pattern argument.

The flags argument shall modify the interpretation of pattern and string. It is the bitwise-
inclusive OR of zero or more of the flags defined in <fnmatch.h>. If the FNM_PATHNAME flag
is set in flags, then a slash character (’/’) in string shall be explicitly matched by a slash in
pattern; it shall not be matched by either the asterisk or question-mark special characters, nor by
a bracket expression. If the FNM_PATHNAME flag is not set, the slash character shall be treated
as an ordinary character.

If FNM_NOESCAPE is not set in flags, a backslash character (’\’) in pattern followed by any
other character shall match that second character in string. In particular, "\\" shall match a
backslash in string. If FNM_NOESCAPE is set, a backslash character shall be treated as an
ordinary character.

If FNM_PERIOD is set in flags, then a leading period (’.’) in string shall match a period in
pattern; as described by rule 2 in the Shell and Utilities volume of IEEE Std 1003.1-200x, Section
2.13.3, Patterns Used for Filename Expansion where the location of ‘‘leading’’ is indicated by the
value of FNM_PATHNAME:

• If FNM_PATHNAME is set, a period is ‘‘leading’’ if it is the first character in string or if it
immediately follows a slash.

• If FNM_PATHNAME is not set, a period is ‘‘leading’’ only if it is the first character of
string.

If FNM_PERIOD is not set, then no special restrictions are placed on matching a period.

RETURN VALUE
If string matches the pattern specified by pattern, then fnmatch() shall return 0. If there is no
match, fnmatch() shall return FNM_NOMATCH, which is defined in <fnmatch.h>. If an error
occurs, fnmatch() shall return another non-zero value.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
The fnmatch() function has two major uses. It could be used by an application or utility that
needs to read a directory and apply a pattern against each entry. The find utility is an example of
this. It can also be used by the pax utility to process its pattern operands, or by applications that
need to match strings in a similar manner.

The name fnmatch() is intended to imply filename match, rather than pathname match. The
default action of this function is to match filenames, rather than pathnames, since it gives no
special significance to the slash character. With the FNM_PATHNAME flag, fnmatch() does

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 407

13276

13277

13278

13279

13280

13281

13282

13283

13284

13285

13286

13287

13288

13289

13290

13291

13292

13293

13294

13295

13296

13297

13298

13299

13300

13301

13302

13303

13304

13305

13306

13307

13308

13309

13310

13311

13312

13313

13314

13315

13316

13317

13318

13319

13320

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

fnmatch() System Interfaces

match pathnames, but without tilde expansion, parameter expansion, or special treatment for a
period at the beginning of a filename.

RATIONALE
This function replaced the REG_FILENAME flag of regcomp() in early proposals of this volume
of IEEE Std 1003.1-200x. It provides virtually the same functionality as the regcomp() and
regexec() functions using the REG_FILENAME and REG_FSLASH flags (the REG_FSLASH flag
was proposed for regcomp(), and would have had the opposite effect from FNM_PATHNAME),
but with a simpler function and less system overhead.

FUTURE DIRECTIONS
None.

SEE ALSO
glob(), wordexp(), the Base Definitions volume of IEEE Std 1003.1-200x, <fnmatch.h>, the Shell
and Utilities volume of IEEE Std 1003.1-200x

CHANGE HISTORY
First released in Issue 4. Derived from the ISO POSIX-2 standard.

Issue 5
Moved from POSIX2 C-language Binding to BASE.

408 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

13321

13322

13323

13324

13325

13326

13327

13328

13329

13330

13331

13332

13333

13334

13335

13336

13337

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces fopen()

NAME
fopen — open a stream

SYNOPSIS
#include <stdio.h>

FILE *fopen(const char *restrict filename, c onst char *restrict mode);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

The fopen() function shall open the file whose pathname is the string pointed to by filename, and
associates a stream with it.

The mode argument points to a string. If the string is one of the following, the file shall be opened
in the indicated mode. Otherwise, the behavior is undefined.

r or rb Open file for reading.

w or wb Tr uncate to zero length or create file for writing.

a or ab Append; open or create file for writing at end-of-file.

r+ or rb+ or r+b Open file for update (reading and writing).

w+ or wb+ or w+b Tr uncate to zero length or create file for update.

a+ or ab+ or a+b Append; open or create file for update, writing at end-of-file.

CX The character ’b’ shall have no effect, but is allowed for ISO C standard conformance. Opening
a file with read mode (r as the first character in the mode argument) shall fail if the file does not
exist or cannot be read.

Opening a file with append mode (a as the first character in the mode argument) shall cause all
subsequent writes to the file to be forced to the then current end-of-file, regardless of intervening
calls to fseek().

When a file is opened with update mode (’+’ as the second or third character in the mode
argument), both input and output may be performed on the associated stream. However, the
application shall ensure that output is not directly followed by input without an intervening call
to fflush() or to a file positioning function (fseek(), fsetpos(), or rewind()), and input is not directly
followed by output without an intervening call to a file positioning function, unless the input
operation encounters end-of-file.

When opened, a stream is fully buffered if and only if it can be determined not to refer to an
interactive device. The error and end-of-file indicators for the stream shall be cleared.

CX If mode is w, wb, a, ab, w+, wb+, w+b, a+, ab+, or a+b, and the file did not previously exist, upon
successful completion, the fopen() function shall mark for update the st_atime, st_ctime, and
st_mtime fields of the file and the st_ctime and st_mtime fields of the parent directory.

If mode is w, wb, a, ab, w+, wb+, w+b, a+, ab+, or a+b, and the file did not previously exist, the
fopen() function shall create a file as if it called the creat() function with a value appropriate for
the path argument interpreted from filename and a value of S_IRUSR | S_IWUSR | S_IRGRP |
S_IWGRP | S_IROTH | S_IWOTH for the mode argument.

If mode is w, wb, w+, wb+, or w+b, and the file did previously exist, upon successful completion,
fopen() shall mark for update the st_ctime and st_mtime fields of the file. The fopen() function
shall allocate a file descriptor as open() does.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 409

13338

13339

13340

13341

13342

13343

13344

13345

13346

13347

13348

13349

13350

13351

13352

13353

13354

13355

13356

13357

13358

13359

13360

13361

13362

13363

13364

13365

13366

13367

13368

13369

13370

13371

13372

13373

13374

13375

13376

13377

13378

13379

13380

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

fopen() System Interfaces

XSI After a successful call to the fopen() function, the orientation of the stream shall be cleared, the
encoding rule shall be cleared, and the associated mbstate_t object shall be set to describe an
initial conversion state.

CX The largest value that can be represented correctly in an object of type off_t shall be established
as the offset maximum in the open file description.

RETURN VALUE
Upon successful completion, fopen() shall return a pointer to the object controlling the stream.

CX Otherwise, a null pointer shall be returned, and errno shall be set to indicate the error.

ERRORS
The fopen() function shall fail if:

CX [EACCES] Search permission is denied on a component of the path prefix, or the file
exists and the permissions specified by mode are denied, or the file does not
exist and write permission is denied for the parent directory of the file to be
created.

CX [EINTR] A signal was caught during fopen().

CX [EISDIR] The named file is a directory and mode requires write access.

CX [ELOOP] A loop exists in symbolic links encountered during resolution of the path
argument.

CX [EMFILE] All file descriptors available to the process are currently open.

CX [ENAMETOOLONG]
The length of the filename argument exceeds {PATH_MAX} or a pathname
component is longer than {NAME_MAX}.

CX [ENFILE] The maximum allowable number of files is currently open in the system.

CX [ENOENT] A component of filename does not name an existing file or filename is an empty
string.

CX [ENOSPC] The directory or file system that would contain the new file cannot be
expanded, the file does not exist, and the file was to be created.

CX [ENOTDIR] A component of the path prefix is not a directory.

CX [ENXIO] The named file is a character special or block special file, and the device
associated with this special file does not exist.

CX [EOVERFLOW] The named file is a regular file and the size of the file cannot be represented
correctly in an object of type off_t.

CX [EROFS] The named file resides on a read-only file system and mode requires write
access.

The fopen() function may fail if:

CX [EINVAL] The value of the mode argument is not valid.

CX [ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during
resolution of the path argument.

CX [EMFILE] {FOPEN_MAX} streams are currently open in the calling process.

CX [EMFILE] {STREAM_MAX} streams are currently open in the calling process.

CX [ENAMETOOLONG]
Pathname resolution of a symbolic link produced an intermediate result
whose length exceeds {PATH_MAX}.

410 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

13381

13382

13383

13384

13385

13386

13387

13388

13389

13390

13391

13392

13393

13394

13395

13396

13397

13398

13399

13400

13401

13402

13403

13404

13405

13406

13407

13408

13409

13410

13411

13412

13413

13414

13415

13416

13417

13418

13419

13420

13421

13422

13423

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces fopen()

CX [ENOMEM] Insufficient storage space is available.

CX [ETXTBSY] The file is a pure procedure (shared text) file that is being executed and mode
requires write access.

EXAMPLES

Opening a File

The following example tries to open the file named file for reading. The fopen() function returns
a file pointer that is used in subsequent fgets() and fclose() calls. If the program cannot open the
file, it just ignores it.

#include <stdio.h>
...
FILE *fp;
...
void rgrep(const char *file)
{
...

if ((fp = fopen(file, "r")) == NULL)
return;

...
}

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
creat(), fclose(), fdopen(), fmemopen(), freopen(), open_memstream(), the Base Definitions volume
of IEEE Std 1003.1-200x, <stdio.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
Large File Summit extensions are added.

Issue 6
Extensions beyond the ISO C standard are marked.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• In the DESCRIPTION, text is added to indicate setting of the offset maximum in the open
file description. This change is to support large files.

• In the ERRORS section, the [EOVERFLOW] condition is added. This change is to support
large files.

• The [ELOOP] mandatory error condition is added.

• The [EINVAL], [EMFILE], [ENAMETOOLONG], [ENOMEM], and [ETXTBSY] optional
error conditions are added.

The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 411

13424

13425

13426

13427

13428

13429

13430

13431

13432

13433

13434

13435

13436

13437

13438

13439

13440

13441

13442

13443

13444

13445

13446

13447

13448

13449

13450

13451

13452

13453

13454

13455

13456

13457

13458

13459

13460

13461

13462

13463

13464

13465

13466

13467

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

fopen() System Interfaces

The following changes are made for alignment with the ISO/IEC 9899: 1999 standard:

• The prototype for fopen() is updated.

• The DESCRIPTION is updated to note that if the argument mode points to a string other
than those listed, then the behavior is undefined.

The wording of the mandatory [ELOOP] error condition is updated, and a second optional
[ELOOP] error condition is added.

Issue 7
SD5-XBD-ERN-4 is applied, changing the definition of the [EMFILE] error.

Austin Group Interpretation 1003.1-2001 #025 is applied, clarifying the file creation mode.

412 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

13468

13469

13470

13471

13472

13473

13474

13475

13476

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces fork()

NAME
fork — create a new process

SYNOPSIS
#include <unistd.h>

pid_t fork(void);

DESCRIPTION
The fork() function shall create a new process. The new process (child process) shall be an exact
copy of the calling process (parent process) except as detailed below:

• The child process shall have a unique process ID.

• The child process ID also shall not match any active process group ID.

• The child process shall have a different parent process ID, which shall be the process ID of
the calling process.

• The child process shall have its own copy of the parent’s file descriptors. Each of the
child’s file descriptors shall refer to the same open file description with the corresponding
file descriptor of the parent.

• The child process shall have its own copy of the parent’s open directory streams. Each
open directory stream in the child process may share directory stream positioning with the
corresponding directory stream of the parent.

• The child process shall have its own copy of the parent’s message catalog descriptors.

• The child process values of tms_utime, tms_stime, tms_cutime, and tms_cstime shall be set to
0.

• The time left until an alarm clock signal shall be reset to zero, and the alarm, if any, shall be
canceled; see alarm().

XSI • All semadj values shall be cleared.

• File locks set by the parent process shall not be inherited by the child process.

• The set of signals pending for the child process shall be initialized to the empty set.

XSI • Interval timers shall be reset in the child process.

• Any semaphores that are open in the parent process shall also be open in the child process.

ML • The child process shall not inherit any address space memory locks established by the
parent process via calls to mlockall() or mlock().

• Memory mappings created in the parent shall be retained in the child process.
MAP_PRIVATE mappings inherited from the parent shall also be MAP_PRIVATE
mappings in the child, and any modifications to the data in these mappings made by the
parent prior to calling fork() shall be visible to the child. Any modifications to the data in
MAP_PRIVATE mappings made by the parent after fork() returns shall be visible only to
the parent. Modifications to the data in MAP_PRIVATE mappings made by the child shall
be visible only to the child.

PS • For the SCHED_FIFO and SCHED_RR scheduling policies, the child process shall inherit
the policy and priority settings of the parent process during a fork() function. For other
scheduling policies, the policy and priority settings on fork() are implementation-defined.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 413

13477

13478

13479

13480

13481

13482

13483

13484

13485

13486

13487

13488

13489

13490

13491

13492

13493

13494

13495

13496

13497

13498

13499

13500

13501

13502

13503

13504

13505

13506

13507

13508

13509

13510

13511

13512

13513

13514

13515

13516

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

fork() System Interfaces

• Per-process timers created by the parent shall not be inherited by the child process.

MSG • The child process shall have its own copy of the message queue descriptors of the parent.
Each of the message descriptors of the child shall refer to the same open message queue
description as the corresponding message descriptor of the parent.

• No asynchronous input or asynchronous output operations shall be inherited by the child
process. Any use of asynchronous control blocks created by the parent produces undefined
behavior.

• A process shall be created with a single thread. If a multi-threaded process calls fork(), the
new process shall contain a replica of the calling thread and its entire address space,
possibly including the states of mutexes and other resources. Consequently, to avoid
errors, the child process may only execute async-signal-safe operations until such time as
one of the exec functions is called. Fork handlers may be established by means of the
pthread_atfork() function in order to maintain application invariants across fork() calls.

When the application calls fork() from a signal handler and any of the fork handlers
registered by pthread_atfork() calls a function that is not asynch-signal-safe, the behavior is
undefined.

OB TRC TRI • If the Trace option and the Trace Inherit option are both supported:

If the calling process was being traced in a trace stream that had its inheritance policy set
to POSIX_TRACE_INHERITED, the child process shall be traced into that trace stream,
and the child process shall inherit the parent’s mapping of trace event names to trace event
type identifiers. If the trace stream in which the calling process was being traced had its
inheritance policy set to POSIX_TRACE_CLOSE_FOR_CHILD, the child process shall not
be traced into that trace stream. The inheritance policy is set by a call to the
posix_trace_attr_setinherited() function.

OB TRC • If the Trace option is supported, but the Trace Inherit option is not supported:

The child process shall not be traced into any of the trace streams of its parent process.

OB TRC • If the Trace option is supported, the child process of a trace controller process shall not
control the trace streams controlled by its parent process.

CPT • The initial value of the CPU-time clock of the child process shall be set to zero.

TCT • The initial value of the CPU-time clock of the single thread of the child process shall be set
to zero.

All other process characteristics defined by IEEE Std 1003.1-200x shall be the same in the parent
and child processes. The inheritance of process characteristics not defined by
IEEE Std 1003.1-200x is unspecified by IEEE Std 1003.1-200x.

After fork(), both the parent and the child processes shall be capable of executing independently
before either one terminates.

RETURN VALUE
Upon successful completion, fork() shall return 0 to the child process and shall return the
process ID of the child process to the parent process. Both processes shall continue to execute
from the fork() function. Otherwise, −1 shall be returned to the parent process, no child process
shall be created, and errno shall be set to indicate the error.

ERRORS
The fork() function shall fail if:

[EAGAIN] The system lacked the necessary resources to create another process, or the
system-imposed limit on the total number of processes under execution
system-wide or by a single user {CHILD_MAX} would be exceeded.

414 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

13517

13518

13519

13520

13521

13522

13523

13524

13525

13526

13527

13528

13529

13530

13531

13532

13533

13534

13535

13536

13537

13538

13539

13540

13541

13542

13543

13544

13545

13546

13547

13548

13549

13550

13551

13552

13553

13554

13555

13556

13557

13558

13559

13560

13561

13562

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

fork() System Interfaces

writer. Validation writers should be cognizant of this limitation.

There are two reasons why POSIX programmers call fork(). One reason is to create a new thread
of control within the same program (which was originally only possible in POSIX by creating a
new process); the other is to create a new process running a different program. In the latter case,
the call to fork() is soon followed by a call to one of the exec functions.

The general problem with making fork() work in a multi-threaded world is what to do with all
of the threads. There are two alternatives. One is to copy all of the threads into the new process.
This causes the programmer or implementation to deal with threads that are suspended on
system calls or that might be about to execute system calls that should not be executed in the
new process. The other alternative is to copy only the thread that calls fork(). This creates the
difficulty that the state of process-local resources is usually held in process memory. If a thread
that is not calling fork() holds a resource, that resource is never released in the child process
because the thread whose job it is to release the resource does not exist in the child process.

When a programmer is writing a multi-threaded program, the first described use of fork(),
creating new threads in the same program, is provided by the pthread_create() function. The
fork() function is thus used only to run new programs, and the effects of calling functions that
require certain resources between the call to fork() and the call to an exec function are undefined.

The addition of the forkall() function to the standard was considered and rejected. The forkall()
function lets all the threads in the parent be duplicated in the child. This essentially duplicates
the state of the parent in the child. This allows threads in the child to continue processing and
allows locks and the state to be preserved without explicit pthread_atfork() code. The calling
process has to ensure that the threads processing state that is shared between the parent and
child (that is, file descriptors or MAP_SHARED memory) behaves properly after forkall(). For
example, if a thread is reading a file descriptor in the parent when forkall() is called, then two
threads (one in the parent and one in the child) are reading the file descriptor after the forkall().
If this is not desired behavior, the parent process has to synchronize with such threads before
calling forkall().

While the fork() function is async-signal-safe, there is no way for an implementation to
determine whether the fork handlers established by pthread_atfork() are async-signal-safe. The
fork handlers may attempt to execute portions of the implementation that are not async-signal-
safe, such as those that are protected by mutexes, leading to a deadlock condition. It is therefore
undefined for the fork handlers to execute functions that are not async-signal-safe when fork() is
called from a signal handler.

When forkall() is called, threads, other than the calling thread, that are in functions that can
return with an [EINTR] error may have those functions return [EINTR] if the implementation
cannot ensure that the function behaves correctly in the parent and child. In particular,
pthread_cond_wait() and pthread_cond_timedwait() need to return in order to ensure that the
condition has not changed. These functions can be awakened by a spurious condition wakeup
rather than returning [EINTR].

FUTURE DIRECTIONS
None.

SEE ALSO
alarm(), exec , fcntl(), posix_trace_attr_getinherited(), posix_trace_trid_eventid_open(),
pthread_atfork(), semop(), signal(), times(), the Base Definitions volume of IEEE Std 1003.1-200x,
Section 4.10, Memory Synchronization, <sys/types.h>, <unistd.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

416 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

13613

13614

13615

13616

13617

13618

13619

13620

13621

13622

13623

13624

13625

13626

13627

13628

13629

13630

13631

13632

13633

13634

13635

13636

13637

13638

13639

13640

13641

13642

13643

13644

13645

13646

13647

13648

13649

13650

13651

13652

13653

13654

13655

13656

13657

13658

13659

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces fork()

Issue 5
The DESCRIPTION is changed for alignment with the POSIX Realtime Extension and the POSIX
Threads Extension.

Issue 6
The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
required for conforming implementations of previous POSIX specifications, it was not
required for UNIX applications.

The following changes were made to align with the IEEE P1003.1a draft standard:

• The effect of fork() on a pending alarm call in the child process is clarified.

The description of CPU-time clock semantics is added for alignment with IEEE Std 1003.1d-1999.

The description of tracing semantics is added for alignment with IEEE Std 1003.1q-2000.

IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/17 is applied, adding text to the
DESCRIPTION and RATIONALE relating to fork handlers registered by the pthread_atfork()
function and async-signal safety.

Issue 7
Austin Group Interpretation 1003.1-2001 #080 is applied, clarifying the status of asynchronous
input and asynchronous output operations and asynchronous control lists in the DESCRIPTION.

Functionality relating to the Asynchronous Input and Output, Memory Mapped Files, Timers,
and Threads options is moved to the Base.

Functionality relating to message catalog descriptors is moved from the XSI option to the Base.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 417

13660

13661

13662

13663

13664

13665

13666

13667

13668

13669

13670

13671

13672

13673

13674

13675

13676

13677

13678

13679

13680

13681

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

fpathconf() System Interfaces

NAME
fpathconf, pathconf — get configurable pathname variables

SYNOPSIS
#include <unistd.h>

long fpathconf(int fildes, i nt name);
long pathconf(const char * path, i nt name);

DESCRIPTION
The fpathconf() and pathconf() functions shall determine the current value of a configurable limit
or option (variable) that is associated with a file or directory.

For pathconf(), the path argument points to the pathname of a file or directory.

For fpathconf(), the fildes argument is an open file descriptor.

The name argument represents the variable to be queried relative to that file or directory.
Implementations shall support all of the variables listed in the following table and may support
others. The variables in the following table come from <limits.h> or <unistd.h> and the
symbolic constants, defined in <unistd.h>, are the corresponding values used for name.

Variable Value of name Requirements

{FILESIZEBITS} _PC_FILESIZEBITS 3, 4
{LINK_MAX} _PC_LINK_MAX 1
{MAX_CANON} _PC_MAX_CANON 2
{MAX_INPUT} _PC_MAX_INPUT 2
{NAME_MAX} _PC_NAME_MAX 3, 4
{PATH_MAX} _PC_PATH_MAX 4, 5
{PIPE_BUF} _PC_PIPE_BUF 6
{POSIX2_SYMLINKS} _PC_2_SYMLINKS 4
{POSIX_ALLOC_SIZE_MIN} _PC_ALLOC_SIZE_MIN 10
{POSIX_REC_INCR_XFER_SIZE} _PC_REC_INCR_XFER_SIZE 10
{POSIX_REC_MAX_XFER_SIZE} _PC_REC_MAX_XFER_SIZE 10
{POSIX_REC_MIN_XFER_SIZE} _PC_REC_MIN_XFER_SIZE 10
{POSIX_REC_XFER_ALIGN} _PC_REC_XFER_ALIGN 10
{SYMLINK_MAX} _PC_SYMLINK_MAX 4, 9
_POSIX_CHOWN_RESTRICTED _PC_CHOWN_RESTRICTED 7
_POSIX_NO_TRUNC _PC_NO_TRUNC 3, 4
_POSIX_VDISABLE _PC_VDISABLE 2
_POSIX_ASYNC_IO _PC_ASYNC_IO 8
_POSIX_PRIO_IO _PC_PRIO_IO 8
_POSIX_SYNC_IO _PC_SYNC_IO 8

Requirements

1. If path or fildes refers to a directory, the value returned shall apply to the directory itself.

2. If path or fildes does not refer to a terminal file, it is unspecified whether an
implementation supports an association of the variable name with the specified file.

3. If path or fildes refers to a directory, the value returned shall apply to filenames within the
directory.

4. If path or fildes does not refer to a directory, it is unspecified whether an implementation
supports an association of the variable name with the specified file.

418 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

13682

13683

13684

13685

13686

13687

13688

13689

13690

13691

13692

13693

13694

13695

13696

13697

13698

13699

13700

13701

13702

13703

13704

13705

13706

13707

13708

13709

13710

13711

13712

13713

13714

13715

13716

13717

13718

13719

13720

13721

13722

13723

13724

13725

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces fpathconf()

5. If path or fildes refers to a directory, the value returned shall be the maximum length of a
relative pathname when the specified directory is the working directory.

6. If path refers to a FIFO, or fildes refers to a pipe or FIFO, the value returned shall apply to
the referenced object. If path or fildes refers to a directory, the value returned shall apply to
any FIFO that exists or can be created within the directory. If path or fildes refers to any
other type of file, it is unspecified whether an implementation supports an association of
the variable name with the specified file.

7. If path or fildes refers to a directory, the value returned shall apply to any files, other than
directories, that exist or can be created within the directory.

8. If path or fildes refers to a directory, it is unspecified whether an implementation supports
an association of the variable name with the specified file.

9. If path or fildes refers to a directory, the value returned shall be the maximum length of the
string that a symbolic link in that directory can contain.

10. If path or fildes des does not refer to a regular file, it is unspecified whether an
implementation supports an association of the variable name with the specified file. If an
implementation supports such an association for other than a regular file, the value
returned is unspecified.

RETURN VALUE
If name is an invalid value, both pathconf() and fpathconf() shall return −1 and set errno to
indicate the error.

If the variable corresponding to name has no limit for the path or file descriptor, both pathconf()
and fpathconf() shall return −1 without changing errno. If the implementation needs to use path
to determine the value of name and the implementation does not support the association of name
with the file specified by path, or if the process did not have appropriate privileges to query the
file specified by path, or path does not exist, pathconf() shall return −1 and set errno to indicate the
error.

If the implementation needs to use fildes to determine the value of name and the implementation
does not support the association of name with the file specified by fildes, or if fildes is an invalid
file descriptor, fpathconf() shall return −1 and set errno to indicate the error.

Otherwise, pathconf() or fpathconf() shall return the current variable value for the file or
directory without changing errno. The value returned shall not be more restrictive than the
corresponding value available to the application when it was compiled with the
implementation’s <limits.h> or <unistd.h>.

If the variable corresponding to name is dependent on an unsupported option, the results are
unspecified.

ERRORS
The pathconf() function shall fail if:

[EINVAL] The value of name is not valid.

[ELOOP] A loop exists in symbolic links encountered during resolution of the path
argument.

The pathconf() function may fail if:

[EACCES] Search permission is denied for a component of the path prefix.

[EINVAL] The implementation does not support an association of the variable name with
the specified file.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 419

13726

13727

13728

13729

13730

13731

13732

13733

13734

13735

13736

13737

13738

13739

13740

13741

13742

13743

13744

13745

13746

13747

13748

13749

13750

13751

13752

13753

13754

13755

13756

13757

13758

13759

13760

13761

13762

13763

13764

13765

13766

13767

13768

13769

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

fpathconf() System Interfaces

[ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during
resolution of the path argument.

[ENAMETOOLONG]
The length of the path argument exceeds {PATH_MAX} or a pathname
component is longer than {NAME_MAX}.

[ENAMETOOLONG]
As a result of encountering a symbolic link in resolution of the path argument,
the length of the substituted pathname string exceeded {PATH_MAX}.

[ENOENT] A component of path does not name an existing file or path is an empty string.

[ENOTDIR] A component of the path prefix is not a directory.

The fpathconf() function shall fail if:

[EINVAL] The value of name is not valid.

The fpathconf() function may fail if:

[EBADF] The fildes argument is not a valid file descriptor.

[EINVAL] The implementation does not support an association of the variable name with
the specified file.

EXAMPLES
None.

APPLICATION USAGE
Application writers should check whether an option, such as _POSIX_ADVISORY_INFO, is
supported prior to obtaining and using values for related variables such as
{POSIX_ALLOC_SIZE_MIN}.

RATIONALE
The pathconf() function was proposed immediately after the sysconf() function when it was
realized that some configurable values may differ across file system, directory, or device
boundaries.

For example, {NAME_MAX} frequently changes between System V and BSD-based file systems;
System V uses a maximum of 14, BSD 255. On an implementation that provides both types of file
systems, an application would be forced to limit all pathname components to 14 bytes, as this
would be the value specified in <limits.h> on such a system.

Therefore, various useful values can be queried on any pathname or file descriptor, assuming
that the appropriate permissions are in place.

The value returned for the variable {PATH_MAX} indicates the longest relative pathname that
could be given if the specified directory is the current working directory of the process. A
process may not always be able to generate a name that long and use it if a subdirectory in the
pathname crosses into a more restrictive file system.

The value returned for the variable _POSIX_CHOWN_RESTRICTED also applies to directories
that do not have file systems mounted on them. The value may change when crossing a mount
point, so applications that need to know should check for each directory. (An even easier check
is to try the chown() function and look for an error in case it happens.)

Unlike the values returned by sysconf(), the pathname-oriented variables are potentially more
volatile and are not guaranteed to remain constant throughout the lifetime of the process. For
example, in between two calls to pathconf(), the file system in question may have been
unmounted and remounted with different characteristics.

Also note that most of the errors are optional. If one of the variables always has the same value

420 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

13770

13771

13772

13773

13774

13775

13776

13777

13778

13779

13780

13781

13782

13783

13784

13785

13786

13787

13788

13789

13790

13791

13792

13793

13794

13795

13796

13797

13798

13799

13800

13801

13802

13803

13804

13805

13806

13807

13808

13809

13810

13811

13812

13813

13814

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces fpathconf()

on an implementation, the implementation need not look at path or fildes to return that value and
is, therefore, not required to detect any of the errors except the meaning of [EINVAL] that
indicates that the value of name is not valid for that variable.

If the value of any of the limits is unspecified (logically infinite), they will not be defined in
<limits.h> and the pathconf() and fpathconf() functions return −1 without changing errno. This
can be distinguished from the case of giving an unrecognized name argument because errno is set
to [EINVAL] in this case.

Since −1 is a valid return value for the pathconf() and fpathconf() functions, applications should
set errno to zero before calling them and check errno only if the return value is −1.

For the case of {SYMLINK_MAX}, since both pathconf() and open() follow symbolic links, there
is no way that path or fildes could refer to a symbolic link.

It was the intention of IEEE Std 1003.1d-1999 that the following variables:

{POSIX_ALLOC_SIZE_MIN}
{POSIX_REC_INCR_XFER_SIZE}
{POSIX_REC_MAX_XFER_SIZE}
{POSIX_REC_MIN_XFER_SIZE}
{POSIX_REC_XFER_ALIGN}

only applied to regular files, but Note 10 also permits implementation of the advisory semantics
on other file types unique to an implementation (for eample, a character special device).

FUTURE DIRECTIONS
None.

SEE ALSO
chown(), confstr(), sysconf(), the Base Definitions volume of IEEE Std 1003.1-200x, <limits.h>,
<unistd.h>, the Shell and Utilities volume of IEEE Std 1003.1-200x, getconf

CHANGE HISTORY
First released in Issue 3. Included for alignment with the POSIX.1-1988 standard.

Issue 5
The DESCRIPTION is updated for alignment with the POSIX Realtime Extension.

Large File Summit extensions are added.

Issue 6
The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The DESCRIPTION is updated to include {FILESIZEBITS}.

• The [ELOOP] mandatory error condition is added.

• A second [ENAMETOOLONG] is added as an optional error condition.

The following changes were made to align with the IEEE P1003.1a draft standard:

• The _PC_SYMLINK_MAX entry is added to the table in the DESCRIPTION.

The following pathconf() variables and their associated names are added for alignment with
IEEE Std 1003.1d-1999:

{POSIX_ALLOC_SIZE_MIN}
{POSIX_REC_INCR_XFER_SIZE}
{POSIX_REC_MAX_XFER_SIZE}
{POSIX_REC_MIN_XFER_SIZE}
{POSIX_REC_XFER_ALIGN}

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 421

13815

13816

13817

13818

13819

13820

13821

13822

13823

13824

13825

13826

13827

13828

13829

13830

13831

13832

13833

13834

13835

13836

13837

13838

13839

13840

13841

13842

13843

13844

13845

13846

13847

13848

13849

13850

13851

13852

13853

13854

13855

13856

13857

13858

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

fpathconf() System Interfaces

IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/18 is applied, changing the fourth
paragraph of the DESCRIPTION and removing shading and margin markers from the table.
This change is needed since implementations are required to support all of these symbols.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/34 is applied, adding the table entry for
POSIX2_SYMLINKS in the DESCRIPTION.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/35 is applied, updating the
DESCRIPTION and RATIONALE sections to clarify behavior for the
{POSIX_ALLOC_SIZE_MIN}, {POSIX_REC_INCR_XFER_SIZE},
{POSIX_REC_MAX_XFER_SIZE}, {POSIX_REC_MIN_XFER_SIZE}, and
{POSIX_REC_XFER_ALIGN} variables.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/36 is applied, updating the RETURN
VALUE and APPLICATION USAGE sections to state that the results are unspecified if a variable
is dependent on an unsupported option, and advising application writers to check for supported
options prior to obtaining and using such values.

422 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

13859

13860

13861

13862

13863

13864

13865

13866

13867

13868

13869

13870

13871

13872

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces fpclassify()

NAME
fpclassify — classify real floating type

SYNOPSIS
#include <math.h>

int fpclassify(real-floating x);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

The fpclassify() macro shall classify its argument value as NaN, infinite, normal, subnormal,
zero, or into another implementation-defined category. First, an argument represented in a
format wider than its semantic type is converted to its semantic type. Then classification is based
on the type of the argument.

RETURN VALUE
The fpclassify() macro shall return the value of the number classification macro appropriate to
the value of its argument.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
isfinite(), isinf(), isnan(), isnormal(), signbit(), the Base Definitions volume of
IEEE Std 1003.1-200x, <math.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 423

13873

13874

13875

13876

13877

13878

13879

13880

13881

13882

13883

13884

13885

13886

13887

13888

13889

13890

13891

13892

13893

13894

13895

13896

13897

13898

13899

13900

13901

13902

13903

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

fprintf() System Interfaces

NAME
dprintf, fprintf, printf, snprintf, sprintf — print formatted output

SYNOPSIS
#include <stdio.h>

CX int dprintf(int fildes, c onst char * format, . ..);
int fprintf(FILE *restrict stream, c onst char *restrict format, . ..);
int printf(const char *restrict format, . ..);
int snprintf(char *restrict s, s ize_t n,

const char *restrict format, . ..);
int sprintf(char *restrict s, c onst char *restrict format, . ..);

DESCRIPTION
CX Excluding dprintf(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of IEEE Std 1003.1-200x defers to the ISO C standard.

The fprintf() function shall place output on the named output stream. The printf() function shall
place output on the standard output stream stdout. The sprintf() function shall place output
followed by the null byte, ’\0’ , in consecutive bytes starting at *s; it is the user’s responsibility
to ensure that enough space is available.

CX The dprintf() function shall be equivalent to the fprintf() function, except that dprintf() shall
write output to the file associated with the file descriptor specified by the fildes argument rather
than place output on a stream.

The snprintf() function shall be equivalent to sprintf(), with the addition of the n argument
which states the size of the buffer referred to by s. If n is zero, nothing shall be written and s
may be a null pointer. Otherwise, output bytes beyond the n-1st shall be discarded instead of
being written to the array, and a null byte is written at the end of the bytes actually written into
the array.

If copying takes place between objects that overlap as a result of a call to sprintf() or snprintf(),
the results are undefined.

Each of these functions converts, formats, and prints its arguments under control of the format.
The format is a character string, beginning and ending in its initial shift state, if any. The format is
composed of zero or more directives: ordinary characters, which are simply copied to the output
stream, and conversion specifications, each of which shall result in the fetching of zero or more
arguments. The results are undefined if there are insufficient arguments for the format. If the
format is exhausted while arguments remain, the excess arguments shall be evaluated but are
otherwise ignored.

CX Conversions can be applied to the nth argument after the format in the argument list, rather than
to the next unused argument. In this case, the conversion specifier character % (see below) is
replaced by the sequence "%n$" , where n is a decimal integer in the range [1,{NL_ARGMAX}],
giving the position of the argument in the argument list. This feature provides for the definition
of format strings that select arguments in an order appropriate to specific languages (see the
EXAMPLES section).

The format can contain either numbered argument conversion specifications (that is, "%n$" and
"* m$"), or unnumbered argument conversion specifications (that is, %and *), but not both. The
only exception to this is that %%can be mixed with the "%n$" form. The results of mixing
numbered and unnumbered argument specifications in a format string are undefined. When
numbered argument specifications are used, specifying the Nth argument requires that all the
leading arguments, from the first to the (N−1)th, are specified in the format string.

424 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

13904

13905

13906

13907

13908

13909

13910

13911

13912

13913

13914

13915

13916

13917

13918

13919

13920

13921

13922

13923

13924

13925

13926

13927

13928

13929

13930

13931

13932

13933

13934

13935

13936

13937

13938

13939

13940

13941

13942

13943

13944

13945

13946

13947

13948

13949

13950

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces fprintf()

In format strings containing the "%n$" form of conversion specification, numbered arguments
in the argument list can be referenced from the format string as many times as required.

In format strings containing the %form of conversion specification, each conversion specification
uses the first unused argument in the argument list.

CX All forms of the fprintf() functions allow for the insertion of a language-dependent radix
character in the output string. The radix character is defined in the process’ locale (category
LC_NUMERIC). In the POSIX locale, or in a locale where the radix character is not defined, the
radix character shall default to a period (’.’).

CX Each conversion specification is introduced by the ’%’ character or by the character sequence
"%n$" , after which the following appear in sequence:

• Zero or more flags (in any order), which modify the meaning of the conversion
specification.

• An optional minimum field width. If the converted value has fewer bytes than the field
width, it shall be padded with spaces by default on the left; it shall be padded on the right
if the left-adjustment flag (’ −’), described below, is given to the field width. The field
width takes the form of an asterisk (’*’), described below, or a decimal integer.

• An optional precision that gives the minimum number of digits to appear for the d, i , o, u,
x , and X conversion specifiers; the number of digits to appear after the radix character for
the a, A, e, E, f , and F conversion specifiers; the maximum number of significant digits for
the g and G conversion specifiers; or the maximum number of bytes to be printed from a

XSI string in the s and S conversion specifiers. The precision takes the form of a period (’.’)
followed either by an asterisk (’*’), described below, or an optional decimal digit string,
where a null digit string is treated as zero. If a precision appears with any other conversion
specifier, the behavior is undefined.

• An optional length modifier that specifies the size of the argument.

• A conversion specifier character that indicates the type of conversion to be applied.

A field width, or precision, or both, may be indicated by an asterisk (’*’). In this case an
argument of type int supplies the field width or precision. Applications shall ensure that
arguments specifying field width, or precision, or both appear in that order before the argument,
if any, to be converted. A negative field width is taken as a ’ −’ flag followed by a positive field

CX width. A negative precision is taken as if the precision were omitted. In format strings
containing the "%n$" form of a conversion specification, a field width or precision may be
indicated by the sequence "* m$" , where m is a decimal integer in the range [1,{NL_ARGMAX}]
giving the position in the argument list (after the format argument) of an integer argument
containing the field width or precision, for example:

printf("%1$d:%2$.*3$d:%4$.*3$d\n", hour, min, precision, sec);

The flag characters and their meanings are:

CX ’ The integer portion of the result of a decimal conversion (%i , %d, %u, %f, %F, %g, or %G)
shall be formatted with thousands’ grouping characters. For other conversions the
behavior is undefined. The non-monetary grouping character is used.

− The result of the conversion shall be left-justified within the field. The conversion is
right-justified if this flag is not specified.

+ The result of a signed conversion shall always begin with a sign (’+’ or ’ −’). The
conversion shall begin with a sign only when a negative value is converted if this flag is
not specified.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 425

13951

13952

13953

13954

13955

13956

13957

13958

13959

13960

13961

13962

13963

13964

13965

13966

13967

13968

13969

13970

13971

13972

13973

13974

13975

13976

13977

13978

13979

13980

13981

13982

13983

13984

13985

13986

13987

13988

13989

13990

13991

13992

13993

13994

13995

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

fprintf() System Interfaces

<space> If the first character of a signed conversion is not a sign or if a signed conversion results
in no characters, a <space> shall be prefixed to the result. This means that if the
<space> and ’+’ flags both appear, the <space> flag shall be ignored.

Specifies that the value is to be converted to an alternative form. For o conversion, it
increases the precision (if necessary) to force the first digit of the result to be zero. For x
or X conversion specifiers, a non-zero result shall have 0x (or 0X) prefixed to it. For a, A,
e, E, f , F, g, and G conversion specifiers, the result shall always contain a radix
character, even if no digits follow the radix character. Without this flag, a radix
character appears in the result of these conversions only if a digit follows it. For g and G
conversion specifiers, trailing zeros shall not be removed from the result as they
normally are. For other conversion specifiers, the behavior is undefined.

0 For d, i , o, u, x , X, a, A, e, E, f , F, g, and G conversion specifiers, leading zeros
(following any indication of sign or base) are used to pad to the field width; no space
padding is performed. If the ’0’ and ’ −’ flags both appear, the ’0’ flag is ignored.
For d, i , o, u, x , and X conversion specifiers, if a precision is specified, the ’0’ flag

CX shall be ignored. If the ’0’ and ’’’ flags both appear, the grouping characters are
inserted before zero padding. For other conversions, the behavior is undefined.

The length modifiers and their meanings are:

hh Specifies that a following d, i , o, u, x , or X conversion specifier applies to a signed char
or unsigned char argument (the argument will have been promoted according to the
integer promotions, but its value shall be converted to signed char or unsigned char
before printing); or that a following n conversion specifier applies to a pointer to a
signed char argument.

h Specifies that a following d, i , o, u, x , or X conversion specifier applies to a short or
unsigned short argument (the argument will have been promoted according to the
integer promotions, but its value shall be converted to short or unsigned short before
printing); or that a following n conversion specifier applies to a pointer to a short
argument.

l (ell) Specifies that a following d, i , o, u, x , or X conversion specifier applies to a long or
unsigned long argument; that a following n conversion specifier applies to a pointer to
a long argument; that a following c conversion specifier applies to a wint_t argument;
that a following s conversion specifier applies to a pointer to a wchar_t argument; or
has no effect on a following a, A, e, E, f , F, g, or Gconversion specifier.

ll (ell-ell)
Specifies that a following d, i , o, u, x , or X conversion specifier applies to a long long
or unsigned long long argument; or that a following n conversion specifier applies to a
pointer to a long long argument.

j Specifies that a following d, i , o, u, x , or X conversion specifier applies to an intmax_t
or uintmax_t argument; or that a following n conversion specifier applies to a pointer
to an intmax_t argument.

z Specifies that a following d, i , o, u, x , or X conversion specifier applies to a size_t or the
corresponding signed integer type argument; or that a following n conversion specifier
applies to a pointer to a signed integer type corresponding to a size_t argument.

t Specifies that a following d, i , o, u, x , or X conversion specifier applies to a ptrdiff_t or
the corresponding unsigned type argument; or that a following n conversion specifier
applies to a pointer to a ptrdiff_t argument.

L Specifies that a following a, A, e, E, f , F, g, or G conversion specifier applies to a long
double argument.

426 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

13996

13997

13998

13999

14000

14001

14002

14003

14004

14005

14006

14007

14008

14009

14010

14011

14012

14013

14014

14015

14016

14017

14018

14019

14020

14021

14022

14023

14024

14025

14026

14027

14028

14029

14030

14031

14032

14033

14034

14035

14036

14037

14038

14039

14040

14041

14042

14043

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces fprintf()

If a length modifier appears with any conversion specifier other than as specified above, the
behavior is undefined.

The conversion specifiers and their meanings are:

d, i The int argument shall be converted to a signed decimal in the style "[−] dddd" . The
precision specifies the minimum number of digits to appear; if the value being
converted can be represented in fewer digits, it shall be expanded with leading zeros.
The default precision is 1. The result of converting zero with an explicit precision of
zero shall be no characters.

o The unsigned argument shall be converted to unsigned octal format in the style
" dddd" . The precision specifies the minimum number of digits to appear; if the value
being converted can be represented in fewer digits, it shall be expanded with leading
zeros. The default precision is 1. The result of converting zero with an explicit precision
of zero shall be no characters.

u The unsigned argument shall be converted to unsigned decimal format in the style
" dddd" . The precision specifies the minimum number of digits to appear; if the value
being converted can be represented in fewer digits, it shall be expanded with leading
zeros. The default precision is 1. The result of converting zero with an explicit precision
of zero shall be no characters.

x The unsigned argument shall be converted to unsigned hexadecimal format in the style
" dddd" ; the letters "abcdef" are used. The precision specifies the minimum number
of digits to appear; if the value being converted can be represented in fewer digits, it
shall be expanded with leading zeros. The default precision is 1. The result of
converting zero with an explicit precision of zero shall be no characters.

X Equivalent to the x conversion specifier, except that letters "ABCDEF" are used instead
of "abcdef" .

f , F The double argument shall be converted to decimal notation in the style
"[−] ddd. ddd" , where the number of digits after the radix character is equal to the
precision specification. If the precision is missing, it shall be taken as 6; if the precision
is explicitly zero and no ’#’ flag is present, no radix character shall appear. If a radix
character appears, at least one digit appears before it. The low-order digit shall be
rounded in an implementation-defined manner.

A double argument representing an infinity shall be converted in one of the styles
"[−]inf" or "[−]infinity" ; which style is implementation-defined. A double
argument representing a NaN shall be converted in one of the styles "[−]nan(n-
char-sequence)" or "[−]nan" ; which style, and the meaning of any n-char-sequence,
is implementation-defined. The F conversion specifier produces "INF" , "INFINITY" ,
or "NAN" instead of "inf" , "infinity" , or "nan" , respectively.

e, E The double argument shall be converted in the style "[−] d. ddde±dd" , where there is
one digit before the radix character (which is non-zero if the argument is non-zero) and
the number of digits after it is equal to the precision; if the precision is missing, it shall
be taken as 6; if the precision is zero and no ’#’ flag is present, no radix character shall
appear. The low-order digit shall be rounded in an implementation-defined manner.
The E conversion specifier shall produce a number with ’E’ instead of ’e’
introducing the exponent. The exponent shall always contain at least two digits. If the
value is zero, the exponent shall be zero.

A double argument representing an infinity or NaN shall be converted in the style of
an f or F conversion specifier.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 427

14044

14045

14046

14047

14048

14049

14050

14051

14052

14053

14054

14055

14056

14057

14058

14059

14060

14061

14062

14063

14064

14065

14066

14067

14068

14069

14070

14071

14072

14073

14074

14075

14076

14077

14078

14079

14080

14081

14082

14083

14084

14085

14086

14087

14088

14089

14090

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

fprintf() System Interfaces

g, G The double argument representing a floating-point number shall be converted in the
style f or e (or in the style F or E in the case of a Gconversion specifier), depending on
the value converted and the precision. Let P equal the precision if non-zero, 6 if the
precision is omitted, or 1 if the precision is zero. Then, if a conversion with style E
would have an exponent of X:

— If P>X>=−4, the conversion shall be with style f (or F) and precision P−(X+1).

— Otherwise, the conversion shall be with style e (or E) and precision P−1.

Finally, unless the ’#’ flag is used, any trailing zeros shall be removed from the
fractional portion of the result and the decimal-point character shall be removed if there
is no fractional portion remaining.

A double argument representing an infinity or NaN shall be converted in the style of
an f or F conversion specifier.

a, A A double argument representing a floating-point number shall be converted in the
style "[−]0x h. hhhhp±d" , where there is one hexadecimal digit (which shall be non-
zero if the argument is a normalized floating-point number and is otherwise
unspecified) before the decimal-point character and the number of hexadecimal digits
after it is equal to the precision; if the precision is missing and FLT_RADIX is a power
of 2, then the precision shall be sufficient for an exact representation of the value; if the
precision is missing and FLT_RADIX is not a power of 2, then the precision shall be
sufficient to distinguish values of type double, except that trailing zeros may be
omitted; if the precision is zero and the ’#’ flag is not specified, no decimal-point
character shall appear. The letters "abcdef" shall be used for a conversion and the
letters "ABCDEF" for A conversion. The A conversion specifier produces a number with
’X’ and ’P’ instead of ’x’ and ’p’ . The exponent shall always contain at least one
digit, and only as many more digits as necessary to represent the decimal exponent of
2. If the value is zero, the exponent shall be zero.

A double argument representing an infinity or NaN shall be converted in the style of
an f or F conversion specifier.

c The int argument shall be converted to an unsigned char, and the resulting byte shall
be written.

If an l (ell) qualifier is present, the wint_t argument shall be converted as if by an ls
conversion specification with no precision and an argument that points to a two-
element array of type wchar_t, the first element of which contains the wint_t argument
to the ls conversion specification and the second element contains a null wide
character.

s The argument shall be a pointer to an array of char. Bytes from the array shall be
written up to (but not including) any terminating null byte. If the precision is specified,
no more than that many bytes shall be written. If the precision is not specified or is
greater than the size of the array, the application shall ensure that the array contains a
null byte.

If an l (ell) qualifier is present, the argument shall be a pointer to an array of type
wchar_t. Wide characters from the array shall be converted to characters (each as if by
a call to the wcrtomb() function, with the conversion state described by an mbstate_t
object initialized to zero before the first wide character is converted) up to and
including a terminating null wide character. The resulting characters shall be written
up to (but not including) the terminating null character (byte). If no precision is
specified, the application shall ensure that the array contains a null wide character. If a
precision is specified, no more than that many characters (bytes) shall be written
(including shift sequences, if any), and the array shall contain a null wide character if,

428 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

14091

14092

14093

14094

14095

14096

14097

14098

14099

14100

14101

14102

14103

14104

14105

14106

14107

14108

14109

14110

14111

14112

14113

14114

14115

14116

14117

14118

14119

14120

14121

14122

14123

14124

14125

14126

14127

14128

14129

14130

14131

14132

14133

14134

14135

14136

14137

14138

14139

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces fprintf()

to equal the character sequence length given by the precision, the function would need
to access a wide character one past the end of the array. In no case shall a partial
character be written.

p The argument shall be a pointer to void. The value of the pointer is converted to a
sequence of printable characters, in an implementation-defined manner.

n The argument shall be a pointer to an integer into which is written the number of bytes
written to the output so far by this call to one of the fprintf() functions. No argument is
converted.

XSI C Equivalent to lc .

XSI S Equivalent to ls .

% Print a ’%’ character; no argument is converted. The complete conversion specification
shall be %%.

If a conversion specification does not match one of the above forms, the behavior is undefined. If
any argument is not the correct type for the corresponding conversion specification, the
behavior is undefined.

In no case shall a nonexistent or small field width cause truncation of a field; if the result of a
conversion is wider than the field width, the field shall be expanded to contain the conversion
result. Characters generated by fprintf() and printf() are printed as if fputc() had been called.

For the a and A conversion specifiers, if FLT_RADIX is a power of 2, the value shall be correctly
rounded to a hexadecimal floating number with the given precision.

For a and A conversions, if FLT_RADIX is not a power of 2 and the result is not exactly
representable in the given precision, the result should be one of the two adjacent numbers in
hexadecimal floating style with the given precision, with the extra stipulation that the error
should have a correct sign for the current rounding direction.

For the e, E, f , F, g, and Gconversion specifiers, if the number of significant decimal digits is at
most DECIMAL_DIG, then the result should be correctly rounded. If the number of significant
decimal digits is more than DECIMAL_DIG but the source value is exactly representable with
DECIMAL_DIG digits, then the result should be an exact representation with trailing zeros.
Otherwise, the source value is bounded by two adjacent decimal strings L < U, both having
DECIMAL_DIG significant digits; the value of the resultant decimal string D should satisfy L <=
D <= U, with the extra stipulation that the error should have a correct sign for the current
rounding direction.

CX The st_ctime and st_mtime fields of the file shall be marked for update between the call to a
successful execution of fprintf() or printf() and the next successful completion of a call to fflush()
or fclose() on the same stream or a call to exit() or abort().

RETURN VALUE
CX Upon successful completion, the dprintf(), fprintf(), and printf() functions shall return the

number of bytes transmitted.

Upon successful completion, the sprintf() function shall return the number of bytes written to s,
excluding the terminating null byte.

Upon successful completion, the snprintf() function shall return the number of bytes that would
be written to s had n been sufficiently large excluding the terminating null byte.

If an output error was encountered, these functions shall return a negative value.

If the value of n is zero on a call to snprintf(), nothing shall be written, the number of bytes that
would have been written had n been sufficiently large excluding the terminating null shall be
returned, and s may be a null pointer.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 429

14140

14141

14142

14143

14144

14145

14146

14147

14148

14149

14150

14151

14152

14153

14154

14155

14156

14157

14158

14159

14160

14161

14162

14163

14164

14165

14166

14167

14168

14169

14170

14171

14172

14173

14174

14175

14176

14177

14178

14179

14180

14181

14182

14183

14184

14185

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

fprintf() System Interfaces

ERRORS
CX For the conditions under which dprintf(), fprintf(), and printf() fail and may fail, refer to fputc()

or fputwc().

In addition, all forms of fprintf() may fail if:

CX [EILSEQ] A wide-character code that does not correspond to a valid character has been
detected.

CX [EINVAL] There are insufficient arguments.

The dprintf() function may fail if:

[EBADF] The fildes argument is not a valid file descriptor.

CX The dprintf(), fprintf(), and printf() functions may fail if:

CX [ENOMEM] Insufficient storage space is available.

The snprintf() function shall fail if:

CX [EOVERFLOW] The value of n is greater than {INT_MAX} or the number of bytes needed to
hold the output excluding the terminating null is greater than {INT_MAX}.

EXAMPLES

Printing Language-Independent Date and Time

The following statement can be used to print date and time using a language-independent
format:

printf(format, weekday, month, day, hour, min);

For American usage, format could be a pointer to the following string:

"%s, %s %d, %d:%.2d\n"

This example would produce the following message:

Sunday, July 3, 10:02

For German usage, format could be a pointer to the following string:

"%1$s, %3$d. %2$s, %4$d:%5$.2d\n"

This definition of format would produce the following message:

Sonntag, 3. Juli, 10:02

Printing File Information

The following example prints information about the type, permissions, and number of links of a
specific file in a directory.

The first two calls to printf() use data decoded from a previous stat() call. The user-defined
strperm() function shall return a string similar to the one at the beginning of the output for the
following command:

ls −l

The next call to printf() outputs the owner’s name if it is found using getpwuid(); the getpwuid()
function shall return a passwd structure from which the name of the user is extracted. If the user
name is not found, the program instead prints out the numeric value of the user ID.

The next call prints out the group name if it is found using getgrgid(); getgrgid() is very similar
to getpwuid() except that it shall return group information based on the group number. Once

430 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

14186

14187

14188

14189

14190

14191

14192

14193

14194

14195

14196

14197

14198

14199

14200

14201

14202

14203

14204

14205

14206

14207

14208

14209

14210

14211

14212

14213

14214

14215

14216

14217

14218

14219

14220

14221

14222

14223

14224

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces fprintf()

again, if the group is not found, the program prints the numeric value of the group for the entry.

The final call to printf() prints the size of the file.

#include <stdio.h>
#include <sys/types.h>
#include <pwd.h>
#include <grp.h>

char *strperm (mode_t);
...
struct stat statbuf;
struct passwd *pwd;
struct group *grp;
...
printf("%10.10s", strperm (statbuf.st_mode));
printf("%4d", statbuf.st_nlink);

if ((pwd = getpwuid(statbuf.st_uid)) != NULL)
printf(" % −8.8s", pwd->pw_name);

else
printf(" % −8ld", (long) statbuf.st_uid);

if ((grp = getgrgid(statbuf.st_gid)) != NULL)
printf(" % −8.8s", grp->gr_name);

else
printf(" % −8ld", (long) statbuf.st_gid);

printf("%9jd", (intmax_t) statbuf.st_size);
...

Printing a Localized Date String

The following example gets a localized date string. The nl_langinfo() function shall return the
localized date string, which specifies the order and layout of the date. The strftime() function
takes this information and, using the tm structure for values, places the date and time
information into datestring. The printf() function then outputs datestring and the name of the
entry.

#include <stdio.h>
#include <time.h>
#include <langinfo.h>
...
struct dirent *dp;
struct tm *tm;
char datestring[256];
...
strftime(datestring, sizeof(datestring), nl_langinfo (D_T_FMT), tm);

printf(" %s %s\n", datestring, dp->d_name);
...

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 431

14225

14226

14227

14228

14229

14230

14231

14232

14233

14234

14235

14236

14237

14238

14239

14240

14241

14242

14243

14244

14245

14246

14247

14248

14249

14250

14251

14252

14253

14254

14255

14256

14257

14258

14259

14260

14261

14262

14263

14264

14265

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

fprintf() System Interfaces

Printing Error Information

The following example uses fprintf() to write error information to standard error.

In the first group of calls, the program tries to open the password lock file named LOCKFILE. If
the file already exists, this is an error, as indicated by the O_EXCL flag on the open() function. If
the call fails, the program assumes that someone else is updating the password file, and the
program exits.

The next group of calls saves a new password file as the current password file by creating a link
between LOCKFILE and the new password file PASSWDFILE.

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <errno.h>

#define LOCKFILE "/etc/ptmp"
#define PASSWDFILE "/etc/passwd"
...
int pfd;
...
if ((pfd = open(LOCKFILE, O_WRONLY | O_CREAT | O_EXCL,

S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH)) == −1)
{

fprintf(stderr, "Cannot open /etc/ptmp. Try again later.\n");
exit(1);

}
...
if (link(LOCKFILE,PASSWDFILE) == -1) {

fprintf(stderr, "Link error: %s\n", strerror(errno));
exit(1);

}
...

Printing Usage Information

The following example checks to make sure the program has the necessary arguments, and uses
fprintf() to print usage information if the expected number of arguments is not present.

#include <stdio.h>
#include <stdlib.h>
...
char *Options = "hdbtl";
...
if (argc < 2) {

fprintf(stderr, "Usage: %s -%s <file\n", argv[0], Options); exit(1);
}
...

432 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

14266

14267

14268

14269

14270

14271

14272

14273

14274

14275

14276

14277

14278

14279

14280

14281

14282

14283

14284

14285

14286

14287

14288

14289

14290

14291

14292

14293

14294

14295

14296

14297

14298

14299

14300

14301

14302

14303

14304

14305

14306

14307

14308

14309

14310

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces fprintf()

Formatting a Decimal String

The following example prints a key and data pair on stdout. Note use of the ’*’ (asterisk) in the
format string; this ensures the correct number of decimal places for the element based on the
number of elements requested.

#include <stdio.h>
...
long i;
char *keystr;
int elementlen, len;
...
while (len < elementlen) {
...

printf("%s Element%0*ld\n", keystr, elementlen, i);
...
}

Creating a Filename

The following example creates a filename using information from a previous getpwnam()
function that returned the HOME directory of the user.

#include <stdio.h>
#include <sys/types.h>
#include <unistd.h>
...
char filename[PATH_MAX+1];
struct passwd *pw;
...
sprintf(filename, "%s/%d.out", pw->pw_dir, getpid());
...

Reporting an Event

The following example loops until an event has timed out. The pause() function waits forever
unless it receives a signal. The fprintf() statement should never occur due to the possible return
values of pause().

#include <stdio.h>
#include <unistd.h>
#include <string.h>
#include <errno.h>
...
while (!event_complete) {
...

if (pause() != −1 || e rrno != EINTR)
fprintf(stderr, "pause: unknown error: %s\n", strerror(errno));

}
...

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 433

14311

14312

14313

14314

14315

14316

14317

14318

14319

14320

14321

14322

14323

14324

14325

14326

14327

14328

14329

14330

14331

14332

14333

14334

14335

14336

14337

14338

14339

14340

14341

14342

14343

14344

14345

14346

14347

14348

14349

14350

14351

14352

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

fprintf() System Interfaces

Printing Monetary Information

The following example uses strfmon() to convert a number and store it as a formatted monetary
string named convbuf . If the first number is printed, the program prints the format and the
description; otherwise, it just prints the number.

#include <monetary.h>
#include <stdio.h>
...
struct tblfmt {

char *format;
char *description;

};

struct tblfmt table[] = {
{ " %n", "default formatting" },
{ " %11n", "right align within an 11 character field" },
{ " %#5n", "aligned columns for values up to 99 999" },
{ " %=*#5n", "specify a fill character" },
{ " %=0#5n", "fill characters do not use grouping" },
{ " %ˆ#5n", "disable the grouping separator" },
{ " %ˆ#5.0n", "round off to whole units" },
{ " %ˆ#5.4n", "increase the precision" },
{ " %(#5n", "use an alternative pos/neg style" },
{ " %!(#5n", "disable the currency symbol" },

};
...
float input[3];
int i, j;
char convbuf[100];
...
strfmon(convbuf, sizeof(convbuf), table[i].format, input[j]);

if (j == 0) {
printf("%s%s%s\n", table[i].format,

convbuf, table[i].description);
}
else {

printf("%s\n", convbuf);
}
...

Printing Wide Characters

The following example prints a series of wide characters. Suppose that "L‘@‘" expands to three
bytes:

wchar_t wz [3] = L"@@"; // Zero-terminated
wchar_t wn [3] = L"@@@"; // Unterminated

fprintf (stdout,"%ls", wz); // Outputs 6 bytes
fprintf (stdout,"%ls", wn); // Undefined because wn has no terminator
fprintf (stdout,"%4ls", wz); // Outputs 3 bytes
fprintf (stdout,"%4ls", wn); // Outputs 3 bytes; no terminator needed
fprintf (stdout,"%9ls", wz); // Outputs 6 bytes
fprintf (stdout,"%9ls", wn); // Outputs 9 bytes; no terminator needed
fprintf (stdout,"%10ls", wz); // Outputs 6 bytes

434 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

14353

14354

14355

14356

14357

14358

14359

14360

14361

14362

14363

14364

14365

14366

14367

14368

14369

14370

14371

14372

14373

14374

14375

14376

14377

14378

14379

14380

14381

14382

14383

14384

14385

14386

14387

14388

14389

14390

14391

14392

14393

14394

14395

14396

14397

14398

14399

14400

14401

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces fprintf()

fprintf (stdout,"%10ls", wn); // Undefined because wn has no terminator

In the last line of the example, after processing three characters, nine bytes have been output.
The fourth character must then be examined to determine whether it converts to one byte or
more. If it converts to more than one byte, the output is only nine bytes. Since there is no fourth
character in the array, the behavior is undefined.

APPLICATION USAGE
If the application calling fprintf() has any objects of type wint_t or wchar_t, it must also include
the <wchar.h> header to have these objects defined.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fputc(), fscanf(), setlocale(), strfmon(), wcrtomb(), the Base Definitions volume of
IEEE Std 1003.1-200x, Chapter 7, Locale, <stdio.h>, <wchar.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
Aligned with ISO/IEC 9899: 1990/Amendment 1: 1995 (E). Specifically, the l (ell) qualifier can
now be used with c and s conversion specifiers.

The snprintf() function is new in Issue 5.

Issue 6
Extensions beyond the ISO C standard are marked.

The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

The following changes are made for alignment with the ISO/IEC 9899: 1999 standard:

• The prototypes for fprintf(), printf(), snprintf(), and sprintf() are updated, and the XSI
shading is removed from snprintf().

• The description of snprintf() is aligned with the ISO C standard. Note that this supersedes
the snprintf() description in The Open Group Base Resolution bwg98-006, which changed
the behavior from Issue 5.

• The DESCRIPTION is updated.

The DESCRIPTION is updated to use the terms ‘‘conversion specifier’’ and ‘‘conversion
specification’’ consistently.

ISO/IEC 9899: 1999 standard, Technical Corrigendum 1 is incorporated.

An example of printing wide characters is added.

Issue 7
ISO/IEC 9899: 1999 standard, Technical Corrigendum 2 #68 (SD5-XSH-ERN-70) is applied,
revising the description of g and G.

The dprintf() function is added from The Open Group Technical Standard, 2006, Extended API
Set Part 1.

Functionality relating to the %n$form of conversion specification and the ’’’ (apostrophe) flag
is moved from the XSI option to the Base.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 435

14402

14403

14404

14405

14406

14407

14408

14409

14410

14411

14412

14413

14414

14415

14416

14417

14418

14419

14420

14421

14422

14423

14424

14425

14426

14427

14428

14429

14430

14431

14432

14433

14434

14435

14436

14437

14438

14439

14440

14441

14442

14443

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

fputc() System Interfaces

NAME
fputc — put a byte on a stream

SYNOPSIS
#include <stdio.h>

int fputc(int c, F ILE * stream);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

The fputc() function shall write the byte specified by c (converted to an unsigned char) to the
output stream pointed to by stream, at the position indicated by the associated file-position
indicator for the stream (if defined), and shall advance the indicator appropriately. If the file
cannot support positioning requests, or if the stream was opened with append mode, the byte
shall be appended to the output stream.

CX The st_ctime and st_mtime fields of the file shall be marked for update between the successful
execution of fputc() and the next successful completion of a call to fflush() or fclose() on the same
stream or a call to exit() or abort().

RETURN VALUE
Upon successful completion, fputc() shall return the value it has written. Otherwise, it shall

CX return EOF, the error indicator for the stream shall be set, and errno shall be set to indicate the
error.

ERRORS
The fputc() function shall fail if either the stream is unbuffered or the stream’s buffer needs to be
flushed, and:

CX [EAGAIN] The O_NONBLOCK flag is set for the file descriptor underlying stream and
the thread would be delayed in the write operation.

CX [EBADF] The file descriptor underlying stream is not a valid file descriptor open for
writing.

CX [EFBIG] An attempt was made to write to a file that exceeds the maximum file size.

XSI [EFBIG] An attempt was made to write to a file that exceeds the file size limit of the
process.

CX [EFBIG] The file is a regular file and an attempt was made to write at or beyond the
offset maximum.

CX [EINTR] The write operation was terminated due to the receipt of a signal, and no data
was transferred.

CX [EIO] A physical I/O error has occurred, or the process is a member of a background
process group attempting to write to its controlling terminal, TOSTOP is set,
the process is neither ignoring nor blocking SIGTTOU, and the process group
of the process is orphaned. This error may also be returned under
implementation-defined conditions.

CX [ENOSPC] There was no free space remaining on the device containing the file.

CX [EPIPE] An attempt is made to write to a pipe or FIFO that is not open for reading by
any process. A SIGPIPE signal shall also be sent to the thread.

436 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

14444

14445

14446

14447

14448

14449

14450

14451

14452

14453

14454

14455

14456

14457

14458

14459

14460

14461

14462

14463

14464

14465

14466

14467

14468

14469

14470

14471

14472

14473

14474

14475

14476

14477

14478

14479

14480

14481

14482

14483

14484

14485

14486

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces fputc()

The fputc() function may fail if:

CX [ENOMEM] Insufficient storage space is available.

CX [ENXIO] A request was made of a nonexistent device, or the request was outside the
capabilities of the device.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
ferror(), fopen(), getrlimit(), putc(), puts(), setbuf(), ulimit(), the Base Definitions volume of
IEEE Std 1003.1-200x, <stdio.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
Large File Summit extensions are added.

Issue 6
Extensions beyond the ISO C standard are marked.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The [EIO] and [EFBIG] mandatory error conditions are added.

• The [ENOMEM] and [ENXIO] optional error conditions are added.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/37 is applied, updating the [EAGAIN]
error in the ERRRORS section from ‘‘the process would be delayed’’ to ‘‘the thread would be
delayed’’.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 437

14487

14488

14489

14490

14491

14492

14493

14494

14495

14496

14497

14498

14499

14500

14501

14502

14503

14504

14505

14506

14507

14508

14509

14510

14511

14512

14513

14514

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

fputs() System Interfaces

NAME
fputs — put a string on a stream

SYNOPSIS
#include <stdio.h>

int fputs(const char *restrict s, F ILE *restrict stream);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

The fputs() function shall write the null-terminated string pointed to by s to the stream pointed
to by stream. The terminating null byte shall not be written.

CX The st_ctime and st_mtime fields of the file shall be marked for update between the successful
execution of fputs() and the next successful completion of a call to fflush() or fclose() on the same
stream or a call to exit() or abort().

RETURN VALUE
Upon successful completion, fputs() shall return a non-negative number. Otherwise, it shall

CX return EOF, set an error indicator for the stream, and set errno to indicate the error.

ERRORS
Refer to fputc().

EXAMPLES

Printing to Standard Output

The following example gets the current time, converts it to a string using localtime() and
asctime(), and prints it to standard output using fputs(). It then prints the number of minutes to
an event for which it is waiting.

#include <time.h>
#include <stdio.h>
...
time_t now;
int minutes_to_event;
...
time(&now);
printf("The time is ");
fputs(asctime(localtime(&now)), stdout);
printf("There are still %d minutes to the event.\n",

minutes_to_event);
...

APPLICATION USAGE
The puts() function appends a <newline> while fputs() does not.

RATIONALE
None.

438 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

14515

14516

14517

14518

14519

14520

14521

14522

14523

14524

14525

14526

14527

14528

14529

14530

14531

14532

14533

14534

14535

14536

14537

14538

14539

14540

14541

14542

14543

14544

14545

14546

14547

14548

14549

14550

14551

14552

14553

14554

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces fputs()

FUTURE DIRECTIONS
None.

SEE ALSO
fopen(), putc(), puts(), the Base Definitions volume of IEEE Std 1003.1-200x, <stdio.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
Extensions beyond the ISO C standard are marked.

The fputs() prototype is updated for alignment with the ISO/IEC 9899: 1999 standard.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 439

14555

14556

14557

14558

14559

14560

14561

14562

14563

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

fputwc() System Interfaces

NAME
fputwc — put a wide-character code on a stream

SYNOPSIS
#include <stdio.h>
#include <wchar.h>

wint_t fputwc(wchar_t wc, F ILE * stream);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

The fputwc() function shall write the character corresponding to the wide-character code wc to
the output stream pointed to by stream, at the position indicated by the associated file-position
indicator for the stream (if defined), and advances the indicator appropriately. If the file cannot
support positioning requests, or if the stream was opened with append mode, the character is
appended to the output stream. If an error occurs while writing the character, the shift state of
the output file is left in an undefined state.

CX The st_ctime and st_mtime fields of the file shall be marked for update between the successful
execution of fputwc() and the next successful completion of a call to fflush() or fclose() on the
same stream or a call to exit() or abort().

RETURN VALUE
Upon successful completion, fputwc() shall return wc. Otherwise, it shall return WEOF, the error

CX indicator for the stream shall be set, and errno shall be set to indicate the error.

ERRORS
The fputwc() function shall fail if either the stream is unbuffered or data in the stream’s buffer
needs to be written, and:

CX [EAGAIN] The O_NONBLOCK flag is set for the file descriptor underlying stream and
the thread would be delayed in the write operation.

CX [EBADF] The file descriptor underlying stream is not a valid file descriptor open for
writing.

CX [EFBIG] An attempt was made to write to a file that exceeds the maximum file size or
the file size limit of the process.

CX [EFBIG] The file is a regular file and an attempt was made to write at or beyond the
offset maximum associated with the corresponding stream.

[EILSEQ] The wide-character code wc does not correspond to a valid character.

CX [EINTR] The write operation was terminated due to the receipt of a signal, and no data
was transferred.

CX [EIO] A physical I/O error has occurred, or the process is a member of a background
process group attempting to write to its controlling terminal, TOSTOP is set,
the process is neither ignoring nor blocking SIGTTOU, and the process group
of the process is orphaned. This error may also be returned under
implementation-defined conditions.

CX [ENOSPC] There was no free space remaining on the device containing the file.

440 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

14564

14565

14566

14567

14568

14569

14570

14571

14572

14573

14574

14575

14576

14577

14578

14579

14580

14581

14582

14583

14584

14585

14586

14587

14588

14589

14590

14591

14592

14593

14594

14595

14596

14597

14598

14599

14600

14601

14602

14603

14604

14605

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces fputwc()

CX [EPIPE] An attempt is made to write to a pipe or FIFO that is not open for reading by
any process. A SIGPIPE signal shall also be sent to the thread.

The fputwc() function may fail if:

CX [ENOMEM] Insufficient storage space is available.

CX [ENXIO] A request was made of a nonexistent device, or the request was outside the
capabilities of the device.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
ferror(), fopen(), setbuf(), ulimit(), the Base Definitions volume of IEEE Std 1003.1-200x,
<stdio.h>, <wchar.h>

CHANGE HISTORY
First released in Issue 4. Derived from the MSE working draft.

Issue 5
Aligned with ISO/IEC 9899: 1990/Amendment 1: 1995 (E). Specifically, the type of argument wc
is changed from wint_t to wchar_t.

The Optional Header (OH) marking is removed from <stdio.h>.

Large File Summit extensions are added.

Issue 6
Extensions beyond the ISO C standard are marked.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The [EFBIG] and [EIO] mandatory error conditions are added.

• The [ENOMEM] and [ENXIO] optional error conditions are added.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/38 is applied, updating the [EAGAIN]
error in the ERRORS section from ‘‘the process would be delayed’’ to ‘‘the thread would be
delayed’’.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 441

14606

14607

14608

14609

14610

14611

14612

14613

14614

14615

14616

14617

14618

14619

14620

14621

14622

14623

14624

14625

14626

14627

14628

14629

14630

14631

14632

14633

14634

14635

14636

14637

14638

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

fputws() System Interfaces

NAME
fputws — put a wide-character string on a stream

SYNOPSIS
#include <stdio.h>
#include <wchar.h>

int fputws(const wchar_t *restrict ws, F ILE *restrict stream);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

The fputws() function shall write a character string corresponding to the (null-terminated) wide-
character string pointed to by ws to the stream pointed to by stream. No character corresponding
to the terminating null wide-character code shall be written.

CX The st_ctime and st_mtime fields of the file shall be marked for update between the successful
execution of fputws() and the next successful completion of a call to fflush() or fclose() on the
same stream or a call to exit() or abort().

RETURN VALUE
Upon successful completion, fputws() shall return a non-negative number. Otherwise, it shall

CX return −1, set an error indicator for the stream, and set errno to indicate the error.

ERRORS
Refer to fputwc().

EXAMPLES
None.

APPLICATION USAGE
The fputws() function does not append a <newline>.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fopen(), the Base Definitions volume of IEEE Std 1003.1-200x, <stdio.h>, <wchar.h>

CHANGE HISTORY
First released in Issue 4. Derived from the MSE working draft.

Issue 5
The Optional Header (OH) marking is removed from <stdio.h>.

Issue 6
Extensions beyond the ISO C standard are marked.

The fputws() prototype is updated for alignment with the ISO/IEC 9899: 1999 standard.

442 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

14639

14640

14641

14642

14643

14644

14645

14646

14647

14648

14649

14650

14651

14652

14653

14654

14655

14656

14657

14658

14659

14660

14661

14662

14663

14664

14665

14666

14667

14668

14669

14670

14671

14672

14673

14674

14675

14676

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces fread()

NAME
fread — binary input

SYNOPSIS
#include <stdio.h>

size_t fread(void *restrict ptr, s ize_t size, s ize_t nitems,
FILE *restrict stream);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

The fread() function shall read into the array pointed to by ptr up to nitems elements whose size
is specified by size in bytes, from the stream pointed to by stream. For each object, size calls shall
be made to the fgetc() function and the results stored, in the order read, in an array of unsigned
char exactly overlaying the object. The file position indicator for the stream (if defined) shall be
advanced by the number of bytes successfully read. If an error occurs, the resulting value of the
file position indicator for the stream is unspecified. If a partial element is read, its value is
unspecified.

CX The fread() function may mark the st_atime field of the file associated with stream for update. The
st_atime field shall be marked for update by the first successful execution of fgetc(), fgets(),
fgetwc(), fgetws(), fread(), fscanf(), getc(), getchar(), gets(), or scanf() using stream that returns
data not supplied by a prior call to ungetc() or ungetwc().

RETURN VALUE
Upon successful completion, fread() shall return the number of elements successfully read which
is less than nitems only if a read error or end-of-file is encountered. If size or nitems is 0, fread()
shall return 0 and the contents of the array and the state of the stream remain unchanged.

CX Otherwise, if a read error occurs, the error indicator for the stream shall be set, and errno shall
be set to indicate the error.

ERRORS
Refer to fgetc().

EXAMPLES

Reading from a Stream

The following example reads a single element from the fp stream into the array pointed to by
buf .

#include <stdio.h>
...
size_t bytes_read;
char buf[100];
FILE *fp;
...
bytes_read = fread(buf, sizeof(buf), 1, fp);
...

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 443

14677

14678

14679

14680

14681

14682

14683

14684

14685

14686

14687

14688

14689

14690

14691

14692

14693

14694

14695

14696

14697

14698

14699

14700

14701

14702

14703

14704

14705

14706

14707

14708

14709

14710

14711

14712

14713

14714

14715

14716

14717

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

fread() System Interfaces

APPLICATION USAGE
The ferror() or feof() functions must be used to distinguish between an error condition and an
end-of-file condition.

Because of possible differences in element length and byte ordering, files written using fwrite()
are application-dependent, and possibly cannot be read using fread() by a different application
or by the same application on a different processor.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
feof(), ferror(), fgetc(), fopen(), getc(), gets(), scanf(), the Base Definitions volume of
IEEE Std 1003.1-200x, <stdio.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
Extensions beyond the ISO C standard are marked.

The following changes are made for alignment with the ISO/IEC 9899: 1999 standard:

• The fread() prototype is updated.

• The DESCRIPTION is updated to describe how the bytes from a call to fgetc() are stored.

444 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

14718

14719

14720

14721

14722

14723

14724

14725

14726

14727

14728

14729

14730

14731

14732

14733

14734

14735

14736

14737

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces free()

NAME
free — free allocated memory

SYNOPSIS
#include <stdlib.h>

void free(void * ptr);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

The free() function shall cause the space pointed to by ptr to be deallocated; that is, made
available for further allocation. If ptr is a null pointer, no action shall occur. Otherwise, if the

ADV argument does not match a pointer earlier returned by the calloc(), malloc(), posix_memalign(),
realloc(), or strdup() function, or if the space has been deallocated by a call to free() or realloc(),
the behavior is undefined.

Any use of a pointer that refers to freed space results in undefined behavior.

RETURN VALUE
The free() function shall not return a value.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
There is now no requirement for the implementation to support the inclusion of <malloc.h>.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
calloc(), getdelim(), malloc(), open_memstream(), realloc(), strdup(), wcsdup(), the Base Definitions
volume of IEEE Std 1003.1-200x, <stdlib.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
Reference to the valloc() function is removed.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 445

14738

14739

14740

14741

14742

14743

14744

14745

14746

14747

14748

14749

14750

14751

14752

14753

14754

14755

14756

14757

14758

14759

14760

14761

14762

14763

14764

14765

14766

14767

14768

14769

14770

14771

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

freeaddrinfo() System Interfaces

NAME
freeaddrinfo, getaddrinfo — get address information

SYNOPSIS
#include <sys/socket.h>
#include <netdb.h>

void freeaddrinfo(struct addrinfo * ai);
int getaddrinfo(const char *restrict nodename,

const char *restrict servname,
const struct addrinfo *restrict hints,
struct addrinfo **restrict res);

DESCRIPTION
The freeaddrinfo() function shall free one or more addrinfo structures returned by getaddrinfo(),
along with any additional storage associated with those structures. If the ai_next field of the
structure is not null, the entire list of structures shall be freed. The freeaddrinfo() function shall
support the freeing of arbitrary sublists of an addrinfo list originally returned by getaddrinfo().

The getaddrinfo() function shall translate the name of a service location (for example, a host
name) and/or a service name and shall return a set of socket addresses and associated
information to be used in creating a socket with which to address the specified service.

Note:

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces freeaddrinfo()

for ai_socktype means that the caller shall accept any socket type. A value of zero for ai_protocol
means that the caller shall accept any protocol. If hints is a null pointer, the behavior shall be as if
it referred to a structure containing the value zero for the ai_flags, ai_socktype, and ai_protocol
fields, and AF_UNSPEC for the ai_family field.

The ai_flags field to which the hints parameter points shall be set to zero or be the bitwise-
inclusive OR of one or more of the values AI_PASSIVE, AI_CANONNAME,
AI_NUMERICHOST, AI_NUMERICSERV, AI_V4MAPPED, AI_ALL, and AI_ADDRCONFIG.

If the AI_PASSIVE flag is specified, the returned address information shall be suitable for use in
binding a socket for accepting incoming connections for the specified service. In this case, if the
nodename argument is null, then the IP address portion of the socket address structure shall be
set to INADDR_ANY for an IPv4 address or IN6ADDR_ANY_INIT for an IPv6 address. If the
AI_PASSIVE flag is not specified, the returned address information shall be suitable for a call to
connect() (for a connection-mode protocol) or for a call to connect(), sendto(), or sendmsg() (for a
connectionless protocol). In this case, if the nodename argument is null, then the IP address
portion of the socket address structure shall be set to the loopback address. The AI_PASSIVE
flag shall be ignored if the nodename argument is not null.

If the AI_CANONNAME flag is specified and the nodename argument is not null, the function
shall attempt to determine the canonical name corresponding to nodename (for example, if
nodename is an alias or shorthand notation for a complete name).

Note: Since different implementations use different conceptual models, the terms ‘‘canonical name’’
and ‘‘alias’’ cannot be precisely defined for the general case. However, Domain Name System
implementations are expected to interpret them as they are used in RFC 1034.

A numeric host address string is not a ‘‘name’’, and thus does not have a ‘‘canonical name’’
form; no address to host name translation is performed. See below for handling of the case
where a canonical name cannot be obtained.

If the AI_NUMERICHOST flag is specified, then a non-null nodename string supplied shall be a
numeric host address string. Otherwise, an [EAI_NONAME] error is returned. This flag shall
prevent any type of name resolution service (for example, the DNS) from being invoked.

If the AI_NUMERICSERV flag is specified, then a non-null servname string supplied shall be a
numeric port string. Otherwise, an [EAI_NONAME] error shall be returned. This flag shall
prevent any type of name resolution service (for example, NIS+) from being invoked.

IP6 If the AI_V4MAPPED flag is specified along with an ai_family of AF_INET6, then getaddrinfo()
shall return IPv4-mapped IPv6 addresses on finding no matching IPv6 addresses (ai_addrlen
shall be 16). The AI_V4MAPPED flag shall be ignored unless ai_family equals AF_INET6. If the
AI_ALL flag is used with the AI_V4MAPPED flag, then getaddrinfo() shall return all matching
IPv6 and IPv4 addresses. The AI_ALL flag without the AI_V4MAPPED flag is ignored.

If the AI_ADDRCONFIG flag is specified, IPv4 addresses shall be returned only if an IPv4
IP6 address is configured on the local system, and IPv6 addresses shall be returned only if an IPv6

address is configured on the local system.

The ai_socktype field to which argument hints points specifies the socket type for the service, as
defined in socket(). If a specific socket type is not given (for example, a value of zero) and the
service name could be interpreted as valid with multiple supported socket types, the
implementation shall attempt to resolve the service name for all supported socket types and, in
the absence of errors, all possible results shall be returned. A non-zero socket type value shall
limit the returned information to values with the specified socket type.

If the ai_family field to which hints points has the value AF_UNSPEC, addresses shall be
returned for use with any address family that can be used with the specified nodename and/or
servname. Otherwise, addresses shall be returned for use only with the specified address family.
If ai_family is not AF_UNSPEC and ai_protocol is not zero, then addresses are returned for use

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 447

14818

14819

14820

14821

14822

14823

14824

14825

14826

14827

14828

14829

14830

14831

14832

14833

14834

14835

14836

14837

14838

14839

14840

14841

14842

14843

14844

14845

14846

14847

14848

14849

14850

14851

14852

14853

14854

14855

14856

14857

14858

14859

14860

14861

14862

14863

14864

14865

14866

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

freeaddrinfo() System Interfaces

only with the specified address family and protocol; the value of ai_protocol shall be interpreted
as in a call to the socket() function with the corresponding values of ai_family and ai_protocol.

RETURN VALUE
A zero return value for getaddrinfo() indicates successful completion; a non-zero return value
indicates failure. The possible values for the failures are listed in the ERRORS section.

Upon successful return of getaddrinfo(), the location to which res points shall refer to a linked list
of addrinfo structures, each of which shall specify a socket address and information for use in
creating a socket with which to use that socket address. The list shall include at least one
addrinfo structure. The ai_next field of each structure contains a pointer to the next structure on
the list, or a null pointer if it is the last structure on the list. Each structure on the list shall
include values for use with a call to the socket() function, and a socket address for use with the
connect() function or, if the AI_PASSIVE flag was specified, for use with the bind() function. The
fields ai_family, ai_socktype, and ai_protocol shall be usable as the arguments to the socket()
function to create a socket suitable for use with the returned address. The fields ai_addr and
ai_addrlen are usable as the arguments to the connect() or bind() functions with such a socket,
according to the AI_PASSIVE flag.

If nodename is not null, and if requested by the AI_CANONNAME flag, the ai_canonname field of
the first returned addrinfo structure shall point to a null-terminated string containing the
canonical name corresponding to the input nodename; if the canonical name is not available, then
ai_canonname shall refer to the nodename argument or a string with the same contents. The
contents of the ai_flags field of the returned structures are undefined.

All fields in socket address structures returned by getaddrinfo() that are not filled in through an
explicit argument (for example, sin6_flowinfo) shall be set to zero.

Note: This makes it easier to compare socket address structures.

ERRORS
The getaddrinfo() function shall fail and return the corresponding error value if:

[EAI_AGAIN] The name could not be resolved at this time. Future attempts may succeed.

[EAI_BADFLAGS]
The flags parameter had an invalid value.

[EAI_FAIL] A non-recoverable error occurred when attempting to resolve the name.

[EAI_FAMILY] The address family was not recognized.

[EAI_MEMORY] There was a memory allocation failure when trying to allocate storage for the
return value.

[EAI_NONAME] The name does not resolve for the supplied parameters.

Neither nodename nor servname were supplied. At least one of these shall be
supplied.

[EAI_SERVICE] The service passed was not recognized for the specified socket type.

[EAI_SOCKTYPE]
The intended socket type was not recognized.

[EAI_SYSTEM] A system error occurred; the error code can be found in errno.

448 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

14867

14868

14869

14870

14871

14872

14873

14874

14875

14876

14877

14878

14879

14880

14881

14882

14883

14884

14885

14886

14887

14888

14889

14890

14891

14892

14893

14894

14895

14896

14897

14898

14899

14900

14901

14902

14903

14904

14905

14906

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces freeaddrinfo()

EXAMPLES
None.

APPLICATION USAGE
If the caller handles only TCP and not UDP, for example, then the ai_protocol member of the hints
structure should be set to IPPROTO_TCP when getaddrinfo() is called.

If the caller handles only IPv4 and not IPv6, then the ai_family member of the hints structure
should be set to AF_INET when getaddrinfo() is called.

The term ‘‘canonical name’’ is misleading; it is taken from the Domain Name System (RFC 2181).
It should be noted that the canonical name is a result of alias processing, and not necessarily a
unique attribute of a host, address, or set of addresses. See RFC 2181 for more discussion of this
in the Domain Name System context.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
connect(), gai_strerror(), getnameinfo(), getservbyname(), socket(), the Base Definitions volume of
IEEE Std 1003.1-200x, <netdb.h>, <sys/socket.h>

CHANGE HISTORY
First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

The restrict keyword is added to the getaddrinfo() prototype for alignment with the
ISO/IEC 9899: 1999 standard.

IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/19 is applied, adding three notes to the
DESCRIPTION and adding text to the APPLICATION USAGE related to the term ‘‘canonical
name’’. A reference to RFC 2181 is also added to the Informative References.

IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/20 is applied, making changes for
alignment with IPv6. These include the following:

• Adding AI_V4MAPPED, AI_ALL, and AI_ADDRCONFIG to the allowed values for the
ai_flags field

• Adding a description of AI_ADDRCONFIG

• Adding a description of the consequences of ignoring the AI_PASSIVE flag.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/39 is applied, changing ‘‘corresponding
value’’ to ‘‘corresponding error value’’ in the ERRORS section.

Issue 7
Austin Group Interpretation 1003.1-2001 #013 is applied.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 449

14907

14908

14909

14910

14911

14912

14913

14914

14915

14916

14917

14918

14919

14920

14921

14922

14923

14924

14925

14926

14927

14928

14929

14930

14931

14932

14933

14934

14935

14936

14937

14938

14939

14940

14941

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

freelocale() System Interfaces

NAME
freelocale — free resources allocated for a locale object

SYNOPSIS
CX #include <locale.h>

void freelocale(locale_t locobj);

DESCRIPTION
The freelocale() function shall cause the resources allocated for a locale object returned by a call
to the newlocale() or duplocale() functions to be released.

Any use of a locale object that has been freed results in undefined behavior.

RETURN VALUE
None.

ERRORS
None.

EXAMPLES

Freeing Up a Locale Object

The following example shows a code fragment to free a locale object created by newlocale():

#include <locale.h>
...

/* Every locale object allocated with newlocale() should be
* f reed using freelocale():
*/

locale_t loc;

/* Get the locale. */

loc = newlocale (LC_CTYPE_MASK | LC_TIME_MASK, "locname", NULL);

/* ... Use the locale object ... */
...

/* Free the locale object resources. */
freelocale (loc);

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
duplocale(), newlocale(), uselocale(), the Base Definitions volume of IEEE Std 1003.1-200x,
<locale.h>

450 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

14942

14943

14944

14945

14946

14947

14948

14949

14950

14951

14952

14953

14954

14955

14956

14957

14958

14959

14960

14961

14962

14963

14964

14965

14966

14967

14968

14969

14970

14971

14972

14973

14974

14975

14976

14977

14978

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces freelocale()

CHANGE HISTORY
First released in Issue 7.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 451

14979

14980

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

freopen() System Interfaces

NAME
freopen — open a stream

SYNOPSIS
#include <stdio.h>

FILE *freopen(const char *restrict filename, c onst char *restrict mode,
FILE *restrict stream);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

The freopen() function shall first attempt to flush the stream and close any file descriptor
associated with stream. Failure to flush or close the file descriptor successfully shall be ignored.
The error and end-of-file indicators for the stream shall be cleared.

The freopen() function shall open the file whose pathname is the string pointed to by filename
and associate the stream pointed to by stream with it. The mode argument shall be used just as in

CX fopen(). The freopen() function shall allocate a file descriptor in the same way as open().

The original stream shall be closed regardless of whether the subsequent open succeeds.

If filename is a null pointer, the freopen() function shall attempt to change the mode of the stream
to that specified by mode, as if the name of the file currently associated with the stream had been
used. In this case, the file descriptor associated with the stream need not be closed if the call to
freopen() succeeds. It is implementation-defined which changes of mode are permitted (if any),
and under what circumstances.

XSI After a successful call to the freopen() function, the orientation of the stream shall be cleared, the
encoding rule shall be cleared, and the associated mbstate_t object shall be set to describe an
initial conversion state.

CX The largest value that can be represented correctly in an object of type off_t shall be established
as the offset maximum in the open file description.

RETURN VALUE
Upon successful completion, freopen() shall return the value of stream. Otherwise, a null pointer

CX shall be returned, and errno shall be set to indicate the error.

ERRORS
The freopen() function shall fail if:

CX [EACCES] Search permission is denied on a component of the path prefix, or the file
exists and the permissions specified by mode are denied, or the file does not
exist and write permission is denied for the parent directory of the file to be
created.

CX [EBADF] The file descriptor underlying the stream is not a valid file descriptor when
filename is a null pointer.

CX [EINTR] A signal was caught during freopen().

CX [EISDIR] The named file is a directory and mode requires write access.

CX [ELOOP] A loop exists in symbolic links encountered during resolution of the path
argument.

452 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

14981

14982

14983

14984

14985

14986

14987

14988

14989

14990

14991

14992

14993

14994

14995

14996

14997

14998

14999

15000

15001

15002

15003

15004

15005

15006

15007

15008

15009

15010

15011

15012

15013

15014

15015

15016

15017

15018

15019

15020

15021

15022

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces freopen()

CX [EMFILE] All file descriptors available to the process are currently open.

CX [ENAMETOOLONG]
The length of the filename argument exceeds {PATH_MAX} or a pathname
component is longer than {NAME_MAX}.

CX [ENFILE] The maximum allowable number of files is currently open in the system.

CX [ENOENT] A component of filename does not name an existing file or filename is an empty
string.

CX [ENOSPC] The directory or file system that would contain the new file cannot be
expanded, the file does not exist, and it was to be created.

CX [ENOTDIR] A component of the path prefix is not a directory.

CX [ENXIO] The named file is a character special or block special file, and the device
associated with this special file does not exist.

CX [EOVERFLOW] The named file is a regular file and the size of the file cannot be represented
correctly in an object of type off_t.

CX [EROFS] The named file resides on a read-only file system and mode requires write
access.

The freopen() function may fail if:

CX [EBADF] The mode with which the file descriptor underlying the stream was opened
does not support the requested mode when filename is a null pointer.

CX [EINVAL] The value of the mode argument is not valid.

CX [ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during
resolution of the path argument.

CX [ENAMETOOLONG]
Pathname resolution of a symbolic link produced an intermediate result
whose length exceeds {PATH_MAX}.

CX [ENOMEM] Insufficient storage space is available.

CX [ENXIO] A request was made of a nonexistent device, or the request was outside the
capabilities of the device.

CX [ETXTBSY] The file is a pure procedure (shared text) file that is being executed and mode
requires write access.

EXAMPLES

Directing Standard Output to a File

The following example logs all standard output to the /tmp/logfile file.

#include <stdio.h>
...
FILE *fp;
...
fp = freopen ("/tmp/logfile", "a+", stdout);
...

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 453

15023

15024

15025

15026

15027

15028

15029

15030

15031

15032

15033

15034

15035

15036

15037

15038

15039

15040

15041

15042

15043

15044

15045

15046

15047

15048

15049

15050

15051

15052

15053

15054

15055

15056

15057

15058

15059

15060

15061

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

freopen() System Interfaces

APPLICATION USAGE
The freopen() function is typically used to attach the preopened streams associated with stdin,
stdout, and stderr to other files.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fclose(), fdopen(), fmemopen(), fopen(), mbsinit(), open(), open_memstream(), the Base Definitions
volume of IEEE Std 1003.1-200x, <stdio.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The DESCRIPTION is updated to indicate that the orientation of the stream is cleared and the
conversion state of the stream is set to an initial conversion state by a successful call to the
freopen() function.

Large File Summit extensions are added.

Issue 6
Extensions beyond the ISO C standard are marked.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• In the DESCRIPTION, text is added to indicate setting of the offset maximum in the open
file description. This change is to support large files.

• In the ERRORS section, the [EOVERFLOW] condition is added. This change is to support
large files.

• The [ELOOP] mandatory error condition is added.

• A second [ENAMETOOLONG] is added as an optional error condition.

• The [EINVAL], [ENOMEM], [ENXIO], and [ETXTBSY] optional error conditions are added.

The following changes are made for alignment with the ISO/IEC 9899: 1999 standard:

• The freopen() prototype is updated.

• The DESCRIPTION is updated.

The wording of the mandatory [ELOOP] error condition is updated, and a second optional
[ELOOP] error condition is added.

The DESCRIPTION is updated regarding failure to close, changing the ‘‘file’’ to ‘‘file descriptor’’.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/40 is applied, adding the following
sentence to the DESCRIPTION: ‘‘In this case, the file descriptor associated with the stream need
not be closed if the call to freopen() succeeds.’’.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/41 is applied, adding an mandatory
[EBADF] error, and an optional [EBADF] error to the ERRORS section.

Issue 7
SD5-XBD-ERN-4 is applied, changing the definition of the [EMFILE] error.

Austin Group Interpretation 1003.1-2001 #043 is applied, clarifying that the freopen() function
allocates a file descriptor as per open().

454 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

15062

15063

15064

15065

15066

15067

15068

15069

15070

15071

15072

15073

15074

15075

15076

15077

15078

15079

15080

15081

15082

15083

15084

15085

15086

15087

15088

15089

15090

15091

15092

15093

15094

15095

15096

15097

15098

15099

15100

15101

15102

15103

15104

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces freopen()

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 455

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

frexp() System Interfaces

NAME
frexp, frexpf, frexpl — extract mantissa and exponent from a double precision number

SYNOPSIS
#include <math.h>

double frexp(double num, i nt * exp);
float frexpf(float num, i nt * exp);
long double frexpl(long double num, i nt * exp);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

These functions shall break a floating-point number num into a normalized fraction and an
integral power of 2. The integer exponent shall be stored in the int object pointed to by exp.

RETURN VALUE
For finite arguments, these functions shall return the value x, such that x has a magnitude in the
interval [½,1) or 0, and num equals x times 2 raised to the power *exp.

MX If num is NaN, a NaN shall be returned, and the value of *exp is unspecified.

If num is ±0, ±0 shall be returned, and the value of *exp shall be 0.

If num is ±Inf, num shall be returned, and the value of *exp is unspecified.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
isnan(), ldexp(), modf(), the Base Definitions volume of IEEE Std 1003.1-200x, <math.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The DESCRIPTION is updated to indicate how an application should check for an error. This
text was previously published in the APPLICATION USAGE section.

456 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

15105

15106

15107

15108

15109

15110

15111

15112

15113

15114

15115

15116

15117

15118

15119

15120

15121

15122

15123

15124

15125

15126

15127

15128

15129

15130

15131

15132

15133

15134

15135

15136

15137

15138

15139

15140

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces frexp()

Issue 6
The frexpf() and frexpl() functions are added for alignment with the ISO/IEC 9899: 1999
standard.

The DESCRIPTION, RETURN VALUE, ERRORS, and APPLICATION USAGE sections are
revised to align with the ISO/IEC 9899: 1999 standard.

IEC 60559: 1989 standard floating-point extensions over the ISO/IEC 9899: 1999 standard are
marked.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 457

15141

15142

15143

15144

15145

15146

15147

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

fscanf() System Interfaces

NAME
fscanf, scanf, sscanf — convert formatted input

SYNOPSIS
#include <stdio.h>

int fscanf(FILE *restrict stream, c onst char *restrict format, . ..);
int scanf(const char *restrict format, . ..);
int sscanf(const char *restrict s, c onst char *restrict format, . ..);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

The fscanf() function shall read from the named input stream. The scanf() function shall read
from the standard input stream stdin. The sscanf() function shall read from the string s. Each
function reads bytes, interprets them according to a format, and stores the results in its
arguments. Each expects, as arguments, a control string format described below, and a set of
pointer arguments indicating where the converted input should be stored. The result is
undefined if there are insufficient arguments for the format. If the format is exhausted while
arguments remain, the excess arguments shall be evaluated but otherwise ignored.

CX Conversions can be applied to the nth argument after the format in the argument list, rather than
to the next unused argument. In this case, the conversion specifier character % (see below) is
replaced by the sequence "%n$" , where n is a decimal integer in the range [1,{NL_ARGMAX}].
This feature provides for the definition of format strings that select arguments in an order
appropriate to specific languages. In format strings containing the "%n$" form of conversion
specifications, it is unspecified whether numbered arguments in the argument list can be
referenced from the format string more than once.

The format can contain either form of a conversion specification—that is, %or "%n$" —but the
two forms cannot be mixed within a single format string. The only exception to this is that %%or
%* can be mixed with the "%n$" form. When numbered argument specifications are used,
specifying the Nth argument requires that all the leading arguments, from the first to the
(N−1)th, are pointers.

The fscanf() function in all its forms shall allow detection of a language-dependent radix
character in the input string. The radix character is defined in the locale of the process (category
LC_NUMERIC). In the POSIX locale, or in a locale where the radix character is not defined, the
radix character shall default to a period (’.’).

The format is a character string, beginning and ending in its initial shift state, if any, composed
of zero or more directives. Each directive is composed of one of the following: one or more
white-space characters (<space>s, <tab>s, <newline>s, <vertical-tab>s, or <form-feed>s); an
ordinary character (neither ’%’ nor a white-space character); or a conversion specification. Each

CX conversion specification is introduced by the character ’%’ or the character sequence "%n$" ,
after which the following appear in sequence:

• An optional assignment-suppressing character ’*’ .

• An optional non-zero decimal integer that specifies the maximum field width.

• An option length modifier that specifies the size of the receiving object.

• A conversion specifier character that specifies the type of conversion to be applied. The valid
conversion specifiers are described below.

458 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

15148

15149

15150

15151

15152

15153

15154

15155

15156

15157

15158

15159

15160

15161

15162

15163

15164

15165

15166

15167

15168

15169

15170

15171

15172

15173

15174

15175

15176

15177

15178

15179

15180

15181

15182

15183

15184

15185

15186

15187

15188

15189

15190

15191

15192

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces fscanf()

The fscanf() functions shall execute each directive of the format in turn. If a directive fails, as
detailed below, the function shall return. Failures are described as input failures (due to the
unavailability of input bytes) or matching failures (due to inappropriate input).

A directive composed of one or more white-space characters shall be executed by reading input
until no more valid input can be read, or up to the first byte which is not a white-space character,
which remains unread.

A directive that is an ordinary character shall be executed as follows: the next byte shall be read
from the input and compared with the byte that comprises the directive; if the comparison
shows that they are not equivalent, the directive shall fail, and the differing and subsequent
bytes shall remain unread. Similarly, if end-of-file, an encoding error, or a read error prevents a
character from being read, the directive shall fail.

A directive that is a conversion specification defines a set of matching input sequences, as
described below for each conversion character. A conversion specification shall be executed in
the following steps.

Input white-space characters (as specified by isspace()) shall be skipped, unless the conversion
specification includes a [, c , C, or n conversion specifier.

An item shall be read from the input, unless the conversion specification includes an n
conversion specifier. An input item shall be defined as the longest sequence of input bytes (up to
any specified maximum field width, which may be measured in characters or bytes dependent
on the conversion specifier) which is an initial subsequence of a matching sequence. The first
byte, if any, after the input item shall remain unread. If the length of the input item is 0, the
execution of the conversion specification shall fail; this condition is a matching failure, unless
end-of-file, an encoding error, or a read error prevented input from the stream, in which case it is
an input failure.

Except in the case of a %conversion specifier, the input item (or, in the case of a %nconversion
specification, the count of input bytes) shall be converted to a type appropriate to the conversion
character. If the input item is not a matching sequence, the execution of the conversion
specification fails; this condition is a matching failure. Unless assignment suppression was
indicated by a ’*’ , the result of the conversion shall be placed in the object pointed to by the
first argument following the format argument that has not already received a conversion result if

CX the conversion specification is introduced by %, or in the nth argument if introduced by the
character sequence "%n$" . If this object does not have an appropriate type, or if the result of the
conversion cannot be represented in the space provided, the behavior is undefined.

The length modifiers and their meanings are:

hh Specifies that a following d, i , o, u, x , X, or n conversion specifier applies to an
argument with type pointer to signed char or unsigned char.

h Specifies that a following d, i , o, u, x , X, or n conversion specifier applies to an
argument with type pointer to short or unsigned short.

l (ell) Specifies that a following d, i , o, u, x , X, or n conversion specifier applies to an
argument with type pointer to long or unsigned long; that a following a, A, e, E, f , F,
g, or Gconversion specifier applies to an argument with type pointer to double; or that
a following c , s , or [conversion specifier applies to an argument with type pointer to
wchar_t.

ll (ell-ell)
Specifies that a following d, i , o, u, x , X, or n conversion specifier applies to an
argument with type pointer to long long or unsigned long long.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 459

15193

15194

15195

15196

15197

15198

15199

15200

15201

15202

15203

15204

15205

15206

15207

15208

15209

15210

15211

15212

15213

15214

15215

15216

15217

15218

15219

15220

15221

15222

15223

15224

15225

15226

15227

15228

15229

15230

15231

15232

15233

15234

15235

15236

15237

15238

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

fscanf() System Interfaces

j Specifies that a following d, i , o, u, x , X, or n conversion specifier applies to an
argument with type pointer to intmax_t or uintmax_t.

z Specifies that a following d, i , o, u, x , X, or n conversion specifier applies to an
argument with type pointer to size_t or the corresponding signed integer type.

t Specifies that a following d, i , o, u, x , X, or n conversion specifier applies to an
argument with type pointer to ptrdiff_t or the corresponding unsigned type.

L Specifies that a following a, A, e, E, f , F, g, or G conversion specifier applies to an
argument with type pointer to long double.

If a length modifier appears with any conversion specifier other than as specified above, the
behavior is undefined.

The following conversion specifiers are valid:

d Matches an optionally signed decimal integer, whose format is the same as expected for
the subject sequence of strtol() with the value 10 for the base argument. In the absence
of a size modifier, the application shall ensure that the corresponding argument is a
pointer to int.

i Matches an optionally signed integer, whose format is the same as expected for the
subject sequence of strtol() with 0 for the base argument. In the absence of a size
modifier, the application shall ensure that the corresponding argument is a pointer to
int.

o Matches an optionally signed octal integer, whose format is the same as expected for
the subject sequence of strtoul() with the value 8 for the base argument. In the absence
of a size modifier, the application shall ensure that the corresponding argument is a
pointer to unsigned.

u Matches an optionally signed decimal integer, whose format is the same as expected for
the subject sequence of strtoul() with the value 10 for the base argument. In the absence
of a size modifier, the application shall ensure that the corresponding argument is a
pointer to unsigned.

x Matches an optionally signed hexadecimal integer, whose format is the same as
expected for the subject sequence of strtoul() with the value 16 for the base argument. In
the absence of a size modifier, the application shall ensure that the corresponding
argument is a pointer to unsigned.

a, e, f , g
Matches an optionally signed floating-point number, infinity, or NaN, whose format is
the same as expected for the subject sequence of strtod(). In the absence of a size
modifier, the application shall ensure that the corresponding argument is a pointer to
float.

If the fprintf() family of functions generates character string representations for infinity
and NaN (a symbolic entity encoded in floating-point format) to support
IEEE Std 754-1985, the fscanf() family of functions shall recognize them as input.

s Matches a sequence of bytes that are not white-space characters. The application shall
ensure that the corresponding argument is a pointer to the initial byte of an array of
char, signed char, or unsigned char large enough to accept the sequence and a
terminating null character code, which shall be added automatically.

If an l (ell) qualifier is present, the input is a sequence of characters that begins in the
initial shift state. Each character shall be converted to a wide character as if by a call to
the mbrtowc() function, with the conversion state described by an mbstate_t object
initialized to zero before the first character is converted. The application shall ensure

460 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

15239

15240

15241

15242

15243

15244

15245

15246

15247

15248

15249

15250

15251

15252

15253

15254

15255

15256

15257

15258

15259

15260

15261

15262

15263

15264

15265

15266

15267

15268

15269

15270

15271

15272

15273

15274

15275

15276

15277

15278

15279

15280

15281

15282

15283

15284

15285

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces fscanf()

that the corresponding argument is a pointer to an array of wchar_t large enough to
accept the sequence and the terminating null wide character, which shall be added
automatically.

[Matches a non-empty sequence of bytes from a set of expected bytes (the scanset). The
normal skip over white-space characters shall be suppressed in this case. The
application shall ensure that the corresponding argument is a pointer to the initial byte
of an array of char, signed char, or unsigned char large enough to accept the sequence
and a terminating null byte, which shall be added automatically.

If an l (ell) qualifier is present, the input is a sequence of characters that begins in the
initial shift state. Each character in the sequence shall be converted to a wide character
as if by a call to the mbrtowc() function, with the conversion state described by an
mbstate_t object initialized to zero before the first character is converted. The
application shall ensure that the corresponding argument is a pointer to an array of
wchar_t large enough to accept the sequence and the terminating null wide character,
which shall be added automatically.

The conversion specification includes all subsequent bytes in the format string up to
and including the matching right square bracket (’]’). The bytes between the square
brackets (the scanlist) comprise the scanset, unless the byte after the left square bracket
is a circumflex (’ˆ’), in which case the scanset contains all bytes that do not appear in
the scanlist between the circumflex and the right square bracket. If the conversion
specification begins with "[]" or "[ˆ]" , the right square bracket is included in the
scanlist and the next right square bracket is the matching right square bracket that ends
the conversion specification; otherwise, the first right square bracket is the one that
ends the conversion specification. If a ’ −’ is in the scanlist and is not the first character,
nor the second where the first character is a ’ˆ’ , nor the last character, the behavior is
implementation-defined.

c Matches a sequence of bytes of the number specified by the field width (1 if no field
width is present in the conversion specification). The application shall ensure that the
corresponding argument is a pointer to the initial byte of an array of char, signed char,
or unsigned char large enough to accept the sequence. No null byte is added. The
normal skip over white-space characters shall be suppressed in this case.

If an l (ell) qualifier is present, the input shall be a sequence of characters that begins in
the initial shift state. Each character in the sequence is converted to a wide character as
if by a call to the mbrtowc() function, with the conversion state described by an
mbstate_t object initialized to zero before the first character is converted. The
application shall ensure that the corresponding argument is a pointer to an array of
wchar_t large enough to accept the resulting sequence of wide characters. No null wide
character is added.

p Matches an implementation-defined set of sequences, which shall be the same as the set
of sequences that is produced by the %pconversion specification of the corresponding
fprintf() functions. The application shall ensure that the corresponding argument is a
pointer to a pointer to void. The interpretation of the input item is implementation-
defined. If the input item is a value converted earlier during the same program
execution, the pointer that results shall compare equal to that value; otherwise, the
behavior of the %pconversion specification is undefined.

n No input is consumed. The application shall ensure that the corresponding argument is
a pointer to the integer into which shall be written the number of bytes read from the
input so far by this call to the fscanf() functions. Execution of a %n conversion
specification shall not increment the assignment count returned at the completion of
execution of the function. No argument shall be converted, but one shall be consumed.
If the conversion specification includes an assignment-suppressing character or a field

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 461

15286

15287

15288

15289

15290

15291

15292

15293

15294

15295

15296

15297

15298

15299

15300

15301

15302

15303

15304

15305

15306

15307

15308

15309

15310

15311

15312

15313

15314

15315

15316

15317

15318

15319

15320

15321

15322

15323

15324

15325

15326

15327

15328

15329

15330

15331

15332

15333

15334

15335

15336

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

fscanf() System Interfaces

width, the behavior is undefined.

XSI C Equivalent to lc .

XSI S Equivalent to ls .

% Matches a single ’%’ character; no conversion or assignment occurs. The complete
conversion specification shall be %%.

If a conversion specification is invalid, the behavior is undefined.

The conversion specifiers A, E, F, G, and X are also valid and shall be equivalent to a, e, f , g, and
x , respectively.

If end-of-file is encountered during input, conversion shall be terminated. If end-of-file occurs
before any bytes matching the current conversion specification (except for %n) have been read
(other than leading white-space characters, where permitted), execution of the current
conversion specification shall terminate with an input failure. Otherwise, unless execution of the
current conversion specification is terminated with a matching failure, execution of the
following conversion specification (if any) shall be terminated with an input failure.

Reaching the end of the string in sscanf() shall be equivalent to encountering end-of-file for
fscanf().

If conversion terminates on a conflicting input, the offending input is left unread in the input.
Any trailing white space (including <newline>s) shall be left unread unless matched by a
conversion specification. The success of literal matches and suppressed assignments is only
directly determinable via the %nconversion specification.

CX The fscanf() and scanf() functions may mark the st_atime field of the file associated with stream
for update. The st_atime field shall be marked for update by the first successful execution of
fgetc(), fgets(), fread(), getc(), getchar(), gets(), fscanf(), or scanf() using stream that returns data
not supplied by a prior call to ungetc().

RETURN VALUE
Upon successful completion, these functions shall return the number of successfully matched
and assigned input items; this number can be zero in the event of an early matching failure. If
the input ends before the first matching failure or conversion, EOF shall be returned. If a read

CX error occurs, the error indicator for the stream is set, EOF shall be returned, and errno shall be
set to indicate the error.

ERRORS
For the conditions under which the fscanf() functions fail and may fail, refer to fgetc() or
fgetwc().

In addition, fscanf() may fail if:

CX [EILSEQ] Input byte sequence does not form a valid character.

CX [EINVAL] There are insufficient arguments.

EXAMPLES
The call:

int i, n; float x; char name[50];
n = s canf("%d%f%s", &i, &x, name);

with the input line:

25 54.32E −1 Hamster

assigns to n the value 3, to i the value 25, to x the value 5.432, and name contains the string
"Hamster" .

462 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

15337

15338

15339

15340

15341

15342

15343

15344

15345

15346

15347

15348

15349

15350

15351

15352

15353

15354

15355

15356

15357

15358

15359

15360

15361

15362

15363

15364

15365

15366

15367

15368

15369

15370

15371

15372

15373

15374

15375

15376

15377

15378

15379

15380

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces fscanf()

The call:

int i; float x; char name[50];
(void) scanf("%2d%f%*d %[0123456789]", &i, &x, name);

with input:

56789 0123 56a72

assigns 56 to i, 789.0 to x, skips 0123, and places the string "56\0" in name. The next call to
getchar() shall return the character ’a’ .

Reading Data into an Array

The following call uses fscanf() to read three floating-point numbers from standard input into
the input array.

float input[3]; fscanf (stdin, "%f %f %f", input, input+1, input+2);

APPLICATION USAGE
If the application calling fscanf() has any objects of type wint_t or wchar_t, it must also include
the <wchar.h> header to have these objects defined.

RATIONALE
This function is aligned with the ISO/IEC 9899: 1999 standard, and in doing so a few ‘‘obvious’’
things were not included. Specifically, the set of characters allowed in a scanset is limited to
single-byte characters. In other similar places, multi-byte characters have been permitted, but
for alignment with the ISO/IEC 9899: 1999 standard, it has not been done here. Applications
needing this could use the corresponding wide-character functions to achieve the desired
results.

FUTURE DIRECTIONS
None.

SEE ALSO
getc(), printf(), setlocale(), strtod(), strtol(), strtoul(), wcrtomb(), the Base Definitions volume of
IEEE Std 1003.1-200x, Chapter 7, Locale, <langinfo.h>, <stdio.h>, <wchar.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
Aligned with ISO/IEC 9899: 1990/Amendment 1: 1995 (E). Specifically, the l (ell) qualifier is
now defined for the c , s , and [conversion specifiers.

The DESCRIPTION is updated to indicate that if infinity and NaN can be generated by the
fprintf() family of functions, then they are recognized by the fscanf() family.

Issue 6
The Open Group Corrigenda U021/7 and U028/10 are applied. These correct several
occurrences of ‘‘characters’’ in the text which have been replaced with the term ‘‘bytes’’.

The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

The following changes are made for alignment with the ISO/IEC 9899: 1999 standard:

• The prototypes for fscanf(), scanf(), and sscanf() are updated.

• The DESCRIPTION is updated.

• The hh , ll , j , t , and z length modifiers are added.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 463

15381

15382

15383

15384

15385

15386

15387

15388

15389

15390

15391

15392

15393

15394

15395

15396

15397

15398

15399

15400

15401

15402

15403

15404

15405

15406

15407

15408

15409

15410

15411

15412

15413

15414

15415

15416

15417

15418

15419

15420

15421

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

fscanf() System Interfaces

• The a, A, and F conversion characters are added.

The DESCRIPTION is updated to use the terms ‘‘conversion specifier’’ and ‘‘conversion
specification’’ consistently.

Issue 7
XD5-XSH-ERN-9 is applied, correcting fscanf() to scanf() in the DESCRIPTION.

Functionality relating to the %n$ form of conversion specification is moved from the XSI option
to the Base.

464 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

15422

15423

15424

15425

15426

15427

15428

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces fseek()

NAME
fseek, fseeko — reposition a file-position indicator in a stream

SYNOPSIS
#include <stdio.h>

int fseek(FILE * stream, l ong offset, i nt whence);
CX int fseeko(FILE * stream, o ff_t offset, i nt whence);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

The fseek() function shall set the file-position indicator for the stream pointed to by stream. If a
read or write error occurs, the error indicator for the stream shall be set and fseek() fails.

The new position, measured in bytes from the beginning of the file, shall be obtained by adding
offset to the position specified by whence. The specified point is the beginning of the file for
SEEK_SET, the current value of the file-position indicator for SEEK_CUR, or end-of-file for
SEEK_END.

If the stream is to be used with wide-character input/output functions, the application shall
ensure that offset is either 0 or a value returned by an earlier call to ftell() on the same stream and
whence is SEEK_SET.

A successful call to fseek() shall clear the end-of-file indicator for the stream and undo any effects
of ungetc() and ungetwc() on the same stream. After an fseek() call, the next operation on an
update stream may be either input or output.

CX If the most recent operation, other than ftell(), on a given stream is fflush(), the file offset in the
underlying open file description shall be adjusted to reflect the location specified by fseek().

The fseek() function shall allow the file-position indicator to be set beyond the end of existing
data in the file. If data is later written at this point, subsequent reads of data in the gap shall
return bytes with the value 0 until data is actually written into the gap.

The behavior of fseek() on devices which are incapable of seeking is implementation-defined.
The value of the file offset associated with such a device is undefined.

If the stream is writable and buffered data had not been written to the underlying file, fseek()
shall cause the unwritten data to be written to the file and shall mark the st_ctime and st_mtime
fields of the file for update.

In a locale with state-dependent encoding, whether fseek() restores the stream’s shift state is
implementation-defined.

The fseeko() function shall be equivalent to the fseek() function except that the offset argument is
of type off_t.

RETURN VALUE
CX The fseek() and fseeko() functions shall return 0 if they succeed.

CX Otherwise, they shall return −1 and set errno to indicate the error.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 465

15429

15430

15431

15432

15433

15434

15435

15436

15437

15438

15439

15440

15441

15442

15443

15444

15445

15446

15447

15448

15449

15450

15451

15452

15453

15454

15455

15456

15457

15458

15459

15460

15461

15462

15463

15464

15465

15466

15467

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

fseek() System Interfaces

ERRORS
CXCX The fseek() and fseeko() functions shall fail if, either the stream is unbuffered or the stream’s

buffer needed to be flushed, and the call to fseek() or fseeko() causes an underlying lseek() or
write() to be invoked, and:

CX [EAGAIN] The O_NONBLOCK flag is set for the file descriptor and the thread would be
delayed in the write operation.

CX [EBADF] The file descriptor underlying the stream file is not open for writing or the
stream’s buffer needed to be flushed and the file is not open.

CX [EFBIG] An attempt was made to write a file that exceeds the maximum file size.

XSI [EFBIG] An attempt was made to write a file that exceeds the file size limit of the
process.

CX [EFBIG] The file is a regular file and an attempt was made to write at or beyond the
offset maximum associated with the corresponding stream.

CX [EINTR] The write operation was terminated due to the receipt of a signal, and no data
was transferred.

CX [EINVAL] The whence argument is invalid. The resulting file-position indicator would be
set to a negative value.

CX [EIO] A physical I/O error has occurred, or the process is a member of a background
process group attempting to perform a write() to its controlling terminal,
TOSTOP is set, the process is neither ignoring nor blocking SIGTTOU, and the
process group of the process is orphaned. This error may also be returned
under implementation-defined conditions.

CX [ENOSPC] There was no free space remaining on the device containing the file.

CX [ENXIO] A request was made of a nonexistent device, or the request was outside the
capabilities of the device.

CX [EOVERFLOW] For fseek(), the resulting file offset would be a value which cannot be
represented correctly in an object of type long.

CX [EOVERFLOW] For fseeko(), the resulting file offset would be a value which cannot be
represented correctly in an object of type off_t.

CX [EPIPE] An attempt was made to write to a pipe or FIFO that is not open for reading
by any process; a SIGPIPE signal shall also be sent to the thread.

CX [ESPIPE] The file descriptor underlying stream is associated with a pipe or FIFO.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fopen(), fsetpos(), ftell(), getrlimit(), lseek(), rewind(), ulimit(), ungetc(), write(), the Base
Definitions volume of IEEE Std 1003.1-200x, <stdio.h>

466 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

15468

15469

15470

15471

15472

15473

15474

15475

15476

15477

15478

15479

15480

15481

15482

15483

15484

15485

15486

15487

15488

15489

15490

15491

15492

15493

15494

15495

15496

15497

15498

15499

15500

15501

15502

15503

15504

15505

15506

15507

15508

15509

15510

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces fseek()

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
Normative text previously in the APPLICATION USAGE section is moved to the
DESCRIPTION.

Large File Summit extensions are added.

Issue 6
Extensions beyond the ISO C standard are marked.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The fseeko() function is added.

• The [EFBIG], [EOVERFLOW], and [ENXIO] mandatory error conditions are added.

The following change is incorporated for alignment with the FIPS requirements:

• The [EINTR] error is no longer an indication that the implementation does not report
partial transfers.

The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

The DESCRIPTION is updated to explicitly state that fseek() sets the file-position indicator, and
then on error the error indicator is set and fseek() fails. This is for alignment with the
ISO/IEC 9899: 1999 standard.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/42 is applied, updating the [EAGAIN]
error in the ERRORS section from ‘‘the process would be delayed’’ to ‘‘the thread would be
delayed’’.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 467

15511

15512

15513

15514

15515

15516

15517

15518

15519

15520

15521

15522

15523

15524

15525

15526

15527

15528

15529

15530

15531

15532

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

fsetpos() System Interfaces

NAME
fsetpos — set current file position

SYNOPSIS
#include <stdio.h>

int fsetpos(FILE * stream, c onst fpos_t * pos);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

The fsetpos() function shall set the file position and state indicators for the stream pointed to by
stream according to the value of the object pointed to by pos, which the application shall ensure is
a value obtained from an earlier call to fgetpos() on the same stream. If a read or write error
occurs, the error indicator for the stream shall be set and fsetpos() fails.

A successful call to the fsetpos() function shall clear the end-of-file indicator for the stream and
undo any effects of ungetc() on the same stream. After an fsetpos() call, the next operation on an
update stream may be either input or output.

CX The behavior of fsetpos() on devices which are incapable of seeking is implementation-defined.
The value of the file offset associated with such a device is undefined.

RETURN VALUE
The fsetpos() function shall return 0 if it succeeds; otherwise, it shall return a non-zero value and
set errno to indicate the error.

ERRORS
CX The fsetpos() function shall fail if, either the stream is unbuffered or the stream’s buffer needed to

be flushed, and the call to fsetpos() causes an underlying lseek() or write() to be invoked, and:

CX [EAGAIN] The O_NONBLOCK flag is set for the file descriptor and the thread would be
delayed in the write operation.

CX [EBADF] The file descriptor underlying the stream file is not open for writing or the
stream’s buffer needed to be flushed and the file is not open.

CX [EFBIG] An attempt was made to write a file that exceeds the maximum file size.

XSI [EFBIG] An attempt was made to write a file that exceeds the file size limit of the
process.

CX [EFBIG] The file is a regular file and an attempt was made to write at or beyond the
offset maximum associated with the corresponding stream.

CX [EINTR] The write operation was terminated due to the receipt of a signal, and no data
was transferred.

CX [EIO] A physical I/O error has occurred, or the process is a member of a background
process group attempting to perform a write() to its controlling terminal,
TOSTOP is set, the process is neither ignoring nor blocking SIGTTOU, and the
process group of the process is orphaned. This error may also be returned
under implementation-defined conditions.

CX [ENOSPC] There was no free space remaining on the device containing the file.

468 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

15533

15534

15535

15536

15537

15538

15539

15540

15541

15542

15543

15544

15545

15546

15547

15548

15549

15550

15551

15552

15553

15554

15555

15556

15557

15558

15559

15560

15561

15562

15563

15564

15565

15566

15567

15568

15569

15570

15571

15572

15573

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces fsetpos()

CX [ENXIO] A request was made of a nonexistent device, or the request was outside the
capabilities of the device.

CX [EPIPE] The file descriptor underlying stream is associated with a pipe or FIFO.

CX [EPIPE] An attempt was made to write to a pipe or FIFO that is not open for reading
by any process; a SIGPIPE signal shall also be sent to the thread.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fopen(), ftell(), lseek(), rewind(), ungetc(), write(), the Base Definitions volume of
IEEE Std 1003.1-200x, <stdio.h>

CHANGE HISTORY
First released in Issue 4. Derived from the ISO C standard.

Issue 6
Extensions beyond the ISO C standard are marked.

An additional [ESPIPE] error condition is added for sockets.

The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

The DESCRIPTION is updated to clarify that the error indicator is set for the stream on a read or
write error. This is for alignment with the ISO/IEC 9899: 1999 standard.

IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/21 is applied, deleting an erroneous
[EINVAL] error case from the ERRORS section.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/43 is applied, updating the [EAGAIN]
error in the ERRORS section from ‘‘the process would be delayed’’ to ‘‘the thread would be
delayed’’.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 469

15574

15575

15576

15577

15578

15579

15580

15581

15582

15583

15584

15585

15586

15587

15588

15589

15590

15591

15592

15593

15594

15595

15596

15597

15598

15599

15600

15601

15602

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

fstat() System Interfaces

NAME
fstat — get file status

SYNOPSIS
#include <sys/stat.h>

int fstat(int fildes, s truct stat * buf);

DESCRIPTION
The fstat() function shall obtain information about an open file associated with the file
descriptor fildes, and shall write it to the area pointed to by buf .

SHM If fildes references a shared memory object, the implementation shall update in the stat structure
pointed to by the buf argument the st_uid, st_gid, st_size, and st_mode fields, and only the
S_IRUSR, S_IWUSR, S_IRGRP, S_IWGRP, S_IROTH, and S_IWOTH file permission bits need be
valid. The implementation may update other fields and flags.

TYM If fildes references a typed memory object, the implementation shall update in the stat structure
pointed to by the buf argument the st_uid, st_gid, st_size, and st_mode fields, and only the
S_IRUSR, S_IWUSR, S_IRGRP, S_IWGRP, S_IROTH, and S_IWOTH file permission bits need be
valid. The implementation may update other fields and flags.

The buf argument is a pointer to a stat structure, as defined in <sys/stat.h>, into which
information is placed concerning the file.

For all other file types defined in this volume of IEEE Std 1003.1-200x, the structure members
st_mode, st_ino, st_dev, st_uid, st_gid, st_atime, st_ctime, and st_mtime shall have meaningful
values and the value of the st_nlink member shall be set to the number of links to the file.

An implementation that provides additional or alternative file access control mechanisms may,
under implementation-defined conditions, cause fstat() to fail.

The fstat() function shall update any time-related fields as described in the Base Definitions
volume of IEEE Std 1003.1-200x, Section 4.7, File Times Update, before writing into the stat
structure.

RETURN VALUE
Upon successful completion, 0 shall be returned. Otherwise, −1 shall be returned and errno set to
indicate the error.

ERRORS
The fstat() function shall fail if:

[EBADF] The fildes argument is not a valid file descriptor.

[EIO] An I/O error occurred while reading from the file system.

[EOVERFLOW] The file size in bytes or the number of blocks allocated to the file or the file
serial number cannot be represented correctly in the structure pointed to by
buf .

The fstat() function may fail if:

[EOVERFLOW] One of the values is too large to store into the structure pointed to by the buf
argument.

470 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

15603

15604

15605

15606

15607

15608

15609

15610

15611

15612

15613

15614

15615

15616

15617

15618

15619

15620

15621

15622

15623

15624

15625

15626

15627

15628

15629

15630

15631

15632

15633

15634

15635

15636

15637

15638

15639

15640

15641

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces fstat()

EXAMPLES

Obtaining File Status Information

The following example shows how to obtain file status information for a file named
/home/cnd/mod1. The structure variable buffer is defined for the stat structure. The
/home/cnd/mod1 file is opened with read/write privileges and is passed to the open file
descriptor fildes.

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>

struct stat buffer;
int status;
...
fildes = open("/home/cnd/mod1", O_RDWR);
status = fstat(fildes, &buffer);

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fstatat(), the Base Definitions volume of IEEE Std 1003.1-200x, <sys/stat.h>, <sys/types.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The DESCRIPTION is updated for alignment with the POSIX Realtime Extension.

Large File Summit extensions are added.

Issue 6
In the SYNOPSIS, the optional include of the <sys/types.h> header is removed.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
required for conforming implementations of previous POSIX specifications, it was not
required for UNIX applications.

• The [EIO] mandatory error condition is added.

• The [EOVERFLOW] mandatory error condition is added. This change is to support large
files.

• The [EOVERFLOW] optional error condition is added.

The DESCRIPTION is updated for alignment with IEEE Std 1003.1j-2000 by specifying that
shared memory object semantics apply to typed memory objects.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 471

15642

15643

15644

15645

15646

15647

15648

15649

15650

15651

15652

15653

15654

15655

15656

15657

15658

15659

15660

15661

15662

15663

15664

15665

15666

15667

15668

15669

15670

15671

15672

15673

15674

15675

15676

15677

15678

15679

15680

15681

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

fstat() System Interfaces

Issue 7
XSH-SD5-ERN-161 is applied, updating the DESCRIPTION to clarify which file types st_nlink
applies to.

472 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

15682

15683

15684

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces fstatat()

NAME
fstatat, lstat, stat — get file status

SYNOPSIS
#include <sys/stat.h>

int fstatat(int fd, const char *restrict path,
struct stat *restrict buf);

int lstat(const char *restrict path, s truct stat *restrict buf);
int stat(const char *restrict path, s truct stat *restrict buf);

DESCRIPTION
The stat() function shall obtain information about the named file and write it to the area pointed
to by the buf argument. The path argument points to a pathname naming a file. Read, write, or
execute permission of the named file is not required. An implementation that provides
additional or alternate file access control mechanisms may, under implementation-defined
conditions, cause stat() to fail. In particular, the system may deny the existence of the file
specified by path.

If the named file is a symbolic link, the stat() function shall continue pathname resolution using
the contents of the symbolic link, and shall return information pertaining to the resulting file if
the file exists.

The buf argument is a pointer to a stat structure, as defined in the <sys/stat.h> header, into
which information is placed concerning the file.

The stat() function shall update any time-related fields (as described in the Base Definitions
volume of IEEE Std 1003.1-200x, Section 4.7, File Times Update), before writing into the stat
structure.

SHM If the named file is a shared memory object, the implementation shall update in the stat structure
pointed to by the buf argument the st_uid, st_gid, st_size, and st_mode fields, and only the
S_IRUSR, S_IWUSR, S_IRGRP, S_IWGRP, S_IROTH, and S_IWOTH file permission bits need be
valid. The implementation may update other fields and flags.

TYM If the named file is a typed memory object, the implementation shall update in the stat structure
pointed to by the buf argument the st_uid, st_gid, st_size, and st_mode fields, and only the
S_IRUSR, S_IWUSR, S_IRGRP, S_IWGRP, S_IROTH, and S_IWOTH file permission bits need be
valid. The implementation may update other fields and flags.

For all other file types defined in this volume of IEEE Std 1003.1-200x, the structure members
st_mode, st_ino, st_dev, st_uid, st_gid, st_atime, st_ctime, and st_mtime shall have meaningful
values and the value of the member st_nlink shall be set to the number of links to the file.

The lstat() function shall be equivalent to stat(), except when path refers to a symbolic link. In
that case lstat() shall return information about the link, while stat() shall return information
about the file the link references.

For symbolic links, the st_mode member shall contain meaningful information when used with
the file type macros, and the st_size member shall contain the length of the pathname contained
in the symbolic link. File mode bits and the contents of the remaining members of the stat
structure are unspecified. The value returned in the st_size member is the length of the contents
of the symbolic link, and does not count any trailing null.

The fstatat() function shall be equivalent to the stat() or lstat() function, depending on the value
of flag (see below), except in the case where path specifies a relative path. In this case the status
shall be retrieved from a file relative to the directory associated with the file descriptor fd instead
of the current working directory. It is unspecified whether directory searches are permitted

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 473

15685

15686

15687

15688

15689

15690

15691

15692

15693

15694

15695

15696

15697

15698

15699

15700

15701

15702

15703

15704

15705

15706

15707

15708

15709

15710

15711

15712

15713

15714

15715

15716

15717

15718

15719

15720

15721

15722

15723

15724

15725

15726

15727

15728

15729

15730

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

fstatat() System Interfaces

based on whether the file was opened with search permission or on the current permissions of
the directory underlying the file descriptor.

Values for flag are constructed by a bitwise-inclusive OR of flags from the following list, defined
in <fcntl.h>:

AT_SYMLINK_NOFOLLOW
If path names a symbolic link, the status of the symbolic link is returned.

If fstatat() is passed the special value AT_FDCWD in the fd parameter, the current working
directory is used and the behavior shall be identical to a call to stat() or lstat() respectively,
depending on whether or not the AT_SYMLINK_NOFOLLOW bit is set in flag.

RETURN VALUE
Upon successful completion, these functions shall return 0. Otherwise, these functions shall
return −1 and set errno to indicate the error.

ERRORS
These functions shall fail if:

[EACCES] Search permission is denied for a component of the path prefix.

[EIO] An error occurred while reading from the file system.

[ELOOP] A loop exists in symbolic links encountered during resolution of the path
argument.

[ENAMETOOLONG]
The length of the path argument exceeds {PATH_MAX} or a pathname
component is longer than {NAME_MAX}.

[ENOENT] A component of path does not name an existing file or path is an empty string.

[ENOTDIR] A component of the path prefix is not a directory.

[EOVERFLOW] The file size in bytes or the number of blocks allocated to the file or the file
serial number cannot be represented correctly in the structure pointed to by
buf .

The fstatat() function shall fail if:

[EBADF] The path argument does not specify an absolute path and the fd argument is
neither AT_FDCWD nor a valid file descriptor open for searching.

These functions may fail if:

[ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during
resolution of the path argument.

[ENAMETOOLONG]
As a result of encountering a symbolic link in resolution of the path argument,
the length of the substituted pathname string exceeded {PATH_MAX}.

[EOVERFLOW] A value to be stored would overflow one of the members of the stat structure.

The fstatat() function may fail if:

[EINVAL] The value of the flag argument is not valid.

[ENOTDIR] The path argument is not an absolute path and fd is neither AT_FDCWD nor a
file descriptor associated with a directory.

474 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

15731

15732

15733

15734

15735

15736

15737

15738

15739

15740

15741

15742

15743

15744

15745

15746

15747

15748

15749

15750

15751

15752

15753

15754

15755

15756

15757

15758

15759

15760

15761

15762

15763

15764

15765

15766

15767

15768

15769

15770

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces fstatat()

EXAMPLES

Obtaining File Status Information

The following example shows how to obtain file status information for a file named
/home/cnd/mod1. The structure variable buffer is defined for the stat structure.

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>

struct stat buffer;
int status;
...
status = stat("/home/cnd/mod1", &buffer);

Getting Directory Information

The following example fragment gets status information for each entry in a directory. The call to
the stat() function stores file information in the stat structure pointed to by statbuf . The lines
that follow the stat() call format the fields in the stat structure for presentation to the user of the

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

fstatat() System Interfaces

if ((grp = getgrgid(statbuf.st_gid)) != NULL)
printf(" %-8.8s", grp->gr_name);

else
printf(" %-8d", statbuf.st_gid);

/* Print size of file. */
printf(" %9jd", (intmax_t)statbuf.st_size);

tm = localtime(&statbuf.st_mtime);

/* Get localized date string. */
strftime(datestring, sizeof(datestring), nl_langinfo(D_T_FMT), tm);

printf(" %s %s\n", datestring, dp->d_name);
}

Obtaining Symbolic Link Status Information

The following example shows how to obtain status information for a symbolic link named
/modules/pass1. The structure variable buffer is defined for the stat structure. If the path
argument specified the filename for the file pointed to by the symbolic link (/home/cnd/mod1),
the results of calling the function would be the same as those returned by a call to the stat()
function.

#include <sys/stat.h>

struct stat buffer;
int status;
...
status = lstat("/modules/pass1", &buffer);

APPLICATION USAGE
None.

RATIONALE
The intent of the paragraph describing ‘‘additional or alternate file access control mechanisms’’
is to allow a secure implementation where a process with a label that does not dominate the
file’s label cannot perform a stat() function. This is not related to read permission; a process with
a label that dominates the file’s label does not need read permission. An implementation that
supports write-up operations could fail fstat() function calls even though it has a valid file
descriptor open for writing.

The lstat() function is not required to update the time-related fields if the named file is not a
symbolic link. While the st_uid, st_gid, st_atime, st_mtime, and st_ctime members of the stat
structure may apply to a symbolic link, they are not required to do so. No functions in
IEEE Std 1003.1-200x are required to maintain any of these time fields.

The purpose of the fstatat() function is to obtain the status of files in directories other than the
current working directory without exposure to race conditions. Any part of the path of a file
could be changed in parallel to a call to stat(), resulting in unspecified behavior. By opening a
file descriptor for the target directory and using the fstatat() function it can be guaranteed that
the file for which status is returned is located relative to the desired directory.

FUTURE DIRECTIONS
None.

476 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

15818

15819

15820

15821

15822

15823

15824

15825

15826

15827

15828

15829

15830

15831

15832

15833

15834

15835

15836

15837

15838

15839

15840

15841

15842

15843

15844

15845

15846

15847

15848

15849

15850

15851

15852

15853

15854

15855

15856

15857

15858

15859

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces fstatat()

SEE ALSO
access(), chmod(), fdopendir(), fstat(), mknod(), readlink(), symlink(), the Base Definitions volume
of IEEE Std 1003.1-200x, <fcntl.h>, <sys/stat.h>, <sys/types.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
Large File Summit extensions are added.

Issue 6
In the SYNOPSIS, the optional include of the <sys/types.h> header is removed.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
required for conforming implementations of previous POSIX specifications, it was not
required for UNIX applications.

• The [EIO] mandatory error condition is added.

• The [ELOOP] mandatory error condition is added.

• The [EOVERFLOW] mandatory error condition is added. This change is to support large
files.

• The [ENAMETOOLONG] and the second [EOVERFLOW] optional error conditions are
added.

The following changes were made to align with the IEEE P1003.1a draft standard:

• Details are added regarding the treatment of symbolic links.

• The [ELOOP] optional error condition is added.

The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

The restrict keyword is added to the stat() prototype for alignment with the ISO/IEC 9899: 1999
standard.

Issue 7
The fstatat() function is added from The Open Group Technical Standard, 2006, Extended API
Set Part 2.

XSH-SD5-ERN-161 is applied, updating the DESCRIPTION to clarify which file types st_nlink
applies to.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 477

15860

15861

15862

15863

15864

15865

15866

15867

15868

15869

15870

15871

15872

15873

15874

15875

15876

15877

15878

15879

15880

15881

15882

15883

15884

15885

15886

15887

15888

15889

15890

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

fstatvfs() System Interfaces

NAME
fstatvfs, statvfs — get file system information

SYNOPSIS
#include <sys/statvfs.h>

int fstatvfs(int fildes, s truct statvfs * buf);
int statvfs(const char *restrict path, s truct statvfs *restrict buf);

DESCRIPTION
The fstatvfs() function shall obtain information about the file system containing the file
referenced by fildes.

The statvfs() function shall obtain information about the file system containing the file named by
path.

For both functions, the buf argument is a pointer to a statvfs structure that shall be filled. Read,
write, or execute permission of the named file is not required.

The following flags can be returned in the f_flag member:

ST_RDONLY Read-only file system.

ST_NOSUID Setuid/setgid bits ignored by exec.

It is unspecified whether all members of the statvfs structure have meaningful values on all file
systems.

RETURN VALUE
Upon successful completion, statvfs() shall return 0. Otherwise, it shall return −1 and set errno to
indicate the error.

ERRORS
The fstatvfs() and statvfs() functions shall fail if:

[EIO] An I/O error occurred while reading the file system.

[EINTR] A signal was caught during execution of the function.

[EOVERFLOW] One of the values to be returned cannot be represented correctly in the
structure pointed to by buf .

The fstatvfs() function shall fail if:

[EBADF] The fildes argument is not an open file descriptor.

The statvfs() function shall fail if:

[EACCES] Search permission is denied on a component of the path prefix.

[ELOOP] A loop exists in symbolic links encountered during resolution of the path
argument.

[ENAMETOOLONG]
The length of a pathname exceeds {PATH_MAX} or a pathname component is
longer than {NAME_MAX}.

[ENOENT] A component of path does not name an existing file or path is an empty string.

[ENOTDIR] A component of the path prefix of path is not a directory.

478 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

15891

15892

15893

15894

15895

15896

15897

15898

15899

15900

15901

15902

15903

15904

15905

15906

15907

15908

15909

15910

15911

15912

15913

15914

15915

15916

15917

15918

15919

15920

15921

15922

15923

15924

15925

15926

15927

15928

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces fstatvfs()

The statvfs() function may fail if:

[ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during
resolution of the path argument.

[ENAMETOOLONG]
Pathname resolution of a symbolic link produced an intermediate result
whose length exceeds {PATH_MAX}.

EXAMPLES

Obtaining File System Information Using fstatvfs()

The following example shows how to obtain file system information for the file system upon
which the file named /home/cnd/mod1 resides, using the fstatvfs() function. The
/home/cnd/mod1 file is opened with read/write privileges and the open file descriptor is passed
to the fstatvfs() function.

#include <sys/statvfs.h>
#include <fcntl.h>

struct statvfs buffer;
int status;
...
fildes = open("/home/cnd/mod1", O_RDWR);
status = fstatvfs(fildes, &buffer);

Obtaining File System Information Using statvfs()

The following example shows how to obtain file system information for the file system upon
which the file named /home/cnd/mod1 resides, using the statvfs() function.

#include <sys/statvfs.h>

struct statvfs buffer;
int status;
...
status = statvfs("/home/cnd/mod1", &buffer);

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
chmod(), chown(), creat(), dup(), exec , fcntl(), link(), mknod(), open(), pipe(), read(), time(),
unlink(), utime(), write(), the Base Definitions volume of IEEE Std 1003.1-200x, <sys/statvfs.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Large File Summit extensions are added.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 479

15929

15930

15931

15932

15933

15934

15935

15936

15937

15938

15939

15940

15941

15942

15943

15944

15945

15946

15947

15948

15949

15950

15951

15952

15953

15954

15955

15956

15957

15958

15959

15960

15961

15962

15963

15964

15965

15966

15967

15968

15969

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

fstatvfs() System Interfaces

Issue 6
The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

The restrict keyword is added to the statvfs() prototype for alignment with the
ISO/IEC 9899: 1999 standard.

The wording of the mandatory [ELOOP] error condition is updated, and a second optional
[ELOOP] error condition is added.

Issue 7
The fstatvfs() and statvfs() functions are moved from the XSI option to the Base.

SD5-XSH-ERN-68 is applied, correcting the EXAMPLES section.

480 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

15970

15971

15972

15973

15974

15975

15976

15977

15978

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces fsync()

NAME
fsync — synchronize changes to a file

SYNOPSIS
FSC #include <unistd.h>

int fsync(int fildes);

DESCRIPTION
The fsync() function shall request that all data for the open file descriptor named by fildes is to be
transferred to the storage device associated with the file described by fildes. The nature of the
transfer is implementation-defined. The fsync() function shall not return until the system has
completed that action or until an error is detected.

SIO If _POSIX_SYNCHRONIZED_IO is defined, the fsync() function shall force all currently queued
I/O operations associated with the file indicated by file descriptor fildes to the synchronized I/O
completion state. All I/O operations shall be completed as defined for synchronized I/O file
integrity completion.

RETURN VALUE
Upon successful completion, fsync() shall return 0. Otherwise, −1 shall be returned and errno set
to indicate the error. If the fsync() function fails, outstanding I/O operations are not guaranteed
to have been completed.

ERRORS
The fsync() function shall fail if:

[EBADF] The fildes argument is not a valid descriptor.

[EINTR] The fsync() function was interrupted by a signal.

[EINVAL] The fildes argument does not refer to a file on which this operation is possible.

[EIO] An I/O error occurred while reading from or writing to the file system.

In the event that any of the queued I/O operations fail, fsync() shall return the error conditions
defined for read() and write().

EXAMPLES
None.

APPLICATION USAGE
The fsync() function should be used by programs which require modifications to a file to be
completed before continuing; for example, a program which contains a simple transaction
facility might use it to ensure that all modifications to a file or files caused by a transaction are
recorded.

RATIONALE
The fsync() function is intended to force a physical write of data from the buffer cache, and to
assure that after a system crash or other failure that all data up to the time of the fsync() call is
recorded on the disk. Since the concepts of ‘‘buffer cache’’, ‘‘system crash’’, ‘‘physical write’’, and
‘‘non-volatile storage’’ are not defined here, the wording has to be more abstract.

If _POSIX_SYNCHRONIZED_IO is not defined, the wording relies heavily on the conformance
document to tell the user what can be expected from the system. It is explicitly intended that a
null implementation is permitted. This could be valid in the case where the system cannot assure
non-volatile storage under any circumstances or when the system is highly fault-tolerant and the
functionality is not required. In the middle ground between these extremes, fsync() might or

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 481

15979

15980

15981

15982

15983

15984

15985

15986

15987

15988

15989

15990

15991

15992

15993

15994

15995

15996

15997

15998

15999

16000

16001

16002

16003

16004

16005

16006

16007

16008

16009

16010

16011

16012

16013

16014

16015

16016

16017

16018

16019

16020

16021

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

fsync() System Interfaces

might not actually cause data to be written where it is safe from a power failure. The
conformance document should identify at least that one configuration exists (and how to obtain
that configuration) where this can be assured for at least some files that the user can select to use
for critical data. It is not intended that an exhaustive list is required, but rather sufficient
information is provided so that if critical data needs to be saved, the user can determine how the
system is to be configured to allow the data to be written to non-volatile storage.

It is reasonable to assert that the key aspects of fsync() are unreasonable to test in a test suite.
That does not make the function any less valuable, just more difficult to test. A formal
conformance test should probably force a system crash (power shutdown) during the test for
this condition, but it needs to be done in such a way that automated testing does not require this
to be done except when a formal record of the results is being made. It would also not be
unreasonable to omit testing for fsync(), allowing it to be treated as a quality-of-implementation
issue.

FUTURE DIRECTIONS
None.

SEE ALSO
sync(), the Base Definitions volume of IEEE Std 1003.1-200x, <unistd.h>

CHANGE HISTORY
First released in Issue 3.

Issue 5
Aligned with fsync() in the POSIX Realtime Extension. Specifically, the DESCRIPTION and
RETURN VALUE sections are much expanded, and the ERRORS section is updated to indicate
that fsync() can return the error conditions defined for read() and write().

Issue 6
This function is marked as part of the File Synchronization option.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The [EINVAL] and [EIO] mandatory error conditions are added.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/44 is applied, applying an editorial
rewording of the DESCRIPTION. No change in meaning is intended.

482 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

16022

16023

16024

16025

16026

16027

16028

16029

16030

16031

16032

16033

16034

16035

16036

16037

16038

16039

16040

16041

16042

16043

16044

16045

16046

16047

16048

16049

16050

16051

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces ftell()

NAME
ftell, ftello — return a file offset in a stream

SYNOPSIS
#include <stdio.h>

long ftell(FILE * stream);
CX off_t ftello(FILE * stream);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

The ftell() function shall obtain the current value of the file-position indicator for the stream
pointed to by stream.

CX The ftello() function shall be equivalent to ftell(), except that the return value is of type off_t.

RETURN VALUE
CX Upon successful completion, ftell() and ftello() shall return the current value of the file-position

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

ftell() System Interfaces

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
Large File Summit extensions are added.

Issue 6
Extensions beyond the ISO C standard are marked.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The ftello() function is added.

• The [EOVERFLOW] error conditions are added.

An additional [ESPIPE] error condition is added for sockets.

484 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

16090

16091

16092

16093

16094

16095

16096

16097

16098

16099

16100

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces ftok()

NAME
ftok — generate an IPC key

SYNOPSIS
XSI #include <sys/ipc.h>

key_t ftok(const char * path, i nt id);

DESCRIPTION
The ftok() function shall return a key based on path and id that is usable in subsequent calls to
msgget(), semget(), and shmget(). The application shall ensure that the path argument is the
pathname of an existing file that the process is able to stat().

The ftok() function shall return the same key value for all paths that name the same file, when
called with the same id value, and return different key values when called with different id
values or with paths that name different files existing on the same file system at the same time. It
is unspecified whether ftok() shall return the same key value when called again after the file
named by path is removed and recreated with the same name.

Only the low-order 8-bits of id are significant. The behavior of ftok() is unspecified if these bits
are 0.

RETURN VALUE
Upon successful completion, ftok() shall return a key. Otherwise, ftok() shall return (key_t)−1
and set errno to indicate the error.

ERRORS
The ftok() function shall fail if:

[EACCES] Search permission is denied for a component of the path prefix.

[ELOOP] A loop exists in symbolic links encountered during resolution of the path
argument.

[ENAMETOOLONG]
The length of the path argument exceeds {PATH_MAX} or a pathname
component is longer than {NAME_MAX}.

[ENOENT] A component of path does not name an existing file or path is an empty string.

[ENOTDIR] A component of the path prefix is not a directory.

The ftok() function may fail if:

[ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during
resolution of the path argument.

[ENAMETOOLONG]
Pathname resolution of a symbolic link produced an intermediate result
whose length exceeds {PATH_MAX}.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 485

16101

16102

16103

16104

16105

16106

16107

16108

16109

16110

16111

16112

16113

16114

16115

16116

16117

16118

16119

16120

16121

16122

16123

16124

16125

16126

16127

16128

16129

16130

16131

16132

16133

16134

16135

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

ftok() System Interfaces

EXAMPLES

Getting an IPC Key

The following example gets a unique key that can be used by the IPC functions semget(),
msgget(), and shmget(). The key returned by ftok() for this example is based on the ID value S
and the pathname /tmp.

#include <sys/ipc.h>
...
key_t key;
char *path = "/tmp";
int id = ’S’;

key = ftok(path, id);

Saving an IPC Key

The following example gets a unique key based on the pathname /tmp and the ID value a. It
also assigns the value of the resulting key to the semkey variable so that it will be available to a
later call to semget(), msgget(), or shmget().

#include <sys/ipc.h>
...
key_t semkey;

if ((semkey = ftok("/tmp", ’a’)) == (key_t) -1) {
perror("IPC error: ftok"); exit(1);

}

APPLICATION USAGE
For maximum portability, id should be a single-byte character.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
msgget(), semget(), shmget(), the Base Definitions volume of IEEE Std 1003.1-200x, <sys/ipc.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Issue 6
The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

The wording of the mandatory [ELOOP] error condition is updated, and a second optional
[ELOOP] error condition is added.

486 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

16136

16137

16138

16139

16140

16141

16142

16143

16144

16145

16146

16147

16148

16149

16150

16151

16152

16153

16154

16155

16156

16157

16158

16159

16160

16161

16162

16163

16164

16165

16166

16167

16168

16169

16170

16171

16172

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces ftruncate()

NAME
ftruncate — truncate a file to a specified length

SYNOPSIS
#include <unistd.h>

int ftruncate(int fildes, o ff_t length);

DESCRIPTION
If fildes is not a valid file descriptor open for writing, the ftruncate() function shall fail.

If fildes refers to a regular file, the ftruncate() function shall cause the size of the file to be
truncated to length. If the size of the file previously exceeded length, the extra data shall no
longer be available to reads on the file. If the file previously was smaller than this size,
ftruncate() shall increase the size of the file. If the file size is increased, the extended area shall
appear as if it were zero-filled. The value of the seek pointer shall not be modified by a call to
ftruncate().

Upon successful completion, if fildes refers to a regular file, the ftruncate() function shall mark
for update the st_ctime and st_mtime fields of the file and the S_ISUID and S_ISGID bits of the
file mode may be cleared. If the ftruncate() function is unsuccessful, the file is unaffected.

XSI If the request would cause the file size to exceed the soft file size limit for the process, the
request shall fail and the implementation shall generate the SIGXFSZ signal for the thread.

If fildes refers to a directory, ftruncate() shall fail.

If fildes refers to any other file type, except a shared memory object, the result is unspecified.

SHM If fildes refers to a shared memory object, ftruncate() shall set the size of the shared memory
object to length.

SHM If the effect of ftruncate() is to decrease the size of a memory mapped file or a shared memory
object and whole pages beyond the new end were previously mapped, then the whole pages
beyond the new end shall be discarded.

References to discarded pages shall result in the generation of a SIGBUS signal.

If the effect of ftruncate() is to increase the size of a memory object, it is unspecified whether the
contents of any mapped pages between the old end-of-file and the new are flushed to the
underlying object.

RETURN VALUE
Upon successful completion, ftruncate() shall return 0; otherwise, −1 shall be returned and errno
set to indicate the error.

ERRORS
The ftruncate() function shall fail if:

[EINTR] A signal was caught during execution.

[EINVAL] The length argument was less than 0.

[EFBIG] or [EINVAL]
The length argument was greater than the maximum file size.

[EFBIG] The file is a regular file and length is greater than the offset maximum
established in the open file description associated with fildes.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 487

16173

16174

16175

16176

16177

16178

16179

16180

16181

16182

16183

16184

16185

16186

16187

16188

16189

16190

16191

16192

16193

16194

16195

16196

16197

16198

16199

16200

16201

16202

16203

16204

16205

16206

16207

16208

16209

16210

16211

16212

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

ftruncate() System Interfaces

[EIO] An I/O error occurred while reading from or writing to a file system.

[EBADF] or [EINVAL]
The fildes argument is not a file descriptor open for writing.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
open(), truncate(), the Base Definitions volume of IEEE Std 1003.1-200x, <unistd.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE and aligned with ftruncate() in the POSIX
Realtime Extension. Specifically, the DESCRIPTION is extensively reworded and [EROFS] is
added to the list of mandatory errors that can be returned by ftruncate().

Large File Summit extensions are added.

Issue 6
The truncate() function is split out into a separate reference page.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The DESCRIPTION is changed to indicate that if the file size is changed, and if the file is a
regular file, the S_ISUID and S_ISGID bits in the file mode may be cleared.

The following changes were made to align with the IEEE P1003.1a draft standard:

• The DESCRIPTION text is updated.

XSI-conformant systems are required to increase the size of the file if the file was previously
smaller than the size requested.

Issue 7
Austin Group Interpretation 1003.1-2001 #056 is applied, revising the ERRORS section (although
the [EINVAL] ‘‘may fail’’ error was subsequently removed during review of the XSI option).

Functionality relating to the Memory Protection and Memory Mapped Files options is moved to
the Base.

The DESCRIPTION is updated so that a call to ftruncate() when the file is smaller than the size
requested will increase the size of the file. Previously, non-XSI-conforming implementations
were allowed to increase the size of the file or fail.

488 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

16213

16214

16215

16216

16217

16218

16219

16220

16221

16222

16223

16224

16225

16226

16227

16228

16229

16230

16231

16232

16233

16234

16235

16236

16237

16238

16239

16240

16241

16242

16243

16244

16245

16246

16247

16248

16249

16250

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces ftrylockfile()

NAME
ftrylockfile — stdio locking functions

SYNOPSIS
CX #include <stdio.h>

int ftrylockfile(FILE * file);

DESCRIPTION
Refer to flockfile().

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 489

16251

16252

16253

16254

16255

16256

16257

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

ftw() System Interfaces

NAME
ftw — traverse (walk) a file tree

SYNOPSIS
OB XSI #include <ftw.h>

int ftw(const char * path, i nt (* fn)(const char *,
const struct stat * ptr, i nt flag), int ndirs);

DESCRIPTION
The ftw() function shall recursively descend the directory hierarchy rooted in path. For each
object in the hierarchy, ftw() shall call the function pointed to by fn, passing it a pointer to a null-
terminated character string containing the name of the object, a pointer to a stat structure
containing information about the object, filled in as if stat() or lstat() had been called to retrieve
the information. Possible values of the integer, defined in the <ftw.h> header, are:

FTW_D For a directory.

FTW_DNR For a directory that cannot be read.

FTW_F For a file.

FTW_SL For a symbolic link (but see also FTW_NS below).

FTW_NS For an object other than a symbolic link on which stat() could not successfully be
executed. If the object is a symbolic link and stat() failed, it is unspecified whether
ftw() passes FTW_SL or FTW_NS to the user-supplied function.

If the integer is FTW_DNR, descendants of that directory shall not be processed. If the integer is
FTW_NS, the stat structure contains undefined values. An example of an object that would
cause FTW_NS to be passed to the function pointed to by fn would be a file in a directory with
read but without execute (search) permission.

The ftw() function shall visit a directory before visiting any of its descendants.

The ftw() function shall use at most one file descriptor for each level in the tree.

The argument ndirs should be in the range [1,{OPEN_MAX}].

The tree traversal shall continue until either the tree is exhausted, an invocation of fn returns a
non-zero value, or some error, other than [EACCES], is detected within ftw().

The ndirs argument shall specify the maximum number of directory streams or file descriptors
or both available for use by ftw() while traversing the tree. When ftw() returns it shall close any
directory streams and file descriptors it uses not counting any opened by the application-
supplied fn function.

The results are unspecified if the application-supplied fn function does not preserve the current
working directory.

The ftw() function need not be thread-safe. A function that is not required to be thread-safe is
not required to be reentrant.

RETURN VALUE
If the tree is exhausted, ftw() shall return 0. If the function pointed to by fn returns a non-zero
value, ftw() shall stop its tree traversal and return whatever value was returned by the function
pointed to by fn. If ftw() detects an error, it shall return −1 and set errno to indicate the error.

If ftw() encounters an error other than [EACCES] (see FTW_DNR and FTW_NS above), it shall
return −1 and set errno to indicate the error. The external variable errno may contain any error

490 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

16258

16259

16260

16261

16262

16263

16264

16265

16266

16267

16268

16269

16270

16271

16272

16273

16274

16275

16276

16277

16278

16279

16280

16281

16282

16283

16284

16285

16286

16287

16288

16289

16290

16291

16292

16293

16294

16295

16296

16297

16298

16299

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces ftw()

value that is possible when a directory is opened or when one of the stat functions is executed on
a directory or file.

ERRORS
The ftw() function shall fail if:

[EACCES] Search permission is denied for any component of path or read permission is
denied for path.

[ELOOP] A loop exists in symbolic links encountered during resolution of the path
argument.

[ENAMETOOLONG]
The length of the path argument exceeds {PATH_MAX} or a pathname
component is longer than {NAME_MAX}.

[ENOENT] A component of path does not name an existing file or path is an empty string.

[ENOTDIR] A component of path is not a directory.

[EOVERFLOW] A field in the stat structure cannot be represented correctly in the current
programming environment for one or more files found in the file hierarchy.

The ftw() function may fail if:

[EINVAL] The value of the ndirs argument is invalid.

[ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during
resolution of the path argument.

[ENAMETOOLONG]
Pathname resolution of a symbolic link produced an intermediate result
whose length exceeds {PATH_MAX}.

In addition, if the function pointed to by fn encounters system errors, errno may be set
accordingly.

EXAMPLES

Walking a Directory Structure

The following example walks the current directory structure, calling the fn function for every
directory entry, using at most 10 file descriptors:

#include <ftw.h>
...
if (ftw(".", fn, 10) != 0) {

perror("ftw"); exit(2);
}

APPLICATION USAGE
The ftw() function may allocate dynamic storage during its operation. If ftw() is forcibly
terminated, such as by longjmp() or siglongjmp() being executed by the function pointed to by fn
or an interrupt routine, ftw() does not have a chance to free that storage, so it remains
permanently allocated. A safe way to handle interrupts is to store the fact that an interrupt has
occurred, and arrange to have the function pointed to by fn return a non-zero value at its next
invocation.

Applications should use the nftw() function instead of the obsolescent ftw() function.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 491

16300

16301

16302

16303

16304

16305

16306

16307

16308

16309

16310

16311

16312

16313

16314

16315

16316

16317

16318

16319

16320

16321

16322

16323

16324

16325

16326

16327

16328

16329

16330

16331

16332

16333

16334

16335

16336

16337

16338

16339

16340

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

ftw() System Interfaces

RATIONALE
None.

FUTURE DIRECTIONS
The ftw() function may be removed in a future version.

SEE ALSO
fdopendir(), fstatat(), longjmp(), malloc(), nftw(), siglongjmp(), the Base Definitions volume of
IEEE Std 1003.1-200x, <ftw.h>, <sys/stat.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
UX codings in the DESCRIPTION, RETURN VALUE, and ERRORS sections are changed to EX.

Issue 6
The ERRORS section is updated as follows:

• The wording of the mandatory [ELOOP] error condition is updated.

• A second optional [ELOOP] error condition is added.

• The [EOVERFLOW] mandatory error condition is added.

A note is added to the DESCRIPTION indicating that this function need not be reentrant, and
that the results are unspecified if the application-supplied fn function does not preserve the
current working directory.

Issue 7
SD5-XBD-ERN-61 is applied.

The ftw() function ia marked obsolescent.

492 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

16341

16342

16343

16344

16345

16346

16347

16348

16349

16350

16351

16352

16353

16354

16355

16356

16357

16358

16359

16360

16361

16362

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces funlockfile()

NAME
funlockfile — stdio locking functions

SYNOPSIS
CX #include <stdio.h>

void funlockfile(FILE * file);

DESCRIPTION
Refer to flockfile().

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 493

16363

16364

16365

16366

16367

16368

16369

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

futimesat() System Interfaces

NAME
futimesat — set file access and modification times relative to directory file descriptor

SYNOPSIS
XSI #include <sys/time.h>

int futimesat(int fd, c onst char * path, c onst struct timeval times[2]);

DESCRIPTION
Refer to utimes().

494 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

16370

16371

16372

16373

16374

16375

16376

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces fwide()

NAME
fwide — set stream orientation

SYNOPSIS
#include <stdio.h>
#include <wchar.h>

int fwide(FILE * stream, i nt mode);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

The fwide() function shall determine the orientation of the stream pointed to by stream. If mode is
greater than zero, the function first attempts to make the stream wide-oriented. If mode is less
than zero, the function first attempts to make the stream byte-oriented. Otherwise, mode is zero
and the function does not alter the orientation of the stream.

If the orientation of the stream has already been determined, fwide() shall not change it.

CX Since no return value is reserved to indicate an error, an application wishing to check for error
situations should set errno to 0, then call fwide(), then check errno, and if it is non-zero, assume
an error has occurred.

RETURN VALUE
The fwide() function shall return a value greater than zero if, after the call, the stream has wide-
orientation, a value less than zero if the stream has byte-orientation, or zero if the stream has no
orientation.

ERRORS
The fwide() function may fail if:

CX [EBADF] The stream argument is not a valid stream.

EXAMPLES
None.

APPLICATION USAGE
A call to fwide() with mode set to zero can be used to determine the current orientation of a
stream.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
The Base Definitions volume of IEEE Std 1003.1-200x, <wchar.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with ISO/IEC 9899: 1990/Amendment 1: 1995
(E).

Issue 6
Extensions beyond the ISO C standard are marked.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 495

16377

16378

16379

16380

16381

16382

16383

16384

16385

16386

16387

16388

16389

16390

16391

16392

16393

16394

16395

16396

16397

16398

16399

16400

16401

16402

16403

16404

16405

16406

16407

16408

16409

16410

16411

16412

16413

16414

16415

16416

16417

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

fwprintf() System Interfaces

NAME
fwprintf, swprintf, wprintf — print formatted wide-character output

SYNOPSIS
#include <stdio.h>
#include <wchar.h>

int fwprintf(FILE *restrict stream, c onst wchar_t *restrict format, . ..);
int swprintf(wchar_t *restrict ws, s ize_t n,

const wchar_t *restrict format, . ..);
int wprintf(const wchar_t *restrict format, . ..);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

The fwprintf() function shall place output on the named output stream. The wprintf() function
shall place output on the standard output stream stdout. The swprintf() function shall place
output followed by the null wide character in consecutive wide characters starting at *ws; no
more than n wide characters shall be written, including a terminating null wide character, which
is always added (unless n is zero).

Each of these functions shall convert, format, and print its arguments under control of the format
wide-character string. The format is composed of zero or more directives: ordinary wide-characters,
which are simply copied to the output stream, and conversion specifications, each of which results
in the fetching of zero or more arguments. The results are undefined if there are insufficient
arguments for the format. If the format is exhausted while arguments remain, the excess
arguments are evaluated but are otherwise ignored.

CX Conversions can be applied to the nth argument after the format in the argument list, rather than
to the next unused argument. In this case, the conversion specifier wide character %(see below)
is replaced by the sequence "%n$" , where n is a decimal integer in the range
[1,{NL_ARGMAX}], giving the position of the argument in the argument list. This feature
provides for the definition of format wide-character strings that select arguments in an order
appropriate to specific languages (see the EXAMPLES section).

The format can contain either numbered argument specifications (that is, "%n$" and "* m$"), or
unnumbered argument conversion specifications (that is, % and *), but not both. The only
exception to this is that %%can be mixed with the "%n$" form. The results of mixing numbered
and unnumbered argument specifications in a format wide-character string are undefined. When
numbered argument specifications are used, specifying the Nth argument requires that all the
leading arguments, from the first to the (N−1)th, are specified in the format wide-character string.

In format wide-character strings containing the "%n$" form of conversion specification,
numbered arguments in the argument list can be referenced from the format wide-character
string as many times as required.

In format wide-character strings containing the % form of conversion specification, each
argument in the argument list shall be used exactly once.

CX All forms of the fwprintf() function allow for the insertion of a locale-dependent radix character
in the output string, output as a wide-character value. The radix character is defined in the
locale of the process (category LC_NUMERIC). In the POSIX locale, or in a locale where the
radix character is not defined, the radix character shall default to a period (’.’).

496 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

16418

16419

16420

16421

16422

16423

16424

16425

16426

16427

16428

16429

16430

16431

16432

16433

16434

16435

16436

16437

16438

16439

16440

16441

16442

16443

16444

16445

16446

16447

16448

16449

16450

16451

16452

16453

16454

16455

16456

16457

16458

16459

16460

16461

16462

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces fwprintf()

CX Each conversion specification is introduced by the ’%’ wide character or by the wide-character
sequence "%n$" , after which the following appear in sequence:

• Zero or more flags (in any order), which modify the meaning of the conversion
specification.

• An optional minimum field width. If the converted value has fewer wide characters than
the field width, it shall be padded with spaces by default on the left; it shall be padded on
the right, if the left-adjustment flag (’ −’), described below, is given to the field width. The
field width takes the form of an asterisk (’*’), described below, or a decimal integer.

• An optional precision that gives the minimum number of digits to appear for the d, i , o, u,
x , and X conversion specifiers; the number of digits to appear after the radix character for
the a, A, e, E, f , and F conversion specifiers; the maximum number of significant digits for
the g and G conversion specifiers; or the maximum number of wide characters to be
printed from a string in the s conversion specifiers. The precision takes the form of a
period (’.’) followed either by an asterisk (’*’), described below, or an optional decimal
digit string, where a null digit string is treated as 0. If a precision appears with any other
conversion wide character, the behavior is undefined.

• An optional length modifier that specifies the size of the argument.

• A conversion specifier wide character that indicates the type of conversion to be applied.

A field width, or precision, or both, may be indicated by an asterisk (’*’). In this case an
argument of type int supplies the field width or precision. Applications shall ensure that
arguments specifying field width, or precision, or both appear in that order before the argument,
if any, to be converted. A negative field width is taken as a ’ −’ flag followed by a positive field

CX width. A negative precision is taken as if the precision were omitted. In format wide-character
strings containing the "%n$" form of a conversion specification, a field width or precision may
be indicated by the sequence "* m$" , where m is a decimal integer in the range
[1,{NL_ARGMAX}] giving the position in the argument list (after the format argument) of an
integer argument containing the field width or precision, for example:

wprintf(L"%1$d:%2$.*3$d:%4$.*3$d\n", hour, min, precision, sec);

The flag wide characters and their meanings are:

CX ’ The integer portion of the result of a decimal conversion (%i , %d, %u, %f, %F, %g, or %G)
shall be formatted with thousands’ grouping wide characters. For other conversions,
the behavior is undefined. The numeric grouping wide character is used.

− The result of the conversion shall be left-justified within the field. The conversion shall
be right-justified if this flag is not specified.

+ The result of a signed conversion shall always begin with a sign (’+’ or ’ −’). The
conversion shall begin with a sign only when a negative value is converted if this flag is
not specified.

<space> If the first wide character of a signed conversion is not a sign, or if a signed conversion
results in no wide characters, a <space> shall be prefixed to the result. This means that
if the <space> and ’+’ flags both appear, the <space> flag shall be ignored.

Specifies that the value is to be converted to an alternative form. For o conversion, it
increases the precision (if necessary) to force the first digit of the result to be 0. For x or
X conversion specifiers, a non-zero result shall have 0x (or 0X) prefixed to it. For a, A, e,
E, f , F, g, and Gconversion specifiers, the result shall always contain a radix character,
even if no digits follow it. Without this flag, a radix character appears in the result of
these conversions only if a digit follows it. For g and G conversion specifiers, trailing
zeros shall not be removed from the result as they normally are. For other conversion
specifiers, the behavior is undefined.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 497

16463

16464

16465

16466

16467

16468

16469

16470

16471

16472

16473

16474

16475

16476

16477

16478

16479

16480

16481

16482

16483

16484

16485

16486

16487

16488

16489

16490

16491

16492

16493

16494

16495

16496

16497

16498

16499

16500

16501

16502

16503

16504

16505

16506

16507

16508

16509

16510

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

fwprintf() System Interfaces

0 For d, i , o, u, x , X, a, A, e, E, f , F, g, and G conversion specifiers, leading zeros
(following any indication of sign or base) are used to pad to the field width; no space
padding is performed. If the ’0’ and ’ −’ flags both appear, the ’0’ flag shall be
ignored. For d, i , o, u, x , and X conversion specifiers, if a precision is specified, the ’0’

CX flag shall be ignored. If the ’0’ and ’’’ flags both appear, the grouping wide
characters are inserted before zero padding. For other conversions, the behavior is
undefined.

The length modifiers and their meanings are:

hh Specifies that a following d, i , o, u, x , or X conversion specifier applies to a signed char
or unsigned char argument (the argument will have been promoted according to the
integer promotions, but its value shall be converted to signed char or unsigned char
before printing); or that a following n conversion specifier applies to a pointer to a
signed char argument.

h Specifies that a following d, i , o, u, x , or X conversion specifier applies to a short or
unsigned short argument (the argument will have been promoted according to the
integer promotions, but its value shall be converted to short or unsigned short before
printing); or that a following n conversion specifier applies to a pointer to a short
argument.

l (ell) Specifies that a following d, i , o, u, x , or X conversion specifier applies to a long or
unsigned long argument; that a following n conversion specifier applies to a pointer to
a long argument; that a following c conversion specifier applies to a wint_t argument;
that a following s conversion specifier applies to a pointer to a wchar_t argument; or
has no effect on a following a, A, e, E, f , F, g, or Gconversion specifier.

ll (ell-ell)
Specifies that a following d, i , o, u, x , or X conversion specifier applies to a long long
or unsigned long long argument; or that a following n conversion specifier applies to a
pointer to a long long argument.

j Specifies that a following d, i , o, u, x , or X conversion specifier applies to an intmax_t
or uintmax_t argument; or that a following n conversion specifier applies to a pointer
to an intmax_t argument.

z Specifies that a following d, i , o, u, x , or X conversion specifier applies to a size_t or the
corresponding signed integer type argument; or that a following n conversion specifier
applies to a pointer to a signed integer type corresponding to a size_t argument.

t Specifies that a following d, i , o, u, x , or X conversion specifier applies to a ptrdiff_t or
the corresponding unsigned type argument; or that a following n conversion specifier
applies to a pointer to a ptrdiff_t argument.

L Specifies that a following a, A, e, E, f , F, g, or G conversion specifier applies to a long
double argument.

If a length modifier appears with any conversion specifier other than as specified above, the
behavior is undefined.

The conversion specifiers and their meanings are:

d, i The int argument shall be converted to a signed decimal in the style "[−] dddd". The
precision specifies the minimum number of digits to appear; if the value being
converted can be represented in fewer digits, it shall be expanded with leading zeros.
The default precision shall be 1. The result of converting zero with an explicit precision
of zero shall be no wide characters.

498 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

16511

16512

16513

16514

16515

16516

16517

16518

16519

16520

16521

16522

16523

16524

16525

16526

16527

16528

16529

16530

16531

16532

16533

16534

16535

16536

16537

16538

16539

16540

16541

16542

16543

16544

16545

16546

16547

16548

16549

16550

16551

16552

16553

16554

16555

16556

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces fwprintf()

o The unsigned argument shall be converted to unsigned octal format in the style
"dddd" . The precision specifies the minimum number of digits to appear; if the value
being converted can be represented in fewer digits, it shall be expanded with leading
zeros. The default precision shall be 1. The result of converting zero with an explicit
precision of zero shall be no wide characters.

u The unsigned argument shall be converted to unsigned decimal format in the style
"dddd" . The precision specifies the minimum number of digits to appear; if the value
being converted can be represented in fewer digits, it shall be expanded with leading
zeros. The default precision shall be 1. The result of converting zero with an explicit
precision of zero shall be no wide characters.

x The unsigned argument shall be converted to unsigned hexadecimal format in the style
"dddd" ; the letters "abcdef" are used. The precision specifies the minimum number
of digits to appear; if the value being converted can be represented in fewer digits, it
shall be expanded with leading zeros. The default precision shall be 1. The result of
converting zero with an explicit precision of zero shall be no wide characters.

X Equivalent to the x conversion specifier, except that letters "ABCDEF" are used instead
of "abcdef" .

f , F The double argument shall be converted to decimal notation in the style
"[−] ddd.ddd", where the number of digits after the radix character shall be equal to
the precision specification. If the precision is missing, it shall be taken as 6; if the
precision is explicitly zero and no ’#’ flag is present, no radix character shall appear. If
a radix character appears, at least one digit shall appear before it. The value shall be
rounded in an implementation-defined manner to the appropriate number of digits.

A double argument representing an infinity shall be converted in one of the styles
"[−]inf" or "[−]infinity" ; which style is implementation-defined. A double
argument representing a NaN shall be converted in one of the styles "[−]nan" or
"[−]nan(n-char-sequence)" ; which style, and the meaning of any n-char-sequence,
is implementation-defined. The F conversion specifier produces "INF" , "INFINITY" ,
or "NAN" instead of "inf" , "infinity" , or "nan" , respectively.

e, E The double argument shall be converted in the style "[−] d.ddde±dd" , where there
shall be one digit before the radix character (which is non-zero if the argument is non-
zero) and the number of digits after it shall be equal to the precision; if the precision is
missing, it shall be taken as 6; if the precision is zero and no ’#’ flag is present, no
radix character shall appear. The value shall be rounded in an implementation-defined
manner to the appropriate number of digits. The E conversion wide character shall
produce a number with ’E’ instead of ’e’ introducing the exponent. The exponent
shall always contain at least two digits. If the value is zero, the exponent shall be zero.

A double argument representing an infinity or NaN shall be converted in the style of
an f or F conversion specifier.

g, G The double argument shall be converted in the style f or e (or in the style F or E in the
case of a Gconversion specifier), with the precision specifying the number of significant
digits. If an explicit precision is zero, it shall be taken as 1. The style used depends on
the value converted; style e (or E) shall be used only if the exponent resulting from
such a conversion is less than −4 or greater than or equal to the precision. Trailing zeros
shall be removed from the fractional portion of the result; a radix character shall appear
only if it is followed by a digit.

A double argument representing an infinity or NaN shall be converted in the style of
an f or F conversion specifier.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 499

16557

16558

16559

16560

16561

16562

16563

16564

16565

16566

16567

16568

16569

16570

16571

16572

16573

16574

16575

16576

16577

16578

16579

16580

16581

16582

16583

16584

16585

16586

16587

16588

16589

16590

16591

16592

16593

16594

16595

16596

16597

16598

16599

16600

16601

16602

16603

16604

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

fwprintf() System Interfaces

a, A A double argument representing a floating-point number shall be converted in the
style "[−]0xh.hhhhp ±d" , where there shall be one hexadecimal digit (which is non-
zero if the argument is a normalized floating-point number and is otherwise
unspecified) before the decimal-point wide character and the number of hexadecimal
digits after it shall be equal to the precision; if the precision is missing and FLT_RADIX
is a power of 2, then the precision shall be sufficient for an exact representation of the
value; if the precision is missing and FLT_RADIX is not a power of 2, then the precision
shall be sufficient to distinguish values of type double, except that trailing zeros may
be omitted; if the precision is zer

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces fwprintf()

result. Characters generated by fwprintf() and wprintf() shall be printed as if fputwc() had been
called.

For a and A conversions, if FLT_RADIX is not a power of 2 and the result is not exactly
representable in the given precision, the result should be one of the two adjacent numbers in
hexadecimal floating style with the given precision, with the extra stipulation that the error
should have a correct sign for the current rounding direction.

For e, E, f , F, g, and G conversion specifiers, if the number of significant decimal digits is at
most DECIMAL_DIG, then the result should be correctly rounded. If the number of significant
decimal digits is more than DECIMAL_DIG but the source value is exactly representable with
DECIMAL_DIG digits, then the result should be an exact representation with trailing zeros.
Otherwise, the source value is bounded by two adjacent decimal strings L < U, both having
DECIMAL_DIG significant digits; the value of the resultant decimal string D should satisfy L <=
D <= U, with the extra stipulation that the error should have a correct sign for the current
rounding direction.

CX The st_ctime and st_mtime fields of the file shall be marked for update between the call to a
successful execution of fwprintf() or wprintf() and the next successful completion of a call to
fflush() or fclose() on the same stream, or a call to exit() or abort().

RETURN VALUE
Upon successful completion, these functions shall return the number of wide characters
transmitted, excluding the terminating null wide character in the case of swprintf(), or a negative

CX value if an output error was encountered, and set errno to indicate the error.

If n or more wide characters were requested to be written, swprintf() shall return a negative
CX value, and set errno to indicate the error.

ERRORS
For the conditions under which fwprintf() and wprintf() fail and may fail, refer to fputwc().

In addition, all forms of fwprintf() may fail if:

CX [EILSEQ] A wide-character code that does not correspond to a valid character has been
detected.

CX [EINVAL] There are insufficient arguments.

In addition, fwprintf() and wprintf() may fail if:

CX [ENOMEM] Insufficient storage space is available.

The swprintf() shall fail if:

CX [EOVERFLOW] The value of n is greater than {INT_MAX} or the number of bytes needed to
hold the output excluding the terminating null is greater than {INT_MAX}.

EXAMPLES
To print the language-independent date and time format, the following statement could be used:

wprintf(format, weekday, month, day, hour, min);

For American usage, format could be a pointer to the wide-character string:

L"%s, %s %d, %d:%.2d\n"

producing the message:

Sunday, July 3, 10:02

whereas for German usage, format could be a pointer to the wide-character string:

L"%1$s, %3$d. %2$s, %4$d:%5$.2d\n"

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 501

16654

16655

16656

16657

16658

16659

16660

16661

16662

16663

16664

16665

16666

16667

16668

16669

16670

16671

16672

16673

16674

16675

16676

16677

16678

16679

16680

16681

16682

16683

16684

16685

16686

16687

16688

16689

16690

16691

16692

16693

16694

16695

16696

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

fwprintf() System Interfaces

producing the message:

Sonntag, 3. Juli, 10:02

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
btowc(), fputwc(), fwscanf(), mbrtowc(), setlocale(), the Base Definitions volume of
IEEE Std 1003.1-200x, Chapter 7, Locale, <stdio.h>, <wchar.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with ISO/IEC 9899: 1990/Amendment 1: 1995
(E).

Issue 6
The Open Group Corrigendum U040/1 is applied to the RETURN VALUE section, describing
the case if n or more wide characters are requested to be written using swprintf().

The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

The following changes are made for alignment with the ISO/IEC 9899: 1999 standard:

• The prototypes for fwprintf(), swprintf(), and wprintf() are updated.

• The DESCRIPTION is updated.

• The hh , ll , j , t , and z length modifiers are added.

• The a, A, and F conversion characters are added.

• XSI shading is removed from the description of character string representations of infinity
and NaN floating-point values.

The DESCRIPTION is updated to use the terms ‘‘conversion specifier’’ and ‘‘conversion
specification’’ consistently.

ISO/IEC 9899: 1999 standard, Technical Corrigendum 1 is incorporated.

Issue 7
Functionality relating to the "%n$" form of conversion specification and the ’’’ (apostrophe)
flag is moved from the XSI option to the Base.

The [EOVERFLOW] error is added for swprintf().

502 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

16697

16698

16699

16700

16701

16702

16703

16704

16705

16706

16707

16708

16709

16710

16711

16712

16713

16714

16715

16716

16717

16718

16719

16720

16721

16722

16723

16724

16725

16726

16727

16728

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces fwrite()

NAME
fwrite — binary output

SYNOPSIS
#include <stdio.h>

size_t fwrite(const void *restrict ptr, s ize_t size, s ize_t nitems,
FILE *restrict stream);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

The fwrite() function shall write, from the array pointed to by ptr, up to nitems elements whose
size is specified by size, to the stream pointed to by stream. For each object, size calls shall be
made to the fputc() function, taking the values (in order) from an array of unsigned char exactly
overlaying the object. The file-position indicator for the stream (if defined) shall be advanced by
the number of bytes successfully written. If an error occurs, the resulting value of the file-
position indicator for the stream is unspecified.

CX The st_ctime and st_mtime fields of the file shall be marked for update between the successful
execution of fwrite() and the next successful completion of a call to fflush() or fclose() on the
same stream, or a call to exit() or abort().

RETURN VALUE
The fwrite() function shall return the number of elements successfully written, which may be
less than nitems if a write error is encountered. If size or nitems is 0, fwrite() shall return 0 and the
state of the stream remains unchanged. Otherwise, if a write error occurs, the error indicator for

CX the stream shall be set, and errno shall be set to indicate the error.

ERRORS
Refer to fputc().

EXAMPLES
None.

APPLICATION USAGE
Because of possible differences in element length and byte ordering, files written using fwrite()
are application-dependent, and possibly cannot be read using fread() by a different application
or by the same application on a different processor.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
ferror(), fopen(), printf(), putc(), puts(), write(), the Base Definitions volume of
IEEE Std 1003.1-200x, <stdio.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 503

16729

16730

16731

16732

16733

16734

16735

16736

16737

16738

16739

16740

16741

16742

16743

16744

16745

16746

16747

16748

16749

16750

16751

16752

16753

16754

16755

16756

16757

16758

16759

16760

16761

16762

16763

16764

16765

16766

16767

16768

16769

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

fwrite() System Interfaces

Issue 6
Extensions beyond the ISO C standard are marked.

The following changes are made for alignment with the ISO/IEC 9899: 1999 standard:

• The fwrite() prototype is updated.

• The DESCRIPTION is updated to clarify how the data is written out using fputc().

504 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

16770

16771

16772

16773

16774

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces fwscanf()

NAME
fwscanf, swscanf, wscanf — convert formatted wide-character input

SYNOPSIS
#include <stdio.h>
#include <wchar.h>

int fwscanf(FILE *restrict stream, c onst wchar_t *restrict format, . ..);
int swscanf(const wchar_t *restrict ws,

const wchar_t *restrict format, . ..);
int wscanf(const wchar_t *restrict format, . ..);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

The fwscanf() function shall read from the named input stream. The wscanf() function shall read
from the standard input stream stdin. The swscanf() function shall read from the wide-character
string ws. Each function reads wide characters, interprets them according to a format, and stores
the results in its arguments. Each expects, as arguments, a control wide-character string format
described below, and a set of pointer arguments indicating where the converted input should be
stored. The result is undefined if there are insufficient arguments for the format. If the format is
exhausted while arguments remain, the excess arguments are evaluated but are otherwise
ignored.

CX Conversions can be applied to the nth argument after the format in the argument list, rather than
to the next unused argument. In this case, the conversion specifier wide character %(see below)
is replaced by the sequence "%n$" , where n is a decimal integer in the range
[1,{NL_ARGMAX}]. This feature provides for the definition of format wide-character strings that
select arguments in an order appropriate to specific languages. In format wide-character strings
containing the "%n$" form of conversion specifications, it is unspecified whether numbered
arguments in the argument list can be referenced from the format wide-character string more
than once.

The format can contain either form of a conversion specification—that is, %or "%n$" — but the
two forms cannot normally be mixed within a single format wide-character string. The only
exception to this is that %%or %* can be mixed with the "%n$" form. When numbered argument
specifications are used, specifying the Nth argument requires that all the leading arguments,
from the first to the (N−1)th, are pointers.

The fwscanf() function in all its forms allows for detection of a language-dependent radix
character in the input string, encoded as a wide-character value. The radix character is defined
in the locale of the process (category LC_NUMERIC). In the POSIX locale, or in a locale where
the radix character is not defined, the radix character shall default to a period (’.’).

The format is a wide-character string composed of zero or more directives. Each directive is
composed of one of the following: one or more white-space wide characters (<space>s, <tab>s,
<newline>s, <vertical-tab>s, or <form-feed>s); an ordinary wide character (neither ’%’ nor a
white-space character); or a conversion specification.

CX Each conversion specification is introduced by the ’%’ or by the character sequence "%n$" ,
after which the following appear in sequence:

• An optional assignment-suppressing character ’*’ .

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 505

16775

16776

16777

16778

16779

16780

16781

16782

16783

16784

16785

16786

16787

16788

16789

16790

16791

16792

16793

16794

16795

16796

16797

16798

16799

16800

16801

16802

16803

16804

16805

16806

16807

16808

16809

16810

16811

16812

16813

16814

16815

16816

16817

16818

16819

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

fwscanf() System Interfaces

• An optional non-zero decimal integer that specifies the maximum field width.

• An optional length modifier that specifies the size of the receiving object.

• A conversion specifier wide character that specifies the type of conversion to be applied.
The valid conversion specifiers are described below.

The fwscanf() functions shall execute each directive of the format in turn. If a directive fails, as
detailed below, the function shall return. Failures are described as input failures (due to the
unavailability of input bytes) or matching failures (due to inappropriate input).

A directive composed of one or more white-space wide characters is executed by reading input
until no more valid input can be read, or up to the first wide character which is not a white-
space wide character, which remains unread.

A directive that is an ordinary wide character shall be executed as follows. The next wide
character is read from the input and compared with the wide character that comprises the
directive; if the comparison shows that they are not equivalent, the directive shall fail, and the
differing and subsequent wide characters remain unread. Similarly, if end-of-file, an encoding
error, or a read error prevents a wide character from being read, the directive shall fail.

A directive that is a conversion specification defines a set of matching input sequences, as
described below for each conversion wide character. A conversion specification is executed in
the following steps.

Input white-space wide characters (as specified by iswspace()) shall be skipped, unless the
conversion specification includes a [, c , or n conversion specifier.

An item shall be read from the input, unless the conversion specification includes an n
conversion specifier wide character. An input item is defined as the longest sequence of input
wide characters, not exceeding any specified field width, which is an initial subsequence of a
matching sequence. The first wide character, if any, after the input item shall remain unread. If
the length of the input item is zero, the execution of the conversion specification shall fail; this
condition is a matching failure, unless end-of-file, an encoding error, or a read error prevented
input from the stream, in which case it is an input failure.

Except in the case of a %conversion specifier, the input item (or, in the case of a %nconversion
specification, the count of input wide characters) shall be converted to a type appropriate to the
conversion wide character. If the input item is not a matching sequence, the execution of the
conversion specification shall fail; this condition is a matching failure. Unless assignment
suppression was indicated by a ’*’ , the result of the conversion shall be placed in the object
pointed to by the first argument following the format argument that has not already received a

CX conversion result if the conversion specification is introduced by %, or in the nth argument if
introduced by the wide-character sequence "%n$" . If this object does not have an appropriate
type, or if the result of the conversion cannot be represented in the space provided, the behavior
is undefined.

The length modifiers and their meanings are:

hh Specifies that a following d, i , o, u, x , X, or n conversion specifier applies to an
argument with type pointer to signed char or unsigned char.

h Specifies that a following d, i , o, u, x , X, or n conversion specifier applies to an
argument with type pointer to short or unsigned short.

l (ell) Specifies that a following d, i , o, u, x , X, or n conversion specifier applies to an
argument with type pointer to long or unsigned long; that a following a, A, e, E, f , F,
g, or Gconversion specifier applies to an argument with type pointer to double; or that
a following c , s , or [conversion specifier applies to an argument with type pointer to
wchar_t.

506 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

16820

16821

16822

16823

16824

16825

16826

16827

16828

16829

16830

16831

16832

16833

16834

16835

16836

16837

16838

16839

16840

16841

16842

16843

16844

16845

16846

16847

16848

16849

16850

16851

16852

16853

16854

16855

16856

16857

16858

16859

16860

16861

16862

16863

16864

16865

16866

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces fwscanf()

ll (ell-ell)
Specifies that a following d, i , o, u, x , X, or n conversion specifier applies to an
argument with type pointer to long long or unsigned long long.

j Specifies that a following d, i , o, u, x , X, or n conversion specifier applies to an
argument with type pointer to intmax_t or uintmax_t.

z Specifies that a following d, i , o, u, x , X, or n conversion specifier applies to an
argument with type pointer to size_t or the corresponding signed integer type.

t Specifies that a following d, i , o, u, x , X, or n conversion specifier applies to an
argument with type pointer to ptrdiff_t or the corresponding unsigned type.

L Specifies that a following a, A, e, E, f , F, g, or G conversion specifier applies to an
argument with type pointer to long double.

If a length modifier appears with any conversion specifier other than as specified above, the
behavior is undefined.

The following conversion specifier wide characters are valid:

d Matches an optionally signed decimal integer, whose format is the same as expected for
the subject sequence of wcstol() with the value 10 for the base argument. In the absence
of a size modifier, the application shall ensure that the corresponding argument is a
pointer to int.

i Matches an optionally signed integer, whose format is the same as expected for the
subject sequence of wcstol() with 0 for the base argument. In the absence of a size
modifier, the application shall ensure that the corresponding argument is a pointer to
int.

o Matches an optionally signed octal integer, whose format is the same as expected for
the subject sequence of wcstoul() with the value 8 for the base argument. In the absence
of a size modifier, the application shall ensure that the corresponding argument is a
pointer to unsigned.

u Matches an optionally signed decimal integer, whose format is the same as expected for
the subject sequence of wcstoul() with the value 10 for the base argument. In the absence
of a size modifier, the application shall ensure that the corresponding argument is a
pointer to unsigned.

x Matches an optionally signed hexadecimal integer, whose format is the same as
expected for the subject sequence of wcstoul() with the value 16 for the base argument.
In the absence of a size modifier, the application shall ensure that the corresponding
argument is a pointer to unsigned.

a, e, f , g
Matches an optionally signed floating-point number, infinity, or NaN whose format is
the same as expected for the subject sequence of wcstod(). In the absence of a size
modifier, the application shall ensure that the corresponding argument is a pointer to
float.

If the fwprintf() family of functions generates character string representations for
infinity and NaN (a symbolic entity encoded in floating-point format) to support
IEEE Std 754-1985, the fwscanf() family of functions shall recognize them as input.

s Matches a sequence of non white-space wide characters. If no l (ell) qualifier is present,
characters from the input field shall be converted as if by repeated calls to the
wcrtomb() function, with the conversion state described by an mbstate_t object
initialized to zero before the first wide character is converted. The application shall
ensure that the corresponding argument is a pointer to a character array large enough

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 507

16867

16868

16869

16870

16871

16872

16873

16874

16875

16876

16877

16878

16879

16880

16881

16882

16883

16884

16885

16886

16887

16888

16889

16890

16891

16892

16893

16894

16895

16896

16897

16898

16899

16900

16901

16902

16903

16904

16905

16906

16907

16908

16909

16910

16911

16912

16913

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

fwscanf() System Interfaces

to accept the sequence and the terminating null character, which shall be added
automatically.

Otherwise, the application shall ensure that the corresponding argument is a pointer to
an array of wchar_t large enough to accept the sequence and the terminating null wide
character, which shall be added automatically.

[Matches a non-empty sequence of wide characters from a set of expected wide
characters (the scanset). If no l (ell) qualifier is present, wide characters from the input
field shall be converted as if by repeated calls to the wcrtomb() function, with the
conversion state described by an mbstate_t object initialized to zero before the first
wide character is converted. The application shall ensure that the corresponding
argument is a pointer to a character array large enough to accept the sequence and the
terminating null character, which shall be added automatically.

If an l (ell) qualifier is present, the application shall ensure that the corresponding
argument is a pointer to an array of wchar_t large enough to accept the sequence and
the terminating null wide character, which shall be added automatically.

The conversion specification includes all subsequent wide characters in the format
string up to and including the matching right square bracket (’]’). The wide
characters between the square brackets (the scanlist) comprise the scanset, unless the
wide character after the left square bracket is a circumflex (’ˆ’), in which case the
scanset contains all wide characters that do not appear in the scanlist between the
circumflex and the right square bracket. If the conversion specification begins with
"[]" or "[ˆ]" , the right square bracket is included in the scanlist and the next right
square bracket is the matching right square bracket that ends the conversion
specification; otherwise, the first right square bracket is the one that ends the
conversion specification. If a ’ −’ is in the scanlist and is not the first wide character,
nor the second where the first wide character is a ’ˆ’ , nor the last wide character, the
behavior is implementation-defined.

c Matches a sequence of wide characters of exactly the number specified by the field
width (1 if no field width is present in the conversion specification).

If no l (ell) length modifier is present, characters from the input field shall be converted
as if by repeated calls to the wcrtomb() function, with the conversion state described by
an mbstate_t object initialized to zero before the first wide character is converted. The
corresponding argument shall be a pointer to the initial element of a character array
large enough to accept the sequence. No null character is added.

If an l (ell) length modifier is present, the corresponding argument shall be a pointer to
the initial element of an array of wchar_t large enough to accept the sequence. No null
wide character is added.

Otherwise, the application shall ensure that the corresponding argument is a pointer to
an array of wchar_t large enough to accept the sequence. No null wide character is
added.

p Matches an implementation-defined set of sequences, which shall be the same as the set
of sequences that is produced by the %pconversion specification of the corresponding
fwprintf() functions. The application shall ensure that the corresponding argument is a
pointer to a pointer to void. The interpretation of the input item is implementation-
defined. If the input item is a value converted earlier during the same program
execution, the pointer that results shall compare equal to that value; otherwise, the
behavior of the %pconversion is undefined.

508 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

16914

16915

16916

16917

16918

16919

16920

16921

16922

16923

16924

16925

16926

16927

16928

16929

16930

16931

16932

16933

16934

16935

16936

16937

16938

16939

16940

16941

16942

16943

16944

16945

16946

16947

16948

16949

16950

16951

16952

16953

16954

16955

16956

16957

16958

16959

16960

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces fwscanf()

n No input is consumed. The application shall ensure that the corresponding argument is
a pointer to the integer into which is to be written the number of wide characters read
from the input so far by this call to the fwscanf() functions. Execution of a %n
conversion specification shall not increment the assignment count returned at the
completion of execution of the function. No argument shall be converted, but one shall
be consumed. If the conversion specification includes an assignment-suppressing wide
character or a field width, the behavior is undefined.

XSI C Equivalent to lc .

XSI S Equivalent to ls .

% Matches a single ’%’ wide character; no conversion or assignment shall occur. The
complete conversion specification shall be %%.

If a conversion specification is invalid, the behavior is undefined.

The conversion specifiers A, E, F, G, and X are also valid and shall be equivalent to, respectively,
a, e, f , g, and x .

If end-of-file is encountered during input, conversion is terminated. If end-of-file occurs before
any wide characters matching the current conversion specification (except for %n) have been
read (other than leading white-space, where permitted), execution of the current conversion
specification shall terminate with an input failure. Otherwise, unless execution of the current
conversion specification is terminated with a matching failure, execution of the following
conversion specification (if any) shall be terminated with an input failure.

Reaching the end of the string in swscanf() shall be equivalent to encountering end-of-file for
fwscanf().

If conversion terminates on a conflicting input, the offending input shall be left unread in the
input. Any trailing white space (including <newline>) shall be left unread unless matched by a
conversion specification. The success of literal matches and suppressed assignments is only
directly determinable via the %nconversion specification.

CX The fwscanf() and wscanf() functions may mark the st_atime field of the file associated with
stream for update. The st_atime field shall be marked for update by the first successful execution
of fgetc(), fgetwc(), fgets(), fgetws(), fread(), getc(), getwc(), getchar(), getwchar(), gets(), fscanf(),
or fwscanf() using stream that returns data not supplied by a prior call to ungetc().

RETURN VALUE
Upon successful completion, these functions shall return the number of successfully matched
and assigned input items; this number can be zero in the event of an early matching failure. If
the input ends before the first matching failure or conversion, EOF shall be returned. If a read

CX error occurs, the error indicator for the stream is set, EOF shall be returned, and errno shall be
set to indicate the error.

ERRORS
For the conditions under which the fwscanf() functions shall fail and may fail, refer to fgetwc().

In addition, fwscanf() may fail if:

CX [EILSEQ] Input byte sequence does not form a valid character.

CX [EINVAL] There are insufficient arguments.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 509

16961

16962

16963

16964

16965

16966

16967

16968

16969

16970

16971

16972

16973

16974

16975

16976

16977

16978

16979

16980

16981

16982

16983

16984

16985

16986

16987

16988

16989

16990

16991

16992

16993

16994

16995

16996

16997

16998

16999

17000

17001

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

fwscanf() System Interfaces

EXAMPLES
The call:

int i, n; float x; char name[50];
n = wscanf(L"%d%f%s", &i, &x, name);

with the input line:

25 54.32E −1 Hamster

assigns to n the value 3, to i the value 25, to x the value 5.432, and name contains the string
"Hamster" .

The call:

int i; float x; char name[50];
(void) wscanf(L"%2d%f%*d %[0123456789]", &i, &x, name);

with input:

56789 0123 56a72

assigns 56 to i, 789.0 to x, skips 0123, and places the string "56\0" in name. The next call to
getchar() shall return the character ’a’ .

APPLICATION USAGE
In format strings containing the ’%’ form of conversion specifications, each argument in the
argument list is used exactly once.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
getwc(), fwprintf(), setlocale(), wcstod(), wcstol(), wcstoul(), wcrtomb(), the Base Definitions
volume of IEEE Std 1003.1-200x, Chapter 7, Locale, <langinfo.h>, <stdio.h>, <wchar.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with ISO/IEC 9899: 1990/Amendment 1: 1995
(E).

Issue 6
The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

The following changes are made for alignment with the ISO/IEC 9899: 1999 standard:

• The prototypes for fwscanf() and swscanf() are updated.

• The DESCRIPTION is updated.

• The hh , ll , j , t , and z length modifiers are added.

• The a, A, and F conversion characters are added.

The DESCRIPTION is updated to use the terms ‘‘conversion specifier’’ and ‘‘conversion
specification’’ consistently.

Issue 7
Functionality relating to the "%n$" form of conversion specification is moved from the XSI
option to the Base.

510 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

17002

17003

17004

17005

17006

17007

17008

17009

17010

17011

17012

17013

17014

17015

17016

17017

17018

17019

17020

17021

17022

17023

17024

17025

17026

17027

17028

17029

17030

17031

17032

17033

17034

17035

17036

17037

17038

17039

17040

17041

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces gai_strerror()

NAME
gai_strerror — address and name information error description

SYNOPSIS
#include <netdb.h>

const char *gai_strerror(int ecode);

DESCRIPTION
The gai_strerror() function shall return a text string describing an error value for the getaddrinfo()
and getnameinfo() functions listed in the <netdb.h> header.

When the ecode argument is one of the following values listed in the <netdb.h> header:

[EAI_AGAIN]
[EAI_BADFLAGS]
[EAI_FAIL]
[EAI_FAMILY]
[EAI_MEMORY]

[EAI_NONAME]
[EAI_OVERFLOW]
[EAI_SERVICE]
[EAI_SOCKTYPE]
[EAI_SYSTEM]

the function return value shall point to a string describing the error. If the argument is not one
of those values, the function shall return a pointer to a string whose contents indicate an
unknown error.

RETURN VALUE
Upon successful completion, gai_strerror() shall return a pointer to an implementation-defined
string.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
getaddrinfo(), the Base Definitions volume of IEEE Std 1003.1-200x, <netdb.h>

CHANGE HISTORY
First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

The Open Group Base Resolution bwg2001-009 is applied, which changes the return type from
char * to const char *. This is for coordination with the IPnG Working Group.

IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/22 is applied, adding the
[EAI_OVERFLOW] error code.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 511

17042

17043

17044

17045

17046

17047

17048

17049

17050

17051

17052

17053

17054

17055

17056

17057

17058

17059

17060

17061

17062

17063

17064

17065

17066

17067

17068

17069

17070

17071

17072

17073

17074

17075

17076

17077

17078

17079

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

getaddrinfo() System Interfaces

NAME
getaddrinfo — get address information

SYNOPSIS
#include <sys/socket.h>
#include <netdb.h>

int getaddrinfo(const char *restrict nodename,
const char *restrict servname,
const struct addrinfo *restrict hints,
struct addrinfo **restrict res);

DESCRIPTION
Refer to freeaddrinfo().

512 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

17080

17081

17082

17083

17084

17085

17086

17087

17088

17089

17090

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces getc()

NAME
getc — get a byte from a stream

SYNOPSIS
#include <stdio.h>

int getc(FILE * stream);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

The getc() function shall be equivalent to fgetc(), except that if it is implemented as a macro it
may evaluate stream more than once, so the argument should never be an expression with side
effects.

RETURN VALUE
Refer to fgetc().

ERRORS
Refer to fgetc().

EXAMPLES
None.

APPLICATION USAGE
If the integer value returned by getc() is stored into a variable of type char and then compared
against the integer constant EOF, the comparison may never succeed, because sign-extension of
a variable of type char on widening to integer is implementation-defined.

Since it may be implemented as a macro, getc() may treat incorrectly a stream argument with
side effects. In particular, getc(* f ++) does not necessarily work as expected. Therefore, use of this
function should be preceded by "#undef getc" in such situations; fgetc() could also be used.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fgetc(), the Base Definitions volume of IEEE Std 1003.1-200x, <stdio.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 513

17091

17092

17093

17094

17095

17096

17097

17098

17099

17100

17101

17102

17103

17104

17105

17106

17107

17108

17109

17110

17111

17112

17113

17114

17115

17116

17117

17118

17119

17120

17121

17122

17123

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

getc_unlocked() System Interfaces

NAME
getc_unlocked, getchar_unlocked, putc_unlocked, putchar_unlocked — stdio with explicit client
locking

SYNOPSIS
CX #include <stdio.h>

int getc_unlocked(FILE * stream);
int getchar_unlocked(void);
int putc_unlocked(int c, F ILE * stream);
int putchar_unlocked(int c);

DESCRIPTION
Versions of the functions getc(), getchar(), putc(), and putchar() respectively named
getc_unlocked(), getchar_unlocked(), putc_unlocked(), and putchar_unlocked() shall be provided
which are functionally equivalent to the original versions, with the exception that they are not
required to be implemented in a thread-safe manner. They may only safely be used within a
scope protected by flockfile() (or ftrylockfile()) and funlockfile(). These functions may safely be
used in a multi-threaded program if and only if they are called while the invoking thread owns
the (FILE *) object, as is the case after a successful call to the flockfile() or ftrylockfile() functions.

RETURN VALUE
See getc(), getchar(), putc(), and putchar().

ERRORS
See getc(), getchar(), putc(), and putchar().

EXAMPLES
None.

APPLICATION USAGE
Since they may be implemented as macros, getc_unlocked() and putc_unlocked() may treat
incorrectly a stream argument with side effects. In particular, getc_unlocked(*f++) and
putc_unlocked(*f++) do not necessarily work as expected. Therefore, use of these functions in
such situations should be preceded by the following statement as appropriate:

#undef getc_unlocked
#undef putc_unlocked

RATIONALE
Some I/O functions are typically implemented as macros for performance reasons (for example,
putc() and getc()). For safety, they need to be synchronized, but it is often too expensive to
synchronize on every character. Nevertheless, it was felt that the safety concerns were more
important; consequently, the getc(), getchar(), putc(), and putchar() functions are required to be
thread-safe. However, unlocked versions are also provided with names that clearly indicate the
unsafe nature of their operation but can be used to exploit their higher performance. These
unlocked versions can be safely used only within explicitly locked program regions, using
exported locking primitives. In particular, a sequence such as:

flockfile(fileptr);
putc_unlocked(’1’, fileptr);
putc_unlocked(’\n’, fileptr);
fprintf(fileptr, "Line 2\n");
funlockfile(fileptr);

is permissible, and results in the text sequence:

514 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

17124

17125

17126

17127

17128

17129

17130

17131

17132

17133

17134

17135

17136

17137

17138

17139

17140

17141

17142

17143

17144

17145

17146

17147

17148

17149

17150

17151

17152

17153

17154

17155

17156

17157

17158

17159

17160

17161

17162

17163

17164

17165

17166

17167

17168

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces getc_unlocked()

1
Line 2

being printed without being interspersed with output from other threads.

It would be wrong to have the standard names such as getc(), putc(), and so on, map to the
‘‘faster, but unsafe’’ rather than the ‘‘slower, but safe’’ versions. In either case, you would still
want to inspect all uses of getc(), putc(), and so on, by hand when converting existing code.
Choosing the safe bindings as the default, at least, results in correct code and maintains the
‘‘atomicity at the function’’ invariant. To do otherwise would introduce gratuitous
synchronization errors into converted code. Other routines that modify the stdio (FILE *)
structures or buffers are also safely synchronized.

Note that there is no need for functions of the form getc_locked(), putc_locked(), and so on, since
this is the functionality of getc(), putc(), et al. It would be inappropriate to use a feature test
macro to switch a macro definition of getc() between getc_locked() and getc_unlocked(), since the
ISO C standard requires an actual function to exist, a function whose behavior could not be
changed by the feature test macro. Also, providing both the xxx_locked() and xxx_unlocked()
forms leads to the confusion of whether the suffix describes the behavior of the function or the
circumstances under which it should be used.

Three additional routines, flockfile(), ftrylockfile(), and funlockfile() (which may be macros), are
provided to allow the user to delineate a sequence of I/O statements that are executed
synchronously.

The ungetc() function is infrequently called relative to the other functions/macros so no
unlocked variation is needed.

FUTURE DIRECTIONS
None.

SEE ALSO
getc(), getchar(), putc(), putchar(), the Base Definitions volume of IEEE Std 1003.1-200x,
<stdio.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Threads Extension.

Issue 6
These functions are marked as part of the Thread-Safe Functions option.

The Open Group Corrigendum U030/2 is applied, adding APPLICATION USAGE describing
how applications should be written to avoid the case when the functions are implemented as
macros.

Issue 7
The getc_unlocked(), getchar_unlocked(), putc_unlocked(), and putchar_unlocked() functions are
moved from the Thread-Safe Functions option to the Base.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 515

17169

17170

17171

17172

17173

17174

17175

17176

17177

17178

17179

17180

17181

17182

17183

17184

17185

17186

17187

17188

17189

17190

17191

17192

17193

17194

17195

17196

17197

17198

17199

17200

17201

17202

17203

17204

17205

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

getchar() System Interfaces

NAME
getchar — get a byte from a stdin stream

SYNOPSIS
#include <stdio.h>

int getchar(void);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

The getchar() function shall be equivalent to getc(stdin).

RETURN VALUE
Refer to fgetc().

ERRORS
Refer to fgetc().

EXAMPLES
None.

APPLICATION USAGE
If the integer value returned by getchar() is stored into a variable of type char and then
compared against the integer constant EOF, the comparison may never succeed, because sign-
extension of a variable of type char on widening to integer is implementation-defined.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
getc(), the Base Definitions volume of IEEE Std 1003.1-200x, <stdio.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

516 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

17206

17207

17208

17209

17210

17211

17212

17213

17214

17215

17216

17217

17218

17219

17220

17221

17222

17223

17224

17225

17226

17227

17228

17229

17230

17231

17232

17233

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces getchar_unlocked()

NAME
getchar_unlocked — stdio with explicit client locking

SYNOPSIS
CX #include <stdio.h>

int getchar_unlocked(void);

DESCRIPTION
Refer to getc_unlocked().

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 517

17234

17235

17236

17237

17238

17239

17240

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

getcwd() System Interfaces

NAME
getcwd — get the pathname of the current working directory

SYNOPSIS
#include <unistd.h>

char *getcwd(char * buf, s ize_t size);

DESCRIPTION
The getcwd() function shall place an absolute pathname of the current working directory in the
array pointed to by buf , and return buf . The pathname copied to the array shall contain no
components that are symbolic links. The size argument is the size in bytes of the character array
pointed to by the buf argument. If buf is a null pointer, the behavior of getcwd() is unspecified.

RETURN VALUE
Upon successful completion, getcwd() shall return the buf argument. Otherwise, getcwd() shall
return a null pointer and set errno to indicate the error. The contents of the array pointed to by
buf are then undefined.

ERRORS
The getcwd() function shall fail if:

[EINVAL] The size argument is 0.

[ERANGE] The size argument is greater than 0, but is smaller than the length of the
pathname +1.

The getcwd() function may fail if:

[EACCES] Read or search permission was denied for a component of the pathname.

[ENOMEM] Insufficient storage space is available.

EXAMPLES

Determining the Absolute Pathname of the Current Working Directory

The following example returns a pointer to an array that holds the absolute pathname of the
current working directory. The pointer is returned in the ptr variable, which points to the buf
array where the pathname is stored.

#include <stdlib.h>
#include <unistd.h>
...
long size;
char *buf;
char *ptr;

size = pathconf(".", _PC_PATH_MAX);

if ((buf = (char *)malloc((size_t)size)) != NULL)
ptr = getcwd(buf, (size_t)size);

...

APPLICATION USAGE
None.

518 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

17241

17242

17243

17244

17245

17246

17247

17248

17249

17250

17251

17252

17253

17254

17255

17256

17257

17258

17259

17260

17261

17262

17263

17264

17265

17266

17267

17268

17269

17270

17271

17272

17273

17274

17275

17276

17277

17278

17279

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces getcwd()

RATIONALE
Since the maximum pathname length is arbitrary unless {PATH_MAX} is defined, an application
generally cannot supply a buf with size {{PATH_MAX}+1}.

Having getcwd() take no arguments and instead use the malloc() function to produce space for
the returned argument was considered. The advantage is that getcwd() knows how big the
working directory pathname is and can allocate an appropriate amount of space. But the
programmer would have to use the free() function to free the resulting object, or each use of
getcwd() would further reduce the available memory. Also, malloc() and free() are used nowhere
else in this volume of IEEE Std 1003.1-200x. Finally, getcwd() is taken from the SVID where it has
the two arguments used in this volume of IEEE Std 1003.1-200x.

The older function getwd() was rejected for use in this context because it had only a buffer
argument and no size argument, and thus had no way to prevent overwriting the buffer, except
to depend on the programmer to provide a large enough buffer.

On some implementations, if buf is a null pointer, getcwd() may obtain size bytes of memory
using malloc(). In this case, the pointer returned by getcwd() may be used as the argument in a
subsequent call to free(). Invoking getcwd() with buf as a null pointer is not recommended in
conforming applications.

If a program is operating in a directory where some (grand)parent directory does not permit
reading, getcwd() may fail, as in most implementations it must read the directory to determine
the name of the file. This can occur if search, but not read, permission is granted in an
intermediate directory, or if the program is placed in that directory by some more privileged
process (for example, login). Including the [EACCES] error condition makes the reporting of the
error consistent and warns the application writer that getcwd() can fail for reasons beyond the
control of the application writer or user. Some implementations can avoid this occurrence (for
example, by implementing getcwd() using pwd, where pwd is a set-user-root process), thus the
error was made optional. Since this volume of IEEE Std 1003.1-200x permits the addition of
other errors, this would be a common addition and yet one that applications could not be
expected to deal with without this addition.

FUTURE DIRECTIONS
None.

SEE ALSO
malloc(), the Base Definitions volume of IEEE Std 1003.1-200x, <unistd.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The [ENOMEM] optional error condition is added.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 519

17280

17281

17282

17283

17284

17285

17286

17287

17288

17289

17290

17291

17292

17293

17294

17295

17296

17297

17298

17299

17300

17301

17302

17303

17304

17305

17306

17307

17308

17309

17310

17311

17312

17313

17314

17315

17316

17317

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

getdate() System Interfaces

NAME
getdate — convert user format date and time

SYNOPSIS
XSI #include <time.h>

struct tm *getdate(const char * string);

DESCRIPTION
The getdate() function shall convert a string representation of a date or time into a broken-down
time.

The external variable or macro getdate_err is used by getdate() to return error values.

Templates are used to parse and interpret the input string. The templates are contained in a text
file identified by the environment variable DATEMSK. The DATEMSK variable should be set to
indicate the full pathname of the file that contains the templates. The first line in the template
that matches the input specification is used for interpretation and conversion into the internal
time format.

The following conversion specifications shall be supported:

%% Equivalent to %.

%a Abbreviated weekday name.

%A Full weekday name.

%b Abbreviated month name.

%B Full month name.

%c Locale’s appropriate date and time representation.

%C Century number [00,99]; leading zeros are permitted but not required.

%d Day of month [01,31]; the leading 0 is optional.

%D Date as %m/%d/%y.

%e Equivalent to %d.

%h Abbreviated month name.

%H Hour [00,23].

%I Hour [01,12].

%m Month number [01,12].

%M Minute [00,59].

%n Equivalent to <newline>.

%p Locale’s equivalent of either AM or PM.

%r The locale’s appropriate representation of time in AM and PM notation. In the POSIX
locale, this shall be equivalent to %I:%M:%S %p.

%R Time as %H:%M.

%S Seconds [00,60]. The range goes to 60 (rather than stopping at 59) to allow positive leap
seconds to be expressed. Since leap seconds cannot be predicted by any algorithm, leap
second data must come from some external source.

520 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

17318

17319

17320

17321

17322

17323

17324

17325

17326

17327

17328

17329

17330

17331

17332

17333

17334

17335

17336

17337

17338

17339

17340

17341

17342

17343

17344

17345

17346

17347

17348

17349

17350

17351

17352

17353

17354

17355

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces getdate()

%t Equivalent to <tab>.

%T Time as %H:%M:%S.

%w Weekday number (Sunday = [0,6]).

%x Locale’s appropriate date representation.

%X Locale’s appropriate time representation.

%y Year within century. When a century is not otherwise specified, values in the range
[69,99] shall refer to years 1969 to 1999 inclusive, and values in the range [00,68] shall
refer to years 2000 to 2068 inclusive.

Note: It is expected that in a future version of IEEE Std 1003.1-200x the default century
inferred from a 2-digit year will change. (This would apply to all commands
accepting a 2-digit year as input.)

%Y Year as "ccyy" (for example, 2001).

%Z Timezone name or no characters if no timezone exists. If the timezone supplied by %Zis
not the timezone that getdate() expects, an invalid input specification error shall result.
The getdate() function calculates an expected timezone based on information supplied
to the function (such as the hour, day, and month).

The match between the template and input specification performed by getdate() shall be case-
insensitive.

The month and weekday names can consist of any combination of upper and lowercase letters.
The process can request that the input date or time specification be in a specific language by
setting the LC_TIME category (see setlocale()).

Leading zeros are not necessary for the descriptors that allow leading zeros. However, at most
two digits are allowed for those descriptors, including leading zeros. Extra whitespace in either
the template file or in string shall be ignored.

The results are undefined if the conversion specifications %c, %x, and %Xinclude unsupported
conversion specifications.

The following rules apply for converting the input specification into the internal format:

• If %Zis being scanned, then getdate() shall initialize the broken-down time to be the current
time in the scanned timezone. Otherwise, it shall initialize the broken-down time based on
the current local time as if localtime() had been called.

• If only the weekday is given, the day chosen shall be the day, starting with today and
moving into the future, which first matches the named day.

• If only the month (and no year) is given, the month chosen shall be the month, starting
with the current month and moving into the future, which first matches the named month.
The first day of the month shall be assumed if no day is given.

• If no hour, minute, and second are given, the current hour, minute, and second shall be
assumed.

• If no date is given, the hour chosen shall be the hour, starting with the current hour and
moving into the future, which first matches the named hour.

If a conversion specification in the DATEMSK file does not correspond to one of the conversion
specifications above, the behavior is unspecified.

The getdate() function need not be thread-safe. A function that is not required to be thread-safe is
not required to be reentrant.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 521

17356

17357

17358

17359

17360

17361

17362

17363

17364

17365

17366

17367

17368

17369

17370

17371

17372

17373

17374

17375

17376

17377

17378

17379

17380

17381

17382

17383

17384

17385

17386

17387

17388

17389

17390

17391

17392

17393

17394

17395

17396

17397

17398

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

getdate() System Interfaces

RETURN VALUE
Upon successful completion, getdate() shall return a pointer to a struct tm. Otherwise, it shall
return a null pointer and set getdate_err to indicate the error.

ERRORS
The getdate() function shall fail in the following cases, setting getdate_err to the value shown in
the list below. Any changes to errno are unspecified.

1. The DATEMSK environment variable is null or undefined.

2. The template file cannot be opened for reading.

3. Failed to get file status information.

4. The template file is not a regular file.

5. An I/O error is encountered while reading the template file.

6. Memory allocation failed (not enough memory available).

7. There is no line in the template that matches the input.

8. Invalid input specification. For example, February 31; or a time is specified that cannot be
represented in a time_t (representing the time in seconds since the Epoch).

EXAMPLES

1. The following example shows the possible contents of a template:

%m
%A %B %d, %Y, %H:%M:%S
%A
%B
%m/%d/%y %I %p
%d,%m,%Y %H:%M
at %A the %dst of %B in %Y
run job at %I %p,%B %dnd
%A den %d. %B %Y %H.%M Uhr

2. The following are examples of valid input specifications for the template in Example 1:

getdate("10/1/87 4 PM");
getdate("Friday");
getdate("Friday September 18, 1987, 10:30:30");
getdate("24,9,1986 10:30");
getdate("at monday the 1st of december in 1986");
getdate("run job at 3 PM, december 2nd");

If the LC_TIME category is set to a German locale that includes freitag as a weekday name
and oktober as a month name, the following would be valid:

getdate("freitag den 10. oktober 1986 10.30 Uhr");

3. The following example shows how local date and time specification can be defined in the
template:

Invocation Line in Template

getdate("11/27/86") %m/%d/%y
getdate("27.11.86") %d.%m.%y
getdate("86-11-27") %y-%m-%d
getdate("Friday 12:00:00") %A %H:%M:%S

522 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

17399

17400

17401

17402

17403

17404

17405

17406

17407

17408

17409

17410

17411

17412

17413

17414

17415

17416

17417

17418

17419

17420

17421

17422

17423

17424

17425

17426

17427

17428

17429

17430

17431

17432

17433

17434

17435

17436

17437

17438

17439

17440

17441

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

getdate() System Interfaces

The DESCRIPTION is updated to refer to conversion specifications instead of field descriptors
for consistency with other functions.

524 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

17488

17489

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces getdelim()

NAME
getdelim, getline — read a delimited record from stream

SYNOPSIS
CX #include <stdio.h>

ssize_t getdelim(char ** lineptr, s ize_t * n, i nt delimiter,
FILE * stream);

ssize_t getline(char ** lineptr, s ize_t * n, F ILE * stream);

DESCRIPTION
The getdelim() function shall read from stream until it encounters a character matching the
delimiter character. The delimiter argument is an int, the value of which the application shall
ensure is a character representable as an unsigned char of equal value that terminates the read
process. If the delimiter argument has any other value, the behavior is undefined.

The application shall ensure that *lineptr is a valid argument that could be passed to the free()
function. If *n is non-zero, the application shall ensure that *lineptr points to an object of size at
least *n bytes.

The size of the object pointed to by *lineptr shall be increased to fit the incoming line, if it isn’t
already large enough. The characters read shall be stored in the string pointed to by the lineptr
argument.

The getline() function shall be equivalent to the getdelim() function with the delimiter character
equal to the <newline> character.

RETURN VALUE
Upon successful completion, the getdelim() function shall return the number of characters
written into the buffer, including the delimiter character if one was encountered before EOF.
Otherwise, it shall return −1 and set errno to indicate the error.

ERRORS
These functions shall fail if:

[EINVAL] When lineptr or n are a null pointer.

[ENOMEM] Insufficient memory is available.

These functions may fail if:

[EINVAL] stream is not a valid file descriptor.

[EOVERFLOW] More than {SSIZE_MAX} characters were read without encountering the
delimiter character.

EXAMPLES

#include <stdio.h>
#include <stdlib.h>

int main(void)
{

FILE *fp;
char *line = NULL;
size_t len = 0;
ssize_t read;
fp = fopen("/etc/motd", "r");
if (fp == NULL)

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 525

17490

17491

17492

17493

17494

17495

17496

17497

17498

17499

17500

17501

17502

17503

17504

17505

17506

17507

17508

17509

17510

17511

17512

17513

17514

17515

17516

17517

17518

17519

17520

17521

17522

17523

17524

17525

17526

17527

17528

17529

17530

17531

17532

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

getdelim() System Interfaces

exit(1);
while ((read = getline(&line, &len, fp)) != -1) {

printf("Retrieved line of length %zu :\n", read);
printf("%s", line);

}
if (line)

free(line);
fclose(fp);
return 0;

}

APPLICATION USAGE
Setting *lineptr to a null pointer and *n to zero are allowed and a recommended way to start
parsing a file.

RATIONALE
These functions are widely used to solve the problem that the fgets() function has with long
lines. The functions automatically enlarge the target buffers if needed. These are especially
useful since they reduce code needed for applications.

FUTURE DIRECTIONS
None.

SEE ALSO
fgets(), free(), the Base Definitions volume of IEEE Std 1003.1-200x, <stdio.h>

CHANGE HISTORY
First released in Issue 7.

526 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

17533

17534

17535

17536

17537

17538

17539

17540

17541

17542

17543

17544

17545

17546

17547

17548

17549

17550

17551

17552

17553

17554

17555

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces getegid()

NAME
getegid — get the effective group ID

SYNOPSIS
#include <unistd.h>

gid_t getegid(void);

DESCRIPTION
The getegid() function shall return the effective group ID of the calling process.

RETURN VALUE
The getegid() function shall always be successful and no return value is reserved to indicate an
error.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
geteuid(), getgid(), getuid(), setegid(), seteuid(), setgid(), setregid(), setreuid(), setuid(), the Base
Definitions volume of IEEE Std 1003.1-200x, <sys/types.h>, <unistd.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
In the SYNOPSIS, the optional include of the <sys/types.h> header is removed.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
required for conforming implementations of previous POSIX specifications, it was not
required for UNIX applications.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 527

17556

17557

17558

17559

17560

17561

17562

17563

17564

17565

17566

17567

17568

17569

17570

17571

17572

17573

17574

17575

17576

17577

17578

17579

17580

17581

17582

17583

17584

17585

17586

17587

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

getenv() System Interfaces

NAME
getenv — get value of an environment variable

SYNOPSIS
#include <stdlib.h>

char *getenv(const char * name);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

The getenv() function shall search the environment of the calling process (see the Base
Definitions volume of IEEE Std 1003.1-200x, Chapter 8, Environment Variables) for the
environment variable name if it exists and return a pointer to the value of the environment
variable. If the specified environment variable cannot be found, a null pointer shall be returned.
The application shall ensure that it does not modify the string pointed to by the getenv()
function.

CX The string pointed to may be overwritten by a subsequent call to getenv(), setenv(), unsetenv(),
XSI or putenv() but shall not be overwritten by a call to any other function in this volume of

IEEE Std 1003.1-200x.

CX If the application modifies environ or the pointers to which it points, the behavior of getenv() is
undefined.

The getenv() function need not be thread-safe. A function that is not required to be thread-safe is
not required to be reentrant.

RETURN VALUE
Upon successful completion, getenv() shall return a pointer to a string containing the value for
the specified name. If the specified name cannot be found in the environment of the calling
process, a null pointer shall be returned.

ERRORS
No errors are defined.

EXAMPLES

Getting the Value of an Environment Variable

The following example gets the value of the HOME environment variable.

#include <stdlib.h>
...
const char *name = "HOME";
char *value;

value = getenv(name);

APPLICATION USAGE
None.

RATIONALE
The clearenv() function was considered but rejected. The putenv() function has now been
included for alignment with the Single UNIX Specification.

The getenv() function is inherently not reentrant because it returns a value pointing to static
data.

528 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

17588

17589

17590

17591

17592

17593

17594

17595

17596

17597

17598

17599

17600

17601

17602

17603

17604

17605

17606

17607

17608

17609

17610

17611

17612

17613

17614

17615

17616

17617

17618

17619

17620

17621

17622

17623

17624

17625

17626

17627

17628

17629

17630

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces getenv()

Conforming applications are required not to modify environ directly, but to use only the
functions described here to manipulate the process environment as an abstract object. Thus, the
implementation of the environment access functions has complete control over the data
structure used to represent the environment (subject to the requirement that environ be
maintained as a list of strings with embedded equal signs for applications that wish to scan the
environment). This constraint allows the implementation to properly manage the memory it
allocates, either by using allocated storage for all variables (copying them on the first invocation
of setenv() or unsetenv()), or keeping track of which strings are currently in allocated space and
which are not, via a separate table or some other means. This enables the implementation to free
any allocated space used by strings (and perhaps the pointers to them) stored in environ when
unsetenv() is called. A C runtime start-up procedure (that which invokes main() and perhaps
initializes environ) can also initialize a flag indicating that none of the environment has yet been
copied to allocated storage, or that the separate table has not yet been initialized.

In fact, for higher performance of getenv(), the implementation could also maintain a separate
copy of the environment in a data structure that could be searched much more quickly (such as
an indexed hash table, or a binary tree), and update both it and the linear list at environ when
setenv() or unsetenv() is invoked.

Performance of getenv() can be important for applications which have large numbers of
environment variables. Typically, applications like this use the environment as a resource
database of user-configurable parameters. The fact that these variables are in the user’s shell
environment usually means that any other program that uses environment variables (such as ls,
which attempts to use COLUMNS), or really almost any utility (LANG, LC_ALL, and so on) is
similarly slowed down by the linear search through the variables.

An implementation that maintains separate data structures, or even one that manages the
memory it consumes, is not currently required as it was thought it would reduce consensus
among implementors who do not want to change their historical implementations.

The POSIX Threads Extension states that multi-threaded applications must not modify environ
directly, and that IEEE Std 1003.1-200x is providing functions which such applications can use in
the future to manipulate the environment in a thread-safe manner. Thus, moving away from
application use of environ is desirable from that standpoint as well.

FUTURE DIRECTIONS
None.

SEE ALSO
exec , putenv(), setenv(), unsetenv(), the Base Definitions volume of IEEE Std 1003.1-200x, Chapter
8, Environment Variables, <stdlib.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
Normative text previously in the APPLICATION USAGE section is moved to the RETURN
VALUE section.

A note indicating that this function need not be reentrant is added to the DESCRIPTION.

Issue 6
The following changes were made to align with the IEEE P1003.1a draft standard:

• References added to the new setenv() and unsetenv() functions.

The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 529

17631

17632

17633

17634

17635

17636

17637

17638

17639

17640

17641

17642

17643

17644

17645

17646

17647

17648

17649

17650

17651

17652

17653

17654

17655

17656

17657

17658

17659

17660

17661

17662

17663

17664

17665

17666

17667

17668

17669

17670

17671

17672

17673

17674

17675

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

getenv() System Interfaces

Issue 7
Austin Group Interpretation 1003.1-2001 #062 is applied, clarifying that a call to putenv() may
also cause the string to be overwritten.

530 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

17676

17677

17678

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces geteuid()

NAME
geteuid — get the effective user ID

SYNOPSIS
#include <unistd.h>

uid_t geteuid(void);

DESCRIPTION
The geteuid() function shall return the effective user ID of the calling process.

RETURN VALUE
The geteuid() function shall always be successful and no return value is reserved to indicate an
error.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
getegid(), getgid(), getuid(), setegid(), seteuid(), setgid(), setregid(), setreuid(), setuid(), the Base
Definitions volume of IEEE Std 1003.1-200x, <sys/types.h>, <unistd.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
In the SYNOPSIS, the optional include of the <sys/types.h> header is removed.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
required for conforming implementations of previous POSIX specifications, it was not
required for UNIX applications.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 531

17679

17680

17681

17682

17683

17684

17685

17686

17687

17688

17689

17690

17691

17692

17693

17694

17695

17696

17697

17698

17699

17700

17701

17702

17703

17704

17705

17706

17707

17708

17709

17710

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

getgid() System Interfaces

NAME
getgid — get the real group ID

SYNOPSIS
#include <unistd.h>

gid_t getgid(void);

DESCRIPTION
The getgid() function shall return the real group ID of the calling process.

RETURN VALUE
The getgid() function shall always be successful and no return value is reserved to indicate an
error.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
getegid(), geteuid(), getuid(), setegid(), seteuid(), setgid(), setregid(), setreuid(), setuid(), the Base
Definitions volume of IEEE Std 1003.1-200x, <sys/types.h>, <unistd.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
In the SYNOPSIS, the optional include of the <sys/types.h> header is removed.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
required for conforming implementations of previous POSIX specifications, it was not
required for UNIX applications.

532 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

17711

17712

17713

17714

17715

17716

17717

17718

17719

17720

17721

17722

17723

17724

17725

17726

17727

17728

17729

17730

17731

17732

17733

17734

17735

17736

17737

17738

17739

17740

17741

17742

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces getgrent()

NAME
getgrent — get the group database entry

SYNOPSIS
XSI #include <grp.h>

struct group *getgrent(void);

DESCRIPTION
Refer to endgrent().

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 533

17743

17744

17745

17746

17747

17748

17749

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

getgrgid() System Interfaces

NAME
getgrgid, getgrgid_r — get group database entry for a group ID

SYNOPSIS
#include <grp.h>

struct group *getgrgid(gid_t gid);
int getgrgid_r(gid_t gid, s truct group * grp, c har * buffer,

size_t bufsize, s truct group ** result);

DESCRIPTION
The getgrgid() function shall search the group database for an entry with a matching gid.

The getgrgid() function need not be thread-safe. A function that is not required to be thread-safe
is not required to be reentrant.

The getgrgid_r() function shall update the group structure pointed to by grp and store a pointer
to that structure at the location pointed to by result. The structure shall contain an entry from
the group database with a matching gid. Storage referenced by the group structure is allocated
from the memory provided with the buffer parameter, which is bufsize bytes in size. The
maximum size needed for this buffer can be determined with the {_SC_GETGR_R_SIZE_MAX}
sysconf() parameter. A NULL pointer shall be returned at the location pointed to by result on
error or if the requested entry is not found.

RETURN VALUE
Upon successful completion, getgrgid() shall return a pointer to a struct group with the structure
defined in <grp.h> with a matching entry if one is found. The getgrgid() function shall return a
null pointer if either the requested entry was not found, or an error occurred. On error, errno
shall be set to indicate the error.

The return value may point to a static area which is overwritten by a subsequent call to
getgrent(), getgrgid(), or getgrnam().

If successful, the getgrgid_r() function shall return zero; otherwise, an error number shall be
returned to indicate the error.

ERRORS
The getgrgid() and getgrgid_r() functions may fail if:

[EIO] An I/O error has occurred.

[EINTR] A signal was caught during getgrgid().

[EMFILE] All file descriptors available to the process are currently open.

[ENFILE] The maximum allowable number of files is currently open in the system.

The getgrgid_r() function may fail if:

[ERANGE] Insufficient storage was supplied via buffer and bufsize to contain the data to be
referenced by the resulting group structure.

534 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

17750

17751

17752

17753

17754

17755

17756

17757

17758

17759

17760

17761

17762

17763

17764

17765

17766

17767

17768

17769

17770

17771

17772

17773

17774

17775

17776

17777

17778

17779

17780

17781

17782

17783

17784

17785

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces getgrgid()

EXAMPLES

Finding an Entry in the Group Database

The following example uses getgrgid() to search the group database for a group ID that was
previously stored in a stat structure, then prints out the group name if it is found. If the group is
not found, the program prints the numeric value of the group for the entry.

#include <sys/types.h>
#include <grp.h>
#include <stdio.h>
...
struct stat statbuf;
struct group *grp;
...
if ((grp = getgrgid(statbuf.st_gid)) != NULL)

printf(" %-8.8s", grp->gr_name);
else

printf(" %-8d", statbuf.st_gid);
...

APPLICATION USAGE
Applications wishing to check for error situations should set errno to 0 before calling getgrgid().
If errno is set on return, an error occurred.

The getgrgid_r() function is thread-safe and shall return values in a user-supplied buffer instead
of possibly using a static data area that may be overwritten by each call.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
endgrent(), getgrnam(), the Base Definitions volume of IEEE Std 1003.1-200x, <grp.h>,
<limits.h>, <sys/types.h>

CHANGE HISTORY
First released in Issue 1. Derived from System V Release 2.0.

Issue 5
Normative text previously in the APPLICATION USAGE section is moved to the RETURN
VALUE section.

The getgrgid_r() function is included for alignment with the POSIX Threads Extension.

A note indicating that the getgrgid() function need not be reentrant is added to the
DESCRIPTION.

Issue 6
The getgrgid_r() function is marked as part of the Thread-Safe Functions option.

The Open Group Corrigendum U028/3 is applied, correcting text in the DESCRIPTION
describing matching the gid.

In the DESCRIPTION, the note about reentrancy is expanded to cover thread-safety.

In the SYNOPSIS, the optional include of the <sys/types.h> header is removed.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 535

17786

17787

17788

17789

17790

17791

17792

17793

17794

17795

17796

17797

17798

17799

17800

17801

17802

17803

17804

17805

17806

17807

17808

17809

17810

17811

17812

17813

17814

17815

17816

17817

17818

17819

17820

17821

17822

17823

17824

17825

17826

17827

17828

17829

17830

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

getgrgid() System Interfaces

• The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
required for conforming implementations of previous POSIX specifications, it was not
required for UNIX applications.

• In the RETURN VALUE section, the requirement to set errno on error is added.

• The [EIO], [EINTR], [EMFILE], and [ENFILE] optional error conditions are added.

The APPLICATION USAGE section is updated to include a note on the thread-safe function and
its avoidance of possibly using a static data area.

IEEE PASC Interpretation 1003.1 #116 is applied, changing the description of the size of the
buffer from bufsize characters to bytes.

Issue 7
SD5-XBD-ERN-4 is applied, changing the definition of the [EMFILE] error.

The getgrgid_r() function is moved from the Thread-Safe Functions option to the Base.

536 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

17831

17832

17833

17834

17835

17836

17837

17838

17839

17840

17841

17842

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces getgrnam()

NAME
getgrnam, getgrnam_r — search group database for a name

SYNOPSIS
#include <grp.h>

struct group *getgrnam(const char * name);
int getgrnam_r(const char * name, s truct group * grp, c har * buffer,

size_t bufsize, s truct group ** result);

DESCRIPTION
The getgrnam() function shall search the group database for an entry with a matching name.

The getgrnam() function need not be thread-safe. A function that is not required to be thread-
safe is not required to be reentrant.

The getgrnam_r() function shall update the group structure pointed to by grp and store a pointer
to that structure at the location pointed to by result. The structure shall contain an entry from
the group database with a matching gid or name. Storage referenced by the group structure is
allocated from the memory provided with the buffer parameter, which is bufsize bytes in size. The
maximum size needed for this buffer can be determined with the {_SC_GETGR_R_SIZE_MAX}
sysconf() parameter. A NULL pointer is returned at the location pointed to by result on error or if
the requested entry is not found.

RETURN VALUE
The getgrnam() function shall return a pointer to a struct group with the structure defined in
<grp.h> with a matching entry if one is found. The getgrnam() function shall return a null
pointer if either the requested entry was not found, or an error occurred. On error, errno shall be
set to indicate the error.

The return value may point to a static area which is overwritten by a subsequent call to
getgrent(), getgrgid(), or getgrnam().

The getgrnam_r() function shall return zero on success or if the requested entry was not found
and no error has occurred. If any error has occured, an error number shall be returned to
indicate the error.

ERRORS
The getgrnam() and getgrnam_r() functions may fail if:

[EIO] An I/O error has occurred.

[EINTR] A signal was caught during getgrnam().

[EMFILE] All file descriptors available to the process are currently open.

[ENFILE] The maximum allowable number of files is currently open in the system.

The getgrnam_r() function may fail if:

[ERANGE] Insufficient storage was supplied via buffer and bufsize to contain the data to be
referenced by the resulting group structure.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 537

17843

17844

17845

17846

17847

17848

17849

17850

17851

17852

17853

17854

17855

17856

17857

17858

17859

17860

17861

17862

17863

17864

17865

17866

17867

17868

17869

17870

17871

17872

17873

17874

17875

17876

17877

17878

17879

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

getgrnam() System Interfaces

EXAMPLES
None.

APPLICATION USAGE
Applications wishing to check for error situations should set errno to 0 before calling getgrnam().
If errno is set on return, an error occurred.

The getgrnam_r() function is thread-safe and shall return values in a user-supplied buffer instead
of possibly using a static data area that may be overwritten by each call.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
endgrent(), getgrgid(), the Base Definitions volume of IEEE Std 1003.1-200x, <grp.h>, <limits.h>,
<sys/types.h>

CHANGE HISTORY
First released in Issue 1. Derived from System V Release 2.0.

Issue 5
Normative text previously in the APPLICATION USAGE section is moved to the RETURN
VALUE section.

The getgrnam_r() function is included for alignment with the POSIX Threads Extension.

A note indicating that the getgrnam() function need not be reentrant is added to the
DESCRIPTION.

Issue 6
The getgrnam_r() function is marked as part of the Thread-Safe Functions option.

In the DESCRIPTION, the note about reentrancy is expanded to cover thread-safety.

In the SYNOPSIS, the optional include of the <sys/types.h> header is removed.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
required for conforming implementations of previous POSIX specifications, it was not
required for UNIX applications.

• In the RETURN VALUE section, the requirement to set errno on error is added.

• The [EIO], [EINTR], [EMFILE], and [ENFILE] optional error conditions are added.

The APPLICATION USAGE section is updated to include a note on the thread-safe function and
its avoidance of possibly using a static data area.

IEEE PASC Interpretation 1003.1 #116 is applied, changing the description of the size of the
buffer from bufsize characters to bytes.

Issue 7
SD5-XBD-ERN-4 is applied, changing the definition of the [EMFILE] error.

Austin Group Interpretation 1003.1-2001 #081 is applied, clarifying the RETURN VALUE section.

The getgrnam_r() function is moved from the Thread-Safe Functions option to the Base.

538 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

17880

17881

17882

17883

17884

17885

17886

17887

17888

17889

17890

17891

17892

17893

17894

17895

17896

17897

17898

17899

17900

17901

17902

17903

17904

17905

17906

17907

17908

17909

17910

17911

17912

17913

17914

17915

17916

17917

17918

17919

17920

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces getgroups()

NAME
getgroups — get supplementary group IDs

SYNOPSIS
#include <unistd.h>

int getgroups(int gidsetsize, g id_t grouplist[]);

DESCRIPTION
The getgroups() function shall fill in the array grouplist with the current supplementary group
IDs of the calling process. It is implementation-defined whether getgroups() also returns the
effective group ID in the grouplist array.

The gidsetsize argument specifies the number of elements in the array grouplist. The actual
number of group IDs stored in the array shall be returned. The values of array entries with
indices greater than or equal to the value returned are undefined.

If gidsetsize is 0, getgroups() shall return the number of group IDs that it would otherwise return
without modifying the array pointed to by grouplist.

If the effective group ID of the process is returned with the supplementary group IDs, the value
returned shall always be greater than or equal to one and less than or equal to the value of
{NGROUPS_MAX}+1.

RETURN VALUE
Upon successful completion, the number of supplementary group IDs shall be returned. A
return value of −1 indicates failure and errno shall be set to indicate the error.

ERRORS
The getgroups() function shall fail if:

[EINVAL] The gidsetsize argument is non-zero and less than the number of group IDs
that would have been returned.

EXAMPLES

Getting the Supplementary Group IDs of the Calling Process

The following example places the current supplementary group IDs of the calling process into
the group array.

#include <sys/types.h>
#include <unistd.h>
...
gid_t *group;
int nogroups;
long ngroups_max;

ngroups_max = sysconf(_SC_NGROUPS_MAX) + 1;
group = (gid_t *)malloc(ngroups_max *sizeof(gid_t));

ngroups = getgroups(ngroups_max, group);

APPLICATION USAGE
None.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 539

17921

17922

17923

17924

17925

17926

17927

17928

17929

17930

17931

17932

17933

17934

17935

17936

17937

17938

17939

17940

17941

17942

17943

17944

17945

17946

17947

17948

17949

17950

17951

17952

17953

17954

17955

17956

17957

17958

17959

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

getgroups() System Interfaces

RATIONALE
The related function setgroups() is a privileged operation and therefore is not covered by this
volume of IEEE Std 1003.1-200x.

As implied by the definition of supplementary groups, the effective group ID may appear in the
array returned by getgroups() or it may be returned only by getegid(). Duplication may exist, but
the application needs to call getegid() to be sure of getting all of the information. Various
implementation variations and administrative sequences cause the set of groups appearing in
the result of getgroups() to vary in order and as to whether the effective group ID is included,
even when the set of groups is the same (in the mathematical sense of ‘‘set’’). (The history of a
process and its parents could affect the details of the result.)

Application writers should note that {NGROUPS_MAX} is not necessarily a constant on all
implementations.

FUTURE DIRECTIONS
None.

SEE ALSO
getegid(), setgid(), the Base Definitions volume of IEEE Std 1003.1-200x, <sys/types.h>,
<unistd.h>

CHANGE HISTORY
First released in Issue 3. Included for alignment with the POSIX.1-1988 standard.

Issue 5
Normative text previously in the APPLICATION USAGE section is moved to the
DESCRIPTION.

Issue 6
In the SYNOPSIS, the optional include of the <sys/types.h> header is removed.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
required for conforming implementations of previous POSIX specifications, it was not
required for UNIX applications.

• A return value of 0 is not permitted, because {NGROUPS_MAX} cannot be 0. This is a FIPS
requirement.

The following changes were made to align with the IEEE P1003.1a draft standard:

• An explanation is added that the effective group ID may be included in the supplementary
group list.

540 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

17960

17961

17962

17963

17964

17965

17966

17967

17968

17969

17970

17971

17972

17973

17974

17975

17976

17977

17978

17979

17980

17981

17982

17983

17984

17985

17986

17987

17988

17989

17990

17991

17992

17993

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces gethostent()

NAME
gethostent — network host database functions

SYNOPSIS
#include <netdb.h>

struct hostent *gethostent(void);

DESCRIPTION
Refer to endhostent().

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 541

17994

17995

17996

17997

17998

17999

18000

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

gethostid() System Interfaces

NAME
gethostid — get an identifier for the current host

SYNOPSIS
XSI #include <unistd.h>

long gethostid(void);

DESCRIPTION
The gethostid() function shall retrieve a 32-bit identifier for the current host.

RETURN VALUE
Upon successful completion, gethostid() shall return an identifier for the current host.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
This volume of IEEE Std 1003.1-200x does not define the domain in which the return value is
unique.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
random(), the Base Definitions volume of IEEE Std 1003.1-200x, <unistd.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

542 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

18001

18002

18003

18004

18005

18006

18007

18008

18009

18010

18011

18012

18013

18014

18015

18016

18017

18018

18019

18020

18021

18022

18023

18024

18025

18026

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces gethostname()

NAME
gethostname — get name of current host

SYNOPSIS
#include <unistd.h>

int gethostname(char * name, s ize_t namelen);

DESCRIPTION
The gethostname() function shall return the standard host name for the current machine. The
namelen argument shall specify the size of the array pointed to by the name argument. The
returned name shall be null-terminated, except that if namelen is an insufficient length to hold
the host name, then the returned name shall be truncated and it is unspecified whether the
returned name is null-terminated.

Host names are limited to {HOST_NAME_MAX} bytes.

RETURN VALUE
Upon successful completion, 0 shall be returned; otherwise, −1 shall be returned.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
gethostid(), uname(), the Base Definitions volume of IEEE Std 1003.1-200x, <unistd.h>

CHANGE HISTORY
First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

The Open Group Base Resolution bwg2001-008 is applied, changing the namelen parameter from
socklen_t to size_t.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 543

18027

18028

18029

18030

18031

18032

18033

18034

18035

18036

18037

18038

18039

18040

18041

18042

18043

18044

18045

18046

18047

18048

18049

18050

18051

18052

18053

18054

18055

18056

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

getitimer() System Interfaces

NAME
getitimer, setitimer — get and set value of interval timer

SYNOPSIS
OB XSI #include <sys/time.h>

int getitimer(int which, s truct itimerval * value);
int setitimer(int which, c onst struct itimerval *restrict value,

struct itimerval *restrict ovalue);

DESCRIPTION
The getitimer() function shall store the current value of the timer specified by which into the
structure pointed to by value. The setitimer() function shall set the timer specified by which to the
value specified in the structure pointed to by value, and if ovalue is not a null pointer, store the
previous value of the timer in the structure pointed to by ovalue.

A timer value is defined by the itimerval structure, specified in <sys/time.h>. If it_value is non-
zero, it shall indicate the time to the next timer expiration. If it_interval is non-zero, it shall
specify a value to be used in reloading it_value when the timer expires. Setting it_value to 0 shall
disable a timer, regardless of the value of it_interval. Setting it_interval to 0 shall disable a timer
after its next expiration (assuming it_value is non-zero).

Implementations may place limitations on the granularity of timer values. For each interval
timer, if the requested timer value requires a finer granularity than the implementation supports,
the actual timer value shall be rounded up to the next supported value.

An XSI-conforming implementation provides each process with at least three interval timers,
which are indicated by the which argument:

ITIMER_PROF Decrements both in process virtual time and when the system is running
on behalf of the process. It is designed to be used by interpreters in
statistically profiling the execution of interpreted programs. Each time the
ITIMER_PROF timer expires, the SIGPROF signal is delivered.

ITIMER_REAL Decrements in real time. A SIGALRM signal is delivered when this timer
expires.

ITIMER_VIRTUAL Decrements in process virtual time. It runs only when the process is
executing. A SIGVTALRM signal is delivered when it expires.

The interaction between setitimer() and alarm() or sleep() is unspecified.

RETURN VALUE
Upon successful completion, getitimer() or setitimer() shall return 0; otherwise, −1 shall be
returned and errno set to indicate the error.

ERRORS
The setitimer() function shall fail if:

[EINVAL] The value argument is not in canonical form. (In canonical form, the number of
microseconds is a non-negative integer less than 1 000 000 and the number of
seconds is a non-negative integer.)

The getitimer() and setitimer() functions may fail if:

[EINVAL] The which argument is not recognized.

544 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

18057

18058

18059

18060

18061

18062

18063

18064

18065

18066

18067

18068

18069

18070

18071

18072

18073

18074

18075

18076

18077

18078

18079

18080

18081

18082

18083

18084

18085

18086

18087

18088

18089

18090

18091

18092

18093

18094

18095

18096

18097

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces getitimer()

EXAMPLES
None.

APPLICATION USAGE
Applications should use the timer_gettime() and timer_settime() functions instead of the
obsolescent getitimer() and setitimer() functions, respectively.

RATIONALE
None.

FUTURE DIRECTIONS
The getitimer() and setitimer() functions may be removed in a future version.

SEE ALSO
alarm(), exec , sleep(), timer_getoverrun(), the Base Definitions volume of IEEE Std 1003.1-200x,
<signal.h>, <sys/time.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Issue 6
The restrict keyword is added to the setitimer() prototype for alignment with the
ISO/IEC 9899: 1999 standard.

Issue 7
The getitimer() and setitimer() functions are marked obsolescent.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 545

18098

18099

18100

18101

18102

18103

18104

18105

18106

18107

18108

18109

18110

18111

18112

18113

18114

18115

18116

18117

18118

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

getline() System Interfaces

NAME
getline — read a delimited record from stream

SYNOPSIS
CX #include <stdio.h>

ssize_t getline(char ** lineptr, s ize_t * n, F ILE * stream);

DESCRIPTION
Refer to getdelim().

546 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

18119

18120

18121

18122

18123

18124

18125

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces getlogin()

NAME
getlogin, getlogin_r — get login name

SYNOPSIS
#include <unistd.h>

char *getlogin(void);
int getlogin_r(char * name, s ize_t namesize);

DESCRIPTION
The getlogin() function shall return a pointer to a string containing the user name associated by
the login activity with the controlling terminal of the current process. If getlogin() returns a non-
null pointer, then that pointer points to the name that the user logged in under, even if there are
several login names with the same user ID.

The getlogin() function need not be thread-safe. A function that is not required to be thread-safe
is not required to be reentrant.

The getlogin_r() function shall put the name associated by the login activity with the controlling
terminal of the current process in the character array pointed to by name. The array is namesize
characters long and should have space for the name and the terminating null character. The
maximum size of the login name is {LOGIN_NAME_MAX}.

If getlogin_r() is successful, name points to the name the user used at login, even if there are
several login names with the same user ID.

RETURN VALUE
Upon successful completion, getlogin() shall return a pointer to the login name or a null pointer
if the user’s login name cannot be found. Otherwise, it shall return a null pointer and set errno to
indicate the error.

The return value from getlogin() may point to static data whose content is overwritten by each
call.

If successful, the getlogin_r() function shall return zero; otherwise, an error number shall be
returned to indicate the error.

ERRORS
The getlogin() and getlogin_r() functions may fail if:

[EMFILE] All file descriptors available to the process are currently open.

[ENFILE] The maximum allowable number of files is currently open in the system.

[ENXIO] The calling process has no controlling terminal.

The getlogin_r() function may fail if:

[ERANGE] The value of namesize is smaller than the length of the string to be returned
including the terminating null character.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 547

18126

18127

18128

18129

18130

18131

18132

18133

18134

18135

18136

18137

18138

18139

18140

18141

18142

18143

18144

18145

18146

18147

18148

18149

18150

18151

18152

18153

18154

18155

18156

18157

18158

18159

18160

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

getlogin() System Interfaces

EXAMPLES

Getting the User Login Name

The following example calls the getlogin() function to obtain the name of the user associated
with the calling process, and passes this information to the getpwnam() function to get the
associated user database information.

#include <unistd.h>
#include <sys/types.h>
#include <pwd.h>
#include <stdio.h>
...
char *lgn;
struct passwd *pw;
...
if ((lgn = getlogin()) == NULL || (pw = getpwnam(lgn)) == NULL) {

fprintf(stderr, "Get of user information failed.\n"); exit(1);
}

APPLICATION USAGE
Three names associated with the current process can be determined: getpwuid(geteuid()) shall
return the name associated with the effective user ID of the process; getlogin() shall return the
name associated with the current login activity; and getpwuid(getuid()) shall return the name
associated with the real user ID of the process.

The getlogin_r() function is thread-safe and returns values in a user-supplied buffer instead of
possibly using a static data area that may be overwritten by each call.

RATIONALE
The getlogin() function returns a pointer to the user’s login name. The same user ID may be
shared by several login names. If it is desired to get the user database entry that is used during
login, the result of getlogin() should be used to provide the argument to the getpwnam()
function. (This might be used to determine the user’s login shell, particularly where a single user
has multiple login shells with distinct login names, but the same user ID.)

The information provided by the cuserid() function, which was originally defined in the
POSIX.1-1988 standard and subsequently removed, can be obtained by the following:

getpwuid(geteuid())

while the information provided by historical implementations of cuserid() can be obtained by:

getpwuid(getuid())

The thread-safe version of this function places the user name in a user-supplied buffer and
returns a non-zero value if it fails. The non-thread-safe version may return the name in a static
data area that may be overwritten by each call.

FUTURE DIRECTIONS
None.

SEE ALSO
getpwnam(), getpwuid(), geteuid(), getuid(), the Base Definitions volume of IEEE Std 1003.1-200x,
<limits.h>, <unistd.h>

CHANGE HISTORY
First released in Issue 1. Derived from System V Release 2.0.

548 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

18161

18162

18163

18164

18165

18166

18167

18168

18169

18170

18171

18172

18173

18174

18175

18176

18177

18178

18179

18180

18181

18182

18183

18184

18185

18186

18187

18188

18189

18190

18191

18192

18193

18194

18195

18196

18197

18198

18199

18200

18201

18202

18203

18204

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces getlogin()

Issue 5
Normative text previously in the APPLICATION USAGE section is moved to the RETURN
VALUE section.

The getlogin_r() function is included for alignment with the POSIX Threads Extension.

A note indicating that the getlogin() function need not be reentrant is added to the
DESCRIPTION.

Issue 6
The getlogin_r() function is marked as part of the Thread-Safe Functions option.

In the DESCRIPTION, the note about reentrancy is expanded to cover thread-safety.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• In the RETURN VALUE section, the requirement to set errno on error is added.

• The [EMFILE], [ENFILE], and [ENXIO] optional error conditions are added.

The APPLICATION USAGE section is updated to include a note on the thread-safe function and
its avoidance of possibly using a static data area.

Issue 7
SD5-XBD-ERN-4 is applied, changing the definition of the [EMFILE] error.

The getlogin_r() function is moved from the Thread-Safe Functions option to the Base.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 549

18205

18206

18207

18208

18209

18210

18211

18212

18213

18214

18215

18216

18217

18218

18219

18220

18221

18222

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

getmsg() System Interfaces

NAME
getmsg, getpmsg — receive next message from a STREAMS file (STREAMS)

SYNOPSIS
OB XSR #include <stropts.h>

int getmsg(int fildes, s truct strbuf *restrict ctlptr,
struct strbuf *restrict dataptr, i nt *restrict flagsp);

int getpmsg(int fildes, s truct strbuf *restrict ctlptr,
struct strbuf *restrict dataptr, i nt *restrict bandp,
int *restrict flagsp);

DESCRIPTION
The getmsg() function shall retrieve the contents of a message located at the head of the
STREAM head read queue associated with a STREAMS file and place the contents into one or
more buffers. The message contains either a data part, a control part, or both. The data and
control parts of the message shall be placed into separate buffers, as described below. The
semantics of each part are defined by the originator of the message.

The getpmsg() function shall be equivalent to getmsg(), except that it provides finer control over
the priority of the messages received. Except where noted, all requirements on getmsg() also
pertain to getpmsg().

The fildes argument specifies a file descriptor referencing a STREAMS-based file.

The ctlptr and dataptr arguments each point to a strbuf structure, in which the buf member points
to a buffer in which the data or control information is to be placed, and the maxlen member
indicates the maximum number of bytes this buffer can hold. On return, the len member shall
contain the number of bytes of data or control information actually received. The len member
shall be set to 0 if there is a zero-length control or data part and len shall be set to −1 if no data or
control information is present in the message.

When getmsg() is called, flagsp should point to an integer that indicates the type of message the
process is able to receive. This is described further below.

The ctlptr argument is used to hold the control part of the message, and dataptr is used to hold
the data part of the message. If ctlptr (or dataptr) is a null pointer or the maxlen member is −1, the
control (or data) part of the message shall not be processed and shall be left on the STREAM
head read queue, and if the ctlptr (or dataptr) is not a null pointer, len shall be set to −1. If the
maxlen member is set to 0 and there is a zero-length control (or data) part, that zero-length part
shall be removed from the read queue and len shall be set to 0. If the maxlen member is set to 0
and there are more than 0 bytes of control (or data) information, that information shall be left on
the read queue and len shall be set to 0. If the maxlen member in ctlptr (or dataptr) is less than the
control (or data) part of the message, maxlen bytes shall be retrieved. In this case, the remainder
of the message shall be left on the STREAM head read queue and a non-zero return value shall
be provided.

By default, getmsg() shall process the first available message on the STREAM head read queue.
However, a process may choose to retrieve only high-priority messages by setting the integer
pointed to by flagsp to RS_HIPRI. In this case, getmsg() shall only process the next message if it is
a high-priority message. When the integer pointed to by flagsp is 0, any available message shall
be retrieved. In this case, on return, the integer pointed to by flagsp shall be set to RS_HIPRI if a
high-priority message was retrieved, or 0 otherwise.

For getpmsg(), the flags are different. The flagsp argument points to a bitmask with the following
mutually-exclusive flags defined: MSG_HIPRI, MSG_BAND, and MSG_ANY. Like getmsg(),

550 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

18223

18224

18225

18226

18227

18228

18229

18230

18231

18232

18233

18234

18235

18236

18237

18238

18239

18240

18241

18242

18243

18244

18245

18246

18247

18248

18249

18250

18251

18252

18253

18254

18255

18256

18257

18258

18259

18260

18261

18262

18263

18264

18265

18266

18267

18268

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces getmsg()

getpmsg() shall process the first available message on the STREAM head read queue. A process
may choose to retrieve only high-priority messages by setting the integer pointed to by flagsp to
MSG_HIPRI and the integer pointed to by bandp to 0. In this case, getpmsg() shall only process
the next message if it is a high-priority message. In a similar manner, a process may choose to
retrieve a message from a particular priority band by setting the integer pointed to by flagsp to
MSG_BAND and the integer pointed to by bandp to the priority band of interest. In this case,
getpmsg() shall only process the next message if it is in a priority band equal to, or greater than,
the integer pointed to by bandp, or if it is a high-priority message. If a process wants to get the
first message off the queue, the integer pointed to by flagsp should be set to MSG_ANY and the
integer pointed to by bandp should be set to 0. On return, if the message retrieved was a high-
priority message, the integer pointed to by flagsp shall be set to MSG_HIPRI and the integer
pointed to by bandp shall be set to 0. Otherwise, the integer pointed to by flagsp shall be set to
MSG_BAND and the integer pointed to by bandp shall be set to the priority band of the message.

If O_NONBLOCK is not set, getmsg() and getpmsg() shall block until a message of the type
specified by flagsp is available at the front of the STREAM head read queue. If O_NONBLOCK is
set and a message of the specified type is not present at the front of the read queue, getmsg() and
getpmsg() shall fail and set errno to [EAGAIN].

If a hangup occurs on the STREAM from which messages are retrieved, getmsg() and getpmsg()
shall continue to operate normally, as described above, until the STREAM head read queue is
empty. Thereafter, they shall return 0 in the len members of ctlptr and dataptr.

RETURN VALUE
Upon successful completion, getmsg() and getpmsg() shall return a non-negative value. A value
of 0 indicates that a full message was read successfully. A return value of MORECTL indicates
that more control information is waiting for retrieval. A return value of MOREDATA indicates
that more data is waiting for retrieval. A return value of the bitwise-logical OR of MORECTL
and MOREDATA indicates that both types of information remain. Subsequent getmsg() and
getpmsg() calls shall retrieve the remainder of the message. However, if a message of higher
priority has come in on the STREAM head read queue, the next call to getmsg() or getpmsg()
shall retrieve that higher-priority message before retrieving the remainder of the previous
message.

If the high priority control part of the message is consumed, the message shall be placed back on
the queue as a normal message of band 0. Subsequent getmsg() and getpmsg() calls shall retrieve
the remainder of the message. If, however, a priority message arrives or already exists on the
STREAM head, the subsequent call to getmsg() or getpmsg() shall retrieve the higher-priority
message before retrieving the remainder of the message that was put back.

Upon failure, getmsg() and getpmsg() shall return −1 and set errno to indicate the error.

ERRORS
The getmsg() and getpmsg() functions shall fail if:

[EAGAIN] The O_NONBLOCK flag is set and no messages are available.

[EBADF] The fildes argument is not a valid file descriptor open for reading.

[EBADMSG] The queued message to be read is not valid for getmsg() or getpmsg() or a
pending file descriptor is at the STREAM head.

[EINTR] A signal was caught during getmsg() or getpmsg().

[EINVAL] An illegal value was specified by flagsp, or the STREAM or multiplexer
referenced by fildes is linked (directly or indirectly) downstream from a
multiplexer.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 551

18269

18270

18271

18272

18273

18274

18275

18276

18277

18278

18279

18280

18281

18282

18283

18284

18285

18286

18287

18288

18289

18290

18291

18292

18293

18294

18295

18296

18297

18298

18299

18300

18301

18302

18303

18304

18305

18306

18307

18308

18309

18310

18311

18312

18313

18314

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

getmsg() System Interfaces

[ENOSTR] A STREAM is not associated with fildes.

In addition, getmsg() and getpmsg() shall fail if the STREAM head had processed an
asynchronous error before the call. In this case, the value of errno does not reflect the result of
getmsg() or getpmsg() but reflects the prior error.

EXAMPLES

Getting Any Message

In the following example, the value of fd is assumed to refer to an open STREAMS file. The call
to getmsg() retrieves any available message on the associated STREAM-head read queue,
returning control and data information to the buffers pointed to by ctrlbuf and databuf ,
respectively.

#include <stropts.h>
...
int fd;
char ctrlbuf[128];
char databuf[512];
struct strbuf ctrl;
struct strbuf data;
int flags = 0;
int ret;

ctrl.buf = ctrlbuf;
ctrl.maxlen = sizeof(ctrlbuf);

data.buf = databuf;
data.maxlen = sizeof(databuf);

ret = getmsg (fd, &ctrl, &data, &flags);

Getting the First Message off the Queue

In the following example, the call to getpmsg() retrieves the first available message on the
associated STREAM-head read queue.

#include <stropts.h>
...

int fd;
char ctrlbuf[128];
char databuf[512];
struct strbuf ctrl;
struct strbuf data;
int band = 0;
int flags = MSG_ANY;
int ret;

ctrl.buf = ctrlbuf;
ctrl.maxlen = sizeof(ctrlbuf);

data.buf = databuf;
data.maxlen = sizeof(databuf);

ret = getpmsg (fd, &ctrl, &data, &band, &flags);

552 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

18315

18316

18317

18318

18319

18320

18321

18322

18323

18324

18325

18326

18327

18328

18329

18330

18331

18332

18333

18334

18335

18336

18337

18338

18339

18340

18341

18342

18343

18344

18345

18346

18347

18348

18349

18350

18351

18352

18353

18354

18355

18356

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces getmsg()

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
The getmsg() and getpmsg() functions may be removed in a future version.

SEE ALSO
Section 2.6 (on page 38), poll(), putmsg(), read(), write(), t

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

getnameinfo() System Interfaces

NAME
getnameinfo — get name information

SYNOPSIS
#include <sys/socket.h>
#include <netdb.h>

int getnameinfo(const struct sockaddr *restrict sa, s ocklen_t salen,
char *restrict node, s ocklen_t nodelen, c har *restrict service,
socklen_t servicelen, i nt flags);

DESCRIPTION
The getnameinfo() function shall translate a socket address to a node name and service location,
all of which are defined as in getaddrinfo().

The sa argument points to a socket address structure to be translated.

IP6 If the socket address structure contains an IPv4-mapped IPv6 address or an IPv4-compatible
IPv6 address, the implementation shall extract the embedded IPv4 address and lookup the node
name for that IPv4 address.

If the address is the IPv6 unspecified address ("::"), a lookup shall not be performed and the
behavior shall be the same as when the node’s name cannot be located.

If the node argument is non-NULL and the nodelen argument is non-zero, then the node argument
points to a buffer able to contain up to nodelen characters that receives the node name as a null-
terminated string. If the node argument is NULL or the nodelen argument is zero, the node name
shall not be returned. If the node’s name cannot be located, the numeric form of the address
contained in the socket address structure pointed to by the sa argument is returned instead of its
name.

If the service argument is non-NULL and the servicelen argument is non-zero, then the service
argument points to a buffer able to contain up to servicelen bytes that receives the service name
as a null-terminated string. If the service argument is NULL or the servicelen argument is zero,
the service name shall not be returned. If the service’s name cannot be located, the numeric form
of the service address (for example, its port number) shall be returned instead of its name.

The flags argument is a flag that changes the default actions of the function. By default the fully-
qualified domain name (FQDN) for the host shall be returned, but:

• If the flag bit NI_NOFQDN is set, only the node name portion of the FQDN shall be
returned for local hosts.

• If the flag bit NI_NUMERICHOST is set, the numeric form of the address contained in the
socket address structure pointed to by the sa argument shall be returned instead of its
name.

• If the flag bit NI_NAMEREQD is set, an error shall be returned if the host’s name cannot
be located.

• If the flag bit NI_NUMERICSERV is set, the numeric form of the service address shall be
returned (for example, its port number) instead of its name.

• If the flag bit NI_NUMERICSCOPE is set, the numeric form of the scope identifier shall be
returned (for example, interface index) instead of its name. This flag shall be ignored if the
sa argument is not an IPv6 address.

554 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

18378

18379

18380

18381

18382

18383

18384

18385

18386

18387

18388

18389

18390

18391

18392

18393

18394

18395

18396

18397

18398

18399

18400

18401

18402

18403

18404

18405

18406

18407

18408

18409

18410

18411

18412

18413

18414

18415

18416

18417

18418

18419

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces getnameinfo()

• If the flag bit NI_DGRAM is set, this indicates that the service is a datagram service
(SOCK_DGRAM). The default behavior shall assume that the service is a stream service
(SOCK_STREAM).

Notes:

1. The two NI_NUMERICxxx flags are required to support the −n flag that many
commands provide.

2. The NI_DGRAM flag is required for the few AF_INET and AF_INET6 port numbers (for
example, [512,514]) that represent different services for UDP and TCP.

The getnameinfo() function shall be thread-safe.

RETURN VALUE
A zero return value for getnameinfo() indicates successful completion; a non-zero return value
indicates failure. The possible values for the failures are listed in the ERRORS section.

Upon successful completion, getnameinfo() shall return the node and service names, if requested,
in the buffers provided. The returned names are always null-terminated strings.

ERRORS
The getnameinfo() function shall fail and return the corresponding value if:

[EAI_AGAIN] The name could not be resolved at this time. Future attempts may succeed.

[EAI_BADFLAGS]
The flags had an invalid value.

[EAI_FAIL] A non-recoverable error occurred.

[EAI_FAMILY] The address family was not recognized or the address length was invalid for
the specified family.

[EAI_MEMORY] There was a memory allocation failure.

[EAI_NONAME] The name does not resolve for the supplied parameters.

NI_NAMEREQD is set and the host’s name cannot be located, or both
nodename and servname were null.

[EAI_OVERFLOW]
An argument buffer overflowed. The buffer pointed to by the node argument
or the service argument was too small.

[EAI_SYSTEM] A system error occurred. The error code can be found in errno.

EXAMPLES
None.

APPLICATION USAGE
If the returned values are to be used as part of any further name resolution (for example, passed
to getaddrinfo()), applications should provide buffers large enough to store any result possible on
the system.

Given the IPv4-mapped IPv6 address "::ffff:1.2.3.4" , the implementation performs a
lookup as if the socket address structure contains the IPv4 address "1.2.3.4" .

The IPv6 unspecified address ("::") and the IPv6 loopback address ("::1") are not
IPv4-compatible addresses.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 555

18420

18421

18422

18423

18424

18425

18426

18427

18428

18429

18430

18431

18432

18433

18434

18435

18436

18437

18438

18439

18440

18441

18442

18443

18444

18445

18446

18447

18448

18449

18450

18451

18452

18453

18454

18455

18456

18457

18458

18459

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

getnameinfo() System Interfaces

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
gai_strerror(), getaddrinfo(), getservbyname(), inet_ntop(), socket(), the Base Definitions volume of
IEEE Std 1003.1-200x, <netdb.h>, <sys/socket.h>

CHANGE HISTORY
First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

The restrict keyword is added to the getnameinfo() prototype for alignment with the
ISO/IEC 9899: 1999 standard.

IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/23 is applied, making various changes in
the SYNOPSIS and DESCRIPTION for alignment with IPv6.

IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/24 is applied, adding the
[EAI_OVERFLOW] error to the ERRORS section.

Issue 7
SD5-XSH-ERN-127 is applied, clarifying the behavior if the address is the IPv6 unspecified
address.

556 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

18460

18461

18462

18463

18464

18465

18466

18467

18468

18469

18470

18471

18472

18473

18474

18475

18476

18477

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces getnetbyaddr()

NAME
getnetbyaddr, getnetbyname, getnetent — network database functions

SYNOPSIS
#include <netdb.h>

struct netent *getnetbyaddr(uint32_t net, i nt type);
struct netent *getnetbyname(const char * name);
struct netent *getnetent(void);

DESCRIPTION
Refer to endnetent().

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 557

18478

18479

18480

18481

18482

18483

18484

18485

18486

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

getopt() System Interfaces

NAME
getopt, optarg, opterr, optind, optopt — command option parsing

SYNOPSIS
#include <unistd.h>

int getopt(int argc, c har * const argv[], const char * optstring);
extern char *optarg;
extern int optind, opterr, optopt;

DESCRIPTION
The getopt() function is a command-line parser that shall follow Utility Syntax Guidelines 3, 4, 5,
6, 7, 9, and 10 in the Base Definitions volume of IEEE Std 1003.1-200x, Section 12.2, Utility Syntax
Guidelines.

The parameters argc and argv are the argument count and argument array as passed to main()
(see exec). The argument optstring is a string of recognized option characters; if a character is
followed by a colon, the option takes an argument. All option characters allowed by Utility
Syntax Guideline 3 are allowed in optstring. The implementation may accept other characters as
an extension.

The variable optind is the index of the next element of the argv[] vector to be processed. It shall
be initialized to 1 by the system, and getopt() shall update it when it finishes with each element
of argv[]. When an element of argv[] contains multiple option characters, it is unspecified how
getopt() determines which options have already been processed.

The getopt() function shall return the next option character (if one is found) from argv that
matches a character in optstring, if there is one that matches. If the option takes an argument,
getopt() shall set the variable optarg to point to the option-argument as follows:

1. If the option was the last character in the string pointed to by an element of argv, then
optarg shall contain the next element of argv, and optind shall be incremented by 2. If the
resulting value of optind is greater than argc, this indicates a missing option-argument,
and getopt() shall return an error indication.

2. Otherwise, optarg shall point to the string following the option character in that element
of argv, and optind shall be incremented by 1.

If, when getopt() is called:

argv[optind] is a null pointer
* argv[optind] is not the character −
argv[optind] points to the string " −"

getopt() shall return −1 without changing optind. If:

argv[optind] points to the string " − −"

getopt() shall return −1 after incrementing optind.

If getopt() encounters an option character that is not contained in optstring, it shall return the
question-mark (’?’) character. If it detects a missing option-argument, it shall return the colon
character (’:’) if the first character of optstring was a colon, or a question-mark character (’?’)
otherwise. In either case, getopt() shall set the variable optopt to the option character that caused
the error. If the application has not set the variable opterr to 0 and the first character of optstring is
not a colon, getopt() shall also print a diagnostic message to stderr in the format specified for the
getopts utility.

The getopt() function need not be thread-safe. A function that is not required to be thread-safe is

558 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

18487

18488

18489

18490

18491

18492

18493

18494

18495

18496

18497

18498

18499

18500

18501

18502

18503

18504

18505

18506

18507

18508

18509

18510

18511

18512

18513

18514

18515

18516

18517

18518

18519

18520

18521

18522

18523

18524

18525

18526

18527

18528

18529

18530

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces getopt()

not required to be reentrant.

RETURN VALUE
The getopt() function shall return the next option character specified on the command line.

A colon (’:’) shall be returned if getopt() detects a missing argument and the first character of
optstring was a colon (’:’).

A question mark (’?’) shall be returned if getopt() encounters an option character not in
optstring or detects a missing argument and the first character of optstring was not a colon (’:’).

Otherwise, getopt() shall return −1 when all command line options are parsed.

ERRORS
No errors are defined.

EXAMPLES

Parsing Command Line Options

The following code fragment shows how you might process the arguments for a utility that can
take the mutually-exclusive options a and b and the options f and o, both of which require
arguments:

#include <unistd.h>

int
main(int argc, char *argv[])
{

int c;
int bflg, aflg, errflg;
char *ifile;
char *ofile;
extern char *optarg;
extern int optind, optopt;
. . .
while ((c = getopt(argc, argv, ":abf:o:")) != -1) {

switch(c) {
case ’a’:

if (bflg)
errflg++;

else
aflg++;

break;
case ’b’:

if (aflg)
errflg++;

else {
bflg++;
bproc();

}
break;

case ’f’:
ifile = optarg;
break;

case ’o’:
ofile = optarg;
break;
case ’:’: /* -f or -o without operand */

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 559

18531

18532

18533

18534

18535

18536

18537

18538

18539

18540

18541

18542

18543

18544

18545

18546

18547

18548

18549

18550

18551

18552

18553

18554

18555

18556

18557

18558

18559

18560

18561

18562

18563

18564

18565

18566

18567

18568

18569

18570

18571

18572

18573

18574

18575

18576

18577

18578

18579

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

getopt() System Interfaces

fprintf(stderr,
"Option -%c requires an operand\n", optopt);

errflg++;
break;

case ’?’:
fprintf(stderr,

"Unrecognized option: -%c\n", optopt);
errflg++;

}
}
if (errflg) {

fprintf(stderr, "usage: . . . ");
exit(2);

}
for (; optind < argc; optind++) {

if (access(argv[optind], R_OK)) {
. . .

}

This code accepts any of the following as equivalent:

cmd −ao arg path path
cmd −a −o arg path path
cmd −o arg −a path path
cmd −a −o arg − − path path
cmd −a −oarg path path
cmd −aoarg path path

Checking Options and Arguments

The following example parses a set of command line options and prints messages to standard
output for each option and argument that it encounters.

#include <unistd.h>
#include <stdio.h>
...
int c;
char *filename;
extern char *optarg;
extern int optind, optopt, opterr;
...
while ((c = getopt(argc, argv, ":abf:")) != -1) {

switch(c) {
case ’a’:

printf("a is set\n");
break;

case ’b’:
printf("b is set\n");
break;

case ’f’:
filename = optarg;
printf("filename is %s\n", filename);
break;

case ’:’:
printf("-%c without filename\n", optopt);
break;

560 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

18580

18581

18582

18583

18584

18585

18586

18587

18588

18589

18590

18591

18592

18593

18594

18595

18596

18597

18598

18599

18600

18601

18602

18603

18604

18605

18606

18607

18608

18609

18610

18611

18612

18613

18614

18615

18616

18617

18618

18619

18620

18621

18622

18623

18624

18625

18626

18627

18628

18629

18630

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces getopt()

case ’?’:
printf("unknown arg %c\n", optopt);
break;

}
}

Selecting Options from the Command Line

The following example selects the type of database routines the user wants to use based on the
Options argument.

#include <unistd.h>
#include <string.h>
...
char *Options = "hdbtl";
...
int dbtype, i;
char c;
char *st;
...
dbtype = 0;
while ((c = getopt(argc, argv, Options)) != −1) {

if ((st = strchr(Options, c)) != NULL) {
dbtype = st - Options;
break;

}
}

APPLICATION USAGE
The getopt() function is only required to support option characters included in Utility Syntax
Guideline 3. Many historical implementations of getopt() support other characters as options.
This is an allowed extension, but applications that use extensions are not maximally portable.
Note that support for multi-byte option characters is only possible when such characters can be
represented as type int.

RATIONALE
The optopt variable represents historical practice and allows the application to obtain the identity
of the invalid option.

The description has been written to make it clear that getopt(), like the getopts utility, deals with
option-arguments whether separated from the option by <blank>s or not. Note that the
requirements on getopt() and getopts are more stringent than the Utility Syntax Guidelines.

The getopt() function shall return −1, rather than EOF, so that <stdio.h> is not required.

The special significance of a colon as the first character of optstring makes getopt() consistent
with the getopts utility. It allows an application to make a distinction between a missing
argument and an incorrect option letter without having to examine the option letter. It is true
that a missing argument can only be detected in one case, but that is a case that has to be
considered.

FUTURE DIRECTIONS
None.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 561

18631

18632

18633

18634

18635

18636

18637

18638

18639

18640

18641

18642

18643

18644

18645

18646

18647

18648

18649

18650

18651

18652

18653

18654

18655

18656

18657

18658

18659

18660

18661

18662

18663

18664

18665

18666

18667

18668

18669

18670

18671

18672

18673

18674

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

getopt() System Interfaces

SEE ALSO
exec , the Base Definitions volume of IEEE Std 1003.1-200x, <unistd.h>, the Shell and Utilities
volume of IEEE Std 1003.1-200x

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
A note indicating that the getopt() function need not be reentrant is added to the DESCRIPTION.

Issue 6
IEEE PASC Interpretation 1003.2 #150 is applied.

562 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

18675

18676

18677

18678

18679

18680

18681

18682

18683

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces getpeername()

NAME
getpeername — get the name of the peer socket

SYNOPSIS
#include <sys/socket.h>

int getpeername(int socket, s truct sockaddr *restrict address,
socklen_t *restrict address_len);

DESCRIPTION
The getpeername() function shall retrieve the peer address of the specified socket, store this
address in the sockaddr structure pointed to by the address argument, and store the length of this
address in the object pointed to by the address_len argument.

If the actual length of the address is greater than the length of the supplied sockaddr structure,
the stored address shall be truncated.

If the protocol permits connections by unbound clients, and the peer is not bound, then the
value stored in the object pointed to by address is unspecified.

RETURN VALUE
Upon successful completion, 0 shall be returned. Otherwise, −1 shall be returned and errno set to
indicate the error.

ERRORS
The getpeername() function shall fail if:

[EBADF] The socket argument is not a valid file descriptor.

[EINVAL] The socket has been shut down.

[ENOTCONN] The socket is not connected or otherwise has not had the peer pre-specified.

[ENOTSOCK] The socket argument does not refer to a socket.

[EOPNOTSUPP] The operation is not supported for the socket protocol.

The getpeername() function may fail if:

[ENOBUFS] Insufficient resources were available in the system to complete the call.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
accept(), bind(), getsockname(), socket(), the Base Definitions volume of IEEE Std 1003.1-200x,
<sys/socket.h>

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 563

18684

18685

18686

18687

18688

18689

18690

18691

18692

18693

18694

18695

18696

18697

18698

18699

18700

18701

18702

18703

18704

18705

18706

18707

18708

18709

18710

18711

18712

18713

18714

18715

18716

18717

18718

18719

18720

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

getpeername() System Interfaces

CHANGE HISTORY
First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

The restrict keyword is added to the getpeername() prototype for alignment with the
ISO/IEC 9899: 1999 standard.

564 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

18721

18722

18723

18724

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces getpgid()

NAME
getpgid — get the process group ID for a process

SYNOPSIS
#include <unistd.h>

pid_t getpgid(pid_t pid);

DESCRIPTION
The getpgid() function shall return the process group ID of the process whose process ID is equal
to pid. If pid is equal to 0, getpgid() shall return the process group ID of the calling process.

RETURN VALUE
Upon successful completion, getpgid() shall return a process group ID. Otherwise, it shall return
(pid_t)−1 and set errno to indicate the error.

ERRORS
The getpgid() function shall fail if:

[EPERM] The process whose process ID is equal to pid is not in the same session as the
calling process, and the implementation does not allow access to the process
group ID of that process from the calling process.

[ESRCH] There is no process with a process ID equal to pid.

The getpgid() function may fail if:

[EINVAL] The value of the pid argument is invalid.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
exec , fork(), getpgrp(), getpid(), getsid(), setpgid(), setsid(), the Base Definitions volume of
IEEE Std 1003.1-200x, <unistd.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Issue 7
The getpgid() function is moved from the XSI option to the Base.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 565

18725

18726

18727

18728

18729

18730

18731

18732

18733

18734

18735

18736

18737

18738

18739

18740

18741

18742

18743

18744

18745

18746

18747

18748

18749

18750

18751

18752

18753

18754

18755

18756

18757

18758

18759

18760

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

getpgrp() System Interfaces

NAME
getpgrp — get the process group ID of the calling process

SYNOPSIS
#include <unistd.h>

pid_t getpgrp(void);

DESCRIPTION
The getpgrp() function shall return the process group ID of the calling process.

RETURN VALUE
The getpgrp() function shall always be successful and no return value is reserved to indicate an
error.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
4.3 BSD provides a getpgrp() function that returns the process group ID for a specified process.
Although this function supports job control, all known job control shells always specify the
calling process with this function. Thus, the simpler System V getpgrp() suffices, and the added
complexity of the 4.3 BSD getpgrp() is provided by the XSI extension getpgid().

FUTURE DIRECTIONS
None.

SEE ALSO
exec , fork(), getpgid(), getpid(), getppid(), kill(), setpgid(), setsid(), the Base Definitions volume of
IEEE Std 1003.1-200x, <sys/types.h>, <unistd.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
In the SYNOPSIS, the optional include of the <sys/types.h> header is removed.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
required for conforming implementations of previous POSIX specifications, it was not
required for UNIX applications.

566 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

18761

18762

18763

18764

18765

18766

18767

18768

18769

18770

18771

18772

18773

18774

18775

18776

18777

18778

18779

18780

18781

18782

18783

18784

18785

18786

18787

18788

18789

18790

18791

18792

18793

18794

18795

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces getpid()

NAME
getpid — get the process ID

SYNOPSIS
#include <unistd.h>

pid_t getpid(void);

DESCRIPTION
The getpid() function shall return the process ID of the calling process.

RETURN VALUE
The getpid() function shall always be successful and no return value is reserved to indicate an
error.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
exec , fork(), getpgrp(), getppid(), kill(), mkdtemp(), setpgid(), setsid(), the Base Definitions volume
of IEEE Std 1003.1-200x, <sys/types.h>, <unistd.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
In the SYNOPSIS, the optional include of the <sys/types.h> header is removed.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
required for conforming implementations of previous POSIX specifications, it was not
required for UNIX applications.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 567

18796

18797

18798

18799

18800

18801

18802

18803

18804

18805

18806

18807

18808

18809

18810

18811

18812

18813

18814

18815

18816

18817

18818

18819

18820

18821

18822

18823

18824

18825

18826

18827

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

getpmsg() System Interfaces

NAME
getpmsg — receive next message from a STREAMS file

SYNOPSIS
OB XSI #include <stropts.h>

int getpmsg(int fildes, s truct strbuf *restrict ctlptr,
struct strbuf *restrict dataptr, i nt *restrict bandp,
int *restrict flagsp);

DESCRIPTION
Refer to getmsg().

568 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

18828

18829

18830

18831

18832

18833

18834

18835

18836

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces getppid()

NAME
getppid — get the parent process ID

SYNOPSIS
#include <unistd.h>

pid_t getppid(void);

DESCRIPTION
The getppid() function shall return the parent process ID of the calling process.

RETURN VALUE
The getppid() function shall always be successful and no return value is reserved to indicate an
error.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
exec , fork(), getpgid(), getpgrp(), getpid(), kill(), setpgid(), setsid(), the Base Definitions volume of
IEEE Std 1003.1-200x, <sys/types.h>, <unistd.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
In the SYNOPSIS, the optional include of the <sys/types.h> header is removed.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
required for conforming implementations of previous POSIX specifications, it was not
required for UNIX applications.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 569

18837

18838

18839

18840

18841

18842

18843

18844

18845

18846

18847

18848

18849

18850

18851

18852

18853

18854

18855

18856

18857

18858

18859

18860

18861

18862

18863

18864

18865

18866

18867

18868

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

getpriority() System Interfaces

NAME
getpriority, setpriority — get and set the nice value

SYNOPSIS
XSI #include <sys/resource.h>

int getpriority(int which, i d_t who);
int setpriority(int which, i d_t who, i nt value);

DESCRIPTION
The getpriority() function shall obtain the nice value of a process, process group, or user. The
setpriority() function shall set the nice value of a process, process group, or user to
value+{NZERO}.

Target processes are specified by the values of the which and who arguments. The which
argument may be one of the following values: PRIO_PROCESS, PRIO_PGRP, or PRIO_USER,
indicating that the who argument is to be interpreted as a process ID, a process group ID, or an
effective user ID, respectively. A 0 value for the who argument specifies the current process,
process group, or user.

The nice value set with setpriority() shall be applied to the process. If the process is multi-
threaded, the nice value shall affect all system scope threads in the process.

If more than one process is specified, getpriority() shall return value {NZERO} less than the
lowest nice value pertaining to any of the specified processes, and setpriority() shall set the nice
values of all of the specified processes to value+{NZERO}.

The default nice value is {NZERO}; lower nice values shall cause more favorable scheduling.
While the range of valid nice values is [0,{NZERO}*2−1], implementations may enforce more
restrictive limits. If value+{NZERO} is less than the system’s lowest supported nice value,
setpriority() shall set the nice value to the lowest supported value; if value+{NZERO} is greater
than the system’s highest supported nice value, setpriority() shall set the nice value to the
highest supported value.

Only a process with appropriate privileges can lower its nice value.

PS|TPS Any processes or threads using SCHED_FIFO or SCHED_RR shall be unaffected by a call to
setpriority(). This is not considered an error. A process which subsequently reverts to
SCHED_OTHER need not have its priority affected by such a setpriority() call.

The effect of changing the nice value may vary depending on the process-scheduling algorithm
in effect.

Since getpriority() can return the value −1 on successful completion, it is necessary to set errno to
0 prior to a call to getpriority(). If getpriority() returns the value −1, then errno can be checked to
see if an error occurred or if the value is a legitimate nice value.

RETURN VALUE
Upon successful completion, getpriority() shall return an integer in the range −{NZERO} to
{NZERO}−1. Otherwise, −1 shall be returned and errno set to indicate the error.

Upon successful completion, setpriority() shall return 0; otherwise, −1 shall be returned and errno
set to indicate the error.

570 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

18869

18870

18871

18872

18873

18874

18875

18876

18877

18878

18879

18880

18881

18882

18883

18884

18885

18886

18887

18888

18889

18890

18891

18892

18893

18894

18895

18896

18897

18898

18899

18900

18901

18902

18903

18904

18905

18906

18907

18908

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces getpriority()

ERRORS
The getpriority() and setpriority() functions shall fail if:

[ESRCH] No process could be located using the which and who argument values
specified.

[EINVAL] The value of the which argument was not recognized, or the value of the who
argument is not a valid process ID, process group ID, or user ID.

In addition, setpriority() may fail if:

[EPERM] A process was located, but neither the real nor effective user ID of the
executing process match the effective user ID of the process whose nice value
is being changed.

[EACCES] A request was made to change the nice value to a lower numeric value and the
current process does not have appropriate privileges.

EXAMPLES

Using getpriority()

The following example returns the current scheduling priority for the process ID returned by the
call to getpid().

#include <sys/resource.h>
...
int which = PRIO_PROCESS;
id_t pid;
int ret;

pid = getpid();
ret = getpriority(which, pid);

Using setpriority()

The following example sets the priority for the current process ID to −20.

#include <sys/resource.h>
...
int which = PRIO_PROCESS;
id_t pid;
int priority = -20;
int ret;

pid = getpid();
ret = setpriority(which, pid, priority);

APPLICATION USAGE
The getpriority() and setpriority() functions work with an offset nice value (nice value
−{NZERO}). The nice value is in the range [0,2*{NZERO} −1], while the return value for
getpriority() and the third parameter for setpriority() are in the range [−{NZERO},{NZERO} −1].

RATIONALE
None.

FUTURE DIRECTIONS
None.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 571

18909

18910

18911

18912

18913

18914

18915

18916

18917

18918

18919

18920

18921

18922

18923

18924

18925

18926

18927

18928

18929

18930

18931

18932

18933

18934

18935

18936

18937

18938

18939

18940

18941

18942

18943

18944

18945

18946

18947

18948

18949

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

getpriority() System Interfaces

SEE ALSO
nice(), sched_get_priority_max(), sched_setscheduler(), the Base Definitions volume of
IEEE Std 1003.1-200x, <sys/resource.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

The DESCRIPTION is reworded in terms of the nice value rather than priority to avoid confusion
with functionality in the POSIX Realtime Extension.

572 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

18950

18951

18952

18953

18954

18955

18956

18957

18958

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces getprotobyname()

NAME
getprotobyname, getprotobynumber, getprotent — network protocol database functions

SYNOPSIS
#include <netdb.h>

struct protoent *getprotobyname(const char * name);
struct protoent *getprotobynumber(int proto);
struct protoent *getprotoent(void);

DESCRIPTION
Refer to endprotoent().

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 573

18959

18960

18961

18962

18963

18964

18965

18966

18967

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

getpwent() System Interfaces

NAME
getpwent — get user database entry

SYNOPSIS
XSI #include <pwd.h>

struct passwd *getpwent(void);

DESCRIPTION
Refer to endpwent().

574 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

18968

18969

18970

18971

18972

18973

18974

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces getpwnam()

NAME
getpwnam, getpwnam_r — search user database for a name

SYNOPSIS
#include <pwd.h>

struct passwd *getpwnam(const char * name);
int getpwnam_r(const char * name, s truct passwd * pwd, c har * buffer,

size_t bufsize, s truct passwd ** result);

DESCRIPTION
The getpwnam() function shall search the user database for an entry with a matching name.

The getpwnam() function need not be thread-safe. A function that is not required to be thread-
safe is not required to be reentrant.

Applications wishing to check for error situations should set errno to 0 before calling
getpwnam(). If getpwnam() returns a null pointer and errno is non-zero, an error occurred.

The getpwnam_r() function shall update the passwd structure pointed to by pwd and store a
pointer to that structure at the location pointed to by result. The structure shall contain an entry
from the user database with a matching name. Storage referenced by the structure is allocated
from the memory provided with the buffer parameter, which is bufsize bytes in size. The
maximum size needed for this buffer can be determined with the {_SC_GETPW_R_SIZE_MAX}
sysconf() parameter. A NULL pointer shall be returned at the location pointed to by result on
error or if the requested entry is not found.

RETURN VALUE
The getpwnam() function shall return a pointer to a struct passwd with the structure as defined
in <pwd.h> with a matching entry if found. A null pointer shall be returned if the requested
entry is not found, or an error occurs. On error, errno shall be set to indicate the error.

The return value may point to a static area which is overwritten by a subsequent call to
getpwent(), getpwnam(), or getpwuid().

The getpwnam_r() function shall return zero on success or if the requested entry was not found
and no error has occurred. If an error has occurred, an error number shall be returned to indicate
the error.

ERRORS
The getpwnam() and getpwnam_r() functions may fail if:

[EIO] An I/O error has occurred.

[EINTR] A signal was caught during getpwnam().

[EMFILE] All file descriptors available to the process are currently open.

[ENFILE] The maximum allowable number of files is currently open in the system.

The getpwnam_r() function may fail if:

[ERANGE] Insufficient storage was supplied via buffer and bufsize to contain the data to be
referenced by the resulting passwd structure.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 575

18975

18976

18977

18978

18979

18980

18981

18982

18983

18984

18985

18986

18987

18988

18989

18990

18991

18992

18993

18994

18995

18996

18997

18998

18999

19000

19001

19002

19003

19004

19005

19006

19007

19008

19009

19010

19011

19012

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

getpwnam() System Interfaces

EXAMPLES

Getting an Entry for the Login Name

The following example uses the getlogin() function to return the name of the user who logged in;
this information is passed to the getpwnam() function to get the user database entry for that user.

#include <sys/types.h>
#include <pwd.h>
#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
...
char *lgn;
struct passwd *pw;
...
if ((lgn = getlogin()) == NULL || (pw = getpwnam(lgn)) == NULL) {

fprintf(stderr, "Get of user information failed.\n"); exit(1);
}
...

APPLICATION USAGE
Three names associated with the current process can be determined: getpwuid(geteuid()) returns
the name associated with the effective user ID of the process; getlogin() returns the name
associated with the current login activity; and getpwuid(getuid()) returns the name associated
with the real user ID of the process.

The getpwnam_r() function is thread-safe and returns values in a user-supplied buffer instead of
possibly using a static data area that may be overwritten by each call.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
getpwuid(), the Base Definitions volume of IEEE Std 1003.1-200x, <limits.h>, <pwd.h>,
<sys/types.h>

CHANGE HISTORY
First released in Issue 1. Derived from System V Release 2.0.

Issue 5
Normative text previously in the APPLICATION USAGE section is moved to the RETURN
VALUE section.

The getpwnam_r() function is included for alignment with the POSIX Threads Extension.

A note indicating that the getpwnam() function need not be reentrant is added to the
DESCRIPTION.

Issue 6
The getpwnam_r() function is marked as part of the Thread-Safe Functions option.

The Open Group Corrigendum U028/3 is applied, correcting text in the DESCRIPTION
describing matching the name.

In the SYNOPSIS, the optional include of the <sys/types.h> header is removed.

In the DESCRIPTION, the note about reentrancy is expanded to cover thread-safety.

576 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

19013

19014

19015

19016

19017

19018

19019

19020

19021

19022

19023

19024

19025

19026

19027

19028

19029

19030

19031

19032

19033

19034

19035

19036

19037

19038

19039

19040

19041

19042

19043

19044

19045

19046

19047

19048

19049

19050

19051

19052

19053

19054

19055

19056

19057

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces getpwnam()

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
required for conforming implementations of previous POSIX specifications, it was not
required for UNIX applications.

• In the RETURN VALUE section, the requirement to set errno on error is added.

• The [EMFILE], [ENFILE], and [ENXIO] optional error conditions are added.

The APPLICATION USAGE section is updated to include a note on the thread-safe function and
its avoidance of possibly using a static data area.

IEEE PASC Interpretation 1003.1 #116 is applied, changing the description of the size of the
buffer from bufsize characters to bytes.

Issue 7
SD5-XBD-ERN-4 is applied, changing the definition of the [EMFILE] error.

The getpwnam_r() function is moved from the Thread-Safe Functions option to the Base.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 577

19058

19059

19060

19061

19062

19063

19064

19065

19066

19067

19068

19069

19070

19071

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

getpwuid() System Interfaces

NAME
getpwuid, getpwuid_r — search user database for a user ID

SYNOPSIS
#include <pwd.h>

struct passwd *getpwuid(uid_t uid);
int getpwuid_r(uid_t uid, s truct passwd * pwd, c har * buffer,

size_t bufsize, s truct passwd ** result);

DESCRIPTION
The getpwuid() function shall search the user database for an entry with a matching uid.

The getpwuid() function need not be thread-safe. A function that is not required to be thread-safe
is not required to be reentrant.

Applications wishing to check for error situations should set errno to 0 before calling getpwuid().
If getpwuid() returns a null pointer and errno is set to non-zero, an error occurred.

The getpwuid_r() function shall update the passwd structure pointed to by pwd and store a
pointer to that structure at the location pointed to by result. The structure shall contain an entry
from the user database with a matching uid. Storage referenced by the structure is allocated
from the memory provided with the buffer parameter, which is bufsize bytes in size. The
maximum size needed for this buffer can be determined with the {_SC_GETPW_R_SIZE_MAX}
sysconf() parameter. A NULL pointer shall be returned at the location pointed to by result on
error or if the requested entry is not found.

RETURN VALUE
The getpwuid() function shall return a pointer to a struct passwd with the structure as defined in
<pwd.h> with a matching entry if found. A null pointer shall be returned if the requested entry
is not found, or an error occurs. On error, errno shall be set to indicate the error.

The return value may point to a static area which is overwritten by a subsequent call to
getpwent(), getpwnam(), or getpwuid().

If successful, the getpwuid_r() function shall return zero; otherwise, an error number shall be
returned to indicate the error.

ERRORS
The getpwuid() and getpwuid_r() functions may fail if:

[EIO] An I/O error has occurred.

[EINTR] A signal was caught during getpwuid().

[EMFILE] All file descriptors available to the process are currently open.

[ENFILE] The maximum allowable number of files is currently open in the system.

The getpwuid_r() function may fail if:

[ERANGE] Insufficient storage was supplied via buffer and bufsize to contain the data to be
referenced by the resulting passwd structure.

578 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

19072

19073

19074

19075

19076

19077

19078

19079

19080

19081

19082

19083

19084

19085

19086

19087

19088

19089

19090

19091

19092

19093

19094

19095

19096

19097

19098

19099

19100

19101

19102

19103

19104

19105

19106

19107

19108

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces getpwuid()

EXAMPLES

Getting an Entry for the Root User

The following example gets the user database entry for the user with user ID 0 (root).

#include <sys/types.h>
#include <pwd.h>
...
uid_t id = 0;
struct passwd *pwd;

pwd = getpwuid(id);

Finding the Name for the Effective User ID

The following example defines pws as a pointer to a structure of type passwd, which is used to
store the structure pointer returned by the call to the getpwuid() function. The geteuid() function
shall return the effective user ID of the calling process; this is used as the search criteria for the
getpwuid() function. The call to getpwuid() shall return a pointer to the structure containing that
user ID value.

#include <unistd.h>
#include <sys/types.h>
#include <pwd.h>
...
struct passwd *pws;
pws = getpwuid(geteuid());

Finding an Entry in the User Database

The following example uses getpwuid() to search the user database for a user ID that was
previously stored in a stat structure, then prints out the user name if it is found. If the user is not
found, the program prints the numeric value of the user ID for the entry.

#include <sys/types.h>
#include <pwd.h>
#include <stdio.h>
...
struct stat statbuf;
struct passwd *pwd;
...
if ((pwd = getpwuid(statbuf.st_uid)) != NULL)

printf(" %-8.8s", pwd->pw_name);
else

printf(" %-8d", statbuf.st_uid);

APPLICATION USAGE
Three names associated with the current process can be determined: getpwuid(geteuid()) returns
the name associated with the effective user ID of the process; getlogin() returns the name
associated with the current login activity; and getpwuid(getuid()) returns the name associated
with the real user ID of the process.

The getpwuid_r() function is thread-safe and returns values in a user-supplied buffer instead of
possibly using a static data area that may be overwritten by each call.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 579

19109

19110

19111

19112

19113

19114

19115

19116

19117

19118

19119

19120

19121

19122

19123

19124

19125

19126

19127

19128

19129

19130

19131

19132

19133

19134

19135

19136

19137

19138

19139

19140

19141

19142

19143

19144

19145

19146

19147

19148

19149

19150

19151

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

getpwuid() System Interfaces

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
getpwnam(), geteuid(), getuid(), getlogin(), the Base Definitions volume of IEEE Std 1003.1-200x,
<limits.h>, <pwd.h>, <sys/types.h>

CHANGE HISTORY
First released in Issue 1. Derived from System V Release 2.0.

Issue 5
Normative text previously in the APPLICATION USAGE section is moved to the RETURN
VALUE section.

The getpwuid_r() function is included for alignment with the POSIX Threads Extension.

A note indicating that the getpwuid() function need not be reentrant is added to the
DESCRIPTION.

Issue 6
The getpwuid_r() function is marked as part of the Thread-Safe Functions option.

The Open Group Corrigendum U028/3 is applied, correcting text in the DESCRIPTION
describing matching the uid.

In the SYNOPSIS, the optional include of the <sys/types.h> header is removed.

In the DESCRIPTION, the note about reentrancy is expanded to cover thread-safety.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
required for conforming implementations of previous POSIX specifications, it was not
required for UNIX applications.

• In the RETURN VALUE section, the requirement to set errno on error is added.

• The [EIO], [EINTR], [EMFILE], and [ENFILE] optional error conditions are added.

The APPLICATION USAGE section is updated to include a note on the thread-safe function and
its avoidance of possibly using a static data area.

IEEE PASC Interpretation 1003.1 #116 is applied, changing the description of the size of the
buffer from bufsize characters to bytes.

Issue 7
SD5-XBD-ERN-4 is applied, changing the definition of the [EMFILE] error.

The getpwuid_r() function is moved from the Thread-Safe Functions option to the Base.

580 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

19152

19153

19154

19155

19156

19157

19158

19159

19160

19161

19162

19163

19164

19165

19166

19167

19168

19169

19170

19171

19172

19173

19174

19175

19176

19177

19178

19179

19180

19181

19182

19183

19184

19185

19186

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces getrlimit()

NAME
getrlimit, setrlimit — control maximum resource consumption

SYNOPSIS
XSI #include <sys/resource.h>

int getrlimit(int resource, s truct rlimit * rlp);
int setrlimit(int resource, c onst struct rlimit * rlp);

DESCRIPTION
The getrlimit() function shall get, and the setrlimit() function shall set, limits on the consumption
of a variety of resources.

Each call to either getrlimit() or setrlimit() identifies a specific resource to be operated upon as
well as a resource limit. A resource limit is represented by an rlimit structure. The rlim_cur
member specifies the current or soft limit and the rlim_max member specifies the maximum or
hard limit. Soft limits may be changed by a process to any value that is less than or equal to the
hard limit. A process may (irreversibly) lower its hard limit to any value that is greater than or
equal to the soft limit. Only a process with appropriate privileges can raise a hard limit. Both
hard and soft limits can be changed in a single call to setrlimit() subject to the constraints
described above.

The value RLIM_INFINITY, defined in <sys/resource.h>, shall be considered to be larger than
any other limit value. If a call to getrlimit() returns RLIM_INFINITY for a resource, it means the
implementation shall not enforce limits on that resource. Specifying RLIM_INFINITY as any
resource limit value on a successful call to setrlimit() shall inhibit enforcement of that resource
limit.

The following resources are defined:

RLIMIT_CORE This is the maximum size of a core file, in bytes, that may be created by a
process. A limit of 0 shall prevent the creation of a core file. If this limit is
exceeded, the writing of a core file shall terminate at this size.

RLIMIT_CPU This is the maximum amount of CPU time, in seconds, used by a process.
If this limit is exceeded, SIGXCPU shall be generated for the process. If
the process is catching or ignoring SIGXCPU, or all threads belonging to
that process are blocking SIGXCPU, the behavior is unspecified.

RLIMIT_DATA This is the maximum size of a data segment of the process, in bytes. If
this limit is exceeded, the malloc() function shall fail with errno set to
[ENOMEM].

RLIMIT_FSIZE This is the maximum size of a file, in bytes, that may be created by a
process. If a write or truncate operation would cause this limit to be
exceeded, SIGXFSZ shall be generated for the thread. If the thread is
blocking, or the process is catching or ignoring SIGXFSZ, continued
attempts to increase the size of a file from end-of-file to beyond the limit
shall fail with errno set to [EFBIG].

RLIMIT_NOFILE This is a number one greater than the maximum value that the system
may assign to a newly-created descriptor. If this limit is exceeded,
functions that allocate a file descriptor shall fail with errno set to
[EMFILE]. This limit constrains the number of file descriptors that a
process may allocate.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 581

19187

19188

19189

19190

19191

19192

19193

19194

19195

19196

19197

19198

19199

19200

19201

19202

19203

19204

19205

19206

19207

19208

19209

19210

19211

19212

19213

19214

19215

19216

19217

19218

19219

19220

19221

19222

19223

19224

19225

19226

19227

19228

19229

19230

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

getrlimit() System Interfaces

RLIMIT_STACK This is the maximum size of the initial thread’s stack, in bytes. The
implementation does not automatically grow the stack beyond this limit.
If this limit is exceeded, SIGSEGV shall be generated for the thread. If the
thread is blocking SIGSEGV, or the process is ignoring or catching
SIGSEGV and has not made arrangements to use an alternate stack, the
disposition of SIGSEGV shall be set to SIG_DFL before it is generated.

RLIMIT_AS This is the maximum size of total available memory of the process, in
bytes. If this limit is exceeded, the malloc() and mmap() functions shall fail
with errno set to [ENOMEM]. In addition, the automatic stack growth
fails with the effects outlined above.

When using the getrlimit() function, if a resource limit can be represented correctly in an object
of type rlim_t, then its representation is returned; otherwise, if the value of the resource limit is
equal to that of the corresponding saved hard limit, the value returned shall be
RLIM_SAVED_MAX; otherwise, the value returned shall be RLIM_SAVED_CUR.

When using the setrlimit() function, if the requested new limit is RLIM_INFINITY, the new limit
shall be ‘‘no limit’’; otherwise, if the requested new limit is RLIM_SAVED_MAX, the new limit
shall be the corresponding saved hard limit; otherwise, if the requested new limit is
RLIM_SAVED_CUR, the new limit shall be the corresponding saved soft limit; otherwise, the
new limit shall be the requested value. In addition, if the corresponding saved limit can be
represented correctly in an object of type rlim_t then it shall be overwritten with the new limit.

The result of setting a limit to RLIM_SAVED_MAX or RLIM_SAVED_CUR is unspecified unless
a previous call to getrlimit() returned that value as the soft or hard limit for the corresponding
resource limit.

The determination of whether a limit can be correctly represented in an object of type rlim_t is
implementation-defined. For example, some implementations permit a limit whose value is
greater than RLIM_INFINITY and others do not.

The exec family of functions shall cause resource limits to be saved.

RETURN VALUE
Upon successful completion, getrlimit() and setrlimit() shall return 0. Otherwise, these functions
shall return −1 and set errno to indicate the error.

ERRORS
The getrlimit() and setrlimit() functions shall fail if:

[EINVAL] An invalid resource was specified; or in a setrlimit() call, the new rlim_cur
exceeds the new rlim_max.

[EPERM] The limit specified to setrlimit() would have raised the maximum limit value,
and the calling process does not have appropriate privileges.

The setrlimit() function may fail if:

[EINVAL] The limit specified cannot be lowered because current usage is already higher
than the limit.

582 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

19231

19232

19233

19234

19235

19236

19237

19238

19239

19240

19241

19242

19243

19244

19245

19246

19247

19248

19249

19250

19251

19252

19253

19254

19255

19256

19257

19258

19259

19260

19261

19262

19263

19264

19265

19266

19267

19268

19269

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces getrlimit()

EXAMPLES
None.

APPLICATION USAGE
If a process attempts to set the hard limit or soft limit for RLIMIT_NOFILE to less than the value
of {_POSIX_OPEN_MAX} from <limits.h>, unexpected behavior may occur.

If a process attempts to set the hard limit or soft limit for RLIMIT_NOFILE to less than the
highest currently open file descriptor +1, unexpected behavior may occur.

RATIONALE
It should be noted that RLIMIT_STACK applies ‘‘at least’’ to the stack of the initial thread in the
process, and not to the sum of all the stacks in the process, as that would be very limiting unless
the value is so big as to provide no value at all with a single thread.

FUTURE DIRECTIONS
None.

SEE ALSO
exec , fork(), malloc(), open(), sigaltstack(), sysconf(), ulimit(), the Base Definitions volume of
IEEE Std 1003.1-200x, <stropts.h>, <sys/resource.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

An APPLICATION USAGE section is added.

Large File Summit extensions are added.

Issue 6
IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/25 is applied, changing wording for
RLIMIT_NOFILE in the DESCRIPTION related to functions that allocate a file descriptor failing
with [EMFILE]. Text is added to the APPLICATION USAGE section noting the consequences of
a process attempting to set the hard or soft limit for RLIMIT_NOFILE less than the highest
currently open file descriptor +1.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/46 is applied, updating the definition of
RLIMIT_STACK in the DESCRIPTION section from ‘‘the maximum size of a process stack’’ to
‘‘the maximum size of the initial thread’s stack’’. Text is added to the RATIONALE section.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 583

19270

19271

19272

19273

19274

19275

19276

19277

19278

19279

19280

19281

19282

19283

19284

19285

19286

19287

19288

19289

19290

19291

19292

19293

19294

19295

19296

19297

19298

19299

19300

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

getrusage() System Interfaces

NAME
getrusage — get information about resource utilization

SYNOPSIS
XSI #include <sys/resource.h>

int getrusage(int who, s truct rusage * r_usage);

DESCRIPTION
The getrusage() function shall provide measures of the resources used by the current process or
its terminated and waited-for child processes. If the value of the who argument is
RUSAGE_SELF, information shall be returned about resources used by the current process. If the
value of the who argument is RUSAGE_CHILDREN, information shall be returned about
resources used by the terminated and waited-for children of the current process. If the child is
never waited for (for example, if the parent has SA_NOCLDWAIT set or sets SIGCHLD to
SIG_IGN), the resource information for the child process is discarded and not included in the
resource information provided by getrusage().

The r_usage argument is a pointer to an object of type struct rusage in which the returned
information is stored.

RETURN VALUE
Upon successful completion, getrusage() shall return 0; otherwise, −1 shall be returned and errno
set to indicate the error.

ERRORS
The getrusage() function shall fail if:

[EINVAL] The value of the who argument is not valid.

EXAMPLES

Using getrusage()

The following example returns information about the resources used by the current process.

#include <sys/resource.h>
...
int who = RUSAGE_SELF;
struct rusage usage;
int ret;

ret = getrusage(who, &usage);

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
exit(), sigaction(), time(), times(), wait(), the Base Definitions volume of IEEE Std 1003.1-200x,
<sys/resource.h>

584 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

19301

19302

19303

19304

19305

19306

19307

19308

19309

19310

19311

19312

19313

19314

19315

19316

19317

19318

19319

19320

19321

19322

19323

19324

19325

19326

19327

19328

19329

19330

19331

19332

19333

19334

19335

19336

19337

19338

19339

19340

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces getrusage()

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 585

19341

19342

19343

19344

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

gets() System Interfaces

NAME
gets — get a string from a stdin stream

SYNOPSIS
#include <stdio.h>

char *gets(char * s);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

The gets() function shall read bytes from the standard input stream, stdin, into the array pointed
to by s, until a <newline> is read or an end-of-file condition is encountered. Any <newline> shall
be discarded and a null byte shall be placed immediately after the last byte read into the array.

CX The gets() function may mark the st_atime field of the file associated with stream for update. The
st_atime field shall be marked for update by the first successful execution of fgetc(), fgets(),
fread(), getc(), getchar(), gets(), fscanf(), or scanf() using stream that returns data not supplied by
a prior call to ungetc().

RETURN VALUE
Upon successful completion, gets() shall return s. If the end-of-file indicator for the stream is set,
or if the stream is at end-of-file, the end-of-file indicator for the stream shall be set and gets()
shall return a null pointer. If a read error occurs, the error indicator for the stream shall be set,

CX gets() shall return a null pointer, and set errno to indicate the error.

ERRORS
Refer to fgetc().

EXAMPLES
None.

APPLICATION USAGE
Reading a line that overflows the array pointed to by s results in undefined behavior. The use of
fgets() is recommended.

Since the user cannot specify the length of the buffer passed to gets(), use of this function is
discouraged. The length of the string read is unlimited. It is possible to overflow this buffer in
such a way as to cause applications to fail, or possible system security violations.

It is recommended that the fgets() function should be used to read input lines.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
feof(), ferror(), fgets(), the Base Definitions volume of IEEE Std 1003.1-200x, <stdio.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

586 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

19345

19346

19347

19348

19349

19350

19351

19352

19353

19354

19355

19356

19357

19358

19359

19360

19361

19362

19363

19364

19365

19366

19367

19368

19369

19370

19371

19372

19373

19374

19375

19376

19377

19378

19379

19380

19381

19382

19383

19384

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces gets()

Issue 6
Extensions beyond the ISO C standard are marked.

Issue 7
Austin Group Interpretation 1003.1-2001 #051 is applied, clarifying the RETURN VALUE section.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 587

19385

19386

19387

19388

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

getservbyname() System Interfaces

NAME
getservbyname, getservbyport, getservent — network services database functions

SYNOPSIS
#include <netdb.h>

struct servent *getservbyname(const char * name, c onst char * proto);
struct servent *getservbyport(int port, c onst char * proto);
struct servent *getservent(void);

DESCRIPTION
Refer to endservent().

588 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

19389

19390

19391

19392

19393

19394

19395

19396

19397

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces getsid()

NAME
getsid — get the process group ID of a session leader

SYNOPSIS
#include <unistd.h>

pid_t getsid(pid_t pid);

DESCRIPTION
The getsid() function shall obtain the process group ID of the process that is the session leader of
the process specified by pid. If pid is (pid_t)0, it specifies the calling process.

RETURN VALUE
Upon successful completion, getsid() shall return the process group ID of the session leader of
the specified process. Otherwise, it shall return (pid_t)−1 and set errno to indicate the error.

ERRORS
The getsid() function shall fail if:

[EPERM] The process specified by pid is not in the same session as the calling process,
and the implementation does not allow access to the process group ID of the
session leader of that process from the calling process.

[ESRCH] There is no process with a process ID equal to pid.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
exec , fork(), getpid(), getpgid(), setpgid(), setsid(), the Base Definitions volume of
IEEE Std 1003.1-200x, <unistd.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Issue 7
The getsid() function is moved from the XSI option to the Base.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 589

19398

19399

19400

19401

19402

19403

19404

19405

19406

19407

19408

19409

19410

19411

19412

19413

19414

19415

19416

19417

19418

19419

19420

19421

19422

19423

19424

19425

19426

19427

19428

19429

19430

19431

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

getsockname() System Interfaces

NAME
getsockname — get the socket name

SYNOPSIS
#include <sys/socket.h>

int getsockname(int socket, s truct sockaddr *restrict address,
socklen_t *restrict address_len);

DESCRIPTION
The getsockname() function shall retrieve the locally-bound name of the specified socket, store
this address in the sockaddr structure pointed to by the address argument, and store the length of
this address in the object pointed to by the address_len argument.

If the actual length of the address is greater than the length of the supplied sockaddr structure,
the stored address shall be truncated.

If the socket has not been bound to a local name, the value stored in the object pointed to by
address is unspecified.

RETURN VALUE
Upon successful completion, 0 shall be returned, the address argument shall point to the address
of the socket, and the address_len argument shall point to the length of the address. Otherwise, −1
shall be returned and errno set to indicate the error.

ERRORS
The getsockname() function shall fail if:

[EBADF] The socket argument is not a valid file descriptor.

[ENOTSOCK] The socket argument does not refer to a socket.

[EOPNOTSUPP] The operation is not supported for this socket’s protocol.

The getsockname() function may fail if:

[EINVAL] The socket has been shut down.

[ENOBUFS] Insufficient resources were available in the system to complete the function.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
accept(), bind(), getpeername(), socket(), the Base Definitions volume of IEEE Std 1003.1-200x,
<sys/socket.h>

CHANGE HISTORY
First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

The restrict keyword is added to the getsockname() prototype for alignment with the
ISO/IEC 9899: 1999 standard.

590 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

19432

19433

19434

19435

19436

19437

19438

19439

19440

19441

19442

19443

19444

19445

19446

19447

19448

19449

19450

19451

19452

19453

19454

19455

19456

19457

19458

19459

19460

19461

19462

19463

19464

19465

19466

19467

19468

19469

19470

19471

19472

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces getsockname()

NAME
getsockopt — get the socket options

SYNOPSIS
#include <sys/socket.h>

int getsockopt(int socket, i nt level, i nt option_name,
void *restrict option_value, s ocklen_t *restrict option_len);

DESCRIPTION
The getsockopt() function manipulates options associated with a socket.

The getsockopt() function shall retrieve the value for the option specified by the option_name
argument for the socket specified by the socket argument. If the size of the option value is greater
than option_len, the value stored in the object pointed to by the option_value argument shall be
silently truncated. Otherwise, the object pointed to by the option_len argument shall be modified
to indicate the actual length of the value.

The level argument specifies the protocol level at which the option resides. To retrieve options at
the socket level, specify the level argument as SOL_SOCKET. To retrieve options at other levels,
supply the appropriate level identifier for the protocol controlling the option. For example, to
indicate that an option is interpreted by the TCP (Transmission Control Protocol), set level to
IPPROTO_TCP as defined in the <netinet/in.h> header.

The socket in use may require the process to have appropriate privileges to use the getsockopt()
function.

The option_name argument specifies a single option to be retrieved. It can be one of the following
values defined in <sys/socket.h>:

SO_DEBUG Reports whether debugging information is being recorded. This option
shall store an int value. This is a Boolean option.

SO_ACCEPTCONN Reports whether socket listening is enabled. This option shall store an int
value. This is a Boolean option.

SO_BROADCAST Reports whether transmission of broadcast messages is supported, if this
is supported by the protocol. This option shall store an int value. This is a
Boolean option.

SO_REUSEADDR Reports whether the rules used in validating addresses supplied to bind()
should allow reuse of local addresses, if this is supported by the protocol.
This option shall store an int value. This is a Boolean option.

SO_KEEPALIVE Reports whether connections are kept active with periodic transmission
of messages, if this is supported by the protocol.

If the connected socket fails to respond to these messages, the connection
shall be broken and threads writing to that socket shall be notified with a
SIGPIPE signal. This option shall store an int value. This is a Boolean
option.

SO_LINGER Reports whether the socket lingers on close() if data is present. If
SO_LINGER is set, the system shall block the calling thread during close()
until it can transmit the data or until the end of the interval indicated by
the l_linger member, whichever comes first. If SO_LINGER is not
specified, and close() is issued, the system handles the call in a way that
allows the calling thread to continue as quickly as possible. This option
shall store a linger structure.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 591

19473

19474

19475

19476

19477

19478

19479

19480

19481

19482

19483

19484

19485

19486

19487

19488

19489

19490

19491

19492

19493

19494

19495

19496

19497

19498

19499

19500

19501

19502

19503

19504

19505

19506

19507

19508

19509

19510

19511

19512

19513

19514

19515

19516

19517

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

getsockopt() System Interfaces

SO_OOBINLINE Reports whether the socket leaves received out-of-band data (data
marked urgent) inline. This option shall store an int value. This is a
Boolean option.

SO_SNDBUF Reports send buffer size information. This option shall store an int value.

SO_RCVBUF Reports receive buffer size information. This option shall store an int
value.

SO_ERROR Reports information about error status and clears it. This option shall
store an int value.

SO_TYPE Reports the socket type. This option shall store an int value. Socket types
are described in Section 2.10.6 (on page 61).

SO_DONTROUTE Reports whether outgoing messages bypass the standard routing
facilities. The destination shall be on a directly-connected network, and
messages are directed to the appropriate network interface according to
the destination address. The effect, if any, of this option depends on what
protocol is in use. This option shall store an int value. This is a Boolean
option.

SO_RCVLOWAT Reports the minimum number of bytes to process for socket input
operations. The default value for SO_RCVLOWAT is 1. If
SO_RCVLOWAT is set to a larger value, blocking receive calls normally
wait until they have received the smaller of the low water mark value or
the requested amount. (They may return less than the low water mark if
an error occurs, a signal is caught, or the type of data next in the receive
queue is different from that returned; for example, out-of-band data.)
This option shall store an int value. Note that not all implementations
allow this option to be retrieved.

SO_RCVTIMEO Reports the timeout value for input operations. This option shall store a
timeval structure with the number of seconds and microseconds
specifying the limit on how long to wait for an input operation to
complete. If a receive operation has blocked for this much time without
receiving additional data, it shall return with a partial count or errno set to
[EAGAIN] or [EWOULDBLOCK] if no data was received. The default for
this option is zero, which indicates that a receive operation shall not time
out. Note that not all implementations allow this option to be retrieved.

SO_SNDLOWAT Reports the minimum number of bytes to process for socket output
operations. Non-blocking output operations shall process no data if flow
control does not allow the smaller of the send low water mark value or
the entire request to be processed. This option shall store an int value.
Note that not all implementations allow this option to be retrieved.

SO_SNDTIMEO Reports the timeout value specifying the amount of time that an output
function blocks because flow control prevents data from being sent. If a
send operation has blocked for this time, it shall return with a partial
count or with errno set to [EAGAIN] or [EWOULDBLOCK] if no data was
sent. The default for this option is zero, which indicates that a send
operation shall not time out. The option shall store a timeval structure.
Note that not all implementations allow this option to be retrieved.

For Boolean options, a zero value indicates that the option is disabled and a non-zero value
indicates that the option is enabled.

592 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

19518

19519

19520

19521

19522

19523

19524

19525

19526

19527

19528

19529

19530

19531

19532

19533

19534

19535

19536

19537

19538

19539

19540

19541

19542

19543

19544

19545

19546

19547

19548

19549

19550

19551

19552

19553

19554

19555

19556

19557

19558

19559

19560

19561

19562

19563

19564

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces getsockopt()

RETURN VALUE
Upon successful completion, getsockopt() shall return 0; otherwise, −1 shall be returned and errno
set to indicate the error.

ERRORS
The getsockopt() function shall fail if:

[EBADF] The socket argument is not a valid file descriptor.

[EINVAL] The specified option is invalid at the specified socket level.

[ENOPROTOOPT]
The option is not supported by the protocol.

[ENOTSOCK] The socket argument does not refer to a socket.

The getsockopt() function may fail if:

[EACCES] The calling process does not have the appropriate privileges.

[EINVAL] The socket has been shut down.

[ENOBUFS] Insufficient resources are available in the system to complete the function.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
bind(), close(), endprotoent(), setsockopt(), socket(), the Base Definitions volume of
IEEE Std 1003.1-200x, <sys/socket.h>, <netinet/in.h>

CHANGE HISTORY
First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

The restrict keyword is added to the getsockopt() prototype for alignment with the
ISO/IEC 9899: 1999 standard.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/47 is applied, updating the description of
SO_LINGER in the DESCRIPTION so that it blocks the calling thread rather than the process.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 593

19565

19566

19567

19568

19569

19570

19571

19572

19573

19574

19575

19576

19577

19578

19579

19580

19581

19582

19583

19584

19585

19586

19587

19588

19589

19590

19591

19592

19593

19594

19595

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

getsubopt() System Interfaces

NAME
getsubopt — parse suboption arguments from a string

SYNOPSIS
#include <stdlib.h>

int getsubopt(char ** optionp, c har * const * keylistp, c har ** valuep);

DESCRIPTION
The getsubopt() function shall parse suboption arguments in a flag argument. Such options often
result from the use of getopt().

The getsubopt() argument optionp is a pointer to a pointer to the option argument string. The
suboption arguments shall be separated by commas and each may consist of either a single
token, or a token-value pair separated by an equal sign.

The keylistp argument shall be a pointer to a vector of strings. The end of the vector is identified
by a null pointer. Each entry in the vector is one of the possible tokens that might be found in
*optionp. Since commas delimit suboption arguments in optionp, they should not appear in any of
the strings pointed to by keylistp. Similarly, because an equal sign separates a token from its
value, the application should not include an equal sign in any of the strings pointed to by
keylistp.

The valuep argument is the address of a value string pointer.

If a comma appears in optionp, it shall be interpreted as a suboption separator. After commas
have been processed, if there are one or more equal signs in a suboption string, the first equal
sign in any suboption string shall be interpreted as a separator between a token and a value.
Subsequent equal signs in a suboption string shall be interpreted as part of the value.

If the string at *optionp contains only one suboption argument (equivalently, no commas),
getsubopt() shall update *optionp to point to the null character at the end of the string. Otherwise,
it shall isolate the suboption argument by replacing the comma separator with a null character,
and shall update *optionp to point to the start of the next suboption argument. If the suboption
argument has an associated value (equivalently, contains an equal sign), getsubopt() shall update
*valuep to point to the value’s first character. Otherwise, it shall set *valuep to a null pointer. The
calling application may use this information to determine whether the presence or absence of a
value for the suboption is an error.

Additionally, when getsubopt() fails to match the suboption argument with a token in the keylistp
array, the calling application should decide if this is an error, or if the unrecognized option
should be processed in another way.

RETURN VALUE
The getsubopt() function shall return the index of the matched token string, or −1 if no token
strings were matched.

ERRORS
No errors are defined.

594 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

19596

19597

19598

19599

19600

19601

19602

19603

19604

19605

19606

19607

19608

19609

19610

19611

19612

19613

19614

19615

19616

19617

19618

19619

19620

19621

19622

19623

19624

19625

19626

19627

19628

19629

19630

19631

19632

19633

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces getsubopt()

EXAMPLES

#include <stdio.h>
#include <stdlib.h>

int do_all;
const char *type;
int read_size;
int write_size;
int read_only;

enum
{

RO_OPTION = 0,
RW_OPTION,
READ_SIZE_OPTION,
WRITE_SIZE_OPTION

};

const char *mount_opts[] =
{

[RO_OPTION] = "ro",
[RW_OPTION] = "rw",
[READ_SIZE_OPTION] = "rsize",
[WRITE_SIZE_OPTION] = "wsize",
NULL

};

int
main(int argc, char *argv[])
{

char *subopts, *value;
int opt;

while ((opt = getopt(argc, argv, "at:o:")) != -1)
switch(opt)

{
case ’a’:

do_all = 1;
break;

case ’t’:
type = optarg;
break;

case ’o’:
subopts = optarg;
while (*subopts != ’\0’)

switch(getsubopt(&subopts, mount_opts, &value))
{
case RO_OPTION:

read_only = 1;
break;

case RW_OPTION:
read_only = 0;
break;

case READ_SIZE_OPTION:
if (value == NULL)

abort();

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 595

19634

19635

19636

19637

19638

19639

19640

19641

19642

19643

19644

19645

19646

19647

19648

19649

19650

19651

19652

19653

19654

19655

19656

19657

19658

19659

19660

19661

19662

19663

19664

19665

19666

19667

19668

19669

19670

19671

19672

19673

19674

19675

19676

19677

19678

19679

19680

19681

19682

19683

19684

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

getsubopt() System Interfaces

read_size = atoi(value);
break;

case WRITE_SIZE_OPTION:
if (value == NULL)

abort();
write_size = atoi(value);
break;

default:
/* Unknown suboption. */
printf("Unknown suboption ‘%s’\n", value);
break;

}
break;

default:
abort();

}

/* Do the real work. */

return 0;
}

Parsing Suboptions

The following example uses the getsubopt() function to parse a value argument in the optarg
external variable returned by a call to getopt().

#include <stdlib.h>
...
char *tokens[] = {"HOME", "PATH", "LOGNAME", (char *) NULL };
char *value;
int opt, index;

while ((opt = getopt(argc, argv, "e:")) != -1) {
switch(opt) {
case ’e’ :

while ((index = getsubopt(&optarg, tokens, &value)) != -1) {
switch(index) {

...
}
break;

...
}

}
...

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

596 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

19685

19686

19687

19688

19689

19690

19691

19692

19693

19694

19695

19696

19697

19698

19699

19700

19701

19702

19703

19704

19705

19706

19707

19708

19709

19710

19711

19712

19713

19714

19715

19716

19717

19718

19719

19720

19721

19722

19723

19724

19725

19726

19727

19728

19729

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces getsubopt()

SEE ALSO
getopt(), the Base Definitions volume of IEEE Std 1003.1-200x, <stdlib.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Issue 6
IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/26 is applied, correcting an editorial error
in the SYNOPSIS.

Issue 7
The getsubopt() function is moved from the XSI option to the Base.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 597

19730

19731

19732

19733

19734

19735

19736

19737

19738

19739

19740

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

gettimeofday() System Interfaces

NAME
gettimeofday — get the date and time

SYNOPSIS
OB XSI #include <sys/time.h>

int gettimeofday(struct timeval *restrict tp, v oid *restrict tzp);

DESCRIPTION
The gettimeofday() function shall obtain the current time, expressed as seconds and microseconds
since the Epoch, and store it in the timeval structure pointed to by tp. The resolution of the
system clock is unspecified.

If tzp is not a null pointer, the behavior is unspecified.

RETURN VALUE
The gettimeofday() function shall return 0 and no value shall be reserved to indicate an error.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
Applications should use the clock_gettime() function instead of the obsolescent gettimeofday()
function.

RATIONALE
None.

FUTURE DIRECTIONS
The gettimeofday() function may be removed in a future version.

SEE ALSO
clock_getres(), ctime(), the Base Definitions volume of IEEE Std 1003.1-200x, <sys/time.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Issue 6
The DESCRIPTION is updated to refer to ‘‘seconds since the Epoch’’ rather than ‘‘seconds since
00:00:00 UTC (Coordinated Universal Time), January 1 1970’’ for consistency with other time
functions.

The restrict keyword is added to the gettimeofday() prototype for alignment with the
ISO/IEC 9899: 1999 standard.

Issue 7
The gettimeofday() function is marked obsolescent.

598 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

19741

19742

19743

19744

19745

19746

19747

19748

19749

19750

19751

19752

19753

19754

19755

19756

19757

19758

19759

19760

19761

19762

19763

19764

19765

19766

19767

19768

19769

19770

19771

19772

19773

19774

19775

19776

19777

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces getuid()

NAME
getuid — get a real user ID

SYNOPSIS
#include <unistd.h>

uid_t getuid(void);

DESCRIPTION
The getuid() function shall return the real user ID of the calling process.

RETURN VALUE
The getuid() function shall always be successful and no return value is reserved to indicate the
error.

ERRORS
No errors are defined.

EXAMPLES

Setting the Effective User ID to the Real User ID

The following example sets the effective user ID and the real user ID of the current process to the
real user ID of the caller.

#include <unistd.h>
#include <sys/types.h>
...
setreuid(getuid(), getuid());
...

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
getegid(), geteuid(), getgid(), setegid(), seteuid(), setgid(), setregid(), setreuid(), setuid(), the Base
Definitions volume of IEEE Std 1003.1-200x, <sys/types.h>, <unistd.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
In the SYNOPSIS, the optional include of the <sys/types.h> header is removed.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
required for conforming implementations of previous POSIX specifications, it was not
required for UNIX applications.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 599

19778

19779

19780

19781

19782

19783

19784

19785

19786

19787

19788

19789

19790

19791

19792

19793

19794

19795

19796

19797

19798

19799

19800

19801

19802

19803

19804

19805

19806

19807

19808

19809

19810

19811

19812

19813

19814

19815

19816

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

getutxent() System Interfaces

NAME
getutxent, getutxid, getutxline — get user accounting database entries

SYNOPSIS
XSI #include <utmpx.h>

struct utmpx *getutxent(void);
struct utmpx *getutxid(const struct utmpx * id);
struct utmpx *getutxline(const struct utmpx * line);

DESCRIPTION
Refer to endutxent().

600 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

19817

19818

19819

19820

19821

19822

19823

19824

19825

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces getwc()

NAME
getwc — get a wide character from a stream

SYNOPSIS
#include <stdio.h>
#include <wchar.h>

wint_t getwc(FILE * stream);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

The getwc() function shall be equivalent to fgetwc(), except that if it is implemented as a macro it
may evaluate stream more than once, so the argument should never be an expression with side
effects.

RETURN VALUE
Refer to fgetwc().

ERRORS
Refer to fgetwc().

EXAMPLES
None.

APPLICATION USAGE
Since it may be implemented as a macro, getwc() may treat incorrectly a stream argument with
side effects. In particular, getwc(*f++) does not necessarily work as expected. Therefore, use of
this function is not recommended; fgetwc() should be used instead.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fgetwc(), the Base Definitions volume of IEEE Std 1003.1-200x, <stdio.h>, <wchar.h>

CHANGE HISTORY
First released as a World-wide Portability Interface in Issue 4. Derived from the MSE working
draft.

Issue 5
The Optional Header (OH) marking is removed from <stdio.h>.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 601

19826

19827

19828

19829

19830

19831

19832

19833

19834

19835

19836

19837

19838

19839

19840

19841

19842

19843

19844

19845

19846

19847

19848

19849

19850

19851

19852

19853

19854

19855

19856

19857

19858

19859

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

getwchar() System Interfaces

NAME
getwchar — get a wide character from a stdin stream

SYNOPSIS
#include <wchar.h>

wint_t getwchar(void);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

The getwchar() function shall be equivalent to getwc(stdin).

RETURN VALUE
Refer to fgetwc().

ERRORS
Refer to fgetwc().

EXAMPLES
None.

APPLICATION USAGE
If the wint_t value returned by getwchar() is stored into a variable of type wchar_t and then
compared against the wint_t macro WEOF, the result may be incorrect. Only the wint_t type is
guaranteed to be able to represent any wide character and WEOF.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fgetwc(), getwc(), the Base Definitions volume of IEEE Std 1003.1-200x, <wchar.h>

CHANGE HISTORY
First released as a World-wide Portability Interface in Issue 4. Derived from the MSE working
draft.

602 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

19860

19861

19862

19863

19864

19865

19866

19867

19868

19869

19870

19871

19872

19873

19874

19875

19876

19877

19878

19879

19880

19881

19882

19883

19884

19885

19886

19887

19888

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces glob()

NAME
glob, globfree — generate pathnames matching a pattern

SYNOPSIS
#include <glob.h>

int glob(const char *restrict pattern, i nt flags,
int(* errfunc)(const char * epath, i nt eerrno),
glob_t *restrict pglob);

void globfree(glob_t * pglob);

DESCRIPTION
The glob() function is a pathname generator that shall implement the rules defined in the Shell
and Utilities volume of IEEE Std 1003.1-200x, Section 2.13, Pattern Matching Notation, with
optional support for rule 3 in the Shell and Utilities volume of IEEE Std 1003.1-200x, Section
2.13.3, Patterns Used for Filename Expansion.

The structure type glob_t is defined in <glob.h> and includes at least the following members:

Member Type Member Name Description

size_t gl_pathc Count of paths matched by pattern.
char ** gl_pathv Pointer to a list of matched pathnames.
size_t gl_offs Slots to reserve at the beginning of gl_pathv.

The argument pattern is a pointer to a pathname pattern to be expanded. The glob() function
shall match all accessible pathnames against this pattern and develop a list of all pathnames that
match. In order to have access to a pathname, glob() requires search permission on every
component of a path except the last, and read permission on each directory of any filename
component of pattern that contains any of the following special characters: ’*’ , ’?’ , and ’[’ .

The glob() function shall store the number of matched pathnames into pglob−>gl_pathc and a
pointer to a list of pointers to pathnames into pglob−>gl_pathv. The pathnames shall be in sort
order as defined by the current setting of the LC_COLLATE category; see the Base Definitions
volume of IEEE Std 1003.1-200x, Section 7.3.2, LC_COLLATE. The first pointer after the last
pathname shall be a null pointer. If the pattern does not match any pathnames, the returned
number of matched paths is set to 0, and the contents of pglob−>gl_pathv are implementation-
defined.

It is the caller’s responsibility to create the structure pointed to by pglob. The glob() function
shall allocate other space as needed, including the memory pointed to by gl_pathv. The globfree()
function shall free any space associated with pglob from a previous call to glob().

The flags argument is used to control the behavior of glob(). The value of flags is a bitwise-
inclusive OR of zero or more of the following constants, which ar

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

glob() System Interfaces

GLOB_MARK Each pathname that is a directory that matches pattern shall have a slash
appended.

GLOB_NOCHECK Supports rule 3 in the Shell and Utilities volume of IEEE Std 1003.1-200x,
Section 2.13.3, Patterns Used for Filename Expansion. If pattern does not
match any pathname, then glob() shall return a list consisting of only
pattern, and the number of matched pathnames is 1.

GLOB_NOESCAPE Disable backslash escaping.

GLOB_NOSORT Ordinarily, glob() sorts the matching pathnames according to the current
setting of the LC_COLLATE category; see the Base Definitions volume of
IEEE Std 1003.1-200x, Section 7.3.2, LC_COLLATE. When this flag is used,
the order of pathnames returned is unspecified.

The GLOB_APPEND flag can be used to append a new set of pathnames to those found in a
previous call to glob(). The following rules apply to applications when two or more calls to
glob() are made with the same value of pglob and without intervening calls to globfree():

1. The first such call shall not set GLOB_APPEND. All subsequent calls shall set it.

2. All the calls shall set GLOB_DOOFFS, or all shall not set it.

3. After the second call, pglob−>gl_pathv points to a list containing the following:

a. Zero or more null pointers, as specified by GLOB_DOOFFS and pglob−>gl_offs.

b. Pointers to the pathnames that were in the pglob−>gl_pathv list before the call, in
the same order as before.

c. Pointers to the new pathnames generated by the second call, in the specified order.

4. The count returned in pglob−>gl_pathc shall be the total number of pathnames from the
two calls.

5. The application can change any of the fields after a call to glob(). If it does, the
application shall reset them to the original value before a subsequent call, using the same
pglob value, to globfree() or glob() with the GLOB_APPEND flag.

If, during the search, a directory is encountered that cannot be opened or read and errfunc is not
a null pointer, glob() calls (*errfunc()) with two arguments:

1. The epath argument is a pointer to the path that failed.

2. The eerrno argument is the value of errno from the failure, as set by opendir(), readdir(), or
stat(). (Other values may be used to report other errors not explicitly documented for
those functions.)

If (*errfunc()) is called and returns non-zero, or if the GLOB_ERR flag is set in flags, glob() shall
stop the scan and return GLOB_ABORTED after setting gl_pathc and gl_pathv in pglob to reflect
the paths already scanned. If GLOB_ERR is not set and either errfunc is a null pointer or
(*errfunc()) returns 0, the error shall be ignored.

The glob() function shall not fail because of large files.

RETURN VALUE
Upon successful completion, glob() shall return 0. The argument pglob−>gl_pathc shall return the
number of matched pathnames and the argument pglob−>gl_pathv shall contain a pointer to a
null-terminated list of matched and sorted pathnames. However, if pglob−>gl_pathc is 0, the
content of pglob−>gl_pathv is undefined.

The globfree() function shall not return a value.

If glob() terminates due to an error, it shall return one of the non-zero constants defined in

604 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

19932

19933

19934

19935

19936

19937

19938

19939

19940

19941

19942

19943

19944

19945

19946

19947

19948

19949

19950

19951

19952

19953

19954

19955

19956

19957

19958

19959

19960

19961

19962

19963

19964

19965

19966

19967

19968

19969

19970

19971

19972

19973

19974

19975

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces glob()

<glob.h>. The arguments pglob−>gl_pathc and pglob−>gl_pathv are still set as defined above.

ERRORS
The glob() function shall fail and return the corresponding value if:

GLOB_ABORTED The scan was stopped because GLOB_ERR was set or (*errfunc())
returned non-zero.

GLOB_NOMATCH The pattern does not match any existing pathname, and
GLOB_NOCHECK was not set in flags.

GLOB_NOSPACE An attempt to allocate memory failed.

EXAMPLES
One use of the GLOB_DOOFFS flag is by applications that build an argument list for use with
execv(), execve(), or execvp(). Suppose, for example, that an application wants to do the
equivalent of:

ls -l *.c

but for some reason:

system("ls -l *.c")

is not acceptable. The application could obtain approximately the same result using the
sequence:

globbuf.gl_offs = 2;
glob("*.c", GLOB_DOOFFS, NULL, &globbuf);
globbuf.gl_pathv[0] = "ls";
globbuf.gl_pathv[1] = "-l";
execvp("ls", &globbuf.gl_pathv[0]);

Using the same example:

ls -l *.c *.h

could be approximately simulated using GLOB_APPEND as follows:

globbuf.gl_offs = 2;
glob("*.c", GLOB_DOOFFS, NULL, &globbuf);
glob("*.h", GLOB_DOOFFS|GLOB_APPEND, NULL, &globbuf);
...

APPLICATION USAGE
This function is not provided for the purpose of enabling utilities to perform pathname
expansion on their arguments, as this operation is performed by the shell, and utilities are
explicitly not expected to redo this. Instead, it is provided for applications that need to do
pathname expansion on strings obtained from other sources, such as a pattern typed by a user or
read from a file.

If a utility needs to see if a pathname matches a given pattern, it can use fnmatch().

Note that gl_pathc and gl_pathv have meaning even if glob() fails. This allows glob() to report
partial results in the event of an error. However, if gl_pathc is 0, gl_pathv is unspecified even if
glob() did not return an error.

The GLOB_NOCHECK option could be used when an application wants to expand a pathname
if wildcards are specified, but wants to treat the pattern as just a string otherwise. The sh utility
might use this for option-arguments, for example.

The new pathnames generated by a subsequent call with GLOB_APPEND are not sorted
together with the previous pathnames. This mirrors the way that the shell handles pathname
expansion when multiple expansions are done on a command line.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 605

19976

19977

19978

19979

19980

19981

19982

19983

19984

19985

19986

19987

19988

19989

19990

19991

19992

19993

19994

19995

19996

19997

19998

19999

20000

20001

20002

20003

20004

20005

20006

20007

20008

20009

20010

20011

20012

20013

20014

20015

20016

20017

20018

20019

20020

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

glob() System Interfaces

Applications that need tilde and parameter expansion should use wordexp().

RATIONALE
It was claimed that the GLOB_DOOFFS flag is unnecessary because it could be simulated using:

new = (char **)malloc((n + pglob->gl_pathc + 1)
* s izeof(char *));

(void) memcpy(new+n, pglob->gl_pathv,
pglob->gl_pathc * sizeof(char *));

(void) memset(new, 0, n * sizeof(char *));
free(pglob->gl_pathv);
pglob->gl_pathv = new;

However, t

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces gmtime()

NAME
gmtime, gmtime_r — convert a time value to a broken-down UTC time

SYNOPSIS
#include <time.h>

struct tm *gmtime(const time_t * timer);
CX struct tm *gmtime_r(const time_t *restrict timer,

struct tm *restrict result);

DESCRIPTION
CX For gmtime(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of IEEE Std 1003.1-200x defers to the ISO C standard.

The gmtime() function shall convert the time in seconds since the Epoch pointed to by timer into
a broken-down time, expressed as Coordinated Universal Time (UTC).

CX The relationship between a time in seconds since the Epoch used as an argument to gmtime()
and the tm structure (defined in the <time.h> header) is that the result shall be as specified in
the expression given in the definition of seconds since the Epoch (see the Base Definitions
volume of IEEE Std 1003.1-200x, Section 4.14, Seconds Since the Epoch), where the names in the
structure and in the expression correspond.

The same relationship shall apply for gmtime_r().

The gmtime() function need not be thread-safe. A function that is not required to be thread-safe
is not required to be reentrant.

The asctime(), ctime(), gmtime(), and localtime() functions shall return values in one of two static
objects: a broken-down time structure and an array of type char. Execution of any of the
functions may overwrite the information returned in either of these objects by any of the other
functions.

The gmtime_r() function shall convert the time in seconds since the Epoch pointed to by timer
into a broken-down time expressed as Coordinated Universal Time (UTC). The broken-down
time is stored in the structure referred to by result. The gmtime_r() function shall also return the
address of the same structure.

RETURN VALUE
Upon successful completion, the gmtime() function shall return a pointer to a struct tm. If an

CX error is detected, gmtime() shall return a null pointer and set errno to indicate the error.

Upon successful completion, gmtime_r() shall return the address of the structure pointed to by
the argument result. If an error is detected, gmtime_r() shall return a null pointer and set errno to
indicate the error.

ERRORS
CX The gmtime() and gmtime_r() functions shall fail if:

CX [EOVERFLOW] The result cannot be represented.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 607

20052

20053

20054

20055

20056

20057

20058

20059

20060

20061

20062

20063

20064

20065

20066

20067

20068

20069

20070

20071

20072

20073

20074

20075

20076

20077

20078

20079

20080

20081

20082

20083

20084

20085

20086

20087

20088

20089

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

gmtime() System Interfaces

EXAMPLES
None.

APPLICATION USAGE
The gmtime_r() function is thread-safe and returns values in a user-supplied buffer instead of
possibly using a static data area that may be overwritten by each call.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
asctime(), clock(), ctime(), difftime(), localtime(), mktime(), strftime(), strptime(), time(), utime(),
the Base Definitions volume of IEEE Std 1003.1-200x, <time.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
A note indicating that the gmtime() function need not be reentrant is added to the
DESCRIPTION.

The gmtime_r() function is included for alignment with the POSIX Threads Extension.

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces grantpt()

NAME
grantpt — grant access to the slave pseudo-terminal device

SYNOPSIS
XSI #include <stdlib.h>

int grantpt(int fildes);

DESCRIPTION
The grantpt() function shall change the mode and ownership of the slave pseudo-terminal
device associated with its master pseudo-terminal counterpart. The fildes argument is a file
descriptor that refers to a master pseudo-terminal device. The user ID of the slave shall be set to
the real UID of the calling process and the group ID shall be set to an unspecified group ID. The
permission mode of the slave pseudo-terminal shall be set to readable and writable by the
owner, and writable by the group.

The behavior of the grantpt() function is unspecified if the application has installed a signal
handler to catch SIGCHLD signals.

RETURN VALUE
Upon successful completion, grantpt() shall return 0; otherwise, it shall return −1 and set errno to
indicate the error.

ERRORS
The grantpt() function may fail if:

[EBADF] The fildes argument is not a valid open file descriptor.

[EINVAL] The fildes argument is not associated with a master pseudo-terminal device.

[EACCES] The corresponding slave pseudo-terminal device could not be accessed.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
open(), ptsname(), unlockpt(), the Base Definitions volume of IEEE Std 1003.1-200x, <stdlib.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

The last paragraph of the DESCRIPTION is moved from the APPLICATION USAGE section.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 609

20121

20122

20123

20124

20125

20126

20127

20128

20129

20130

20131

20132

20133

20134

20135

20136

20137

20138

20139

20140

20141

20142

20143

20144

20145

20146

20147

20148

20149

20150

20151

20152

20153

20154

20155

20156

20157

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

hcreate() System Interfaces

NAME
hcreate, hdestroy, hsearch — manage hash search table

SYNOPSIS
XSI #include <search.h>

int hcreate(size_t nel);
void hdestroy(void);
ENTRY *hsearch(ENTRY item, A CTION action);

DESCRIPTION
The hcreate(), hdestroy(), and hsearch() functions shall manage hash search tables.

The hcreate() function shall allocate sufficient space for the table, and the application shall
ensure it is called before hsearch() is used. The nel argument is an estimate of the maximum
number of entries that the table shall contain. This number may be adjusted upward by the
algorithm in order to obtain certain mathematically favorable circumstances.

The hdestroy() function shall dispose of the search table, and may be followed by another call to
hcreate(). After the call to hdestroy(), the data can no longer be considered accessible.

The hsearch() function is a hash-table search routine. It shall return a pointer into a hash table
indicating the location at which an entry can be found. The item argument is a structure of type
ENTRY (defined in the <search.h> header) containing two pointers: item.key points to the
comparison key (a char *), and item.data (a void *) points to any other data to be associated with
that key. The comparison function used by hsearch() is strcmp(). The action argument is a
member of an enumeration type ACTION indicating the disposition of the entry if it cannot be
found in the table. ENTER indicates that the item should be inserted in the table at an
appropriate point. FIND indicates that no entry should be made. Unsuccessful resolution is
indicated by the return of a null pointer.

These functions need not be thread-safe. A function that is not required to be thread-safe is not
required to be reentrant.

RETURN VALUE
The hcreate() function shall return 0 if it cannot allocate sufficient space for the table; otherwise,
it shall return non-zero.

The hdestroy() function shall not return a value.

The hsearch() function shall return a null pointer if either the action is FIND and the item could
not be found or the action is ENTER and the table is full.

ERRORS
The hcreate() and hsearch() functions may fail if:

[ENOMEM] Insufficient storage space is available.

610 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

20158

20159

20160

20161

20162

20163

20164

20165

20166

20167

20168

20169

20170

20171

20172

20173

20174

20175

20176

20177

20178

20179

20180

20181

20182

20183

20184

20185

20186

20187

20188

20189

20190

20191

20192

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces hcreate()

EXAMPLES
The following example reads in strings followed by two numbers and stores them in a hash
table, discarding duplicates. It then reads in strings and finds the matching entry in the hash
table and prints it out.

#include <stdio.h>
#include <search.h>
#include <string.h>

struct info { /* This is the info stored in the table */
int age, room; /* other than the key. */

};

#define NUM_EMPL 5000 /* # of e lements in search table. */

int main(void)
{

char string_space[NUM_EMPL*20]; /* Space to store strings. */
struct info info_space[NUM_EMPL]; /* Space to store employee info. */
char *str_ptr = string_space; /* Next space in string_space. */
struct info *info_ptr = info_space;

/* Next space in info_space. */
ENTRY item;
ENTRY *found_item; /* Name to look for in table. */
char name_to_find[30];

int i = 0;

/* Create table; no error checking is performed. */
(void) hcreate(NUM_EMPL);
while (scanf("%s%d%d", str_ptr, &info_ptr −>age,

&info_ptr −>room) != EOF && i++ < NUM_EMPL) {

/* Put information in structure, and structure in item. */
item.key = str_ptr;
item.data = info_ptr;
str_ptr += strlen(str_ptr) + 1;
info_ptr++;

/* Put item into table. */
(void) hsearch(item, ENTER);

}

/* Access table. */
item.key = name_to_find;
while (scanf("%s", item.key) != EOF) {

if ((found_item = hsearch(item, FIND)) != NULL) {

/* If item is in the table. */
(void)printf("found %s, age = %d, room = %d\n",

found_item −>key,
((struct info *)found_item −>data) −>age,
((struct info *)found_item −>data) −>room);

} e lse
(void)printf("no such employee %s\n", name_to_find);

}
return 0;

}

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 611

20193

20194

20195

20196

20197

20198

20199

20200

20201

20202

20203

20204

20205

20206

20207

20208

20209

20210

20211

20212

20213

20214

20215

20216

20217

20218

20219

20220

20221

20222

20223

20224

20225

20226

20227

20228

20229

20230

20231

20232

20233

20234

20235

20236

20237

20238

20239

20240

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

hcreate() System Interfaces

APPLICATION USAGE
The hcreate() and hsearch() functions may use malloc() to allocate space.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
bsearch(), lsearch(), malloc(), strcmp(), tsearch(), the Base Definitions volume of
IEEE Std 1003.1-200x, <search.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

A note indicating that this function need not be reentrant is added to the DESCRIPTION.

612 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

20241

20242

20243

20244

20245

20246

20247

20248

20249

20250

20251

20252

20253

20254

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces htonl()

NAME
htonl, htons, ntohl, ntohs — convert values between host and network byte order

SYNOPSIS
#include <arpa/inet.h>

uint32_t htonl(uint32_t hostlong);
uint16_t htons(uint16_t hostshort);
uint32_t ntohl(uint32_t netlong);
uint16_t ntohs(uint16_t netshort);

DESCRIPTION
These functions shall convert 16-bit and 32-bit quantities between network byte order and host
byte order.

On some implementations, these functions are defined as macros.

The uint32_t and uint16_t types are defined in <inttypes.h>.

RETURN VALUE
The htonl() and htons() functions shall return the argument value converted from host to
network byte order.

The ntohl() and ntohs() functions shall return the argument value converted from network to
host byte order.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
These functions are most often used in conjunction with IPv4 addresses and ports as returned by
gethostent() and getservent().

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
endhostent(), endservent(), the Base Definitions volume of IEEE Std 1003.1-200x, <inttypes.h>,
<arpa/inet.h>

CHANGE HISTORY
First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 613

20255

20256

20257

20258

20259

20260

20261

20262

20263

20264

20265

20266

20267

20268

20269

20270

20271

20272

20273

20274

20275

20276

20277

20278

20279

20280

20281

20282

20283

20284

20285

20286

20287

20288

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

hypot() System Interfaces

NAME
hypot, hypotf, hypotl — Euclidean distance function

SYNOPSIS
#include <math.h>

double hypot(double x, d ouble y);
float hypotf(float x, f loat y);
long double hypotl(long double x, l ong double y);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

These functions shall compute the value of the square root of x2+y2 without undue overflow or
underflow.

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-
zero, an error has occurred.

RETURN VALUE
Upon successful completion, these functions shall return the length of the hypotenuse of a right-
angled triangle with sides of length x and y.

If the correct value would cause overflow, a range error shall occur and hypot(), hypotf(), and
hypotl() shall return the value of the macro HUGE_VAL, HUGE_VALF, and HUGE_VALL,
respectively.

MX If x or y is ±Inf, +Inf shall be returned (even if one of x or y is NaN).

If x or y is NaN, and the other is not ±Inf, a NaN shall be returned.

If both arguments are subnormal and the correct result is subnormal, a range error may occur
and the correct result is returned.

ERRORS
These functions shall fail if:

Range Error The result overflows.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the overflow
floating-point exception shall be raised.

These functions may fail if:

MX Range Error The result underflows.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the underflow
floating-point exception shall be raised.

614 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

20289

20290

20291

20292

20293

20294

20295

20296

20297

20298

20299

20300

20301

20302

20303

20304

20305

20306

20307

20308

20309

20310

20311

20312

20313

20314

20315

20316

20317

20318

20319

20320

20321

20322

20323

20324

20325

20326

20327

20328

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces hypot()

EXAMPLES
See the EXAMPLES section in atan2().

APPLICATION USAGE
hypot(x,y), hypot(y,x), and hypot(x, −y) are equivalent.

hypot(x, ±0) is equivalent to fabs(x).

Underflow only happens when both x and y are subnormal and the (inexact) result is also
subnormal.

These functions take precautions against overflow during intermediate steps of the computation.

On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling &
MATH_ERREXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
atan2(), feclearexcept(), fetestexcept(), isnan(), sqrt(), the Base Definitions volume of
IEEE Std 1003.1-200x, Section 4.18, Treatment of Error Conditions for Mathematical Functions,
<math.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The DESCRIPTION is updated to indicate how an application should check for an error. This
text was previously published in the APPLICATION USAGE section.

Issue 6
The hypot() function is no longer marked as an extension.

The hypotf() and hypotl() functions are added for alignment with the ISO/IEC 9899: 1999
standard.

The DESCRIPTION, RETURN VALUE, ERRORS, and APPLICATION USAGE sections are
revised to align with the ISO/IEC 9899: 1999 standard.

IEC 60559: 1989 standard floating-point extensions over the ISO/IEC 9899: 1999 standard are
marked.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/49 is applied, updating the EXAMPLES
section.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 615

20329

20330

20331

20332

20333

20334

20335

20336

20337

20338

20339

20340

20341

20342

20343

20344

20345

20346

20347

20348

20349

20350

20351

20352

20353

20354

20355

20356

20357

20358

20359

20360

20361

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

iconv() System Interfaces

NAME
iconv — codeset conversion function

SYNOPSIS
#include <iconv.h>

size_t iconv(iconv_t cd, c har **restrict inbuf,
size_t *restrict inbytesleft, c har **restrict outbuf,
size_t *restrict outbytesleft);

DESCRIPTION
The iconv() function shall convert the sequence of characters from one codeset, in the array
specified by inbuf , into a sequence of corresponding characters in another codeset, in the array
specified by outbuf . The codesets are those specified in the iconv_open() call that returned the
conversion descriptor, cd. The inbuf argument points to a variable that points to the first
character in the input buffer and inbytesleft indicates the number of bytes to the end of the buffer
to be converted. The outbuf argument points to a variable that points to the first available byte in
the output buffer and outbytesleft indicates the number of the available bytes to the end of the
buffer.

For state-dependent encodings, the conversion descriptor cd is placed into its initial shift state by
a call for which inbuf is a null pointer, or for which inbuf points to a null pointer. When iconv() is
called in this way, and if outbuf is not a null pointer or a pointer to a null pointer, and outbytesleft
points to a positive value, iconv() shall place, into the output buffer, the byte sequence to change
the output buffer to its initial shift state. If the output buffer is not large enough to hold the
entire reset sequence, iconv() shall fail and set errno to [E2BIG]. Subsequent calls with inbuf as
other than a null pointer or a pointer to a null pointer cause the conversion to take place from
the current state of the conversion descriptor.

If a sequence of input bytes does not form a valid character in the specified codeset, conversion
shall stop after the previous successfully converted character. If the input buffer ends with an
incomplete character or shift sequence, conversion shall stop after the previous successfully
converted bytes. If the output buffer is not large enough to hold the entire converted input,
conversion shall stop just prior to the input bytes that would cause the output buffer to
overflow. The variable pointed to by inbuf shall be updated to point to the byte following the last
byte successfully used in the conversion. The value pointed to by inbytesleft shall be
decremented to reflect the number of bytes still not converted in the input buffer. The variable
pointed to by outbuf shall be updated to point to the byte following the last byte of converted
output data. The value pointed to by outbytesleft shall be decremented to reflect the number of
bytes still available in the output buffer. For state-dependent encodings, the conversion
descriptor shall be updated to reflect the shift state in effect at the end of the last successfully
converted byte sequence.

If iconv() encounters a character in the input buffer that is valid, but for which an identical
character does not exist in the target codeset, iconv() shall perform an implementation-defined
conversion on this character.

RETURN VALUE
The iconv() function shall update the variables pointed to by the arguments to reflect the extent
of the conversion and return the number of non-identical conversions performed. If the entire
string in the input buffer is converted, the value pointed to by inbytesleft shall be 0. If the input
conversion is stopped due to any conditions mentioned above, the value pointed to by inbytesleft
shall be non-zero and errno shall be set to indicate the condition. If an error occurs, iconv() shall
return (size_t)−1 and set errno to indicate the error.

616 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

20362

20363

20364

20365

20366

20367

20368

20369

20370

20371

20372

20373

20374

20375

20376

20377

20378

20379

20380

20381

20382

20383

20384

20385

20386

20387

20388

20389

20390

20391

20392

20393

20394

20395

20396

20397

20398

20399

20400

20401

20402

20403

20404

20405

20406

20407

20408

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces iconv()

ERRORS
The iconv() function shall fail if:

[EILSEQ] Input conversion stopped due to an input byte that does not belong to the
input codeset.

[E2BIG] Input conversion stopped due to lack of space in the output buffer.

[EINVAL] Input conversion stopped due to an incomplete character or shift sequence at
the end of the input buffer.

The iconv() function may fail if:

[EBADF] The cd argument is not a valid open conversion descriptor.

EXAMPLES
None.

APPLICATION USAGE
The inbuf argument indirectly points to the memory area which contains the conversion input
data. The outbuf argument indirectly points to the memory area which is to contain the result of
the conversion. The objects indirectly pointed to by inbuf and outbuf are not restricted to
containing data that is directly representable in the ISO C standard language char data type. The
type of inbuf and outbuf , char **, does not imply that the objects pointed to are interpreted as
null-terminated C strings or arrays of characters. Any interpretation of a byte sequence that
represents a character in a given character set encoding scheme is done internally within the
codeset converters. For example, the area pointed to indirectly by inbuf and/or outbuf can
contain all zero octets that are not interpreted as string terminators but as coded character data
according to the respective codeset encoding scheme. The type of the data (char, short, long, and
so on) read or stored in the objects is not specified, but may be inferred for both the input and
output data by the converters determined by the fromcode and tocode arguments of iconv_open().

Regardless of the data type inferred by the converter, the size of the remaining space in both
input and output objects (the intbytesleft and outbytesleft arguments) is always measured in bytes.

For implementations that support the conversion of state-dependent encodings, the conversion
descriptor must be able to accurately reflect the shift-state in effect at the end of the last
successful conversion. It is not required that the conversion descriptor itself be updated, which
would require it to be a pointer type. Thus, implementations are free to implement the
descriptor as a handle (other than a pointer type) by which the conversion information can be
accessed and updated.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
iconv_open(), iconv_close(), mbsrtowcs(), the Base Definitions volume of IEEE Std 1003.1-200x,
<iconv.h>

CHANGE HISTORY
First released in Issue 4. Derived from the HP-UX Manual.

Issue 6
The SYNOPSIS has been corrected to align with the <iconv.h> reference page.

The restrict keyword is added to the iconv() prototype for alignment with the
ISO/IEC 9899: 1999 standard.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 617

20409

20410

20411

20412

20413

20414

20415

20416

20417

20418

20419

20420

20421

20422

20423

20424

20425

20426

20427

20428

20429

20430

20431

20432

20433

20434

20435

20436

20437

20438

20439

20440

20441

20442

20443

20444

20445

20446

20447

20448

20449

20450

20451

20452

20453

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

iconv() System Interfaces

Issue 7
The iconv() function is moved from the XSI option to the Base.

618 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

20454

20455

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces iconv_close()

NAME
iconv_close — codeset conversion deallocation function

SYNOPSIS
#include <iconv.h>

int iconv_close(iconv_t cd);

DESCRIPTION
The iconv_close() function shall deallocate the conversion descriptor cd and all other associated
resources allocated by iconv_open().

If a file descriptor is used to implement the type iconv_t, that file descriptor shall be closed.

RETURN VALUE
Upon successful completion, 0 shall be returned; otherwise, −1 shall be returned and errno set to
indicate the error.

ERRORS
The iconv_close() function may fail if:

[EBADF] The conversion descriptor is invalid.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
iconv(), iconv_open(), the Base Definitions volume of IEEE Std 1003.1-200x, <iconv.h>

CHANGE HISTORY
First released in Issue 4. Derived from the HP-UX Manual.

Issue 7
The iconv_close() function is moved from the XSI option to the Base.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 619

20456

20457

20458

20459

20460

20461

20462

20463

20464

20465

20466

20467

20468

20469

20470

20471

20472

20473

20474

20475

20476

20477

20478

20479

20480

20481

20482

20483

20484

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

iconv_open() System Interfaces

NAME
iconv_open — codeset conversion allocation function

SYNOPSIS
#include <iconv.h>

iconv_t iconv_open(const char * tocode, c onst char * fromcode);

DESCRIPTION
The iconv_open() function shall return a conversion descriptor that describes a conversion from
the codeset specified by the string pointed to by the fromcode argument to the codeset specified
by the string pointed to by the tocode argument. For state-dependent encodings, the conversion
descriptor shall be in a codeset-dependent initial shift state, ready for immediate use with
iconv().

Settings of fromcode and tocode and their permitted combinations are implementation-defined.

A conversion descriptor shall remain valid until it is closed by iconv_close() or an implicit close.

If a file descriptor is used to implement conversion descriptors, the FD_CLOEXEC flag shall be
set; see <fcntl.h>.

RETURN VALUE
Upon successful completion, iconv_open() shall return a conversion descriptor for use on
subsequent calls to iconv(). Otherwise, iconv_open() shall return (iconv_t)−1 and set errno to
indicate the error.

ERRORS
The iconv_open() function may fail if:

[EMFILE] All file descriptors available to the process are currently open.

[ENFILE] Too many files are currently open in the system.

[ENOMEM] Insufficient storage space is available.

[EINVAL] The conversion specified by fromcode and tocode is not supported by the
implementation.

EXAMPLES
None.

APPLICATION USAGE
Some implementations of iconv_open() use malloc() to allocate space for internal buffer areas.
The iconv_open() function may fail if there is insufficient storage space to accommodate these
buffers.

Conforming applications must assume that conversion descriptors are not valid after a call to
one of the exec functions.

Application developers should consult the system documentation to determine the supported
codesets and their naming schemes.

RATIONALE
None.

FUTURE DIRECTIONS
None.

620 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

20485

20486

20487

20488

20489

20490

20491

20492

20493

20494

20495

20496

20497

20498

20499

20500

20501

20502

20503

20504

20505

20506

20507

20508

20509

20510

20511

20512

20513

20514

20515

20516

20517

20518

20519

20520

20521

20522

20523

20524

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces iconv_open()

SEE ALSO
iconv(), iconv_close(), the Base Definitions volume of IEEE Std 1003.1-200x, <fcntl.h>, <iconv.h>

CHANGE HISTORY
First released in Issue 4. Derived from the HP-UX Manual.

Issue 7
SD5-XBD-ERN-4 is applied, changing the definition of the [EMFILE] error.

The iconv_open() function is moved from the XSI option to the Base.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 621

20525

20526

20527

20528

20529

20530

20531

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

if_freenameindex() System Interfaces

NAME
if_freenameindex — free memory allocated by if_nameindex

SYNOPSIS
#include <net/if.h>

void if_freenameindex(struct if_nameindex * ptr);

DESCRIPTION
The if_freenameindex() function shall free the memory allocated by if_nameindex(). The ptr
argument shall be a pointer that was returned by if_nameindex(). After if_freenameindex() has
been called, the application shall not use the array of which ptr is the address.

RETURN VALUE
None.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
getsockopt(), if_indextoname(), if_nameindex(), if_nametoindex(), setsockopt(), the Base Definitions
volume of IEEE Std 1003.1-200x, <net/if.h>

CHANGE HISTORY
First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

622 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

20532

20533

20534

20535

20536

20537

20538

20539

20540

20541

20542

20543

20544

20545

20546

20547

20548

20549

20550

20551

20552

20553

20554

20555

20556

20557

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces if_indextoname()

NAME
if_indextoname — map a network interface index to its corresponding name

SYNOPSIS
#include <net/if.h>

char *if_indextoname(unsigned ifindex, c har * ifname);

DESCRIPTION
The if_indextoname() function shall map an interface index to its corresponding name.

When this function is called, ifname shall point to a buffer of at least {IF_NAMESIZE} bytes. The
function shall place in this buffer the name of the interface with index ifindex.

RETURN VALUE
If ifindex is an interface index, then the function shall return the value supplied in ifname, which
points to a buffer now containing the interface name. Otherwise, the function shall return a
NULL pointer and set errno to indicate the error.

ERRORS
The if_indextoname() function shall fail if:

[ENXIO] The interface does not exist.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
getsockopt(), if_freenameindex(), if_nameindex(), if_nametoindex(), setsockopt(), the Base Definitions
volume of IEEE Std 1003.1-200x, <net/if.h>

CHANGE HISTORY
First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/28 is applied, changing {IFNAMSIZ} to
{IF_NAMESIZ} in the DESCRIPTION.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 623

20558

20559

20560

20561

20562

20563

20564

20565

20566

20567

20568

20569

20570

20571

20572

20573

20574

20575

20576

20577

20578

20579

20580

20581

20582

20583

20584

20585

20586

20587

20588

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

if_nameindex() System Interfaces

NAME
if_nameindex — return all network interface names and indexes

SYNOPSIS
#include <net/if.h>

struct if_nameindex * if_nameindex(void);

DESCRIPTION
The if_nameindex() function shall return an array of if_nameindex structures, one structure per
interface. The end of the array is indicated by a structure with an if_index field of zero and an
if_name field of NULL.

Applications should call if_freenameindex() to release the memory that may be dynamically
allocated by this function, after they have finished using it.

RETURN VALUE
An array of structures identifying local interfaces. A NULL pointer is returned upon an error,
with errno set to indicate the error.

ERRORS
The if_nameindex() function may fail if:

[ENOBUFS] Insufficient resources are available to complete the function.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
getsockopt(), if_freenameindex(), if_indextoname(), if_nametoindex(), setsockopt(), the Base
Definitions volume of IEEE Std 1003.1-200x, <net/if.h>

CHANGE HISTORY
First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

624 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

20589

20590

20591

20592

20593

20594

20595

20596

20597

20598

20599

20600

20601

20602

20603

20604

20605

20606

20607

20608

20609

20610

20611

20612

20613

20614

20615

20616

20617

20618

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces ilogb()

shall be raised.

These functions may fail if:

Domain Error The x argument is zero, NaN, or ±Inf.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [EDOM]. If the integer expression (math_errhandling
& MATH_ERREXCEPT) is non-zero, then the invalid floating-point exception
shall be raised.

EXAMPLES
None.

APPLICATION USAGE
On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling &
MATH_ERREXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
The errors come from taking the expected floating-point value and converting it to int, which is
an invalid operation in IEEE Std 754-1985 (since overflow, infinity, and NaN are not
representable in a type int), so should be a domain error.

There are no known implementations that overflow. For overflow to happen, {INT_MAX} must
be less than LDBL_MAX_EXP*log2(FLT_RADIX) or {INT_MIN} must be greater than
LDBL_MIN_EXP*log2(FLT_RADIX) if subnormals are not supported, or {INT_MIN} must be
greater than (LDBL_MIN_EXP-LDBL_MANT_DIG)*log2(FLT_RADIX) if subnormals are
supported.

FUTURE DIRECTIONS
None.

SEE ALSO
feclearexcept(), fetestexcept(), logb(), scalbln(), the Base Definitions volume of
IEEE Std 1003.1-200x, Section 4.18, Treatment of Error Conditions for Mathematical Functions,
<float.h>, <math.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Issue 6
The ilogb() function is no longer marked as an extension.

The ilogbf() and ilogbl() functions are added for alignment with the ISO/IEC 9899: 1999
standard.

The RETURN VALUE section is revised for alignment with the ISO/IEC 9899: 1999 standard.

Functionality relating to the XSI option is marked.

Issue 7
ISO/IEC 9899: 1999 standard, Technical Corrigendum 2 #48 (SD5-XSH-ERN-71), #49, and #79
(SD5-XSH-ERN-72) are applied.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 627

20687

20688

20689

20690

20691

20692

20693

20694

20695

20696

20697

20698

20699

20700

20701

20702

20703

20704

20705

20706

20707

20708

20709

20710

20711

20712

20713

20714

20715

20716

20717

20718

20719

20720

20721

20722

20723

20724

20725

20726

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces imaxdiv()

NAME
imaxdiv — return quotient and remainder

SYNOPSIS
#include <inttypes.h>

imaxdiv_t imaxdiv(intmax_t numer, i ntmax_t denom);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

The imaxdiv() function shall compute numer / denom and numer % denom in a single operation.

RETURN VALUE
The imaxdiv() function shall return a structure of type imaxdiv_t, comprising both the quotient
and the remainder. The structure shall contain (in either order) the members quot (the quotient)
and rem (the remainder), each of which has type intmax_t.

If either part of the result cannot be represented, the behavior is undefined.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
imaxabs(), the Base Definitions volume of IEEE Std 1003.1-200x, <inttypes.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 629

20754

20755

20756

20757

20758

20759

20760

20761

20762

20763

20764

20765

20766

20767

20768

20769

20770

20771

20772

20773

20774

20775

20776

20777

20778

20779

20780

20781

20782

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces inet_addr()

EXAMPLES
None.

APPLICATION USAGE
The return value of inet_ntoa() may point to static data that may be overwritten by subsequent
calls to inet_ntoa().

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
endhostent(), endnetent(), the Base Definitions volume of IEEE Std 1003.1-200x, <arpa/inet.h>

CHANGE HISTORY
First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 631

20820

20821

20822

20823

20824

20825

20826

20827

20828

20829

20830

20831

20832

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

inet_ntop() System Interfaces

NAME
inet_ntop, inet_pton — convert IPv4 and IPv6 addresses between binary and text form

SYNOPSIS
#include <arpa/inet.h>

const char *inet_ntop(int af, c onst void *restrict src,
char *restrict dst, s ocklen_t size);

int inet_pton(int af, c onst char *restrict src, v oid *restrict dst);

DESCRIPTION
The inet_ntop() function shall convert a numeric address into a text string suitable for

IP6 presentation. The af argument shall specify the family of the address. This can be AF_INET or
AF_INET6. The src argument points to a buffer holding an IPv4 address if the af argument is

IP6 AF_INET, or an IPv6 address if the af argument is AF_INET6; the address must be in network
byte order. The dst argument points to a buffer where the function stores the resulting text string;
it shall not be NULL. The size argument specifies the size of this buffer, which shall be large

IP6 enough to hold the text string (INET_ADDRSTRLEN characters for IPv4,
INET6_ADDRSTRLEN characters for IPv6).

The inet_pton() function shall convert an address in its standard text presentation form into its
IP6 numeric binary form. The af argument shall specify the family of the address. The AF_INET and

AF_INET6 address families shall be supported. The src argument points to the string being
passed in. The dst argument points to a buffer into which the function stores the numeric

IP6 address; this shall be large enough to hold the numeric address (32 bits for AF_INET, 128 bits
for AF_INET6).

If the af argument of inet_pton() is AF_INET, the src string shall be in the standard IPv4 dotted-
decimal form:

ddd.ddd.ddd.ddd

where "ddd" is a one to three digit decimal number between 0 and 255 (see inet_addr()). The
inet_pton() function does not accept other formats (such as the octal numbers, hexadecimal
numbers, and fewer than four numbers that inet_addr() accepts).

IP6 If the af argument of inet_pton() is AF_INET6, the src string shall be in one of the following
standard IPv6 text forms:

1. The preferred form is "x:x:x:x:x:x:x:x" , where the ’x’ s are the hexadecimal values
of the eight 16-bit pieces of the address. Leading zeros in individual fields can be
omitted, but there shall be at least one numeral in every field.

2. A string of contiguous zero fields in the preferred form can be shown as "::" . The "::"
can only appear once in an address. Unspecified addresses ("0:0:0:0:0:0:0:0") may
be represented simply as "::" .

3. A third form that is sometimes more convenient when dealing with a mixed environment
of IPv4 and IPv6 nodes is "x:x:x:x:x:x:d.d.d.d" , where the ’x’ s are the
hexadecimal values of the six high-order 16-bit pieces of the address, and the ’d’ s are the
decimal values of the four low-order 8-bit pieces of the address (standard IPv4
representation).

Note: A more extensive description of the standard representations of IPv6 addresses can be found in
RFC 2373.

632 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

20833

20834

20835

20836

20837

20838

20839

20840

20841

20842

20843

20844

20845

20846

20847

20848

20849

20850

20851

20852

20853

20854

20855

20856

20857

20858

20859

20860

20861

20862

20863

20864

20865

20866

20867

20868

20869

20870

20871

20872

20873

20874

20875

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces inet_ntop()

RETURN VALUE
The inet_ntop() function shall return a pointer to the buffer containing the text string if the
conversion succeeds, and NULL otherwise, and set errno to indicate the error.

The inet_pton() function shall return 1 if the conversion succeeds, with the address pointed to by
IP6 dst in network byte order. It shall return 0 if the input is not a valid IPv4 dotted-decimal string

or a valid IPv6 address string, or −1 with errno set to [EAFNOSUPPORT] if the af argument is
unknown.

ERRORS
The inet_ntop() and inet_pton() functions shall fail if:

[EAFNOSUPPORT]
The af argument is invalid.

[ENOSPC] The size of the inet_ntop() result buffer is inadequate.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
The Base Definitions volume of IEEE Std 1003.1-200x, <arpa/inet.h>

CHANGE HISTORY
First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

IPv6 extensions are marked.

The restrict keyword is added to the inet_ntop() and inet_pton() prototypes for alignment with
the ISO/IEC 9899: 1999 standard.

IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/29 is applied, adding ‘‘the address must
be in network byte order ’’ to the end of the fourth sentence of the first paragraph in the
DESCRIPTION.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 633

20876

20877

20878

20879

20880

20881

20882

20883

20884

20885

20886

20887

20888

20889

20890

20891

20892

20893

20894

20895

20896

20897

20898

20899

20900

20901

20902

20903

20904

20905

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces initstate()

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
After initialization, a state array can be restarted at a different point in one of two ways:

1. The initstate() function can be used, with the desired seed, state array, and size of the
array.

2. The setstate() function, with the desired state, can be used, followed by srandom() with
the desired seed. The advantage of using both of these functions is that the size of the
state array does not have to be saved once it is initialized.

Although some implementations of random() have written messages to standard error, such
implementations do not conform to IEEE Std 1003.1-200x.

Issue 5 restored the historical behavior of this function.

Threaded applications should use erand48(), nrand48(), or jrand48() instead of random() when
an independent random number sequence in multiple threads is required.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
drand48(), rand(), the Base Definitions volume of IEEE Std 1003.1-200x, <stdlib.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

In the DESCRIPTION, the phrase ‘‘values smaller than 8’’ is replaced with ‘‘values greater than
or equal to 8, or less than 32’’, ‘‘size<8’’ is replaced with ‘‘8≤size <32’’, and a new first paragraph
is added to the RETURN VALUE section. A note is added to the APPLICATION USAGE
indicating that these changes restore the historical behavior of the function.

Issue 6
In the DESCRIPTION, duplicate text ‘‘For values greater than or equal to 8 . . .’’ is removed.

IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/30 is applied, removing rand_r() from the
list of suggested functions in the APPLICATION USAGE section.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 635

20947

20948

20949

20950

20951

20952

20953

20954

20955

20956

20957

20958

20959

20960

20961

20962

20963

20964

20965

20966

20967

20968

20969

20970

20971

20972

20973

20974

20975

20976

20977

20978

20979

20980

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

insque() System Interfaces

NAME
insque, remque — insert or remove an element in a queue

SYNOPSIS
XSI #include <search.h>

void insque(void * element, v oid * pred);
void remque(void * element);

DESCRIPTION
The insque() and remque() functions shall manipulate queues built from doubly-linked lists. The
queue can be either circular or linear. An application using insque() or remque() shall ensure it
defines a structure in which the first two members of the structure are pointers to the same type
of structure, and any further members are application-specific. The first member of the structure
is a forward pointer to the next entry in the queue. The second member is a backward pointer to
the previous entry in the queue. If the queue is linear, the queue is terminated with null
pointers. The names of the structure and of the pointer members are not subject to any special
restriction.

The insque() function shall insert the element pointed to by element into a queue immediately
after the element pointed to by pred.

The remque() function shall remove the element pointed to by element from a queue.

If the queue is to be used as a linear list, invoking insque(&element, NULL), where element is the
initial element of the queue, shall initialize the forward and backward pointers of element to null
pointers.

If the queue is to be used as a circular list, the application shall ensure it initializes the forward
pointer and the backward pointer of the initial element of the queue to the element’s own
address.

RETURN VALUE
The insque() and remque() functions do not return a value.

ERRORS
No errors are defined.

EXAMPLES

Creating a Linear Linked List

The following example creates a linear linked list.

#include <search.h>
...
struct myque element1;
struct myque element2;

char *data1 = "DATA1";
char *data2 = "DATA2";
...
element1.data = data1;
element2.data = data2;

insque (&element1, NULL);
insque (&element2, &element1);

636 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

20981

20982

20983

20984

20985

20986

20987

20988

20989

20990

20991

20992

20993

20994

20995

20996

20997

20998

20999

21000

21001

21002

21003

21004

21005

21006

21007

21008

21009

21010

21011

21012

21013

21014

21015

21016

21017

21018

21019

21020

21021

21022

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces insque()

Creating a Circular Linked List

The following example creates a circular linked list.

#include <search.h>
...
struct myque element1;
struct myque element2;

char *data1 = "DATA1";
char *data2 = "DATA2";
...
element1.data = data1;
element2.data = data2;

element1.fwd = &element1;
element1.bck = &element1;

insque (&element2, &element1);

Removing an Element

The following example removes the element pointed to by element1.

#include <search.h>
...
struct myque element1;
...
remque (&element1);

APPLICATION USAGE
The historical implementations of these functions described the arguments as being of type
struct qelem * rather than as being of type void * as defined here. In those implementations,
struct qelem was commonly defined in <search.h> as:

struct qelem {
struct qelem *q_forw;
struct qelem *q_back;

};

Applications using these functions, however, were never able to use this structure directly since
it provided no room for the actual data contained in the elements. Most applications defined
structures that contained the two pointers as the initial elements and also provided space for, or
pointers to, the object’s data. Applications that used these functions to update more than one
type of table also had the problem of specifying two or more different structures with the same
name, if they literally used struct qelem as specified.

As described here, the implementations were actually expecting a structure type where the first
two members were forward and backward pointers to structures. With C compilers that didn’t
provide function prototypes, applications used structures as specified in the DESCRIPTION
above and the compiler did what the application expected.

If this method had been carried forward with an ISO C standard compiler and the historical
function prototype, most applications would have to be modified to cast pointers to the
structures actually used to be pointers to struct qelem to avoid compilation warnings. By
specifying void * as the argument type, applications do not need to change (unless they
specifically referenced struct qelem and depended on it being defined in <search.h>).

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 637

21023

21024

21025

21026

21027

21028

21029

21030

21031

21032

21033

21034

21035

21036

21037

21038

21039

21040

21041

21042

21043

21044

21045

21046

21047

21048

21049

21050

21051

21052

21053

21054

21055

21056

21057

21058

21059

21060

21061

21062

21063

21064

21065

21066

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

insque() System Interfaces

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
The Base Definitions volume of IEEE Std 1003.1-200x, <search.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Issue 6
The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

638 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

21067

21068

21069

21070

21071

21072

21073

21074

21075

21076

21077

21078

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces ioctl()

NAME
ioctl — control a STREAMS device (STREAMS)

SYNOPSIS
OB XSR #include <stropts.h>

int ioctl(int fildes, i nt request, . .. /* arg */);

DESCRIPTION
The ioctl() function shall perform a variety of control functions on STREAMS devices. For non-
STREAMS devices, the functions performed by this call are unspecified. The request argument
and an optional third argument (with varying type) shall be passed to and interpreted by the
appropriate part of the STREAM associated with fildes.

The fildes

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

ioctl() System Interfaces

I_FLUSH Flushes read and/or write queues, depending on the value of arg. Valid arg
values are:

FLUSHR Flush all read queues.

FLUSHW Flush all write queues.

FLUSHRW Flush all read and all write queues.

The ioctl() function with the I_FLUSH command shall fail if:

[EINVAL] Invalid arg value.

[EAGAIN] or [ENOSR]
Unable to allocate buffers for flush message.

[ENXIO] Hangup received on fildes.

I_FLUSHBAND Flushes a particular band of messages. The arg argument points to a bandinfo
structure. The bi_flag member may be one of FLUSHR, FLUSHW, or
FLUSHRW as described above. The bi_pri member determines the priority
band to be flushed.

I_SETSIG Requests that the STREAMS implementation send the SIGPOLL signal to the
calling process when a particular event has occurred on the STREAM
associated with fildes. I_SETSIG supports an asynchronous processing
capability in STREAMS. The value of arg is a bitmask that specifies the events
for which the process should be signaled. It is the bitwise-inclusive OR of any
combination of the following constants:

S_RDNORM A normal (priority band set to 0) message has arrived at the
head of a STREAM head read queue. A signal shall be
generated even if the message is of zero length.

S_RDBAND A message with a non-zero priority band has arrived at the
head of a STREAM head read queue. A signal shall be
generated even if the message is of zero length.

S_INPUT A message, other than a high-priority message, has arrived
at the head of a STREAM head read queue. A signal shall be
generated even if the message is of zero length.

S_HIPRI A high-priority message is present on a STREAM head read
queue. A signal shall be generated even if the message is of
zero length.

S_OUTPUT The write queue for normal data (priority band 0) just below
the STREAM head is no longer full. This notifies the process
that there is room on the queue for sending (or writing)
normal data downstream.

S_WRNORM Equivalent to S_OUTPUT.

S_WRBAND The write queue for a non-zero priority band just below the
STREAM head is no longer full. This notifies the process
that there is room on the queue for sending (or writing)
priority data downstream.

S_MSG A STREAMS signal message that contains the SIGPOLL
signal has reached the front of the STREAM head read
queue.

640 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

21117

21118

21119

21120

21121

21122

21123

21124

21125

21126

21127

21128

21129

21130

21131

21132

21133

21134

21135

21136

21137

21138

21139

21140

21141

21142

21143

21144

21145

21146

21147

21148

21149

21150

21151

21152

21153

21154

21155

21156

21157

21158

21159

21160

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces ioctl()

S_ERROR Notification of an error condition has reached the STREAM
head.

S_HANGUP Notification of a hangup has reached the STREAM head.

S_BANDURG When used in conjunction with S_RDBAND, SIGURG is
generated instead of SIGPOLL when a priority message
reaches the front of the STREAM head read queue.

If arg is 0, the calling process shall be unregistered and shall not receive further
SIGPOLL signals for the stream associated with fildes.

Processes that wish to receive SIGPOLL signals shall ensure that they
explicitly register to receive them using I_SETSIG. If several processes register
to receive this signal for the same event on the same STREAM, each process
shall be signaled when the event occurs.

The ioctl() function with the I_SETSIG command shall fail if:

[EINVAL] The value of arg is invalid.

[EINVAL] The value of arg is 0 and the calling process is not registered
to receive the SIGPOLL signal.

[EAGAIN] There were insufficient resources to store the signal request.

I_GETSIG Returns the events for which the calling process is currently registered to be
sent a SIGPOLL signal. The events are returned as a bitmask in an int pointed
to by arg, where the events are those specified in the description of I_SETSIG
above.

The ioctl() function with the I_GETSIG command shall fail if:

[EINVAL] Process is not registered to receive the SIGPOLL signal.

I_FIND Compares the names of all modules currently present in the STREAM to the
name pointed to by arg, and returns 1 if the named module is present in the
STREAM, or returns 0 if the named module is not present.

The ioctl() function with the I_FIND command shall fail if:

[EINVAL] arg does not contain a valid module name.

I_PEEK Retrieves the information in the first message on the STREAM head read
queue without taking the message off the queue. It is analogous to getmsg()
except that this command does not remove the message from the queue. The
arg argument points to a strpeek structure.

The application shall ensure that the maxlen member in the ctlbuf and databuf
strbuf structures is set to the number of bytes of control information and/or
data information, respectively, to retrieve. The flags member may be marked
RS_HIPRI or 0, as described by getmsg(). If the process sets flags to RS_HIPRI,
for example, I_PEEK shall only look for a high-priority message on the
STREAM head read queue.

I_PEEK returns 1 if a message was retrieved, and returns 0 if no message was
found on the STREAM head read queue, or if the RS_HIPRI flag was set in
flags and a high-priority message was not present on the STREAM head read
queue. It does not wait for a message to arrive. On return, ctlbuf specifies
information in the control buffer, databuf specifies information in the data
buffer, and flags contains the value RS_HIPRI or 0.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 641

21161

21162

21163

21164

21165

21166

21167

21168

21169

21170

21171

21172

21173

21174

21175

21176

21177

21178

21179

21180

21181

21182

21183

21184

21185

21186

21187

21188

21189

21190

21191

21192

21193

21194

21195

21196

21197

21198

21199

21200

21201

21202

21203

21204

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

ioctl() System Interfaces

I_SRDOPT Sets the read mode using the value of the argument arg. Read modes are
described in read(). Valid arg flags are:

RNORM Byte-stream mode, the default.

RMSGD Message-discard mode.

RMSGN Message-nondiscard mode.

The bitwise-inclusive OR of RMSGD and RMSGN shall return [EINVAL]. The
bitwise-inclusive OR of RNORM and either RMSGD or RMSGN shall result in
the other flag overriding RNORM which is the default.

In addition, treatment of control messages by the STREAM head may be
changed by setting any of the following flags in arg:

RPROTNORM Fail read() with [EBADMSG] if a message containing a
control part is at the front of the STREAM head read queue.

RPROTDAT Deliver the control part of a message as data when a process
issues a read().

RPROTDIS Discard the control part of a message, delivering any data
portion, when a process issues a read().

The ioctl() function with the I_SRDOPT command shall fail if:

[EINVAL] The arg argument is not valid.

I_GRDOPT Returns the current read mode setting, as described above, in an int pointed to
by the argument arg. Read modes are described in read().

I_NREAD Counts the number of data bytes in the data part of the first message on the
STREAM head read queue and places this value in the int pointed to by arg.
The return value for the command shall be the number of messages on the
STREAM head read queue. For example, if 0 is returned in arg, but the ioctl()
return value is greater than 0, this indicates that a zero-length message is next
on the queue.

I_FDINSERT Creates a message from specified buffer(s), adds information about another
STREAM, and sends the message downstream. The message contains a
control part and an optional data part. The data and control parts to be sent
are distinguished by placement in separate buffers, as described below. The
arg argument points to a strfdinsert structure.

The application shall ensure that the len member in the ctlbuf strbuf structure
is set to the size of a t_uscalar_t plus the number of bytes of control
information to be sent with the message. The fildes member specifies the file
descriptor of the other STREAM, and the offset member, which must be
suitably aligned for use as a t_uscalar_t, specifies the offset from the start of
the control buffer where I_FDINSERT shall store a t_uscalar_t whose
interpretation is specific to the STREAM end. The application shall ensure that
the len member in the databuf strbuf structure is set to the number of bytes of
data information to be sent with the message, or to 0 if no data part is to be
sent.

The flags member specifies the type of message to be created. A normal
message is created if flags is set to 0, and a high-priority message is created if
flags is set to RS_HIPRI. For non-priority messages, I_FDINSERT shall block if
the STREAM write queue is full due to internal flow control conditions. For
priority messages, I_FDINSERT does not block on this condition. For non-
priority messages, I_FDINSERT does not block when the write queue is full

642 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

21205

21206

21207

21208

21209

21210

21211

21212

21213

21214

21215

21216

21217

21218

21219

21220

21221

21222

21223

21224

21225

21226

21227

21228

21229

21230

21231

21232

21233

21234

21235

21236

21237

21238

21239

21240

21241

21242

21243

21244

21245

21246

21247

21248

21249

21250

21251

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces ioctl()

and O_NONBLOCK is set. Instead, it fails and sets errno to [EAGAIN].

I_FDINSERT also blocks, unless prevented by lack of internal resources,
waiting for the availability of message blocks in the STREAM, regardless of
priority or whether O_NONBLOCK has been specified. No partial message is
sent.

The ioctl() function with the I_FDINSERT command shall fail if:

[EAGAIN] A non-priority message is specified, the O_NONBLOCK
flag is set, and the STREAM write queue is full due to
internal flow control conditions.

[EAGAIN] or [ENOSR]
Buffers cannot be allocated for the message that is to be
created.

[EINVAL] One of the following:

— The fildes member of the strfdinsert structure is not a
valid, open STREAM file descriptor.

— The size of a t_uscalar_t plus offset is greater than the
len member for the buffer specified through ctlbuf.

— The offset member does not specify a properly-aligned
location in the data buffer.

— An undefined value is stored in flags.

[ENXIO] Hangup received on the STREAM identified by either the
fildes argument or the fildes member of the strfdinsert
structure.

[ERANGE] The len member for the buffer specified through databuf
does not fall within the range specified by the maximum
and minimum packet sizes of the topmost STREAM
module; or the len member for the buffer specified through
databuf is larger than the maximum configured size of the
data part of a message; or the len member for the buffer
specified through ctlbuf is larger than the maximum
configured size of the control part of a message.

I_STR Constructs an internal STREAMS ioctl() message from the data pointed to by
arg, and sends that message downstream.

This mechanism is provided to send ioctl() requests to downstream modules
and drivers. It allows information to be sent with ioctl(), and returns to the
process any information sent upstream by the downstream recipient. I_STR
shall block until the system responds with either a positive or negative
acknowledgement message, or until the request times out after some period of
time. If the request times out, it shall fail with errno set to [ETIME].

At most, one I_STR can be active on a STREAM. Further I_STR calls shall
block until the active I_STR completes at the STREAM head. The default
timeout interval for these requests is 15 seconds. The O_NONBLOCK flag has
no effect on this call.

To send requests downstream, the application shall ensure that arg points to a
strioctl structure.

The ic_cmd member is the internal ioctl() command intended for a

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 643

21252

21253

21254

21255

21256

21257

21258

21259

21260

21261

21262

21263

21264

21265

21266

21267

21268

21269

21270

21271

21272

21273

21274

21275

21276

21277

21278

21279

21280

21281

21282

21283

21284

21285

21286

21287

21288

21289

21290

21291

21292

21293

21294

21295

21296

21297

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

ioctl() System Interfaces

downstream module or driver and ic_timout is the number of seconds
(−1=infinite, 0=use implementation-defined timeout interval, >0=as specified)
an I_STR request shall wait for acknowledgement before timing out. ic_len is
the number of bytes in the data argument, and ic_dp is a pointer to the data
argument. The ic_len member has two uses: on input, it contains the length of
the data argument passed in, and on return from the command, it contains the
number of bytes being returned to the process (the buffer pointed to by ic_dp
should be large enough to contain the maximum amount of data that any
module or the driver in the STREAM can return).

The STREAM head shall convert the information pointed to by the strioctl
structure to an internal ioctl() command message and send it downstream.

The ioctl() function with the I_STR command shall fail if:

[EAGAIN] or [ENOSR]
Unable to allocate buffers for the ioctl() message.

[EINVAL] The ic_len member is less than 0 or larger than the
maximum configured size of the data part of a message, or
ic_timout is less than −1.

[ENXIO] Hangup received on fildes.

[ETIME] A downstream ioctl() timed out before acknowledgement
was received.

An I_STR can also fail while waiting for an acknowledgement if a message
indicating an error or a hangup is received at the STREAM head. In addition,
an error code can be returned in the positive or negative acknowledgement
message, in the event the ioctl() command sent downstream fails. For these
cases, I_STR shall fail with errno set to the value in the message.

I_SWROPT Sets the write mode using the value of the argument arg. Valid bit settings for
arg are:

SNDZERO Send a zero-length message downstream when a write() of 0
bytes occurs. To not send a zero-length message when a
write() of 0 bytes occurs, the application shall ensure that
this bit is not set in arg (for example, arg would be set to 0).

The ioctl() function with the I_SWROPT command shall fail if:

[EINVAL] arg is not the above value.

I_GWROPT Returns the current write mode setting, as described above, in the int that is
pointed to by the argument arg.

I_SENDFD Creates a new reference to the open file description associated with the file
descriptor arg, and writes a message on the STREAMS-based pipe fildes
containing this reference, together with the user ID and group ID of the calling
process.

The ioctl() function with the I_SENDFD command shall fail if:

[EAGAIN] The sending STREAM is unable to allocate a message block
to contain the file pointer; or the read queue of the receiving
STREAM head is full and cannot accept the message sent by
I_SENDFD.

644 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

21298

21299

21300

21301

21302

21303

21304

21305

21306

21307

21308

21309

21310

21311

21312

21313

21314

21315

21316

21317

21318

21319

21320

21321

21322

21323

21324

21325

21326

21327

21328

21329

21330

21331

21332

21333

21334

21335

21336

21337

21338

21339

21340

21341

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces ioctl()

[EBADF] The arg argument is not a valid, open file descriptor.

[EINVAL] The fildes argument is not connected to a STREAM pipe.

[ENXIO] Hangup received on fildes.

I_RECVFD Retrieves the reference to an open file description from a message written to a
STREAMS-based pipe using the I_SENDFD command, and allocates a new file
descriptor in the calling process that refers to this open file description. The
arg argument is a pointer to a strrecvfd data structure as defined in
<stropts.h>.

The fd member is a file descriptor. The uid and gid members are the effective
user ID and effective group ID, respectively, of the sending process.

If O_NONBLOCK is not set, I_RECVFD shall block until a message is present
at the STREAM head. If O_NONBLOCK is set, I_RECVFD shall fail with errno
set to [EAGAIN] if no message is present at the STREAM head.

If the message at the STREAM head is a message sent by an I_SENDFD, a new
file descriptor shall be allocated for the open file descriptor referenced in the
message. The new file descriptor is placed in the fd member of the strrecvfd
structure pointed to by arg.

The ioctl() function with the I_RECVFD command shall fail if:

[EAGAIN] A message is not present at the STREAM head read queue
and the O_NONBLOCK flag is set.

[EBADMSG] The message at the STREAM head read queue is not a
message containing a passed file descriptor.

[EMFILE] All file descriptors available to the process are currently
open.

[ENXIO] Hangup received on fildes.

I_LIST Allows the process to list all the module names on the STREAM, up to and
including the topmost driver name. If arg is a null pointer, the return value
shall be the number of modules, including the driver, that are on the STREAM
pointed to by fildes. This lets the process allocate enough space for the module
names. Otherwise, it should point to a str_list structure.

The sl_nmods member indicates the number of entries the process has
allocated in the array. Upon return, the sl_modlist member of the str_list
structure shall contain the list of module names, and the number of entries
that have been filled into the sl_modlist array is found in the sl_nmods member
(the number includes the number of modules including the driver). The return
value from ioctl() shall be 0. The entries are filled in starting at the top of the
STREAM and continuing downstream until either the end of the STREAM is
reached, or the number of requested modules (sl_nmods) is satisfied.

The ioctl() function with the I_LIST command shall fail if:

[EINVAL] The sl_nmods member is less than 1.

[EAGAIN] or [ENOSR]
Unable to allocate buffers.

I_ATMARK Allows the process to see if the message at the head of the STREAM head read
queue is marked by some module downstream. The arg argument determines
how the checking is done when there may be multiple marked messages on
the STREAM head read queue. It may take on the following values:

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 645

21342

21343

21344

21345

21346

21347

21348

21349

21350

21351

21352

21353

21354

21355

21356

21357

21358

21359

21360

21361

21362

21363

21364

21365

21366

21367

21368

21369

21370

21371

21372

21373

21374

21375

21376

21377

21378

21379

21380

21381

21382

21383

21384

21385

21386

21387

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

ioctl() System Interfaces

ANYMARK Check if the message is marked.

LASTMARK Check if the message is the last one marked on the queue.

The bitwise-inclusive OR of the flags ANYMARK and LASTMARK is
permitted.

The return value shall be 1 if the mark condition is satisfied; otherwise, the
value shall be 0.

The ioctl() function with the I_ATMARK command shall fail if:

[EINVAL] Invalid arg value.

I_CKBAND Checks if the message of a given priority band exists on the STREAM head
read queue. This shall return 1 if a message of the given priority exists, 0 if no
such message exists, or −1 on error. arg should be of type int.

The ioctl() function with the I_CKBAND command shall fail if:

[EINVAL] Invalid arg value.

I_GETBAND Returns the priority band of the first message on the STREAM head read
queue in the integer referenced by arg.

The ioctl() function with the I_GETBAND command shall fail if:

[ENODATA] No message on the STREAM head read queue.

I_CANPUT Checks if a certain band is writable. arg is set to the priority band in question.
The return value shall be 0 if the band is flow-controlled, 1 if the band is
writable, or −1 on error.

The ioctl() function with the I_CANPUT command shall fail if:

[EINVAL] Invalid arg value.

I_SETCLTIME This request allows the process to set the time the STREAM head shall delay
when a STREAM is closing and there is data on the write queues. Before
closing each module or driver, if there is data on its write queue, the STREAM
head shall delay for the specified amount of time to allow the data to drain. If,
after the delay, data is still present, it shall be flushed. The arg argument is a
pointer to an integer specifying the number of milliseconds to delay, rounded
up to the nearest valid value. If I_SETCLTIME is not performed on a STREAM,
an implementation-defined default timeout interval is used.

The ioctl() function with the I_SETCLTIME command shall fail if:

[EINVAL] Invalid arg value.

I_GETCLTIME Returns the close time delay in the integer pointed to by arg.

Multiplexed STREAMS Configurations

The following commands are used for connecting and disconnecting multiplexed STREAMS
configurations. These commands use an implementation-defined default timeout interval.

I_LINK Connects two STREAMs, where fildes is the file descriptor of the STREAM
connected to the multiplexing driver, and arg is the file descriptor of the
STREAM connected to another driver. The STREAM designated by arg is
connected below the multiplexing driver. I_LINK requires the multiplexing
driver to send an acknowledgement message to the STREAM head regarding
the connection. This call shall return a multiplexer ID number (an identifier
used to disconnect the multiplexer; see I_UNLINK) on success, and −1 on

646 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

21388

21389

21390

21391

21392

21393

21394

21395

21396

21397

21398

21399

21400

21401

21402

21403

21404

21405

21406

21407

21408

21409

21410

21411

21412

21413

21414

21415

21416

21417

21418

21419

21420

21421

21422

21423

21424

21425

21426

21427

21428

21429

21430

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces ioctl()

failure.

The ioctl() function with the I_LINK command shall fail if:

[ENXIO] Hangup received on fildes.

[ETIME] Timeout before acknowledgement message was received at
STREAM head.

[EAGAIN] or [ENOSR]
Unable to allocate STREAMS storage to perform the
I_LINK.

[EBADF] The arg argument is not a valid, open file descriptor.

[EINVAL] The fildes argument does not support multiplexing; or arg is
not a STREAM or is already connected downstream from a
multiplexer; or the specified I_LINK operation would
connect the STREAM head in more than one place in the
multiplexed STREAM.

An I_LINK can also fail while waiting for the multiplexing driver to
acknowledge the request, if a message indicating an error or a hangup is
received at the STREAM head of fildes. In addition, an error code can be
returned in the positive or negative acknowledgement message. For these
cases, I_LINK fails with errno set to the value in the message.

I_UNLINK Disconnects the two STREAMs specified by fildes and arg. fildes is the file
descriptor of the STREAM connected to the multiplexing driver. The arg
argument is the multiplexer ID number that was returned by the I_LINK
ioctl() command when a STREAM was connected downstream from the
multiplexing driver. If arg is MUXID_ALL, then all STREAMs that were
connected to fildes shall be disconnected. As in I_LINK, this command requires
acknowledgement.

The ioctl() function with the I_UNLINK command shall fail if:

[ENXIO] Hangup received on fildes.

[ETIME] Timeout before acknowledgement message was received at
STREAM head.

[EAGAIN] or [ENOSR]
Unable to allocate buffers for the acknowledgement
message.

[EINVAL] Invalid multiplexer ID number.

An I_UNLINK can also fail while waiting for the multiplexing driver to
acknowledge the request if a message indicating an error or a hangup is
received at the STREAM head of fildes. In addition, an error code can be
returned in the positive or negative acknowledgement message. For these
cases, I_UNLINK shall fail with errno set to the value in the message.

I_PLINK Creates a persistent connection between two STREAMs, where fildes is the file
descriptor of the STREAM connected to the multiplexing driver, and arg is the
file descriptor of the STREAM connected to another driver. This call shall
create a persistent connection which can exist even if the file descriptor fildes
associated with the upper STREAM to the multiplexing driver is closed. The
STREAM designated by arg gets connected via a persistent connection below
the multiplexing driver. I_PLINK requires the multiplexing driver to send an
acknowledgement message to the STREAM head. This call shall return a

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 647

21431

21432

21433

21434

21435

21436

21437

21438

21439

21440

21441

21442

21443

21444

21445

21446

21447

21448

21449

21450

21451

21452

21453

21454

21455

21456

21457

21458

21459

21460

21461

21462

21463

21464

21465

21466

21467

21468

21469

21470

21471

21472

21473

21474

21475

21476

21477

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

ioctl() System Interfaces

multiplexer ID number (an identifier that may be used to disconnect the
multiplexer; see I_PUNLINK) on success, and −1 on failure.

The ioctl() function with the I_PLINK command shall fail if:

[ENXIO] Hangup received on fildes.

[ETIME] Timeout before acknowledgement message was received at
STREAM head.

[EAGAIN] or [ENOSR]
Unable to allocate STREAMS storage to perform the
I_PLINK.

[EBADF] The arg argument is not a valid, open file descriptor.

[EINVAL] The fildes argument does not support multiplexing; or arg is
not a STREAM or is already connected downstream from a
multiplexer; or the specified I_PLINK operation would
connect the STREAM head in more than one place in the
multiplexed STREAM.

An I_PLINK can also fail while waiting for the multiplexing driver to
acknowledge the request, if a message indicating an error or a hangup is
received at the STREAM head of fildes. In addition, an error code can be
returned in the positive or negative acknowledgement message. For these
cases, I_PLINK shall fail with errno set to the value in the message.

I_PUNLINK Disconnects the two STREAMs specified by fildes and arg from a persistent
connection. The fildes argument is the file descriptor of the STREAM
connected to the multiplexing driver. The arg argument is the multiplexer ID
number that was returned by the I_PLINK ioctl() command when a STREAM
was connected downstream from the multiplexing driver. If arg is
MUXID_ALL, then all STREAMs which are persistent connections to fildes
shall be disconnected. As in I_PLINK, this command requires the multiplexing
driver to acknowledge the request.

The ioctl() function with the I_PUNLINK command shall fail if:

[ENXIO] Hangup received on fildes.

[ETIME] Timeout before acknowledgement message was received at
STREAM head.

[EAGAIN] or [ENOSR]
Unable to allocate buffers for the acknowledgement
message.

[EINVAL] Invalid multiplexer ID number.

An I_PUNLINK can also fail while waiting for the multiplexing driver to
acknowledge the request if a message indicating an error or a hangup is
received at the STREAM head of fildes. In addition, an error code can be
returned in the positive or negative acknowledgement message. For these
cases, I_PUNLINK shall fail with errno set to the value in the message.

RETURN VALUE
Upon successful completion, ioctl() shall return a value other than −1 that depends upon the
STREAMS device control function. Otherwise, it shall return −1 and set errno to indicate the
error.

648 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

21478

21479

21480

21481

21482

21483

21484

21485

21486

21487

21488

21489

21490

21491

21492

21493

21494

21495

21496

21497

21498

21499

21500

21501

21502

21503

21504

21505

21506

21507

21508

21509

21510

21511

21512

21513

21514

21515

21516

21517

21518

21519

21520

21521

21522

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces ioctl()

ERRORS
Under the following general conditions, ioctl() shall fail if:

[EBADF] The fildes argument is not a valid open file descriptor.

[EINTR] A signal was caught during the ioctl() operation.

[EINVAL] The STREAM or multiplexer referenced by fildes is linked (directly or
indirectly) downstream from a multiplexer.

If an underlying device driver detects an error, then ioctl() shall fail if:

[EINVAL] The request or arg argument is not valid for this device.

[EIO] Some physical I/O error has occurred.

[ENOTTY] The file associated with the fildes argument is not a STREAMS device that
accepts control functions.

[ENXIO] The request and arg arguments are valid for this device driver, but the service
requested cannot be performed on this particular sub-device.

[ENODEV] The fildes argument refers to a valid STREAMS device, but the corresponding
device driver does not support the ioctl() function.

If a STREAM is connected downstream from a multiplexer, any ioctl() command except
I_UNLINK and I_PUNLINK shall set errno to [EINVAL].

EXAMPLES
None.

APPLICATION USAGE
The implementation-defined timeout interval for STREAMS has historically been 15 seconds.

RATIONALE
None.

FUTURE DIRECTIONS
The ioctl() function may be removed in a future version.

SEE ALSO
Section 2.6 (on page 38), close(), fcntl(), getmsg(), open(), pipe(), poll(), putmsg(), read(),
sigaction(), write(), the Base Definitions volume of IEEE Std 1003.1-200x, <stropts.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Issue 6
The Open Group Corrigendum U028/4 is applied, correcting text in the I_FDINSERT [EINVAL]
case to refer to ctlbuf .

This function is marked as part of the XSI STREAMS Option Group.

The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

Issue 7
SD5-XSH-ERN-100 is applied, correcting the definition of the [ENOTTY] error condition.

The ioctl() function is marked obsolescent.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 649

21523

21524

21525

21526

21527

21528

21529

21530

21531

21532

21533

21534

21535

21536

21537

21538

21539

21540

21541

21542

21543

21544

21545

21546

21547

21548

21549

21550

21551

21552

21553

21554

21555

21556

21557

21558

21559

21560

21561

21562

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

isalnum() System Interfaces

NAME
isalnum, isalnum_l — test for an alphanumeric character

SYNOPSIS
#include <ctype.h>

int isalnum(int c);
CX int isalnum_l(int c, l ocale_t locale);

DESCRIPTION
CX For isalnum(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of IEEE Std 1003.1-200x defers to the ISO C standard.

CX The isalnum() and isalnum_l() functions shall test whether c is a character of class alpha or
CX digit in the current locale of the process, or in the locale represented by locale, respectively; see

the Base Definitions volume of IEEE Std 1003.1-200x, Chapter 7, Locale.

The c argument is an int, the value of which the application shall ensure is representable as an
unsigned char or equal to the value of the macro EOF. If the argument has any other value, the
behavior is undefined.

RETURN VALUE
CX The isalnum() and isalnum_l() functions shall return non-zero if c is an alphanumeric character;

otherwise, they shall return 0.

ERRORS
The isalnum_l() function may fail if:

CX [EINVAL] locale is not a valid locale object handle.

EXAMPLES
None.

APPLICATION USAGE
To ensure applications portability, especially across natural languages, only these functions and
the functions in the reference pages listed in the SEE ALSO section should be used for character
classification.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
isalpha(), isblank(), iscntrl(), isdigit(), isgraph(), islower(), isprint(), ispunct(), isspace(), isupper(),
isxdigit(), setlocale(), uselocale(), the Base Definitions volume of IEEE Std 1003.1-200x, Chapter 7,
Locale, <ctype.h>, <stdio.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

650 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

21563

21564

21565

21566

21567

21568

21569

21570

21571

21572

21573

21574

21575

21576

21577

21578

21579

21580

21581

21582

21583

21584

21585

21586

21587

21588

21589

21590

21591

21592

21593

21594

21595

21596

21597

21598

21599

21600

21601

21602

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces isalnum()

Issue 7
The isalnum_l() function is added from The Open Group Technical Standard, 2006, Extended
API Set Part 4.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 651

21603

21604

21605

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

isalpha() System Interfaces

NAME
isalpha, isalpha_l — test for an alphabetic character

SYNOPSIS
#include <ctype.h>

int isalpha(int c);
CX int isalpha_l(int c, l ocale_t locale);

DESCRIPTION
CX For isalpha(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of IEEE Std 1003.1-200x defers to the ISO C standard.

CX The isalpha() and isalpha_l() functions shall test whether c is a character of class alpha in the
CX current locale of the process, or in the locale represented by locale, respectively; see the Base

Definitions volume of IEEE Std 1003.1-200x, Chapter 7, Locale.

The c argument is an int, the value of which the application shall ensure is representable as an
unsigned char or equal to the value of the macro EOF. If the argument has any other value, the
behavior is undefined.

RETURN VALUE
CX The isalpha() and isalpha_l() functions shall return non-zero if c is an alphabetic character;

otherwise, they shall return 0.

ERRORS
The isalpha_l() function may fail if:

CX [EINVAL] locale is not a valid locale object handle.

EXAMPLES
None.

APPLICATION USAGE
To ensure applications portability, especially across natural languages, only these functions and
the functions in the reference pages listed in the SEE ALSO section should be used for character
classification.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
isalnum(), isblank(), iscntrl(), isdigit(), isgraph(), islower(), isprint(), ispunct(), isspace(), isupper(),
isxdigit(), setlocale(), uselocale(), the Base Definitions volume of IEEE Std 1003.1-200x, Chapter 7,
Locale, <ctype.h>, <locale.h>, <stdio.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

652 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

21606

21607

21608

21609

21610

21611

21612

21613

21614

21615

21616

21617

21618

21619

21620

21621

21622

21623

21624

21625

21626

21627

21628

21629

21630

21631

21632

21633

21634

21635

21636

21637

21638

21639

21640

21641

21642

21643

21644

21645

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces isalpha()

Issue 7
The isalpha_l() function is added from The Open Group Technical Standard, 2006, Extended API
Set Part 4.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 653

21646

21647

21648

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

isascii() System Interfaces

NAME
isascii — test for a 7-bit US-ASCII character

SYNOPSIS
OB XSI #include <ctype.h>

int isascii(int c);

DESCRIPTION
The isascii() function shall test whether c is a 7-bit US-ASCII character code.

The isascii() function is defined on all integer values.

RETURN VALUE
The isascii() function shall return non-zero if c is a 7-bit US-ASCII character code between 0 and
octal 0177 inclusive; otherwise, it shall return 0.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
The isascii() function cannot be used portably in a localized application.

RATIONALE
None.

FUTURE DIRECTIONS
The isascii() function may be removed in a future version.

SEE ALSO
The Base Definitions volume of IEEE Std 1003.1-200x, <ctype.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7
The isascii() function is marked obsolescent.

654 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

21649

21650

21651

21652

21653

21654

21655

21656

21657

21658

21659

21660

21661

21662

21663

21664

21665

21666

21667

21668

21669

21670

21671

21672

21673

21674

21675

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces isastream()

NAME
isastream — test a file descriptor (STREAMS)

SYNOPSIS
OB XSR #include <stropts.h>

int isastream(int fildes);

DESCRIPTION
The isastream() function shall test whether fildes, an open file descriptor, is associated with a
STREAMS-based file.

RETURN VALUE
Upon successful completion, isastream() shall return 1 if fildes refers to a STREAMS-based file
and 0 if not. Otherwise, isastream() shall return −1 and set errno to indicate the error.

ERRORS
The isastream() function shall fail if:

[EBADF] The fildes argument is not a valid open file descriptor.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
The isastream() function may be removed in a future version.

SEE ALSO
The Base Definitions volume of IEEE Std 1003.1-200x, <stropts.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Issue 7
The isastream() function is marked obsolescent.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 655

21676

21677

21678

21679

21680

21681

21682

21683

21684

21685

21686

21687

21688

21689

21690

21691

21692

21693

21694

21695

21696

21697

21698

21699

21700

21701

21702

21703

21704

21705

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

isatty() System Interfaces

NAME
isatty — test for a terminal device

SYNOPSIS
#include <unistd.h>

int isatty(int fildes);

DESCRIPTION
The isatty() function shall test whether fildes, an open file descriptor, is associated with a
terminal device.

RETURN VALUE
The isatty() function shall return 1 if fildes is associated with a terminal; otherwise, it shall return
0 and may set errno to indicate the error.

ERRORS
The isatty() function may fail if:

[EBADF] The fildes argument is not a valid open file descriptor.

[ENOTTY] The file associated with the fildes argument is not a terminal.

EXAMPLES
None.

APPLICATION USAGE
The isatty() function does not necessarily indicate that a human being is available for interaction
via fildes. It is quite possible that non-terminal devices are connected to the communications
line.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
The Base Definitions volume of IEEE Std 1003.1-200x, <unistd.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The optional setting of errno to indicate an error is added.

• The [EBADF] and [ENOTTY] optional error conditions are added.

Issue 7
SD5-XSH-ERN-100 is applied, correcting the definition of the [ENOTTY] error condition.

656 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

21706

21707

21708

21709

21710

21711

21712

21713

21714

21715

21716

21717

21718

21719

21720

21721

21722

21723

21724

21725

21726

21727

21728

21729

21730

21731

21732

21733

21734

21735

21736

21737

21738

21739

21740

21741

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces isblank()

NAME
isblank, isblank_l — test for a blank character

SYNOPSIS
#include <ctype.h>

int isblank(int c);
CX int isblank_l(int c, l ocale_t locale);

DESCRIPTION
CX For isblank(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of IEEE Std 1003.1-200x defers to the ISO C standard.

CX The isblank() and isblank_l() functions shall test whether c is a character of class blank in the
CX current locale of the process, or in the locale respresented by locale, respectively; see the Base

Definitions volume of IEEE Std 1003.1-200x, Chapter 7, Locale.

The c argument is a type int, the value of which the application shall ensure is a character
representable as an unsigned char or equal to the value of the macro EOF. If the argument has
any other value, the behavior is undefined.

RETURN VALUE
CX The isblank() and isblank_l() functions shall return non-zero if c is a <blank>; otherwise, they

shall return 0.

ERRORS
The isblank_l() function may fail if:

CX [EINVAL] locale is not a valid locale object handle.

EXAMPLES
None.

APPLICATION USAGE
To ensure applications portability, especially across natural languages, only these functions and
the functions in the reference pages listed in the SEE ALSO section should be used for character
classification.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
isalnum(), isalpha(), iscntrl(), isdigit(), isgraph(), islower(), isprint(), ispunct(), isspace(), isupper(),
isxdigit(), setlocale(), uselocale(), the Base Definitions volume of IEEE Std 1003.1-200x, Chapter 7,
Locale, <ctype.h>, <locale.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7
The isblank_l() function is added from The Open Group Technical Standard, 2006, Extended API
Set Part 4.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 657

21742

21743

21744

21745

21746

21747

21748

21749

21750

21751

21752

21753

21754

21755

21756

21757

21758

21759

21760

21761

21762

21763

21764

21765

21766

21767

21768

21769

21770

21771

21772

21773

21774

21775

21776

21777

21778

21779

21780

21781

21782

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

iscntrl() System Interfaces

NAME
iscntrl, iscntrl_l — test for a control character

SYNOPSIS
#include <ctype.h>

int iscntrl(int c);
CX int iscntrl_l(int c, l ocale_t locale);

DESCRIPTION
CX For iscntrl(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of IEEE Std 1003.1-200x defers to the ISO C standard.

CX The iscntrl() and iscntrl_l() functions shall test whether c is a character of class cntrl in the
CX current locale of the process, or in the locale represented by locale, respectively; see the Base

Definitions volume of IEEE Std 1003.1-200x, Chapter 7, Locale.

The c argument is a type int, the value of which the application shall ensure is a character
representable as an unsigned char or equal to the value of the macro EOF. If the argument has
any other value, the behavior is undefined.

RETURN VALUE
CX The iscntrl() and iscntrl_l() functions shall return non-zero if c is a control character; otherwise,

they shall return 0.

ERRORS
The iscntrl_l() function may fail if:

CX [EINVAL] locale is not a valid locale object handle.

EXAMPLES
None.

APPLICATION USAGE
To ensure applications portability, especially across natural languages, only these functions and
the functions in the reference pages listed in the SEE ALSO section should be used for character
classification.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
isalnum(), isalpha(), isblank(), isdigit(), isgraph(), islower(), isprint(), ispunct(), isspace(),
isupper(), isxdigit(), setlocale(), uselocale(), the Base Definitions volume of IEEE Std 1003.1-200x,
Chapter 7, Locale, <ctype.h>, <locale.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

658 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

21783

21784

21785

21786

21787

21788

21789

21790

21791

21792

21793

21794

21795

21796

21797

21798

21799

21800

21801

21802

21803

21804

21805

21806

21807

21808

21809

21810

21811

21812

21813

21814

21815

21816

21817

21818

21819

21820

21821

21822

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces iscntrl()

Issue 7
The iscntrl_l() function is added from The Open Group Technical Standard, 2006, Extended API
Set Part 4.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 659

21823

21824

21825

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

isdigit() System Interfaces

NAME
isdigit, isdigit_l — test for a decimal digit

SYNOPSIS
#include <ctype.h>

int isdigit(int c);
CX int isdigit_l(int c, l ocale_t locale);

DESCRIPTION
CX For isdigit(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of IEEE Std 1003.1-200x defers to the ISO C standard.

CX The isdigit() and isdigit_l() functions shall test whether c is a character of class digit in the
CX current locale of the process, or in the locale represented by locale, respectively; see the Base

Definitions volume of IEEE Std 1003.1-200x, Chapter 7, Locale.

The c argument is an int, the value of which the application shall ensure is a character
representable as an unsigned char or equal to the value of the macro EOF. If the argument has
any other value, the behavior is undefined.

RETURN VALUE
CX The isdigit() and isdigit_l() functions shall return non-zero if c is a decimal digit; otherwise,

they shall return 0.

ERRORS
The isdigit_l() function may fail if:

CX [EINVAL] locale is not a valid locale object handle.

EXAMPLES
None.

APPLICATION USAGE
To ensure applications portability, especially across natural languages, only these functions and
the functions in the reference pages listed in the SEE ALSO section should be used for character
classification.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
isalnum(), isalpha(), isblank(), iscntrl(), isgraph(), islower(), isprint(), ispunct(), isspace(),
isupper(), isxdigit(), the Base Definitions volume of IEEE Std 1003.1-200x, Chapter 7, Locale,
<ctype.h>, <locale.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

660 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

21826

21827

21828

21829

21830

21831

21832

21833

21834

21835

21836

21837

21838

21839

21840

21841

21842

21843

21844

21845

21846

21847

21848

21849

21850

21851

21852

21853

21854

21855

21856

21857

21858

21859

21860

21861

21862

21863

21864

21865

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces isdigit()

Issue 7
The isdigit_l() function is added from The Open Group Technical Standard, 2006, Extended API
Set Part 4.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 661

21866

21867

21868

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

isfinite() System Interfaces

NAME
isfinite — test for finite value

SYNOPSIS
#include <math.h>

int isfinite(real-floating x);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

The isfinite() macro shall determine whether its argument has a finite value (zero, subnormal, or
normal, and not infinite or NaN). First, an argument represented in a format wider than its
semantic type is converted to its semantic type. Then determination is based on the type of the
argument.

RETURN VALUE
The isfinite() macro shall return a non-zero value if and only if its argument has a finite value.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fpclassify(), isinf(), isnan(), isnormal(), signbit(), the Base Definitions volume of
IEEE Std 1003.1-200x <math.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

662 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

21869

21870

21871

21872

21873

21874

21875

21876

21877

21878

21879

21880

21881

21882

21883

21884

21885

21886

21887

21888

21889

21890

21891

21892

21893

21894

21895

21896

21897

21898

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces isgraph()

NAME
isgraph, isgraph_l — test for a visible character

SYNOPSIS
#include <ctype.h>

int isgraph(int c);
CX int isgraph_l(int c, l ocale_t locale);

DESCRIPTION
CX For isgraph(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of IEEE Std 1003.1-200x defers to the ISO C standard.

CX The isgraph() and isgraph_l() functions shall test whether c is a character of class graph in the
CX current locale of the process, or in the locale represented by locale, respectively; see the Base

Definitions volume of IEEE Std 1003.1-200x, Chapter 7, Locale.

The c argument is an int, the value of which the application shall ensure is a character
representable as an unsigned char or equal to the value of the macro EOF. If the argument has
any other value, the behavior is undefined.

RETURN VALUE
CX The isgraph() and isgraph_l() functions shall return non-zero if c is a character with a visible

representation; otherwise, they shall return 0.

ERRORS
The isgraph_l() function may fail if:

CX [EINVAL] locale is not a valid locale object handle.

EXAMPLES
None.

APPLICATION USAGE
To ensure applications portability, especially across natural languages, only these functions and
the functions in the reference pages listed in the SEE ALSO section should be used for character
classification.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
isalnum(), isalpha(), isblank(), iscntrl(), isdigit(), islower(), isprint(), ispunct(), isspace(), isupper(),
isxdigit(), setlocale(), uselocale(), the Base Definitions volume of IEEE Std 1003.1-200x, Chapter 7,
Locale, <ctype.h>, <locale.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 663

21899

21900

21901

21902

21903

21904

21905

21906

21907

21908

21909

21910

21911

21912

21913

21914

21915

21916

21917

21918

21919

21920

21921

21922

21923

21924

21925

21926

21927

21928

21929

21930

21931

21932

21933

21934

21935

21936

21937

21938

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces isgreater()

NAME
isgreater — test if x greater than y

SYNOPSIS
#include <math.h>

int isgreater(real-floating x, r eal-floating y);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

The isgreater() macro shall determine whether its first argument is greater than its second
argument. The value of isgreater(x, y) shall be equal to (x) > (y); however, unlike (x) > (y),
isgreater(x, y) shall not raise the invalid floating-point exception when x and y are unordered.

RETURN VALUE
Upon successful completion, the isgreater() macro shall return the value of (x) > (y).

If x or y is NaN, 0 shall be returned.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
The relational and equality operators support the usual mathematical relationships between
numeric values. For any ordered pair of numeric values, exactly one of the relationships (less,
greater, and equal) is true. Relational operators may raise the invalid floating-point exception
when argument values are NaNs. For a NaN and a numeric value, or for two NaNs, just the
unordered relationship is true. This macro is a quiet (non-floating-point exception raising)
version of a relational operator. It facilitates writing efficient code that accounts for NaNs
without suffering the invalid floating-point exception. In the SYNOPSIS section, real-floating
indicates that the argument shall be an expression of real-floating type.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
isgreaterequal(), isless(), islessequal(), islessgreater(), isunordered(), the Base Definitions volume of
IEEE Std 1003.1-200x <math.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 665

21942

21943

21944

21945

21946

21947

21948

21949

21950

21951

21952

21953

21954

21955

21956

21957

21958

21959

21960

21961

21962

21963

21964

21965

21966

21967

21968

21969

21970

21971

21972

21973

21974

21975

21976

21977

21978

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

isgreaterequal() System Interfaces

NAME
isgreaterequal — test if x is greater than or equal to y

SYNOPSIS
#include <math.h>

int isgreaterequal(real-floating x, r eal-floating y);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

The isgreaterequal() macro shall determine whether its first argument is greater than or equal to
its second argument. The value of isgreaterequal(x, y) shall be equal to (x) >= (y); however, unlike
(x) >= (y), isgreaterequal(x, y) shall not raise the invalid floating-point exception when x and y are
unordered.

RETURN VALUE
Upon successful completion, the isgreaterequal() macro shall return the value of (x) >= (y).

If x or y is NaN, 0 shall be returned.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
The relational and equality operators support the usual mathematical relationships between
numeric values. For any ordered pair of numeric values, exactly one of the relationships (less,
greater, and equal) is true. Relational operators may raise the invalid floating-point exception
when argument values are NaNs. For a NaN and a numeric value, or for two NaNs, just the
unordered relationship is true. This macro is a quiet (non-floating-point exception raising)
version of a relational operator. It facilitates writing efficient code that accounts for NaNs
without suffering the invalid floating-point exception. In the SYNOPSIS section, real-floating
indicates that the argument shall be an expression of real-floating type.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
isgreater(), isless(), islessequal(), islessgreater(), isunordered(), the Base Definitions volume of
IEEE Std 1003.1-200x <math.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

666 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

21979

21980

21981

21982

21983

21984

21985

21986

21987

21988

21989

21990

21991

21992

21993

21994

21995

21996

21997

21998

21999

22000

22001

22002

22003

22004

22005

22006

22007

22008

22009

22010

22011

22012

22013

22014

22015

22016

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces isinf()

NAME
isinf — test for infinity

SYNOPSIS
#include <math.h>

int isinf(real-floating x);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

The isinf() macro shall determine whether its argument value is an infinity (positive or
negative). First, an argument represented in a format wider than its semantic type is converted
to its semantic type. Then determination is based on the type of the argument.

RETURN VALUE
The isinf() macro shall return a non-zero value if and only if its argument has an infinite value.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fpclassify(), isfinite(), isnan(), isnormal(), signbit(), the Base Definitions volume of
IEEE Std 1003.1-200x <math.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 667

22017

22018

22019

22020

22021

22022

22023

22024

22025

22026

22027

22028

22029

22030

22031

22032

22033

22034

22035

22036

22037

22038

22039

22040

22041

22042

22043

22044

22045

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

isless() System Interfaces

NAME
isless — test if x is less than y

SYNOPSIS
#include <math.h>

int isless(real-floating x, r eal-floating y);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

The isless() macro shall determine whether its first argument is less than its second argument.
The value of isless(x, y) shall be equal to (x) < (y); however, unlike (x) < (y), isless(x, y) shall not
raise the invalid floating-point exception when x and y are unordered.

RETURN VALUE
Upon successful completion, the isless() macro shall return the value of (x) < (y).

If x or y is NaN, 0 shall be returned.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
The relational and equality operators support the usual mathematical relationships between
numeric values. For any ordered pair of numeric values, exactly one of the relationships (less,
greater, and equal) is true. Relational operators may raise the invalid floating-point exception
when argument values are NaNs. For a NaN and a numeric value, or for two NaNs, just the
unordered relationship is true. This macro is a quiet (non-floating-point exception raising)
version of a relational operator. It facilitates writing efficient code that accounts for NaNs
without suffering the invalid floating-point exception. In the SYNOPSIS section, real-floating
indicates that the argument shall be an expression of real-floating type.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
isgreater(), isgreaterequal(), islessequal(), islessgreater(), isunordered(), the Base Definitions volume
of IEEE Std 1003.1-200x, <math.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

668 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

22046

22047

22048

22049

22050

22051

22052

22053

22054

22055

22056

22057

22058

22059

22060

22061

22062

22063

22064

22065

22066

22067

22068

22069

22070

22071

22072

22073

22074

22075

22076

22077

22078

22079

22080

22081

22082

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces islessequal()

NAME
islessequal — test if x is less than or equal to y

SYNOPSIS
#include <math.h>

int islessequal(real-floating x, r eal-floating y);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

The islessequal() macro shall determine whether its first argument is less than or equal to its
second argument. The value of islessequal(x, y) shall be equal to (x) <= (y); however, unlike
(x) <= (y), islessequal(x, y) shall not raise the invalid floating-point exception when x and y are
unordered.

RETURN VALUE
Upon successful completion, the islessequal() macro shall return the value of (x) <= (y).

If x or y is NaN, 0 shall be returned.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

islessgreater() System Interfaces

NAME
islessgreater — test if x is less than or greater than y

SYNOPSIS
#include <math.h>

int islessgreater(real-floating x, r eal-floating y);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

The islessgreater() macro shall determine whether its first argument is less than or greater than
its second argument. The islessgreater(x, y) macro is similar to (x) < (y) || (x) > (y); however,
islessgreater(x, y) shall not raise the invalid floating-point exception when x and y are unordered
(nor shall it evaluate x and y twice).

RETURN VALUE
Upon successful completion, the islessgreater() macro shall return the value of
(x) < (y) || (x) > (y).

If x or y is NaN, 0 shall be returned.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
The relational and equality operators support the usual mathematical relationships between
numeric values. For any ordered pair of numeric values, exactly one of the relationships (less,
greater, and equal) is true. Relational operators may raise the invalid floating-point exception
when argument values are NaNs. For a NaN and a numeric value, or for two NaNs, just the
unordered relationship is true. This macro is a quiet (non-floating-point exception raising)
version of a relational operator. It facilitates writing efficient code that accounts for NaNs
without suffering the invalid floating-point exception. In the SYNOPSIS section, real-floating
indicates that the argument shall be an expression of real-floating type.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
isgreater(), isgreaterequal(), isless(), islessequal(), isunordered(), the Base Definitions volume of
IEEE Std 1003.1-200x <math.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

670 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

22121

22122

22123

22124

22125

22126

22127

22128

22129

22130

22131

22132

22133

22134

22135

22136

22137

22138

22139

22140

22141

22142

22143

22144

22145

22146

22147

22148

22149

22150

22151

22152

22153

22154

22155

22156

22157

22158

22159

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces islower()

NAME
islower, islower_l — test for a lowercase letter

SYNOPSIS
#include <ctype.h>

int islower(int c);
CX int islower_l(int c, l ocale_t locale);

DESCRIPTION
CX For islower(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of IEEE Std 1003.1-200x defers to the ISO C standard.

CX The islower() and islower_l() functions shall test whether c is a character of class lower in the
CX current locale of the process, or in the locale represented by locale, respectively; see the Base

Definitions volume of IEEE Std 1003.1-200x, Chapter 7, Locale.

The c argument is an int

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

islower() System Interfaces

keystr[len++] = c;
}

...

/* Example 2 -- using islower_l() */
#include <ctype.h>
#include <stdlib.h>
#include <locale.h>
...
char *keystr;
int elementlen, len;
char c;
...
locale_t loc = newlocale (LC_ALL_MASK, "", (locale_t) 0);
...
len = 0;
while (len < elementlen) {

c = (char) (rand() % 256);
...

if (islower_l(c, loc))
keystr[len++] = c;

}
...

APPLICATION USAGE
To ensure applications portability, especially across natural languages, only these functions and
the functions in the reference pages listed in the SEE ALSO section should be used for character
classification.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
isalnum(), isalpha(), isblank(), iscntrl(), isdigit(), isgraph(), isprint(), ispunct(), isspace(), isupper(),
isxdigit(), setlocale(), uselocale(), the Base Definitions volume of IEEE Std 1003.1-200x, Chapter 7,
Locale, <ctype.h>, <locale.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

An example is added.

Issue 7
The islower_l() function is added from The Open Group Technical Standard, 2006, Extended API
Set Part 4.

672 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

22204

22205

22206

22207

22208

22209

22210

22211

22212

22213

22214

22215

22216

22217

22218

22219

22220

22221

22222

22223

22224

22225

22226

22227

22228

22229

22230

22231

22232

22233

22234

22235

22236

22237

22238

22239

22240

22241

22242

22243

22244

22245

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces isnan()

NAME
isnan — test for a NaN

SYNOPSIS
#include <math.h>

int isnan(real-floating x);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

The isnan() macro shall determine whether its argument value is a NaN. First, an argument
represented in a format wider than its semantic type is converted to its semantic type. Then
determination is based on the type of the argument.

RETURN VALUE
The isnan() macro shall return a non-zero value if and only if its argument has a NaN value.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fpclassify(), isfinite(), isinf(), isnormal(), signbit(), the Base Definitions volume of
IEEE Std 1003.1-200x, <math.h>

CHANGE HISTORY
First released in Issue 3.

Issue 5
The DESCRIPTION is updated to indicate the return value when NaN is not supported. This
text was previously published in the APPLICATION USAGE section.

Issue 6
Re-written for alignment with the ISO/IEC 9899: 1999 standard.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 673

22246

22247

22248

22249

22250

22251

22252

22253

22254

22255

22256

22257

22258

22259

22260

22261

22262

22263

22264

22265

22266

22267

22268

22269

22270

22271

22272

22273

22274

22275

22276

22277

22278

22279

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces isprint()

NAME
isprint, isprint_l — test for a printable character

SYNOPSIS
#include <ctype.h>

int isprint(int c);
CX int isprint_l(int c, l ocale_t locale);

DESCRIPTION
CX For isprint(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of IEEE Std 1003.1-200x defers to the ISO C standard.

CX The isprint() and isprint_l() functions shall test whether c is a character of class print in the
CX current locale of the process, or in the locale represented by locale, respectively; see the Base

Definitions volume of IEEE Std 1003.1-200x, Chapter 7, Locale.

The c argument is an int, the value of which the application shall ensure is a character
representable as an unsigned char or equal to the value of the macro EOF. If the argument has
any other value, the behavior is undefined.

RETURN VALUE
CX The isprint() and isprint_l() functions shall return non-zero if c is a printable character;

otherwise, they shall return 0.

ERRORS
The isprint_l() function may fail if:

CX [EINVAL] locale is not a valid locale object handle.

EXAMPLES
None.

APPLICATION USAGE
To ensure applications portability, especially across natural languages, only these functions and
the functions in the reference pages listed in the SEE ALSO section should be used for character
classification.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
isalnum(), isalpha(), isblank(), iscntrl(), isdigit(), isgraph(), islower(), ispunct(), isspace(), isupper(),
isxdigit(), setlocale(), uselocale(), the Base Definitions volume of IEEE Std 1003.1-200x, Chapter 7,
Locale, <ctype.h>, <locale.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 675

22311

22312

22313

22314

22315

22316

22317

22318

22319

22320

22321

22322

22323

22324

22325

22326

22327

22328

22329

22330

22331

22332

22333

22334

22335

22336

22337

22338

22339

22340

22341

22342

22343

22344

22345

22346

22347

22348

22349

22350

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

isprint() System Interfaces

Issue 7
The isprint_l() function is added from The Open Group Technical Standard, 2006, Extended API
Set Part 4.

676 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

22351

22352

22353

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces ispunct()

NAME
ispunct, ispunct_l — test for a punctuation character

SYNOPSIS
#include <ctype.h>

int ispunct(int c);
CX int ispunct_l(int c, l ocale_t locale);

DESCRIPTION
CX For ispunct(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of IEEE Std 1003.1-200x defers to the ISO C standard.

CX The ispunct() and ispunct_l() functions shall test whether c is a character of class punct in the
CX current locale of the process, or in the locale represented by locale, respectively; see the Base

Definitions volume of IEEE Std 1003.1-200x, Chapter 7, Locale.

The c argument is an int, the value of which the application shall ensure is a character
representable as an unsigned char or equal to the value of the macro EOF. If the argument has
any other value, the behavior is undefined.

RETURN VALUE
CX The ispunct() and ispunct_l() functions shall return non-zero if c is a punctuation character;

otherwise, they shall return 0.

ERRORS
The ispunct_l() function may fail if:

CX [EINVAL] locale is not a valid locale object handle.

EXAMPLES
None.

APPLICATION USAGE
To ensure applications portability, especially across natural languages, only these functions and
the functions in the reference pages listed in the SEE ALSO section should be used for character
classification.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
isalnum(), isalpha(), isblank(), iscntrl(), isdigit(), isgraph(), islower(), isprint(), isspace(), isupper(),
isxdigit(), setlocale(), uselocale(), the Base Definitions volume of IEEE Std 1003.1-200x, Chapter 7,
Locale, <ctype.h>, <locale.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 677

22354

22355

22356

22357

22358

22359

22360

22361

22362

22363

22364

22365

22366

22367

22368

22369

22370

22371

22372

22373

22374

22375

22376

22377

22378

22379

22380

22381

22382

22383

22384

22385

22386

22387

22388

22389

22390

22391

22392

22393

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

ispunct() System Interfaces

Issue 7
The ispunct_l() function is added from The Open Group Technical Standard, 2006, Extended API
Set Part 4.

678 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

22394

22395

22396

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces isspace()

NAME
isspace, isspace_l — test for a white-space character

SYNOPSIS
#include <ctype.h>

int isspace(int c);
CX int isspace_l(int c, l ocale_t locale);

DESCRIPTION
CX For isspace(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of IEEE Std 1003.1-200x defers to the ISO C standard.

CX The isspace() and isspace_l() functions shall test whether c is a character of class space in the
CX current locale of the process, or in the locale represented by locale, respectively; see the Base

Definitions volume of IEEE Std 1003.1-200x, Chapter 7, Locale.

The c argument is an int, the value of which the application shall ensure is a character
representable as an unsigned char or equal to the value of the macro EOF. If the argument has
any other value, the behavior is undefined.

RETURN VALUE
CX The isspace() and isspace_l() functions shall return non-zero if c is a white-space character;

otherwise, they shall return 0.

ERRORS
The isspace_l() function may fail if:

CX [EINVAL] locale is not a valid locale object handle.

EXAMPLES
None.

APPLICATION USAGE
To ensure applications portability, especially across natural languages, only these functions and
the functions in the reference pages listed in the SEE ALSO section should be used for character
classification.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
isalnum(), isalpha(), iscntrl(), isdigit(), isgraph(), islower(), isprint(), ispunct(), isupper(),
isxdigit(), setlocale(), uselocale(), the Base Definitions volume of IEEE Std 1003.1-200x, Chapter 7,
Locale, <ctype.h>, <locale.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 679

22397

22398

22399

22400

22401

22402

22403

22404

22405

22406

22407

22408

22409

22410

22411

22412

22413

22414

22415

22416

22417

22418

22419

22420

22421

22422

22423

22424

22425

22426

22427

22428

22429

22430

22431

22432

22433

22434

22435

22436

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

isspace() System Interfaces

Issue 7
The isspace_l() function is added from The Open Group Technical Standard, 2006, Extended API
Set Part 4.

680 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

22437

22438

22439

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces isunordered()

NAME
isunordered — test if arguments are unordered

SYNOPSIS
#include <math.h>

int isunordered(real-floating x, r eal-floating y);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

The isunordered() macro shall determine whether its arguments are unordered.

RETURN VALUE
Upon successful completion, the isunordered() macro shall return 1 if its arguments are
unordered, and 0 otherwise.

If x or y is NaN, 1 shall be returned.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
The relational and equality operators support the usual mathematical relationships between
numeric values. For any ordered pair of numeric values, exactly one of the relationships (less,
greater, and equal) is true. Relational operators may raise the invalid floating-point exception
when argument values are NaNs. For a NaN and a numeric value, or for two NaNs, just the
unordered relationship is true. This macro is a quiet (non-floating-point exception raising)
version of a relational operator. It facilitates writing efficient code that accounts for NaNs
without suffering the invalid floating-point exception. In the SYNOPSIS section, real-floating
indicates that the argument shall be an expression of real-floating type.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
isgreater(), isgreaterequal(), isless(), islessequal(), islessgreater(), the Base Definitions volume of
IEEE Std 1003.1-200x, <math.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/50 is applied, correcting the RETURN
VALUE section when x or y is NaN.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 681

22440

22441

22442

22443

22444

22445

22446

22447

22448

22449

22450

22451

22452

22453

22454

22455

22456

22457

22458

22459

22460

22461

22462

22463

22464

22465

22466

22467

22468

22469

22470

22471

22472

22473

22474

22475

22476

22477

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

isupper() System Interfaces

NAME
isupper, isupper_l — test for an uppercase letter

SYNOPSIS
#include <ctype.h>

int isupper(int c);
CX int isupper_l(int c, l ocale_t locale);

DESCRIPTION
CX For isupper(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of IEEE Std 1003.1-200x defers to the ISO C standard.

CX The isupper() and isupper_l() functions shall test whether c is a character of class upper in the
CX current locale of the process, or in the locale represented by locale, respectively; see the Base

Definitions volume of IEEE Std 1003.1-200x, Chapter 7, Locale.

The c argument is an int, the value of which the application shall ensure is a character
representable as an unsigned char or equal to the value of the macro EOF. If the argument has
any other value, the behavior is undefined.

RETURN VALUE
CX The isupper() and isupper_l() functions shall return non-zero if c is an uppercase letter;

otherwise, they shall return 0.

ERRORS
The isupper_l() function may fail if:

CX [EINVAL] locale is not a valid locale object handle.

EXAMPLES
None.

APPLICATION USAGE
To ensure applications portability, especially across natural languages, only these functions and
the functions in the reference pages listed in the SEE ALSO section should be used for character
classification.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
isalnum(), isalpha(), isblank(), iscntrl(), isdigit(), isgraph(), islower(), isprint(), ispunct(), isspace(),
isxdigit(), setlocale(), uselocale(), the Base Definitions volume of IEEE Std 1003.1-200x, Chapter 7,
Locale, <ctype.h>, <locale.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

682 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

22478

22479

22480

22481

22482

22483

22484

22485

22486

22487

22488

22489

22490

22491

22492

22493

22494

22495

22496

22497

22498

22499

22500

22501

22502

22503

22504

22505

22506

22507

22508

22509

22510

22511

22512

22513

22514

22515

22516

22517

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces isupper()

Issue 7
The isupper_l() function is added from The Open Group Technical Standard, 2006, Extended API
Set Part 4.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 683

22518

22519

22520

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

iswalnum() System Interfaces

NAME
iswalnum, iswalnum_l — test for an alphanumeric wide-character code

SYNOPSIS
#include <wctype.h>

int iswalnum(wint_t wc);
CX int iswalnum_l(wint_t wc, l ocale_t locale);

DESCRIPTION
CX For iswalnum(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of IEEE Std 1003.1-200x defers to the ISO C standard.

CX The iswalnum() and iswalnum_l() functions shall test whether wc is a wide-character code
CX representing a character of class alpha or digit in the current locale of the process, or in the

locale represented by locale, respectively; see the Base Definitions volume of
IEEE Std 1003.1-200x, Chapter 7, Locale.

The wc argument is a wint_t, the value of which the application shall ensure is a wide-character
code corresponding to a valid character in the current locale, or equal to the value of the macro
WEOF. If the argument has any other value, the behavior is undefined.

RETURN VALUE
CX The iswalnum() and iswalnum_l() functions shall return non-zero if wc is an alphanumeric

wide-character code; otherwise, they shall return 0.

ERRORS
The iswalnum_l() function may fail if:

CX [EINVAL] locale is not a valid locale object handle.

EXAMPLES
None.

APPLICATION USAGE
To ensure applications portability, especially across natural languages, only these functions and
the functions in the reference pages listed in the SEE ALSO section should be used for character
classification.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
iswalpha(), iswcntrl(), iswctype(), iswdigit(), iswgraph(), iswlower(), iswprint(), iswpunct(),
iswspace(), iswupper(), iswxdigit(), setlocale(), uselocale(), the Base Definitions volume of
IEEE Std 1003.1-200x, Chapter 7, Locale, <locale.h>, <stdio.h>, <wctype.h>

CHANGE HISTORY
First released as a World-wide Portability Interface in Issue 4.

684 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

22521

22522

22523

22524

22525

22526

22527

22528

22529

22530

22531

22532

22533

22534

22535

22536

22537

22538

22539

22540

22541

22542

22543

22544

22545

22546

22547

22548

22549

22550

22551

22552

22553

22554

22555

22556

22557

22558

22559

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces iswalnum()

Issue 5
The following change has been made in this issue for alignment with
ISO/IEC 9899: 1990/Amendment 1: 1995 (E):

• The SYNOPSIS has been changed to indicate that this function and associated data types
are now made visible by inclusion of the <wctype.h> header rather than <wchar.h>.

Issue 6
The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

Issue 7
The iswalnum_l() function is added from The Open Group Technical Standard, 2006, Extended
API Set Part 4.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 685

22560

22561

22562

22563

22564

22565

22566

22567

22568

22569

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

iswalpha() System Interfaces

NAME
iswalpha, iswalpha_l — test for an alphabetic wide-character code

SYNOPSIS
#include <wctype.h>

int iswalpha(wint_t wc);
CX int iswalpha_l(wint_t wc, l ocale_t locale);

DESCRIPTION
CX For iswalpha(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of IEEE Std 1003.1-200x defers to the ISO C standard.

CX The iswalpha() and iswalpha_l() functions shall test whether wc is a wide-character code
CX representing a character of class alpha in the current locale of the process, or in the locale

represented by locale, respectively; see the Base Definitions volume of IEEE Std 1003.1-200x,
Chapter 7, Locale.

The wc argument is a wint_t, the value of which the application shall ensure is a wide-character
code corresponding to a valid character in the current locale, or equal to the value of the macro
WEOF. If the argument has any other value, the behavior is undefined.

RETURN VALUE
CX The iswalpha() and iswalpha_l() functions shall return non-zero if wc is an alphabetic wide-

character code; otherwise, they shall return 0.

ERRORS
The iswalpha_l() function may fail if:

CX [EINVAL] locale is not a valid locale object handle.

EXAMPLES
None.

APPLICATION USAGE
To ensure applications portability, especially across natural languages, only these functions and
the functions in the reference pages listed in the SEE ALSO section should be used for character
classification.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
iswalnum(), iswcntrl(), iswctype(), iswdigit(), iswgraph(), iswlower(), iswprint(), iswpunct(),
iswspace(), iswupper(), iswxdigit(), setlocale(), uselocale(), the Base Definitions volume of
IEEE Std 1003.1-200x, Chapter 7, Locale, <locale.h>, <stdio.h>, <wctype.h>

CHANGE HISTORY
First released in Issue 4.

686 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

22570

22571

22572

22573

22574

22575

22576

22577

22578

22579

22580

22581

22582

22583

22584

22585

22586

22587

22588

22589

22590

22591

22592

22593

22594

22595

22596

22597

22598

22599

22600

22601

22602

22603

22604

22605

22606

22607

22608

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces iswalpha()

Issue 5
The following change has been made in this issue for alignment with
ISO/IEC 9899: 1990/Amendment 1: 1995 (E):

• The SYNOPSIS has been changed to indicate that this function and associated data types
are now made visible by inclusion of the <wctype.h> header rather than <wchar.h>.

Issue 6
The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

Issue 7
The iswalpha_l() function is added from The Open Group Technical Standard, 2006, Extended
API Set Part 4.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 687

22609

22610

22611

22612

22613

22614

22615

22616

22617

22618

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

iswblank() System Interfaces

NAME
iswblank, iswblank_l — test for a blank wide-character code

SYNOPSIS
#include <wctype.h>

int iswblank(wint_t wc);
CX int iswblank_l(wint_t wc, l ocale_t locale);

DESCRIPTION
CX For iswblank(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of IEEE Std 1003.1-200x defers to the ISO C standard.

CX The iswblank() and iswblank() functions shall test whether wc is a wide-character code
CX representing a character of class blank in the current locale of the process, or in the locale

represented by locale, respectively; see the Base Definitions volume of IEEE Std 1003.1-200x,
Chapter 7, Locale.

The wc argument is a wint_t, the value of which the application shall ensure is a wide-character
code corresponding to a valid character in the current locale, or equal to the value of the macro
WEOF. If the argument has any other value, the behavior is undefined.

RETURN VALUE
CX The iswblank() and iswblank_l() functions shall return non-zero if wc is a blank wide-character

code; otherwise, they shall return 0.

ERRORS
The iswblank_l() function may fail if:

CX [EINVAL] locale is not a valid locale object handle.

EXAMPLES
None.

APPLICATION USAGE
To ensure applications portability, especially across natural languages, only these functions and
the functions in the reference pages listed in the SEE ALSO section should be used for character
classification.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
iswalnum(), iswalpha(), iswcntrl(), iswctype(), iswdigit(), iswgraph(), iswlower(), iswprint(),
iswpunct(), iswspace(), iswupper(), iswxdigit(), setlocale(), uselocale(), the Base Definitions volume
of IEEE Std 1003.1-200x, Chapter 7, Locale, <locale.h>, <stdio.h>, <wctype.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

688 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

22619

22620

22621

22622

22623

22624

22625

22626

22627

22628

22629

22630

22631

22632

22633

22634

22635

22636

22637

22638

22639

22640

22641

22642

22643

22644

22645

22646

22647

22648

22649

22650

22651

22652

22653

22654

22655

22656

22657

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces iswblank()

Issue 7
The iswblank_l() function is added from The Open Group Technical Standard, 2006, Extended
API Set Part 4.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 689

22658

22659

22660

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

iswcntrl() System Interfaces

NAME
iswcntrl, iswcntrl_l — test for a control wide-character code

SYNOPSIS
#include <wctype.h>

int iswcntrl(wint_t wc);
CX int iswcntrl_l(wint_t wc, l ocale_t locale);

DESCRIPTION
CX For iswcntrl(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of IEEE Std 1003.1-200x defers to the ISO C standard.

CX The iswcntrl() and iswcntrl_l() functions shall test whether wc is a wide-character code
CX representing a character of class cntrl in the current locale of the process, or in the locale

represented by locale, respectively; see the Base Definitions volume of IEEE Std 1003.1-200x,
Chapter 7, Locale.

The wc argument is a wint_t, the value of which the application shall ensure is a wide-character
code corresponding to a valid character in the current locale, or equal to the value of the macro
WEOF. If the argument has any other value, the behavior is undefined.

RETURN VALUE
CX The iswcntrl() and iswcntrl_l() functions shall return non-zero if wc is a control wide-character

code; otherwise, they shall return 0.

ERRORS
The iswcntrl_l() function may fail if:

CX [EINVAL] locale is not a valid locale object handle.

EXAMPLES
None.

APPLICATION USAGE
To ensure applications portability, especially across natural languages, only these functions and
the functions in the reference pages listed in the SEE ALSO section should be used for character
classification.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
iswalnum(), iswalpha(), iswctype(), iswdigit(), iswgraph(), iswlower(), iswprint(), iswpunct(),
iswspace(), iswupper(), iswxdigit(), setlocale(), uselocale(), the Base Definitions volume of
IEEE Std 1003.1-200x, Chapter 7, Locale, <locale.h>, <wctype.h>

CHANGE HISTORY
First released in Issue 4.

690 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

22661

22662

22663

22664

22665

22666

22667

22668

22669

22670

22671

22672

22673

22674

22675

22676

22677

22678

22679

22680

22681

22682

22683

22684

22685

22686

22687

22688

22689

22690

22691

22692

22693

22694

22695

22696

22697

22698

22699

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

iswctype() System Interfaces

NAME
iswctype, iswctype_l — test character for a specified class

SYNOPSIS
#include <wctype.h>

int iswctype(wint_t wc, w ctype_t charclass);
CX int iswctype_l(wint_t wc, w ctype_t charclass,

locale_t locale);

DESCRIPTION
CX For iswctype(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of IEEE Std 1003.1-200x defers to the ISO C standard.

CX The iswctype() and iswctype_l() functions shall determine whether the wide-character code wc
CX has the character class charclass, returning true or false. The iswctype() and iswctype_l()

functions are defined on WEOF and wide-character codes corresponding to the valid character
CX encodings in the current locale, or in the locale represented by locale, respectively. If the wc

argument is not in the domain of the function, the result is undefined. If the value of charclass is
invalid (that is, not obtained by a call to wctype() or charclass is invalidated by a subsequent call
to setlocale() that has affected category LC_CTYPE) the result is unspecified.

RETURN VALUE
CX The iswctype() and iswctype_l() functions shall return non-zero (true) if and only if wc has the
CX property described by charclass. If charclass is 0, these functions shall return 0.

ERRORS
The iswctype_l() function may fail if:

CX [EINVAL] locale is not a valid locale object handle.

EXAMPLES

Testing for a Valid Character

#include <wctype.h>
...
int yes_or_no;
wint_t wc;
wctype_t valid_class;
...
if ((valid_class=wctype("vowel")) == (wctype_t)0)

/* Invalid character class. */
yes_or_no=iswctype(wc,valid_class);

APPLICATION USAGE
The twelve strings "alnum" , "alpha" , "blank" , "cntrl" , "digit" , "graph" , "lower" ,
"print" , "punct" , "space" , "upper" , and "xdigit" are reserved for the standard
character classes. In the table below, the functions in the left column are equivalent to the
functions in the right column.

iswalnum(wc) i swctype(wc, w ctype("alnum"))
iswalnum_l(wc, locale) i swctype_l(wc, w ctype("alnum"), locale)
iswalpha(wc) i swctype(wc, w ctype("alpha"))
iswalpha_l(wc, locale) i swctype_l(wc, w ctype("alpha"), locale)

692 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

22710

22711

22712

22713

22714

22715

22716

22717

22718

22719

22720

22721

22722

22723

22724

22725

22726

22727

22728

22729

22730

22731

22732

22733

22734

22735

22736

22737

22738

22739

22740

22741

22742

22743

22744

22745

22746

22747

22748

22749

22750

22751

22752

22753

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces iswctype()

iswblank(wc) i swctype(wc, w ctype("blank"))
iswblank_l(wc, locale) i swctype_l(wc, w ctype("blank"), locale)
iswcntrl(wc) i swctype(wc, w ctype("cntrl"))
iswcntrl_l(wc, locale) i swctype_l(wc, w ctype("cntrl"), locale)
iswdigit(wc) i swctype(wc, w ctype("digit"))
iswdigit_l(wc, locale) i swctype_l(wc, w ctype("digit"), locale)
iswgraph(wc) i swctype(wc, w ctype("graph"))
iswgraph_l(wc, locale) i swctype_l(wc, w ctype("graph"), locale)
iswlower(wc) i swctype(wc, w ctype("lower"))
iswlower_l(wc, locale) i swctype_l(wc, w ctype("lower"), locale)
iswprint(wc) i swctype(wc, w ctype("print"))
iswprint_l(wc, locale) i swctype_l(wc, w ctype("print"), locale)
iswpunct(wc) i swctype(wc, w ctype("punct"))
iswpunct_l(wc, locale) i swctype_l(wc, w ctype("punct"), locale)
iswspace(wc) i swctype(wc, w ctype("space"))
iswspace_l(wc, locale) i swctype_l(wc, w ctype("space"), locale)
iswupper(wc) i swctype(wc, w ctype("upper"))
iswupper_l(wc, locale) i swctype_l(wc, w ctype("upper"), locale)
iswxdigit(wc) i swctype(wc, w ctype("xdigit"))
iswxdigit_l(wc, locale) i swctype_l(wc, w ctype("xdigit"), locale)

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
iswalnum(), iswalpha(), iswcntrl(), iswdigit(), iswgraph(), iswlower(), iswprint(), iswpunct(),
iswspace(), iswupper(), iswxdigit(), setlocale(), uselocale(), wctype(), the Base Definitions volume
of IEEE Std 1003.1-200x, <locale.h>, <wctype.h>

CHANGE HISTORY
First released as World-wide Portability Interfaces in Issue 4.

Issue 5
The following change has been made in this issue for alignment with
ISO/IEC 9899: 1990/Amendment 1: 1995 (E):

• The SYNOPSIS has been changed to indicate that this function and associated data types
are now made visible by inclusion of the <wctype.h> header rather than <wchar.h>.

Issue 6
The behavior of n=0 is now described.

An example is added.

A new function, iswblank(), is added to the list in the APPLICATION USAGE.

Issue 7
The iswctype_l() function is added from The Open Group Technical Standard, 2006, Extended
API Set Part 4.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 693

22754

22755

22756

22757

22758

22759

22760

22761

22762

22763

22764

22765

22766

22767

22768

22769

22770

22771

22772

22773

22774

22775

22776

22777

22778

22779

22780

22781

22782

22783

22784

22785

22786

22787

22788

22789

22790

22791

22792

22793

22794

22795

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

iswdigit() System Interfaces

NAME
iswdigit, iswdigit_l — test for a decimal digit wide-character code

SYNOPSIS
#include <wctype.h>

int iswdigit(wint_t wc);
CX int iswdigit_l(wint_t wc, l ocale_t locale);

DESCRIPTION
CX For iswdigit(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of IEEE Std 1003.1-200x defers to the ISO C standard.

CX The iswdigit() and iswdigit_l() functions shall test whether wc is a wide-character code
CX representing a character of class digit in the current locale of the process, or in the locale

represented by locale, respectively; see the Base Definitions volume of IEEE Std 1003.1-200x,
Chapter 7, Locale.

The wc argument is a wint_t, the value of which the application shall ensure is a wide-character
code corresponding to a valid character in the current locale, or equal to the value of the macro
WEOF. If the argument has any other value, the behavior is undefined.

RETURN VALUE
CX The iswdigit() and iswdigit_l() functions shall return non-zero if wc is a decimal digit wide-

character code; otherwise, they shall return 0.

ERRORS
The iswdigit_l() function may fail if:

CX [EINVAL] locale is not a valid locale object handle.

EXAMPLES
None.

APPLICATION USAGE
To ensure applications portability, especially across natural languages, only these functions and
the functions in the reference pages listed in the SEE ALSO section should be used for character
classification.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
iswalnum(), iswalpha(), iswcntrl(), iswctype(), iswgraph(), iswlower(), iswprint(), iswpunct(),
iswspace(), iswupper(), iswxdigit(), setlocale(), uselocale(), the Base Definitions volume of
IEEE Std 1003.1-200x, Chapter 7, Locale, <locale.h>, <wctype.h>

CHANGE HISTORY
First released in Issue 4.

694 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

22796

22797

22798

22799

22800

22801

22802

22803

22804

22805

22806

22807

22808

22809

22810

22811

22812

22813

22814

22815

22816

22817

22818

22819

22820

22821

22822

22823

22824

22825

22826

22827

22828

22829

22830

22831

22832

22833

22834

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

iswgraph() System Interfaces

NAME
iswgraph, iswgraph_l — test for a visible wide-character code

SYNOPSIS
#include <wctype.h>

int iswgraph(wint_t wc);
CX int iswgraph_l(wint_t wc, l ocale_t locale);

DESCRIPTION
CX For iswgraph(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of IEEE Std 1003.1-200x defers to the ISO C standard.

CX The iswgraph() and iswgraph_l() functions shall test whether wc is a wide-character code
CX representing a character of class graph in the current locale of the process, or in the locale

represented by locale, respectively; see the Base Definitions volume of IEEE Std 1003.1-200x,
Chapter 7, Locale.

The wc argument is a wint_t, the value of which the application shall ensure is a wide-character
code corresponding to a valid character in the current locale, or equal to the value of the macro
WEOF. If the argument has any other value, the behavior is undefined.

RETURN VALUE
CX The iswgraph() and iswgraph_l() functions shall return non-zero if wc is a wide-character code

with a visible representation; otherwise, they shall return 0.

ERRORS
The iswgraph_l() function may fail if:

CX [EINVAL] locale is not a valid locale object handle.

EXAMPLES
None.

APPLICATION USAGE
To ensure applications portability, especially across natural languages, only these functions and
the functions in the reference pages listed in the SEE ALSO section should be used for character
classification.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
iswalnum(), iswalpha(), iswcntrl(), iswctype(), iswdigit(), iswlower(), iswprint(), iswpunct(),
iswspace(), iswupper(), iswxdigit(), setlocale(), uselocale(), the Base Definitions volume of
IEEE Std 1003.1-200x, Chapter 7, Locale, <locale.h>, <wctype.h>

CHANGE HISTORY
First released in Issue 4.

696 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

22845

22846

22847

22848

22849

22850

22851

22852

22853

22854

22855

22856

22857

22858

22859

22860

22861

22862

22863

22864

22865

22866

22867

22868

22869

22870

22871

22872

22873

22874

22875

22876

22877

22878

22879

22880

22881

22882

22883

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces iswgraph()

Issue 5
The following change has been made in this issue for alignment with
ISO/IEC 9899: 1990/Amendment 1: 1995 (E):

• The SYNOPSIS has been changed to indicate that this function and associated data types
are now made visible by inclusion of the <wctype.h> header rather than <wchar.h>.

Issue 6
The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

Issue 7
The iswgraph_l() function is added from The Open Group Technical Standard, 2006, Extended
API Set Part 4.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 697

22884

22885

22886

22887

22888

22889

22890

22891

22892

22893

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

iswlower() System Interfaces

NAME
iswlower, iswlower_l — test for a lowercase letter wide-character code

SYNOPSIS
#include <wctype.h>

int iswlower(wint_t wc);
CX int iswlower_l(wint_t wc, l ocale_t locale);

DESCRIPTION
CX For iswlower(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of IEEE Std 1003.1-200x defers to the ISO C standard.

CX The iswlower() and iswlower_l() functions shall test whether wc is a wide-character code
CX representing a character of class lower in the current locale of the process, or in the locale

represented by locale, respectively; see the Base Definitions volume of IEEE Std 1003.1-200x,
Chapter 7, Locale.

The wc argument is a wint_t, the value of which the application shall ensure is a wide-character
code corresponding to a valid character in the current locale, or equal to the value of the macro
WEOF. If the argument has any other value, the behavior is undefined.

RETURN VALUE
CX The iswlower() and iswlower_l() functions shall return non-zero if wc is a lowercase letter wide-

character code; otherwise, they shall return 0.

ERRORS
The iswlower_l() function may fail if:

CX [EINVAL] locale is not a valid locale object handle.

EXAMPLES
None.

APPLICATION USAGE
To ensure applications portability, especially across natural languages, only these functions and
the functions in the reference pages listed in the SEE ALSO section should be used for character
classification.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
iswalnum(), iswalpha(), iswcntrl(), iswctype(), iswdigit(), iswgraph(), iswprint(), iswpunct(),
iswspace(), iswupper(), iswxdigit(), setlocale(), uselocale(), the Base Definitions volume of
IEEE Std 1003.1-200x, Chapter 7, Locale, <locale.h>, <wctype.h>

CHANGE HISTORY
First released in Issue 4.

698 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

22894

22895

22896

22897

22898

22899

22900

22901

22902

22903

22904

22905

22906

22907

22908

22909

22910

22911

22912

22913

22914

22915

22916

22917

22918

22919

22920

22921

22922

22923

22924

22925

22926

22927

22928

22929

22930

22931

22932

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces iswlower()

Issue 5
The following change has been made in this issue for alignment with
ISO/IEC 9899: 1990/Amendment 1: 1995 (E):

• The SYNOPSIS has been changed to indicate that this function and associated data types
are now made visible by inclusion of the <wctype.h> header rather than <wchar.h>.

Issue 6
The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

Issue 7
The iswlower_l() function is added from The Open Group Technical Standard, 2006, Extended
API Set Part 4.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 699

22933

22934

22935

22936

22937

22938

22939

22940

22941

22942

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

iswprint() System Interfaces

NAME
iswprint, iswprint_l — test for a printable wide-character code

SYNOPSIS
#include <wctype.h>

int iswprint(wint_t wc);
CX int iswprint_l(wint_t wc, l ocale_t locale);

DESCRIPTION
CX For iswprint(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of IEEE Std 1003.1-200x defers to the ISO C standard.

CX The iswprint() and iswprint_l() functions shall test whether wc is a wide-character code
CX representing a character of class print in the current locale of the process, or in the locale

represented by locale, respectively; see the Base Definitions volume of IEEE Std 1003.1-200x,
Chapter 7, Locale.

The wc argument is a wint_t, the value of which the application shall ensure is a wide-character
code corresponding to a valid character in the current locale, or equal to the value of the macro
WEOF. If the argument has any other value, the behavior is undefined.

RETURN VALUE
CX The iswprint() and iswprint_l() functions shall return non-zero if wc is a printable wide-

character code; otherwise, they shall return 0.

ERRORS
The iswprint_l() function may fail if:

CX [EINVAL] locale is not a valid locale object handle.

EXAMPLES
None.

APPLICATION USAGE
To ensure applications portability, especially across natural languages, only these functions and
the functions in the reference pages listed in the SEE ALSO section should be used for character
classification.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
iswalnum(), iswalpha(), iswcntrl(), iswctype(), iswdigit(), iswgraph(), iswlower(), iswpunct(),
iswspace(), iswupper(), iswxdigit(), setlocale(), uselocale(), the Base Definitions volume of
IEEE Std 1003.1-200x, Chapter 7, Locale, <locale.h>, <wctype.h>

CHANGE HISTORY
First released in Issue 4.

700 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

22943

22944

22945

22946

22947

22948

22949

22950

22951

22952

22953

22954

22955

22956

22957

22958

22959

22960

22961

22962

22963

22964

22965

22966

22967

22968

22969

22970

22971

22972

22973

22974

22975

22976

22977

22978

22979

22980

22981

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces iswprint()

Issue 5
The following change has been made in this issue for alignment with
ISO/IEC 9899: 1990/Amendment 1: 1995 (E):

• The SYNOPSIS has been changed to indicate that this function and associated data types
are now made visible by inclusion of the <wctype.h> header rather than <wchar.h>.

Issue 6
The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

Issue 7
The iswprint_l() function is added from The Open Group Technical Standard, 2006, Extended
API Set Part 4.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 701

22982

22983

22984

22985

22986

22987

22988

22989

22990

22991

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

iswpunct() System Interfaces

NAME
iswpunct, iswpunct_l — test for a punctuation wide-character code

SYNOPSIS
#include <wctype.h>

int iswpunct(wint_t wc);
CX int iswpunct_l(wint_t wc, l ocale_t locale);

DESCRIPTION
CX For iswpunct(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of IEEE Std 1003.1-200x defers to the ISO C standard.

CX The iswpunct() and iswpunct_l() functions shall test whether wc is a wide-character code
CX representing a character of class punct in the current locale of the process, or in the locale

represented by locale, respectively; see the Base Definitions volume of IEEE Std 1003.1-200x,
Chapter 7, Locale.

The wc argument is a wint_t, the value of which the application shall ensure is a wide-character
code corresponding to a valid character in the current locale, or equal to the value of the macro
WEOF. If the argument has any other value, the behavior is undefined.

RETURN VALUE
CX The iswpunct() and iswpunct_l() functions shall return non-zero if wc is a punctuation wide-

character code; otherwise, they shall return 0.

ERRORS
The iswpunct_l() function may fail if:

CX [EINVAL] locale is not a valid locale object handle.

EXAMPLES
None.

APPLICATION USAGE
To ensure applications portability, especially across natural languages, only these functions and
the functions in the reference pages listed in the SEE ALSO section should be used for character
classification.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
iswalnum(), iswalpha(), iswcntrl(), iswctype(), iswdigit(), iswgraph(), iswlower(), iswprint(),
iswspace(), iswupper(), iswxdigit(), setlocale(), uselocale(), the Base Definitions volume of
IEEE Std 1003.1-200x, Chapter 7, Locale, <locale.h>, <wctype.h>

CHANGE HISTORY
First released in Issue 4.

702 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

22992

22993

22994

22995

22996

22997

22998

22999

23000

23001

23002

23003

23004

23005

23006

23007

23008

23009

23010

23011

23012

23013

23014

23015

23016

23017

23018

23019

23020

23021

23022

23023

23024

23025

23026

23027

23028

23029

23030

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces iswpunct()

Issue 5
The following change has been made in this issue for alignment with
ISO/IEC 9899: 1990/Amendment 1: 1995 (E):

• The SYNOPSIS has been changed to indicate that this function and associated data types
are now made visible by inclusion of the <wctype.h> header rather than <wchar.h>.

Issue 6
The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

Issue 7
The iswpunct_l() function is added from The Open Group Technical Standard, 2006, Extended
API Set Part 4.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 703

23031

23032

23033

23034

23035

23036

23037

23038

23039

23040

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

iswspace() System Interfaces

NAME
iswspace, iswspace_l — test for a white-space wide-character code

SYNOPSIS
#include <wctype.h>

int iswspace(wint_t wc);
CX int iswspace_l(wint_t wc, l ocale_t locale);

DESCRIPTION
CX For iswspace(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of IEEE Std 1003.1-200x defers to the ISO C standard.

CX The iswspace() and iswspace_l() functions shall test whether wc is a wide-character code
CX representing a character of class space in the current locale of the process, or in the locale

represented by locale, respectively; see the Base Definitions volume of IEEE Std 1003.1-200x,
Chapter 7, Locale.

The wc argument is a wint_t, the value of which the application shall ensure is a wide-character
code corresponding to a valid character in the current locale, or equal to the value of the macro
WEOF. If the argument has any other value, the behavior is undefined.

RETURN VALUE
CX The iswspace() and iswspace_l() functions shall return non-zero if wc is a white-space wide-

character code; otherwise, they shall return 0.

ERRORS
The iswspace_l() function may fail if:

CX [EINVAL] locale is not a valid locale object handle.

EXAMPLES
None.

APPLICATION USAGE
To ensure applications portability, especially across natural languages, only these functions and
the functions in the reference pages listed in the SEE ALSO section should be used for character
classification.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
iswalnum(), iswalpha(), iswcntrl(), iswctype(), iswdigit(), iswgraph(), iswlower(), iswprint(),
iswpunct(), iswupper(), iswxdigit(), setlocale(), uselocale(), the Base Definitions volume of
IEEE Std 1003.1-200x, Chapter 7, Locale, <locale.h>, <wctype.h>

CHANGE HISTORY
First released in Issue 4.

704 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

23041

23042

23043

23044

23045

23046

23047

23048

23049

23050

23051

23052

23053

23054

23055

23056

23057

23058

23059

23060

23061

23062

23063

23064

23065

23066

23067

23068

23069

23070

23071

23072

23073

23074

23075

23076

23077

23078

23079

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces iswspace()

Issue 5
The following change has been made in this issue for alignment with
ISO/IEC 9899: 1990/Amendment 1: 1995 (E):

• The SYNOPSIS has been changed to indicate that this function and associated data types
are now made visible by inclusion of the <wctype.h> header rather than <wchar.h>.

Issue 6
The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

Issue 7
The iswspace_l() function is added from The Open Group Technical Standard, 2006, Extended
API Set Part 4.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 705

23080

23081

23082

23083

23084

23085

23086

23087

23088

23089

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

iswupper() System Interfaces

NAME
iswupper, iswupper_l — test for an uppercase letter wide-character code

SYNOPSIS
#include <wctype.h>

int iswupper(wint_t wc);
CX int iswupper_l(wint_t wc, l ocale_t locale);

DESCRIPTION
CX For iswupper(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of IEEE Std 1003.1-200x defers to the ISO C standard.

CX The iswupper() and iswupper_l() functions shall test whether wc is a wide-character code
CX representing a character of class upper in the current locale of the process, or in the locale

represented by locale, respectively; see the Base Definitions volume of IEEE Std 1003.1-200x,
Chapter 7, Locale.

The wc argument is a wint_t, the value of which the application shall ensure is a wide-character
code corresponding to a valid character in the current locale, or equal to the value of the macro
WEOF. If the argument has any other value, the behavior is undefined.

RETURN VALUE
CX The iswupper() and iswupper_l() functions shall return non-zero if wc is an uppercase letter

wide-character code; otherwise, they shall return 0.

ERRORS
The iswupper_l() function may fail if:

CX [EINVAL] locale is not a valid locale object handle.

EXAMPLES
None.

APPLICATION USAGE
To ensure applications portability, especially across natural languages, only these functions and
the functions in the reference pages listed in the SEE ALSO section should be used for character
classification.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
iswalnum(), iswalpha(), iswcntrl(), iswctype(), iswdigit(), iswgraph(), iswlower(), iswprint(),
iswpunct(), iswspace(), iswxdigit(), setlocale(), uselocale(), the Base Definitions volume of
IEEE Std 1003.1-200x, Chapter 7, Locale, <locale.h>, <wctype.h>

CHANGE HISTORY
First released in Issue 4.

706 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

23090

23091

23092

23093

23094

23095

23096

23097

23098

23099

23100

23101

23102

23103

23104

23105

23106

23107

23108

23109

23110

23111

23112

23113

23114

23115

23116

23117

23118

23119

23120

23121

23122

23123

23124

23125

23126

23127

23128

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces iswupper()

Issue 5
The following change has been made in this issue for alignment with
ISO/IEC 9899: 1990/Amendment 1: 1995 (E):

• The SYNOPSIS has been changed to indicate that this function and associated data types
are now made visible by inclusion of the <wctype.h> header rather than <wchar.h>.

Issue 6
The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

Issue 7
The iswupper_l() function is added from The Open Group Technical Standard, 2006, Extended
API Set Part 4.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 707

23129

23130

23131

23132

23133

23134

23135

23136

23137

23138

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

iswxdigit() System Interfaces

NAME
iswxdigit, iswxdigit_l — test for a hexadecimal digit wide-character code

SYNOPSIS
#include <wctype.h>

int iswxdigit(wint_t wc);
CX int iswxdigit_l(wint_t wc, l ocale_t locale);

DESCRIPTION
CX For iswxdigit(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of IEEE Std 1003.1-200x defers to the ISO C standard.

CX The iswxdigit() and iswxdigit_l() functions shall test whether wc is a wide-character code
CX representing a character of class xdigit in the current locale of the process, or in the locale

represented by locale, respectively; see the Base Definitions volume of IEEE Std 1003.1-200x,
Chapter 7, Locale.

The wc argument is a wint_t, the value of which the application shall ensure is a wide-character
code corresponding to a valid character in the current locale, or equal to the value of the macro
WEOF. If the argument has any other value, the behavior is undefined.

RETURN VALUE
CX The iswxdigit() and iswxdigit_l() functions shall return non-zero if wc is a hexadecimal digit

wide-character code; otherwise, they shall return 0.

ERRORS
The iswxdigit_l() function may fail if:

CX [EINVAL] locale is not a valid locale object handle.

EXAMPLES
None.

APPLICATION USAGE
To ensure applications portability, especially across natural languages, only these functions and
the functions in the reference pages listed in the SEE ALSO section should be used for character
classification.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
iswalnum(), iswalpha(), iswcntrl(), iswctype(), iswdigit(), iswgraph(), iswlower(), iswprint(),
iswpunct(), iswspace(), iswupper(), setlocale(), uselocale(), the Base Definitions volume of
IEEE Std 1003.1-200x, Chapter 7, Locale, <locale.h>, <wctype.h>

CHANGE HISTORY
First released in Issue 4.

708 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

23139

23140

23141

23142

23143

23144

23145

23146

23147

23148

23149

23150

23151

23152

23153

23154

23155

23156

23157

23158

23159

23160

23161

23162

23163

23164

23165

23166

23167

23168

23169

23170

23171

23172

23173

23174

23175

23176

23177

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces iswxdigit()

Issue 5
The following change has been made in this issue for alignment with
ISO/IEC 9899: 1990/Amendment 1: 1995 (E):

• The SYNOPSIS has been changed to indicate that this function and associated data types
are now made visible by inclusion of the <wctype.h> header rather than <wchar.h>.

Issue 6
The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

Issue 7
The iswxdigit_l() function is added from The Open Group Technical Standard, 2006, Extended
API Set Part 4.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 709

23178

23179

23180

23181

23182

23183

23184

23185

23186

23187

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

isxdigit() System Interfaces

NAME
isxdigit, isxdigit_l — test for a hexadecimal digit

SYNOPSIS
#include <ctype.h>

int isxdigit(int c);
CX int isxdigit_l(int c, l ocale_t locale);

DESCRIPTION
CX For isxdigit(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of IEEE Std 1003.1-200x defers to the ISO C standard.

CX The isxdigit() and isxdigit_l() functions shall test whether c is a character of class xdigit in the
CX current locale of the process, or in the locale represented by locale, respectively; see the Base

Definitions volume of IEEE Std 1003.1-200x, Chapter 7, Locale.

The c argument is an int, the value of which the application shall ensure is a character
representable as an unsigned char or equal to the value of the macro EOF. If the argument has
any other value, the behavior is undefined.

RETURN VALUE
CX The isxdigit() and isxdigit_l() functions shall return non-zero if c is a hexadecimal digit;

otherwise, they shall return 0.

ERRORS
The isxdigit_l() function may fail if:

CX [EINVAL] locale is not a valid locale object handle.

EXAMPLES
None.

APPLICATION USAGE
To ensure applications portability, especially across natural languages, only these functions and
the functions in the reference pages listed in the SEE ALSO section should be used for character
classification.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
isalnum(), isalpha(), isblank(), iscntrl(), isdigit(), isgraph(), islower(), isprint(), ispunct(), isspace(),
isupper(), the Base Definitions volume of IEEE Std 1003.1-200x, Chapter 7, Locale, <ctype.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

710 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

23188

23189

23190

23191

23192

23193

23194

23195

23196

23197

23198

23199

23200

23201

23202

23203

23204

23205

23206

23207

23208

23209

23210

23211

23212

23213

23214

23215

23216

23217

23218

23219

23220

23221

23222

23223

23224

23225

23226

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces isxdigit()

Issue 7
The isxdigit_l() function is added from The Open Group Technical Standard, 2006, Extended API
Set Part 4.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 711

23227

23228

23229

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

j0() System Interfaces

NAME
j0, j1, jn — Bessel functions of the first kind

SYNOPSIS
XSI #include <math.h>

double j0(double x);
double j1(double x);
double jn(int n, d ouble x);

DESCRIPTION
The j0(), j1(), and jn() functions shall compute Bessel functions of x of the first kind of orders 0,
1, and n, respectively.

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-
zero, an error has occurred.

RETURN VALUE
Upon successful completion, these functions shall return the relevant Bessel value of x of the
first kind.

If the x argument is too large in magnitude, or the correct result would cause underflow, 0 shall
be returned and a range error may occur.

If x is NaN, a NaN shall be returned.

ERRORS
These functions may fail if:

Range Error The value of x was too large in magnitude, or an underflow occurred.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the underflow
floating-point exception shall be raised.

No other errors shall occur.

EXAMPLES
None.

APPLICATION USAGE
On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling &
MATH_ERREXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
feclearexcept(), fetestexcept(), isnan(), y0(), the Base Definitions volume of IEEE Std 1003.1-200x,
Section 4.18, Treatment of Error Conditions for Mathematical Functions, <math.h>

712 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

23230

23231

23232

23233

23234

23235

23236

23237

23238

23239

23240

23241

23242

23243

23244

23245

23246

23247

23248

23249

23250

23251

23252

23253

23254

23255

23256

23257

23258

23259

23260

23261

23262

23263

23264

23265

23266

23267

23268

23269

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces j0()

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The DESCRIPTION is updated to indicate how an application should check for an error. This
text was previously published in the APPLICATION USAGE section.

Issue 6
The may fail [EDOM] error is removed for the case for NaN.

The RETURN VALUE and ERRORS sections are reworked for alignment of the error handling
with the ISO/IEC 9899: 1999 standard.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 713

23270

23271

23272

23273

23274

23275

23276

23277

23278

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

jrand48() System Interfaces

NAME
jrand48 — generate a uniformly distributed pseudo-random long signed integer

SYNOPSIS
XSI #include <stdlib.h>

long jrand48(unsigned short xsubi[3]);

DESCRIPTION
Refer to drand48().

714 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

23279

23280

23281

23282

23283

23284

23285

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces kill()

NAME
kill — send a signal to a process or a group of processes

SYNOPSIS
CX #include <signal.h>

int kill(pid_t pid, i nt sig);

DESCRIPTION
The kill() function shall send a signal to a process or a group of processes specified by pid. The
signal to be sent is specified by sig and is either one from the list given in <signal.h> or 0. If sig is
0 (the null signal), error checking is performed but no signal is actually sent. The null signal can
be used to check the validity of pid.

For a process to have permission to send a signal to a process designated by pid, unless the
sending process has appropriate privileges, the real or effective user ID of the sending process
shall match the real or saved set-user-ID of the receiving process.

If pid is greater than 0, sig shall be sent to the process whose process ID is equal to pid.

If pid is 0, sig shall be sent to all processes (excluding an unspecified set of system processes)
whose process group ID is equal to the process group ID of the sender, and for which the process
has permission to send a signal.

If pid is −1, sig shall be sent to all processes (excluding an unspecified set of system processes) for
which the process has permission to send that signal.

If pid is negative, but not −1, sig shall be sent to all processes (excluding an unspecified set of
system processes) whose process group ID is equal to the absolute value of pid, and for which
the process has permission to send a signal.

If the value of pid causes sig to be generated for the sending process, and if sig is not blocked for
the calling thread and if no other thread has sig unblocked or is waiting in a sigwait() function
for sig, either sig or at least one pending unblocked signal shall be delivered to the sending
thread before kill() returns.

The user ID tests described above shall not be applied when sending SIGCONT to a process that
is a member of the same session as the sending process.

An implementation that provides extended security controls may impose further
implementation-defined restrictions on the sending of signals, including the null signal. In
particular, the system may deny the existence of some or all of the processes specified by pid.

The kill() function is successful if the process has permission to send sig to any of the processes
specified by pid. If kill() fails, no signal shall be sent.

RETURN VALUE
Upon successful completion, 0 shall be returned. Otherwise, −1 shall be returned and errno set to
indicate the error.

ERRORS
The kill() function shall fail if:

[EINVAL] The value of the sig argument is an invalid or unsupported signal number.

[EPERM] The process does not have permission to send the signal to any receiving
process.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 715

23286

23287

23288

23289

23290

23291

23292

23293

23294

23295

23296

23297

23298

23299

23300

23301

23302

23303

23304

23305

23306

23307

23308

23309

23310

23311

23312

23313

23314

23315

23316

23317

23318

23319

23320

23321

23322

23323

23324

23325

23326

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

kill() System Interfaces

[ESRCH] No process or process group can be found corresponding to that specified by
pid.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
The semantics for permission checking for kill() differed between System V and most other
implementations, such as Version 7 or 4.3 BSD. The semantics chosen for this volume of
IEEE Std 1003.1-200x agree with System V. Specifically, a set-user-ID process cannot protect itself
against signals (or at least not against SIGKILL) unless it changes its real user ID. This choice
allows the user who starts an application to send it signals even if it changes its effective user ID.
The other semantics give more power to an application that wants to protect itself from the user
who ran it.

Some implementations provide semantic extensions to the kill() function when the absolute
value of pid is greater than some maximum, or otherwise special, value. Negative values are a
flag to kill(). Since most implementations return [ESRCH] in this case, this behavior is not
included in this volume of IEEE Std 1003.1-200x, although a conforming implementation could
provide such an extension.

The unspecified processes to which a signal cannot be sent may include the scheduler or init.

There was initially strong sentiment to specify that, if pid specifies that a signal be sent to the
calling process and that signal is not blocked, that signal would be delivered before kill()
returns. This would permit a process to call kill() and be guaranteed that the call never return.
However, historical implementations that provide only the signal() function make only the
weaker guarantee in this volume of IEEE Std 1003.1-200x, because they only deliver one signal
each time a process enters the kernel. Modifications to such implementations to support the
sigaction() function generally require entry to the kernel following return from a signal-catching
function, in order to restore the signal mask. Such modifications have the effect of satisfying the
stronger requirement, at least when sigaction() is used, but not necessarily when signal() is used.
The developers of this volume of IEEE Std 1003.1-200x considered making the stronger
requirement except when signal() is used, but felt this would be unnecessarily complex.
Implementors are encouraged to meet the stronger requirement whenever possible. In practice,
the weaker requirement is the same, except in the rare case when two signals arrive during a
very short window. This reasoning also applies to a similar requirement for sigprocmask().

In 4.2 BSD, the SIGCONT signal can be sent to any descendant process regardless of user-ID
security checks. This allows a job control shell to continue a job even if processes in the job have
altered their user IDs (as in the su command). In keeping with the addition of the concept of
sessions, similar functionality is provided by allowing the SIGCONT signal to be sent to any
process in the same session regardless of user ID security checks. This is less restrictive than BSD
in the sense that ancestor processes (in the same session) can now be the recipient. It is more
restrictive than BSD in the sense that descendant processes that form new sessions are now
subject to the user ID checks. A similar relaxation of security is not necessary for the other job
control signals since those signals are typically sent by the terminal driver in recognition of
special characters being typed; the terminal driver bypasses all security checks.

In secure implementations, a process may be restricted from sending a signal to a process having
a different security label. In order to pr

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces kill()

call (subject to permission checking), while others give an error of [ESRCH]. Since the definition
of process lifetime in this volume of IEEE Std 1003.1-200x covers inactive processes, the [ESRCH]
error as described is inappropriate in this case. In particular, this means that an application
cannot have a parent process check for termination of a particular child with kill(). (Usually this
is done with the null signal; this can be done reliably with waitpid().)

There is some belief that the name kill() is misleading, since the function is not always intended
to cause process termination. However, the name is common to all historical implementations,
and any change would be in conflict with the goal of minimal changes to existing application
code.

FUTURE DIRECTIONS
None.

SEE ALSO
getpid(), raise(), setsid(), sigaction(), sigqueue(), the Base Definitions volume of
IEEE Std 1003.1-200x, <signal.h>, <sys/types.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The DESCRIPTION is updated for alignment with the POSIX Threads Extension.

Issue 6
In the SYNOPSIS, the optional include of the <sys/types.h> header is removed.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• In the DESCRIPTION, the second paragraph is reworded to indicate that the saved set-
user-ID of the calling process is checked in place of its effective user ID. This is a FIPS
requirement.

• The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
required for conforming implementations of previous POSIX specifications, it was not
required for UNIX applications.

• The behavior when pid is −1 is now specified. It was previously explicitly unspecified in
the POSIX.1-1988 standard.

The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/51 is applied, correcting the RATIONALE
section.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 717

23377

23378

23379

23380

23381

23382

23383

23384

23385

23386

23387

23388

23389

23390

23391

23392

23393

23394

23395

23396

23397

23398

23399

23400

23401

23402

23403

23404

23405

23406

23407

23408

23409

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

killpg() System Interfaces

NAME
killpg — send a signal to a process group

SYNOPSIS
XSI #include <signal.h>

int killpg(pid_t pgrp, i nt sig);

DESCRIPTION
The killpg() function shall send the signal specified by sig to the process group specified by pgrp.

If pgrp is greater than 1, killpg(pgrp, sig) shall be equivalent to kill(−pgrp, sig). If pgrp is less than or
equal to 1, the behavior of killpg() is undefined.

RETURN VALUE
Refer to kill().

ERRORS
Refer to kill().

EXAMPLES

Sending a Signal to All Other Members of a Process Group

The following example shows how the calling process could send a signal to all other members
of its process group. To prevent itself from receiving the signal it first makes itself immune to the
signal by ignoring it.

#include <signal.h>
#include <unistd.h>
...

if (signal(SIGUSR1, SIG_IGN) == SIG_ERR)
/* Handle error */;

if (killpg(getpgrp(), SIGUSR1) == −1)
/* Handle error */;"

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
getpgid(), getpid(), kill(), raise(), the Base Definitions volume of IEEE Std 1003.1-200x, <signal.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

718 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

23410

23411

23412

23413

23414

23415

23416

23417

23418

23419

23420

23421

23422

23423

23424

23425

23426

23427

23428

23429

23430

23431

23432

23433

23434

23435

23436

23437

23438

23439

23440

23441

23442

23443

23444

23445

23446

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces killpg()

Issue 6
IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/52 is applied, adding the example to the
EXAMPLES section.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 719

23447

23448

23449

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

l64a() System Interfaces

NAME
l64a — convert a 32-bit integer to a radix-64 ASCII string

SYNOPSIS
XSI #include <stdlib.h>

char *l64a(long value);

DESCRIPTION
Refer to a64l().

720 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

23450

23451

23452

23453

23454

23455

23456

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces labs()

NAME
labs, llabs — return a long integer absolute value

SYNOPSIS
#include <stdlib.h>

long labs(long i);
long long llabs(long long i);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

The labs() function shall compute the absolute value of the long integer operand i. The llabs()
function shall compute the absolute value of the long long integer operand i. If the result
cannot be represented, the behavior is undefined.

RETURN VALUE
The labs() function shall return the absolute value of the long integer operand. The labs()
function shall return the absolute value of the long long integer operand.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
abs(), the Base Definitions volume of IEEE Std 1003.1-200x, <stdlib.h>

CHANGE HISTORY
First released in Issue 4. Derived from the ISO C standard.

Issue 6
The llabs() function is added for alignment with the ISO/IEC 9899: 1999 standard.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 721

23457

23458

23459

23460

23461

23462

23463

23464

23465

23466

23467

23468

23469

23470

23471

23472

23473

23474

23475

23476

23477

23478

23479

23480

23481

23482

23483

23484

23485

23486

23487

23488

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

lchown() System Interfaces

NAME
lchown — change the owner and group of a symbolic link

SYNOPSIS
#include <unistd.h>

int lchown(const char * path, u id_t owner, g id_t group);

DESCRIPTION
The lchown() function shall be equivalent to chown(), except in the case where the named file is a
symbolic link. In this case, lchown() shall change the ownership of the symbolic link file itself,
while chown() changes the ownership of the file or directory to which the symbolic link refers.

RETURN VALUE
Upon successful completion, lchown() shall return 0. Otherwise, it shall return −1 and set errno to
indicate an error.

ERRORS
The lchown() function shall fail if:

[EACCES] Search permission is denied on a component of the path prefix of path.

[EINVAL] The owner or group ID is not a value supported by the implementation.

[ELOOP] A loop exists in symbolic links encountered during resolution of the path
argument.

[ENAMETOOLONG]
The length of a pathname exceeds {PATH_MAX} or a pathname component is
longer than {NAME_MAX}.

[ENOENT] A component of path does not name an existing file or path is an empty string.

[ENOTDIR] A component of the path prefix of path is not a directory.

[EOPNOTSUPP] The path argument names a symbolic link and the implementation does not
support setting the owner or group of a symbolic link.

[EPERM] The effective user ID does not match the owner of the file and the process does
not have appropriate privileges.

[EROFS] The file resides on a read-only file system.

The lchown() function may fail if:

[EIO] An I/O error occurred while reading or writing to the file system.

[EINTR] A signal was caught during execution of the function.

[ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during
resolution of the path argument.

[ENAMETOOLONG]
Pathname resolution of a symbolic link produced an intermediate result
whose length exceeds {PATH_MAX}.

722 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

23489

23490

23491

23492

23493

23494

23495

23496

23497

23498

23499

23500

23501

23502

23503

23504

23505

23506

23507

23508

23509

23510

23511

23512

23513

23514

23515

23516

23517

23518

23519

23520

23521

23522

23523

23524

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces lchown()

EXAMPLES

Changing the Current Owner of a File

The following example shows how to change the ownership of the symbolic link named
/modules/pass1 to the user ID associated with ‘‘jones’’ and the group ID associated with ‘‘cnd’’.

The numeric value for the user ID is obtained by using the getpwnam() function. The numeric
value for the group ID is obtained by using the getgrnam() function.

#include <sys/types.h>
#include <unistd.h>
#include <pwd.h>
#include <grp.h>

struct passwd *pwd;
struct group *grp;
char *path = " /modules/pass1";
...
pwd = getpwnam("jones");
grp = getgrnam("cnd");
lchown(path, pwd->pw_uid, grp->gr_gid);

APPLICATION USAGE
On implementations which support symbolic links as directory entries rather than files, lchown()
may fail.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
chown(), symlink(), the Base Definitions volume of IEEE Std 1003.1-200x, <unistd.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Issue 6
The wording of the mandatory [ELOOP] error condition is updated, and a second optional
[ELOOP] error condition is added.

The Open Group Base Resolution bwg2001-013 is applied, adding wording to the
APPLICATION USAGE.

Issue 7
The lchown() function is moved from the XSI option to the Base.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 723

23525

23526

23527

23528

23529

23530

23531

23532

23533

23534

23535

23536

23537

23538

23539

23540

23541

23542

23543

23544

23545

23546

23547

23548

23549

23550

23551

23552

23553

23554

23555

23556

23557

23558

23559

23560

23561

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

lcong48() System Interfaces

NAME
lcong48 — seed a uniformly distributed pseudo-random signed long integer generator

SYNOPSIS
XSI #include <stdlib.h>

void lcong48(unsigned short param[7]);

DESCRIPTION
Refer to drand48().

724 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

23562

23563

23564

23565

23566

23567

23568

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces ldexp()

NAME
ldexp, ldexpf, ldexpl — load exponent of a floating-point number

SYNOPSIS
#include <math.h>

double ldexp(double x, i nt exp);
float ldexpf(float x, i nt exp);
long double ldexpl(long double x, i nt exp);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

These functions shall compute the quantity x * 2exp.

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-
zero, an error has occurred.

RETURN VALUE
Upon successful completion, these functions shall return x multiplied by 2, raised to the power
exp.

If these functions would cause overflow, a range error shall occur and ldexp(), ldexpf(), and
ldexpl() shall return ±HUGE_VAL, ±HUGE_VALF, and ±HUGE_VALL (according to the sign of
x), respectively.

If the correct value would cause underflow, and is not representable, a range error may occur,
MX and either 0.0 (if supported), or an implementation-defined value shall be returned.

MX If x is NaN, a NaN shall be returned.

If x is ±0 or ±Inf, x shall be returned.

If exp is 0, x shall be returned.

If the correct value would cause underflow, and is representable, a range error may occur and
the correct value shall be returned.

ERRORS
These functions shall fail if:

Range Error The result overflows.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the overflow
floating-point exception shall be raised.

These functions may fail if:

Range Error The result underflows.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the underflow
floating-point exception shall be raised.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 725

23569

23570

23571

23572

23573

23574

23575

23576

23577

23578

23579

23580

23581

23582

23583

23584

23585

23586

23587

23588

23589

23590

23591

23592

23593

23594

23595

23596

23597

23598

23599

23600

23601

23602

23603

23604

23605

23606

23607

23608

23609

23610

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

ldexp() System Interfaces

EXAMPLES
None.

APPLICATION USAGE
On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling &
MATH_ERREXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
feclearexcept(), fetestexcept(), frexp(), isnan(), the Base Definitions volume of
IEEE Std 1003.1-200x, Section 4.18, Treatment of Error Conditions for Mathematical Functions,
<math.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The DESCRIPTION is updated to indicate how an application should check for an error. This
text was previously published in the APPLICATION USAGE section.

Issue 6
The ldexpf() and ldexpl() functions are added for alignment with the ISO/IEC 9899: 1999
standard.

The DESCRIPTION, RETURN VALUE, ERRORS, and APPLICATION USAGE sections are
revised to align with the ISO/IEC 9899: 1999 standard.

IEC 60559: 1989 standard floating-point extensions over the ISO/IEC 9899: 1999 standard are
marked.

726 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

23611

23612

23613

23614

23615

23616

23617

23618

23619

23620

23621

23622

23623

23624

23625

23626

23627

23628

23629

23630

23631

23632

23633

23634

23635

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces ldiv()

NAME
ldiv, lldiv — compute quotient and remainder of a long division

SYNOPSIS
#include <stdlib.h>

ldiv_t ldiv(long numer, l ong denom);
lldiv_t lldiv(long long numer, l ong long denom);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

These functions shall compute the quotient and remainder of the division of the numerator
numer by the denominator denom. If the division is inexact, the resulting quotient is the long
integer (for the ldiv() function) or long long integer (for the lldiv() function) of lesser magnitude
that is the nearest to the algebraic quotient. If the result cannot be represented, the behavior is
undefined; otherwise, quot * denom+rem shall equal numer.

RETURN VALUE
The ldiv() function shall return a structure of type ldiv_t, comprising both the quotient and the
remainder. The structure shall include the following members, in any order:

long quot; /* Quotient */
long rem; /* Remainder */

The lldiv() function shall return a structure of type lldiv_t, comprising both the quotient and the
remainder. The structure shall include the following members, in any order:

long long quot; /* Quotient */
long long rem; /* Remainder */

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
div(), the Base Definitions volume of IEEE Std 1003.1-200x, <stdlib.h>

CHANGE HISTORY
First released in Issue 4. Derived from the ISO C standard.

Issue 6
The lldiv() function is added for alignment with the ISO/IEC 9899: 1999 standard.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 727

23636

23637

23638

23639

23640

23641

23642

23643

23644

23645

23646

23647

23648

23649

23650

23651

23652

23653

23654

23655

23656

23657

23658

23659

23660

23661

23662

23663

23664

23665

23666

23667

23668

23669

23670

23671

23672

23673

23674

23675

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

lfind() System Interfaces

NAME
lfind — find entry in a linear search table

SYNOPSIS
XSI #include <search.h>

void *lfind(const void * key, c onst void * base, s ize_t * nelp,
size_t width, i nt (* compar)(const void *, const void *));

DESCRIPTION
Refer to lsearch().

728 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

23676

23677

23678

23679

23680

23681

23682

23683

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces lgamma()

NAME
lgamma, lgammaf, lgammal — log gamma function

SYNOPSIS
#include <math.h>

double lgamma(double x);
float lgammaf(float x);
long double lgammal(long double x);

XSI extern int signgam;

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

These functions shall compute loge Γ(x) where Γ(x) is defined as

∞

0
∫ e−ttx−1dt. The argument x

need not be a non-positive integer (Γ(x) is defined over the reals, except the non-positive
integers).

XSI The sign of Γ(x) is returned in the external integer signgam.

CX These functions need not be thread-safe. A function that is not required to be thread-safe is not
required to be reentrant.

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-
zero, an error has occurred.

RETURN VALUE
Upon successful completion, these functions shall return the logarithmic gamma of x.

If x is a non-positive integer, a pole error shall occur and lgamma(), lgammaf(), and lgammal()
shall return +HUGE_VAL, +HUGE_VALF, and +HUGE_VALL, respectively.

If the correct value would cause overflow, a range error shall occur and lgamma(), lgammaf(),
and lgammal() shall return ±HUGE_VAL, ±HUGE_VALF, and ±HUGE_VALL (having the same
sign as the correct value), respectively.

MX If x is NaN, a NaN shall be returned.

If x is 1 or 2, +0 shall be returned.

If x is ±Inf, +Inf shall be returned.

ERRORS
These functions shall fail if:

Pole Error The x argument is a negative integer or zero.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the divide-by-zero
floating-point exception shall be raised.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 729

23684

23685

23686

23687

23688

23689

23690

23691

23692

23693

23694

23695

23696

23697

23698

23699

23700

23701

23702

23703

23704

23705

23706

23707

23708

23709

23710

23711

23712

23713

23714

23715

23716

23717

23718

23719

23720

23721

23722

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

lgamma() System Interfaces

Range Error The result overflows.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the overflow
floating-point exception shall be raised.

EXAMPLES
None.

APPLICATION USAGE
On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling &
MATH_ERREXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
exp(), feclearexcept(), fetestexcept(), isnan(), the Base Definitions volume of IEEE Std 1003.1-200x,
Section 4.18, Treatment of Error Conditions for Mathematical Functions, <math.h>

CHANGE HISTORY
First released in Issue 3.

Issue 5
The DESCRIPTION is updated to indicate how an application should check for an error. This
text was previously published in the APPLICATION USAGE section.

A note indicating that this function need not be reentrant is added to the DESCRIPTION.

Issue 6
The lgamma() function is no longer marked as an extension.

The lgammaf() and lgammal() functions are added for alignment with the ISO/IEC 9899: 1999
standard.

The DESCRIPTION, RETURN VALUE, ERRORS, and APPLICATION USAGE sections are
revised to align with the ISO/IEC 9899: 1999 standard.

IEC 60559: 1989 standard floating-point extensions over the ISO/IEC 9899: 1999 standard are
marked.

Functionality relating to the XSI option is marked.

730 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

23723

23724

23725

23726

23727

23728

23729

23730

23731

23732

23733

23734

23735

23736

23737

23738

23739

23740

23741

23742

23743

23744

23745

23746

23747

23748

23749

23750

23751

23752

23753

23754

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces link()

NAME
link, linkat — link one file to another file relative to two directory file descriptors

SYNOPSIS
#include <unistd.h>

int link(const char * path1, c onst char * path2);
int linkat(int fd1, c onst char * path1, i nt fd2, c onst char * path2,

int flag);

DESCRIPTION
The link() function shall create a new link (directory entry) for the existing file, path1.

The path1 argument points to a pathname naming an existing file. The path2 argument points to
a pathname naming the new directory entry to be created. The link() function shall atomically
create a new link for the existing file and the link count of the file shall be incremented by one.

If path1 names a directory, link() shall fail unless the process has appropriate privileges and the
implementation supports using link() on directories.

Upon successful completion, link() shall mark for update the st_ctime field of the file. Also, the
st_ctime and st_mtime fields of the directory that contains the new entry shall be marked for
update.

If link() fails, no link shall be created and the link count of the file shall remain unchanged.

The implementation may require that the calling process has permission to access the existing
file.

The linkat() function shall be equivalent to the link() function except in the case where either
path1 or path2 or both are relative paths. In this case a relative path path1 is interpreted relative to
the directory associated with the file descriptor fd1 instead of the current working directory and
similarly for path2 and the file descriptor fd2. It is unspecified whether directory searches are
permitted based on whether the file was opened with search permission or on the current
permissions of the directory underlying the file descriptor.

Values for flag are constructed by a bitwise-inclusive OR of flags from the following list, defined
in <fcntl.h>:

AT_SYMLINK_FOLLOW
If path1 names a symbolic link, a new link for the target of the symbolic link is
created.

If linkat() is passed the special value AT_FDCWD in the fd1 or fd2 parameter, the current
working directory is used for the respective path argument. If both fd1 and fd2 have value
AT_FDCWD, the behavior shall be identical to a call to link().

Unless flag contains the AT_SYMLINK_FOLLOW flag, if path1 names a symbolic link, a new link
is created for the symbolic link path1 and not its target.

RETURN VALUE
Upon successful completion, these functions shall return 0. Otherwise, these functions shall
return −1 and set errno to indicate the error.

ERRORS
These functions shall fail if:

[EACCES] A component of either path prefix denies search permission, or the requested
link requires writing in a directory that denies write permission, or the calling
process does not have permission to access the existing file and this is required

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 731

23755

23756

23757

23758

23759

23760

23761

23762

23763

23764

23765

23766

23767

23768

23769

23770

23771

23772

23773

23774

23775

23776

23777

23778

23779

23780

23781

23782

23783

23784

23785

23786

23787

23788

23789

23790

23791

23792

23793

23794

23795

23796

23797

23798

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

link() System Interfaces

by the implementation.

[EEXIST] The path2 argument resolves to an existing file or refers to a symbolic link.

[ELOOP] A loop exists in symbolic links encountered during resolution of the path1 or
path2 argument.

[EMLINK] The number of links to the file named by path1 would exceed {LINK_MAX}.

[ENAMETOOLONG]
The length of the path1 or path2 argument exceeds {PATH_MAX} or a
pathname component is longer than {NAME_MAX}.

[ENOENT] A component of either path prefix does not exist; the file named by path1 does
not exist; or path1 or path2 points to an empty string.

[ENOSPC] The directory to contain the link cannot be extended.

[ENOTDIR] A component of either path prefix is not a directory.

[EPERM] The file named by path1 is a directory and either the calling process does not
have appropriate privileges or the implementation prohibits using link() on
directories.

[EROFS] The requested link requires writing in a directory on a read-only file system.

[EXDEV] The link named by path2 and the file named by path1 are on different file
systems and the implementation does not support links between file systems.

OB XSR [EXDEV] path1 refers to a named STREAM.

The linkat() function shall fail if:

[EBADF] The path1 or path2 argument does not specify an absolute path and the fd1 or
fd2 argument, respectively, is neither AT_FDCWD nor a valid file descriptor
open for searching.

These functions may fail if:

[ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during
resolution of the path1 or path2 argument.

[ENAMETOOLONG]
As a result of encountering a symbolic link in resolution of the path1 or path2
argument, the length of the substituted pathname string exceeded
{PATH_MAX}.

The linkat() function may fail if:

[EINVAL] The value of the flag argument is not valid.

[ENOTDIR] The path1 or path2 argument is not an absolute path and fd1 or fd2,
respectively, is neither AT_FDCWD nor a file descriptor associated with a
directory.

732 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

23799

23800

23801

23802

23803

23804

23805

23806

23807

23808

23809

23810

23811

23812

23813

23814

23815

23816

23817

23818

23819

23820

23821

23822

23823

23824

23825

23826

23827

23828

23829

23830

23831

23832

23833

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces link()

EXAMPLES

Creating a Link to a File

The following example shows how to create a link to a file named /home/cnd/mod1 by creating
a new directory entry named /modules/pass1.

#include <unistd.h>

char *path1 = "/home/cnd/mod1";
char *path2 = "/modules/pass1";
int status;
...
status = link (path1, path2);

Creating a Link to a File Within a Program

In the following program example, the link() function links the /etc/passwd file (defined as
PASSWDFILE) to a file named /etc/opasswd (defined as SAVEFILE), which is used to save the
current password file. Then, after removing the current password file (defined as
PASSWDFILE), the new password file is saved as the current password file using the link()
function again.

#include <unistd.h>

#define LOCKFILE "/etc/ptmp"
#define PASSWDFILE "/etc/passwd"
#define SAVEFILE "/etc/opasswd"
...
/* Save current password file */
link (PASSWDFILE, SAVEFILE);

/* Remove current password file. */
unlink (PASSWDFILE);

/* Save new password file as current password file. */
link (LOCKFILE,PASSWDFILE);

APPLICATION USAGE
Some implementations do allow links between file systems.

RATIONALE
Linking to a directory is restricted to the superuser in most historical implementations because
this capability may produce loops in the file hierarchy or otherwise corrupt the file system. This
volume of IEEE Std 1003.1-200x continues that philosophy by prohibiting link() and unlink()
from doing this. Other functions could do it if the implementor designed such an extension.

Some historical implementations allow linking of files on different file systems. Wording was
added to explicitly allow this optional behavior.

The exception for cross-file system links is intended to apply only to links that are
programmatically indistinguishable from ‘‘hard’’ links.

The purpose of the linkat() function is to link files in directories other than the current working
directory without exposure to race conditions. Any part of the path of a file could be changed in
parallel to a call to link(), resulting in unspecified behavior. By opening a file descriptor for the
directory of both the existing file and the target location and using the linkat() function it can be
guaranteed that the both filenames are in the desired directories.

The AT_SYMLINK_FOLLOW flag allows for implementing both common behaviors of the
link() function. The POSIX specification requires that if path1 is a symbolic link, a new link for

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 733

23834

23835

23836

23837

23838

23839

23840

23841

23842

23843

23844

23845

23846

23847

23848

23849

23850

23851

23852

23853

23854

23855

23856

23857

23858

23859

23860

23861

23862

23863

23864

23865

23866

23867

23868

23869

23870

23871

23872

23873

23874

23875

23876

23877

23878

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

link() System Interfaces

the target of the symbolic link is created. Many systems by default or as an alternative provide a
mechanism to avoid the implicit symlink lookup and create a new link for the symbolic link
itself.

Earlier versions of this standard specified only the link() function, and required it to behave like
linkat() with the AT_SYMLINK_FOLLOW flag. However, historical practice from SVR4 and
Linux kernels had link() behaving like linkat() with no flags, and many systems that attempted
to provide a conforming link() function did so in a way that was rarely used, and when it was
used did not conform to the standard (e.g., by not being atomic, or by dereferencing the
symbolic link incorrectly). Since applications could not rely on link() following links in practice,
the linkat() function was added taking a flag to specify the desired behavior for the application.

FUTURE DIRECTIONS
None.

SEE ALSO
rename(), symlink(), unlink(), the Base Definitions volume of IEEE Std 1003.1-200x, <fcntl.h>,
<unistd.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The [ELOOP] mandatory error condition is added.

• A second [ENAMETOOLONG] is added as an optional error condition.

The following changes were made to align with the IEEE P1003.1a draft standard:

• An explanation is added of the action when path2 refers to a symbolic link.

• The [ELOOP] optional error condition is added.

Issue 7
SD5-XSH-ERN-93 is applied, adding RATIONALE.

The linkat() function is added from The Open Group Technical Standard, 2006, Extended API Set
Part 2.

Functionality relating to XSI STREAMS is marked obsolescent.

734 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

23879

23880

23881

23882

23883

23884

23885

23886

23887

23888

23889

23890

23891

23892

23893

23894

23895

23896

23897

23898

23899

23900

23901

23902

23903

23904

23905

23906

23907

23908

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces linkat()

NAME
linkat — link one file to another file relative to two directory file descriptors

SYNOPSIS
#include <unistd.h>

int linkat(int fd1, c onst char * path1, i nt fd2, c onst char * path2,
int flag);

DESCRIPTION
Refer to link().

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 735

23909

23910

23911

23912

23913

23914

23915

23916

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

lio_listio() System Interfaces

NAME
lio_listio — list directed I/O

SYNOPSIS
#include <aio.h>

int lio_listio(int mode, s truct aiocb *restrict const list[restrict],
int nent, s truct sigevent *restrict sig);

DESCRIPTION
The lio_listio() function shall initiate a list of I/O requests with a single function call.

The mode argument takes one of the values LIO_WAIT or LIO_NOWAIT declared in <aio.h> and
determines whether the function returns when the I/O operations have been completed, or as
soon as the operations have been queued. If the mode argument is LIO_WAIT, the function shall
wait until all I/O is complete and the sig argument shall be ignored.

If the mode argument is LIO_NOWAIT, the function shall return immediately, and asynchronous
notification shall occur, according to the sig argument, when all the I/O operations complete. If
sig is NULL, then no asynchronous notification shall occur. If sig is not NULL, asynchronous
notification occurs as specified in Section 2.4.1 when all the requests in list have completed.

The I/O requests enumerated by list are submitted in an unspecified order.

The list argument is an array of pointers to aiocb structures. The array contains nent elements.
The array may contain NULL elements, which shall be ignored.

If the buffer pointed to by list or the aiocb structures pointed to by the elements of the array list
become illegal addresses before all asynchronous I/O completed and, if necessary, the
notification is sent, then the behavior is undefined. If the buffers pointed to by the aio_buf
member of the aiocb structure pointed to by the elements of the array list become illegal
addresses prior to the asynchronous I/O associated with that aiocb structure being completed,
the behavior is undefined.

The aio_lio_opcode field of each aiocb structure specifies the operation to be performed. The
supported operations are LIO_READ, LIO_WRITE, and LIO_NOP; these symbols are defined in
<aio.h>. The LIO_NOP operation causes the list entry to be ignored. If the aio_lio_opcode
element is equal to LIO_READ, then an I/O operation is submitted as if by a call to aio_read()
with the aiocbp equal to the address of the aiocb structure. If the aio_lio_opcode element is equal to
LIO_WRITE, then an I/O operation is submitted as if by a call to aio_write() with the aiocbp
equal to the address of the aiocb structure.

The aio_fildes member specifies the file descriptor on which the operation is to be performed.

The aio_buf member specifies the address of the buffer to or from which the data is transferred.

The aio_nbytes member specifies the number of bytes of data to be transferred.

The members of the aiocb structure further describe the I/O operation to be performed, in a
manner identical to that of the corresponding aiocb structure when used by the aio_read() and
aio_write() functions.

The nent argument specifies how many elements are members of the list; that is, the length of the
array.

The behavior of this function is altered according to the definitions of synchronized I/O data
integrity completion and synchronized I/O file integrity completion if synchronized I/O is
enabled on the file associated with aio_fildes.

For regular files, no data transfer shall occur past the offset maximum established in the open

736 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

23917

23918

23919

23920

23921

23922

23923

23924

23925

23926

23927

23928

23929

23930

23931

23932

23933

23934

23935

23936

23937

23938

23939

23940

23941

23942

23943

23944

23945

23946

23947

23948

23949

23950

23951

23952

23953

23954

23955

23956

23957

23958

23959

23960

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces lio_listio()

file description associated with aiocbp−>aio_fildes.

If sig−>sigev_notify is SIGEV_THREAD and sig−>sigev_notify_attributes is a non-NULL pointer
and the block pointed to by this pointer becomes an illegal address prior to all asynchronous
I/O being completed, then the behavior is undefined.

RETURN VALUE
If the mode argument has the value LIO_NOWAIT, the lio_listio() function shall return the value
zero if the I/O operations are successfully queued; otherwise, the function shall return the value
−1 and set errno to indicate the error.

If the mode argument has the value LIO_WAIT, the lio_listio() function shall return the value zero
when all the indicated I/O has completed successfully. Otherwise, lio_listio() shall return a value
of −1 and set errno to indicate the error.

In either case, the return value only indicates the success or failure of the lio_listio() call itself,
not the status of the individual I/O requests. In some cases one or more of the I/O requests
contained in the list may fail. Failure of an individual request does not prevent completion of
any other individual request. To determine the outcome of each I/O request, the application
shall examine the error status associated with each aiocb control block. The error statuses so
returned are identical to those returned as the result of an aio_read() or aio_write() function.

ERRORS
The lio_listio() function shall fail if:

[EAGAIN] The resources necessary to queue all the I/O requests were not available. The
application may check the error status for each aiocb to determine the
individual request(s) that failed.

[EAGAIN] The number of entries indicated by nent would cause the system-wide limit
{AIO_MAX} to be exceeded.

[EINVAL] The mode argument is not a proper value, or the value of nent was greater than
{AIO_LISTIO_MAX}.

[EINTR] A signal was delivered while waiting for all I/O requests to complete during
an LIO_WAIT operation. Note that, since each I/O operation invoked by
lio_listio() may possibly provoke a signal when it completes, this error return
may be caused by the completion of one (or more) of the very I/O operations
being awaited. Outstanding I/O requests are not canceled, and the application
shall examine each list element to determine whether the request was
initiated, canceled, or completed.

[EIO] One or more of the individual I/O operations failed. The application may
check the error status for each aiocb structure to determine the individual
request(s) that failed.

In addition to the errors returned by the lio_listio() function, if the lio_listio() function succeeds
or fails with errors of [EAGAIN], [EINTR], or [EIO], then some of the I/O specified by the list
may have been initiated. If the lio_listio() function fails with an error code other than [EAGAIN],
[EINTR], or [EIO], no operations from the list shall have been initiated. The I/O operation
indicated by each list element can encounter errors specific to the individual read or write
function being performed. In this event, the error status for each aiocb control block contains the
associated error code. The error codes that can be set are the same as would be set by a read() or
write() function, with the following additional error codes possible:

[EAGAIN] The requested I/O operation was not queued due to resource limitations.

[ECANCELED] The requested I/O was canceled before the I/O completed due to an explicit
aio_cancel() request.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 737

23961

23962

23963

23964

23965

23966

23967

23968

23969

23970

23971

23972

23973

23974

23975

23976

23977

23978

23979

23980

23981

23982

23983

23984

23985

23986

23987

23988

23989

23990

23991

23992

23993

23994

23995

23996

23997

23998

23999

24000

24001

24002

24003

24004

24005

24006

24007

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

lio_listio() System Interfaces

[EFBIG] The aiocbp−>aio_lio_opcode is LIO_WRITE, the file is a regular file,
aiocbp−>aio_nbytes is greater than 0, and the aiocbp−>aio_offset is greater than or
equal to the offset maximum in the open file description associated with
aiocbp−>aio_fildes.

[EINPROGRESS] The requested I/O is in progress.

[EOVERFLOW] The aiocbp−>aio_lio_opcode is LIO_READ, the file is a regular file,
aiocbp−>aio_nbytes is greater than 0, and the aiocbp−>aio_offset is before the
end-of-file and is greater than or equal to the offset maximum in the open file
description associated with aiocbp−>aio_fildes.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
Although it may appear that there are inconsistencies in the specified circumstances for error
codes, the [EIO] error condition applies when any circumstance relating to an individual
operation makes that operation fail. This might be due to a badly formulated request (for
example, the aio_lio_opcode field is invalid, and aio_error() returns [EINVAL]) or might arise from
application behavior (for example, the file descriptor is closed before the operation is initiated,
and aio_error() returns [EBADF]).

The limitation on the set of error codes returned when operations from the list shall have been
initiated enables applications to know when operations have been started and whether
aio_error() is valid for a specific operation.

FUTURE DIRECTIONS
None.

SEE ALSO
aio_read(), aio_write(), aio_error(), aio_return(), aio_cancel(), close(), exec , exit(), fork(), lseek(),
read(), the Base Definitions volume of IEEE Std 1003.1-200x, <aio.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

Large File Summit extensions are added.

Issue 6
The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Asynchronous Input and Output option.

The lio_listio() function is marked as part of the Asynchronous Input and Output option.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• In the DESCRIPTION, text is added to indicate that for regular files no data transfer occurs
past the offset maximum established in the open file description associated with
aiocbp−>aio_fildes. This change is to support large files.

• The [EBIG] and [EOVERFLOW] error conditions are defined. This change is to support
large files.

The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

The restrict keyword is added to the lio_listio() prototype for alignment with the
ISO/IEC 9899: 1999 standard.

738 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

24008

24009

24010

24011

24012

24013

24014

24015

24016

24017

24018

24019

24020

24021

24022

24023

24024

24025

24026

24027

24028

24029

24030

24031

24032

24033

24034

24035

24036

24037

24038

24039

24040

24041

24042

24043

24044

24045

24046

24047

24048

24049

24050

24051

24052

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces lio_listio()

Issue 6
IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/53 is applied, adding new text for
symmetry with the aio_read() and aio_write() functions to the DESCRIPTION.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/54 is applied, adding text to the
DESCRIPTION making it explicit that the user is required to keep the structure pointed to by
sig−>sigev_notify_attributes valid until the last asynchronous operation finished and the
notification has been sent.

Issue 7
The lio_listio() function is moved from the Asynchronous Input and Output option to the Base.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 739

24053

24054

24055

24056

24057

24058

24059

24060

24061

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

listen() System Interfaces

NAME
listen — listen for socket connections and limit the queue of incoming connections

SYNOPSIS
#include <sys/socket.h>

int listen(int socket, i nt backlog);

DESCRIPTION
The listen() function shall mark a connection-mode socket, specified by the socket argument, as
accepting connections.

The backlog argument provides a hint to the implementation which the implementation shall use
to limit the number of outstanding connections in the socket’s listen queue. Implementations
may impose a limit on backlog and silently reduce the specified value. Normally, a larger backlog
argument value shall result in a larger or equal length of the listen queue. Implementations shall
support values of backlog up to SOMAXCONN, defined in <sys/socket.h>.

The implementation may include incomplete connections in its listen queue. The limits on the
number of incomplete connections and completed connections queued may be different.

The implementation may have an upper limit on the length of the listen queue—either global or
per accepting socket. If backlog exceeds this limit, the length of the listen queue is set to the limit.

If listen() is called with a backlog argument value that is less than 0, the function behaves as if it
had been called with a backlog argument value of 0.

A backlog argument of 0 may allow the socket to accept connections, in which case the length of
the listen queue may be set to an implementation-defined minimum value.

The socket in use may require the process to have appropriate privileges to use the listen()
function.

RETURN VALUE
Upon successful completions, listen() shall return 0; otherwise, −1 shall be returned and errno set
to indicate the error.

ERRORS
The listen() function shall fail if:

[EBADF] The socket argument is not a valid file descriptor.

[EDESTADDRREQ]
The socket is not bound to a local address, and the protocol does not support
listening on an unbound socket.

[EINVAL] The socket is already connected.

[ENOTSOCK] The socket argument does not refer to a socket.

[EOPNOTSUPP] The socket protocol does not support listen().

The listen() function may fail if:

[EACCES] The calling process does not have the appropriate privileges.

[EINVAL] The socket has been shut down.

[ENOBUFS] Insufficient resources are available in the system to complete the call.

740 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

24062

24063

24064

24065

24066

24067

24068

24069

24070

24071

24072

24073

24074

24075

24076

24077

24078

24079

24080

24081

24082

24083

24084

24085

24086

24087

24088

24089

24090

24091

24092

24093

24094

24095

24096

24097

24098

24099

24100

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces listen()

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
accept(), connect(), socket(), the Base Definitions volume of IEEE Std 1003.1-200x, <sys/socket.h>

CHANGE HISTORY
First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

The DESCRIPTION is updated to describe the relationship of SOMAXCONN and the backlog
argument.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 741

24101

24102

24103

24104

24105

24106

24107

24108

24109

24110

24111

24112

24113

24114

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

llabs() System Interfaces

NAME
llabs — return a long integer absolute value

SYNOPSIS
#include <stdlib.h>

long long llabs(long long i);

DESCRIPTION
Refer to labs().

742 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

24115

24116

24117

24118

24119

24120

24121

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces lldiv()

NAME
lldiv — compute quotient and remainder of a long division

SYNOPSIS
#include <stdlib.h>

lldiv_t lldiv(long long numer, l ong long denom);

DESCRIPTION
Refer to ldiv().

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 743

24122

24123

24124

24125

24126

24127

24128

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

llrint() System Interfaces

NAME
llrint, llrintf, llrintl — round to the nearest integer value using current rounding direction

SYNOPSIS
#include <math.h>

long long llrint(double x);
long long llrintf(float x);
long long llrintl(long double x);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

These functions shall round their argument to the nearest integer value, rounding according to
the current rounding direction.

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-
zero, an error has occurred.

RETURN VALUE
Upon successful completion, these functions shall return the rounded integer value.

MX If x is NaN, a domain error shall occur, and an unspecified value is returned.

If x is +Inf, a domain error shall occur and an unspecified value is returned.

If x is −Inf, a domain error shall occur and an unspecified value is returned.

If the correct value is positive and too large to represent as a long long, an unspecified value
MX shall be returned. On systems that support the IEC 60559 Floating-Point option, a domain error

shall occur;
CX otherwise, a domain error may occur.

If the correct value is negative and too large to represent as a long long, an unspecified value
MX shall be returned. On systems that support the IEC 60559 Floating-Point option, a domain error

shall occur;
CX otherwise, a domain error may occur.

ERRORS
These functions shall fail if:

MX Domain Error The x argument is NaN or ±Inf, or the correct value is not representable as an
integer.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [EDOM]. If the integer expression (math_errhandling
& MATH_ERREXCEPT) is non-zero, then the invalid floating-point exception
shall be raised.

These functions may fail if:

Domain Error The correct value is not representable as an integer.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [EDOM]. If the integer expression (math_errhandling
& MATH_ERREXCEPT) is non-zero, then the invalid floating-point exception

744 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

24129

24130

24131

24132

24133

24134

24135

24136

24137

24138

24139

24140

24141

24142

24143

24144

24145

24146

24147

24148

24149

24150

24151

24152

24153

24154

24155

24156

24157

24158

24159

24160

24161

24162

24163

24164

24165

24166

24167

24168

24169

24170

24171

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces llrint()

shall be raised.

EXAMPLES
None.

APPLICATION USAGE
On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling &
MATH_ERREXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
These functions provide floating-to-integer conversions. They round according to the current
rounding direction. If the rounded value is outside the range of the return type, the numeric
result is unspecified and the invalid floating-point exception is raised. When they raise no other
floating-point exception and the result differs from the argument, they raise the inexact floating-
point exception.

FUTURE DIRECTIONS
None.

SEE ALSO
feclearexcept(), fetestexcept(), lrint(), the Base Definitions volume of IEEE Std 1003.1-200x, Section
4.18, Treatment of Error Conditions for Mathematical Functions, <math.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7
ISO C TC2 #53 is applied.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 745

24172

24173

24174

24175

24176

24177

24178

24179

24180

24181

24182

24183

24184

24185

24186

24187

24188

24189

24190

24191

24192

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

llround() System Interfaces

NAME
llround, llroundf, llroundl — round to nearest integer value

SYNOPSIS
#include <math.h>

long long llround(double x);
long long llroundf(float x);
long long llroundl(long double x);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

These functions shall round their argument to the nearest integer value, rounding halfway cases
away from zero, regardless of the current rounding direction.

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-
zero, an error has occurred.

RETURN VALUE
Upon successful completion, these functions shall return the rounded integer value.

MX If x is NaN, a domain error shall occur, and an unspecified value is returned.

If x is +Inf, a domain error shall occur and an unspecified value is returned.

If x is −Inf, a domain error shall occur and an unspecified value is returned.

If the correct value is positive and too large to represent as a long long, an unspecified value
MX shall be returned. On systems that support the IEC 60559 Floating-Point option, a domain error

shall occur;
CX otherwise, a domain error may occur.

If the correct value is negative and too large to represent as a long long, an unspecified value
MX shall be returned. On systems that support the IEC 60559 Floating-Point option, a domain error

shall occur;
CX otherwise, a domain error may occur.

ERRORS
These functions shall fail if:

MX Domain Error The x argument is NaN or ±Inf, or the correct value is not representable as an
integer.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [EDOM]. If the integer expression (math_errhandling
& MATH_ERREXCEPT) is non-zero, then the invalid floating-point exception
shall be raised.

These functions may fail if:

Domain Error The correct value is not representable as an integer.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [EDOM]. If the integer expression (math_errhandling
& MATH_ERREXCEPT) is non-zero, then the invalid floating-point exception

746 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

24193

24194

24195

24196

24197

24198

24199

24200

24201

24202

24203

24204

24205

24206

24207

24208

24209

24210

24211

24212

24213

24214

24215

24216

24217

24218

24219

24220

24221

24222

24223

24224

24225

24226

24227

24228

24229

24230

24231

24232

24233

24234

24235

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces llround()

shall be raised.

EXAMPLES
None.

APPLICATION USAGE
On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling &
MATH_ERREXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
These functions differ from the llrint() functions in that the default rounding direction for the
llround() functions round halfway cases away from zero and need not raise the inexact floating-
point exception for non-integer arguments that round to within the range of the return type.

FUTURE DIRECTIONS
None.

SEE ALSO
feclearexcept(), fetestexcept(), lround(), the Base Definitions volume of IEEE Std 1003.1-200x,
Section 4.18, Treatment of Error Conditions for Mathematical Functions, <math.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7
ISO/IEC 9899: 1999 standard, Technical Corrigendum 2 #54 (SD5-XSH-ERN-75) is applied.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 747

24236

24237

24238

24239

24240

24241

24242

24243

24244

24245

24246

24247

24248

24249

24250

24251

24252

24253

24254

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

localeconv() System Interfaces

NAME
localeconv — return locale-specific information

SYNOPSIS
#include <locale.h>

struct lconv *localeconv(void);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

The localeconv() function shall set the components of an object with the type struct lconv with
the values appropriate for the formatting of numeric quantities (monetary and otherwise)
according to the rules of the current locale.

The members of the structure with type char * are pointers to strings, any of which (except
decimal_point) can point to "" , to indicate that the value is not available in the current locale or
is of zero length. The members with type char are non-negative numbers, any of which can be
{CHAR_MAX} to indicate that the value is not available in the current locale.

The members include the following:

char *decimal_point
The radix character used to format non-monetary quantities.

char *thousands_sep
The character used to separate groups of digits before the decimal-point character in
formatted non-monetary quantities.

char *grouping
A string whose elements taken as one-byte integer values indicate the size of each group of
digits in formatted non-monetary quantities.

char *int_curr_symbol
The international currency symbol applicable to the current locale. The first three characters
contain the alphabetic international currency symbol in accordance with those specified in
the ISO 4217: 2001 standard. The fourth character (immediately preceding the null byte) is
the character used to separate the international currency symbol from the monetary
quantity.

char *currency_symbol
The local currency symbol applicable to the current locale.

char *mon_decimal_point
The radix character used to format monetary quantities.

char *mon_thousands_sep
The separator for groups of digits before the decimal-point in formatted monetary
quantities.

char *mon_grouping
A string whose elements taken as one-byte integer values indicate the size of each group of
digits in formatted monetary quantities.

char *positive_sign
The string used to indicate a non-negative valued formatted monetary quantity.

748 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

24255

24256

24257

24258

24259

24260

24261

24262

24263

24264

24265

24266

24267

24268

24269

24270

24271

24272

24273

24274

24275

24276

24277

24278

24279

24280

24281

24282

24283

24284

24285

24286

24287

24288

24289

24290

24291

24292

24293

24294

24295

24296

24297

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces localeconv()

char *negative_sign
The string used to indicate a negative valued formatted monetary quantity.

char int_frac_digits
The number of fractional digits (those after the decimal-point) to be displayed in an
internationally formatted monetary quantity.

char frac_digits
The number of fractional digits (those after the decimal-point) to be displayed in a
formatted monetary quantity.

char p_cs_precedes
Set to 1 if the currency_symbol precedes the value for a non-negative formatted monetary
quantity. Set to 0 if the symbol succeeds the value.

char p_sep_by_space
Set to a value indicating the separation of the currency_symbol, the sign string, and the
value for a non-negative formatted monetary quantity.

char n_cs_precedes
Set to 1 if the currency_symbol precedes the value for a negative formatted monetary
quantity. Set to 0 if the symbol succeeds the value.

char n_sep_by_space
Set to a value indicating the separation of the currency_symbol, the sign string, and the
value for a negative formatted monetary quantity.

char p_sign_posn
Set to a value indicating the positioning of the positive_sign for a non-negative formatted
monetary quantity.

char n_sign_posn
Set to a value indicating the positioning of the negative_sign for a negative formatted
monetary quantity.

char int_p_cs_precedes
Set to 1 or 0 if the int_curr_symbol respectively precedes or succeeds the value for a non-
negative internationally formatted monetary quantity.

char int_n_cs_precedes
Set to 1 or 0 if the int_curr_symbol respectively precedes or succeeds the value for a
negative internationally formatted monetary quantity.

char int_p_sep_by_space
Set to a value indicating the separation of the int_curr_symbol, the sign string, and the
value for a non-negative internationally formatted monetary quantity.

char int_n_sep_by_space
Set to a value indicating the separation of the int_curr_symbol, the sign string, and the
value for a negative internationally formatted monetary quantity.

char int_p_sign_posn
Set to a value indicating the positioning of the positive_sign for a non-negative
internationally formatted monetary quantity.

char int_n_sign_posn
Set to a value indicating the positioning of the negative_sign for a negative internationally
formatted monetary quantity.

The elements of grouping and mon_grouping are interpreted according to the following:

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 749

24298

24299

24300

24301

24302

24303

24304

24305

24306

24307

24308

24309

24310

24311

24312

24313

24314

24315

24316

24317

24318

24319

24320

24321

24322

24323

24324

24325

24326

24327

24328

24329

24330

24331

24332

24333

24334

24335

24336

24337

24338

24339

24340

24341

24342

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

localeconv() System Interfaces

{CHAR_MAX} No further grouping is to be performed.

0 The previous element is to be repeatedly used for the remainder of the digits.

other The integer value is the number of digits that comprise the current group. The
next element is examined to determine the size of the next group of digits
before the current group.

The values of p_sep_by_space, n_sep_by_space, int_p_sep_by_space, and int_n_sep_by_space
are interpreted according to the following:

0 No space separates the currency symbol and value.

1 If the currency symbol and sign string are adjacent, a space separates them from the value;
otherwise, a space separates the currency symbol from the value.

2 If the currency symbol and sign string are adjacent, a space separates them; otherwise, a
space separates the sign string from the value.

For int_p_sep_by_space and int_n_sep_by_space, the fourth character of int_curr_symbol is
used instead of a space.

The values of p_sign_posn, n_sign_posn, int_p_sign_posn, and int_n_sign_posn are
interpreted according to the following:

0 Parentheses surround the quantity and currency_symbol or int_curr_symbol.

1 The sign string precedes the quantity and currency_symbol or int_curr_symbol.

2 The sign string succeeds the quantity and currency_symbol or int_curr_symbol.

3 The sign string immediately precedes the currency_symbol or int_curr_symbol.

4 The sign string immediately succeeds the currency_symbol or int_curr_symbol.

The implementation shall behave as if no function in this volume of IEEE Std 1003.1-200x calls
localeconv().

CX The localeconv() function need not be thread-safe. A function that is not required to be thread-
safe is not required to be reentrant.

RETURN VALUE
The localeconv() function shall return a pointer to the filled-in object. The application shall not
modify the structure pointed to by the return value which may be overwritten by a subsequent
call to localeconv(). In addition, calls to setlocale() with the categories LC_ALL, LC_MONETARY,
or LC_NUMERIC or calls to uselocale() which change the categories LC_MONETARY or
LC_NUMERIC may overwrite the contents of the structure.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
The following table illustrates the rules which may be used by four countries to format
monetary quantities.

Country Positive Format Negative Format International Format

Italy L.1.230 −L.1.230 ITL.1.230
Netherlands F 1.234,56 F −1.234,56 NLG 1.234,56
Norway kr1.234,56 kr1.234,56− NOK 1.234,56
Switzerland SFrs.1,234.56 SFrs.1,234.56C CHF 1,234.56

750 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

24343

24344

24345

24346

24347

24348

24349

24350

24351

24352

24353

24354

24355

24356

24357

24358

24359

24360

24361

24362

24363

24364

24365

24366

24367

24368

24369

24370

24371

24372

24373

24374

24375

24376

24377

24378

24379

24380

24381

24382

24383

24384

24385

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces localeconv()

For these four countries, the respective values for the monetary members of the structure
returned by localeconv() are:

Italy Netherlands Norway Switzerland

int_curr_symbol "ITL." "NLG " " NOK " "CHF "
currency_symbol "L." "F" "kr" "SFrs."
mon_decimal_point "" "," "," "."
mon_thousands_sep "." "." "." ","
mon_grouping "\3" "\3" "\3" "\3"
positive_sign "" "" "" ""
negative_sign "-" "-" "-" "C"
int_frac_digits 0 2 2 2
frac_digits 0 2 2 2
p_cs_precedes 1 1 1 1
p_sep_by_space 0 1 0 0
n_cs_precedes 1 1 1 1
n_sep_by_space 0 1 0 0
p_sign_posn 1 1 1 1
n_sign_posn 1 4 2 2
int_p_cs_precedes 1 1 1 1
int_n_cs_precedes 1 1 1 1
int_p_sep_by_space 0 0 0 0
int_n_sep_by_space 0 0 0 0
int_p_sign_posn 1 1 1 1
int_n_sign_posn 1 4 4 2

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
isalpha(), isascii(), nl_langinfo(), printf(), scanf(), setlocale(), strcat(), strchr(), strcmp(), strcoll(),
strcpy(), strftime(), strlen(), strpbrk(), strspn(), strtok(), strxfrm(), strtod(), uselocale(), the Base
Definitions volume of IEEE Std 1003.1-200x, <langinfo.h>, <locale.h>

CHANGE HISTORY
First released in Issue 4. Derived from the ANSI C standard.

Issue 6
A note indicating that this function need not be reentrant is added to the DESCRIPTION.

The RETURN VALUE section is rewritten to avoid use of the term ‘‘must’’.

This reference page is updated for alignment with the ISO/IEC 9899: 1999 standard.

ISO/IEC 9899: 1999 standard, Technical Corrigendum 1 is incorporated.

IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/31 is applied, removing references to
int_curr_symbol and updating the descriptions of p_sep_by_space and n_sep_by_space. These
changes are for alignment with the ISO C standard.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 751

24386

24387

24388

24389

24390

24391

24392

24393

24394

24395

24396

24397

24398

24399

24400

24401

24402

24403

24404

24405

24406

24407

24408

24409

24410

24411

24412

24413

24414

24415

24416

24417

24418

24419

24420

24421

24422

24423

24424

24425

24426

24427

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

localtime() System Interfaces

NAME
localtime, localtime_r — convert a time value to a broken-down local time

SYNOPSIS
#include <time.h>

struct tm *localtime(const time_t * timer);
CX struct tm *localtime_r(const time_t *restrict timer,

struct tm *restrict result);

DESCRIPTION
CX For localtime(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of IEEE Std 1003.1-200x defers to the ISO C standard.

The localtime() function shall convert the time in seconds since the Epoch pointed to by timer
into a broken-down time, expressed as a local time. The function corrects for the timezone and

CX any seasonal time adjustments. Local timezone information is used as though localtime() calls
tzset().

The relationship between a time in seconds since the Epoch used as an argument to localtime()
and the tm structure (defined in the <time.h> header) is that the result shall be as specified in
the expression given in the definition of seconds since the Epoch (see the Base Definitions
volume of IEEE Std 1003.1-200x, Section 4.14, Seconds Since the Epoch) corrected for timezone
and any seasonal time adjustments, where the names in the structure and in the expression
correspond.

The same relationship shall apply for localtime_r().

The localtime() function need not be thread-safe. A function that is not required to be thread-safe
is not required to be reentrant.

The asctime(), ctime(), gmtime(), and localtime() functions shall return values in one of two static
objects: a broken-down time structure and an array of type char. Execution of any of the
functions may overwrite the information returned in either of these objects by any of the other
functions.

The localtime_r() function shall convert the time in seconds since the Epoch pointed to by timer
into a broken-down time stored in the structure to which result points. The localtime_r() function
shall also return a pointer to that same structure.

Unlike localtime(), the reentrant version is not required to set tzname.

If the reentrant version does not set tzname, it shall not set daylight and shall not set timezone.

RETURN VALUE
Upon successful completion, the localtime() function shall return a pointer to the broken-down

CX time structure. If an error is detected, localtime() shall return a null pointer and set errno to
indicate the error.

Upon successful completion, localtime_r() shall return a pointer to the structure p

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces localtime()

ERRORS
CX The localtime() and localtime_r() functions shall fail if:

CX [EOVERFLOW] The result cannot be represented.

EXAMPLES

Getting the Local Date and Time

The following example uses the time() function to calculate the time elapsed, in seconds, since
January 1, 1970 0:00 UTC (the Epoch), localtime() to convert that value to a broken-down time,
and asctime() to convert the broken-down time values into a printable string.

#include <stdio.h>
#include <time.h>

int main(void)
{

time_t result;

result = time(NULL);
printf("%s%ju secs since the Epoch\n",

asctime(localtime(&result)),
(uintmax_t)result);

return(0);
}

This example writes the current time to stdout in a form like this:

Wed Jun 26 10:32:15 1996
835810335 secs since the Epoch

Getting the Modification Time for a File

The following example gets the modification time for a file. The localtime() function converts the
time_t value of the last modification date, obtained by a previous call to stat(), into a tm
structure that contains the year, month, day, and so on.

#include <time.h>
...
struct stat statbuf;
...
tm = localtime(&statbuf.st_mtime);
...

Timing an Event

The following example gets the current time, converts it to a string using localtime() and
asctime(), and prints it to standard output using fputs(). It then prints the number of minutes to
an event being timed.

#include <time.h>
#include <stdio.h>
...
time_t now;
int minutes_to_event;
...
time(&now);
printf("The time is ");

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 753

24468

24469

24470

24471

24472

24473

24474

24475

24476

24477

24478

24479

24480

24481

24482

24483

24484

24485

24486

24487

24488

24489

24490

24491

24492

24493

24494

24495

24496

24497

24498

24499

24500

24501

24502

24503

24504

24505

24506

24507

24508

24509

24510

24511

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces lockf()

NAME
lockf — record locking on files

SYNOPSIS
XSI #include <unistd.h>

int lockf(int fildes, i nt function, o ff_t size);

DESCRIPTION
The lockf() function shall lock sections of a file with advisory-mode locks. Calls to lockf() from
threads in other processes which attempt to lock the locked file section shall either return an
error value or block until the section becomes unlocked. All the locks for a process are removed
when the process terminates. Record locking with lockf() shall be supported for regular files and
may be supported for other files.

The fildes argument is an open file descriptor. To establish a lock with this function, the file
descriptor shall be opened with write-only permission (O_WRONLY) or with read/write
permission (O_RDWR).

The function argument is a control value which specifies the action to be taken. The permissible
values for function are defined in <unistd.h> as follows:

Function Description

F_ULOCK Unlock locked sections.
F_LOCK Lock a section for exclusive use.
F_TLOCK Test and lock a section for exclusive use.
F_TEST Test a section for locks by other processes.

F_TEST shall detect if a lock by another process is present on the specified section.

F_LOCK and F_TLOCK shall both lock a section of a file if the section is available.

F_ULOCK shall remove locks from a section of the file.

The size argument is the number of contiguous bytes to be locked or unlocked. The section to be
locked or unlocked starts at the current offset in the file and extends forward for a positive size
or backward for a negative size (the preceding bytes up to but not including the current offset).
If size is 0, the section from the current offset through the largest possible file offset shall be
locked (that is, from the current offset through the present or any future end-of-file). An area
need not be allocated to the file to be locked because locks may exist past the end-of-file.

The sections locked with F_LOCK or F_TLOCK may, in whole or in part, contain or be contained
by a previously locked section for the same process. When this occurs, or if adjacent locked
sections would occur, the sections shall be combined into a single locked section. If the request
would cause the number of locks to exceed a system-imposed limit, the request shall fail.

F_LOCK and F_TLOCK requests differ only by the action taken if the section is not available.
F_LOCK shall block the calling thread until the section is available. F_TLOCK shall cause the
function to fail if the section is already locked by another process.

File locks shall be released on first close by the locking process of any file descriptor for the file.

F_ULOCK requests may release (wholly or in part) one or more locked sections controlled by the
process. Locked sections shall be unlocked starting at the current file offset through size bytes or
to the end-of-file if size is (off_t)0. When all of a locked section is not released (that is, when the
beginning or end of the area to be unlocked falls within a locked section), the remaining portions
of that section shall remain locked by the process. Releasing the center portion of a locked

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 755

24551

24552

24553

24554

24555

24556

24557

24558

24559

24560

24561

24562

24563

24564

24565

24566

24567

24568

24569

24570

24571

24572

24573

24574

24575

24576

24577

24578

24579

24580

24581

24582

24583

24584

24585

24586

24587

24588

24589

24590

24591

24592

24593

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

lockf() System Interfaces

section shall cause the remaining locked beginning and end portions to become two separate
locked sections. If the request would cause the number of locks in the system to exceed a system-
imposed limit, the request shall fail.

A potential for deadlock occurs if the threads of a process controlling a locked section are
blocked by accessing a locked section of another process. If the system detects that deadlock
would occur, lockf() shall fail with an [EDEADLK] error.

The interaction between fcntl() and lockf() locks is unspecified.

Blocking on a section shall be interrupted by any signal.

An F_ULOCK request in which size is non-zero and the offset of the last byte of the requested
section is the maximum value for an object of type off_t, when the process has an existing lock
in which size is 0 and which includes the last byte of the requested section, shall be treated as a
request to unlock from the start of the requested section with a size equal to 0. Otherwise, an
F_ULOCK request shall attempt to unlock only the requested section.

Attempting to lock a section of a file that is associated with a buffered stream produces
unspecified results.

RETURN VALUE
Upon successful completion, lockf() shall return 0. Otherwise, it shall return −1, set errno to
indicate an error, and existing locks shall not be changed.

ERRORS
The lockf() function shall fail if:

[EBADF] The fildes argument is not a valid open file descriptor; or function is F_LOCK
or F_TLOCK and fildes is not a valid file descriptor open for writing.

[EACCES] or [EAGAIN]
The function argument is F_TLOCK or F_TEST and the section is already
locked by another process.

[EDEADLK] The function argument is F_LOCK and a deadlock is detected.

[EINTR] A signal was caught during execution of the function.

[EINVAL] The function argument is not one of F_LOCK, F_TLOCK, F_TEST, or
F_ULOCK; or size plus the current file offset is less than 0.

[EOVERFLOW] The offset of the first, or if size is not 0 then the last, byte in the requested
section cannot be represented correctly in an object of type off_t.

The lockf() function may fail if:

[EAGAIN] The function argument is F_LOCK or F_TLOCK and the file is mapped with
mmap().

[EDEADLK] or [ENOLCK]
The function argument is F_LOCK, F_TLOCK, or F_ULOCK, and the request
would cause the number of locks to exceed a system-imposed limit.

[EOPNOTSUPP] or [EINVAL]
The implementation does not support the locking of files of the type indicated
by the fildes argument.

756 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

24594

24595

24596

24597

24598

24599

24600

24601

24602

24603

24604

24605

24606

24607

24608

24609

24610

24611

24612

24613

24614

24615

24616

24617

24618

24619

24620

24621

24622

24623

24624

24625

24626

24627

24628

24629

24630

24631

24632

24633

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces lockf()

EXAMPLES

Locking a Portion of a File

In the following example, a file named /home/cnd/mod1 is being modified. Other processes that
use locking are prevented from changing it during this process. Only the first 10 000 bytes are
locked, and the lock call fails if another process has any part of this area locked already.

#include <fcntl.h>
#include <unistd.h>

int fildes;
int status;
...
fildes = open("/home/cnd/mod1", O_RDWR);
status = lockf(fildes, F_TLOCK, (off_t)10000);

APPLICATION USAGE
Record-locking should not be used in combination with the fopen(), fread(), fwrite(), and other
stdio functions. Instead, the more primitive, non-buffered functions (such as open()) should be
used. Unexpected results may occur in processes that do buffering in the user address space. The
process may later read/write data which is/was locked. The stdio functions are the most
common source of unexpected buffering.

The alarm() function may be used to provide a timeout facility in applications requiring it.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
alarm(), chmod(), close(), creat(), fcntl(), fopen(), mmap(), open(), read(), write(), the Base
Definitions volume of IEEE Std 1003.1-200x, <unistd.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Large File Summit extensions are added. In particular, the description of [EINVAL] is clarified
and moved from optional to mandatory status.

A note is added to the DESCRIPTION indicating the effects of attempting to lock a section of a
file that is associated with a buffered stream.

Issue 6
The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

Issue 7
Austin Group Interpretation 1003.1-2001 #054 is applied, updating the DESCRIPTION.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 757

24634

24635

24636

24637

24638

24639

24640

24641

24642

24643

24644

24645

24646

24647

24648

24649

24650

24651

24652

24653

24654

24655

24656

24657

24658

24659

24660

24661

24662

24663

24664

24665

24666

24667

24668

24669

24670

24671

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

log() System Interfaces

NAME
log, logf, logl — natural logarithm function

SYNOPSIS
#include <math.h>

double log(double x);
float logf(float x);
long double logl(long double x);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

These functions shall compute the natural logarithm of their argument x, log
e
(x).

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-
zero, an error has occurred.

RETURN VALUE
Upon successful completion, these functions shall return the natural logarithm of x.

If x is ±0, a pole error shall occur and log(), logf(), and logl() shall return −HUGE_VAL,
−HUGE_VALF, and −HUGE_VALL, respectively.

MXMX For finite values of x that are less than 0, or if x is −Inf, a domain error shall occur, and either a
NaN (if supported), or an implementation-defined value shall be returned.

MX If x is NaN, a NaN shall be returned.

If x is 1, +0 shall be returned.

If x is +Inf, x shall be returned.

ERRORS
These functions shall fail if:

MX Domain Error The finite value of x is negative, or x is −Inf.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [EDOM]. If the integer expression (math_errhandling
& MATH_ERREXCEPT) is non-zero, then the invalid floating-point exception
shall be raised.

Pole Error The value of x is zero.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the divide-by-zero
floating-point exception shall be raised.

758 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

24672

24673

24674

24675

24676

24677

24678

24679

24680

24681

24682

24683

24684

24685

24686

24687

24688

24689

24690

24691

24692

24693

24694

24695

24696

24697

24698

24699

24700

24701

24702

24703

24704

24705

24706

24707

24708

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces log()

EXAMPLES
None.

APPLICATION USAGE
On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling &
MATH_ERREXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
exp(), feclearexcept(), fetestexcept(), isnan(), log10(), log1p(), the Base Definitions volume of
IEEE Std 1003.1-200x, Section 4.18, Treatment of Error Conditions for Mathematical Functions,
<math.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The DESCRIPTION is updated to indicate how an application should check for an error. This
text was previously published in the APPLICATION USAGE section.

Issue 6
The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

The logf() and logl() functions are added for alignment with the ISO/IEC 9899: 1999 standard.

The DESCRIPTION, RETURN VALUE, ERRORS, and APPLICATION USAGE sections are
revised to align with the ISO/IEC 9899: 1999 standard.

IEC 60559: 1989 standard floating-point extensions over the ISO/IEC 9899: 1999 standard are
marked.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 759

24709

24710

24711

24712

24713

24714

24715

24716

24717

24718

24719

24720

24721

24722

24723

24724

24725

24726

24727

24728

24729

24730

24731

24732

24733

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

log10() System Interfaces

NAME
log10, log10f, log10l — base 10 logarithm function

SYNOPSIS
#include <math.h>

double log10(double x);
float log10f(float x);
long double log10l(long double x);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

These functions shall compute the base 10 logarithm of their argument x, log
10

(x).

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-
zero, an error has occurred.

RETURN VALUE
Upon successful completion, these functions shall return the base 10 logarithm of x.

If x is ±0, a pole error shall occur and log10(), log10f(), and log10l() shall return −HUGE_VAL,
−HUGE_VALF, and −HUGE_VALL, respectively.

MXMX For finite values of x that are less than 0, or if x is −Inf, a domain error shall occur, and either a
NaN (if supported), or an implementation-defined value shall be returned.

MX If x is NaN, a NaN shall be returned.

If x is 1, +0 shall be returned.

If x is +Inf, +Inf shall be returned.

ERRORS
These functions shall fail if:

MX Domain Error The finite value of x is negative, or x is −Inf.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [EDOM]. If the integer expression (math_errhandling
& MATH_ERREXCEPT) is non-zero, then the invalid floating-point exception
shall be raised.

Pole Error The value of x is zero.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the divide-by-zero
floating-point exception shall be raised.

760 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

24734

24735

24736

24737

24738

24739

24740

24741

24742

24743

24744

24745

24746

24747

24748

24749

24750

24751

24752

24753

24754

24755

24756

24757

24758

24759

24760

24761

24762

24763

24764

24765

24766

24767

24768

24769

24770

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces log10()

EXAMPLES
None.

APPLICATION USAGE
On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling &
MATH_ERREXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
feclearexcept(), fetestexcept(), isnan(), log(), pow(), the Base Definitions volume of
IEEE Std 1003.1-200x, Section 4.18, Treatment of Error Conditions for Mathematical Functions,
<math.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The DESCRIPTION is updated to indicate how an application should check for an error. This
text was previously published in the APPLICATION USAGE section.

Issue 6
The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

The log10f() and log10l() functions are added for alignment with the ISO/IEC 9899: 1999
standard.

The DESCRIPTION, RETURN VALUE, ERRORS, and APPLICATION USAGE sections are
revised to align with the ISO/IEC 9899: 1999 standard.

IEC 60559: 1989 standard floating-point extensions over the ISO/IEC 9899: 1999 standard are
marked.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 761

24771

24772

24773

24774

24775

24776

24777

24778

24779

24780

24781

24782

24783

24784

24785

24786

24787

24788

24789

24790

24791

24792

24793

24794

24795

24796

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

log1p() System Interfaces

NAME
log1p, log1pf, log1pl — compute a natural logarithm

SYNOPSIS
#include <math.h>

double log1p(double x);
float log1pf(float x);
long double log1pl(long double x);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

These functions shall compute log
e
(1.0 + x).

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-
zero, an error has occurred.

RETURN VALUE
Upon successful completion, these functions shall return the natural logarithm of 1.0 + x.

If x is −1, a pole error shall occur and log1p(), log1pf(), and log1pl() shall return −HUGE_VAL,
−HUGE_VALF, and −HUGE_VALL, respectively.

MXMX For finite values of x that are less than −1, or if x is −Inf, a domain error shall occur, and either a
NaN (if supported), or an implementation-defined value shall be returned.

MX If x is NaN, a NaN shall be returned.

If x is ±0, or +Inf, x shall be returned.

If x is subnormal, a range error may occur and x should be returned.

ERRORS
These functions shall fail if:

MX Domain Error The finite value of x is less than −1, or x is −Inf.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [EDOM]. If the integer expression (math_errhandling
& MATH_ERREXCEPT) is non-zero, then the invalid floating-point exception
shall be raised.

Pole Error The value of x is −1.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the divide-by-zero
floating-point exception shall be raised.

These functions may fail if:

MX Range Error The value of x is subnormal.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the underflow

762 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

24797

24798

24799

24800

24801

24802

24803

24804

24805

24806

24807

24808

24809

24810

24811

24812

24813

24814

24815

24816

24817

24818

24819

24820

24821

24822

24823

24824

24825

24826

24827

24828

24829

24830

24831

24832

24833

24834

24835

24836

24837

24838

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces log1p()

floating-point exception shall be raised.

EXAMPLES
None.

APPLICATION USAGE
On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling &
MATH_ERREXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
feclearexcept(), fetestexcept(), log(), the Base Definitions volume of IEEE Std 1003.1-200x, Section
4.18, Treatment of Error Conditions for Mathematical Functions, <math.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Issue 6
The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

The log1p() function is no longer marked as an extension.

The log1pf() and log1pl() functions are added for alignment with the ISO/IEC 9899: 1999
standard.

The DESCRIPTION, RETURN VALUE, ERRORS, and APPLICATION USAGE sections are
revised to align with the ISO/IEC 9899: 1999 standard.

IEC 60559: 1989 standard floating-point extensions over the ISO/IEC 9899: 1999 standard are
marked.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 763

24839

24840

24841

24842

24843

24844

24845

24846

24847

24848

24849

24850

24851

24852

24853

24854

24855

24856

24857

24858

24859

24860

24861

24862

24863

24864

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

log2() System Interfaces

NAME
log2, log2f, log2l — compute base 2 logarithm functions

SYNOPSIS
#include <math.h>

double log2(double x);
float log2f(float x);
long double log2l(long double x);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

These functions shall compute the base 2 logarithm of their argument x, log2(x).

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-
zero, an error has occurred.

RETURN VALUE
Upon successful completion, these functions shall return the base 2 logarithm of x.

If x is ±0, a pole error shall occur and log2(), log2f(), and log2l() shall return −HUGE_VAL,
−HUGE_VALF, and −HUGE_VALL, respectively.

MXMX For finite values of x that are less than 0, or if x is −Inf, a domain error shall occur, and either a
NaN (if supported), or an implementation-defined value shall be returned.

MX If x is NaN, a NaN shall be returned.

If x is 1, +0 shall be returned.

If x is +Inf, x shall be returned.

ERRORS
These functions shall fail if:

MX Domain Error The finite value of x is less than zero, or x is −Inf.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [EDOM]. If the integer expression (math_errhandling
& MATH_ERREXCEPT) is non-zero, then the invalid floating-point exception
shall be raised.

Pole Error The value of x is zero.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the divide-by-zero
floating-point exception shall be raised.

764 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

24865

24866

24867

24868

24869

24870

24871

24872

24873

24874

24875

24876

24877

24878

24879

24880

24881

24882

24883

24884

24885

24886

24887

24888

24889

24890

24891

24892

24893

24894

24895

24896

24897

24898

24899

24900

24901

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces log2()

EXAMPLES
None.

APPLICATION USAGE
On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling &
MATH_ERREXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
feclearexcept(), fetestexcept(), log(), the Base Definitions volume of IEEE Std 1003.1-200x, Section
4.18, Treatment of Error Conditions for Mathematical Functions, <math.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 765

24902

24903

24904

24905

24906

24907

24908

24909

24910

24911

24912

24913

24914

24915

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

logb() System Interfaces

NAME
logb, logbf, logbl — radix-independent exponent

SYNOPSIS
#include <math.h>

double logb(double x);
float logbf(float x);
long double logbl(long double x);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

These functions shall compute the exponent of x, which is the integral part of log
r

| x |, as a
signed floating-point value, for non-zero x, where r is the radix of the machine’s floating-point
arithmetic, which is the value of FLT_RADIX defined in the <float.h> header.

If x is subnormal it is treated as though it were normalized; thus for finite positive x:

1 <= x * F LT_RADIX−logb(x) < FLT_RADIX

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-
zero, an error has occurred.

RETURN VALUE
Upon successful completion, these functions shall return the exponent of x.

If x is ±0, logb(), logbf(), and logbl() shall return −HUGE_VAL, −HUGE_VALF, and
MX −HUGE_VALL, respectively. On systems that support the IEC 60559 Floating-Point option, a

pole error shall occur;
CX otherwise, a pole error may occur.

MX If x is NaN, a NaN shall be returned.

MX If x is ±Inf, +Inf shall be returned.

ERRORS
These functions shall fail if:

MX Pole Error The value of x is ±0.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the divide-by-zero
floating-point exception shall be raised.

These functions may fail if:

Pole Error The value of x is 0.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the divide-by-zero
floating-point exception shall be raised.

766 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

24916

24917

24918

24919

24920

24921

24922

24923

24924

24925

24926

24927

24928

24929

24930

24931

24932

24933

24934

24935

24936

24937

24938

24939

24940

24941

24942

24943

24944

24945

24946

24947

24948

24949

24950

24951

24952

24953

24954

24955

24956

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces logb()

EXAMPLES
None.

APPLICATION USAGE
On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling &
MATH_ERREXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
feclearexcept(), fetestexcept(), ilogb(), scalbln(), the Base Definitions volume of
IEEE Std 1003.1-200x, Section 4.18, Treatment of Error Conditions for Mathematical Functions,
<float.h>, <math.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Issue 6
The logb() function is no longer marked as an extension.

The logbf() and logbl() functions are added for alignment with the ISO/IEC 9899: 1999 standard.

The DESCRIPTION, RETURN VALUE, ERRORS, and APPLICATION USAGE sections are
revised to align with the ISO/IEC 9899: 1999 standard.

IEC 60559: 1989 standard floating-point extensions over the ISO/IEC 9899: 1999 standard are
marked.

Issue 7
ISO/IEC 9899: 1999 standard, Technical Corrigendum 2 #50 (SD5-XSH-ERN-76) is applied.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 767

24957

24958

24959

24960

24961

24962

24963

24964

24965

24966

24967

24968

24969

24970

24971

24972

24973

24974

24975

24976

24977

24978

24979

24980

24981

24982

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

logf() System Interfaces

NAME
logf, logl — natural logarithm function

SYNOPSIS
#include <math.h>

float logf(float x);
long double logl(long double x);

DESCRIPTION
Refer to log().

768 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

24983

24984

24985

24986

24987

24988

24989

24990

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces longjmp()

NAME
longjmp — non-local goto

SYNOPSIS
#include <setjmp.h>

void longjmp(jmp_buf env, i nt val);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

The longjmp() function shall restore the environment saved by the most recent invocation of
setjmp() in the same thread, with the corresponding jmp_buf argument. If there is no such
invocation, or if the function containing the invocation of setjmp() has terminated execution in
the interim, or if the invocation of setjmp() was within the scope of an identifier with variably

CX modified type and execution has left that scope in the interim, the behavior is undefined. It is
unspecified whether longjmp() restores the signal mask, leaves the signal mask unchanged, or
restores it to its value at the time setjmp() was called.

All accessible objects have values, and all other components of the abstract machine have state
(for example, floating-point status flags and open files), as of the time longjmp() was called,
except that the values of objects of automatic storage duration are unspecified if they meet all
the following conditions:

• They are local to the function containing the corresponding setjmp() invocation.

• They do not have volatile-qualified type.

• They are changed between the setjmp() invocation and longjmp() call.

CX As it bypasses the usual function call and return mechanisms, longjmp() shall execute correctly
in contexts of interrupts, signals, and any of their associated functions. However, if longjmp() is
invoked from a nested signal handler (that is, from a function invoked as a result of a signal
raised during the handling of another signal), the behavior is undefined.

The effect of a call to longjmp() where initialization of the jmp_buf structure was not performed
in the calling thread is undefined.

RETURN VALUE
After longjmp() is completed, program execution continues as if the corresponding invocation of
setjmp() had just returned the value specified by val. The longjmp() function shall not cause
setjmp() to return 0; if val is 0, setjmp() shall return 1.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
Applications whose behavior depends on the value of the signal mask should not use longjmp()
and setjmp(), since their effect on the signal mask is unspecified, but should instead use the
siglongjmp() and sigsetjmp() functions (which can save and restore the signal mask under
application control).

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 769

24991

24992

24993

24994

24995

24996

24997

24998

24999

25000

25001

25002

25003

25004

25005

25006

25007

25008

25009

25010

25011

25012

25013

25014

25015

25016

25017

25018

25019

25020

25021

25022

25023

25024

25025

25026

25027

25028

25029

25030

25031

25032

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

longjmp() System Interfaces

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
setjmp(), sigaction(), siglongjmp(), sigsetjmp(), the Base Definitions volume of
IEEE Std 1003.1-200x, <setjmp.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The DESCRIPTION is updated for alignment with the POSIX Threads Extension.

Issue 6
Extensions beyond the ISO C standard are marked.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The DESCRIPTION now explicitly makes longjmp()’s effect on the signal mask
unspecified.

The DESCRIPTION is updated for alignment with the ISO/IEC 9899: 1999 standard.

770 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

25033

25034

25035

25036

25037

25038

25039

25040

25041

25042

25043

25044

25045

25046

25047

25048

25049

25050

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces lrand48()

NAME
lrand48 — generate uniformly distributed pseudo-random non-negative long integers

SYNOPSIS
XSI #include <stdlib.h>

long lrand48(void);

DESCRIPTION
Refer to drand48().

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 771

25051

25052

25053

25054

25055

25056

25057

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

lrint() System Interfaces

NAME
lrint, lrintf, lrintl — round to nearest integer value using current rounding direction

SYNOPSIS
#include <math.h>

long lrint(double x);
long lrintf(float x);
long lrintl(long double x);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

These functions shall round their argument to the nearest integer value, rounding according to
the current rounding direction.

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-
zero, an error has occurred.

RETURN VALUE
Upon successful completion, these functions shall return the rounded integer value.

MX If x is NaN, a domain error shall occur and an unspecified value is returned.

If x is +Inf, a domain error shall occur and an unspecified value is returned.

If x is −Inf, a domain error shall occur and an unspecified value is returned.

If the correct value is positive and too large to represent as a long, an unspecified value shall be
MX returned. On systems that support the IEC 60559 Floating-Point option, a domain error shall

occur;
CX otherwise, a domain error may occur.

If the correct value is negative and too large to represent as a long, an unspecified value shall be
MX returned. On systems that support the IEC 60559 Floating-Point option, a domain error shall

occur;
CX otherwise, a domain error may occur.

ERRORS
These functions shall fail if:

MX Domain Error The x argument is NaN or ±Inf, or the correct value is not representable as an
integer.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [EDOM]. If the integer expression (math_errhandling
& MATH_ERREXCEPT) is non-zero, then the invalid floating-point exception
shall be raised.

These functions may fail if:

Domain Error The correct value is not representable as an integer.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [EDOM]. If the integer expression (math_errhandling
& MATH_ERREXCEPT) is non-zero, then the invalid floating-point exception

772 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

25058

25059

25060

25061

25062

25063

25064

25065

25066

25067

25068

25069

25070

25071

25072

25073

25074

25075

25076

25077

25078

25079

25080

25081

25082

25083

25084

25085

25086

25087

25088

25089

25090

25091

25092

25093

25094

25095

25096

25097

25098

25099

25100

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces lrint()

shall be raised.

EXAMPLES
None.

APPLICATION USAGE
On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling &
MATH_ERREXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
These functions provide floating-to-integer conversions. They round according to the current
rounding direction. If the rounded value is outside the range of the return type, the numeric
result is unspecified and the invalid floating-point exception is raised. When they raise no other
floating-point exception and the result differs from the argument, they raise the inexact floating-
point exception.

FUTURE DIRECTIONS
None.

SEE ALSO
feclearexcept(), fetestexcept(), llrint(), the Base Definitions volume of IEEE Std 1003.1-200x,
Section 4.18, Treatment of Error Conditions for Mathematical Functions, <math.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7
ISO/IEC 9899: 1999 standard, Technical Corrigendum 2 #53 (SD5-XSH-ERN-77) is applied.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 773

25101

25102

25103

25104

25105

25106

25107

25108

25109

25110

25111

25112

25113

25114

25115

25116

25117

25118

25119

25120

25121

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

lround() System Interfaces

NAME
lround, lroundf, lroundl — round to nearest integer value

SYNOPSIS
#include <math.h>

long lround(double x);
long lroundf(float x);
long lroundl(long double x);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

These functions shall round their argument to the nearest integer value, rounding halfway cases
away from zero, regardless of the current rounding direction.

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-
zero, an error has occurred.

RETURN VALUE
Upon successful completion, these functions shall return the rounded integer value.

MX If x is NaN, a domain error shall occur and an unspecified value is returned.

If x is +Inf, a domain error shall occur and an unspecified value is returned.

If x is −Inf, a domain error shall occur and an unspecified value is returned.

If the correct value is positive and too large to represent as a long, an unspecified value shall be
MX returned. On systems that support the IEC 60559 Floating-Point option, a domain shall occur;
CX otherwise, a domain error may occur.

If the correct value is negative and too large to represent as a long, an unspecified value shall be
MX returned. On systems that support the IEC 60559 Floating-Point option, a domain shall occur;
CX otherwise, a domain error may occur.

ERRORS
These functions shall fail if:

MX Domain Error The x argument is NaN or ±Inf, or the correct value is not representable as an
integer.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [EDOM]. If the integer expression (math_errhandling
& MATH_ERREXCEPT) is non-zero, then the invalid floating-point exception
shall be raised.

These functions may fail if:

Domain Error The correct value is not representable as an integer.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [EDOM]. If the integer expression (math_errhandling
& MATH_ERREXCEPT) is non-zero, then the invalid floating-point exception
shall be raised.

774 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

25122

25123

25124

25125

25126

25127

25128

25129

25130

25131

25132

25133

25134

25135

25136

25137

25138

25139

25140

25141

25142

25143

25144

25145

25146

25147

25148

25149

25150

25151

25152

25153

25154

25155

25156

25157

25158

25159

25160

25161

25162

25163

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces lround()

EXAMPLES
None.

APPLICATION USAGE
On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling &
MATH_ERREXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
These functions differ from the lrint() functions in the default rounding direction, with the
lround() functions rounding halfway cases away from zero and needing not to raise the inexact
floating-point exception for non-integer arguments that round to within the range of the return
type.

FUTURE DIRECTIONS
None.

SEE ALSO
feclearexcept(), fetestexcept(), llround(), the Base Definitions volume of IEEE Std 1003.1-200x,
Section 4.18, Treatment of Error Conditions for Mathematical Functions, <math.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7
ISO/IEC 9899: 1999 standard, Technical Corrigendum 2 #54 (SD5-XSH-ERN-78) is applied.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 775

25164

25165

25166

25167

25168

25169

25170

25171

25172

25173

25174

25175

25176

25177

25178

25179

25180

25181

25182

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

lsearch() System Interfaces

NAME
lsearch, lfind — linear search and update

SYNOPSIS
XSI #include <search.h>

void *lsearch(const void * key, v oid * base, s ize_t * nelp, s ize_t width,
int (* compar)(const void *, const void *));

void *lfind(const void * key, c onst void * base, s ize_t * nelp,
size_t width, int (* compar)(const void *, const void *));

DESCRIPTION
The lsearch() function shall linearly search the table and return a pointer into the table for the
matching entry. If the entry does not occur, it shall be added at the end of the table. The key
argument points to the entry to be sought in the table. The base argument points to the first
element in the table. The width argument is the size of an element in bytes. The nelp argument
points to an integer containing the current number of elements in the table. The integer to which
nelp points shall be incremented if the entry is added to the table. The compar argument points to
a comparison function which the application shall supply (for example, strcmp()). It is called
with two arguments that point to the elements being compared. The application shall ensure
that the function returns 0 if the elements are equal, and non-zero otherwise.

The lfind() function shall be equivalent to lsearch(), except that if the entry is not found, it is not
added to the table. Instead, a null pointer is returned.

RETURN VALUE
If the searched for entry is found, both lsearch() and lfind() shall return a pointer to it.
Otherwise, lfind() shall return a null pointer and lsearch() shall return a pointer to the newly
added element.

Both functions shall return a null pointer in case of error.

ERRORS
No errors are defined.

EXAMPLES

Storing Strings in a Table

This fragment reads in less than or equal to TABSIZE strings of length less than or equal to
ELSIZE and stores them in a table, eliminating duplicates.

#include <stdio.h>
#include <string.h>
#include <search.h>

#define TABSIZE 50
#define ELSIZE 120

...
char line[ELSIZE], tab[TABSIZE][ELSIZE];
size_t nel = 0;
...
while (fgets(line, ELSIZE, stdin) != NULL && nel < TABSIZE)

(void) lsearch(line, tab, &nel,
ELSIZE, (int (*)(const void *, const void *)) strcmp);

...

776 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

25183

25184

25185

25186

25187

25188

25189

25190

25191

25192

25193

25194

25195

25196

25197

25198

25199

25200

25201

25202

25203

25204

25205

25206

25207

25208

25209

25210

25211

25212

25213

25214

25215

25216

25217

25218

25219

25220

25221

25222

25223

25224

25225

25226

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces lsearch()

Finding a Matching Entry

The following example finds any line that reads "This is a test." .

#include <search.h>
#include <string.h>
...
char line[ELSIZE], tab[TABSIZE][ELSIZE];
size_t nel = 0;
char *findline;
void *entry;

findline = "This is a test.\n";

entry = lfind(findline, tab, &nel, ELSIZE, (
int (*)(const void *, const void *)) strcmp);

APPLICATION USAGE
The comparison function need not compare every byte, so arbitrary data may be contained in
the elements in addition to the values being compared.

Undefined results can occur if there is not enough room in the table to add a new item.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
hcreate(), tsearch(), the Base Definitions volume of IEEE Std 1003.1-200x, <search.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 777

25227

25228

25229

25230

25231

25232

25233

25234

25235

25236

25237

25238

25239

25240

25241

25242

25243

25244

25245

25246

25247

25248

25249

25250

25251

25252

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

lseek() System Interfaces

NAME
lseek — move the read/write file offset

SYNOPSIS
#include <unistd.h>

off_t lseek(int fildes, o ff_t offset, i nt whence);

DESCRIPTION
The lseek() function shall set the file offset for the open file description associated with the file
descriptor fildes, as follows:

• If whence is SEEK_SET, the file offset shall be set to offset bytes.

• If whence is SEEK_CUR, the file offset shall be set to its current location plus offset.

• If whence is SEEK_END, the file offset shall be set to the size of the file plus offset.

The symbolic constants SEEK_SET, SEEK_CUR, and SEEK_END are defined in <unistd.h>.

The behavior of lseek() on devices which are incapable of seeking is implementation-defined.
The value of the file offset associated with such a device is undefined.

The lseek() function shall allow the file offset to be set beyond the end of the existing data in the
file. If data is later written at this point, subsequent reads of data in the gap shall return bytes
with the value 0 until data is actually written into the gap.

The lseek() function shall not, by itself, extend the size of a file.

SHM If fildes refers to a shared memory object, the result of the lseek() function is unspecified.

TYM If fildes refers to a typed memory object, the result of the lseek() function is unspecified.

RETURN VALUE
Upon successful completion, the resulting offset, as measured in bytes from the beginning of the
file, shall be returned. Otherwise, (off_t)−1 shall be returned, errno shall be set to indicate the
error, and the file offset shall remain unchanged.

ERRORS
The lseek() function shall fail if:

[EBADF] The fildes argument is not an open file descriptor.

[EINVAL] The whence argument is not a proper value, or the resulting file offset would
be negative for a regular file, block special file, or directory.

[EOVERFLOW] The resulting file offset would be a value which cannot be represented
correctly in an object of type off_t.

[ESPIPE] The fildes argument is associated with a pipe, FIFO, or socket.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
The ISO C standard includes the functions fgetpos() and fsetpos(), which work on very large files
by use of a special positioning type.

Although lseek() may position the file offset beyond the end of the file, this function does not
itself extend the size of the file. While the only function in IEEE Std 1003.1-200x that may directly

778 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

25253

25254

25255

25256

25257

25258

25259

25260

25261

25262

25263

25264

25265

25266

25267

25268

25269

25270

25271

25272

25273

25274

25275

25276

25277

25278

25279

25280

25281

25282

25283

25284

25285

25286

25287

25288

25289

25290

25291

25292

25293

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces lseek()

extend the size of the file is write(), truncate(), and ftruncate(), several functions originally
derived from the ISO C standard, such as fwrite(), fprintf(), and so on, may do so (by causing
calls on write()).

An invalid file offset that would cause [EINVAL] to be returned may be both implementation-
defined and device-dependent (for example, memory may have few invalid values). A negative
file offset may be valid for some devices in some implementations.

The POSIX.1-1990 standard did not specifically prohibit lseek() from returning a negative offset.
Therefore, an application was required to clear errno prior to the call and check errno upon return
to determine whether a return value of (off_t)−1 is a negative offset or an indication of an error
condition. The standard developers did not wish to require this action on the part of a
conforming application, and chose to require that errno be set to [EINVAL] when the resulting
file offset would be negative for a regular file, block special file, or directory.

FUTURE DIRECTIONS
None.

SEE ALSO
open(), the Base Definitions volume of IEEE Std 1003.1-200x, <sys/types.h>, <unistd.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The DESCRIPTION is updated for alignment with the POSIX Realtime Extension.

Large File Summit extensions are added.

Issue 6
In the SYNOPSIS, the optional include of the <sys/types.h> header is removed.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
required for conforming implementations of previous POSIX specifications, it was not
required for UNIX applications.

• The [EOVERFLOW] error condition is added. This change is to support large files.

An additional [ESPIPE] error condition is added for sockets.

The DESCRIPTION is updated for alignment with IEEE Std 1003.1j-2000 by specifying that
lseek() results are unspecified for typed memory objects.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 779

25294

25295

25296

25297

25298

25299

25300

25301

25302

25303

25304

25305

25306

25307

25308

25309

25310

25311

25312

25313

25314

25315

25316

25317

25318

25319

25320

25321

25322

25323

25324

25325

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

lstat() System Interfaces

NAME
lstat — get file status

SYNOPSIS
#include <sys/stat.h>

int lstat(const char *restrict path, s truct stat *restrict buf);

DESCRIPTION
Refer to fstatat().

780 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

25326

25327

25328

25329

25330

25331

25332

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces malloc()

NAME
malloc — a memory allocator

SYNOPSIS
#include <stdlib.h>

void *malloc(size_t size);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

The malloc() function shall allocate unused space for an object whose size in bytes is specified by
size and whose value is unspecified.

The order and contiguity of storage allocated by successive calls to malloc() is unspecified. The
pointer returned if the allocation succeeds shall be suitably aligned so that it may be assigned to
a pointer to any type of object and then used to access such an object in the space allocated (until
the space is explicitly freed or reallocated). Each such allocation shall yield a pointer to an object
disjoint from any other object. The pointer returned points to the start (lowest byte address) of
the allocated space. If the space cannot be allocated, a null pointer shall be returned. If the size of
the space requested is 0, the behavior is implementation-defined: the value returned shall be

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

malloc() System Interfaces

Issue 6
Extensions beyond the ISO C standard are marked.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• In the RETURN VALUE section, the requirement to set errno to indicate an error is added.

• The [ENOMEM] error condition is added.

782 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

25373

25374

25375

25376

25377

25378

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces mblen()

NAME
mblen — get number of bytes in a character

SYNOPSIS
#include <stdlib.h>

int mblen(const char * s, s ize_t n);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

If s is not a null pointer, mblen() shall determine the number of bytes constituting the character
pointed to by s. Except that the shift state of mbtowc() is not affected, it shall be equivalent to:

mbtowc((wchar_t *)0, s, n);

The implementation shall behave as if no function defined in this volume of
IEEE Std 1003.1-200x calls mblen().

The behavior of this function is affected by the LC_CTYPE category of the current locale. For a
state-dependent encoding, this function shall be placed into its initial state by a call for which its
character pointer argument, s, is a null pointer. Subsequent calls with s as other than a null
pointer shall cause the internal state of the function to be altered as necessary. A call with s as a
null pointer shall cause this function to return a non-zero value if encodings have state
dependency, and 0 otherwise. If the implementation employs special bytes to change the shift
state, these bytes shall not produce separate wide-character codes, but shall be grouped with an
adjacent character. Changing the LC_CTYPE category causes the shift state of this function to be
unspecified.

RETURN VALUE
If s is a null pointer, mblen() shall return a non-zero or 0 value, if character encodings,
respectively, do or do not have state-dependent encodings. If s is not a null pointer, mblen() shall
either return 0 (if s points to the null byte), or return the number of bytes that constitute the
character (if the next n or fewer bytes form a valid character), or return −1 (if they do not form a

CX valid character) and may set errno to indicate the error. In no case shall the value returned be
greater than n or the value of the {MB_CUR_MAX} macro.

ERRORS
The mblen() function may fail if:

XSI [EILSEQ] Invalid character sequence is detected.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 783

25379

25380

25381

25382

25383

25384

25385

25386

25387

25388

25389

25390

25391

25392

25393

25394

25395

25396

25397

25398

25399

25400

25401

25402

25403

25404

25405

25406

25407

25408

25409

25410

25411

25412

25413

25414

25415

25416

25417

25418

25419

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

mblen() System Interfaces

SEE ALSO
mbtowc(), mbstowcs(), wctomb(), wcstombs(), the Base Definitions volume of
IEEE Std 1003.1-200x, <stdlib.h>

CHANGE HISTORY
First released in Issue 4. Aligned with the ISO C standard.

784 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

25420

25421

25422

25423

25424

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

mbrlen() System Interfaces

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
mbsinit(), mbrtowc(), the Base Definitions volume of IEEE Std 1003.1-200x, <wchar.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with ISO/IEC 9899: 1990/Amendment 1: 1995
(E).

Issue 6
The mbrlen() prototype is updated for alignment with the ISO/IEC 9899: 1999 standard.

786 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

25463

25464

25465

25466

25467

25468

25469

25470

25471

25472

25473

25474

25475

25476

25477

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces mbrtowc()

NAME
mbrtowc — convert a character to a wide-character code (restartable)

SYNOPSIS
#include <wchar.h>

size_t mbrtowc(wchar_t *restrict pwc, c onst char *restrict s,
size_t n, mbstate_t *restrict ps);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

If s is a null pointer, the mbrtowc() function shall be equivalent to the call:

mbrtowc(NULL, "", 1, ps)

In this case, the values of the arguments pwc and n are ignored.

If s is not a null pointer, the mbrtowc() function shall inspect at most n bytes beginning at the
byte pointed to by s to determine the number of bytes needed to complete the next character
(including any shift sequences). If the function determines that the next character is completed,
it shall determine the value of the corresponding wide character and then, if pwc is not a null
pointer, shall store that value in the object pointed to by pwc. If the corresponding wide
character is the null wide character, the resulting state described shall be the initial conversion
state.

If ps is a null pointer, the mbrtowc() function shall use its own internal mbstate_t object, which
shall be initialized at program start-up to the initial conversion state. Otherwise, the mbstate_t
object pointed to by ps shall be used to completely describe the current conversion state of the
associated character sequence. The implementation shall behave as if no function defined in this
volume of IEEE Std 1003.1-200x calls mbrtowc().

The behavior of this function is affected by the LC_CTYPE category of the current locale.

RETURN VALUE
The mbrtowc() function shall return the first of the following that applies:

0 If the next n or fewer bytes complete the character that corresponds to the null
wide character (which is the value stored).

between 1 and n inclusive
If the next n or fewer bytes complete a valid character (which is the value
stored); the value returned shall be the number of bytes that complete the
character.

(size_t)−2 If the next n bytes contribute to an incomplete but potentially valid character,
and all n bytes have been processed (no value is stored). When n has at least
the value of the {MB_CUR_MAX} macro, this case can only occur if s points at
a sequence of redundant shift sequences (for implementations with state-
dependent encodings).

(size_t)−1 If an encoding error occurs, in which case the next n or fewer bytes do not
contribute to a complete and valid character (no value is stored). In this case,
[EILSEQ] shall be stored in errno and the conversion state is undefined.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 787

25478

25479

25480

25481

25482

25483

25484

25485

25486

25487

25488

25489

25490

25491

25492

25493

25494

25495

25496

25497

25498

25499

25500

25501

25502

25503

25504

25505

25506

25507

25508

25509

25510

25511

25512

25513

25514

25515

25516

25517

25518

25519

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

mbrtowc() System Interfaces

ERRORS
The mbrtowc() function may fail if:

CX [EINVAL] ps points to an object that contains an invalid conversion state.

[EILSEQ] Invalid character sequence is detected.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
mbsinit(), mbsrtowcs(), the Base Definitions volume of IEEE Std 1003.1-200x, <wchar.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with ISO/IEC 9899: 1990/Amendment 1: 1995
(E).

Issue 6
The mbrtowc() prototype is updated for alignment with the ISO/IEC 9899: 1999 standard.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The [EINVAL] error condition is added.

ISO/IEC 9899: 1999 standard, Technical Corrigendum 1 is incorporated.

788 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

25520

25521

25522

25523

25524

25525

25526

25527

25528

25529

25530

25531

25532

25533

25534

25535

25536

25537

25538

25539

25540

25541

25542

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces mbsinit()

NAME
mbsinit — determine conversion object status

SYNOPSIS
#include <wchar.h>

int mbsinit(const mbstate_t * ps);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

If ps is not a null pointer, the mbsinit() function shall determine whether the object pointed to by
ps describes an initial conversion state.

RETURN VALUE
The mbsinit() function shall return non-zero if ps is a null pointer, or if the pointed-to object
describes an initial conversion state; otherwise, it shall return zero.

If an mbstate_t object is altered by any of the functions described as ‘‘restartable’’, and is then
used with a different character sequence, or in the other conversion direction, or with a different
LC_CTYPE category setting than on earlier function calls, the behavior is undefined.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
The mbstate_t object is used to describe the current conversion state from a particular character
sequence to a wide-character sequence (or vice versa) under the rules of a particular setting of the
LC_CTYPE category of the current locale.

The initial conversion state corresponds, for a conversion in either direction, to the beginning of
a new character sequence in the initial shift state. A zero valued mbstate_t object is at least one
way to describe an initial conversion state. A zero valued mbstate_t object can be used to initiate
conversion involving any character sequence, in any LC_CTYPE category setting.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
mbrlen(), mbrtowc(), mbsrtowcs(), wcrtomb(), wcsrtombs(), the Base Definitions volume of
IEEE Std 1003.1-200x, <wchar.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with ISO/IEC 9899: 1990/Amendment 1: 1995
(E).

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 789

25543

25544

25545

25546

25547

25548

25549

25550

25551

25552

25553

25554

25555

25556

25557

25558

25559

25560

25561

25562

25563

25564

25565

25566

25567

25568

25569

25570

25571

25572

25573

25574

25575

25576

25577

25578

25579

25580

25581

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

mbsnrtowcs() System Interfaces

NAME
mbsnrtowcs — convert a multi-byte string to a wide-character string

SYNOPSIS
CX #include <wchar.h>

size_t mbsnrtowcs(wchar_t *restrict dst, c onst char **restrict src,
size_t nmc, s ize_t len, mbstate_t *restrict ps);

DESCRIPTION
Refer to mbsrtowcs().

790 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

25582

25583

25584

25585

25586

25587

25588

25589

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces mbsrtowcs()

NAME
mbsnrtowcs, mbsrtowcs — convert a character string to a wide-character string (restartable)

SYNOPSIS
#include <wchar.h>

CX size_t mbsnrtowcs(wchar_t *restrict dst, c onst char **restrict src,
size_t nmc, s ize_t len, mbstate_t *restrict ps);

size_t mbsrtowcs(wchar_t *restrict dst, c onst char **restrict src,
size_t len, mbstate_t *restrict ps);

DESCRIPTION
CX For mbsrtowcs(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of IEEE Std 1003.1-200x defers to the ISO C standard.

The mbsrtowcs() function shall convert a sequence of characters, beginning in the conversion
state described by the object pointed to by ps, from the array indirectly pointed to by src into a
sequence of corresponding wide characters. If dst is not a null pointer, the converted characters
shall be stored into the array pointed to by dst. Conversion continues up to and including a
terminating null character, which shall also be stored. Conversion shall stop early in either of the
following cases:

• A sequence of bytes is encountered that does not form a valid character.

• len codes have been stored into the array pointed to by dst (and dst is not a null pointer).

Each conversion shall take place as if by a call to the mbrtowc() function.

If dst is not a null pointer, the pointer object pointed to by src shall be assigned either a null
pointer (if conversion stopped due to reaching a terminating null character) or the address just
past the last character converted (if any). If conversion stopped due to reaching a terminating
null character, and if dst is not a null pointer, the resulting state described shall be the initial
conversion state.

If ps is a null pointer, the mbsrtowcs() function shall use its own internal mbstate_t object, which
is initialized at program start-up to the initial conversion state. Otherwise, the mbstate_t object
pointed to by ps shall be used to completely describe the current conversion state of the
associated character sequence.

CX The mbsnrtowcs() function shall be equivalent to the mbsrtowcs() function, except that the
conversion of characters pointed to by src is limited to at most nmc bytes (the size of the input
buffer).

The behavior of these functions shall be affected by the LC_CTYPE category of the current locale.

The implementation shall behave as if no function defined in this volume of
IEEE Std 1003.1-200x calls these functions.

RETURN VALUE
If the input conversion encounters a sequence of bytes that do not form a valid character, an
encoding error occurs. In this case, these functions shall store the value of the macro [EILSEQ] in
errno and shall return (size_t)−1; the conversion state is undefined. Otherwise, these functions
shall return the number of characters successfully converted, not including the terminating null
(if any).

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 791

25590

25591

25592

25593

25594

25595

25596

25597

25598

25599

25600

25601

25602

25603

25604

25605

25606

25607

25608

25609

25610

25611

25612

25613

25614

25615

25616

25617

25618

25619

25620

25621

25622

25623

25624

25625

25626

25627

25628

25629

25630

25631

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

mbsrtowcs() System Interfaces

ERRORS
These functions may fail if:

CX [EINVAL] ps points to an object that contains an invalid conversion state.

[EILSEQ] Invalid character sequence is detected.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
iconv(), mbrtowc(), mbsinit(), the Base Definitions volume of IEEE Std 1003.1-200x, <wchar.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with ISO/IEC 9899: 1990/Amendment 1: 1995
(E).

Issue 6
The mbsrtowcs() prototype is updated for alignment with the ISO/IEC 9899: 1999 standard.

The [EINVAL] error condition is marked CX.

Issue 7
The mbsnrtowcs() function is added from The Open Group Technical Standard, 2006, Extended
API Set Part 1.

792 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

25632

25633

25634

25635

25636

25637

25638

25639

25640

25641

25642

25643

25644

25645

25646

25647

25648

25649

25650

25651

25652

25653

25654

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces mbstowcs()

NAME
mbstowcs — convert a character string to a wide-character string

SYNOPSIS
#include <stdlib.h>

size_t mbstowcs(wchar_t *restrict pwcs, c onst char *restrict s,
size_t n);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

The mbstowcs() function shall convert a sequence of characters that begins in the initial shift
state from the array pointed to by s into a sequence of corresponding wide-character codes and
shall store not more than n wide-character codes into the array pointed to by pwcs. No
characters that follow a null byte (which is converted into a wide-character code with value 0)
shall be examined or converted. Each character shall be converted as if by a call to mbtowc(),
except that the shift state of mbtowc() is not affected.

No more than n elements shall be modified in the array pointed to by pwcs. If copying takes
place between objects that overlap, the behavior is undefined.

XSI The behavior of this function shall be affected by the LC_CTYPE category of the current locale.
If pwcs is a null pointer, mbstowcs() shall return the length required to convert the entire array

regardless of the value of n, but no values are stored.

RETURN VALUE
CX If an invalid character is encountered, mbstowcs() shall return (size_t)−1 and may set errno to

indicate the error.

XSI Otherwise, mbstowcs() shall return the number of the array elements modified (or required if
pwcs is null), not including a terminating 0 code, if any. The array shall not be zero-terminated if
the value returned is n.

ERRORS
The mbstowcs() function may fail if:

XSI [EILSEQ] Invalid byte sequence is detected.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
mblen(), mbtowc(), wctomb(), wcstombs(), the Base Definitions volume of IEEE Std 1003.1-200x,
<stdlib.h>

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 793

25655

25656

25657

25658

25659

25660

25661

25662

25663

25664

25665

25666

25667

25668

25669

25670

25671

25672

25673

25674

25675

25676

25677

25678

25679

25680

25681

25682

25683

25684

25685

25686

25687

25688

25689

25690

25691

25692

25693

25694

25695

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

mbstowcs() System Interfaces

CHANGE HISTORY
First released in Issue 4. Aligned with the ISO C standard.

Issue 6
The mbstowcs() prototype is updated for alignment with the ISO/IEC 9899: 1999 standard.

Extensions beyond the ISO C standard are marked.

794 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

25696

25697

25698

25699

25700

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces mbtowc()

NAME
mbtowc — convert a character to a wide-character code

SYNOPSIS
#include <stdlib.h>

int mbtowc(wchar_t *restrict pwc, c onst char *restrict s, s ize_t n);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

If s is not a null pointer, mbtowc() shall determine the number of bytes that constitute the
character pointed to by s. It shall then determine the wide-character code for the value of type
wchar_t that corresponds to that character. (The value of the wide-character code corresponding
to the null byte is 0.) If the character is valid and pwc is not a null pointer, mbtowc() shall store
the wide-character code in the object pointed to by pwc.

The behavior of this function is affected by the LC_CTYPE category of the current locale. For a
state-dependent encoding, this function is placed into its initial state by a call for which its
character pointer argument, s, is a null pointer. Subsequent calls with s as other than a null
pointer shall cause the internal state of the function to be altered as necessary. A call with s as a
null pointer shall cause this function to return a non-zero value if encodings have state
dependency, and 0 otherwise. If the implementation employs special bytes to change the shift
state, these bytes shall not produce separate wide-character codes, but shall be grouped with an
adjacent character. Changing the LC_CTYPE category causes the shift state of this function to be
unspecified. At most n bytes of the array pointed to by s shall be examined.

The implementation shall behave as if no function defined in this volume of
IEEE Std 1003.1-200x calls mbtowc().

RETURN VALUE
If s is a null pointer, mbtowc() shall return a non-zero or 0 value, if character encodings,
respectively, do or do not have state-dependent encodings. If s is not a null pointer, mbtowc()
shall either return 0 (if s points to the null byte), or return the number of bytes that constitute the

CX converted character (if the next n or fewer bytes form a valid character), or return −1 and may
set errno to indicate the error (if they do not form a valid character).

In no case shall the value returned be greater than n or the value of the {MB_CUR_MAX} macro.

ERRORS
The mbtowc() function may fail if:

XSI [EILSEQ] Invalid character sequence is detected.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 795

25701

25702

25703

25704

25705

25706

25707

25708

25709

25710

25711

25712

25713

25714

25715

25716

25717

25718

25719

25720

25721

25722

25723

25724

25725

25726

25727

25728

25729

25730

25731

25732

25733

25734

25735

25736

25737

25738

25739

25740

25741

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

mbtowc() System Interfaces

FUTURE DIRECTIONS
None.

SEE ALSO
mblen(), mbstowcs(), wctomb(), wcstombs(), the Base Definitions volume of IEEE Std 1003.1-200x,
<stdlib.h>

CHANGE HISTORY
First released in Issue 4. Aligned with the ISO C standard.

Issue 6
The mbtowc() prototype is updated for alignment with the ISO/IEC 9899: 1999 standard.

Extensions beyond the ISO C standard are marked.

796 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

25742

25743

25744

25745

25746

25747

25748

25749

25750

25751

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces memccpy()

NAME
memccpy — copy bytes in memory

SYNOPSIS
XSI #include <string.h>

void *memccpy(void *restrict s1, c onst void *restrict s2,
int c, s ize_t n);

DESCRIPTION
The memccpy() function shall copy bytes from memory area s2 into s1, stopping after the first
occurrence of byte c (converted to an unsigned char) is copied, or after n bytes are copied,
whichever comes first. If copying takes place between objects that overlap, the behavior is
undefined.

RETURN VALUE
The memccpy() function shall return a pointer to the byte after the copy of c in s1, or a null
pointer if c was not found in the first n bytes of s2.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
The memccpy() function does not check for the overflow of the receiving memory area.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
The Base Definitions volume of IEEE Std 1003.1-200x, <string.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
The restrict keyword is added to the memccpy() prototype for alignment with the
ISO/IEC 9899: 1999 standard.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 797

25752

25753

25754

25755

25756

25757

25758

25759

25760

25761

25762

25763

25764

25765

25766

25767

25768

25769

25770

25771

25772

25773

25774

25775

25776

25777

25778

25779

25780

25781

25782

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

memchr() System Interfaces

NAME
memchr — find byte in memory

SYNOPSIS
#include <string.h>

void *memchr(const void * s, i nt c, s ize_t n);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

The memchr() function shall locate the first occurrence of c (converted to an unsigned char) in
the initial n bytes (each interpreted as unsigned char) of the object pointed to by s.

RETURN VALUE
The memchr() function shall return a pointer to the located byte, or a null pointer if the byte does
not occur in the object.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
The Base Definitions volume of IEEE Std 1003.1-200x, <string.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

798 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

25783

25784

25785

25786

25787

25788

25789

25790

25791

25792

25793

25794

25795

25796

25797

25798

25799

25800

25801

25802

25803

25804

25805

25806

25807

25808

25809

25810

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces memcmp()

NAME
memcmp — compare bytes in memory

SYNOPSIS
#include <string.h>

int memcmp(const void * s1, c onst void * s2, s ize_t n);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

The memcmp() function shall compare the first n bytes (each interpreted as unsigned char) of the
object pointed to by s1 to the first n bytes of the object pointed to by s2.

The sign of a non-zero return value shall be determined by the sign of the difference between the
values of the first pair of bytes (both interpreted as type unsigned char) that differ in the objects
being compared.

RETURN VALUE
The memcmp() function shall return an integer greater than, equal to, or less than 0, if the object
pointed to by s1 is greater than, equal to, or less than the object pointed to by s2, respectively.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
The Base Definitions volume of IEEE Std 1003.1-200x, <string.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 799

25811

25812

25813

25814

25815

25816

25817

25818

25819

25820

25821

25822

25823

25824

25825

25826

25827

25828

25829

25830

25831

25832

25833

25834

25835

25836

25837

25838

25839

25840

25841

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

memcpy() System Interfaces

NAME
memcpy — copy bytes in memory

SYNOPSIS
#include <string.h>

void *memcpy(void *restrict s1, c onst void *restrict s2, s ize_t n);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

The memcpy() function shall copy n bytes from the object pointed to by s2 into the object pointed
to by s1. If copying takes place between objects that overlap, the behavior is undefined.

RETURN VALUE
The memcpy() function shall return s1; no return value is reserved to indicate an error.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
The memcpy() function does not check for the overflow of the receiving memory area.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
The Base Definitions volume of IEEE Std 1003.1-200x, <string.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
The memcpy() prototype is updated for alignment with the ISO/IEC 9899: 1999 standard.

800 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

25842

25843

25844

25845

25846

25847

25848

25849

25850

25851

25852

25853

25854

25855

25856

25857

25858

25859

25860

25861

25862

25863

25864

25865

25866

25867

25868

25869

25870

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces memmove()

NAME
memmove — copy bytes in memory with overlapping areas

SYNOPSIS
#include <string.h>

void *memmove(void * s1, c onst void * s2, s ize_t n);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

The memmove() function shall copy n bytes from the object pointed to by s2 into the object
pointed to by s1. Copying takes place as if the n bytes from the object pointed to by s2 are first
copied into a temporary array of n bytes that does not overlap the objects pointed to by s1 and
s2, and then the n bytes from the temporary array are copied into the object pointed to by s1.

RETURN VALUE
The memmove() function shall return s1; no return value is reserved to indicate an error.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
The Base Definitions volume of IEEE Std 1003.1-200x, <string.h>

CHANGE HISTORY
First released in Issue 4. Derived from the ANSI C standard.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 801

25871

25872

25873

25874

25875

25876

25877

25878

25879

25880

25881

25882

25883

25884

25885

25886

25887

25888

25889

25890

25891

25892

25893

25894

25895

25896

25897

25898

25899

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

memset() System Interfaces

NAME
memset — set bytes in memory

SYNOPSIS
#include <string.h>

void *memset(void * s, i nt c, s ize_t n);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

The memset() function shall copy c (converted to an unsigned char) into each of the first n bytes
of the object pointed to by s.

RETURN VALUE
The memset() function shall return s; no return value is reserved to indicate an error.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
The Base Definitions volume of IEEE Std 1003.1-200x, <string.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

802 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

25900

25901

25902

25903

25904

25905

25906

25907

25908

25909

25910

25911

25912

25913

25914

25915

25916

25917

25918

25919

25920

25921

25922

25923

25924

25925

25926

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces mkdir()

NAME
mkdir, mkdirat — make a directory relative to directory file descriptor

SYNOPSIS
#include <sys/stat.h>

int mkdir(const char * path, mode_t mode);
int mkdirat(int fd, c onst char * path, mode_t mode);

DESCRIPTION
The mkdir() function shall create a new directory with name path. The file permission bits of the
new directory shall be initialized from mode. These file permission bits of the mode argument
shall be modified by the process’ file creation mask.

When bits in mode other than the file permission bits are set, the meaning of these additional bits
is implementation-defined.

The directory’s user ID shall be set to the process’ effective user ID. The directory’s group ID
shall be set to the group ID of the parent directory or to the effective group ID of the process.
Implementations shall provide a way to initialize the directory’s group ID to the group ID of the
parent directory. Implementations may, but need not, provide an implementation-defined way
to initialize the directory’s group ID to the effective group ID of the calling process.

The newly created directory shall be an empty directory.

If path names a symbolic link, mkdir() shall fail and set errno to [EEXIST].

Upon successful completion, mkdir() shall mark for update the st_atime, st_ctime, and st_mtime
fields of the directory. Also, the st_ctime and st_mtime fields of the directory that contains the
new entry shall be marked for update.

The mkdirat() function shall be equivalent to the mkdir() function except in the case where path
specifies a relative path. In this case the newly created directory is created relative to the
directory associated with the file descriptor fd instead of the current working directory. It is
unspecified whether directory searches are permitted based on whether the file was opened
with search permission or on the current permissions of the directory underlying the file
descriptor.

If mkdirat() is passed the special value AT_FDCWD in the fd parameter, the current working
directory is used and the behavior shall be identical to a call to mkdir().

RETURN VALUE
Upon successful completion, these functions shall return 0. Otherwise, these functions shall
return −1 and set errno to indicate the error. If −1 is returned, no directory shall be created.

ERRORS
These functions shall fail if:

[EACCES] Search permission is denied on a component of the path prefix, or write
permission is denied on the parent directory of the directory to be created.

[EEXIST] The named file exists.

[ELOOP] A loop exists in symbolic links encountered during resolution of the path
argument.

[EMLINK] The link count of the parent directory would exceed {LINK_MAX}.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 803

25927

25928

25929

25930

25931

25932

25933

25934

25935

25936

25937

25938

25939

25940

25941

25942

25943

25944

25945

25946

25947

25948

25949

25950

25951

25952

25953

25954

25955

25956

25957

25958

25959

25960

25961

25962

25963

25964

25965

25966

25967

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

mkdir() System Interfaces

[ENAMETOOLONG]
The length of the path argument exceeds {PATH_MAX} or a pathname
component is longer than {NAME_MAX}.

[ENOENT] A component of the path prefix specified by path does not name an existing
directory or path is an empty string.

[ENOSPC] The file system does not contain enough space to hold the contents of the new
directory or to extend the parent directory of the new directory.

[ENOTDIR] A component of the path prefix is not a directory.

[EROFS] The parent directory resides on a read-only file system.

In addition, the mkdirat() function shall fail if:

[EBADF] The path argument does not specify an absolute path and the fd argument is
neither AT_FDCWD nor a valid file descriptor open for searching.

These functions may fail if:

[ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during
resolution of the path argument.

[ENAMETOOLONG]
As a result of encountering a symbolic link in resolution of the path argument,
the length of the substituted pathname string exceeded {PATH_MAX}.

The mkdirat() function may fail if:

[ENOTDIR] The path argument is not an absolute path and fd is neither AT_FDCWD nor a
file descriptor associated with a directory.

EXAMPLES

Creating a Directory

The following example shows how to create a directory named /home/cnd/mod1, with
read/write/search permissions for owner and group, and with read/search permissions for
others.

#include <sys/types.h>
#include <sys/stat.h>

int status;
...
status = mkdir("/home/cnd/mod1", S_IRWXU | S_IRWXG | S_IROTH | S_IXOTH);

APPLICATION USAGE
None.

RATIONALE
The mkdir() function originated in 4.2 BSD and was added to System V in Release 3.0.

4.3 BSD detects [ENAMETOOLONG].

The POSIX.1-1990 standard required that the group ID of a newly created directory be set to the
group ID of its parent directory or to the effective group ID of the creating process. FIPS 151-2
required that implementations provide a way to have the group ID be set to the group ID of the
containing directory, but did not prohibit implementations also supporting a way to set the
group ID to the effective group ID of the creating process. Conforming applications should not
assume which group ID will be used. If it matters, an application can use chown() to set the
group ID after the directory is created, or determine under what conditions the implementation
will set the desired group ID.

804 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

25968

25969

25970

25971

25972

25973

25974

25975

25976

25977

25978

25979

25980

25981

25982

25983

25984

25985

25986

25987

25988

25989

25990

25991

25992

25993

25994

25995

25996

25997

25998

25999

26000

26001

26002

26003

26004

26005

26006

26007

26008

26009

26010

26011

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces mkdir()

The purpose of the mkdirat() function is to create a directory in directories other than the current
working directory without exposure to race conditions. Any part of the path of a file could be
changed in parallel to the call to mkdir(), resulting in unspecified behavior. By opening a file
descriptor for the target directory and using the mkdirat() function it can be guaranteed that the
newly created directory is located relative to the desired directory.

FUTURE DIRECTIONS
None.

SEE ALSO
chmod(), mkdtemp(), mknod(), umask(), the Base Definitions volume of IEEE Std 1003.1-200x,
<sys/stat.h>, <sys/types.h>

CHANGE HISTORY
First released in Issue 3. Included for alignment with the POSIX.1-1988 standard.

Issue 6
In the SYNOPSIS, the optional include of the <sys/types.h> header is removed.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
required for conforming implementations of previous POSIX specifications, it was not
required for UNIX applications.

• The [ELOOP] mandatory error condition is added.

• A second [ENAMETOOLONG] is added as an optional error condition.

The following changes were made to align with the IEEE P1003.1a draft standard:

• The [ELOOP] optional error condition is added.

Issue 7
The mkdirat() function is added from The Open Group Technical Standard, 2006, Extended API
Set Part 2.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 805

26012

26013

26014

26015

26016

26017

26018

26019

26020

26021

26022

26023

26024

26025

26026

26027

26028

26029

26030

26031

26032

26033

26034

26035

26036

26037

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

mkdirat() System Interfaces

NAME
mkdirat — make a directory relative to directory file descriptor

SYNOPSIS
#include <sys/stat.h>

int mkdirat(int fd, c onst char * path, mode_t mode);

DESCRIPTION
Refer to mkdir().

806 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

26038

26039

26040

26041

26042

26043

26044

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces mkdtemp()

NAME
mkdtemp, mkstemp — create a unique directory or file

SYNOPSIS
CX #include <stdlib.h>

char *mkdtemp(char * template);
int mkstemp(char * template);

DESCRIPTION
The mkdtemp() function uses the contents of template to construct a unique directory name. The
string provided in template shall be a filename ending with six trailing ’X’ s. The mkdtemp()
function shall replace each ’X’ with a character from the portable filename character set. The
characters are chosen such that the resulting name does not duplicate the name of an existing file
at the time of a call to mkdtemp(). The unique directory name is used to attempt to create the
directory using mode 0700 as modified by the file creation mask.

The mkstemp() function shall replace the contents of the string pointed to by template by a unique
filename, and return a file descriptor for the file open for reading and writing. The mkstemp()
function shall create the file, and obtain a file descriptor for it, as if by a call to:

open(filename, O_RDWR|O_CREAT|O_EXCL, S_IRUSR|S_IWUSR)

The function thus prevents any possible race condition between testing whether the file exists
and opening it for use. The string in template should look like a filename with six trailing ’X’ s;
mkstemp() replaces each ’X’ with a character from the portable filename character set. The
characters are chosen such that the resulting name does not duplicate the name of an existing file
at the time of a call to mkstemp().

RETURN VALUE
Upon successful completion, the mkdtemp() function shall return a pointer to the string
containing the directory name if it was created. Otherwise, it shall return a null pointer and shall
set errno to indicate the error.

Upon successful completion, mkstemp() shall return an open file descriptor. Otherwise, −1 shall
be returned if no suitable file could be created.

ERRORS
These functions shall fail if:

[EACCES] Search permission is denied on a component of the path prefix, or write
permission is denied on the parent directory of the directory to be created.

[EINVAL] The string pointed to by template does not end in "XXXXXX" .

[ELOOP] A loop exists in symbolic links encountered during resolution of the path of
the directory to be created.

[EMLINK] The link count of the parent directory would exceed {LINK_MAX}.

[ENAMETOOLONG]
The length of the template argument exceeds {PATH_MAX} or a pathname
component is longer than {NAME_MAX}.

[ENOENT] A component of the path prefix specified by the template argument does not
name an existing directory or path is an empty string.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 807

26045

26046

26047

26048

26049

26050

26051

26052

26053

26054

26055

26056

26057

26058

26059

26060

26061

26062

26063

26064

26065

26066

26067

26068

26069

26070

26071

26072

26073

26074

26075

26076

26077

26078

26079

26080

26081

26082

26083

26084

26085

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

mkdtemp() System Interfaces

[ENOSPC] The file system does not contain enough space to hold the contents of the new
directory or to extend the parent directory of the new directory.

[ENOTDIR] A component of the path prefix is not a directory.

[EROFS] The parent directory resides on a read-only file system.

These functions may fail if:

[ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during
resolution of the path of the directory to be created.

[ENAMETOOLONG]
As a result of encountering a symbolic link in resolution of the path of the
directory to be created, the length of the substituted pathname string exceeded
{PATH_MAX}.

EXAMPLES

Generating a Filename

The following example creates a file with a 10-character name beginning with the characters
"file" and opens the file for reading and writing. The value returned as the value of fd is a file
descriptor that identifies the file.

#include <stdlib.h>
...
char template[] = "/tmp/fileXXXXXX";
int fd;

fd = mkstemp(template);

APPLICATION USAGE
It is possible to run out of letters.

The mkdtemp() and mkstemp() functions need not check to determine whether the filename part
of template exceeds the maximum allowable filename length.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
getpid(), mkdir(), open(), tmpfile(), tmpnam(), the Base Definitions volume of
IEEE Std 1003.1-200x, <stdlib.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Issue 7
The mkstemp() function is moved from the XSI option to the Base.

The mkdtemp() function is added from The Open Group Technical Standard, 2006, Extended API
Set Part 1.

SD5-XSH-ERN-168 is applied, clarifying file permissions upon creation.

808 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

26086

26087

26088

26089

26090

26091

26092

26093

26094

26095

26096

26097

26098

26099

26100

26101

26102

26103

26104

26105

26106

26107

26108

26109

26110

26111

26112

26113

26114

26115

26116

26117

26118

26119

26120

26121

26122

26123

26124

26125

26126

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces mkfifo()

NAME
mkfifo, mkfifoat — make a FIFO special file relative to directory file descriptor

SYNOPSIS
#include <sys/stat.h>

int mkfifo(const char * path, mode_t mode);
int mkfifoat(int fd, c onst char * path, mode_t mode);

DESCRIPTION
The mkfifo() function shall create a new FIFO special file named by the pathname pointed to by
path. The file permission bits of the new FIFO shall be initialized from mode. The file permission
bits of the mode argument shall be modified by the process’ file creation mask.

When bits in mode other than the file permission bits are set, the effect is implementation-
defined.

If path names a symbolic link, mkfifo() shall fail and set errno to [EEXIST].

The FIFO’s user ID shall be set to the process’ effective user ID. The FIFO’s group ID shall be set
to the group ID of the parent directory or to the effective group ID of the process.
Implementations shall provide a way to initialize the FIFO’s group ID to the group ID of the
parent directory. Implementations may, but need not, provide an implementation-defined way
to initialize the FIFO’s group ID to the effective group ID of the calling process.

Upon successful completion, mkfifo() shall mark for update the st_atime, st_ctime, and st_mtime
fields of the file. Also, the st_ctime and st_mtime fields of the directory that contains the new
entry shall be marked for update.

The mkfifoat() function shall be equivalent to the mkfifo() function except in the case where path
specifies a relative path. In this case the newly created FIFO is created relative to the directory
associated with the file descriptor fd instead of the current working directory. It is unspecified
whether directory searches are permitted based on whether the file was opened with search
permission or on the current permissions of the directory underlying the file descriptor.

If mkfifoat() is passed the special value AT_FDCWD in the fd parameter, the current working
directory is used and the behavior shall be identical to a call to mkfifo().

RETURN VALUE
Upon successful completion, these functions shall return 0. Otherwise, these functions shall
return −1 and set errno to indicate the error. If −1 is returned, no FIFO shall be created.

ERRORS
These functions shall fail if:

[EACCES] A component of the path prefix denies search permission, or write permission
is denied on the parent directory of the FIFO to be created.

[EEXIST] The named file already exists.

[ELOOP] A loop exists in symbolic links encountered during resolution of the path
argument.

[ENAMETOOLONG]
The length of the path argument exceeds {PATH_MAX} or a pathname
component is longer than {NAME_MAX}.

[ENOENT] A component of the path prefix specified by path does not name an existing
directory or path is an empty string.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 809

26127

26128

26129

26130

26131

26132

26133

26134

26135

26136

26137

26138

26139

26140

26141

26142

26143

26144

26145

26146

26147

26148

26149

26150

26151

26152

26153

26154

26155

26156

26157

26158

26159

26160

26161

26162

26163

26164

26165

26166

26167

26168

26169

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

mkfifo() System Interfaces

[ENOSPC] The directory that would contain the new file cannot be extended or the file
system is out of file-allocation resources.

[ENOTDIR] A component of the path prefix is not a directory.

[EROFS] The named file resides on a read-only file system.

The mkfifoat() function shall fail if:

[EBADF] The path argument does not specify an absolute path and the fd argument is
neither AT_FDCWD nor a valid file descriptor open for searching.

These functions may fail if:

[ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during
resolution of the path argument.

[ENAMETOOLONG]
As a result of encountering a symbolic link in resolution of the path argument,
the length of the substituted pathname string exceeded {PATH_MAX}.

The mkfifoat() function may fail if:

[ENOTDIR] The path argument is not an absolute path and fd is neither AT_FDCWD nor a
file descriptor associated with a directory.

EXAMPLES

Creating a FIFO File

The following example shows how to create a FIFO file named /home/cnd/mod_done, with
read/write permissions for owner, and with read permissions for group and others.

#include <sys/types.h>
#include <sys/stat.h>

int status;
...
status = mkfifo("/home/cnd/mod_done", S_IWUSR | S_IRUSR |

S_IRGRP | S_IROTH);

APPLICATION USAGE
None.

RATIONALE
The syntax of this function is intended to maintain compatibility with historical
implementations of mknod(). The latter function was included in the 1984 /usr/group standard
but only for use in creating FIFO special files. The mknod() function was originally excluded
from the POSIX.1-1988 standard as implementation-defined and replaced by mkdir() and
mkfifo(). The mknod() function is now included for alignment with the Single UNIX
Specification.

The POSIX.1-1990 standard required that the group ID of a newly created FIFO be set to the
group ID of its parent directory or to the effective group ID of the creating process. FIPS 151-2
required that implementations provide a way to have the group ID be set to the group ID of the
containing directory, but did not prohibit implementations also supporting a way to set the
group ID to the effective group ID of the creating process. Conforming applications should not
assume which group ID will be used. If it matters, an application can use chown() to set the
group ID after the FIFO is created, or determine under what conditions the implementation will
set the desired group ID.

The purpose of the mkfifoat() function is to create a FIFO special file in directories other than the
current working directory without exposure to race conditions. Any part of the path of a file

810 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

26170

26171

26172

26173

26174

26175

26176

26177

26178

26179

26180

26181

26182

26183

26184

26185

26186

26187

26188

26189

26190

26191

26192

26193

26194

26195

26196

26197

26198

26199

26200

26201

26202

26203

26204

26205

26206

26207

26208

26209

26210

26211

26212

26213

26214

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces mkfifo()

could be changed in parallel to a call to mkfifo(), resulting in unspecified behavior. By opening a
file descriptor for the target directory and using the mkfifoat() function it can be guaranteed that
the newly created FIFO is located relative to the desired directory.

FUTURE DIRECTIONS
None.

SEE ALSO
chmod(), mknod(), umask(), the Base Definitions volume of IEEE Std 1003.1-200x, <sys/stat.h>,
<sys/types.h>

CHANGE HISTORY
First released in Issue 3. Included for alignment with the POSIX.1-1988 standard.

Issue 6
In the SYNOPSIS, the optional include of the <sys/types.h> header is removed.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
required for conforming implementations of previous POSIX specifications, it was not
required for UNIX applications.

• The [ELOOP] mandatory error condition is added.

• A second [ENAMETOOLONG] is added as an optional error condition.

The following changes were made to align with the IEEE P1003.1a draft standard:

• The [ELOOP] optional error condition is added.

Issue 7
The mkfifoat() function is added from The Open Group Technical Standard, 2006, Extended API
Set Part 2.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 811

26215

26216

26217

26218

26219

26220

26221

26222

26223

26224

26225

26226

26227

26228

26229

26230

26231

26232

26233

26234

26235

26236

26237

26238

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

mkfifoat() System Interfaces

NAME
mkfifoat — make a FIFO special file relative to directory file descriptor

SYNOPSIS
#include <sys/stat.h>

int mkfifoat(int fd, c onst char * path, mode_t mode);

DESCRIPTION
Refer to mkfifo().

812 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

26239

26240

26241

26242

26243

26244

26245

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

mknod() System Interfaces

If path names a symbolic link, mknod() shall fail and set errno to [EEXIST].

Upon successful completion, mknod() shall mark for update the st_atime, st_ctime, and st_mtime
fields of the file. Also, the st_ctime and st_mtime fields of the directory that contains the new
entry shall be marked for update.

Only a process with appropriate privileges may invoke mknod() for file types other than FIFO-
special.

The mknodat() function shall be equivalent to the mknod() function except in the case where path
specifies a relative path. In this case the newly created directory, special file, or regular file is
located relative to the directory associated with the file descriptor fd instead of the current
working directory. It is unspecified whether directory searches are permitted based on whether
the file was opened with search permission or on the current permissions of the directory
underlying the file descriptor.

If mknodat() is passed the special value AT_FDCWD in the fd parameter, the current working
directory is used and the behavior shall be identical to a call to mknod().

RETURN VALUE
Upon successful completion, these functions shall return 0. Otherwise, these functions shall
return −1 and set errno to indicate the error. If −1 is returned, the new file shall not be created.

ERRORS
These functions shall fail if:

[EACCES] A component of the path prefix denies search permission, or write permission
is denied on the parent directory.

[EEXIST] The named file exists.

[EINVAL] An invalid argument exists.

[EIO] An I/O error occurred while accessing the file system.

[ELOOP] A loop exists in symbolic links encountered during resolution of the path
argument.

[ENAMETOOLONG]

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

mknod() System Interfaces

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Issue 6
The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

The wording of the mandatory [ELOOP] error condition is updated, and a second optional
[ELOOP] error condition is added.

Issue 7
The mknodat() function is added from The Open Group Technical Standard, 2006, Extended API
Set Part 2.

816 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

26376

26377

26378

26379

26380

26381

26382

26383

26384

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces mknodat()

NAME
mknodat — make directory, special file, or regular file

SYNOPSIS
XSI #include <sys/stat.h>

int mknodat(int fd, c onst char * path, mode_t mode, d ev_t dev);

DESCRIPTION
Refer to mknod().

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 817

26385

26386

26387

26388

26389

26390

26391

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

mkstemp() System Interfaces

NAME
mkstemp — create a unique directory

SYNOPSIS
CX #include <stdlib.h>

int mkstemp(char * template);

DESCRIPTION
Refer to mkdtemp().

818 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

26392

26393

26394

26395

26396

26397

26398

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces mktime()

NAME
mktime — convert broken-down time into time since the Epoch

SYNOPSIS
#include <time.h>

time_t mktime(struct tm * timeptr);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

The mktime() function shall convert the broken-down time, expressed as local time, in the
structure pointed to by timeptr, into a time since the Epoch value with the same encoding as that
of the values returned by time(). The original values of the tm_wday and tm_yday components of
the structure are ignored, and the original values of the other components are not restricted to
the ranges described in <time.h>.

CX A positive or 0 value for tm_isdst shall cause mktime() to presume initially that Daylight Savings
Time, respectively, is or is not in effect for the specified time. A negative value for tm_isdst shall
cause mktime() to attempt to determine whether Daylight Savings Time is in effect for the
specified time.

Local timezone information shall be set as though mktime() called tzset().

The relationship between the tm structure (defined in the <time.h> header) and the time in
seconds since the Epoch is that the result shall be as specified in the expression given in the
definition of seconds since the Epoch (see the Base Definitions volume of IEEE Std 1003.1-200x,
Section 4.14, Seconds Since the Epoch) corrected for timezone and any seasonal time
adjustments, where the names in the structure and in the expression correspond.

Upon successful completion, the values of the tm_wday and tm_yday components of the structure
shall be set appropriately, and the other components are set to represent the specified time since
the Epoch, but with their values forced to the ranges indicated in the <time.h> entry; the final
value of tm_mday shall not be set until tm_mon and tm_year are determined.

RETURN VALUE
The mktime() function shall return the specified time since the Epoch encoded as a value of type
time_t. If the time since the Epoch cannot be represented, the function shall return the value

CX (time_t)−1 and may set errno to indicate the error.

ERRORS
The mktime() function may fail if:

CX [EOVERFLOW] The result cannot be represented.

EXAMPLES
What day of the week is July 4, 2001?

#include <stdio.h>
#include <time.h>

struct tm time_str;

char daybuf[20];

int main(void)
{

time_str.tm_year = 2001 — 1900;

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 819

26399

26400

26401

26402

26403

26404

26405

26406

26407

26408

26409

26410

26411

26412

26413

26414

26415

26416

26417

26418

26419

26420

26421

26422

26423

26424

26425

26426

26427

26428

26429

26430

26431

26432

26433

26434

26435

26436

26437

26438

26439

26440

26441

26442

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

mktime() System Interfaces

time_str.tm_mon = 7 — 1;
time_str.tm_mday = 4;
time_str.tm_hour = 0;
time_str.tm_min = 0;
time_str.tm_sec = 1;
time_str.tm_isdst = −1;
if (mktime(&time_str) == -1)

(void)puts("-unknown-");
else {

(void)strftime(daybuf, sizeof(daybuf), "%A", &time_str);
(void)puts(daybuf);

}
return 0;

}

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
asctime(), clock(), ctime(), difftime(), gmtime(), localtime(), strftime(), strptime(), time(), tzset(),
utime(), the Base Definitions volume of IEEE Std 1003.1-200x, <time.h>

CHANGE HISTORY
First released in Issue 3. Included for alignment with the POSIX.1-1988 standard and the ANSI C
standard.

Issue 6
Extensions beyond the ISO C standard are marked.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/58 is applied, updating the RETURN
VALUE and ERRORS sections to add the optional [EOVERFLOW] error as a CX extension.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/59 is applied, adding the tzset() function
to the SEE ALSO section.

820 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

26443

26444

26445

26446

26447

26448

26449

26450

26451

26452

26453

26454

26455

26456

26457

26458

26459

26460

26461

26462

26463

26464

26465

26466

26467

26468

26469

26470

26471

26472

26473

26474

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces mlock()

NAME
mlock, munlock — lock or unlock a range of process address space (REALTIME)

SYNOPSIS
MLR #include <sys/mman.h>

int mlock(const void * addr, s ize_t len);
int munlock(const void * addr, s ize_t len);

DESCRIPTION
The mlock() function shall cause those whole pages containing any part of the address space of
the process starting at address addr and continuing for len bytes to be memory-resident until
unlocked or until the process exits or execs another process image. The implementation may
require that addr be a multiple of {PAGESIZE}.

The munlock() function shall unlock those whole pages containing any part of the address space
of the process starting at address addr and continuing for len bytes, regardless of how many
times mlock() has been called by the process for any of the pages in the specified range. The
implementation may require that addr be a multiple of {PAGESIZE}.

If any of the pages in the range specified to a call to munlock() are also mapped into the address
spaces of other processes, any locks established on those pages by another process are
unaffected by the call of this process to munlock(). If any of the pages in the range specified by a
call to munlock() are also mapped into other portions of the address space of the calling process
outside the range specified, any locks established on those pages via the other mappings are also
unaffected by this call.

Upon successful return from mlock(), pages in the specified range shall be locked and memory-
resident. Upon successful return from munlock(), pages in the specified range shall be unlocked
with respect to the address space of the process. Memory residency of unlocked pages is
unspecified.

The appropriate privilege is required to lock process memory with mlock().

RETURN VALUE
Upon successful completion, the mlock() and munlock() functions shall return a value of zero.
Otherwise, no change is made to any locks in the address space of the process, and the function
shall return a value of −1 and set errno to indicate the error.

ERRORS
The mlock() and munlock() functions shall fail if:

[ENOMEM] Some or all of the address range specified by the addr and len arguments does
not correspond to valid mapped pages in the address space of the process.

The mlock() function shall fail if:

[EAGAIN] Some or all of the memory identified by the operation could not be locked
when the call was made.

The mlock() and munlock() functions may fail if:

[EINVAL] The addr argument is not a multiple of {PAGESIZE}.

The mlock() function may fail if:

[ENOMEM] Locking the pages mapped by the specified range would exceed an
implementation-defined limit on the amount of memory that the process may
lock.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 821

26475

26476

26477

26478

26479

26480

26481

26482

26483

26484

26485

26486

26487

26488

26489

26490

26491

26492

26493

26494

26495

26496

26497

26498

26499

26500

26501

26502

26503

26504

26505

26506

26507

26508

26509

26510

26511

26512

26513

26514

26515

26516

26517

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces mlockall()

NAME
mlockall, munlockall — lock/unlock the address space of a process (REALTIME)

SYNOPSIS
ML #include <sys/mman.h>

int mlockall(int flags);
int munlockall(void);

DESCRIPTION
The mlockall() function shall cause all of the pages mapped by the address space of a process to
be memory-resident until unlocked or until the process exits or execs another process image. The
flags argument determines whether the pages to be locked are those currently mapped by the
address space of the process, those that are mapped in the future, or both. The flags argument is
constructed from the bitwise-inclusive OR of one or more of the following symbolic constants,
defined in <sys/mman.h>:

MCL_CURRENT Lock all of the pages currently mapped into the address space of the process.

MCL_FUTURE Lock all of the pages that become mapped into the address space of the
process in the future, when those mappings are established.

If MCL_FUTURE is specified, and the automatic locking of future mappings eventually causes
the amount of locked memory to exceed the amount of available physical memory or any other
implementation-defined limit, the behavior is implementation-defined. The manner in which the
implementation informs the application of these situations is also implementation-defined.

The munlockall() function shall unlock all currently mapped pages of the address space of the
process. Any pages that become mapped into the address space of the process after a call to
munlockall() shall not be locked, unless there is an intervening call to mlockall() specifying
MCL_FUTURE or a subsequent call to mlockall() specifying MCL_CURRENT. If pages mapped
into the address space of the process are also mapped into the address spaces of other processes
and are locked by those processes, the locks established by the other processes shall be
unaffected by a call by this process to munlockall().

Upon successful return from the mlockall() function that specifies MCL_CURRENT, all currently
mapped pages of the address space of the process shall be memory-resident and locked. Upon
return from the munlockall() function, all currently mapped pages of the address space of the
process shall be unlocked with respect to the address space of the process. The memory
residency of unlocked pages is unspecified.

The appropriate privilege is required to lock process memory with mlockall().

RETURN VALUE
Upon successful completion, the mlockall() function shall return a value of zero. Otherwise, no
additional memory shall be locked, and the function shall return a value of −1 and set errno to
indicate the error. The effect of failure of mlockall() on previously existing locks in the address
space is unspecified.

If it is supported by the implementation, the munlockall() function shall always return a value of
zero. Otherwise, the function shall return a value of −1 and set errno to indicate the error.

ERRORS
The mlockall() function shall fail if:

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 823

26537

26538

26539

26540

26541

26542

26543

26544

26545

26546

26547

26548

26549

26550

26551

26552

26553

26554

26555

26556

26557

26558

26559

26560

26561

26562

26563

26564

26565

26566

26567

26568

26569

26570

26571

26572

26573

26574

26575

26576

26577

26578

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

mlockall() System Interfaces

[EAGAIN] Some or all of the memory identified by the operation could not be locked
when the call was made.

[EINVAL] The flags argument is zero, or includes unimplemented flags.

The mlockall() function may fail if:

[ENOMEM] Locking all of the pages currently mapped into the address space of the
process would exceed an implementation-defined limit on the amount of
memory that the process may lock.

[EPERM] The calling process does not have the appropriate privilege to perform the
requested operation.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
exec , exit(), fork(), mlock(), munmap(), the Base Definitions volume of IEEE Std 1003.1-200x,
<sys/mman.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

Issue 6
The mlockall() and munlockall() functions are marked as part of the Process Memory Locking
option.

The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Process Memory Locking option.

824 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

26579

26580

26581

26582

26583

26584

26585

26586

26587

26588

26589

26590

26591

26592

26593

26594

26595

26596

26597

26598

26599

26600

26601

26602

26603

26604

26605

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces mmap()

NAME
mmap — map pages of memory

SYNOPSIS
#include <sys/mman.h>

void *mmap(void * addr, s ize_t len, i nt prot, i nt flags,
int fildes, o ff_t off);

DESCRIPTION
The mmap() function shall establish a mapping between an address space of a process and a
memory object.

The mmap() function shall be supported for the following memory objects:

• Regular files

SHM • Shared memory objects

TYM • Typed memory objects

Support for any other type of file is unspecified.

The format of the call is as follows:

pa=mmap(addr, len, prot, flags, fildes, off);

The mmap() function shall establish a mapping between the address space of the process at an
address pa for len bytes to the memory object represented by the file descriptor fildes at offset off
for len bytes. The value of pa is an implementation-defined function of the parameter addr and
the values of flags, further described below. A successful mmap() call shall return pa as its result.
The address range starting at pa and continuing for len bytes shall be legitimate for the possible
(not necessarily current) address space of the process. The range of bytes starting at off and
continuing for len bytes shall be legitimate for the possible (not necessarily current) offsets in the
memory object represented by fildes.

TYM If fildes represents a typed memory object opened with either the
POSIX_TYPED_MEM_ALLOCATE flag or the POSIX_TYPED_MEM_ALLOCATE_CONTIG
flag, the memory object to be mapped shall be that portion of the typed memory object allocated
by the implementation as specified below. In this case, if off is non-zero, the behavior of mmap()
is undefined. If fildes refers to a valid typed memory object that is not accessible from the calling
process, mmap() shall fail.

The mapping established by mmap() shall replace any previous mappings for those whole pages
containing any part of the address space of the process starting at pa and continuing for len
bytes.

If the size of the mapped file changes after the call to mmap() as a result of some other operation
on the mapped file, the effect of references to portions of the mapped region that correspond to
added or removed portions of the file is unspecified.

If len is zero, mmap() shall fail and no mapping shall be established.

The parameter prot determines whether read, write, execute, or some combination of accesses
are permitted to the data being mapped. The prot shall be either PROT_NONE or the bitwise-
inclusive OR of one or more of the other flags in the following table, defined in the
<sys/mman.h> header.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 825

26606

26607

26608

26609

26610

26611

26612

26613

26614

26615

26616

26617

26618

26619

26620

26621

26622

26623

26624

26625

26626

26627

26628

26629

26630

26631

26632

26633

26634

26635

26636

26637

26638

26639

26640

26641

26642

26643

26644

26645

26646

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

mmap() System Interfaces

Symbolic Constant Description

PROT_READ Data can be read.
PROT_WRITE Data can be written.
PROT_EXEC Data can be executed.
PROT_NONE Data cannot be accessed.

If an implementation cannot support the combination of access types specified by prot, the call to
mmap() shall fail.

An implementation may permit accesses other than those specified by prot; however, the
implementation shall not permit a write to succeed where PROT_WRITE has not been set and
shall not permit any access where PROT_NONE alone has been set. The implementation shall
support at least the following values of prot: PROT_NONE, PROT_READ, PROT_WRITE, and
the bitwise-inclusive OR of PROT_READ and PROT_WRITE. The file descriptor fildes shall have
been opened with read permission, regardless of the protection options specified. If
PROT_WRITE is specified, the application shall ensure that it has opened the file descriptor fildes
with write permission unless MAP_PRIVATE is specified in the flags parameter as described
below.

The parameter flags provides other information about the handling of the mapped data. The
value of flags is the bitwise-inclusive OR of these options, defined in <sys/mman.h>:

Symbolic Constant Description

MAP_SHARED Changes are shared.
MAP_PRIVATE Changes are private.
MAP_FIXED Interpret addr exactly.

XSI It is implementation-defined whether MAP_FIXED shall be supported. MAP_FIXED shall be
supported on XSI-conformant systems.

MAP_SHARED and MAP_PRIVATE describe the disposition of write references to the memory
object. If MAP_SHARED is specified, write references shall change the underlying object. If
MAP_PRIVATE is specified, modifications to the mapped data by the calling process shall be
visible only to the calling process and shall not change the underlying object. It is unspecified
whether modifications to the underlying object done after the MAP_PRIVATE mapping is
established are visible through the MAP_PRIVATE mapping. Either MAP_SHARED or
MAP_PRIVATE can be specified, but not both. The mapping type is retained across fork().

The state of synchronization objects such as mutexes, semaphores, barriers, and conditional
variables placed in shared memory mapped with MAP_SHARED becomes undefined when the
last region in any process containing the synchronization object is unmapped.

TYM When fildes represents a typed memory object opened with either the
POSIX_TYPED_MEM_ALLOCATE flag or the POSIX_TYPED_MEM_ALLOCATE_CONTIG
flag, mmap() shall, if there are enough resources available, map len bytes allocated from the
corresponding typed memory object which were not previously allocated to any process in any
processor that may access that typed memory object. If there are not enough resources available,
the function shall fail. If fildes represents a typed memory object opened with the
POSIX_TYPED_MEM_ALLOCATE_CONTIG flag, these allocated bytes shall be contiguous
within the typed memory object. If fildes represents a typed memory object opened with the
POSIX_TYPED_MEM_ALLOCATE flag, these allocated bytes may be composed of non-
contiguous fragments within the typed memory object. If fildes represents a typed memory
object opened with neither the POSIX_TYPED_MEM_ALLOCATE_CONTIG flag nor the
POSIX_TYPED_MEM_ALLOCATE flag, len bytes starting at offset off within the typed memory
object are mapped, exactly as when mapping a file or shared memory object. In this case, if two
processes map an area of typed memory using the same off and len values and using file
descriptors that refer to the same memory pool (either from the same port or from a different

826 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

26647

26648

26649

26650

26651

26652

26653

26654

26655

26656

26657

26658

26659

26660

26661

26662

26663

26664

26665

26666

26667

26668

26669

26670

26671

26672

26673

26674

26675

26676

26677

26678

26679

26680

26681

26682

26683

26684

26685

26686

26687

26688

26689

26690

26691

26692

26693

26694

26695

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces mmap()

port), both processes shall map the same region of storage.

When MAP_FIXED is set in the flags argument, the implementation is informed that the value of
pa shall be addr, exactly. If MAP_FIXED is set, mmap() may return MAP_FAILED and set errno to
[EINVAL]. If a MAP_FIXED request is successful, the mapping established by mmap() replaces
any previous mappings for the pages in the range [pa,pa+len) of the process.

When MAP_FIXED is not set, the implementation uses addr in an implementation-defined
manner to arrive at pa. The pa so chosen shall be an area of the address space that the
implementation deems suitable for a mapping of len bytes to the file. All implementations
interpret an addr value of 0 as granting the implementation complete freedom in selecting pa,
subject to constraints described below. A non-zero value of addr is taken to be a suggestion of a
process address near which the mapping should be placed. When the implementation selects a
value for pa, it never places a mapping at address 0, nor does it replace any extant mapping.

If MAP_FIXED is specified and addr is non-zero, it shall have the same remainder as the off
parameter, modulo the page size as returned by sysconf() when passed _SC_PAGESIZE or
_SC_PAGE_SIZE. The implementation may require that off is a multiple of the page size. If
MAP_FIXED is specified, the implementation may require that addr is a multiple of the page
size. The system performs mapping operations over whole pages. Thus, while the parameter len
need not meet a size or alignment constraint, the system shall include, in any mapping
operation, any partial page specified by the address range starting at pa and continuing for len
bytes.

The system shall always zero-fill any partial page at the end of an object. Further, the system
shall never write out any modified portions of the last page of an object which are beyond its
end. References within the address range starting at pa and continuing for len bytes to whole
pages following the end of an object shall result in delivery of a SIGBUS signal.

An implementation may generate SIGBUS signals when a reference would cause an error in the
mapped object, such as out-of-space condition.

The mmap() function shall add an extra reference to the file associated with the file descriptor
fildes which is not removed by a subsequent close() on that file descriptor. This reference shall be
removed when there are no more mappings to the file.

The st_atime field of the mapped file may be marked for update at any time between the mmap()
call and the corresponding munmap() call. The initial read or write reference to a mapped region
shall cause the file’s st_atime field to be marked for update if it has not already been marked for
update.

The st_ctime and st_mtime fields of a file that is mapped with MAP_SHARED and PROT_WRITE
shall be marked for update at some point in the interval between a write reference to the
mapped region and the next call to msync() with MS_ASYNC or MS_SYNC for that portion of
the file by any process. If there is no such call and if the underlying file is modified as a result of
a write reference, then these fields shall be marked for update at some time after the write
reference.

There may be implementation-defined limits on the number of memory regions that can be
mapped (per process or per system).

XSI If such a limit is imposed, whether the number of memory regions that can be mapped by a
process is decreased by the use of shmat() is implementation-defined.

If mmap() fails for reasons other than [EBADF], [EINVAL], or [ENOTSUP], some of the
mappings in the address range starting at addr and continuing for len bytes may have been
unmapped.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 827

26696

26697

26698

26699

26700

26701

26702

26703

26704

26705

26706

26707

26708

26709

26710

26711

26712

26713

26714

26715

26716

26717

26718

26719

26720

26721

26722

26723

26724

26725

26726

26727

26728

26729

26730

26731

26732

26733

26734

26735

26736

26737

26738

26739

26740

26741

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

mmap() System Interfaces

RETURN VALUE
Upon successful completion, the mmap() function shall return the address at which the mapping
was placed (pa); otherwise, it shall return a value of MAP_FAILED and set errno to indicate the
error. The symbol MAP_FAILED is defined in the <sys/mman.h> header. No successful return
from mmap() shall return the value MAP_FAILED.

ERRORS
The mmap() function shall fail if:

[EACCES] The fildes argument is not open for read, regardless of the protection specified,
or fildes is not open for write and PROT_WRITE was specified for a
MAP_SHARED type mapping.

ML [EAGAIN] The mapping could not be locked in memory, if required by mlockall(), due to
a lack of resources.

[EBADF] The fildes argument is not a valid open file descriptor.

[EINVAL] The value of len is zero.

[EINVAL] The value of flags is invalid (neither MAP_PRIVATE nor MAP_SHARED is
set).

[EMFILE] The number of mapped regions would exceed an implementation-defined
limit (per process or per system).

[ENODEV] The fildes argument refers to a file whose type is not supported by mmap().

[ENOMEM] MAP_FIXED was specified, and the range [addr,addr+len) exceeds that allowed
for the address space of a process; or, if MAP_FIXED was not specified and
there is insufficient room in the address space to effect the mapping.

ML [ENOMEM] The mapping could not be locked in memory, if required by mlockall(),
because it would require more space than the system is able to supply.

TYM [ENOMEM] Not enough unallocated memory resources remain in the typed memory
object designated by fildes to allocate len bytes.

[ENOTSUP] MAP_FIXED or MAP_PRIVATE was specified in the flags argument and the
implementation does not support this functionality.

The implementation does not support the combination of accesses requested
in the prot argument.

[ENXIO] Addresses in the range [off,off+len) are invalid for the object specified by fildes.

[ENXIO] MAP_FIXED was specified in flags and the combination of addr, len, and off is
invalid for the object specified by fildes.

TYM [ENXIO] The fildes argument refers to a typed memory object that is not accessible from
the calling process.

[EOVERFLOW] The file is a regular file and the value of off plus len exceeds the offset
maximum established in the open file description associated with fildes.

The mmap() function may fail if:

[EINVAL] The addr argument (if MAP_FIXED was specified) or off is not a multiple of the
page size as returned by sysconf(), or is considered invalid by the
implementation.

828 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

26742

26743

26744

26745

26746

26747

26748

26749

26750

26751

26752

26753

26754

26755

26756

26757

26758

26759

26760

26761

26762

26763

26764

26765

26766

26767

26768

26769

26770

26771

26772

26773

26774

26775

26776

26777

26778

26779

26780

26781

26782

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces mmap()

EXAMPLES
None.

APPLICATION USAGE
Use of mmap() may reduce the amount of memory available to other memory allocation
functions.

Use of MAP_FIXED may result in unspecified behavior in further use of malloc() and shmat().
The use of MAP_FIXED is discouraged, as it may prevent an implementation from making the
most effective use of resources. Most implementations require that off and addr are multiples of
the page size as returned by sysconf().

The application must ensure correct synchronization when using mmap() in conjunction with
any other file access method, such as read() and write(), standard input/output, and shmat().

The mmap() function allows access to resources via address space manipulations, instead of
read()/write(). Once a file is mapped, all a process has to do to access it is use the data at the
address to which the file was mapped. So, using pseudo-code to illustrate the way in which an
existing program might be changed to use mmap(), the following:

fildes = open(...)
lseek(fildes, some_offset)
read(fildes, buf, len)
/* Use data in buf. */

becomes:

fildes = open(...)
address = mmap(0, len, PROT_READ, MAP_PRIVATE, fildes, some_offset)
/* Use data at address. */

RATIONALE
After considering several other alternatives, it was decided to adopt the mmap() definition
found in SVR4 for mapping memory objects into process address spaces. The SVR4 definition is
minimal, in that it describes only what has been built, and what appears to be necessary for a
general and portable mapping facility.

Note that while mmap() was first designed for mapping files, it is actually a general-purpose
mapping facility. It can be used to map any appropriate object, such as memory, files, devices,
and so on, into the address space of a process.

When a mapping is established, it is possible that the implementation may need to map more
than is requested into the address space of the process because of hardware requirements. An
application, however, cannot count on this behavior. Implementations that do not use a paged
architecture may simply allocate a common memory region and return the address of it; such
implementations probably do not allocate any more than is necessary. References past the end of
the requested area are unspecified.

If an application requests a mapping that would overlay existing mappings in the process, it
might be desirable that an implementation detect this and inform the application. However, the
default, portable (not MAP_FIXED) operation does not overlay existing mappings. On the other
hand, if the program specifies a fixed address mapping (which requires some implementation
knowledge to determine a suitable address, if the function is supported at all), then the program
is presumed to be successfully managing its own address space and should be trusted when it
asks to map over existing data structures. Furthermore, it is also desirable to make as few system
calls as possible, and it might be considered onerous to require an munmap() before an mmap()
to the same address range. This volume of IEEE Std 1003.1-200x specifies that the new mappings
replace any existing mappings, following existing practice in this regard.

It is not expected that all hardware implementations are able to support all combinations of

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 829

26783

26784

26785

26786

26787

26788

26789

26790

26791

26792

26793

26794

26795

26796

26797

26798

26799

26800

26801

26802

26803

26804

26805

26806

26807

26808

26809

26810

26811

26812

26813

26814

26815

26816

26817

26818

26819

26820

26821

26822

26823

26824

26825

26826

26827

26828

26829

26830

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

mmap() System Interfaces

permissions at all addresses. Implementations are required to disallow write access to mappings
without write permission and to disallow access to mappings without any access permission.
Other than these restrictions, implementations may allow access types other than those
requested by the application. For example, if the application requests only PROT_WRITE, the
implementation may also allow read access. A call to mmap() fails if the implementation cannot
support allowing all the access requested by the application. For example, some
implementations cannot support a request for both write access and execute access
simultaneously. All implementations must support requests for no access, read access, write
access, and both read and write access. Strictly conforming code must only rely on the required
checks. These restrictions allow for portability across a wide range of hardware.

The MAP_FIXED address treatment is likely to fail for non-page-aligned values and for certain
architecture-dependent address ranges. Conforming implementations cannot count on being
able to choose address values for MAP_FIXED without utilizing non-portable, implementation-
defined knowledge. Nonetheless, MAP_FIXED is provided as a standard interface conforming
to existing practice for utilizing such knowledge when it is available.

Similarly, in order to allow implementations that do not support virtual addresses, support for
directly specifying any mapping addresses via MAP_FIXED is not required and thus a
conforming application may not count on it.

The MAP_PRIVATE function can be implemented efficiently when memory protection hardware
is available. When such hardware is not available, implementations can implement such
‘‘mappings’’ by simply making a real copy of the relevant data into process private memory,
though this tends to behave similarly to read().

The function has been defined to allow for many different models of using shared memory.
However, all uses are not equally portable across all machine architectures. In particular, the
mmap() function allows the system as well as the application to specify the address at which to
map a specific region of a memory object. The most portable way to use the function is always to
let the system choose the address, specifying NULL as the value for the argument addr and not
to specify MAP_FIXED.

If it is intended that a particular region of a memory object be mapped at the same address in a
group of processes (on machines where this is even possible), then MAP_FIXED can be used to
pass in the desired mapping address. The system can still be used to choose the desired address
if the first such mapping is made without specifying MAP_FIXED, and then the resulting
mapping address can be passed to subsequent processes for them to pass in via MAP_FIXED.
The availability of a specific address range cannot be guaranteed, in general.

The mmap() function can be used to map a region of memory that is larger than the current size
of the object. Memory access within the mapping but beyond the current end of the underlying
objects may result in SIGBUS signals being sent to the process. The reason for this is that the size
of the object can be manipulated by other processes and can change at any moment. The
implementation should tell the application that a memory reference is outside the object where
this can be detected; otherwise, written data may be lost and read data may not reflect actual
data in the object.

Note that references beyond the end of the object do not extend the object as the new end cannot
be determined precisely by most virtual memory hardware. Instead, the size can be directly
manipulated by ftruncate().

Process memory locking does apply to shared memory regions, and the MEMLOCK_FUTURE
argument to mlockall() can be relied upon to cause new shared memory regions to be
automatically locked.

Existing implementations of mmap() return the value −1 when unsuccessful. Since the casting of
this value to type void * cannot be guaranteed by the ISO C standard to be distinct from a
successful value, this volume of IEEE Std 1003.1-200x defines the symbol MAP_FAILED, which a

830 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

26831

26832

26833

26834

26835

26836

26837

26838

26839

26840

26841

26842

26843

26844

26845

26846

26847

26848

26849

26850

26851

26852

26853

26854

26855

26856

26857

26858

26859

26860

26861

26862

26863

26864

26865

26866

26867

26868

26869

26870

26871

26872

26873

26874

26875

26876

26877

26878

26879

26880

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces mmap()

conforming implementation does not return as the result of a successful call.

FUTURE DIRECTIONS
None.

SEE ALSO
exec , fcntl(), fork(), lockf(), msync(), munmap(), mprotect(), posix_typed_mem_open(), shmat(),
sysconf(), the Base Definitions volume of IEEE Std 1003.1-200x, <sys/mman.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Aligned with mmap() in the POSIX Realtime Extension as follows:

• The DESCRIPTION is extensively reworded.

• The [EAGAIN] and [ENOTSUP] mandatory error conditions are added.

• New cases of [ENOMEM] and [ENXIO] are added as mandatory error conditions.

• The value returned on failure is the value of the constant MAP_FAILED; this was
previously defined as −1.

Large File Summit extensions are added.

Issue 6
The mmap() function is marked as part of the Memory Mapped Files option.

The Open Group Corrigendum U028/6 is applied, changing (void *)−1 to MAP_FAILED.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The DESCRIPTION is updated to describe the use of MAP_FIXED.

• The DESCRIPTION is updated to describe the addition of an extra reference to the file
associated with the file descriptor passed to mmap().

• The DESCRIPTION is updated to state that there may be implementation-defined limits on
the number of memory regions that can be mapped.

• The DESCRIPTION is updated to describe constraints on the alignment and size of the off
argument.

• The [EINVAL] and [EMFILE] error conditions are added.

• The [EOVERFLOW] error condition is added. This change is to support large files.

The following changes are made for alignment with the ISO POSIX-1: 1996 standard:

• The DESCRIPTION is updated to describe the cases when MAP_PRIVATE and
MAP_FIXED need not be supported.

The following changes are made for alignment with IEEE Std 1003.1j-2000:

• Semantics for typed memory objects are added to the DESCRIPTION.

• New [ENOMEM] and [ENXIO] errors are added to the ERRORS section.

• The posix_typed_mem_open() function is added to the SEE ALSO section.

The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/34 is applied, changing the margin code
in the SYNOPSIS from MF|SHM to MC3 (notation for MF|SHM|TYM).

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 831

26881

26882

26883

26884

26885

26886

26887

26888

26889

26890

26891

26892

26893

26894

26895

26896

26897

26898

26899

26900

26901

26902

26903

26904

26905

26906

26907

26908

26909

26910

26911

26912

26913

26914

26915

26916

26917

26918

26919

26920

26921

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

mmap() System Interfaces

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/60 is applied, updating the
DESCRIPTION and ERRORS sections to add the [EINVAL] error when len is zero.

Issue 7
Austin Group Interpretations 1003.1-2001 #078 and #079 are applied, clarifying page alignment
requirements and adding a note about the state of synchronization objects becoming undefined
when a shared region is unmapped.

Functionality relating to the Memory Protection and Memory Mapped Files options is moved to
the Base.

832 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

26922

26923

26924

26925

26926

26927

26928

26929

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces modf()

NAME
modf, modff, modfl — decompose a floating-point number

SYNOPSIS
#include <math.h>

double modf(double x, d ouble * iptr);
float modff(float value, f loat * iptr);
long double modfl(long double value, l ong double * iptr);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

These functions shall break the argument x into integral and fractional parts, each of which has
the same sign as the argument. It stores the integral part as a double (for the modf() function), a
float (for the modff() function), or a long double (for the modfl() function), in the object pointed
to by iptr.

RETURN VALUE
Upon successful completion, these functions shall return the signed fractional part of x.

MX If x is NaN, a NaN shall be returned, and *iptr shall be set to a NaN.

If x is ±Inf, ±0 shall be returned, and *iptr shall be set to ±Inf.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
The modf() function computes the function result and *iptr such that:

a = modf(x, iptr) ;
x == a +*iptr ;

allowing for the usual floating-point inaccuracies.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
frexp(), isnan(), ldexp(), the Base Definitions volume of IEEE Std 1003.1-200x, <math.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The DESCRIPTION is updated to indicate how an application should check for an error. This
text was previously published in the APPLICATION USAGE section.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 833

26930

26931

26932

26933

26934

26935

26936

26937

26938

26939

26940

26941

26942

26943

26944

26945

26946

26947

26948

26949

26950

26951

26952

26953

26954

26955

26956

26957

26958

26959

26960

26961

26962

26963

26964

26965

26966

26967

26968

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

modf() System Interfaces

Issue 6
The modff() and modfl() functions are added for alignment with the ISO/IEC 9899: 1999
standard.

The DESCRIPTION, RETURN VALUE, ERRORS, and APPLICATION USAGE sections are
revised to align with the ISO/IEC 9899: 1999 standard.

IEC 60559: 1989 standard floating-point extensions over the ISO/IEC 9899: 1999 standard are
marked.

IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/35 is applied, correcting the code example
in the APPLICATION USAGE section.

834 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

26969

26970

26971

26972

26973

26974

26975

26976

26977

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces mprotect()

NAME
mprotect — set protection of memory mapping

SYNOPSIS
#include <sys/mman.h>

int mprotect(void * addr, s ize_t len, i nt prot);

DESCRIPTION
The mprotect() function shall change the access protections to be that specified by prot for those
whole pages containing any part of the address space of the process starting at address addr and
continuing for len bytes. The parameter prot determines whether read, write, execute, or some
combination of accesses are permitted to the data being mapped. The prot argument should be
either PROT_NONE or the bitwise-inclusive OR of one or more of PROT_READ, PROT_WRITE,
and PROT_EXEC.

If an implementation cannot support the combination of access types specified by prot, the call to
mprotect() shall fail.

An implementation may permit accesses other than those specified by prot; however, no
implementation shall permit a write to succeed where PROT_WRITE has not been set or shall
permit any access where PROT_NONE alone has been set. Implementations shall support at
least the following values of prot: PROT_NONE, PROT_READ, PROT_WRITE, and the bitwise-
inclusive OR of PROT_READ and PROT_WRITE. If PROT_WRITE is specified, the application
shall ensure that it has opened the mapped objects in the specified address range with write
permission, unless MAP_PRIVATE was specified in the original mapping, regardless of whether
the file descriptors used to map the objects have since been closed.

The implementation may require that addr be a multiple of the page size as returned by
sysconf().

The behavior of this function is unspecified if the mapping was not established by a call to
mmap().

When mprotect() fails for reasons other than [EINVAL], the protections on some of the pages in
the range [addr,addr+len) may have been changed.

RETURN VALUE
Upon successful completion, mprotect() shall return 0; otherwise, it shall return −1 and set errno
to indicate the error.

ERRORS
The mprotect() function shall fail if:

[EACCES] The prot argument specifies a protection that violates the access permission the
process has to the underlying memory object.

[EAGAIN] The prot argument specifies PROT_WRITE over a MAP_PRIVATE mapping
and there are insufficient memory resources to reserve for locking the private
page.

[ENOMEM] Addresses in the range [addr,addr+len) are invalid for the address space of a
process, or specify one or more pages which are not mapped.

[ENOMEM] The prot argument specifies PROT_WRITE on a MAP_PRIVATE mapping, and
it would require more space than the system is able to supply for locking the
private pages, if required.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 835

26978

26979

26980

26981

26982

26983

26984

26985

26986

26987

26988

26989

26990

26991

26992

26993

26994

26995

26996

26997

26998

26999

27000

27001

27002

27003

27004

27005

27006

27007

27008

27009

27010

27011

27012

27013

27014

27015

27016

27017

27018

27019

27020

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

mprotect() System Interfaces

[ENOTSUP] The implementation does not support the combination of accesses requested
in the prot argument.

The mprotect() function may fail if:

[EINVAL] The addr argument is not a multiple of the page size as returned by sysconf().

EXAMPLES
None.

APPLICATION USAGE
Most implementations require that addr is a multiple of the page size as returned by sysconf().

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
mmap(), sysconf(), the Base Definitions volume of IEEE Std 1003.1-200x, <sys/mman.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Aligned with mprotect() in the POSIX Realtime Extension as follows:

• The DESCRIPTION is largely reworded.

• [ENOTSUP] and a second form of [ENOMEM] are added as mandatory error conditions.

• [EAGAIN] is moved from the optional to the mandatory error conditions.

Issue 6
The mprotect() function is marked as part of the Memory Protection option.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The DESCRIPTION is updated to state that implementations require addr to be a multiple
of the page size as returned by sysconf().

• The [EINVAL] error condition is added.

The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

Issue 7
SD5-XSH-ERN-22 is applied, deleting erroneous APPLICATION USAGE.

Austin Group Interpretation 1003.1-2001 #078 is applied, clarifying page alignment
requirements.

The mprotect() function is moved from the Memory Protection option to the Base.

836 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

27021

27022

27023

27024

27025

27026

27027

27028

27029

27030

27031

27032

27033

27034

27035

27036

27037

27038

27039

27040

27041

27042

27043

27044

27045

27046

27047

27048

27049

27050

27051

27052

27053

27054

27055

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces mq_close()

NAME
mq_close — close a message queue (REALTIME)

SYNOPSIS
MSG #include <mqueue.h>

int mq_close(mqd_t mqdes);

DESCRIPTION
The mq_close() function shall remove the association between the message queue descriptor,
mqdes, and its message queue. The results of using this message queue descriptor after successful
return from this mq_close(), and until the return of this message queue descriptor from a
subsequent mq_open(), are undefined.

If the process has successfully attached a notification request to the message queue via this
mqdes, this attachment shall be removed, and the message queue is available for another process
to attach for notification.

RETURN VALUE
Upon successful completion, the mq_close() function shall return a value of zero; otherwise, the
function shall return a value of −1 and set errno to indicate the error.

ERRORS
The mq_close() function shall fail if:

[EBADF] The mqdes argument is not a valid message queue descriptor.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
mq_open(), mq_unlink(), msgctl(), msgget(), msgrcv(), msgsnd(), the Base Definitions volume of
IEEE Std 1003.1-200x, <mqueue.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

Issue 6
The mq_close() function is marked as part of the Message Passing option.

The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Message Passing option.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 837

27056

27057

27058

27059

27060

27061

27062

27063

27064

27065

27066

27067

27068

27069

27070

27071

27072

27073

27074

27075

27076

27077

27078

27079

27080

27081

27082

27083

27084

27085

27086

27087

27088

27089

27090

27091

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

mq_getattr() System Interfaces

NAME
mq_getattr — get message queue attributes (REALTIME)

SYNOPSIS
MSG #include <mqueue.h>

int mq_getattr(mqd_t mqdes, s truct mq_attr * mqstat);

DESCRIPTION
The mq_getattr() function shall obtain status information and attributes of the message queue
and the open message queue description associated with the message queue descriptor.

The mqdes argument specifies a message queue descriptor.

The results shall be returned in the mq_attr structure referenced by the mqstat argument.

Upon return, the following members shall have the values associated with the open message
queue description as set when the message queue was opened and as modified by subsequent
mq_setattr() calls: mq_flags.

The following attributes of the message queue shall be returned as set at message queue
creation: mq_maxmsg, mq_msgsize.

Upon return, the following members within the mq_attr structure referenced by the mqstat
argument shall be set to the current state of the message queue:

mq_curmsgs The number of messages currently on the queue.

RETURN VALUE
Upon successful completion, the mq_getattr() function shall return zero. Otherwise, the function
shall return −1 and set errno to indicate the error.

ERRORS
The mq_getattr() function may fail if:

[EBADF] The mqdes argument is not a valid message queue descriptor.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
mq_open(), mq_send(), mq_setattr(), mq_timedsend(), msgctl(), msgget(), msgrcv(), msgsnd(), the
Base Definitions volume of IEEE Std 1003.1-200x, <mqueue.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

838 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

27092

27093

27094

27095

27096

27097

27098

27099

27100

27101

27102

27103

27104

27105

27106

27107

27108

27109

27110

27111

27112

27113

27114

27115

27116

27117

27118

27119

27120

27121

27122

27123

27124

27125

27126

27127

27128

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces mq_getattr()

Issue 6
The mq_getattr() function is marked as part of the Message Passing option.

The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Message Passing option.

The mq_timedsend() function is added to the SEE ALSO section for alignment with IEEE Std
1003.1d-1999.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/61 is applied, updating the ERRORS
section to change the [EBADF] error from mandatory to optional.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 839

27129

27130

27131

27132

27133

27134

27135

27136

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

mq_notify() System Interfaces

NAME
mq_notify — notify process that a message is available (REALTIME)

SYNOPSIS
MSG #include <mqueue.h>

int mq_notify(mqd_t mqdes, c onst struct sigevent * notification);

DESCRIPTION
If the argument notification is not NULL, this function shall register the calling process to be
notified of message arrival at an empty message queue associated with the specified message
queue descriptor, mqdes. The notification specified by the notification argument shall be sent to
the process when the message queue transitions from empty to non-empty. At any time, only
one process may be registered for notification by a message queue. If the calling process or any
other process has already registered for notification of message arrival at the specified message
queue, subsequent attempts to register for that message queue shall fail.

If notification is NULL and the process is currently registered for notification by the specified
message queue, the existing registration shall be removed.

When the notification is sent to the registered process, its registration shall be removed. The
message queue shall then be available for registration.

If a process has registered for notification of message arrival at a message queue and some
thread is blocked in mq_receive() or mq_timedreceive() waiting to receive a message when a
message arrives at the queue, the arriving message shall satisfy the appropriate mq_receive() or
mq_timedreceive(), respectively. The resulting behavior is as if the message queue remains empty,
and no notification shall be sent.

RETURN VALUE
Upon successful completion, the mq_notify() function shall return a value of zero; otherwise, the
function shall return a value of −1 and set errno to indicate the error.

ERRORS
The mq_notify() function shall fail if:

[EBADF] The mqdes argument is not a valid message queue descriptor.

[EBUSY] A process is already registered for notification by the message queue.
The mq_notify() function may fail if:

[EINVAL] The notification argument is NULL and the process is currently not registered.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

840 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

27137

27138

27139

27140

27141

27142

27143

27144

27145

27146

27147

27148

27149

27150

27151

27152

27153

27154

27155

27156

27157

27158

27159

27160

27161

27162

27163

27164

27165

27166

27167

27168

27169

27170

27171

27172

27173

27174

27175

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces mq_notify()

SEE ALSO
mq_open(), mq_send(), mq_receive(), mq_timedsend(), msgctl(), msgget(), msgrcv(), msgsnd(), the
Base Definitions volume of IEEE Std 1003.1-200x, <mqueue.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

Issue 6
The mq_notify() function is marked as part of the Message Passing option.

The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Message Passing option.

The mq_timedsend() function is added to the SEE ALSO section for alignment with IEEE Std
1003.1d-1999.

Issue 7
SD5-XSH-ERN-38 is applied, adding the mq_timedreceive() function to the DESCRIPTION.

Austin Group Interpretation 1003.1-2001 #032 is applied, adding the [EINVAL] error.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 841

27176

27177

27178

27179

27180

27181

27182

27183

27184

27185

27186

27187

27188

27189

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces mq_open()

O_EXCL. Otherwise, a message queue shall be created without any messages
in it. The user ID of the message queue shall be set to the effective user ID of
the process, and the group ID of the message queue shall be set to the effective
group ID of the process. The permission bits of the message queue shall be set
to the value of the mode argument, except those set in the file mode creation
mask of the process. When bits in mode other than the file permission bits are
specified, the effect is unspecified. If attr is NULL, the message queue shall be
created with implementation-defined default message queue attributes. If attr
is non-NULL and the calling process has the appropriate privilege on name,
the message queue mq_maxmsg and mq_msgsize attributes shall be set to the
values of the corresponding members in the mq_attr structure referred to by
attr. If attr is non-NULL, but the calling process does not have the appropriate
privilege on name, the mq_open() function shall fail and return an error
without creating the message queue.

O_EXCL If O_EXCL and O_CREAT are set, mq_open() shall fail if the message queue
name exists. The check for the existence of the message queue and the creation
of the message queue if it does not exist shall be atomic with respect to other
threads executing mq_open() naming the same name with O_EXCL and
O_CREAT set. If O_EXCL is set and O_CREAT is not set, the result is
undefined.

O_NONBLOCK Determines whether an mq_send() or mq_receive() waits for resources or
messages that are not currently available, or fails with errno set to [EAGAIN];
see mq_send() and mq_receive() for details.

The mq_open() function does not add or remove messages from the queue.

RETURN VALUE
Upon successful completion, the function shall return a message queue descriptor; otherwise,
the function shall return (mqd_t)−1 and set errno to indicate the error.

ERRORS
The mq_open() function shall fail if:

[EACCES] The message queue exists and the permissions specified by oflag are denied, or
the message queue does not exist and permission to create the message queue
is denied.

[EEXIST] O_CREAT and O_EXCL are set and the named message queue already exists.

[EINTR] The mq_open() function was interrupted by a signal.

[EINVAL] The mq_open() function is not supported for the given name.

[EINVAL] O_CREAT was specified in oflag, the value of attr is not NULL, and either
mq_maxmsg or mq_msgsize was less than or equal to zero.

[EMFILE] Too many message queue descriptors or file descriptors are currently in use by
this process.

[ENFILE] Too many message queues are currently open in the system.

[ENOENT] O_CREAT is not set and the named message queue does not exist.

[ENOSPC] There is insufficient space for the creation of the new message queue.

If any of the following conditions occur, the mq_open() function may return (mqd_t)−1 and set
errno to the corresponding value.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 843

27235

27236

27237

27238

27239

27240

27241

27242

27243

27244

27245

27246

27247

27248

27249

27250

27251

27252

27253

27254

27255

27256

27257

27258

27259

27260

27261

27262

27263

27264

27265

27266

27267

27268

27269

27270

27271

27272

27273

27274

27275

27276

27277

27278

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

mq_open() System Interfaces

[ENAMETOOLONG]
The length of the name argument exceeds {_POSIX_PATH_MAX} on systems

XSI that do not support the XSI option or exceeds {_XOPEN_PATH_MAX} on XSI
systems, or has a pathname component that is longer than

XSI {_POSIX_NAME_MAX} on systems that do not support the XSI option or
longer than {_XOPEN_NAME_MAX} on XSI systems.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
mq_close(), mq_getattr(), mq_receive(), mq_send(), mq_setattr(), mq_timedreceive(), mq_timedsend(),
mq_unlink(), msgctl(), msgget(), msgrcv(), msgsnd(), the Base Definitions volume of
IEEE Std 1003.1-200x, <mqueue.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

Issue 6
The mq_open() function is marked as part of the Message Passing option.

The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Message Passing option.

The mq_timedreceive() and mq_timedsend() functions are added to the SEE ALSO section for
alignment with IEEE Std 1003.1d-1999.

The DESCRIPTION of O_EXCL is updated in response to IEEE PASC Interpretation 1003.1c #48.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/62 is applied, updating the description of
the permission bits in the DESCRIPTION section. The change is made for consistency with the
shm_open() and sem_open() functions.

Issue 7
Austin Group Interpretation 1003.1-2001 #077 is applied, clarifying the name argument and
changing [ENAMETOOLONG] from a ‘‘shall fail’’ to a ‘‘may fail’’ error.

844 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

27279

27280

27281

27282

27283

27284

27285

27286

27287

27288

27289

27290

27291

27292

27293

27294

27295

27296

27297

27298

27299

27300

27301

27302

27303

27304

27305

27306

27307

27308

27309

27310

27311

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces mq_receive()

NAME
mq_receive, mq_timedreceive — receive a message from a message queue (REALTIME)

SYNOPSIS
MSG #include <mqueue.h>

ssize_t mq_receive(mqd_t mqdes, c har * msg_ptr, s ize_t msg_len,
unsigned * msg_prio);

#include <mqueue.h>
#include <time.h>

ssize_t mq_timedreceive(mqd_t mqdes, c har *restrict msg_ptr,
size_t msg_len, u nsigned *restrict msg_prio,
const struct timespec *restrict abs_timeout);

DESCRIPTION
The mq_receive() function shall receive the oldest of the highest priority message(s) from the
message queue specified by mqdes. If the size of the buffer in bytes, specified by the msg_len
argument, is less than the mq_msgsize attribute of the message queue, the function shall fail and
return an error. Otherwise, the selected message shall be removed from the queue and copied to
the buffer pointed to by the msg_ptr argument.

If the value of msg_len is greater than {SSIZE_MAX}, the result is implementation-defined.

If the argument msg_prio is not NULL, the priority of the selected message shall be stored in the
location referenced by msg_prio.

If the specified message queue is empty and O_NONBLOCK is not set in the message queue
description associated with mqdes, mq_receive() shall block until a message is enqueued on the
message queue or until mq_receive() is interrupted by a signal. If more than one thread is waiting
to receive a message when a message arrives at an empty queue and the Priority Scheduling
option is supported, then the thread of highest priority that has been waiting the longest shall be
selected to receive the message. Otherwise, it is unspecified which waiting thread receives the
message. If the specified message queue is empty and O_NONBLOCK is set in the message
queue description associated with mqdes, no message shall be removed from the queue, and
mq_receive() shall return an error.

The mq_timedreceive() function shall receive the oldest of the highest priority messages from the
message queue specified by mqdes as described for the mq_receive() function. However, if
O_NONBLOCK was not specified when the message queue was opened via the mq_open()
function, and no message exists on the queue to satisfy the receive, the wait for such a message
shall be terminated when the specified timeout expires. If O_NONBLOCK is set, this function is
equivalent to mq_receive().

The timeout expires when the absolute time specified by abs_timeout passes, as measured by the
clock on which timeouts are based (that is, when the value of that clock equals or exceeds
abs_timeout), or if the absolute time specified by abs_timeout has already been passed at the time
of the call.

The timeout shall be based on the CLOCK_REALTIME clock. The resolution of the timeout shall
be the resolution of the clock on which it is based. The timespec argument is defined in the
<time.h> header.

Under no circumstance shall the operation fail with a timeout if a message can be removed from
the message queue immediately. The validity of the abs_timeout parameter need not be checked
if a message can be removed from the message queue immediately.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 845

27312

27313

27314

27315

27316

27317

27318

27319

27320

27321

27322

27323

27324

27325

27326

27327

27328

27329

27330

27331

27332

27333

27334

27335

27336

27337

27338

27339

27340

27341

27342

27343

27344

27345

27346

27347

27348

27349

27350

27351

27352

27353

27354

27355

27356

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

mq_receive() System Interfaces

RETURN VALUE
Upon successful completion, the mq_receive() and mq_timedreceive() functions shall return the
length of the selected message in bytes and the message shall be removed from the queue.
Otherwise, no message shall be removed from the queue, the functions shall return a value of −1,
and set errno to indicate the error.

ERRORS
The mq_receive() and mq_timedreceive() functions shall fail if:

[EAGAIN] O_NONBLOCK was set in the message description associated with mqdes, and
the specified message queue is empty.

[EBADF] The mqdes argument is not a valid message queue descriptor open for reading.

[EMSGSIZE] The specified message buffer size, msg_len, is less than the message size
attribute of the message queue.

[EINTR] The mq_receive() or mq_timedreceive() operation was interrupted by a signal.

[EINVAL] The process or thread would have blocked, and the abs_timeout parameter
specified a nanoseconds field value less than zero or greater than or equal to
1 000 million.

[ETIMEDOUT] The O_NONBLOCK flag was not set when the message queue was opened,
but no message arrived on the queue before the specified timeout expired.

The mq_receive() and mq_timedreceive() functions may fail if:

[EBADMSG] The implementation has detected a data corruption problem with the
message.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
mq_open(), mq_send(), mq_timedsend(), msgctl(), msgget(), msgrcv(), msgsnd(), time(), the Base
Definitions volume of IEEE Std 1003.1-200x, <mqueue.h>, <time.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

Issue 6
The mq_receive() function is marked as part of the Message Passing option.

The Open Group Corrigendum U021/4 is applied. The DESCRIPTION is changed to refer to
msg_len rather than maxsize.

The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Message Passing option.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

846 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

27357

27358

27359

27360

27361

27362

27363

27364

27365

27366

27367

27368

27369

27370

27371

27372

27373

27374

27375

27376

27377

27378

27379

27380

27381

27382

27383

27384

27385

27386

27387

27388

27389

27390

27391

27392

27393

27394

27395

27396

27397

27398

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces mq_receive()

• In this function it is possible for the return value to exceed the range of the type ssize_t
(since size_t has a larger range of positive values than ssize_t). A sentence restricting the
size of the size_t object is added to the description to resolve this conflict.

The mq_timedreceive() function is added for alignment with IEEE Std 1003.1d-1999.

The restrict keyword is added to the mq_timedreceive() prototype for alignment with the
ISO/IEC 9899: 1999 standard.

IEEE PASC Interpretation 1003.1 #109 is applied, correcting the return type for mq_timedreceive()
from int to ssize_t.

Issue 7
The mq_timedreceive() function is moved from the Timeouts option to the Base.

Functionality relating to the Timners option is moved to the Base.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 847

27399

27400

27401

27402

27403

27404

27405

27406

27407

27408

27409

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

mq_send() System Interfaces

NAME
mq_send, mq_timedsend — send a message to a message queue (REALTIME)

SYNOPSIS
MSG #include <mqueue.h>

int mq_send(mqd_t mqdes, c onst char * msg_ptr, s ize_t msg_len,
unsigned msg_prio);

#include <mqueue.h>
#include <time.h>

int mq_timedsend(mqd_t mqdes, c onst char * msg_ptr, s ize_t msg_len,
unsigned msg_prio, c onst struct timespec * abs_timeout);

DESCRIPTION
The mq_send() function shall add the message pointed to by the argument msg_ptr to the
message queue specified by mqdes. The msg_len argument specifies the length of the message, in
bytes, pointed to by msg_ptr. The value of msg_len shall be less than or equal to the mq_msgsize
attribute of the message queue, or mq_send() shall fail.

If the specified message queue is not full, mq_send() shall behave as if the message is inserted
into the message queue at the position indicated by the msg_prio argument. A message with a
larger numeric value of msg_prio shall be inserted before messages with lower values of
msg_prio. A message shall be inserted after other messages in the queue, if any, with equal
msg_prio. The value of msg_prio shall be less than {MQ_PRIO_MAX}.

If the specified message queue is full and O_NONBLOCK is not set in the message queue
description associated with mqdes, mq_send() shall block until space becomes available to
enqueue the message, or until mq_send() is interrupted by a signal. If more than one thread is
waiting to send when space becomes available in the message queue and the Priority Scheduling
option is supported, then the thread of the highest priority that has been waiting the longest
shall be unblocked to send its message. Otherwise, it is unspecified which waiting thread is
unblocked. If the specified message queue is full and O_NONBLOCK is set in the message
queue description associated with mqdes, the message shall not be queued and mq_send() shall
return an error.

The mq_timedsend() function shall add a message to the message queue specified by mqdes in the
manner defined for the mq_send() function. However, if the specified message queue is full and
O_NONBLOCK is not set in the message queue description associated with mqdes, the wait for
sufficient room in the queue shall be terminated when the specified timeout expires. If
O_NONBLOCK is set in the message queue description, this function shall be equivalent to
mq_send().

The timeout shall expire when the absolute time specified by abs_timeout passes, as measured by
the clock on which timeouts are based (that is, when the value of that clock equals or exceeds
abs_timeout), or if the absolute time specified by abs_timeout has already been passed at the time
of the call.

The timeout shall be based on the CLOCK_REALTIME clock. The resolution of the timeout shall
be the resolution of the clock on which it is based. The timespec argument is defined in the
<time.h> header.

Under no circumstance shall the operation fail with a timeout if there is sufficient room in the
queue to add the message immediately. The validity of the abs_timeout parameter need not be
checked when there is sufficient room in the queue.

848 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

27410

27411

27412

27413

27414

27415

27416

27417

27418

27419

27420

27421

27422

27423

27424

27425

27426

27427

27428

27429

27430

27431

27432

27433

27434

27435

27436

27437

27438

27439

27440

27441

27442

27443

27444

27445

27446

27447

27448

27449

27450

27451

27452

27453

27454

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces mq_send()

RETURN VALUE
Upon successful completion, the mq_send() and mq_timedsend() functions shall return a value of
zero. Otherwise, no message shall be enqueued, the functions shall return −1, and errno shall be
set to indicate the error.

ERRORS
The mq_send() and mq_timedsend() functions shall fail if:

[EAGAIN] The O_NONBLOCK flag is set in the message queue description associated
with mqdes, and the specified message queue is full.

[EBADF] The mqdes argument is not a valid message queue descriptor open for writing.

[EINTR] A signal interrupted the call to mq_send() or mq_timedsend().

[EINVAL] The value of msg_prio was outside the valid range.

[EINVAL] The process or thread would have blocked, and the abs_timeout parameter
specified a nanoseconds field value less than zero or greater than or equal to
1 000 million.

[EMSGSIZE] The specified message length, msg_len, exceeds the message size attribute of
the message queue.

[ETIMEDOUT] The O_NONBLOCK flag was not set when the message queue was opened,
but the timeout expired before the message could be added to the queue.

EXAMPLES
None.

APPLICATION USAGE
The value of the symbol {MQ_PRIO_MAX} limits the number of priority levels supported by the
application. Message priorities range from 0 to {MQ_PRIO_MAX}−1.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
mq_open(), mq_receive(), mq_setattr(), mq_timedreceive(), time(), the Base Definitions volume of
IEEE Std 1003.1-200x, <mqueue.h>, <time.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

Issue 6
The mq_send() function is marked as part of the Message Passing option.

The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Message Passing option.

The mq_timedsend() function is added for alignment with IEEE Std 1003.1d-1999.

Issue 7
The mq_timedsend() function is moved from the Timeouts option to the Base.

Functionality relating to the Timers option is moved to the Base.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 849

27455

27456

27457

27458

27459

27460

27461

27462

27463

27464

27465

27466

27467

27468

27469

27470

27471

27472

27473

27474

27475

27476

27477

27478

27479

27480

27481

27482

27483

27484

27485

27486

27487

27488

27489

27490

27491

27492

27493

27494

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

mq_setattr() System Interfaces

NAME
mq_setattr — set message queue attributes (REALTIME)

SYNOPSIS
MSG #include <mqueue.h>

int mq_setattr(mqd_t mqdes, c onst struct mq_attr *restrict mqstat,
struct mq_attr *restrict omqstat);

DESCRIPTION
The mq_setattr() function shall set attributes associated with the open message queue
description referenced by the message queue descriptor specified by mqdes.

The message queue attributes corresponding to the following members defined in the mq_attr
structure shall be set to the specified values upon successful completion of mq_setattr():

mq_flags The value of this member is the bitwise-logical OR of zero or more of
O_NONBLOCK and any implementation-defined flags.

The values of the mq_maxmsg, mq_msgsize, and mq_curmsgs members of the mq_attr structure
shall be ignored by mq_setattr().

If omqstat is non-NULL, the mq_setattr() function shall store, in the location referenced by
omqstat, the previous message queue attributes and the current queue status. These values shall
be the same as would be returned by a call to mq_getattr() at that point.

RETURN VALUE
Upon successful completion, the function shall return a value of zero and the attributes of the
message queue shall have been changed as specified.

Otherwise, the message queue attributes shall be unchanged, and the function shall return a
value of −1 and set errno to indicate the error.

ERRORS
The mq_setattr() function shall fail if:

[EBADF] The mqdes argument is not a valid message queue descriptor.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
mq_open(), mq_send(), mq_timedsend(), msgctl(), msgget(), msgrcv(), msgsnd(), the Base
Definitions volume of IEEE Std 1003.1-200x, <mqueue.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

850 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

27495

27496

27497

27498

27499

27500

27501

27502

27503

27504

27505

27506

27507

27508

27509

27510

27511

27512

27513

27514

27515

27516

27517

27518

27519

27520

27521

27522

27523

27524

27525

27526

27527

27528

27529

27530

27531

27532

27533

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces mq_setattr()

Issue 6
The mq_setattr() function is marked as part of the Message Passing option.

The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Message Passing option.

The mq_timedsend() function is added to the SEE ALSO section for alignment with IEEE Std
1003.1d-1999.

The restrict keyword is added to the mq_setattr() prototype for alignment with the
ISO/IEC 9899: 1999 standard.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 851

27534

27535

27536

27537

27538

27539

27540

27541

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

mq_timedreceive() System Interfaces

NAME
mq_timedreceive — receive a message from a message queue (ADVANCED REALTIME)

SYNOPSIS
MSG #include <mqueue.h>

#include <time.h>

ssize_t mq_timedreceive(mqd_t mqdes, c har *restrict msg_ptr,
size_t msg_len, u nsigned *restrict msg_prio,
const struct timespec *restrict abs_timeout);

DESCRIPTION
Refer to mq_receive().

852 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

27542

27543

27544

27545

27546

27547

27548

27549

27550

27551

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces mq_timedsend()

NAME
mq_timedsend — send a message to a message queue (ADVANCED REALTIME)

SYNOPSIS
MSG #include <mqueue.h>

#include <time.h>

int mq_timedsend(mqd_t mqdes, c onst char * msg_ptr, s ize_t msg_len,
unsigned msg_prio, c onst struct timespec * abs_timeout);

DESCRIPTION
Refer to mq_send().

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 853

27552

27553

27554

27555

27556

27557

27558

27559

27560

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

mq_unlink() System Interfaces

NAME
mq_unlink — remove a message queue (REALTIME)

SYNOPSIS
MSG #include <mqueue.h>

int mq_unlink(const char * name);

DESCRIPTION
The mq_unlink() function shall remove the message queue named by the pathname name. After
a successful call to mq_unlink() with name, a call to mq_open() with name shall fail if the flag
O_CREAT is not set in flags. If one or more processes have the message queue open when
mq_unlink() is called, destruction of the message queue shall be postponed until all references to
the message queue have been closed.

Calls to mq_open() to recreate the message queue may fail until the message queue is actually
removed. However, the mq_unlink() call need not block until all references have been closed; it
may return immediately.

RETURN VALUE
Upon successful completion, the function shall return a value of zero. Otherwise, the named
message queue shall be unchanged by this function call, and the function shall return a value of
−1 and set errno to indicate the error.

ERRORS
The mq_unlink() function shall fail if:

[EACCES] Permission is denied to unlink the named message queue.

[ENOENT] The named message queue does not exist.

The mq_unlink() function may fail if:

[ENAMETOOLONG]
The length of the name argument exceeds {_POSIX_PATH_MAX} on systems

XSI that do not support the XSI option or exceeds {_XOPEN_PATH_MAX} on XSI
systems, or has a pathname component that is longer than

XSI {_POSIX_NAME_MAX} on systems that do not support the XSI option or
longer than {_XOPEN_NAME_MAX} on XSI systems. A call to mq_unlink()
with a name argument that contains the same message queue name as was
previously used in a successful mq_open() call shall not give an
[ENAMETOOLONG] error.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

854 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

27561

27562

27563

27564

27565

27566

27567

27568

27569

27570

27571

27572

27573

27574

27575

27576

27577

27578

27579

27580

27581

27582

27583

27584

27585

27586

27587

27588

27589

27590

27591

27592

27593

27594

27595

27596

27597

27598

27599

27600

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces mq_unlink()

SEE ALSO
mq_close(), mq_open(), msgctl(), msgget(), msgrcv(), msgsnd(), the Base Definitions volume of
IEEE Std 1003.1-200x, <mqueue.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

Issue 6
The mq_unlink() function is marked as part of the Message Passing option.

The Open Group Corrigendum U021/5 is applied, clarifying that upon unsuccessful completion,
the named message queue is unchanged by this function.

The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Message Passing option.

Issue 7
Austin Group Interpretation 1003.1-2001 #077 is applied, changing [ENAMETOOLONG] from a
‘‘shall fail’’ to a ‘‘may fail’’ error .

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 855

27601

27602

27603

27604

27605

27606

27607

27608

27609

27610

27611

27612

27613

27614

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

mrand48() System Interfaces

NAME
mrand48 — generate uniformly distributed pseudo-random signed long integers

SYNOPSIS
XSI #include <stdlib.h>

long mrand48(void);

DESCRIPTION
Refer to drand48().

856 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

27615

27616

27617

27618

27619

27620

27621

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces msgctl()

NAME
msgctl — XSI message control operations

SYNOPSIS
XSI #include <sys/msg.h>

int msgctl(int msqid, i nt cmd, s truct msqid_ds * buf);

DESCRIPTION
The msgctl() function operates on XSI message queues (see the Base Definitions volume of
IEEE Std 1003.1-200x, Section 3.224, Message Queue). It is unspecified whether this function
interoperates with the realtime interprocess communication facilities defined in Section 2.8 (on
page 40).

The msgctl() function shall provide message control operations as specified by cmd. The
following values for cmd, and the message control operations they specify, are:

IPC_STAT Place the current value of each member of the msqid_ds data structure
associated with msqid into the structure pointed to by buf . The contents of this
structure are defined in <sys/msg.h>.

IPC_SET Set the value of the following members of the msqid_ds data structure
associated with msqid to the corresponding value found in the structure
pointed to by buf :

msg_perm.uid
msg_perm.gid
msg_perm.mode
msg_qbytes

IPC_SET can only be executed by a process with appropriate privileges or that
has an effective user ID equal to the value of msg_perm.cuid or
msg_perm.uid in the msqid_ds data structure associated with msqid. Only a
process with appropriate privileges can raise the value of msg_qbytes.

IPC_RMID Remove the message queue identifier specified by msqid from the system and
destroy the message queue and msqid_ds data structure associated with it.
IPC_RMD can only be executed by a process with appropriate privileges or
one that has an effective user ID equal to the value of msg_perm.cuid or
msg_perm.uid in the msqid_ds data structure associated with msqid.

RETURN VALUE
Upon successful completion, msgctl() shall return 0; otherwise, it shall return −1 and set errno to
indicate the error.

ERRORS
The msgctl() function shall fail if:

[EACCES] The argument cmd is IPC_STAT and the calling process does not have read
permission; see Section 2.7 (on page 39).

[EINVAL] The value of msqid is not a valid message queue identifier; or the value of cmd
is not a valid command.

[EPERM] The argument cmd is IPC_RMID or IPC_SET and the effective user ID of the
calling process is not equal to that of a process with appropriate privileges and
it is not equal to the value of msg_perm.cuid or msg_perm.uid in the data
structure associated with msqid.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 857

27622

27623

27624

27625

27626

27627

27628

27629

27630

27631

27632

27633

27634

27635

27636

27637

27638

27639

27640

27641

27642

27643

27644

27645

27646

27647

27648

27649

27650

27651

27652

27653

27654

27655

27656

27657

27658

27659

27660

27661

27662

27663

27664

27665

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

msgctl() System Interfaces

[EPERM] The argument cmd is IPC_SET, an attempt is being made to increase to the
value of msg_qbytes, and the effective user ID of the calling process does not
have appropriate privileges.

EXAMPLES
None.

APPLICATION USAGE
The POSIX Realtime Extension defines alternative interfaces for interprocess communication
(IPC). Application developers who need to use IPC should design their applications so that
modules using the IPC routines described in Section 2.7 can be easily modified to use the
alternative interfaces.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.7 (on page 39), Section 2.8 (on page 40), mq_close(), mq_getattr(), mq_notify(),
mq_open(), mq_receive(), mq_send(), mq_setattr(), mq_unlink(), msgget(), msgrcv(), msgsnd(), the
Base Definitions volume of IEEE Std 1003.1-200x, <sys/msg.h>

CHANGE HISTORY
First released in Issue 2. Derived from Issue 2 of the SVID.

Issue 5
The note about use of POSIX Realtime Extension IPC routines has been moved from FUTURE
DIRECTIONS to a new APPLICATION USAGE section.

858 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

27666

27667

27668

27669

27670

27671

27672

27673

27674

27675

27676

27677

27678

27679

27680

27681

27682

27683

27684

27685

27686

27687

27688

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces msgget()

NAME
msgget — get the XSI message queue identifier

SYNOPSIS
XSI #include <sys/msg.h>

int msgget(key_t key, i nt msgflg);

DESCRIPTION
The msgget() function operates on XSI message queues (see the Base Definitions volume of
IEEE Std 1003.1-200x, Section 3.224, Message Queue). It is unspecified whether this function
interoperates with the realtime interprocess communication facilities defined in Section 2.8 (on
page 40).

The msgget() function shall return the message queue identifier associated with the argument
key.

A message queue identifier, associated message queue, and data structure (see <sys/msg.h>),
shall be created for the argument key if one of the following is true:

• The argument key is equal to IPC_PRIVATE.

• The argument key does not already have a message queue identifier associated with it, and
(msgflg & IPC_CREAT) is non-zero.

Upon creation, the data structure associated with the new message queue identifier shall be
initialized as follows:

• msg_perm.cuid, msg_perm.uid, msg_perm.cgid, and msg_perm.gid shall be set equal to
the effective user ID and effective group ID, respectively, of the calling process.

• The low-order 9 bits of msg_perm.mode shall be set equal to the low-order 9 bits of msgflg.

• msg_qnum, msg_lspid, msg_lrpid, msg_stime, and msg_rtime shall be set equal to 0.

• msg_ctime shall be set equal to the current time.

• msg_qbytes shall be set equal to the system limit.

RETURN VALUE
Upon successful completion, msgget() shall return a non-negative integer, namely a message
queue identifier. Otherwise, it shall return −1 and set errno to indicate the error.

ERRORS
The msgget() function shall fail if:

[EACCES] A message queue identifier exists for the argument key, but operation
permission as specified by the low-order 9 bits of msgflg would not be granted;
see Section 2.7 (on page 39).

[EEXIST] A message queue identifier exists for the argument key but ((msgflg &
IPC_CREAT) && (msgflg & IPC_EXCL)) is non-zero.

[ENOENT] A message queue identifier does not exist for the argument key and (msgflg &
IPC_CREAT) is 0.

[ENOSPC] A message queue identifier is to be created but the system-imposed limit on
the maximum number of allowed message queue identifiers system-wide
would be exceeded.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 859

27689

27690

27691

27692

27693

27694

27695

27696

27697

27698

27699

27700

27701

27702

27703

27704

27705

27706

27707

27708

27709

27710

27711

27712

27713

27714

27715

27716

27717

27718

27719

27720

27721

27722

27723

27724

27725

27726

27727

27728

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

msgget() System Interfaces

EXAMPLES
None.

APPLICATION USAGE
The POSIX Realtime Extension defines alternative interfaces for interprocess communication
(IPC). Application developers who need to use IPC should design their applications so that
modules using the IPC routines described in Section 2.7 can be easily modified to use the
alternative interfaces.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.7 (on page 39), Section 2.8 (on page 40), mq_close(), mq_getattr(), mq_notify(),
mq_open(), mq_receive(), mq_send(), mq_setattr(), mq_unlink(), msgctl(), msgrcv(), msgsnd(), the
Base Definitions volume of IEEE Std 1003.1-200x, <sys/msg.h>

CHANGE HISTORY
First released in Issue 2. Derived from Issue 2 of the SVID.

Issue 5
The note about use of POSIX Realtime Extension IPC routines has been moved from FUTURE
DIRECTIONS to a new APPLICATION USAGE section.

860 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

27729

27730

27731

27732

27733

27734

27735

27736

27737

27738

27739

27740

27741

27742

27743

27744

27745

27746

27747

27748

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces msgrcv()

NAME
msgrcv — XSI message receive operation

SYNOPSIS
XSI #include <sys/msg.h>

ssize_t msgrcv(int msqid, v oid * msgp, s ize_t msgsz, l ong msgtyp,
int msgflg);

DESCRIPTION
The msgrcv() function operates on XSI message queues (see the Base Definitions volume of
IEEE Std 1003.1-200x, Section 3.224, Message Queue). It is unspecified whether this function
interoperates with the realtime interprocess communication facilities defined in Section 2.8 (on
page 40).

The msgrcv() function shall read a message from the queue associated with the message queue
identifier specified by msqid and place it in the user-defined buffer pointed to by msgp.

The application shall ensure that the argument msgp points to a user-defined buffer that contains
first a field of type long specifying the type of the message, and then a data portion that holds
the data bytes of the message. The structure below is an example of what this user-defined
buffer might look like:

struct mymsg {
long mtype; /* Message type. */
char mtext[1]; /* Message text. */

}

The structure member mtype is the received message’s type as specified by the sending process.

The structure member mtext is the text of the message.

The argument msgsz specifies the size in bytes of mtext. The received message shall be truncated
to msgsz bytes if it is larger than msgsz and (msgflg & MSG_NOERROR) is non-zero. The
truncated part of the message shall be lost and no indication of the truncation shall be given to
the calling process.

If the value of msgsz is greater than {SSIZE_MAX}, the result is implementation-defined.

The argument msgtyp specifies the type of message requested as follows:

• If msgtyp is 0, the first message on the queue shall be received.

• If msgtyp is greater than 0, the first message of type msgtyp shall be received.

• If msgtyp is less than 0, the first message of the lowest type that is less than or equal to the
absolute value of msgtyp shall be received.

The argument msgflg specifies the action to be taken if a message of the desired type is not on the
queue. These are as follows:

• If (msgflg & IPC_NOWAIT) is non-zero, the calling thread shall return immediately with a
return value of −1 and errno set to [ENOMSG].

• If (msgflg & IPC_NOWAIT) is 0, the calling thread shall suspend execution until one of the
following occurs:

— A message of the desired type is placed on the queue.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 861

27749

27750

27751

27752

27753

27754

27755

27756

27757

27758

27759

27760

27761

27762

27763

27764

27765

27766

27767

27768

27769

27770

27771

27772

27773

27774

27775

27776

27777

27778

27779

27780

27781

27782

27783

27784

27785

27786

27787

27788

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

msgrcv() System Interfaces

— The message queue identifier msqid is removed from the system; when this occurs,
errno shall be set equal to [EIDRM] and −1 shall be returned.

— The calling thread receives a signal that is to be caught; in this case a message is not
received and the calling thread resumes execution in the manner prescribed in
sigaction().

Upon successful completion, the following actions are taken with respect to the data structure
associated with msqid:

• msg_qnum shall be decremented by 1.

• msg_lrpid shall be set equal to the process ID of the calling process.

• msg_rtime shall be set equal to the current time.

RETURN VALUE
Upon successful completion, msgrcv() shall return a value equal to the number of bytes actually
placed into the buffer mtext. Otherwise, no message shall be received, msgrcv() shall return
(ssize_t)−1, and errno shall be set to indicate the error.

ERRORS
The msgrcv() function shall fail if:

[E2BIG] The value of mtext is greater than msgsz and (msgflg & MSG_NOERROR) is 0.

[EACCES] Operation permission is denied to the calling process; see Section 2.7 (on page
39).

[EIDRM] The message queue identifier msqid is removed from the system.

[EINTR] The msgrcv() function was interrupted by a signal.

[EINVAL] msqid is not a valid message queue identifier.

[ENOMSG] The queue does not contain a message of the desired type and (msgflg &
IPC_NOWAIT) is non-zero.

EXAMPLES

Receiving a Message

The following example receives the first message on the queue (based on the value of the msgtyp
argument, 0). The queue is identified by the msqid argument (assuming that the value has
previously been set). This call specifies that an error should be reported if no message is
available, but not if the message is too large. The message size is calculated directly using the
sizeof operator.

#include <sys/msg.h>
...
int result;
int msqid;
struct message {

long type;
char text[20];

} msg;
long msgtyp = 0;
...
result = msgrcv(msqid, (void *) &msg, sizeof(msg.text),

msgtyp, MSG_NOERROR | IPC_NOWAIT);

862 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

27789

27790

27791

27792

27793

27794

27795

27796

27797

27798

27799

27800

27801

27802

27803

27804

27805

27806

27807

27808

27809

27810

27811

27812

27813

27814

27815

27816

27817

27818

27819

27820

27821

27822

27823

27824

27825

27826

27827

27828

27829

27830

27831

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces msgrcv()

APPLICATION USAGE
The POSIX Realtime Extension defines alternative interfaces for interprocess communication
(IPC). Application developers who need to use IPC should design their applications so that
modules using the IPC routines described in Section 2.7 can be easily modified to use the
alternative interfaces.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.7 (on page 39), Section 2.8 (on page 40), mq_close(), mq_getattr(), mq_notify(),
mq_open(), mq_receive(), mq_send(), mq_setattr(), mq_unlink(), msgctl(), msgget(), msgsnd(),
sigaction(), the Base Definitions volume of IEEE Std 1003.1-200x, <sys/msg.h>

CHANGE HISTORY
First released in Issue 2. Derived from Issue 2 of the SVID.

Issue 5
The type of the return value is changed from int to ssize_t, and a warning is added to the
DESCRIPTION about values of msgsz larger the {SSIZE_MAX}.

The note about use of POSIX Realtime Extension IPC routines has been moved from FUTURE
DIRECTIONS to the APPLICATION USAGE section.

Issue 6
The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 863

27832

27833

27834

27835

27836

27837

27838

27839

27840

27841

27842

27843

27844

27845

27846

27847

27848

27849

27850

27851

27852

27853

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

msgsnd() System Interfaces

NAME
msgsnd — XSI message send operation

SYNOPSIS
XSI #include <sys/msg.h>

int msgsnd(int msqid, c onst void * msgp, s ize_t msgsz, i nt msgflg);

DESCRIPTION
The msgsnd() function operates on XSI message queues (see the Base Definitions volume of
IEEE Std 1003.1-200x, Section 3.224, Message Queue). It is unspecified whether this function
interoperates with the realtime interprocess communication facilities defined in Section 2.8 (on
page 40).

The msgsnd() function shall send a message to the queue associated with the message queue
identifier specified by msqid.

The application shall ensure that the argument msgp points to a user-defined buffer that contains
first a field of type long specifying the type of the message, and then a data portion that holds
the data bytes of the message. The structure below is an example of what this user-defined
buffer might look like:

struct mymsg {
long mtype; /* Message type. */
char mtext[1]; /* Message text. */

}

The structure member mtype is a non-zero positive type long that can be used by the receiving
process for message selection.

The structure member mtext is any text of length msgsz bytes. The argument msgsz can range
from 0 to a system-imposed maximum.

The argument msgflg specifies the action to be taken if one or more of the following is true:

• The number of bytes already on the queue is equal to msg_qbytes; see <sys/msg.h>.

• The total number of messages on all queues system-wide is equal to the system-imposed
limit.

These actions are as follows:

• If (msgflg & IPC_NOWAIT) is non-zero, the message shall not be sent and the calling
thread shall return immediately.

• If (msgflg & IPC_NOWAIT) is 0, the calling thread shall suspend execution until one of the
following occurs:

— The condition responsible for the suspension no longer exists, in which case the
message is sent.

— The message queue identifier msqid is removed from the system; when this occurs,
errno shall be set equal to [EIDRM] and −1 shall be returned.

— The calling thread receives a signal that is to be caught; in this case the message is not
sent and the calling thread resumes execution in the manner prescribed in sigaction().

Upon successful completion, the following actions are taken with respect to the data structure
associated with msqid; see <sys/msg.h>:

864 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

27854

27855

27856

27857

27858

27859

27860

27861

27862

27863

27864

27865

27866

27867

27868

27869

27870

27871

27872

27873

27874

27875

27876

27877

27878

27879

27880

27881

27882

27883

27884

27885

27886

27887

27888

27889

27890

27891

27892

27893

27894

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces msgsnd()

• msg_qnum shall be incremented by 1.

• msg_lspid shall be set equal to the process ID of the calling process.

• msg_stime shall be set equal to the current time.

RETURN VALUE
Upon successful completion, msgsnd() shall return 0; otherwise, no message shall be sent,
msgsnd() shall return −1, and errno shall be set to indicate the error.

ERRORS
The msgsnd() function shall fail if:

[EACCES] Operation permission is denied to the calling process; see Section 2.7 (on page
39).

[EAGAIN] The message cannot be sent for one of the reasons cited above and (msgflg &
IPC_NOWAIT) is non-zero.

[EIDRM] The message queue identifier msqid is removed from the system.

[EINTR] The msgsnd() function was interrupted by a signal.

[EINVAL] The value of msqid is not a valid message queue identifier, or the value of
mtype is less than 1; or the value of msgsz is less than 0 or greater than the
system-imposed limit.

EXAMPLES

Sending a Message

The following example sends a message to the queue identified by the msqid argument
(assuming that value has previously been set). This call specifies that an error should be
reported if no message is available. The message size is calculated directly using the sizeof
operator.

#include <sys/msg.h>
...
int result;
int msqid;
struct message {

long type;
char text[20];

} msg;

msg.type = 1;
strcpy(msg.text, "This is message 1");
...
result = msgsnd(msqid, (void *) &msg, sizeof(msg.text), IPC_NOWAIT);

APPLICATION USAGE
The POSIX Realtime Extension defines alternative interfaces for interprocess communication
(IPC). Application developers who need to use IPC should design their applications so that
modules using the IPC routines described in Section 2.7 can be easily modified to use the
alternative interfaces.

RATIONALE
None.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 865

27895

27896

27897

27898

27899

27900

27901

27902

27903

27904

27905

27906

27907

27908

27909

27910

27911

27912

27913

27914

27915

27916

27917

27918

27919

27920

27921

27922

27923

27924

27925

27926

27927

27928

27929

27930

27931

27932

27933

27934

27935

27936

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

msgsnd() System Interfaces

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.7 (on page 39), Section 2.8 (on page 40), mq_close(), mq_getattr(), mq_notify(),
mq_open(), mq_receive(),

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces msync()

NAME
msync — synchronize memory with physical storage

SYNOPSIS
SIO #include <sys/mman.h>

int msync(void * addr, s ize_t len, i nt flags);

DESCRIPTION
The msync() function shall write all modified data to permanent storage locations, if any, in
those whole pages containing any part of the address space of the process starting at address
addr and continuing for len bytes. If no such storage exists, msync() need not have any effect. If
requested, the msync() function shall then invalidate cached copies of data.

The implementation may require that addr be a multiple of the page size as returned by
sysconf().

For mappings to files, the msync() function shall ensure that all write operations are completed
as defined for synchronized I/O data integrity completion. It is unspecified whether the
implementation also writes out other file attributes. When the msync() function is called on
MAP_PRIVATE mappings, any modified data shall not be written to the underlying object and
shall not cause such data to be made visible to other processes. It is unspecified whether data in

SHM|TYM MAP_PRIVATE mappings has any permanent storage locations. The effect of msync() on a
shared memory object or a typed memory object is unspecified. The behavior of this function is
unspecified if the mapping was not established by a call to mmap().

The flags argument is constructed from the bitwise-inclusive OR of one or more of the following
flags defined in the <sys/mman.h> header:

Symbolic Constant Description

MS_ASYNC Perform asynchronous writes.
MS_SYNC Perform synchronous writes.
MS_INVALIDATE Invalidate cached data.

When MS_ASYNC is specified, msync() shall return immediately once all the write operations
are initiated or queued for servicing; when MS_SYNC is specified, msync() shall not return until
all write operations are completed as defined for synchronized I/O data integrity completion.
Either MS_ASYNC or MS_SYNC shall be specified, but not both.

When MS_INVALIDATE is specified, msync() shall invalidate all cached copies of mapped data
that are inconsistent with the permanent storage locations such that subsequent references shall
obtain data that was consistent with the permanent storage locations sometime between the call
to msync() and the first subsequent memory reference to the data.

If msync() causes any write to a file, the file’s st_ctime and st_mtime fields shall be marked for
update.

RETURN VALUE
Upon successful completion, msync() shall return 0; otherwise, it shall return −1 and set errno to
indicate the error.

ERRORS
The msync() function shall fail if:

[EBUSY] Some or all of the addresses in the range starting at addr and continuing for len
bytes are locked, and MS_INVALIDATE is specified.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 867

27950

27951

27952

27953

27954

27955

27956

27957

27958

27959

27960

27961

27962

27963

27964

27965

27966

27967

27968

27969

27970

27971

27972

27973

27974

27975

27976

27977

27978

27979

27980

27981

27982

27983

27984

27985

27986

27987

27988

27989

27990

27991

27992

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

msync() System Interfaces

[EINVAL] The value of flags is invalid.

[ENOMEM] The addresses in the range starting at addr and continuing for len bytes are
outside the range allowed for the address space of a process or specify one or
more pages that are not mapped.

The msync() function may fail if:

[EINVAL] The value of addr is not a multiple of the page size as returned by sysconf().

EXAMPLES
None.

APPLICATION USAGE
The msync() function is only supported if the Synchronized Input and Output option is
supported, and thus need not be available on all implementations.

The msync() function should be used by programs that require a memory object to be in a
known state; for example, in building transaction facilities.

Normal system activity can cause pages to be written to disk. Therefore, there are no guarantees
that msync() is the only control over when pages are or are not written to disk.

RATIONALE
The msync() function writes out data in a mapped region to the permanent storage for the
underlying object. The call to msync() ensures data integrity of the file.

After the data is written out, any cached data may be invalidated if the MS_INVALIDATE flag
was specified. This is useful on systems that do not support read/write consistency.

FUTURE DIRECTIONS
None.

SEE ALSO
mmap(), sysconf(), the Base Definitions volume of IEEE Std 1003.1-200x, <sys/mman.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Aligned with msync() in the POSIX Realtime Extension as follows:

• The DESCRIPTION is extensively reworded.

• [EBUSY] and a new form of [EINVAL] are added as mandatory error conditions.

Issue 6
The msync() function is marked as part of the Memory Mapped Files and Synchronized Input
and Output options.

The following changes are made for alignment with the ISO POSIX-1: 1996 standard:

• The [EBUSY] mandatory error condition is added.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The DESCRIPTION is updated to state that implementations require addr to be a multiple
of the page size.

• The second [EINVAL] error condition is made mandatory.

The DESCRIPTION is updated for alignment with IEEE Std 1003.1j-2000 by adding reference to
typed memory objects.

868 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

27993

27994

27995

27996

27997

27998

27999

28000

28001

28002

28003

28004

28005

28006

28007

28008

28009

28010

28011

28012

28013

28014

28015

28016

28017

28018

28019

28020

28021

28022

28023

28024

28025

28026

28027

28028

28029

28030

28031

28032

28033

28034

28035

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces msync()

Issue 7
SD5-XSH-ERN-110 is applied.

Austin Group Interpretation 1003.1-2001 #078 is applied, clarifying page alignment
requirements.

The msync() function is moved from the Memory Mapped Files option.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 869

28036

28037

28038

28039

28040

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

munlock() System Interfaces

NAME
munlock — unlock a range of process address space

SYNOPSIS
MLR #include <sys/mman.h>

int munlock(const void * addr, s ize_t len);

DESCRIPTION
Refer to mlock().

870 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

28041

28042

28043

28044

28045

28046

28047

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces munlockall()

NAME
munlockall — unlock the address space of a process

SYNOPSIS
ML #include <sys/mman.h>

int munlockall(void);

DESCRIPTION
Refer to mlockall().

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 871

28048

28049

28050

28051

28052

28053

28054

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

munmap() System Interfaces

NAME
munmap — unmap pages of memory

SYNOPSIS
#include <sys/mman.h>

int munmap(void * addr, s ize_t len);

DESCRIPTION
The munmap() function shall remove any mappings for those entire pages containing any part of
the address space of the process starting at addr and continuing for len bytes. Further references
to these pages shall result in the generation of a SIGSEGV signal to the process. If there are no
mappings in the specified address range, then munmap() has no effect.

The implementation may require that addr be a multiple of the page size as returned by
sysconf().

If a mapping to be removed was private, any modifications made in this address range shall be
discarded.

ML|MLR Any memory locks (see mlock() and mlockall()) associated with this address range shall be
removed, as if by an appropriate call to munlock().

TYM If a mapping removed from a typed memory object causes the corresponding address range of
the memory pool to be inaccessible by any process in the system except through allocatable
mappings (that is, mappings of typed memory objects opened with the
POSIX_TYPED_MEM_MAP_ALLOCATABLE flag), then that range of the memory pool shall
become deallocated and may become available to satisfy future typed memory allocation
requests.

A mapping removed from a typed memory object opened with the
POSIX_TYPED_MEM_MAP_ALLOCATABLE flag shall not affect in any way the availability of
that typed memory for allocation.

The behavior of this function is unspecified if the mapping was not established by a call to
mmap().

RETURN VALUE
Upon successful completion, munmap() shall return 0; otherwise, it shall return −1 and set errno
to indicate the error.

ERRORS
The munmap() function shall fail if:

[EINVAL] Addresses in the range [addr,addr+len) are outside the valid range for the
address space of a process.

[EINVAL] The len argument is 0.

The munmap() function may fail if:

[EINVAL] The addr argument is not a multiple of the page size as returned by sysconf().

872 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

28055

28056

28057

28058

28059

28060

28061

28062

28063

28064

28065

28066

28067

28068

28069

28070

28071

28072

28073

28074

28075

28076

28077

28078

28079

28080

28081

28082

28083

28084

28085

28086

28087

28088

28089

28090

28091

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces munmap()

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
The munmap() function corresponds to SVR4, just as the mmap() function does.

It is possible that an application has applied process memory locking to a region that contains
shared memory. If this has occurred, the munmap() call ignores those locks and, if necessary,
causes those locks to be removed.

Most implementations require that addr is a multiple of the page size as returned by sysconf().

FUTURE DIRECTIONS
None.

SEE ALSO
mlock(), mlockall(), mmap(), posix_typed_mem_open(), sysconf(), the Base Definitions volume of
IEEE Std 1003.1-200x, <signal.h>, <sys/mman.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Aligned with munmap() in the POSIX Realtime Extension as follows:

• The DESCRIPTION is extensively reworded.

• The SIGBUS error is no longer permitted to be generated.

Issue 6
The munmap() function is marked as part of the Memory Mapped Files and Shared Memory
Objects option.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The DESCRIPTION is updated to state that implementations require addr to be a multiple
of the page size.

• The [EINVAL] error conditions are added.

The following changes are made for alignment with IEEE Std 1003.1j-2000:

• Semantics for typed memory objects are added to the DESCRIPTION.

• The posix_typed_mem_open() function is added to the SEE ALSO section.

IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/36 is applied, changing the margin code
in the SYNOPSIS from MF|SHM to MC3 (notation for MF|SHM|TYM).

Issue 7
Austin Group Interpretation 1003.1-2001 #078 is applied, clarifying page alignment
requirements.

The munmap() function is moved from the Memory Mapped Files option to the Base.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 873

28092

28093

28094

28095

28096

28097

28098

28099

28100

28101

28102

28103

28104

28105

28106

28107

28108

28109

28110

28111

28112

28113

28114

28115

28116

28117

28118

28119

28120

28121

28122

28123

28124

28125

28126

28127

28128

28129

28130

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

nan() System Interfaces

NAME
nan, nanf, nanl — return quiet NaN

SYNOPSIS
#include <math.h>

double nan(const char * tagp);
float nanf(const char * tagp);
long double nanl(const char * tagp);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

The function call nan("n-char-sequence") shall be equivalent to:

strtod("NAN(n-char-sequence)", (char **) NULL);

The function call nan(" ") shall be equivalent to:

strtod("NAN()", (char **) NULL)

If tagp does not point to an n-char sequence or an empty string, the function call shall be
equivalent to:

strtod("NAN", (char **) NULL)

Function calls to nanf() and nanl() are equivalent to the corresponding function calls to strtof()
and strtold().

RETURN VALUE
These functions shall return a quiet NaN, if available, with content indicated through tagp.

If the implementation does not support quiet NaNs, these functions shall return zero.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
strtod(), strtold(), the Base Definitions volume of IEEE Std 1003.1-200x, <math.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

874 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

28131

28132

28133

28134

28135

28136

28137

28138

28139

28140

28141

28142

28143

28144

28145

28146

28147

28148

28149

28150

28151

28152

28153

28154

28155

28156

28157

28158

28159

28160

28161

28162

28163

28164

28165

28166

28167

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces nanosleep()

NAME
nanosleep — high resolution sleep

SYNOPSIS
CX #include <time.h>

int nanosleep(const struct timespec * rqtp, s truct timespec * rmtp);

DESCRIPTION
The nanosleep() function shall cause the current thread to be suspended from execution until
either the time interval specified by the rqtp argument has elapsed or a signal is delivered to the
calling thread, and its action is to invoke a signal-catching function or to terminate the process.
The suspension time may be longer than requested because the argument value is rounded up to
an integer multiple of the sleep resolution or because of the scheduling of other activity by the
system. But, except for the case of being interrupted by a signal, the suspension time shall not be
less than the time specified by rqtp, as measured by the system clock CLOCK_REALTIME.

The use of the nanosleep() function has no effect on the action or blockage of any signal.

RETURN VALUE
If the nanosleep() function returns because the requested time has elapsed, its return value shall
be zero.

If the nanosleep() function returns because it has been interrupted by a signal, it shall return a
value of −1 and set errno to indicate the interruption. If the rmtp argument is non-NULL, the
timespec structure referenced by it is updated to contain the amount of time remaining in the
interval (the requested time minus the time actually slept). The rqtp and rmtp arguments may
point to the same object. If the rmtp argument is NULL, the remaining time is not returned.

If nanosleep() fails, it shall return a value of −1 and set errno to indicate the error.

ERRORS
The nanosleep() function shall fail if:

[EINTR] The nanosleep() function was interrupted by a signal.

[EINVAL] The rqtp argument specified a nanosecond value less than zero or greater than
or equal to 1 000 million.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
It is common to suspend execution of a thread for an interval in order to poll the status of a non-
interrupting function. A large number of actual needs can be met with a simple extension to
sleep() that provides finer resolution.

In the POSIX.1-1990 standard and SVR4, it is possible to implement such a routine, but the
frequency of wakeup is limited by the resolution of the alarm() and sleep() functions. In 4.3 BSD,
it is possible to write such a routine using no static storage and reserving no system facilities.
Although it is possible to write a function with similar functionality to sleep() using the
remainder of the timer_*() functions, such a function requires the use of signals and the
reservation of some signal number. This volume of IEEE Std 1003.1-200x requires that
nanosleep() be non-intrusive of the signals function.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 875

28168

28169

28170

28171

28172

28173

28174

28175

28176

28177

28178

28179

28180

28181

28182

28183

28184

28185

28186

28187

28188

28189

28190

28191

28192

28193

28194

28195

28196

28197

28198

28199

28200

28201

28202

28203

28204

28205

28206

28207

28208

28209

28210

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

nanosleep() System Interfaces

The nanosleep() function shall return a value of 0 on success and −1 on failure or if interrupted.
This latter case is different from sleep(). This was done because the remaining time is returned
via an argument structure pointer, rmtp, instead of as the return value.

FUTURE DIRECTIONS
None.

SEE ALSO
clock_nanosleep(), sleep(), the Base Definitions volume of IEEE Std 1003.1-200x, <time.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

Issue 6
The nanosleep() function is marked as part of the Timers option.

The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Timers option.

IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/37 is applied, updating the SEE ALSO
section to include the clock_nanosleep() function.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/63 is applied, correcting text in the
RATIONALE section.

Issue 7
SD5-XBD-ERN-33 is applied.

The nanosleep() function is moved from the Timers option to the Base.

876 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

28211

28212

28213

28214

28215

28216

28217

28218

28219

28220

28221

28222

28223

28224

28225

28226

28227

28228

28229

28230

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces nearbyint()

NAME
nearbyint, nearbyintf, nearbyintl — floating-point rounding functions

SYNOPSIS
#include <math.h>

double nearbyint(double x);
float nearbyintf(float x);
long double nearbyintl(long double x);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

These functions shall round their argument to an integer value in floating-point format, using
the current rounding direction and without raising the inexact floating-point exception.

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-
zero, an error has occurred.

RETURN VALUE
Upon successful completion, these functions shall return the rounded integer value.

MX If x is NaN, a NaN shall be returned.

If x is ±0, ±0 shall be returned.

If x is ±Inf, x shall be returned.

XSI If the correct value would cause overflow, a range error shall occur and nearbyint(), nearbyintf(),
and nearbyintl() shall return the value of the macro ±HUGE_VAL, ±HUGE_VALF, and
±HUGE_VALL (with the same sign as x), respectively.

ERRORS
These functions shall fail if:

XSI Range Error The result would cause an overflow.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the overflow
floating-point exception shall be raised.

EXAMPLES
None.

APPLICATION USAGE
On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling &
MATH_ERREXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
None.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 877

28231

28232

28233

28234

28235

28236

28237

28238

28239

28240

28241

28242

28243

28244

28245

28246

28247

28248

28249

28250

28251

28252

28253

28254

28255

28256

28257

28258

28259

28260

28261

28262

28263

28264

28265

28266

28267

28268

28269

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

nearbyint() System Interfaces

FUTURE DIRECTIONS
None.

SEE ALSO
feclearexcept(), fetestexcept(), the Base Definitions volume of IEEE Std 1003.1-200x, Section 4.18,
Tr eatment of Error Conditions for Mathematical Functions, <math.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

878 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

28270

28271

28272

28273

28274

28275

28276

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces newlocale()

NAME
newlocale — create or modify a locale object

SYNOPSIS
CX #include <locale.h>

locale_t newlocale(int category_mask, c onst char * locale,
locale_t base);

DESCRIPTION
The newlocale() function shall create a new locale object or modify an existing one. If the base
argument is (locale_t)0, a new locale object shall be created. It is unspecified whether the locale
object pointed to by base shall be modified or freed and a new locale object created.

The category_mask argument specifies the locale categories to be set or modified. Values for
category_mask shall be constructed by a bitwise-inclusive OR of the symbolic constants
LC_CTYPE_MASK, LC_NUMERIC_MASK, LC_TIME_MASK, LC_COLLATE_MASK,
LC_MONETARY_MASK, and LC_MESSAGES_MASK, or any of the other implementation-
defined LC_*_MASK values defined in <locale.h>.

For each category with the corresponding bit set in category_mask the data from the locale named
by locale shall be used. In the case of modifying an existing locale object, the data from the locale
named by locale shall replace the existing data within the locale object. If a completely new locale
object is created, the data for all sections not requested by category_mask shall be taken from the
default locale.

The following preset values of locale are defined for all settings of category_mask:

"POSIX" Specifies the minimal environment for C-language translation called the
POSIX locale.

"C" Equivalent to "POSIX" .

" " Specifies an implementation-defined native environment. This corresponds to
the value of the associated environment variables, LC_* and LANG; see the
Base Definitions volume of IEEE Std 1003.1-200x, Chapter 7, Locale and the
Base Definitions volume of IEEE Std 1003.1-200x, Chapter 8, Environment
Variables.

If the base argument is not (locale_t)0 and the newlocale() function call succeeds, the contents of
base are unspecified. Applications shall ensure that they stop using base as a locale object before
calling newlocale(). If the function call fails and the base argument is not (locale_t)0, the contents
of base shall remain valid and unchanged.

The results are undefined if the base argument is the special locale object LC_GLOBAL_LOCALE.

RETURN VALUE
Upon successful completion, the newlocale() function shall return a handle which the caller may
use on subsequent calls to duplocale(), freelocale(), and other functions taking a locale_t
argument.

Upon failure, the newlocale() function shall return (locale_t)0 and set errno to indicate the error.

ERRORS
The newlocale() function shall fail if:

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 879

28277

28278

28279

28280

28281

28282

28283

28284

28285

28286

28287

28288

28289

28290

28291

28292

28293

28294

28295

28296

28297

28298

28299

28300

28301

28302

28303

28304

28305

28306

28307

28308

28309

28310

28311

28312

28313

28314

28315

28316

28317

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

newlocale() System Interfaces

[ENOMEM] There is not enough memory available to create the locale object or load the
locale data.

[EINVAL] The category_mask contains a bit that does not correspond to a valid category.

[ENOENT] For any of the categories in category_mask, the locale data is not available.

The newlocale() function may fail if:

[EINVAL] The locale argument is not a valid string pointer.

EXAMPLES

Constructing a Locale Object from Different Locales

The following example shows the construction of a locale where the LC_CTYPE category data
comes from a locale loc1 and the LC_TIME category data from a locale tok2:

#include <locale.h>
...
locale_t loc, new_loc;

/* Get the "loc1" data. */

loc = newlocale (LC_CTYPE_MASK, "loc1", NULL);
if (loc == (locale_t) 0)

abort ();

/* Get the "loc2" data. */

new_loc = newlocale (LC_TIME_MASK, "loc2", loc);
if (new_loc != (locale_t) 0)

/* We don t abort if this fails. In this case this
simply used to unchanged locale object. */

loc = new_loc;

...

Freeing up a Locale Object

The following example shows a code fragment to free a locale object created by newlocale():

#include <locale.h>
...

/* Every locale object allocated with newlocale() should be
* f reed using freelocale():
*/

locale_t loc;

/* Get the locale. */

loc = newlocale (LC_CTYPE_MASK | LC_TIME_MASK, "locname", NULL);

/* ... Use the locale object ... */
...

/* Free the locale object resources. */
freelocale (loc);

880 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

28318

28319

28320

28321

28322

28323

28324

28325

28326

28327

28328

28329

28330

28331

28332

28333

28334

28335

28336

28337

28338

28339

28340

28341

28342

28343

28344

28345

28346

28347

28348

28349

28350

28351

28352

28353

28354

28355

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces newlocale()

APPLICATION USAGE
Handles for locale objects created by the newlocale() function should be released by a
corresponding call to freelocale().

The special locale object LC_GLOBAL_LOCALE must not be passed for the base argument, even
when returned by the uselocale() function.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
duplocale(), freelocale(), uselocale(), the Base Definitions volume of IEEE Std 1003.1-200x,
<locale.h>

CHANGE HISTORY
First released in Issue 7.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 881

28356

28357

28358

28359

28360

28361

28362

28363

28364

28365

28366

28367

28368

28369

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

nextafter() System Interfaces

NAME
nextafter, nextafterf, nextafterl, nexttoward, nexttowardf, nexttowardl — next representable
floating-point number

SYNOPSIS
#include <math.h>

double nextafter(double x, d ouble y);
float nextafterf(float x, f loat y);
long double nextafterl(long double x, l ong double y);
double nexttoward(double x, l ong double y);
float nexttowardf(float x, l ong double y);
long double nexttowardl(long double x, l ong double y);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

The nextafter(), nextafterf(), and nextafterl() functions shall compute the next representable
floating-point value following x in the direction of y. Thus, if y is less than x, nextafter() shall
return the largest representable floating-point number less than x. The nextafter(), nextafterf(),
and nextafterl() functions shall return y if x equals y.

The nexttoward(), nexttowardf(), and nexttowardl() functions shall be equivalent to the
corresponding nextafter() functions, except that the second parameter shall have type long
double and the functions shall return y converted to the type of the function if x equals y.

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-
zero, an error has occurred.

RETURN VALUE
Upon successful completion, these functions shall return the next representable floating-point
value following x in the direction of y.

If x==y, y (of the type x) shall be returned.

If x is finite and the correct function value would overflow, a range error shall occur and
±HUGE_VAL, ±HUGE_VALF, and ±HUGE_VALL (with the same sign as x) shall be returned as
appropriate for the return type of the function.

MX If x or y is NaN, a NaN shall be returned.

If x!=y and the correct function value is subnormal, zero, or underflows, a range error shall
occur, and either the correct function value (if representable) or 0.0 shall be returned.

ERRORS
These functions shall fail if:

Range Error The correct value overflows.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the overflow
floating-point exception shall be raised.

882 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

28370

28371

28372

28373

28374

28375

28376

28377

28378

28379

28380

28381

28382

28383

28384

28385

28386

28387

28388

28389

28390

28391

28392

28393

28394

28395

28396

28397

28398

28399

28400

28401

28402

28403

28404

28405

28406

28407

28408

28409

28410

28411

28412

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces nextafter()

MX Range Error The correct value is subnormal or underflows.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the underflow
floating-point exception shall be raised.

EXAMPLES
None.

APPLICATION USAGE
On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling &
MATH_ERREXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
feclearexcept(), fetestexcept(), the Base Definitions volume of IEEE Std 1003.1-200x, Section 4.18,
Tr eatment of Error Conditions for Mathematical Functions, <math.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Issue 6

The nextafter() function is no longer marked as an extension.

The nextafterf(), nextafterl(), nexttoward(), nexttowardf(), and nexttowardl() functions are added
for alignment with the ISO/IEC 9899: 1999 standard.

The DESCRIPTION, RETURN VALUE, ERRORS, and APPLICATION USAGE sections are
revised to align with the ISO/IEC 9899: 1999 standard.

IEC 60559: 1989 standard floating-point extensions over the ISO/IEC 9899: 1999 standard are
marked.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 883

28413

28414

28415

28416

28417

28418

28419

28420

28421

28422

28423

28424

28425

28426

28427

28428

28429

28430

28431

28432

28433

28434

28435

28436

28437

28438

28439

28440

28441

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

nftw() System Interfaces

NAME
nftw — walk a file tree

SYNOPSIS
XSI #include <ftw.h>

int nftw(const char * path, i nt (* fn)(const char *,
const struct stat *, int, struct FTW *), int fd_limit, i nt flags);

DESCRIPTION
The nftw() function shall recursively descend the directory hierarchy rooted in path. The nftw()
function has a similar effect to ftw() except that it takes an additional argument flags, which is a
bitwise-inclusive OR of zero or more of the following flags:

FTW_CHDIR If set, nftw() shall change the current working directory to each directory as it
reports files in that directory. If clear, nftw() shall not change the current
working directory.

FTW_DEPTH If set, nftw() shall report all files in a directory before reporting the directory
itself. If clear, nftw() shall report any directory before reporting the files in that
directory.

FTW_MOUNT If set, nftw() shall only report files in the same file system as path. If clear,
nftw() shall report all files encountered during the walk.

FTW_PHYS If set, nftw() shall perform a physical walk and shall not follow symbolic links.

If FTW_PHYS is clear and FTW_DEPTH is set, nftw() shall follow links instead of reporting
them, but shall not report any directory that would be a descendant of itself. If FTW_PHYS is
clear and FTW_DEPTH is clear, nftw() shall follow links instead of reporting them, but shall not
report the contents of any directory that would be a descendant of itself.

At each file it encounters, nftw() shall call the user-supplied function fn with four arguments:

• The first argument is the pathname of the object.

• The second argument is a pointer to the stat buffer containing information on the object,
filled in as if fstatat(), stat(), or lstat() had been called to retrieve the information.

• The third argument is an integer giving additional information. Its value is one of the
following:

FTW_F The object is a file.

FTW_D The object is a directory.

FTW_DP The object is a directory and subdirectories have been visited. (This condition
shall only occur if the FTW_DEPTH flag is included in flags.)

FTW_SL The object is a symbolic link. (This condition shall only occur if the
FTW_PHYS flag is included in flags.)

FTW_SLN The object is a symbolic link that does not name an existing file. (This
condition shall only occur if the FTW_PHYS flag is not included in flags.)

FTW_DNR The object is a directory that cannot be read. The fn function shall not be
called for any of its descendants.

884 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

28442

28443

28444

28445

28446

28447

28448

28449

28450

28451

28452

28453

28454

28455

28456

28457

28458

28459

28460

28461

28462

28463

28464

28465

28466

28467

28468

28469

28470

28471

28472

28473

28474

28475

28476

28477

28478

28479

28480

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces nftw()

FTW_NS The stat() function failed on the object because of lack of appropriate
permission. The stat buffer passed to fn is undefined. Failure of stat() for any
other reason is considered an error and nftw() shall return −1.

• The fourth argument is a pointer to an FTW structure. The value of base is the offset of the
object’s filename in the pathname passed as the first argument to fn. The value of level
indicates depth relative to the root of the walk, where the root level is 0.

The results are unspecified if the application-supplied fn function does not preserve the current
working directory.

The argument fd_limit sets the maximum number of file descriptors that shall be used by nftw()
while traversing the file tree. At most one file descriptor shall be used for each directory level.

The nftw() function need not be thread-safe. A function that is not required to be thread-safe is
not required to be reentrant.

RETURN VALUE
The nftw() function shall continue until the first of the following conditions occurs:

• An invocation of fn shall return a non-zero value, in which case nftw() shall return that
value.

• The nftw() function detects an error other than [EACCES] (see FTW_DNR and FTW_NS
above), in which case nftw() shall return −1 and set errno to indicate the error.

• The tree is exhausted, in which case nftw() shall return 0.

ERRORS
The nftw() function shall fail if:

[EACCES] Search permission is denied for any component of path or read permission is
denied for path, or fn returns −1 and does not reset errno.

[ELOOP] A loop exists in symbolic links encountered during resolution of the path
argument.

[ENAMETOOLONG]
The length of the path argument exceeds {PATH_MAX} or a pathname
component is longer than {NAME_MAX}.

[ENOENT] A component of path does not name an existing file or path is an empty string.

[ENOTDIR] A component of path is not a directory.

[EOVERFLOW] A field in the stat structure cannot be represented correctly in the current
programming environment for one or more files found in the file hierarchy.

The nftw() function may fail if:

[ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during
resolution of the path argument.

[EMFILE] All file descriptors available to the process are currently open.

[ENAMETOOLONG]
Pathname resolution of a symbolic link produced an intermediate result
whose length exceeds {PATH_MAX}.

[ENFILE] Too many files are currently open in the system.

In addition, errno may be set if the function pointed to by fn causes errno to be set.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 885

28481

28482

28483

28484

28485

28486

28487

28488

28489

28490

28491

28492

28493

28494

28495

28496

28497

28498

28499

28500

28501

28502

28503

28504

28505

28506

28507

28508

28509

28510

28511

28512

28513

28514

28515

28516

28517

28518

28519

28520

28521

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

nftw() System Interfaces

EXAMPLES
The following example walks the /tmp directory and its subdirectories, calling the nftw()
function for every directory entry, using a maximum of 5 file descriptors.

#include <ftw.h>
...
int nftwfunc(const char *, const struct stat *, int, struct FTW *);

int nftwfunc(const char *filename, const struct stat *statptr,
int fileflags, struct FTW *pfwt)

{
return 0;

}
...
char *startpath = "/tmp";
int fd_limit = 5;
int flags = FTW_CHDIR | FTW_DEPTH | FTW_MOUNT;
int ret;

ret = nftw(startpath, nftwfunc, fd_limit, flags);

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fdopendir(), fstatat(), readdir(), the Base Definitions volume of IEEE Std 1003.1-200x, <ftw.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

In the DESCRIPTION, the definition of the depth argument is clarified.

Issue 6
The Open Group Base Resolution bwg97-003 is applied.

The ERRORS section is updated as follows:

• The wording of the mandatory [ELOOP] error condition is updated.

• A second optional [ELOOP] error condition is added.

• The [EOVERFLOW] mandatory error condition is added.

Text is added to the DESCRIPTION to say that the nftw() function need not be reentrant and that
the results are unspecified if the application-supplied fn function does not preserve the current
working directory.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/64 is applied, changing the argument
depth to fd_limit throughout and changing ‘‘to a maximum of 5 levels deep’’ to ‘‘using a
maximum of 5 file descriptors’’ in the EXAMPLES section.

886 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

28522

28523

28524

28525

28526

28527

28528

28529

28530

28531

28532

28533

28534

28535

28536

28537

28538

28539

28540

28541

28542

28543

28544

28545

28546

28547

28548

28549

28550

28551

28552

28553

28554

28555

28556

28557

28558

28559

28560

28561

28562

28563

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces nftw()

Issue 7
SD5-XBD-ERN-4 is applied, changing the definition of the [EMFILE] error.

SD6-XBD-ERN-61 is applied.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 887

28564

28565

28566

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

nice() System Interfaces

NAME
nice — change the nice value of a process

SYNOPSIS
XSI #include <unistd.h>

int nice(int incr);

DESCRIPTION
The nice() function shall add the value of incr to the nice value of the calling process. A nice
value of a process is a non-negative number for which a more positive value shall result in less
favorable scheduling.

A maximum nice value of 2*{NZERO}−1 and a minimum nice value of 0 shall be imposed by the
system. Requests for values above or below these limits shall result in the nice value being set to
the corresponding limit. Only a process with appropriate privileges can lower the nice value.

PS|TPS Calling the nice() function has no effect on the priority of processes or threads with policy
SCHED_FIFO or SCHED_RR. The effect on processes or threads with other scheduling policies
is implementation-defined.

The nice value set with nice() shall be applied to the process. If the process is multi-threaded, the
nice value shall affect all system scope threads in the process.

As −1 is a permissible return value in a successful situation, an application wishing to check for
error situations should set errno to 0, then call nice(), and if it returns −1, check to see whether
errno is non-zero.

RETURN VALUE
Upon successful completion, nice() shall return the new nice value −{NZERO}. Otherwise, −1
shall be returned, the nice value of the process shall not be changed, and errno shall be set to
indicate the error.

ERRORS
The nice() function shall fail if:

[EPERM] The incr argument is negative and the calling process does not have
appropriate privileges.

EXAMPLES

Changing the Nice Value

The following example adds the value of the incr argument, −20, to the nice value of the calling
process.

#include <unistd.h>
...
int incr = -20;
int ret;

ret = nice(incr);

APPLICATION USAGE
None.

888 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

28567

28568

28569

28570

28571

28572

28573

28574

28575

28576

28577

28578

28579

28580

28581

28582

28583

28584

28585

28586

28587

28588

28589

28590

28591

28592

28593

28594

28595

28596

28597

28598

28599

28600

28601

28602

28603

28604

28605

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces nice()

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
exec , getpriority(), setpriority(), the Base Definitions volume of IEEE Std 1003.1-200x, <limits.h>,
<unistd.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
A statement is added to the description indicating the effects of this function on the different
scheduling policies and multi-threaded processes.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 889

28606

28607

28608

28609

28610

28611

28612

28613

28614

28615

28616

28617

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

nl_langinfo() System Interfaces

NAME
nl_langinfo, nl_langinfo_l — language information

SYNOPSIS
#include <langinfo.h>

char *nl_langinfo(nl_item item);
char *nl_langinfo_l(nl_item item, l ocale_t locale);

DESCRIPTION
The nl_langinfo() and nl_langinfo_l() functions shall return a pointer to a string containing
information relevant to the particular language or cultural area defined in the locale of the
process, or in the locale represented by locale, respectively (see <langinfo.h>). The manifest
constant names and values of item are defined in <langinfo.h>. For example:

nl_langinfo(ABDAY_1)

would return a pointer to the string "Dom" if the identified language was Portuguese, and
"Sun" if the identified language was English.

nl_langinfo_l(ABDAY_1, loc)

would return a pointer to the string "Dom" if the identified language of the locale represented by
loc was Portuguese, and "Sun" if the identified language of the locale represented by loc was
English.

Calls to setlocale() with a category corresponding to the category of item (see <langinfo.h>), or to
the category LC_ALL, may overwrite the array pointed to by the return value. Calls to uselocale()
which change the category corresponding to the category of item may overwrite the array
pointed to by the return value.

The nl_langinfo() function need not be thread-safe. A function that is not required to be thread-
safe is not required to be reentrant.

RETURN VALUE
In a locale where langinfo data is not defined, these functions shall return a pointer to the
corresponding string in the POSIX locale. In all locales, these functions shall return a pointer to
an empty string if item contains an invalid setting.

This pointer may point to static data that may be overwritten on the next call to either function.

ERRORS
The nl_langinfo_l() function may fail if:

[EINVAL] locale is not a valid locale object handle.

EXAMPLES

Getting Date and Time Formatting Information

The following example returns a pointer to a string containing date and time formatting
information, as defined in the LC_TIME category of the current locale.

#include <time.h>
#include <langinfo.h>
...
strftime(datestring, sizeof(datestring), nl_langinfo(D_T_FMT), tm);
...

890 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

28618

28619

28620

28621

28622

28623

28624

28625

28626

28627

28628

28629

28630

28631

28632

28633

28634

28635

28636

28637

28638

28639

28640

28641

28642

28643

28644

28645

28646

28647

28648

28649

28650

28651

28652

28653

28654

28655

28656

28657

28658

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces nl_langinfo()

APPLICATION USAGE
The array pointed to by the return value should not be modified by the program, but may be
modified by further calls to these functions.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
setlocale(), uselocale(), the Base Definitions volume of IEEE Std 1003.1-200x, Chapter 7, Locale,
<langinfo.h>, <locale.h>, <nl_types.h>

CHANGE HISTORY
First released in Issue 2.

Issue 5
The last paragraph of the DESCRIPTION is moved from the APPLICATION USAGE section.

A note indicating that this function need not be reentrant is added to the DESCRIPTION.

Issue 7
The nl_langinfo() function is moved from the XSI option to the Base.

The nl_langinfo_l() function is added from The Open Group Technical Standard, 2006, Extended
API Set Part 4.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 891

28659

28660

28661

28662

28663

28664

28665

28666

28667

28668

28669

28670

28671

28672

28673

28674

28675

28676

28677

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces ntohl()

NAME
ntohl, ntohs — convert values between host and network byte order

SYNOPSIS
#include <arpa/inet.h>

uint32_t ntohl(uint32_t netlong);
uint16_t ntohs(uint16_t netshort);

DESCRIPTION
Refer to htonl().

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 893

28685

28686

28687

28688

28689

28690

28691

28692

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

open() System Interfaces

NAME
open, openat — open file relative to directory file descriptor

SYNOPSIS
OH #include <sys/stat.h>

#include <fcntl.h>

int open(const char * path, i nt oflag, . ..);
int openat(int fd, c onst char * path, i nt oflag, . ..);

DESCRIPTION
The open() function shall establish the connection between a file and a file descriptor. It shall
create an open file description that refers to a file and a file descriptor that refers to that open file
description. The file descriptor is used by other I/O functions to refer to that file. The path
argument points to a pathname naming the file.

The open() function shall return a file descriptor for the named file that is the lowest file
descriptor not currently open for that process. The open file description is new, and therefore the
file descriptor shall not share it with any other process in the system. The FD_CLOEXEC file
descriptor flag associated with the new file descriptor shall be cleared.

The file offset used to mark the current position within the file shall be set to the beginning of
the file.

The file status flags and file access modes of the open file description shall be set according to
the value of oflag.

Values for oflag are constructed by a bitwise-inclusive OR of flags from the following list, defined
in <fcntl.h>. Applications shall specify exactly one of the first four values (file access modes)
below in the value of oflag:

O_EXEC Open for execute only (non-directory files). Use of this flag on directories
is currently unspecified.

O_RDONLY Open for reading only.

O_WRONLY Open for writing only.

O_RDWR Open for reading and writing. The result is undefined if this flag is
applied to a FIFO.

Any combination of the following may be used:

O_APPEND If set, the file offset shall be set to the end of the file prior to each write.

O_CREAT If the file exists, this flag has no effect except as noted under O_EXCL
below. Otherwise, the file shall be created; the user ID of the file shall be
set to the effective user ID of the process; the group ID of the file shall be
set to the group ID of the file’s parent directory or to the effective group
ID of the process; and the access permission bits (see <sys/stat.h>) of the
file mode shall be set to the value of the argument following the oflag
argument taken as type mode_t modified as follows: a bitwise AND is
performed on the file-mode bits and the corresponding bits in the
complement of the process’ file mode creation mask. Thus, all bits in the
file mode whose corresponding bit in the file mode creation mask is set
are cleared. When bits other than the file permission bits are set, the effect
is unspecified. The argument following the oflag argument does not affect
whether the file is open for reading, writing, or for both. Implementations
shall provide a way to initialize the file’s group ID to the group ID of the

894 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

28693

28694

28695

28696

28697

28698

28699

28700

28701

28702

28703

28704

28705

28706

28707

28708

28709

28710

28711

28712

28713

28714

28715

28716

28717

28718

28719

28720

28721

28722

28723

28724

28725

28726

28727

28728

28729

28730

28731

28732

28733

28734

28735

28736

28737

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces open()

parent directory. Implementations may, but need not, provide an
implementation-defined way to initialize the file’s group ID to the
effective group ID of the calling process.

SIO O_DIRECTORY If path does not name a directory, fail and set errno to [ENOTDIR]. Write
I/O operations on the file descriptor shall complete as defined by
synchronized I/O data integrity completion.

O_EXCL If O_CREAT and O_EXCL are set, open() shall fail if the file exists. The
check for the existence of the file and the creation of the file if it does not
exist shall be atomic with respect to other threads executing open()
naming the same filename in the same directory with O_EXCL and
O_CREAT set. If O_EXCL and O_CREAT are set, and path names a
symbolic link, open() shall fail and set errno to [EEXIST], regardless of the
contents of the symbolic link. If O_EXCL is set and O_CREAT is not set,
the result is undefined.

O_NOCTTY If set and path identifies a terminal device, open() shall not cause the
terminal device to become the controlling terminal for the process.

O_NOFOLLOW If path names a symbolic link, fail and set errno to [ELOOP]. When
opening a FIFO with O_RDONLY or O_WRONLY set:

• If O_NONBLOCK is set, an open() for reading-only shall return
without delay. An open() for writing-only shall return an error if no
process currently has the file open for reading.

• If O_NONBLOCK is clear, an open() for reading-only shall block the
calling thread until a thread opens the file for writing. An open() for
writing-only shall block the calling thread until a thread opens the
file for reading.

When opening a block special or character special file that supports non-
blocking opens:

• If O_NONBLOCK is set, the open() function shall return without
blocking for the device to be ready or available. Subsequent
behavior of the device is device-specific.

• If O_NONBLOCK is clear, the open() function shall block the calling
thread until the device is ready or available before returning.

Otherwise, the behavior of O_NONBLOCK is unspecified.

SIO O_RSYNC Read I/O operations on the file descriptor shall complete at the same
level of integrity as specified by the O_DSYNC and O_SYNC flags. If both
O_DSYNC and O_RSYNC are set in oflag, all I/O operations on the file
descriptor shall complete as defined by synchronized I/O data integrity
completion. If both O_SYNC and O_RSYNC are set in flags, all I/O
operations on the file descriptor shall complete as defined by
synchronized I/O file integrity completion.

XSI|SIO O_SYNC Write I/O operations on the file descriptor shall complete as defined by
synchronized I/O file integrity completion.

XSI The O_SYNC flag shall be supported for regular files, even if the
Synchronized Input and Output option is not supported.

O_TRUNC If the file exists and is a regular file, and the file is successfully opened
O_RDWR or O_WRONLY, its length shall be truncated to 0, and the mode
and owner shall be unchanged. It shall have no effect on FIFO special files

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 895

28738

28739

28740

28741

28742

28743

28744

28745

28746

28747

28748

28749

28750

28751

28752

28753

28754

28755

28756

28757

28758

28759

28760

28761

28762

28763

28764

28765

28766

28767

28768

28769

28770

28771

28772

28773

28774

28775

28776

28777

28778

28779

28780

28781

28782

28783

28784

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

open() System Interfaces

or terminal device files. Its effect on other file types is implementation-
defined. The result of using O_TRUNC without either O_RDWR or
O_WRONLY is undefined.

If O_CREAT is set and the file did not previously exist, upon successful completion, open() shall
mark for update the st_atime, st_ctime, and st_mtime fields of the file and the st_ctime and
st_mtime fields of the parent directory.

If O_TRUNC is set and the file did previously exist, upon successful completion, open() shall
mark for update the st_ctime and st_mtime fields of the file.

SIO If both the O_SYNC and O_DSYNC flags are set, the effect is as if only the O_SYNC flag was set.

OB XSR If path refers to a STREAMS file, oflag may be constructed from O_NONBLOCK OR’ed with
either O_RDONLY, O_WRONLY, or O_RDWR. Other flag values are not applicable to STREAMS
devices and shall have no effect on them. The value O_NONBLOCK affects the operation of
STREAMS drivers and certain functions applied to file descriptors associated with STREAMS
files. For STREAMS drivers, the implementation of O_NONBLOCK is device-specific.

XSI If path names the master side of a pseudo-terminal device, then it is unspecified whether open()
locks the slave side so that it cannot be opened. Conforming applications shall call unlockpt()
before opening the slave side.

The largest value that can be represented correctly in an object of type off_t shall be established
as the offset maximum in the open file description.

The openat() function shall be equivalent to the open() function except in the case where path
specifies a relative path. In this case the file to be opened is determined relative to the directory
associated with the file descriptor fd instead of the current working directory. It is unspecified
whether directory searches are permitted based on whether the file was opened with search
permission or on the current permissions of the directory underlying the file descriptor.

The oflag parameter and the optional fourth parameter correspond exactly to the parameters of
open().

If openat() is passed the special value AT_FDCWD in the fd parameter, the current working
directory is used and the behavior shall be identical to a call to open().

RETURN VALUE
Upon successful completion, these functions shall open the file and return a non-negative
integer representing the lowest numbered unused file descriptor. Otherwise, these functions
shall return −1 and set errno to indicate the error. If − is returned, no files shall be created or
modified.

ERRORS
These functions shall fail if:

[EACCES] Search permission is denied on a component of the path prefix, or the file
exists and the permissions specified by oflag are denied, or the file does not
exist and write permission is denied for the parent directory of the file to be
created, or O_TRUNC is specified and write permission is denied.

[EEXIST] O_CREAT and O_EXCL are set, and the named file exists.

[EINTR] A signal was caught during open().

SIO [EINVAL] The implementation does not support synchronized I/O for this file.

OB XSR [EIO] The path argument names a STREAMS file and a hangup or error occurred
during the open().

896 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

28785

28786

28787

28788

28789

28790

28791

28792

28793

28794

28795

28796

28797

28798

28799

28800

28801

28802

28803

28804

28805

28806

28807

28808

28809

28810

28811

28812

28813

28814

28815

28816

28817

28818

28819

28820

28821

28822

28823

28824

28825

28826

28827

28828

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces open()

[EISDIR] The named file is a directory and oflag includes O_WRONLY or O_RDWR.

[ELOOP] A loop exists in symbolic links encountered during resolution of the path
argument, or O_NOFOLLOW was specified and the path argument names a
symbolic link.

[EMFILE] All file descriptors available to the process are currently open.

[ENAMETOOLONG]
The length of the path argument exceeds {PATH_MAX} or a pathname
component is longer than {NAME_MAX}.

[ENFILE] The maximum allowable number of files is currently open in the system.

[ENOENT] O_CREAT is not set and the named file does not exist; or O_CREAT is set and
either the path prefix does not exist or the path argument points to an empty
string.

OB XSR [ENOSR] The path argument names a STREAMS-based file and the system is unable to
allocate a STREAM.

[ENOSPC] The directory or file system that would contain the new file cannot be
expanded, the file does not exist, and O_CREAT is specified.

[ENOTDIR] A component of the path prefix is not a directory, or O_DIRECTORY was
specified and the path argument does not name a directory.

[ENXIO] O_NONBLOCK is set, the named file is a FIFO, O_WRONLY is set, and no
process has the file open for reading.

[ENXIO] The named file is a character special or block special file, and the device
associated with this special file does not exist.

[EOVERFLOW] The named file is a regular file and the size of the file cannot be represented
correctly in an object of type off_t.

[EROFS] The named file resides on a read-only file system and either O_WRONLY,
O_RDWR, O_CREAT (if the file does not exist), or O_TRUNC is set in the oflag
argument.

The openat() function shall fail if:

[EBADF] The path argument does not specify an absolute path and the fd argument is
neither AT_FDCWD nor a valid file descriptor open for searching.

These functions may fail if:

XSI [EAGAIN] The path argument names the slave side of a pseudo-terminal device that is
locked.

[EINVAL] The value of the oflag argument is not valid.

[ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during
resolution of the path argument.

[ENAMETOOLONG]
As a result of encountering a symbolic link in resolution of the path argument,
the length of the substituted pathname string exceeded {PATH_MAX}.

OB XSR [ENOMEM] The path argument names a STREAMS file and the system is unable to allocate
resources.

[ETXTBSY] The file is a pure procedure (shared text) file that is being executed and oflag is
O_WRONLY or O_RDWR.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 897

28829

28830

28831

28832

28833

28834

28835

28836

28837

28838

28839

28840

28841

28842

28843

28844

28845

28846

28847

28848

28849

28850

28851

28852

28853

28854

28855

28856

28857

28858

28859

28860

28861

28862

28863

28864

28865

28866

28867

28868

28869

28870

28871

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

open() System Interfaces

The openat() function may fail if:

[ENOTDIR] The path argument is not an absolute path and fd is neither AT_FDCWD nor a
file descriptor associated with a directory.

EXAMPLES

Opening a File for Writing by the Owner

The following example opens the file /tmp/file, either by creating it (if it does not already exist),
or by truncating its length to 0 (if it does exist). In the former case, if the call creates a new file,
the access permission bits in the file mode of the file are set to permit reading and writing by the
owner, and to permit reading only by group members and others.

If the call to open() is successful, the file is opened for writing.

#include <fcntl.h>
...
int fd;
mode_t mode = S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH;
char *filename = "/tmp/file";
...
fd = open(filename, O_WRONLY | O_CREAT | O_TRUNC, mode);
...

Opening a File Using an Existence Check

The following example uses the open() function to try to create the LOCKFILE file and open it
for writing. Since the open() function specifies the O_EXCL flag, the call fails if the file already
exists. In that case, the program assumes that someone else is updating the password file and
exits.

#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>

#define LOCKFILE "/etc/ptmp"
...
int pfd; /* Integer for file descriptor returned by open() call. */
...
if ((pfd = open(LOCKFILE, O_WRONLY | O_CREAT | O_EXCL,

S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH)) == -1)
{

fprintf(stderr, "Cannot open /etc/ptmp. Try again later.\n");
exit(1);

}
...

Opening a File for Writing

The following example opens a file for writing, creating the file if it does not already exist. If the
file does exist, the system truncates the file to zero bytes.

#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>

#define LOCKFILE "/etc/ptmp"
...

898 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

28872

28873

28874

28875

28876

28877

28878

28879

28880

28881

28882

28883

28884

28885

28886

28887

28888

28889

28890

28891

28892

28893

28894

28895

28896

28897

28898

28899

28900

28901

28902

28903

28904

28905

28906

28907

28908

28909

28910

28911

28912

28913

28914

28915

28916

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces open()

int pfd;
char filename[PATH_MAX+1];
...
if ((pfd = open(filename, O_WRONLY | O_CREAT | O_TRUNC,

S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH)) == -1)
{

perror("Cannot open output file\n"); exit(1);
}
...

APPLICATION USAGE
None.

RATIONALE
Except as specified in this volume of IEEE Std 1003.1-200x, the flags allowed in oflag are not
mutually-exclusive and any number of them may be used simultaneously.

Some implementations permit opening FIFOs with O_RDWR. Since FIFOs could be
implemented in other ways, and since two file descriptors can be used to the same effect, this
possibility is left as undefined.

See getgroups() about the group of a newly created file.

The use of open() to create a regular file is preferable to the use of creat(), because the latter is
redundant and included only for historical reasons.

The use of the O_TRUNC flag on FIFOs and directories (pipes cannot be open()-ed) must be
permissible without unexpected side effects (for example, creat() on a FIFO must not remove
data). Since terminal special files might have type-ahead data stored in the buffer, O_TRUNC
should not affect their content, particularly if a program that normally opens a regular file
should open the current controlling terminal instead. Other file types, particularly
implementation-defined ones, are left implementation-defined.

IEEE Std 1003.1-200x permits [EACCES] to be returned for conditions other than those explicitly
listed.

The O_NOCTTY flag was added to allow applications to avoid unintentionally acquiring a
controlling terminal as a side effect of opening a terminal file. This volume of
IEEE Std 1003.1-200x does not specify how a controlling terminal is acquired, but it allows an
implementation to provide this on open() if the O_NOCTTY flag is not set and other conditions
specified in the Base Definitions volume of IEEE Std 1003.1-200x, Chapter 11, General Terminal
Interface are met. The O_NOCTTY flag is an effective no-op if the file being opened is not a
terminal device.

In historical implementations the value of O_RDONLY is zero. Because of that, it is not possible
to detect the presence of O_RDONLY and another option. Future implementations should
encode O_RDONLY and O_WRONLY as bit flags so that:

O_RDONLY | O_WRONLY == O_RDWR

O_EXEC is specified as one of the four file access modes. On implementations where none of
O_RDONLY, O_WRONLY, or O_RDWR is zero, applications may open a directory with O_EXEC
OR’d in with one of the other three file access modes. On many historical implementations, this
cannot be done since O_RDONLY has been defined to be zero.

In general, the open() function follows the symbolic link if path names a symbolic link. However,
the open() function, when called with O_CREAT and O_EXCL, is required to fail with [EEXIST]
if path names an existing symbolic link, even if the symbolic link refers to a nonexistent file. This
behavior is required so that privileged applications can create a new file in a known location
without the possibility that a symbolic link might cause the file to be created in a different

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 899

28917

28918

28919

28920

28921

28922

28923

28924

28925

28926

28927

28928

28929

28930

28931

28932

28933

28934

28935

28936

28937

28938

28939

28940

28941

28942

28943

28944

28945

28946

28947

28948

28949

28950

28951

28952

28953

28954

28955

28956

28957

28958

28959

28960

28961

28962

28963

28964

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

open() System Interfaces

location.

In addition, the open() function refuses to open non-directories if the O_DIRECTORY flag is set.
This avoids race conditions whereby a user might compromise the system by substituting a hard
link to a sensitive file (e.g., a device or a FIFO) while a privileged application is running, where
opening a file even for read access might have undesirable side-effects.

In addition, the open() function does not follow symbolic links if the O_NOFOLLOW flag is set.
This avoids race conditions whereby a user might compromise the system by substituting a
symbolic link to a sensitive file (e.g., a device) while a privileged application is running, where
opening a file even for read access might have undesirable side-effects.

For example, a privileged application that must create a file with a predictable name in a user-
writable directory, such as the user’s home directory, could be compromised if the user creates a
symbolic link with that name that refers to a nonexistent file in a system directory. If the user can
influence the contents of a file, the user could compromise the system by creating a new system
configuration or spool file that would then be interpreted by the system. The test for a symbolic
link which refers to a nonexisting file must be atomic with the creation of a new file.

The POSIX.1-1990 standard required that the group ID of a newly created file be set to the group
ID of its parent directory or to the effective group ID of the creating process. FIPS 151-2 required
that implementations provide a way to have the group ID be set to the group ID of the
containing directory, but did not prohibit implementations also supporting a way to set the
group ID to the effective group ID of the creating process. Conforming applications should not
assume which group ID will be used. If it matters, an application can use chown() to set the
group ID after the file is created, or determine under what conditions the implementation will
set the desired group ID.

The purpose of the openat() function is to enable opening files in directories other than the
current working directory without exposure to race conditions. Any part of the path of a file
could be changed in parallel to a call to open(), resulting in unspecified behavior. By opening a
file descriptor for the target directory and using the openat() function it can be guaranteed that
the opened file is located relative to the desired directory. Some implementations use the
openat() function for other purposes as well. In some cases, if the oflag parameter has the
O_XATTR bit set, the returned file descriptor provides access to extended attributes. This
functionality is not standardized here.

FUTURE DIRECTIONS
The meaning of the O_EXEC flag on directories may be specified in a future version.

SEE ALSO
chmod(), close(), creat(), dirfd(), dup(), exec , fcntl(), fdopendir(), link(), lseek(), mkdtemp(),
mknod(), read(), symlink(), umask(), unlockpt(), write(), the Base Definitions volume of
IEEE Std 1003.1-200x, <fcntl.h>, <sys/stat.h>, <sys/types.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The DESCRIPTION is updated for alignment with the POSIX Realtime Extension and the POSIX
Threads Extension.

Large File Summit extensions are added.

Issue 6
In the SYNOPSIS, the optional include of the <sys/types.h> header is removed.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

900 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

28965

28966

28967

28968

28969

28970

28971

28972

28973

28974

28975

28976

28977

28978

28979

28980

28981

28982

28983

28984

28985

28986

28987

28988

28989

28990

28991

28992

28993

28994

28995

28996

28997

28998

28999

29000

29001

29002

29003

29004

29005

29006

29007

29008

29009

29010

29011

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces open()

• The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
required for conforming implementations of previous POSIX specifications, it was not
required for UNIX applications.

• In the DESCRIPTION, O_CREAT is amended to state that the group ID of the file is set to
the group ID of the file’s parent directory or to the effective group ID of the process. This is
a FIPS requirement.

• In the DESCRIPTION, text is added to indicate setting of the offset maximum in the open
file description. This change is to support large files.

• In the ERRORS section, the [EOVERFLOW] condition is added. This change is to support
large files.

• The [ENXIO] mandatory error condition is added.

• The [EINVAL], [ENAMETOOLONG], and [ETXTBSY] optional error conditions are added.

The DESCRIPTION and ERRORS sections are updated so that items related to the optional XSI
STREAMS Option Group are marked.

The following changes were made to align with the IEEE P1003.1a draft standard:

• An explanation is added of the effect of the O_CREAT and O_EXCL flags when the path
refers to a symbolic link.

• The [ELOOP] optional error condition is added.

The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

The DESCRIPTION of O_EXCL is updated in response to IEEE PASC Interpretation 1003.1c #48.

Issue 7
SD5-XBD-ERN-4 is applied, changing the definition of the [EMFILE] error.

This page is revised and the openat() function is added from The Open Group Technical
Standard, 2006, Extended API Set Part 2.

Functionality relating to the XSI STREAMS option is marked obsolescent.

Austin Group Interpretation 1003.1-2001 #113 is applied.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 901

29012

29013

29014

29015

29016

29017

29018

29019

29020

29021

29022

29023

29024

29025

29026

29027

29028

29029

29030

29031

29032

29033

29034

29035

29036

29037

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

open_memstream() System Interfaces

NAME
open_memstream, open_wmemstream — open a dynamic memory buffer stream

SYNOPSIS
CX #include <stdio.h>

FILE *open_memstream(char ** bufp, s ize_t * sizep);

#include <wchar.h>

FILE *open_wmemstream(wchar_t ** bufp, s ize_t * sizep);

DESCRIPTION
The open_memstream() and open_wmemstream() functions shall create an I/O stream associated
with a dynamically allocated memory buffer. The stream shall be opened for writing and shall
be seekable.

The stream associated with a call to open_memstream() shall be byte-oriented.

The stream associated with a call to open_wmemstream() shall be wide-oriented.

The stream shall maintain a current position in the allocated buffer and a current buffer length.
The position shall be initially set to zero (the start of the buffer). Each write to the stream shall
start at the current position and move this position by the number of successfully written bytes
for open_memstream() or the number of successfully written wide characters for
open_wmemstream(). The length shall be initially set to zero. If a write moves the position to a
value larger than the current length, the current length shall be set to this position. In this case a
null character for open_memstream() or a null wide character for open_wmemstream() shall be
appended to the current buffer. For both functions the terminating null is not included in the
calculation of the buffer length.

After a successful fflush() or fclose(), the pointer referenced by bufp shall contain the address of
the buffer, and the variable pointed to by sizep shall contain the number of successfully written
bytes for open_memstream() or the number of successfully written wide characters for
open_wmemstream(). The buffer shall be terminated by a null character for open_memstream() or
a null wide character for open_wmemstream().

After a successful fflush() the pointer referenced by bufp and the variable referenced by sizep
remain valid only until the next write operation on the stream or a call to fclose().

RETURN VALUE
Upon successful completion, these functions shall return a pointer to the object controlling the
stream. Otherwise, a null pointer shall be returned, and errno shall be set to indicate the error.

ERRORS
These functions may fail if:

[EINVAL] bufp or sizep are NULL.

[EMFILE] {FOPEN_MAX} streams are currently open in the calling process.

[ENOMEM] Memory for the stream or the buffer could not be allocated.

902 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

29038

29039

29040

29041

29042

29043

29044

29045

29046

29047

29048

29049

29050

29051

29052

29053

29054

29055

29056

29057

29058

29059

29060

29061

29062

29063

29064

29065

29066

29067

29068

29069

29070

29071

29072

29073

29074

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces open_memstream()

EXAMPLES

#include <stdio.h>
int main (void)
{

FILE *stream;
char *buf;
size_t len;

stream = open_memstream(&buf, &len);

if (stream == NULL)
/* handle error */;

fprintf(stream, "hello my world");
fflush(stream);
printf("buf=%s, len=%zu\n", buf, len);
fseeko(stream, 0, SEEK_SET);
fprintf(stream, "good-bye");
fclose(stream);
printf("buf=%s, len=%zu\n", buf, len);
free(buf);
return 0;

}

This program produces the following output:

buf=hello my world, len=14
buf=good-bye world, len=14

APPLICATION USAGE
The buffer created by these functions should be freed by the application after closing the stream,
by means of a call to free().

RATIONALE
These functions are similar to fmemopen() except that the memory is always allocated
dynamically by the function, and the stream is opened only for output.

FUTURE DIRECTIONS
None.

SEE ALSO
fclose(), fdopen(), fflush(), fmemopen(), fopen(), free(), freopen(), the Base Definitions volume of
IEEE Std 1003.1-200x, <stdio.h>

CHANGE HISTORY
First released in Issue 7.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 903

29075

29076

29077

29078

29079

29080

29081

29082

29083

29084

29085

29086

29087

29088

29089

29090

29091

29092

29093

29094

29095

29096

29097

29098

29099

29100

29101

29102

29103

29104

29105

29106

29107

29108

29109

29110

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

open_wmemstream() System Interfaces

NAME
open_wmemstream — open a dynamic memory buffer stream

SYNOPSIS
CX #include <wchar.h>

FILE *open_wmemstream(wchar_t ** bufp, s ize_t * sizep);

DESCRIPTION
Refer to open_memstream().

904 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

29111

29112

29113

29114

29115

29116

29117

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces openat()

NAME
openat — open file relative to directory file descriptor

SYNOPSIS
#include <fcntl.h>

int openat(int fd, c onst char * path, i nt oflag, . ..);

DESCRIPTION
Refer to open().

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 905

29118

29119

29120

29121

29122

29123

29124

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

opendir() System Interfaces

NAME
opendir — open directory associated with file descriptor

SYNOPSIS
#include <dirent.h>

DIR *opendir(const char * dirname);

DESCRIPTION
Refer to fdopendir().

906 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

29125

29126

29127

29128

29129

29130

29131

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces openlog()

NAME
openlog — open a connection to the logging facility

SYNOPSIS
XSI #include <syslog.h>

void openlog(const char * ident, i nt logopt, i nt facility);

DESCRIPTION
Refer to closelog().

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 907

29132

29133

29134

29135

29136

29137

29138

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

optarg System Interfaces

NAME
optarg, opterr, optind, optopt — options parsing variables

SYNOPSIS
#include <unistd.h>

extern char *optarg;
extern int opterr, optind, optopt;

DESCRIPTION
Refer to getopt().

908 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

29139

29140

29141

29142

29143

29144

29145

29146

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces pathconf()

NAME
pathconf — get configurable pathname variables

SYNOPSIS
#include <unistd.h>

long pathconf(const char * path, i nt name);

DESCRIPTION
Refer to fpathconf().

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 909

29147

29148

29149

29150

29151

29152

29153

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

pause() System Interfaces

NAME
pause — suspend the thread until a signal is received

SYNOPSIS
#include <unistd.h>

int pause(void);

DESCRIPTION
The pause() function shall suspend the calling thread until delivery of a signal whose action is
either to execute a signal-catching function or to terminate the process.

If the action is to terminate the process, pause() shall not return.

If the action is to execute a signal-catching function, pause() shall return after the signal-catching
function returns.

RETURN VALUE
Since pause() suspends thread execution indefinitely unless interrupted by a signal, there is no
successful completion return value. A value of −1 shall be returned and errno set to indicate the
error.

ERRORS
The pause() function shall fail if:

[EINTR] A signal is caught by the calling process and control is returned from the
signal-catching function.

EXAMPLES
None.

APPLICATION USAGE
Many common uses of pause() have timing windows. The scenario involves checking a
condition related to a signal and, if the signal has not occurred, calling pause(). When the signal
occurs between the check and the call to pause(), the process often blocks indefinitely. The
sigprocmask() and sigsuspend() functions can be used to avoid this type of problem.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
sigsuspend(), the Base Definitions volume of IEEE Std 1003.1-200x, <unistd.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The DESCRIPTION is updated for alignment with the POSIX Threads Extension.

Issue 6
The APPLICATION USAGE section is added.

910 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

29154

29155

29156

29157

29158

29159

29160

29161

29162

29163

29164

29165

29166

29167

29168

29169

29170

29171

29172

29173

29174

29175

29176

29177

29178

29179

29180

29181

29182

29183

29184

29185

29186

29187

29188

29189

29190

29191

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces pclose()

NAME
pclose — close a pipe stream to or from a process

SYNOPSIS
CX #include <stdio.h>

int pclose(FILE * stream);

DESCRIPTION
The pclose() function shall close a stream that was opened by popen(), wait for the command to
terminate, and return the termination status of the process that was running the command
language interpreter. However, if a call caused the termination status to be unavailable to
pclose(), then pclose() shall return −1 with errno set to [ECHILD] to report this situation. This can
happen if the application calls one of the following functions:

• wait()

• waitpid() with a pid argument less than or equal to 0 or equal to the process ID of the
command line interpreter

• Any other function not defined in this volume of IEEE Std 1003.1-200x that could do one of
the above

In any case, pclose() shall not return before the child process created by popen() has terminated.

If the command language interpreter cannot be executed, the child termination status returned
by pclose() shall be as if the command language interpreter terminated using exit(127) or
_exit(127).

The pclose() function shall not affect the termination status of any child of the calling process
other than the one created by popen() for the associated stream.

If the argument stream to pclose() is not a pointer to a stream created by popen(), the result of
pclose() is undefined.

RETURN VALUE
Upon successful return, pclose() shall return the termination status of the command language
interpreter. Otherwise, pclose() shall return −1 and set errno to indicate the error.

ERRORS
The pclose() function shall fail if:

[ECHILD] The status of the child process could not be obtained, as described above.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
There is a requirement that pclose() not return before the child process terminates. This is
intended to disallow implementations that return [EINTR] if a signal is received while waiting.
If pclose() returned before the child terminated, there would be no way for the application to
discover which child used to be associated with the stream, and it could not do the cleanup
itself.

If the stream pointed to by stream was not created by popen(), historical implementations of
pclose() return −1 without setting errno. To avoid requiring pclose() to set errno in this case,

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 911

29192

29193

29194

29195

29196

29197

29198

29199

29200

29201

29202

29203

29204

29205

29206

29207

29208

29209

29210

29211

29212

29213

29214

29215

29216

29217

29218

29219

29220

29221

29222

29223

29224

29225

29226

29227

29228

29229

29230

29231

29232

29233

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

pclose() System Interfaces

IEEE Std 1003.1-200x makes the behavior unspecified. An application should not use pclose() to
close any stream that was not created by popen().

Some historical implementations of pclose() either block or ignore the signals SIGINT, SIGQUIT,
and SIGHUP while waiting for the child process to terminate. Since this behavior is not
described for the pclose() function in IEEE Std 1003.1-200x, such implementations are not
conforming. Also, some historical implementations return [EINTR] if a signal is received, even
though the child process has not terminated. Such implementations are also considered non-
conforming.

Consider, for example, an application that uses:

popen("command", "r")

to start command, which is part of the same application. The parent writes a prompt to its
standard output (presumably the terminal) and then reads from the popen()ed stream. The child
reads the response from the user, does some transformation on the response (pathname
expansion, perhaps) and writes the result to its standard output. The parent process reads the
result from the pipe, does something with it, and prints another prompt. The cycle repeats.
Assuming that both processes do appropriate buffer flushing, this would be expected to work.

To conform to IEEE Std 1003.1-200x, pclose() must use waitpid(), or some similar function,
instead of wait().

The code sample below illustrates how the pclose() function might be implemented on a system
conforming to IEEE Std 1003.1-200x.

int pclose(FILE *stream)
{

int stat;
pid_t pid;

pid = <pid for process created for stream by popen()>
(void) fclose(stream);
while (waitpid(pid, &stat, 0) == -1) {

if (errno != EINTR){
stat = -1;
break;

}
}
return(stat);

}

FUTURE DIRECTIONS
None.

SEE ALSO
fork(), popen(), waitpid(), the Base Definitions volume of IEEE Std 1003.1-200x, <stdio.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

912 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

29234

29235

29236

29237

29238

29239

29240

29241

29242

29243

29244

29245

29246

29247

29248

29249

29250

29251

29252

29253

29254

29255

29256

29257

29258

29259

29260

29261

29262

29263

29264

29265

29266

29267

29268

29269

29270

29271

29272

29273

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces perror()

NAME
perror — write error messages to standard error

SYNOPSIS
#include <stdio.h>

void perror(const char * s);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

The perror() function shall map the error number accessed through the symbol errno to a
language-dependent error message, which shall be written to the standard error stream as
follows:

• First (if s is not a null pointer and the character pointed to by s is not the null byte), the
string pointed to by s followed by a colon and a <space>.

• Then an error message string followed by a <newline>.

The contents of the error message strings shall be the same as those returned by strerror() with
argument errno.

CX The perror() function shall mark the file associated with the standard error stream as having
been written (st_ctime, st_mtime marked for update) at some time between its successful
completion and exit(), abort(), or the completion of fflush() or fclose() on stderr.

The perror() function shall not change the orientation of the standard error stream.

RETURN VALUE
The perror() function shall not return a value.

ERRORS
No errors are defined.

EXAMPLES

Printing an Error Message for a Function

The following example replaces bufptr with a buffer that is the necessary size. If an error occurs,
the perror() function prints a message and the program exits.

#include <stdio.h>
#include <stdlib.h>
...
char *bufptr;
size_t szbuf;
...
if ((bufptr = malloc(szbuf)) == NULL) {

perror("malloc"); exit(2);
}
...

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 913

29274

29275

29276

29277

29278

29279

29280

29281

29282

29283

29284

29285

29286

29287

29288

29289

29290

29291

29292

29293

29294

29295

29296

29297

29298

29299

29300

29301

29302

29303

29304

29305

29306

29307

29308

29309

29310

29311

29312

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

perror() System Interfaces

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
psiginfo(), strerror(), the Base Definitions volume of IEEE Std 1003.1-200x, <stdio.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
A paragraph is added to the DESCRIPTION indicating that perror() does not change the
orientation of the standard error stream.

Issue 6
Extensions beyond the ISO C standard are marked.

914 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

29313

29314

29315

29316

29317

29318

29319

29320

29321

29322

29323

29324

29325

29326

29327

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces pipe()

NAME
pipe — create an interprocess channel

SYNOPSIS
#include <unistd.h>

int pipe(int fildes[2]);

DESCRIPTION
The pipe() function shall create a pipe and place two file descriptors, one each into the
arguments fildes[0] and fildes[1], that refer to the open file descriptions for the read and write
ends of the pipe. Their integer values shall be the two lowest available at the time of the pipe()
call. The O_NONBLOCK and FD_CLOEXEC flags shall be clear on both file descriptors. (The
fcntl() function can be used to set both these flags.)

Data can be written to the file descriptor fildes[1] and read from the file descriptor fildes[0]. A
read on the file descriptor fildes[0] shall access data written to the file descriptor fildes[1] on a
first-in-first-out basis. It is unspecified whether fildes[0] is also open for writing and whether
fildes[1] is also open for reading.

A process has the pipe open for reading (correspondingly writing) if it has a file descriptor open
that refers to the read end, fildes[0] (write end, fildes[1]).

The pipe’s user ID shall be set to the effective user ID of the calling process.

The pipe’s group ID shall be set to the effective group ID of the calling process.

Upon successful completion, pipe() shall mark for update the st_atime, st_ctime, and st_mtime
fields of the pipe.

RETURN VALUE
Upon successful completion, 0 shall be returned; otherwise, −1 shall be returned and errno set to
indicate the error.

ERRORS
The pipe() function shall fail if:

[EMFILE] All, or all but one, of the file descriptors available to the process are currently
open.

[ENFILE] The number of simultaneously open files in the system would exceed a
system-imposed limit.

EXAMPLES

Using a Pipe to Pass Data Between a Parent Process and a Child Process

The following example demonstrates the use of a pipe to transfer data between a parent process
and a child process. Error handling is excluded, but otherwise this code demonstrates good
practice when using pipes: after the fork() the two processes close the unused ends of the pipe
before they commence transferring data.

#include <stdlib.h>
#include <unistd.h>
...

int fildes[2];
const int BSIZE = 100;
char buf[BSIZE];
ssize_t nbytes;

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 915

29328

29329

29330

29331

29332

29333

29334

29335

29336

29337

29338

29339

29340

29341

29342

29343

29344

29345

29346

29347

29348

29349

29350

29351

29352

29353

29354

29355

29356

29357

29358

29359

29360

29361

29362

29363

29364

29365

29366

29367

29368

29369

29370

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

pipe() System Interfaces

int status;

status = pipe(fildes);
if (status == −1) {

/* an error occurred */
...

}

switch (fork()) {
case −1: /* Handle error */

break;

case 0: /* Child - reads from pipe */
close(fildes[1]); /* Write end is unused */
nbytes = read(fildes[0], buf, BSIZE); /* Get data from pipe */
/* At this point, a further read would see end of file ... */
close(fildes[0]); /* Finished with pipe */
exit(EXIT_SUCCESS);

default: /* Parent - writes to pipe */
close(fildes[0]); /* Read end is unused */
write(fildes[1], "Hello world\n", 12); /* Write data on pipe */
close(fildes[1]); /* Child will see EOF */
exit(EXIT_SUCCESS);

}

APPLICATION USAGE
None.

RATIONALE
The wording carefully avoids using the verb ‘‘to open’’ in order to avoid any implication of use
of open(); see also write().

FUTURE DIRECTIONS
None.

SEE ALSO
fcntl(), read(), write(), the Base Definitions volume of IEEE Std 1003.1-200x, <fcntl.h>,
<unistd.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The DESCRIPTION is updated to indicate that certain dispositions of fildes[0] and fildes[1]
are unspecified.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/65 is applied, adding the example to the
EXAMPLES section.

Issue 7
SD5-XSH-ERN-156 is applied, updating the DESCRIPTION to state the setting of the pipe’s user
ID and group ID.

916 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

29371

29372

29373

29374

29375

29376

29377

29378

29379

29380

29381

29382

29383

29384

29385

29386

29387

29388

29389

29390

29391

29392

29393

29394

29395

29396

29397

29398

29399

29400

29401

29402

29403

29404

29405

29406

29407

29408

29409

29410

29411

29412

29413

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces poll()

NAME
poll — input/output multiplexing

SYNOPSIS
#include <poll.h>

int poll(struct pollfd fds[], nfds_t nfds, i nt timeout);

DESCRIPTION
The poll() function provides applications with a mechanism for multiplexing input/output over
a set of file descriptors. For each member of the array pointed to by fds, poll() shall examine the
given file descriptor for the event(s) specified in events. The number of pollfd structures in the
fds array is specified by nfds. The poll() function shall identify those file descriptors on which an
application can read or write data, or on which certain events have occurred.

The fds argument specifies the file descriptors to be examined and the events of interest for each
file descriptor. It is a pointer to an array with one member for each open file descriptor of
interest. The array’s members are pollfd structures within which fd specifies an open file
descriptor and events and revents are bitmasks constructed by OR’ing a combination of the
following event flags:

POLLIN Data other than high-priority data may be read without blocking.

OB XSR For STREAMS, this flag is set in revents even if the message is of zero length.
This flag shall be equivalent to POLLRDNORM | POLLRDBAND.

POLLRDNORM Normal data may be read without blocking.

OB XSR For STREAMS, data on priority band 0 may be read without blocking. This
flag is set in revents even if the message is of zero length.

POLLRDBAND Priority data may be read without blocking.

OB XSR For STREAMS, data on priority bands greater than 0 may be read without
blocking. This flag is set in revents even if the message is of zero length.

POLLPRI High-priority data may be read without blocking.

OB XSR For STREAMS, this flag is set in revents even if the message is of zero length.

POLLOUT Normal data may be written without blocking.

OB XSR For STREAMS, data on priority band 0 may be written without blocking.

POLLWRNORM Equivalent to POLLOUT.

POLLWRBAND Priority data may be written.

OB XSR For STREAMS, data on priority bands greater than 0 may be written without
blocking. If any priority band has been written to on this STREAM, this event
only examines bands that have been written to at least once.

POLLERR An error has occurred on the device or stream. This flag is only valid in the
revents bitmask; it shall be ignored in the events member.

POLLHUP The device has been disconnected. This event and POLLOUT are mutually-
exclusive; a stream can never be writable if a hangup has occurred. However,
this event and POLLIN, POLLRDNORM, POLLRDBAND, or POLLPRI are
not mutually-exclusive. This flag is only valid in the revents bitmask; it shall be
ignored in the events member.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 917

29414

29415

29416

29417

29418

29419

29420

29421

29422

29423

29424

29425

29426

29427

29428

29429

29430

29431

29432

29433

29434

29435

29436

29437

29438

29439

29440

29441

29442

29443

29444

29445

29446

29447

29448

29449

29450

29451

29452

29453

29454

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

poll() System Interfaces

POLLNVAL The specified fd value is invalid. This flag is only valid in the revents member;
it shall ignored in the events member.

The significance and semantics of normal, priority, and high-priority data are file and device-
specific.

If the value of fd is less than 0, events shall be ignored, and revents shall be set to 0 in that entry on
return from poll().

In each pollfd structure, poll() shall clear the revents member, except that where the application
requested a report on a condition by setting one of the bits of events listed above, poll() shall set
the corresponding bit in revents if the requested condition is true. In addition, poll() shall set the
POLLHUP, POLLERR, and POLLNVAL flag in revents if the condition is true, even if the
application did not set the corresponding bit in events.

If none of the defined events have occurred on any selected file descriptor, poll() shall wait at
least timeout milliseconds for an event to occur on any of the selected file descriptors. If the value
of timeout is 0, poll() shall return immediately. If the value of timeout is −1, poll() shall block until
a requested event occurs or until the call is interrupted.

Implementations may place limitations on the granularity of timeout intervals. If the requested
timeout interval requires a finer granularity than the implementation supports, the actual
timeout interval shall be rounded up to the next supported value.

The poll() function shall not be affected by the O_NONBLOCK flag.

The poll() function shall support regular files, terminal and pseudo-terminal devices, FIFOs,
OB XSR pipes, sockets and STREAMS-based files. The behavior of poll() on elements of fds that refer to

other types of file is unspecified.

Regular files shall always poll TRUE for reading and writing.

A file descriptor for a socket that is listening for connections shall indicate that it is ready for
reading, once connections are available. A file descriptor for a socket that is connecting
asynchronously shall indicate that it is ready for writing, once a connection has been established.

RETURN VALUE
Upon successful completion, poll() shall return a non-negative value. A positive value indicates
the total number of file descriptors that have been selected (that is, file descriptors for which the
revents member is non-zero). A value of 0 indicates that the call timed out and no file descriptors
have been selected. Upon failure, poll() shall return −1 and set errno to indicate the error.

ERRORS
The poll() function shall fail if:

[EAGAIN] The allocation of internal data structures failed but a subsequent request may
succeed.

[EINTR] A signal was caught during poll().

OB XSR [EINVAL] The nfds argument is greater than {OPEN_MAX}, or one of the fd members
refers to a STREAM or multiplexer that is linked (directly or indirectly)
downstream from a multiplexer.

918 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

29455

29456

29457

29458

29459

29460

29461

29462

29463

29464

29465

29466

29467

29468

29469

29470

29471

29472

29473

29474

29475

29476

29477

29478

29479

29480

29481

29482

29483

29484

29485

29486

29487

29488

29489

29490

29491

29492

29493

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces poll()

EXAMPLES

Checking for Events on a Stream

The following example opens a pair of STREAMS devices and then waits for either one to
become writable. This example proceeds as follows:

1. Sets the timeout parameter to 500 milliseconds.

2. Opens the STREAMS devices /dev/dev0 and /dev/dev1, and then polls them, specifying
POLLOUT and POLLWRBAND as the events of interest.

The STREAMS device names /dev/dev0 and /dev/dev1 are only examples of how
STREAMS devices can be named; STREAMS naming conventions may vary among
systems conforming to the IEEE Std 1003.1-200x.

3. Uses the ret variable to determine whether an event has occurred on either of the two
STREAMS. The poll() function is given 500 milliseconds to wait for an event to occur (if it
has not occurred prior to the poll() call).

4. Checks the returned value of ret. If a positive value is returned, one of the following can
be done:

a. Priority data can be written to the open STREAM on priority bands greater than 0,
because the POLLWRBAND event occurred on the open STREAM (fds[0] or fds[1]).

b. Data can be written to the open STREAM on priority-band 0, because the
POLLOUT event occurred on the open STREAM (fds[0] or fds[1]).

5. If the returned value is not a positive value, permission to write data to the open
STREAM (on any priority band) is denied.

6. If the POLLHUP event occurs on the open STREAM (fds[0] or fds[1]), the device on the
open STREAM has disconnected.

#include <stropts.h>
#include <poll.h>
...
struct pollfd fds[2];
int timeout_msecs = 500;
int ret;

int i;

/* Open STREAMS device. */
fds[0].fd = open("/dev/dev0", ...);
fds[1].fd = open("/dev/dev1", ...);
fds[0].events = POLLOUT | POLLWRBAND;
fds[1].events = POLLOUT | POLLWRBAND;

ret = poll(fds, 2, timeout_msecs);

if (ret > 0) {
/* An event on one of the fds has occurred. */
for (i=0; i<2; i++) {

if (fds[i].revents & POLLWRBAND) {
/* Priority data may be written on device number i. */

...
}
if (fds[i].revents & POLLOUT) {
/* Data may be written on device number i. */

...

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 919

29494

29495

29496

29497

29498

29499

29500

29501

29502

29503

29504

29505

29506

29507

29508

29509

29510

29511

29512

29513

29514

29515

29516

29517

29518

29519

29520

29521

29522

29523

29524

29525

29526

29527

29528

29529

29530

29531

29532

29533

29534

29535

29536

29537

29538

29539

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

poll() System Interfaces

}
if (fds[i].revents & POLLHUP) {
/* A hangup has occurred on device number i. */

...
}

}
}

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.6 (on page 38), getmsg(), putmsg(), read(), select(), write(), the Base Definitions volume
of IEEE Std 1003.1-200x, <poll.h>, <stropts.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

The description of POLLWRBAND is updated.

Issue 6
Text referring to sockets is added to the DESCRIPTION.

Functionality relating to the XSI STREAMS Option Group is marked.

The Open Group Corrigendum U055/3 is applied, updating the DESCRIPTION of
POLLWRBAND.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/66 is applied, correcting the spacing in
the EXAMPLES section.

Issue 7
The poll() function is moved from the XSI option to the Base.

Functionality relating to the XSI STREAMS option is marked obsolescent.

920 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

29540

29541

29542

29543

29544

29545

29546

29547

29548

29549

29550

29551

29552

29553

29554

29555

29556

29557

29558

29559

29560

29561

29562

29563

29564

29565

29566

29567

29568

29569

29570

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces popen()

NAME
popen — initiate pipe streams to or from a process

SYNOPSIS
CX #include <stdio.h>

FILE *popen(const char * command, c onst char * mode);

DESCRIPTION
The popen() function shall execute the command specified by the string command. It shall create
a pipe between the calling program and the executed command, and shall return a pointer to a
stream that can be used to either read from or write to the pipe.

The environment of the executed command shall be as if a child process were created within the
popen() call using the fork() function, and the child invoked the sh utility using the call:

execl(shell path, " sh", "-c", command, (char *)0);

where shell path is an unspecified pathname for the sh utility.

The popen() function shall ensure that any streams from previous popen() calls that remain open
in the parent process are closed in the new child process.

The mode argument to popen() is a string that specifies I/O mode:

1. If mode is r, when the child process is started, its file descriptor STDOUT_FILENO shall be
the writable end of the pipe, and the file descriptor fileno(stream) in the calling process,
where stream is the stream pointer returned by popen(), shall be the readable end of the
pipe.

2. If mode is w, when the child process is started its file descriptor STDIN_FILENO shall be
the readable end of the pipe, and the file descriptor fileno(stream) in the calling process,
where stream is the stream pointer returned by popen(), shall be the writable end of the
pipe.

3. If mode is any other value, the result is unspecified.

After popen(), both the parent and the child process shall be capable of executing independently
before either terminates.

Pipe streams are byte-oriented.

RETURN VALUE
Upon successful completion, popen() shall return a pointer to an open stream that can be used to
read or write to the pipe. Otherwise, it shall return a null pointer and may set errno to indicate
the error.

ERRORS
The popen() function may fail if:

[EMFILE] {FOPEN_MAX} or {STREAM_MAX} streams are currently open in the calling
process.

[EINVAL] The mode argument is invalid.

The popen() function may also set errno values as described by fork() or pipe().

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 921

29571

29572

29573

29574

29575

29576

29577

29578

29579

29580

29581

29582

29583

29584

29585

29586

29587

29588

29589

29590

29591

29592

29593

29594

29595

29596

29597

29598

29599

29600

29601

29602

29603

29604

29605

29606

29607

29608

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

popen() System Interfaces

EXAMPLES

Using popen() to Obtain a List of Files from the ls Utility

The following example demonstrates the use of popen() and pclose() to execute the command ls*
in order to obtain a list of files in the current directory:

#include <stdio.h>
...

FILE *fp;
int status;
char path[PATH_MAX];

fp = popen("ls *", "r");
if (fp == NULL)

/* Handle error */;

while (fgets(path, PATH_MAX, fp) != NULL)
printf("%s", path);

status = pclose(fp);
if (status == −1) {

/* Error reported by pclose() */
...

} e lse {
/* Use macros described under wait() to inspect ‘status’ in order

to determine success/failure of command executed by popen() */
...

}

APPLICATION USAGE
Since open files are shared, a mode r command can be used as an input filter and a mode w
command as an output filter.

Buffered reading before opening an input filter may leave the standard input of that filter
mispositioned. Similar problems with an output filter may be prevented by careful buffer
flushing; for example, with fflush().

A stream opened by popen() should be closed by pclose().

The behavior of popen() is specified for values of mode of r and w. Other modes such as rb and
wb might be supported by specific implementations, but these would not be portable features.
Note that historical implementations of popen() only check to see if the first character of mode is
r. Thus, a mode of robert the robot would be treated as mode r, and a mode of anything else would be
treated as mode w.

If the application calls waitpid() or waitid() with a pid argument greater than 0, and it still has a
stream that was called with popen() open, it must ensure that pid does not refer to the process
started by popen().

To determine whether or not the environment specified in the Shell and Utilities volume of
IEEE Std 1003.1-200x is present, use the function call:

sysconf(_SC_2_VERSION)

(See sysconf()).

922 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

29609

29610

29611

29612

29613

29614

29615

29616

29617

29618

29619

29620

29621

29622

29623

29624

29625

29626

29627

29628

29629

29630

29631

29632

29633

29634

29635

29636

29637

29638

29639

29640

29641

29642

29643

29644

29645

29646

29647

29648

29649

29650

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces popen()

RATIONALE
The popen() function should not be used by programs that have set user (or group) ID privileges.
The fork() and exec family of functions (except execlp() and execvp()), should be used instead.
This prevents any unforeseen manipulation of the environment of the user that could cause
execution of commands not anticipated by the calling program.

If the original and popen()ed processes both intend to read or write or read and write a common
file, and either will be using FILE-type C functions (fread(), fwrite(), and so on), the rules for
sharing file handles must be observed (see Section 2.5.1 (on page 35)).

FUTURE DIRECTIONS
None.

SEE ALSO
pclose(), pipe(), sysconf(), system(), the Base Definitions volume of IEEE Std 1003.1-200x,
<stdio.h>, the Shell and Utilities volume of IEEE Std 1003.1-200x, sh

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
A statement is added to the DESCRIPTION indicating that pipe streams are byte-oriented.

Issue 6
The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The optional [EMFILE] error condition is added.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/67 is applied, adding the example to the
EXAMPLES section.

Issue 7
Austin Group Interpretation 1003.1-2001 #029 is applied, clarifying the values for mode in the
DESCRIPTION.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 923

29651

29652

29653

29654

29655

29656

29657

29658

29659

29660

29661

29662

29663

29664

29665

29666

29667

29668

29669

29670

29671

29672

29673

29674

29675

29676

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

posix_fadvise() System Interfaces

NAME
posix_fadvise — file advisory information (ADVANCED REALTIME)

SYNOPSIS
ADV #include <fcntl.h>

int posix_fadvise(int fd, o ff_t offset, o ff_t len, i nt advice);

DESCRIPTION
The posix_fadvise() function shall advise the implementation on the expected behavior of the
application with respect to the data in the file associated with the open file descriptor, fd, starting
at offset and continuing for len bytes. The specified range need not currently exist in the file. If len
is zero, all data following offset is specified. The implementation may use this information to
optimize handling of the specified data. The posix_fadvise() function shall have no effect on the
semantics of other operations on the specified data, although it may affect the performance of
other operations.

The advice to be applied to the data is specified by the advice parameter and may be one of the
following values:

POSIX_FADV_NORMAL
Specifies that the application has no advice to give on its behavior with respect to the
specified data. It is the default characteristic if no advice is given for an open file.

POSIX_FADV_SEQUENTIAL
Specifies that the application expects to access the specified data sequentially from lower
offsets to higher offsets.

POSIX_FADV_RANDOM
Specifies that the application expects to access the specified data in a random order.

POSIX_FADV_WILLNEED
Specifies that the application expects to access the specified data in the near future.

POSIX_FADV_DONTNEED
Specifies that the application expects that it will not access the specified data in the near
future.

POSIX_FADV_NOREUSE
Specifies that the application expects to access the specified data once and then not reuse it
thereafter.

These values are defined in <fcntl.h>.

RETURN VALUE
Upon successful completion, posix_fadvise() shall return zero; otherwise, an error number shall
be returned to indicate the error.

ERRORS
The posix_fadvise() function shall fail if:

[EBADF] The fd argument is not a valid file descriptor.

[EINVAL] The value of advice is invalid, or the value of len is less than zero.

[ESPIPE] The fd argument is associated with a pipe or FIFO.

924 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

29677

29678

29679

29680

29681

29682

29683

29684

29685

29686

29687

29688

29689

29690

29691

29692

29693

29694

29695

29696

29697

29698

29699

29700

29701

29702

29703

29704

29705

29706

29707

29708

29709

29710

29711

29712

29713

29714

29715

29716

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces posix_fadvise()

EXAMPLES
None.

APPLICATION USAGE
The posix_fadvise() function is part of the Advisory Information option and need not be
provided on all implementations.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
posix_madvise(), the Base Definitions volume of IEEE Std 1003.1-200x, <fcntl.h>

CHANGE HISTORY
First released in Issue 6. Derived from IEEE Std 1003.1d-1999.

In the SYNOPSIS, the inclusion of <sys/types.h> is no longer required.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/68 is applied, changing the function
prototype in the SYNOPSIS section. The previous prototype was not large file-aware, and the
standard developers felt it acceptable to make this change before implementations of this
function become widespread.

Issue 7
Austin Group Interpretation 1003.1-2001 #024 is applied, changing the definition of the
[EINVAL] error.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 925

29717

29718

29719

29720

29721

29722

29723

29724

29725

29726

29727

29728

29729

29730

29731

29732

29733

29734

29735

29736

29737

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

posix_fallocate() System Interfaces

NAME
posix_fallocate — file space control (ADVANCED REALTIME)

SYNOPSIS
ADV #include <fcntl.h>

int posix_fallocate(int fd, o ff_t offset, o ff_t len);

DESCRIPTION
The posix_fallocate() function shall ensure that any required storage for regular file data starting
at offset and continuing for len bytes is allocated on the file system storage media. If
posix_fallocate() returns successfully, subsequent writes to the specified file data shall not fail due
to the lack of free space on the file system storage media.

If the offset+len is beyond the current file size, then posix_fallocate() shall adjust the file size to
offset+len. Otherwise, the file size shall not be changed.

It is implementation-defined whether a previous posix_fadvise() call influences allocation
strategy.

Space allocated via posix_fallocate() shall be freed by a successful call to creat() or open() that
truncates the size of the file. Space allocated via posix_fallocate() may be freed by a successful call
to ftruncate() that reduces the file size to a size smaller than offset+len.

RETURN VALUE
Upon successful completion, posix_fallocate() shall return zero; otherwise, an error number shall
be returned to indicate the error.

ERRORS
The posix_fallocate() function shall fail if:

[EBADF] The fd argument is not a valid file descriptor.

[EBADF] The fd argument references a file that was opened without write permission.

[EFBIG] The value of offset+len is greater than the maximum file size.

[EINTR] A signal was caught during execution.

[EINVAL] The len argument is less than or equal to zero, or the offset argument is less
than zero, or the underlying file system does not support this operation.

[EIO] An I/O error occurred while reading from or writing to a file system.

[ENODEV] The fd argument does not refer to a regular file.

[ENOSPC] There is insufficient free space remaining on the file system storage media.

[ESPIPE] The fd argument is associated with a pipe or FIFO.

EXAMPLES
None.

APPLICATION USAGE
The posix_fallocate() function is part of the Advisory Information option and need not be
provided on all implementations.

926 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

29738

29739

29740

29741

29742

29743

29744

29745

29746

29747

29748

29749

29750

29751

29752

29753

29754

29755

29756

29757

29758

29759

29760

29761

29762

29763

29764

29765

29766

29767

29768

29769

29770

29771

29772

29773

29774

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces posix_fallocate()

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
creat(), ftruncate(), open(), unlink(), the Base Definitions volume of IEEE Std 1003.1-200x,
<fcntl.h>

CHANGE HISTORY
First released in Issue 6. Derived from IEEE Std 1003.1d-1999.

In the SYNOPSIS, the inclusion of <sys/types.h> is no longer required.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/69 is applied, changing the function
prototype in the SYNOPSIS section. The previous prototype was not large file-aware, and the
standard developers felt it acceptable to make this change before implementations of this
function become widespread.

Issue 7
Austin Group Interpretations 1003.1-2001 #022 and #024 are applied, changing the definition of
the [EINVAL] error.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 927

29775

29776

29777

29778

29779

29780

29781

29782

29783

29784

29785

29786

29787

29788

29789

29790

29791

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

posix_madvise() System Interfaces

NAME
posix_madvise — memory advisory information and alignment control (ADVANCED
REALTIME)

SYNOPSIS
ADV #include <sys/mman.h>

int posix_madvise(void * addr, s ize_t len, i nt advice);

DESCRIPTION
The posix_madvise() function shall advise the implementation on the expected behavior of the
application with respect to the data in the memory starting at address addr, and continuing for
len bytes. The implementation may use this information to optimize handling of the specified
data. The posix_madvise() function shall have no effect on the semantics of access to memory in
the specified range, although it may affect the performance of access.

The implementation may require that addr be a multiple of the page size, which is the value
returned by sysconf() when the name value _SC_PAGESIZE is used.

The advice to be applied to the memory range is specified by the advice parameter and may be
one of the following values:

POSIX_MADV_NORMAL
Specifies that the application has no advice to give on its behavior with respect to the
specified range. It is the default characteristic if no advice is given for a range of memory.

POSIX_MADV_SEQUENTIAL
Specifies that the application expects to access the specified range sequentially from lower
addresses to higher addresses.

POSIX_MADV_RANDOM
Specifies that the application expects to access the specified range in a random order.

POSIX_MADV_WILLNEED
Specifies that the application expects to access the specified range in the near future.

POSIX_MADV_DONTNEED
Specifies that the application expects that it will not access the specified range in the near
future.

These values are defined in the <sys/mman.h> header.

RETURN VALUE
Upon successful completion, posix_madvise() shall return zero; otherwise, an error number shall
be returned to indicate the error.

ERRORS
The posix_madvise() function shall fail if:

[EINVAL] The value of advice is invalid.

[ENOMEM] Addresses in the range starting at addr and continuing for len bytes are partly
or completely outside the range allowed for the address space of the calling
process.

928 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

29792

29793

29794

29795

29796

29797

29798

29799

29800

29801

29802

29803

29804

29805

29806

29807

29808

29809

29810

29811

29812

29813

29814

29815

29816

29817

29818

29819

29820

29821

29822

29823

29824

29825

29826

29827

29828

29829

29830

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces posix_madvise()

The posix_madvise() function may fail if:

[EINVAL] The value of addr is not a multiple of the value returned by sysconf() when the
name value _SC_PAGESIZE is used.

[EINVAL] The value of len is zero.

EXAMPLES
None.

APPLICATION USAGE
The posix_madvise() function is part of the Advisory Information option and need not be
provided on all implementations.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
mmap(), posix_fadvise(), sysconf(), the Base Definitions volume of IEEE Std 1003.1-200x,
<sys/mman.h>

CHANGE HISTORY
First released in Issue 6. Derived from IEEE Std 1003.1d-1999.

IEEE PASC Interpretation 1003.1 #102 is applied.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 929

29831

29832

29833

29834

29835

29836

29837

29838

29839

29840

29841

29842

29843

29844

29845

29846

29847

29848

29849

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

posix_mem_offset() System Interfaces

NAME
posix_mem_offset — find offset and length of a mapped typed memory block (ADVANCED
REALTIME)

SYNOPSIS
TYM #include <sys/mman.h>

int posix_mem_offset(const void *restrict addr, s ize_t len,
off_t *restrict off, s ize_t *restrict contig_len,
int *restrict fildes);

DESCRIPTION
The posix_mem_offset() function shall return in the variable pointed to by off a value that
identifies the offset (or location), within a memory object, of the memory block currently
mapped at addr. The function shall return in the variable pointed to by fildes, the descriptor used
(via mmap()) to establish the mapping which contains addr. If that descriptor was closed since
the mapping was established, the returned value of fildes shall be −1. The len argument specifies
the length of the block of the memory object the user wishes the offset for; upon return, the
value pointed to by contig_len shall equal either len, or the length of the largest contiguous block
of the memory object that is currently mapped to the calling process starting at addr, whichever
is smaller.

If the memory object mapped at addr is a typed memory object, then if the off and contig_len
values obtained by calling posix_mem_offset() are used in a call to mmap() with a file descriptor
that refers to the same memory pool as fildes (either through the same port or through a different
port), and that was opened with neither the POSIX_TYPED_MEM_ALLOCATE nor the
POSIX_TYPED_MEM_ALLOCATE_CONTIG flag, the typed memory area that is mapped shall
be exactly the same area that was mapped at addr in the address space of the process that called
posix_mem_offset().

If the memory object specified by fildes is not a typed memory object, then the behavior of this
function is implementation-defined.

RETURN VALUE
Upon successful completion, the posix_mem_offset() function shall return zero; otherwise, the
corresponding error status value shall be returned.

ERRORS
The posix_mem_offset() function shall fail if:

[EACCES] The process has not mapped a memory object supported by this function at
the given address addr.

This function shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

930 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

29850

29851

29852

29853

29854

29855

29856

29857

29858

29859

29860

29861

29862

29863

29864

29865

29866

29867

29868

29869

29870

29871

29872

29873

29874

29875

29876

29877

29878

29879

29880

29881

29882

29883

29884

29885

29886

29887

29888

29889

29890

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces posix_mem_offset()

FUTURE DIRECTIONS
None.

SEE ALSO
mmap(), posix_typed_mem_open(), the Base Definitions volume of IEEE Std 1003.1-200x,
<sys/mman.h>

CHANGE HISTORY
First released in Issue 6. Derived from IEEE Std 1003.1j-2000.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 931

29891

29892

29893

29894

29895

29896

29897

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

posix_memalign() System Interfaces

NAME
posix_memalign — aligned memory allocation (ADVANCED REALTIME)

SYNOPSIS
ADV #include <stdlib.h>

int posix_memalign(void ** memptr, s ize_t alignment, s ize_t size);

DESCRIPTION
The posix_memalign() function shall allocate size bytes aligned on a boundary specified by
alignment, and shall return a pointer to the allocated memory in memptr. The value of alignment
shall be a power of two multiple of sizeof (void *). Upon successful completion, the value
pointed to by memptr shall be a multiple of alignment.

CX The free() function shall deallocate memory that has previously been allocated by
posix_memalign().

RETURN VALUE
Upon successful completion, posix_memalign() shall return zero; otherwise, an error number
shall be returned to indicate the error.

ERRORS
The posix_memalign() function shall fail if:

[EINVAL] The value of the alignment parameter is not a power of two multiple of
sizeof (void *).

[ENOMEM] There is insufficient memory available with the requested alignment.

EXAMPLES
None.

APPLICATION USAGE
The posix_memalign() function is part of the Advisory Information option and need not be
provided on all implementations.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
free(), malloc(), the Base Definitions volume of IEEE Std 1003.1-200x, <stdlib.h>

CHANGE HISTORY
First released in Issue 6. Derived from IEEE Std 1003.1d-1999.

In the SYNOPSIS, the inclusion of <sys/types.h> is no longer required.

Issue 7
Austin Group Interpretation 1003.1-2001 #058 is applied, clarifying the value of the alignment
argument in the DESCRIPTION.

932 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

29898

29899

29900

29901

29902

29903

29904

29905

29906

29907

29908

29909

29910

29911

29912

29913

29914

29915

29916

29917

29918

29919

29920

29921

29922

29923

29924

29925

29926

29927

29928

29929

29930

29931

29932

29933

29934

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces posix_openpt()

NAME
posix_openpt — open a pseudo-terminal device

SYNOPSIS
XSI #include <stdlib.h>

#include <fcntl.h>

int posix_openpt(int oflag);

DESCRIPTION
The posix_openpt() function shall establish a connection between a master device for a pseudo-
terminal and a file descriptor. The file descriptor is used by other I/O functions that refer to that
pseudo-terminal.

The file status flags and file access modes of the open file description shall be set according to
the value of oflag.

Values for oflag are constructed by a bitwise-inclusive OR of flags from the following list, defined
in <fcntl.h>:

O_RDWR Open for reading and writing.

O_NOCTTY If set posix_openpt() shall not cause the terminal device to become the
controlling terminal for the process.

The behavior of other values for the oflag argument is unspecified.

RETURN VALUE
Upon successful completion, the posix_openpt() function shall open a master pseudo-terminal
device and return a non-negative integer representing the lowest numbered unused file
descriptor. Otherwise, −1 shall be returned and errno set to indicate the error.

ERRORS
The posix_openpt() function shall fail if:

[EMFILE] All file descriptors available to the process are currently open.

[ENFILE] The maximum allowable number of files is currently open in the system.

The posix_openpt() function may fail if:

[EINVAL] The value of oflag is not valid.

[EAGAIN] Out of pseudo-terminal resources.

OB XSR [ENOSR] Out of STREAMS resources.

EXAMPLES

Opening a Pseudo-Terminal and Returning the Name of the Slave Device and a File
Descriptor

#include <fcntl.h>
#include <stdio.h>

int masterfd, slavefd;
char *slavedevice;

masterfd = posix_openpt(O_RDWR|O_NOCTTY);

if (masterfd == -1

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 933

29935

29936

29937

29938

29939

29940

29941

29942

29943

29944

29945

29946

29947

29948

29949

29950

29951

29952

29953

29954

29955

29956

29957

29958

29959

29960

29961

29962

29963

29964

29965

29966

29967

29968

29969

29970

29971

29972

29973

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

posix_openpt() System Interfaces

|| grantpt (masterfd) == -1
|| unlockpt (masterfd) == -1
|| (slavedevice = ptsname (masterfd)) == NULL)
return -1;

printf("slave device is: %s\n", slavedevice);

slavefd = open(slavedevice, O_RDWR|O_NOCTTY);
if (slavefd < 0)

return -1;

APPLICATION USAGE
This function is a method for portably obtaining a file descriptor of a master terminal device for
a pseudo-terminal. The grantpt() and ptsname() functions can be used to manipulate mode and
ownership permissions, and to obtain the name of the slave device, respectively.

RATIONALE
The standard developers considered the matter of adding a special device for cloning master
pseudo-terminals: the /dev/ptmx device. However, consensus could not be reached, and it was
felt that adding a new function would permit other implementations. The posix_openpt()
function is designed to complement the grantpt(), ptsname(), and unlockpt() functions.

On implementations supporting the /dev/ptmx clone device, opening the master device of a
pseudo-terminal is simply:

mfdp = open("/dev/ptmx", oflag);
if (mfdp < 0)

return -1;

FUTURE DIRECTIONS
None.

SEE ALSO
grantpt(), open(), ptsname(), unlockpt(), the Base Definitions volume of IEEE Std 1003.1-200x,
<fcntl.h>

CHANGE HISTORY
First released in Issue 6.

Issue 7
SD5-XBD-ERN-4 is applied, changing the definition of the [EMFILE] error.

SD5-XSH-ERN-51 is applied, correcting an error in the EXAMPLES section.

934 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

29974

29975

29976

29977

29978

29979

29980

29981

29982

29983

29984

29985

29986

29987

29988

29989

29990

29991

29992

29993

29994

29995

29996

29997

29998

29999

30000

30001

30002

30003

30004

30005

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces posix_spawn()

NAME
posix_spawn, posix_spawnp — spawn a process (ADVANCED REALTIME)

SYNOPSIS
SPN #include <spawn.h>

int posix_spawn(pid_t *restrict pid, c onst char *restrict path,
const posix_spawn_file_actions_t * file_actions,
const posix_spawnattr_t *restrict attrp,
char *const argv[restrict], char *const envp[restrict]);

int posix_spawnp(pid_t *restrict pid, c onst char *restrict file,
const posix_spawn_file_actions_t * file_actions,
const posix_spawnattr_t *restrict attrp,
char *const argv[restrict], char * const envp[restrict]);

DESCRIPTION
The posix_spawn() and posix_spawnp() functions shall create a new process (child process) from
the specified process image. The new process image shall be constructed from a regular
executable file called the new process image file.

When a C program is executed as the result of this call, it shall be entered as a C-language
function call as follows:

int main(int argc, c har * argv[]);

where argc is the argument count and argv is an array of character pointers to the arguments
themselves. In addition, the following variable:

extern char **environ;

shall be initialized as a pointer to an array of character pointers to the environment strings.

The argument argv is an array of character pointers to null-terminated strings. The last member
of this array shall be a null pointer and is not counted in argc. These strings constitute the
argument list available to the new process image. The value in argv[0] should point to a filename
that is associated with the process image being started by the posix_spawn() or posix_spawnp()
function.

The argument envp is an array of character pointers to null-terminated strings. These strings
constitute the environment for the new process image. The environment array is terminated by a
null pointer.

The number of bytes available for the combined argument and environment lists of the child
process is {ARG_MAX}. The implementation shall specify in the system documentation (see the
Base Definitions volume of IEEE Std 1003.1-200x, Chapter 2, Conformance) whether any list
overhead, such as length words, null terminators, pointers, or alignment bytes, is included in
this total.

The path argument to posix_spawn() is a pathname that identifies the new process image file to
execute.

The file parameter to posix_spawnp() shall be used to construct a pathname that identifies the
new process image file. If the file parameter contains a slash character, the file parameter shall be
used as the pathname for the new process image file. Otherwise, the path prefix for this file shall
be obtained by a search of the directories passed as the environment variable PA TH (see the Base
Definitions volume of IEEE Std 1003.1-200x, Chapter 8, Environment Variables). If this
environment variable is not defined, the results of the search are implementation-defined.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 935

30006

30007

30008

30009

30010

30011

30012

30013

30014

30015

30016

30017

30018

30019

30020

30021

30022

30023

30024

30025

30026

30027

30028

30029

30030

30031

30032

30033

30034

30035

30036

30037

30038

30039

30040

30041

30042

30043

30044

30045

30046

30047

30048

30049

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

posix_spawn() System Interfaces

If file_actions is a null pointer, then file descriptors open in the calling process shall remain open
in the child process, except for those whose close-on-exec flag FD_CLOEXEC is set (see fcntl()).
For those file descriptors that remain open, all attributes of the corresponding open file
descriptions, including file locks (see fcntl()), shall remain unchanged.

If file_actions is not NULL, then the file descriptors open in the child process shall be those open
in the calling process as modified by the spawn file actions object pointed to by file_actions and
the FD_CLOEXEC flag of each remaining open file descriptor after the spawn file actions have
been processed. The effective order of processing the spawn file actions shall be:

1. The set of open file descriptors for the child process shall initially be the same set as is
open for the calling process. All attributes of the corresponding open file descriptions,
including file locks (see fcntl()), shall remain unchanged.

2. The signal mask, signal default actions, and the effective user and group IDs for the child
process shall be changed as specified in the attributes object referenced by attrp.

3. The file actions specified by the spawn file actions object shall be performed in the order
in which they were added to the spawn file actions object.

4. Any file descriptor that has its FD_CLOEXEC flag set (see fcntl()) shall be closed.

The posix_spawnattr_t spawn attributes object type is defined in <spawn.h>. It shall contain at
least the attributes defined below.

If the POSIX_SPAWN_SETPGROUP flag is set in the spawn-flags attribute of the object referenced
by attrp, and the spawn-pgroup attribute of the same object is non-zero, then the child’s process
group shall be as specified in the spawn-pgroup attribute of the object referenced by attrp.

As a special case, if the POSIX_SPAWN_SETPGROUP flag is set in the spawn-flags attribute of
the object referenced by attrp, and the spawn-pgroup attribute of the same object is set to zero,
then the child shall be in a new process group with a process group ID equal to its process ID.

If the POSIX_SPAWN_SETPGROUP flag is not set in the spawn-flags attribute of the object
referenced by attrp, the new child process shall inherit the parent’s process group.

PS If the POSIX_SPAWN_SETSCHEDPARAM flag is set in the spawn-flags attribute of the object
referenced by attrp, but POSIX_SPAWN_SETSCHEDULER is not set, the new process image
shall initially have the scheduling policy of the calling process with the scheduling parameters
specified in the spawn-schedparam attribute of the object referenced by attrp.

If the POSIX_SPAWN_SETSCHEDULER flag is set in the spawn-flags attribute of the object
referenced by attrp (regardless of the setting of the POSIX_SPAWN_SETSCHEDPARAM flag),
the new process image shall initially have the scheduling policy specified in the spawn-
schedpolicy attribute of the object referenced by attrp and the scheduling parameters specified in
the spawn-schedparam attribute of the same object.

The POSIX_SPAWN_RESETIDS flag in the spawn-flags attribute of the object referenced by attrp
governs the effective user ID of the child process. If this flag is not set, the child process shall
inherit the effective user ID of the parent process. If this flag is set, the effective user ID of the
child process shall be reset to the parent’s real user ID. In either case, if the set-user-ID mode bit
of the new process image file is set, the effective user ID of the child process shall become that
file’s owner ID before the new process image begins execution.

The POSIX_SPAWN_RESETIDS flag in the spawn-flags attribute of the object referenced by attrp
also governs the effective group ID of the child process. If this flag is not set, the child process
shall inherit the effective group ID of the parent process. If this flag is set, the effective group ID
of the child process shall be reset to the parent’s real group ID. In either case, if the set-group-ID
mode bit of the new process image file is set, the effective group ID of the child process shall
become that file’s group ID before the new process image begins execution.

936 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

30050

30051

30052

30053

30054

30055

30056

30057

30058

30059

30060

30061

30062

30063

30064

30065

30066

30067

30068

30069

30070

30071

30072

30073

30074

30075

30076

30077

30078

30079

30080

30081

30082

30083

30084

30085

30086

30087

30088

30089

30090

30091

30092

30093

30094

30095

30096

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces posix_spawn()

If the POSIX_SPAWN_SETSIGMASK flag is set in the spawn-flags attribute of the object
referenced by attrp, the child process shall initially have the signal mask specified in the spawn-
sigmask attribute of the object referenced by attrp.

If the POSIX_SPAWN_SETSIGDEF flag is set in the spawn-flags attribute of the object referenced
by attrp, the signals specified in the spawn-sigdefault attribute of the same object shall be set to
their default actions in the child process. Signals set to the default action in the parent process
shall be set to the default action in the child process.

Signals set to be caught by the calling process shall be set to the default action in the child
process.

Except for SIGCHLD, signals set to be ignored by the calling process image shall be set to be
ignored by the child process, unless otherwise specified by the POSIX_SPAWN_SETSIGDEF flag
being set in the spawn-flags attribute of the object referenced by attrp and the signals being
indicated in the spawn-sigdefault attribute of the object referenced by attrp.

If the SIGCHLD signal is set to be ignored by the calling process, it is unspecified whether the
SIGCHLD signal is set to be ignored or to the default action in the child process, unless
otherwise specified by the POSIX_SPAWN_SETSIGDEF flag being set in the spawn_flags
attribute of the object referenced by attrp and the SIGCHLD signal being indicated in the
spawn_sigdefault attribute of the object referenced by attrp.

If the value of the attrp pointer is NULL, then the default values are used.

All process attributes, other than those influenced by the attributes set in the object referenced
by attrp as specified above or by the file descriptor manipulations specified in file_actions, shall
appear in the new process image as though fork() had been called to create a child process and
then a member of the exec family of functions had been called by the child process to execute the
new process image.

It is implementation-defined whether the fork handlers are run when posix_spawn() or
posix_spawnp() is called.

RETURN VALUE
Upon successful completion, posix_spawn() and posix_spawnp() shall return the process ID of the
child process to the parent process, in the variable pointed to by a non-NULL pid argument, and
shall return zero as the function return value. Otherwise, no child process shall be created, the
value stored into the variable pointed to by a non-NULL pid is unspecified, and an error number
shall be returned as the function return value to indicate the error. If the pid argument is a null
pointer, the process ID of the child is not returned to the caller.

ERRORS
The posix_spawn() and posix_spawnp() functions may fail if:

[EINVAL] The value specified by file_actions or attrp is invalid.

If this error occurs after the calling process successfully returns from the posix_spawn() or
posix_spawnp() function, the child process may exit with exit status 127.

If posix_spawn() or posix_spawnp() fail for any of the reasons that would cause fork() or one of
the exec family of functions to fail, an error value shall be returned as described by fork() and
exec, respectively (or, if the error occurs after the calling process successfully returns, the child
process shall exit with exit status 127).

If POSIX_SPAWN_SETPGROUP is set in the spawn-flags attribute of the object referenced by
attrp, and posix_spawn() or posix_spawnp() fails while changing the child’s process group, an
error value shall be returned as described by setpgid() (or, if the error occurs after the calling
process successfully returns, the child process shall exit with exit status 127).

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 937

30097

30098

30099

30100

30101

30102

30103

30104

30105

30106

30107

30108

30109

30110

30111

30112

30113

30114

30115

30116

30117

30118

30119

30120

30121

30122

30123

30124

30125

30126

30127

30128

30129

30130

30131

30132

30133

30134

30135

30136

30137

30138

30139

30140

30141

30142

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

posix_spawn() System Interfaces

PS If POSIX_SPAWN_SETSCHEDPARAM is set and POSIX_SPAWN_SETSCHEDULER is not set in
the spawn-flags attribute of the object referenced by attrp, then if posix_spawn() or posix_spawnp()
fails for any of the reasons that would cause sched_setparam() to fail, an error value shall be
returned as described by sched_setparam() (or, if the error occurs after the calling process
successfully returns, the child process shall exit with exit status 127).

If POSIX_SPAWN_SETSCHEDULER is set in the spawn-flags attribute of the object referenced by
attrp, and if posix_spawn() or posix_spawnp() fails for any of the reasons that would cause
sched_setscheduler() to fail, an error value shall be returned as described by sched_setscheduler()
(or, if the error occurs after the calling process successfully returns, the child process shall exit
with exit status 127).

If the file_actions argument is not NULL, and specifies any close, dup2, or open actions to be
performed, and if posix_spawn() or posix_spawnp() fails for any of the reasons that would cause
close(), dup2(), or open() to fail, an error value shall be returned as described by close(), dup2(),
and open(), respectively (or, if the error occurs after the calling process successfully returns, the
child process shall exit with exit status 127). An open file action may, by itself, result in any of
the errors described by close() or dup2(), in addition to those described by open().

EXAMPLES
None.

APPLICATION USAGE
These functions are part of the Spawn option and need not be provided on all implementations.

RATIONALE
The posix_spawn() function and its close relation posix_spawnp() have been introduced to
overcome the following perceived difficulties with fork(): the fork() function is difficult or
impossible to implement without swapping or dynamic address translation.

• Swapping is generally too slow for a realtime environment.

• Dynamic address translation is not available everywhere that POSIX might be useful.

• Processes are too useful to simply option out of POSIX whenever it must run without
address translation or other MMU services.

Thus, POSIX needs process creation and file execution primitives that can be efficiently
implemented without address translation or other MMU services.

The posix_spawn() function is implementable as a library routine, but both posix_spawn() and
posix_spawnp() are designed as kernel operations. Also, although they may be an efficient
replacement for many fork()/exec pairs, their goal is to provide useful process creation
primitives for systems that have difficulty with fork(), not to provide drop-in replacements for
fork()/exec.

This view of the role of posix_spawn() and posix_spawnp() influenced the design of their API. It
does not attempt to provide the full functionality of fork()/exec in which arbitrary user-specified
operations of any sort are permitted between the creation of the child process and the execution
of the new process image; any attempt to reach that level would need to provide a programming
language as parameters. Instead, posix_spawn() and posix_spawnp() are process creation
primitives like the Start_Process and Start_Process_Search Ada language bindings package
POSIX_Process_Primitives and also like those in many operating systems that are not UNIX
systems, but with some POSIX-specific additions.

To achieve its coverage goals, posix_spawn() and posix_spawnp() have control of six types of
inheritance: file descriptors, process group ID, user and group ID, signal mask, scheduling, and
whether each signal ignored in the parent will remain ignored in the child, or be reset to its
default action in the child.

Control of file descriptors is required to allow an independently written child process image to

938 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

30143

30144

30145

30146

30147

30148

30149

30150

30151

30152

30153

30154

30155

30156

30157

30158

30159

30160

30161

30162

30163

30164

30165

30166

30167

30168

30169

30170

30171

30172

30173

30174

30175

30176

30177

30178

30179

30180

30181

30182

30183

30184

30185

30186

30187

30188

30189

30190

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces posix_spawn()

access data streams opened by and even generated or read by the parent process without being
specifically coded to know which parent files and file descriptors are to be used. Control of the
process group ID is required to control how the job control of the child process relates to that of
the parent.

Control of the signal mask and signal defaulting is sufficient to support the implementation of
system(). Although support for system() is not explicitly one of the goals for posix_spawn() and
posix_spawnp(), it is covered under the ‘‘at least 50%’’ coverage goal.

The intention is that the normal file descriptor inheritance across fork(), the subsequent effect of
the specified spawn file actions, and the normal file descriptor inheritance across one of the exec
family of functions should fully specify open file inheritance. The implementation need make no
decisions regarding the set of open file descriptors when the child process image begins
execution, those decisions having already been made by the caller and expressed as the set of
open file descriptors and their FD_CLOEXEC flags at the time of the call and the spawn file
actions object specified in the call. We have been assured that in cases where the POSIX
Start_Process Ada primitives have been implemented in a library, this method of controlling file
descriptor inheritance may be implemented very easily.

We can identify several problems with posix_spawn() and posix_spawnp(), but there does not
appear to be a solution that introduces fewer problems. Environment modification for child
process attributes not specifiable via the attrp or file_actions arguments must be done in the
parent process, and since the parent generally wants to save its context, it is more costly than
similar functionality with fork()/exec. It is also complicated to modify the environment of a
multi-threaded process temporarily, since all threads must agree when it is safe for the
environment to be changed. However, this cost is only borne by those invocations of
posix_spawn() and posix_spawnp() that use the additional functionality. Since extensive
modifications are not the usual case, and are particularly unlikely in time-critical code, keeping
much of the environment control out of posix_spawn() and posix_spawnp() is appropriate design.

The posix_spawn() and posix_spawnp() functions do not have all the power of fork()/exec. This is
to be expected. The fork() function is a wonderfully powerful operation. We do not expect to
duplicate its functionality in a simple, fast function with no special hardware requirements. It is
worth noting that posix_spawn() and posix_spawnp() are very similar to the process creation
operations on many operating systems that are not UNIX systems.

Requirements

The requirements for posix_spawn() and posix_spawnp() are:

• They must be implementable without an MMU or unusual hardware.

• They must be compatible with existing POSIX standards.

Additional goals are:

• They should be efficiently implementable.

• They should be able to replace at least 50% of typical executions of fork().

• A system with posix_spawn() and posix_spawnp() and without fork() should be useful, at
least for realtime applications.

• A system with fork() and the exec family should be able to implement posix_spawn() and
posix_spawnp() as library routines.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 939

30191

30192

30193

30194

30195

30196

30197

30198

30199

30200

30201

30202

30203

30204

30205

30206

30207

30208

30209

30210

30211

30212

30213

30214

30215

30216

30217

30218

30219

30220

30221

30222

30223

30224

30225

30226

30227

30228

30229

30230

30231

30232

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

posix_spawn() System Interfaces

Two-Syntax

POSIX exec has several calling sequences with approximately the same functionality. These
appear to be required for compatibility with existing practice. Since the existing practice for the
posix_spawn*() functions is otherwise substantially unlike POSIX, we feel that simplicity
outweighs compatibility. There are, therefore, only two names for the posix_spawn*() functions.

The parameter list does not differ between posix_spawn() and posix_spawnp(); posix_spawnp()
interprets the second parameter more elaborately than posix_spawn().

Compatibility with POSIX.5 (Ada)

The Start_Process and Start_Process_Search procedures from the POSIX_Process_Primitives
package from the Ada language binding to POSIX.1 encapsulate fork() and exec functionality in a
manner similar to that of posix_spawn() and posix_spawnp(). Originally, in keeping with our
simplicity goal, the standard developers had limited the capabilities of posix_spawn() and
posix_spawnp() to a subset of the capabilities of Start_Process and Start_Process_Search; certain
non-default capabilities were not supported. However, based on suggestions by the ballot group
to improve file descriptor mapping or drop it, and on the advice of an Ada Language Bindings
working group member, the standard developers decided that posix_spawn() and posix_spawnp()
should be sufficiently powerful to implement Start_Process and Start_Process_Search. The
rationale is that if the Ada language binding to such a primitive had already been approved as
an IEEE standard, there can be little justification for not approving the functionally-equivalent
parts of a C binding. The only three capabilities provided by posix_spawn() and posix_spawnp()
that are not provided by Start_Process and Start_Process_Search are optionally specifying the
child’s process group ID, the set of signals to be reset to default signal handling in the child
process, and the child’s scheduling policy and parameters.

For the Ada language binding for Start_Process to be implemented with posix_spawn(), that
binding would need to explicitly pass an empty signal mask and the parent’s environment to
posix_spawn() whenever the caller of Start_Process allowed these arguments to default, since
posix_spawn() does not provide such defaults. The ability of Start_Process to mask user-specified
signals during its execution is functionally unique to the Ada language binding and must be
dealt with in the binding separately from the call to posix_spawn().

Process Group

The process group inheritance field can be used to join the child process with an existing process
group. By assigning a value of zero to the spawn-pgroup attribute of the object referenced by attrp,
the setpgid() mechanism will place the child process in a new process group.

Threads

Without the posix_spawn() and posix_spawnp() functions, systems without address translation
can still use threads to give an abstraction of concurrency. In many cases, thread creation
suffices, but it is not always a good substitute. The posix_spawn() and posix_spawnp() functions
are considerably ‘‘heavier ’’ than thread creation. Processes have several important attributes that
threads do not. Even without address translation, a process may have base-and-bound memory
protection. Each process has a process environment including security attributes and file
capabilities, and powerful scheduling attributes. Processes abstract the behavior of non-
uniform-memory-architecture multi-processors better than threads, and they are more
convenient to use for activities that are not closely linked.

The posix_spawn() and posix_spawnp() functions may not bring support for multiple processes to
every configuration. Process creation is not the only piece of operating system support required
to support multiple processes. The total cost of support for multiple processes may be quite high
in some circumstances. Existing practice shows that support for multiple processes is
uncommon and threads are common among ‘‘tiny kernels’’. There should, therefore, probably

940 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

30233

30234

30235

30236

30237

30238

30239

30240

30241

30242

30243

30244

30245

30246

30247

30248

30249

30250

30251

30252

30253

30254

30255

30256

30257

30258

30259

30260

30261

30262

30263

30264

30265

30266

30267

30268

30269

30270

30271

30272

30273

30274

30275

30276

30277

30278

30279

30280

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces posix_spawn()

continue to be AEPs for operating systems with only one process.

Asynchronous Error Notification

A library implementation of posix_spawn() or posix_spawnp() may not be able to detect all
possible errors before it forks the child process. IEEE Std 1003.1-200x provides for an error
indication returned from a child process which could not successfully complete the spawn
operation via a special exit status which may be detected using the status value returned by
wait() and waitpid().

The stat_val interface and the macros used to interpret it are not well suited to the purpose of
returning API errors, but they are the only path available to a library implementation. Thus, an
implementation may cause the child process to exit with exit status 127 for any error detected
during the spawn process after the posix_spawn() or posix_spawnp() function has successfully
returned.

The standard developers had proposed using two additional macros to interpret stat_val. The
first, WIFSPAWNFAIL, would have detected a status that indicated that the child exited because
of an error detected during the posix_spawn() or posix_spawnp() operations rather than during
actual execution of the child process image; the second, WSPAWNERRNO, would have
extracted the error value if WIFSPAWNFAIL indicated a failure. Unfortunately, the ballot group
strongly opposed this because it would make a library implementation of posix_spawn() or
posix_spawnp() dependent on kernel modifications to waitpid() to be able to embed special
information in stat_val to indicate a spawn failure.

The 8 bits of child process exit status that are guaranteed by IEEE Std 1003.1-200x to be
accessible to the waiting parent process are insufficient to disambiguate a spawn error from any
other kind of error that may be returned by an arbitrary process image. No other bits of the exit
status are required to be visible in stat_val, so these macros could not be strictly implemented at
the library level. Reserving an exit status of 127 for such spawn errors is consistent with the use
of this value by system() and popen() to signal failures in these operations that occur after the
function has returned but before a shell is able to execute. The exit status of 127 does not
uniquely identify this class of error, nor does it provide any detailed information on the nature
of the failure. Note that a kernel implementation of posix_spawn() or posix_spawnp() is permitted
(and encouraged) to return any possible error as the function value, thus providing more
detailed failure information to the parent process.

Thus, no special macros are available to isolate asynchronous posix_spawn() or posix_spawnp()
errors. Instead, errors detected by the posix_spawn() or posix_spawnp() operations in the context
of the child process before the new process image executes are reported by setting the child’s exit
status to 127. The calling process may use the WIFEXITED and WEXITSTATUS macros on the
stat_val stored by the wait() or waitpid() functions to detect spawn failures to the extent that
other status values with which the child process image may exit (before the parent can
conclusively determine that the child process image has begun execution) are distinct from exit
status 127.

FUTURE DIRECTIONS
None.

SEE ALSO
alarm(), chmod(), close(), dup(), exec , exit(), fcntl(), fork(), fstatat(), kill(), open(),
posix_spawn_file_actions_addclose(), posix_spawn_file_actions_adddup2(),
posix_spawn_file_actions_addopen(), posix_spawn_file_actions_destroy(), posix_spawnattr_destroy(),
posix_spawnattr_init(), posix_spawnattr_getsigdefault(), posix_spawnattr_getflags(),
posix_spawnattr_getpgroup(), posix_spawnattr_getschedparam(), posix_spawnattr_getschedpolicy(),
posix_spawnattr_getsigmask(), posix_spawnattr_setsigdefault(), posix_spawnattr_setflags(),
posix_spawnattr_setpgroup(), posix_spawnattr_setschedparam(), posix_spawnattr_setschedpolicy(),
posix_spawnattr_setsigmask(), sched_setparam(), sched_setscheduler(), setpgid(), setuid(), times(),

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 941

30281

30282

30283

30284

30285

30286

30287

30288

30289

30290

30291

30292

30293

30294

30295

30296

30297

30298

30299

30300

30301

30302

30303

30304

30305

30306

30307

30308

30309

30310

30311

30312

30313

30314

30315

30316

30317

30318

30319

30320

30321

30322

30323

30324

30325

30326

30327

30328

30329

30330

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

posix_spawn() System Interfaces

wait(), the Base Definitions volume of IEEE Std 1003.1-200x, <spawn.h>

CHANGE HISTORY
First released in Issue 6. Derived from IEEE Std 1003.1d-1999.

IEEE PASC Interpretation 1003.1 #103 is applied, noting that the signal default actions are
changed as well as the signal mask in step 2.

IEEE PASC Interpretation 1003.1 #132 is applied.

Functionality relating to the Threads option is moved to the Base.

942 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

30331

30332

30333

30334

30335

30336

30337

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces posix_spawn_file_actions_addclose()

NAME
posix_spawn_file_actions_addclose, posix_spawn_file_actions_addopen — add close or open
action to spawn file actions object (ADVANCED REALTIME)

SYNOPSIS
SPN #include <spawn.h>

int posix_spawn_file_actions_addclose(posix_spawn_file_actions_t *
file_actions, i nt fildes);

int posix_spawn_file_actions_addopen(posix_spawn_file_actions_t *
restrict file_actions, i nt fildes,
const char *restrict path, i nt oflag, mode_t mode);

DESCRIPTION
These functions shall add or delete a close or open action to a spawn file actions object.

A spawn file actions object is of type posix_spawn_file_actions_t (defined in <spawn.h>) and is
used to specify a series of actions to be performed by a posix_spawn() or posix_spawnp()
operation in order to arrive at the set of open file descriptors for the child process given the set
of open file descriptors of the parent. IEEE Std 1003.1-200x does not define comparison or
assignment operators for the type posix_spawn_file_actions_t.

A spawn file actions object, when passed to posix_spawn() or posix_spawnp(), shall specify how
the set of open file descriptors in the calling process is transformed into a set of potentially open
file descriptors for the spawned process. This transformation shall be as if the specified sequence
of actions was performed exactly once, in the context of the spawned process (prior to execution
of the new process image), in the order in which the actions were added to the object;
additionally, when the new process image is executed, any file descriptor (from this new set)
which has its FD_CLOEXEC flag set shall be closed (see posix_spawn()).

The posix_spawn_file_actions_addclose() function shall add a close action to the object referenced
by file_actions that shall cause the file descriptor fildes to be closed (as if close(fildes) had been
called) when a new process is spawned using this file actions object.

The posix_spawn_file_actions_addopen() function shall add an open action to the object referenced
by file_actions that shall cause the file named by path to be opened (as if open(path, oflag, mode)
had been called, and the returned file descriptor, if not fildes, had been changed to fildes) when a
new process is spawned using this file actions object. If fildes was already an open file descriptor,
it shall be closed before the new file is opened.

The string described by path shall be copied by the posix_spawn_file_actions_addopen() function.

RETURN VALUE
Upon successful completion, these functions shall return zero; otherwise, an error number shall
be returned to indicate the error.

ERRORS
These functions shall fail if:

[EBADF] The value specified by fildes is negative or greater than or equal to
{OPEN_MAX}.

These functions may fail if:

[EINVAL] The value specified by file_actions is invalid.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 943

30338

30339

30340

30341

30342

30343

30344

30345

30346

30347

30348

30349

30350

30351

30352

30353

30354

30355

30356

30357

30358

30359

30360

30361

30362

30363

30364

30365

30366

30367

30368

30369

30370

30371

30372

30373

30374

30375

30376

30377

30378

30379

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

posix_spawn_file_actions_addclose() System Interfaces

[ENOMEM] Insufficient memory exists to add to the spawn file actions object.

It shall not be considered an error for the fildes argument passed to these functions to specify a
file descriptor for which the specified operation could not be performed at the time of the call.
Any such error will be detected when the associated file actions object is later used during a
posix_spawn() or posix_spawnp() operation.

EXAMPLES
None.

APPLICATION USAGE
These functions are part of the Spawn option and need not be provided on all implementations.

RATIONALE
A spawn file actions object may be initialized to contain an ordered sequence of close(), dup2(),
and open() operations to be used by posix_spawn() or posix_spawnp() to arrive at the set of open
file descriptors inherited by the spawned process from the set of open file descriptors in the
parent at the time of the posix_spawn() or posix_spawnp() call. It had been suggested that the
close() and dup2() operations alone are sufficient to rearrange file descriptors, and that files
which need to be opened for use by the spawned process can be handled either by having the
calling process open them before the posix_spawn() or posix_spawnp() call (and close them after),
or by passing filenames to the spawned process (in argv) so that it may open them itself. The
standard developers recommend that applications use one of these two methods when practical,
since detailed error status on a failed open operation is always available to the application this
way. However, the standard developers feel that allowing a spawn file actions object to specify
open operations is still appropriate because:

1. It is consistent with equivalent POSIX.5 (Ada) functionality.

2. It supports the I/O redirection paradigm commonly employed by POSIX programs
designed to be invoked from a shell. When such a program is the child process, it may not
be designed to open files on its own.

3. It allows file opens that might otherwise fail or violate file ownership/access rights if
executed by the parent process.

Regarding 2. above, note that the spawn open file action provides to posix_spawn() and
posix_spawnp() the same capability that the shell redirection operators provide to system(), only
without the intervening execution of a shell; for example:

system ("myprog <file1 3<file2");

Regarding 3. above, note that if the calling process needs to open one or more files for access by
the spawned process, but has insufficient spare file descriptors, then the open action is necessary
to allow the open() to occur in the context of the child process after other file descriptors have
been closed (that must remain open in the parent).

Additionally, if a parent is executed from a file having a ‘‘set-user-id’’ mode bit set and the
POSIX_SPAWN_RESETIDS flag is set in the spawn attributes, a file created within the parent
process will (possibly incorrectly) have the parent’s effective user ID as its owner, whereas a file
created via an open() action during posix_spawn() or posix_spawnp() will have the parent’s real
ID as its owner; and an open by the parent process may successfully open a file to which the real
user should not have access or fail to open a file to which the real user should have access.

944 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

30380

30381

30382

30383

30384

30385

30386

30387

30388

30389

30390

30391

30392

30393

30394

30395

30396

30397

30398

30399

30400

30401

30402

30403

30404

30405

30406

30407

30408

30409

30410

30411

30412

30413

30414

30415

30416

30417

30418

30419

30420

30421

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces posix_spawn_file_actions_addclose()

File Descriptor Mapping

The standard developers had originally proposed using an array which specified the mapping of
child file descriptors back to those of the parent. It was pointed out by the ballot group that it is
not possible to reshuffle file descriptors arbitrarily in a library implementation of posix_spawn()
or posix_spawnp() without provision for one or more spare file descriptor entries (which simply
may not be available). Such an array requires that an implementation develop a complex
strategy to achieve the desired mapping without inadvertently closing the wrong file descriptor
at the wrong time.

It was noted by a member of the Ada Language Bindings working group that the approved Ada
Language Start_Process family of POSIX process primitives use a caller-specified set of file
actions to alter the normal fork()/exec semantics for inheritance of file descriptors in a very
flexible way, yet no such problems exist because the burden of determining how to achieve the
final file descriptor mapping is completely on the application. Furthermore, although the file
actions interface appears frightening at first glance, it is actually quite simple to implement in
either a library or the kernel.

FUTURE DIRECTIONS
None.

SEE ALSO
close(), dup(), open(), posix_spawn(), posix_spawn_file_actions_adddup2(),
posix_spawn_file_actions_destroy(), posix_spawnp(), the Base Definitions volume of
IEEE Std 1003.1-200x, <spawn.h>

CHANGE HISTORY
First released in Issue 6. Derived from IEEE Std 1003.1d-1999.

IEEE PASC Interpretation 1003.1 #105 is applied, adding a note to the DESCRIPTION that the
string pointed to by path is copied by the posix_spawn_file_actions_addopen() function.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 945

30422

30423

30424

30425

30426

30427

30428

30429

30430

30431

30432

30433

30434

30435

30436

30437

30438

30439

30440

30441

30442

30443

30444

30445

30446

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

posix_spawn_file_actions_adddup2() System Interfaces

NAME
posix_spawn_file_actions_adddup2 — add dup2 action to spawn file actions object
(ADVANCED REALTIME)

SYNOPSIS
SPN #include <spawn.h>

int posix_spawn_file_actions_adddup2(posix_spawn_file_actions_t *
file_actions, i nt fildes, i nt newfildes);

DESCRIPTION
The posix_spawn_file_actions_adddup2() function shall add a dup2() action to the object
referenced by file_actions that shall cause the file descriptor fildes to be duplicated as newfildes (as
if dup2(fildes, newfildes) had been called) when a new process is spawned using this file actions
object.

A spawn file actions object is as defined in posix_spawn_file_actions_addclose().

RETURN VALUE
Upon successful completion, the posix_spawn_file_actions_adddup2() function shall return zero;
otherwise, an error number shall be returned to indicate the error.

ERRORS
The posix_spawn_file_actions_adddup2() function shall fail if:

[EBADF] The value specified by fildes or newfildes is negative or greater than or equal to
{OPEN_MAX}.

[ENOMEM] Insufficient memory exists to add to the spawn file actions object.

The posix_spawn_file_actions_adddup2() function may fail if:

[EINVAL] The value specified by file_actions is invalid.

It shall not be considered an error for the fildes argument passed to the
posix_spawn_file_actions_adddup2() function to specify a file descriptor for which the specified
operation could not be performed at the time of the call. Any such error will be detected when
the associated file actions object is later used during a posix_spawn() or posix_spawnp()
operation.

EXAMPLES
None.

APPLICATION USAGE
The posix_spawn_file_actions_adddup2() function is part of the Spawn option and need not be
provided on all implementations.

RATIONALE
Refer to the RATIONALE in posix_spawn_file_actions_addclose().

FUTURE DIRECTIONS
None.

SEE ALSO
dup(), posix_spawn(), posix_spawn_file_actions_addclose(), posix_spawn_file_actions_destroy(),
posix_spawnp(), the Base Definitions volume of IEEE Std 1003.1-200x, <spawn.h>

946 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

30447

30448

30449

30450

30451

30452

30453

30454

30455

30456

30457

30458

30459

30460

30461

30462

30463

30464

30465

30466

30467

30468

30469

30470

30471

30472

30473

30474

30475

30476

30477

30478

30479

30480

30481

30482

30483

30484

30485

30486

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces posix_spawn_file_actions_adddup2()

CHANGE HISTORY
First released in Issue 6. Derived from IEEE Std 1003.1d-1999.

IEEE PASC Interpretation 1003.1 #104 is applied, noting that the [EBADF] error can apply to the
newfildes argument in addition to fildes.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 947

30487

30488

30489

30490

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

posix_spawn_file_actions_addopen() System Interfaces

NAME
posix_spawn_file_actions_addopen — add open action to spawn file actions object
(ADVANCED REALTIME)

SYNOPSIS
SPN #include <spawn.h>

int posix_spawn_file_actions_addopen(posix_spawn_file_actions_t *
restrict file_actions, i nt fildes,
const char *restrict path, i nt oflag, mode_t mode);

DESCRIPTION
Refer to posix_spawn_file_actions_addclose().

948 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

30491

30492

30493

30494

30495

30496

30497

30498

30499

30500

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces posix_spawn_file_actions_destroy()

NAME
posix_spawn_file_actions_destroy, posix_spawn_file_actions_init — destroy and initialize
spawn file actions object (ADVANCED REALTIME)

SYNOPSIS
SPN #include <spawn.h>

int posix_spawn_file_actions_destroy(posix_spawn_file_actions_t *
file_actions);

int posix_spawn_file_actions_init(posix_spawn_file_actions_t *
file_actions);

DESCRIPTION
The posix_spawn_file_actions_destroy() function shall destroy the object referenced by file_actions;
the object becomes, in effect, uninitialized. An implementation may cause
posix_spawn_file_actions_destroy() to set the object referenced by file_actions to an invalid value. A
destroyed spawn file actions object can be reinitialized using posix_spawn_file_actions_init(); the
results of otherwise referencing the object after it has been destroyed are undefined.

The posix_spawn_file_actions_init() function shall initialize the object referenced by file_actions to
contain no file actions for posix_spawn() or posix_spawnp() to perform.

A spawn file actions object is as defined in posix_spawn_file_actions_addclose().

The effect of initializing an already initialized spawn file actions object is undefined.

RETURN VALUE
Upon successful completion, these functions shall return zero; otherwise, an error number shall
be returned to indicate the error.

ERRORS
The posix_spawn_file_actions_init() function shall fail if:

[ENOMEM] Insufficient memory exists to initialize the spawn file actions object.

The posix_spawn_file_actions_destroy() function may fail if:

[EINVAL] The value specified by file_actions is invalid.

EXAMPLES
None.

APPLICATION USAGE
These functions are part of the Spawn option and need not be provided on all implementations.

RATIONALE
Refer to the RATIONALE in posix_spawn_file_actions_addclose().

FUTURE DIRECTIONS
None.

SEE ALSO
posix_spawn(), posix_spawnp(), the Base Definitions volume of IEEE Std 1003.1-200x, <spawn.h>

CHANGE HISTORY
First released in Issue 6. Derived from IEEE Std 1003.1d-1999.

In the SYNOPSIS, the inclusion of <sys/types.h> is no longer required.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 949

30501

30502

30503

30504

30505

30506

30507

30508

30509

30510

30511

30512

30513

30514

30515

30516

30517

30518

30519

30520

30521

30522

30523

30524

30525

30526

30527

30528

30529

30530

30531

30532

30533

30534

30535

30536

30537

30538

30539

30540

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

posix_spawnattr_destroy() System Interfaces

NAME
posix_spawnattr_destroy, posix_spawnattr_init — destroy and initialize spawn attributes object
(ADVANCED REALTIME)

SYNOPSIS
SPN #include <spawn.h>

int posix_spawnattr_destroy(posix_spawnattr_t * attr);
int posix_spawnattr_init(posix_spawnattr_t * attr);

DESCRIPTION
The posix_spawnattr_destroy() function shall destroy a spawn attributes object. A destroyed attr
attributes object can be reinitialized using posix_spawnattr_init(); the results of otherwise
referencing the object after it has been destroyed are undefined. An implementation may cause
posix_spawnattr_destroy() to set the object referenced by attr to an invalid value.

The posix_spawnattr_init() function shall initialize a spawn attributes object attr with the default
value for all of the individual attributes used by the implementation. Results are undefined if
posix_spawnattr_init() is called specifying an already initialized attr attributes object.

A spawn attributes object is of type posix_spawnattr_t (defined in <spawn.h>) and is used to
specify the inheritance of process attributes across a spawn operation. IEEE Std 1003.1-200x does
not define comparison or assignment operators for the type posix_spawnattr_t.

Each implementation shall document the individual attributes it uses and their default values
unless these values are defined by IEEE Std 1003.1-200x. Attributes not defined by
IEEE Std 1003.1-200x, their default values, and the names of the associated functions to get and
set those attribute values are implementation-defined.

The resulting spawn attributes object (possibly modified by setting individual attribute values),
is used to modify the behavior of posix_spawn() or posix_spawnp(). After a spawn attributes
object has been used to spawn a process by a call to a posix_spawn() or posix_spawnp(), any
function affecting the attributes object (including destruction) shall not affect any process that
has been spawned in this way.

RETURN VALUE
Upon successful completion, posix_spawnattr_destroy() and posix_spawnattr_init() shall return
zero; otherwise, an error number shall be returned to indicate the error.

ERRORS
The posix_spawnattr_init() function shall fail if:

[ENOMEM] Insufficient memory exists to initialize the spawn attributes object.

The posix_spawnattr_destroy() function may fail if:

[EINVAL] The value specified by attr is invalid.

950 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

30541

30542

30543

30544

30545

30546

30547

30548

30549

30550

30551

30552

30553

30554

30555

30556

30557

30558

30559

30560

30561

30562

30563

30564

30565

30566

30567

30568

30569

30570

30571

30572

30573

30574

30575

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces posix_spawnattr_destroy()

EXAMPLES
None.

APPLICATION USAGE
These functions are part of the Spawn option and need not be provided on all implementations.

RATIONALE
The original spawn interface proposed in IEEE Std 1003.1-200x defined the attributes that
specify the inheritance of process attributes across a spawn operation as a structure. In order to
be able to separate optional individual attributes under their appropriate options (that is, the
spawn-schedparam and spawn-schedpolicy attributes depending upon the Process Scheduling
option), and also for extensibility and consistency with the newer POSIX interfaces, the
attributes interface has been changed to an opaque data type. This interface now consists of the
type posix_spawnattr_t, representing a spawn attributes object, together with associated
functions to initialize or destroy the attributes object, and to set or get each individual attribute.
Although the new object-oriented interface is more verbose than the original structure, it is
simple to use, more extensible, and easy to implement.

FUTURE DIRECTIONS
None.

SEE ALSO
posix_spawn(), posix_spawnattr_getsigdefault(), posix_spawnattr_getflags(),
posix_spawnattr_getpgroup(), posix_spawnattr_getschedparam(), posix_spawnattr_getschedpolicy(),
posix_spawnattr_getsigmask(), posix_spawnattr_setsigdefault(), posix_spawnattr_setflags(),
posix_spawnattr_setpgroup(), posix_spawnattr_setsigmask(), posix_spawnattr_setschedpolicy(),
posix_spawnattr_setschedparam(), posix_spawnp(), the Base Definitions volume of
IEEE Std 1003.1-200x, <spawn.h>

CHANGE HISTORY
First released in Issue 6. Derived from IEEE Std 1003.1d-1999.

IEEE PASC Interpretation 1003.1 #106 is applied, noting that the effect of initializing an already
initialized spawn attributes option is undefined.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 951

30576

30577

30578

30579

30580

30581

30582

30583

30584

30585

30586

30587

30588

30589

30590

30591

30592

30593

30594

30595

30596

30597

30598

30599

30600

30601

30602

30603

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

posix_spawnattr_getflags() System Interfaces

NAME
posix_spawnattr_getflags, posix_spawnattr_setflags — get and set the spawn-flags attribute of a
spawn attributes object (ADVANCED REALTIME)

SYNOPSIS
SPN #include <spawn.h>

int posix_spawnattr_getflags(const posix_spawnattr_t *restrict attr,
short *restrict flags);

int posix_spawnattr_setflags(posix_spawnattr_t * attr, s hort flags);

DESCRIPTION
The posix_spawnattr_getflags() function shall obtain the value of the spawn-flags attribute from the
attributes object referenced by attr.

The posix_spawnattr_setflags() function shall set the spawn-flags attribute in an initialized
attributes object referenced by attr.

The spawn-flags attribute is used to indicate which process attributes are to be changed in the
new process image when invoking posix_spawn() or posix_spawnp(). It is the bitwise-inclusive
OR of zero or more of the following flags:

POSIX_SPAWN_RESETIDS
POSIX_SPAWN_SETPGROUP
POSIX_SPAWN_SETSIGDEF
POSIX_SPAWN_SETSIGMASK

PS POSIX_SPAWN_SETSCHEDPARAM
POSIX_SPAWN_SETSCHEDULER

These flags are defined in <spawn.h>. The default value of this attribute shall be as if no flags
were set.

RETURN VALUE
Upon successful completion, posix_spawnattr_getflags() shall return zero and store the value of
the spawn-flags attribute of attr into the object referenced by the flags parameter; otherwise, an
error number shall be returned to indicate the error.

Upon successful completion, posix_spawnattr_setflags() shall return zero; otherwise, an error
number shall be returned to indicate the error.

ERRORS
These functions may fail if:

[EINVAL] The value specified by attr is invalid.

The posix_spawnattr_setflags() function may fail if:

[EINVAL] The value of the attribute being set is not valid.

952 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

30604

30605

30606

30607

30608

30609

30610

30611

30612

30613

30614

30615

30616

30617

30618

30619

30620

30621

30622

30623

30624

30625

30626

30627

30628

30629

30630

30631

30632

30633

30634

30635

30636

30637

30638

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces posix_spawnattr_getflags()

EXAMPLES
None.

APPLICATION USAGE
These functions are part of the Spawn option and need not be provided on all implementations.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
posix_spawn(), posix_spawnattr_destroy(), posix_spawnattr_init(), posix_spawnattr_getsigdefault(),
posix_spawnattr_getpgroup(), posix_spawnattr_getschedparam(), posix_spawnattr_getschedpolicy(),
posix_spawnattr_getsigmask(), posix_spawnattr_setsigdefault(), posix_spawnattr_setpgroup(),
posix_spawnattr_setschedparam(), posix_spawnattr_setschedpolicy(), posix_spawnattr_setsigmask(),
posix_spawnp(), the Base Definitions volume of IEEE Std 1003.1-200x, <spawn.h>

CHANGE HISTORY
First released in Issue 6. Derived from IEEE Std 1003.1d-1999.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 953

30639

30640

30641

30642

30643

30644

30645

30646

30647

30648

30649

30650

30651

30652

30653

30654

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

posix_spawnattr_getpgroup() System Interfaces

NAME
posix_spawnattr_getpgroup, posix_spawnattr_setpgroup — get and set the spawn-pgroup
attribute of a spawn attributes object (ADVANCED REALTIME)

SYNOPSIS
SPN #include <spawn.h>

int posix_spawnattr_getpgroup(const posix_spawnattr_t *restrict attr,
pid_t *restrict pgroup);

int posix_spawnattr_setpgroup(posix_spawnattr_t * attr, p id_t pgroup);

DESCRIPTION
The posix_spawnattr_getpgroup() function shall obtain the value of the spawn-pgroup attribute
from the attributes object referenced by attr.

The posix_spawnattr_setpgroup() function shall set the spawn-pgroup attribute in an initialized
attributes object referenced by attr.

The spawn-pgroup attribute represents the process group to be joined by the new process image
in a spawn operation (if POSIX_SPAWN_SETPGROUP is set in the spawn-flags attribute). The
default value of this attribute shall be zero.

RETURN VALUE
Upon successful completion, posix_spawnattr_getpgroup() shall return zero and store the value of
the spawn-pgroup attribute of attr into the object referenced by the pgroup parameter; otherwise,
an error number shall be returned to indicate the error.

Upon successful completion, posix_spawnattr_setpgroup() shall return zero; otherwise, an error
number shall be returned to indicate the error.

ERRORS
These functions may fail if:

[EINVAL] The value specified by attr is invalid.

The posix_spawnattr_setpgroup() function may fail if:

[EINVAL] The value of the attribute being set is not valid.

EXAMPLES
None.

APPLICATION USAGE
These functions are part of the Spawn option and need not be provided on all implementations.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
posix_spawn(), posix_spawnattr_destroy(), posix_spawnattr_init(), posix_spawnattr_getsigdefault(),
posix_spawnattr_getflags(), posix_spawnattr_getschedparam(), posix_spawnattr_getschedpolicy(),
posix_spawnattr_getsigmask(), posix_spawnattr_setsigdefault(), posix_spawnattr_setflags(),
posix_spawnattr_setschedparam(), posix_spawnattr_setschedpolicy(), posix_spawnattr_setsigmask(),
posix_spawnp(), the Base Definitions volume of IEEE Std 1003.1-200x, <spawn.h>

954 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

30655

30656

30657

30658

30659

30660

30661

30662

30663

30664

30665

30666

30667

30668

30669

30670

30671

30672

30673

30674

30675

30676

30677

30678

30679

30680

30681

30682

30683

30684

30685

30686

30687

30688

30689

30690

30691

30692

30693

30694

30695

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces posix_spawnattr_getpgroup()

CHANGE HISTORY
First released in Issue 6. Derived from IEEE Std 1003.1d-1999.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 955

30696

30697

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

posix_spawnattr_getschedparam() System Interfaces

NAME
posix_spawnattr_getschedparam, posix_spawnattr_setschedparam — get and set the spawn-
schedparam attribute of a spawn attributes object (ADVANCED REALTIME)

SYNOPSIS
SPN PS #include <spawn.h>

#include <sched.h>

int posix_spawnattr_getschedparam(const posix_spawnattr_t *
restrict attr, s truct sched_param *restrict schedparam);

int posix_spawnattr_setschedparam(posix_spawnattr_t *restrict attr,
const struct sched_param *restrict schedparam);

DESCRIPTION
The posix_spawnattr_getschedparam() function shall obtain the value of the spawn-schedparam
attribute from the attributes object referenced by attr.

The posix_spawnattr_setschedparam() function shall set the spawn-schedparam attribute in an
initialized attributes object referenced by attr.

The spawn-schedparam attribute represents the scheduling parameters to be assigned to the new
process image in a spawn operation (if POSIX_SPAWN_SETSCHEDULER or
POSIX_SPAWN_SETSCHEDPARAM is set in the spawn-flags attribute). The default value of this
attribute is unspecified.

RETURN VALUE
Upon successful completion, posix_spawnattr_getschedparam() shall return zero and store the
value of the spawn-schedparam attribute of attr into the object referenced by the schedparam
parameter; otherwise, an error number shall be returned to indicate the error.

Upon successful completion, posix_spawnattr_setschedparam() shall return zero; otherwise, an
error number shall be returned to indicate the error.

ERRORS
These functions may fail if:

[EINVAL] The value specified by attr is invalid.

The posix_spawnattr_setschedparam() function may fail if:

[EINVAL] The value of the attribute being set is not valid.

EXAMPLES
None.

APPLICATION USAGE
These functions are part of the Spawn and Process Scheduling options and need not be provided
on all implementations.

RATIONALE
None.

FUTURE DIRECTIONS
None.

956 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

30698

30699

30700

30701

30702

30703

30704

30705

30706

30707

30708

30709

30710

30711

30712

30713

30714

30715

30716

30717

30718

30719

30720

30721

30722

30723

30724

30725

30726

30727

30728

30729

30730

30731

30732

30733

30734

30735

30736

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces posix_spawnattr_getschedparam()

SEE ALSO
posix_spawn(), posix_spawnattr_destroy(), posix_spawnattr_init(), posix_spawnattr_getsigdefault(),
posix_spawnattr_getflags(), posix_spawnattr_getpgroup(), posix_spawnattr_getschedpolicy(),
posix_spawnattr_getsigmask(), posix_spawnattr_setsigdefault(), posix_spawnattr_setflags(),
posix_spawnattr_setpgroup(), posix_spawnattr_setschedpolicy(), posix_spawnattr_setsigmask(),
posix_spawnp(), the Base Definitions volume of IEEE Std 1003.1-200x, <sched.h>, <spawn.h>

CHANGE HISTORY
First released in Issue 6. Derived from IEEE Std 1003.1d-1999.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 957

30737

30738

30739

30740

30741

30742

30743

30744

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

posix_spawnattr_getschedpolicy() System Interfaces

NAME
posix_spawnattr_getschedpolicy, posix_spawnattr_setschedpolicy — get and set the spawn-
schedpolicy attribute of a spawn attributes object (ADVANCED REALTIME)

SYNOPSIS
SPN PS #include <spawn.h>

#include <sched.h>

int posix_spawnattr_getschedpolicy(const posix_spawnattr_t *
restrict attr, i nt *restrict schedpolicy);

int posix_spawnattr_setschedpolicy(posix_spawnattr_t * attr,
int schedpolicy);

DESCRIPTION
The posix_spawnattr_getschedpolicy() function shall obtain the value of the spawn-schedpolicy
attribute from the attributes object referenced by attr.

The posix_spawnattr_setschedpolicy() function shall set the spawn-schedpolicy attribute in an
initialized attributes object referenced by attr.

The spawn-schedpolicy attribute represents the scheduling policy to be assigned to the new
process image in a spawn operation (if POSIX_SPAWN_SETSCHEDULER is set in the spawn-
flags attribute). The default value of this attribute is unspecified.

RETURN VALUE
Upon successful completion, posix_spawnattr_getschedpolicy() shall return zero and store the
value of the spawn-schedpolicy attribute of attr into the object referenced by the schedpolicy
parameter; otherwise, an error number shall be returned to indicate the error.

Upon successful completion, posix_spawnattr_setschedpolicy() shall return zero; otherwise, an
error number shall be returned to indicate the error.

ERRORS
These functions may fail if:

[EINVAL] The value specified by attr is invalid.

The posix_spawnattr_setschedpolicy() function may fail if:

[EINVAL] The value of the attribute being set is not valid.

EXAMPLES
None.

APPLICATION USAGE
These functions are part of the Spawn and Process Scheduling options and need not be provided
on all implementations.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
posix_spawn(), posix_spawnattr_destroy(), posix_spawnattr_init(), posix_spawnattr_getsigdefault(),
posix_spawnattr_getflags(), posix_spawnattr_getpgroup(), posix_spawnattr_getschedparam(),
posix_spawnattr_getsigmask(), posix_spawnattr_setsigdefault(), posix_spawnattr_setflags(),
posix_spawnattr_setpgroup(), posix_spawnattr_setschedparam(), posix_spawnattr_setsigmask(),

958 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

30745

30746

30747

30748

30749

30750

30751

30752

30753

30754

30755

30756

30757

30758

30759

30760

30761

30762

30763

30764

30765

30766

30767

30768

30769

30770

30771

30772

30773

30774

30775

30776

30777

30778

30779

30780

30781

30782

30783

30784

30785

30786

30787

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces posix_spawnattr_getschedpolicy()

posix_spawnp(), the Base Definitions volume of IEEE Std 1003.1-200x, <sched.h>, <spawn.h>

CHANGE HISTORY
First released in Issue 6. Derived from IEEE Std 1003.1d-1999.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 959

30788

30789

30790

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

posix_spawnattr_getsigdefault() System Interfaces

NAME
posix_spawnattr_getsigdefault, posix_spawnattr_setsigdefault — get and set the spawn-
sigdefault attribute of a spawn attributes object (ADVANCED REALTIME)

SYNOPSIS
SPN #include <signal.h>

#include <spawn.h>

int posix_spawnattr_getsigdefault(const posix_spawnattr_t *
restrict attr, s igset_t *restrict sigdefault);

int posix_spawnattr_setsigdefault(posix_spawnattr_t *restrict attr,
const sigset_t *restrict sigdefault);

DESCRIPTION
The posix_spawnattr_getsigdefault() function shall obtain the value of the spawn-sigdefault
attribute from the attributes object referenced by attr.

The posix_spawnattr_setsigdefault() function shall set the spawn-sigdefault attribute in an
initialized attributes object referenced by attr.

The spawn-sigdefault attribute represents the set of signals to be forced to default signal handling
in the new process image (if POSIX_SPAWN_SETSIGDEF is set in the spawn-flags attribute) by a
spawn operation. The default value of this attribute shall be an empty signal set.

RETURN VALUE
Upon successful completion, posix_spawnattr_getsigdefault() shall return zero and store the value
of the spawn-sigdefault attribute of attr into the object referenced by the sigdefault parameter;
otherwise, an error number shall be returned to indicate the error.

Upon successful completion, posix_spawnattr_setsigdefault() shall return zero; otherwise, an error
number shall be returned to indicate the error.

ERRORS
These functions may fail if:

[EINVAL] The value specified by attr is invalid.

The posix_spawnattr_setsigdefault() function may fail if:

[EINVAL] The value of the attribute being set is not valid.

EXAMPLES
None.

APPLICATION USAGE
These functions are part of the Spawn option and need not be provided on all implementations.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
posix_spawn(), posix_spawnattr_destroy(), posix_spawnattr_init(), posix_spawnattr_getflags(),
posix_spawnattr_getpgroup(), posix_spawnattr_getschedparam(), posix_spawnattr_getschedpolicy(),
posix_spawnattr_getsigmask(), posix_spawnattr_setflags(), posix_spawnattr_setpgroup(),
posix_spawnattr_setschedparam(), posix_spawnattr_setschedpolicy(), posix_spawnattr_setsigmask(),
posix_spawnp(), the Base Definitions volume of IEEE Std 1003.1-200x, <signal.h>, <spawn.h>

960 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

30791

30792

30793

30794

30795

30796

30797

30798

30799

30800

30801

30802

30803

30804

30805

30806

30807

30808

30809

30810

30811

30812

30813

30814

30815

30816

30817

30818

30819

30820

30821

30822

30823

30824

30825

30826

30827

30828

30829

30830

30831

30832

30833

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces posix_spawnattr_getsigdefault()

CHANGE HISTORY
First released in Issue 6. Derived from IEEE Std 1003.1d-1999.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 961

30834

30835

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

posix_spawnattr_getsigmask() System Interfaces

NAME
posix_spawnattr_getsigmask, posix_spawnattr_setsigmask — get and set the spawn-sigmask
attribute of a spawn attributes object (ADVANCED REALTIME)

SYNOPSIS
SPN #include <signal.h>

#include <spawn.h>

int posix_spawnattr_getsigmask(const posix_spawnattr_t *restrict attr,
sigset_t *restrict sigmask);

int posix_spawnattr_setsigmask(posix_spawnattr_t *restrict attr,
const sigset_t *restrict sigmask);

DESCRIPTION
The posix_spawnattr_getsigmask() function shall obtain the value of the spawn-sigmask attribute
from the attributes object referenced by attr.

The posix_spawnattr_setsigmask() function shall set the spawn-sigmask attribute in an initialized
attributes object referenced by attr.

The spawn-sigmask attribute represents the signal mask in effect in the new process image of a
spawn operation (if POSIX_SPAWN_SETSIGMASK is set in the spawn-flags attribute). The
default value of this attribute is unspecified.

RETURN VALUE
Upon successful completion, posix_spawnattr_getsigmask() shall return zero and store the value
of the spawn-sigmask attribute of attr into the object referenced by the sigmask parameter;
otherwise, an error number shall be returned to indicate the error.

Upon successful completion, posix_spawnattr_setsigmask() shall return zero; otherwise, an error
number shall be returned to indicate the error.

ERRORS
These functions may fail if:

[EINVAL] The value specified by attr is invalid.

The posix_spawnattr_setsigmask() function may fail if:

[EINVAL] The value of the attribute being set is not valid.

EXAMPLES
None.

APPLICATION USAGE
These functions are part of the Spawn option and need not be provided on all implementations.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
posix_spawn(), posix_spawnattr_destroy(), posix_spawnattr_init(), posix_spawnattr_getsigdefault(),
posix_spawnattr_getflags(), posix_spawnattr_getpgroup(), posix_spawnattr_getschedparam(),
posix_spawnattr_getschedpolicy(), posix_spawnattr_setsigdefault(), posix_spawnattr_setflags(),
posix_spawnattr_setpgroup(), posix_spawnattr_setschedparam(), posix_spawnattr_setschedpolicy(),
posix_spawnp(), the Base Definitions volume of IEEE Std 1003.1-200x, <signal.h>, <spawn.h>

962 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

30836

30837

30838

30839

30840

30841

30842

30843

30844

30845

30846

30847

30848

30849

30850

30851

30852

30853

30854

30855

30856

30857

30858

30859

30860

30861

30862

30863

30864

30865

30866

30867

30868

30869

30870

30871

30872

30873

30874

30875

30876

30877

30878

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces posix_spawnattr_getsigmask()

CHANGE HISTORY
First released in Issue 6. Derived from IEEE Std 1003.1d-1999.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 963

30879

30880

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

posix_spawnattr_init() System Interfaces

NAME
posix_spawnattr_init — initialize the spawn attributes object (ADVANCED REALTIME)

SYNOPSIS
SPN #include <spawn.h>

int posix_spawnattr_init(posix_spawnattr_t * attr);

DESCRIPTION
Refer to posix_spawnattr_destroy().

964 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

30881

30882

30883

30884

30885

30886

30887

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces posix_spawnattr_setflags()

NAME
posix_spawnattr_setflags — set the spawn-flags attribute of a spawn attributes object
(ADVANCED REALTIME)

SYNOPSIS
SPN #include <spawn.h>

int posix_spawnattr_setflags(posix_spawnattr_t * attr, s hort flags);

DESCRIPTION
Refer to posix_spawnattr_getflags().

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 965

30888

30889

30890

30891

30892

30893

30894

30895

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

posix_spawnattr_setpgroup() System Interfaces

NAME
posix_spawnattr_setpgroup — set the spawn-pgroup attribute of a spawn attributes object
(ADVANCED REALTIME)

SYNOPSIS
SPN #include <spawn.h>

int posix_spawnattr_setpgroup(posix_spawnattr_t * attr, p id_t pgroup);

DESCRIPTION
Refer to posix_spawnattr_getpgroup().

966 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

30896

30897

30898

30899

30900

30901

30902

30903

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces posix_spawnattr_setschedparam()

NAME
posix_spawnattr_setschedparam — set the spawn-schedparam attribute of a spawn attributes
object (ADVANCED REALTIME)

SYNOPSIS
SPN PS #include <sched.h>

#include <spawn.h>

int posix_spawnattr_setschedparam(posix_spawnattr_t *restrict attr,
const struct sched_param *restrict schedparam);

DESCRIPTION
Refer to posix_spawnattr_getschedparam().

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 967

30904

30905

30906

30907

30908

30909

30910

30911

30912

30913

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

posix_spawnattr_setschedpolicy() System Interfaces

NAME
posix_spawnattr_setschedpolicy — set the spawn-schedpolicy attribute of a spawn attributes
object (ADVANCED REALTIME)

SYNOPSIS
SPN PS #include <sched.h>

#include <spawn.h>

int posix_spawnattr_setschedpolicy(posix_spawnattr_t * attr,
int schedpolicy);

DESCRIPTION
Refer to posix_spawnattr_getschedpolicy().

968 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

30914

30915

30916

30917

30918

30919

30920

30921

30922

30923

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces posix_spawnattr_setsigdefault()

NAME
posix_spawnattr_setsigdefault — set the spawn-sigdefault attribute of a spawn attributes object
(ADVANCED REALTIME)

SYNOPSIS
SPN #include <signal.h>

#include <spawn.h>

int posix_spawnattr_setsigdefault(posix_spawnattr_t *restrict attr,
const sigset_t *restrict sigdefault);

DESCRIPTION
Refer to posix_spawnattr_getsigdefault().

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 969

30924

30925

30926

30927

30928

30929

30930

30931

30932

30933

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

posix_spawnattr_setsigmask() System Interfaces

NAME
posix_spawnattr_setsigmask — set the spawn-sigmask attribute of a spawn attributes object
(ADVANCED REALTIME)

SYNOPSIS
SPN #include <signal.h>

#include <spawn.h>

int posix_spawnattr_setsigmask(posix_spawnattr_t *restrict attr,
const sigset_t *restrict sigmask);

DESCRIPTION
Refer to posix_spawnattr_getsigmask().

970 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

30934

30935

30936

30937

30938

30939

30940

30941

30942

30943

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces posix_spawnp()

NAME
posix_spawnp — spawn a process (ADVANCED REALTIME)

SYNOPSIS
SPN #include <spawn.h>

int posix_spawnp(pid_t *restrict pid, c onst char *restrict file,
const posix_spawn_file_actions_t * file_actions,
const posix_spawnattr_t *restrict attrp,
char *const argv[restrict], char *const envp[restrict]);

DESCRIPTION
Refer to posix_spawn().

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 971

30944

30945

30946

30947

30948

30949

30950

30951

30952

30953

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

posix_trace_attr_destroy() System Interfaces

NAME
posix_trace_attr_destroy, posix_trace_attr_init — destroy and initialize the trace stream
attributes object (TRACING)

SYNOPSIS
OB TRC #include <trace.h>

int posix_trace_attr_destroy(trace_attr_t * attr);
int posix_trace_attr_init(trace_attr_t * attr);

DESCRIPTION
The posix_trace_attr_destroy() function shall destroy an initialized trace attributes object. A
destroyed attr attributes object can be reinitialized using posix_trace_attr_init(); the results of
otherwise referencing the object after it has been destroyed are undefined.

The posix_trace_attr_init() function shall initialize a trace attributes object attr with the default
value for all of the individual attributes used by a given implementation. The read-only
generation-version and clock-resolution attributes of the newly initialized trace attributes object
shall be set to their appropriate values (see Section 2.11.1.2 (on page 77)).

Results are undefined if posix_trace_attr_init() is called specifying an already initialized attr
attributes object.

Implementations may add extensions to the trace attributes object structure as permitted in the
Base Definitions volume of IEEE Std 1003.1-200x, Chapter 2, Conformance.

The resulting attributes object (possibly modified by setting individual attributes values), when
used by posix_trace_create(), defines the attributes of the trace stream created. A single attributes
object can be used in multiple calls to posix_trace_create(). After one or more trace streams have
been created using an attributes object, any function affecting that attributes object, including
destruction, shall not affect any trace stream previously created. An initialized attributes object
also serves to receive the attributes of an existing trace stream or trace log when calling the
posix_trace_get_attr() function.

RETURN VALUE
Upon successful completion, these functions shall return a value of zero. Otherwise, they shall
return the corresponding error number.

ERRORS
The posix_trace_attr_destroy() function may fail if:

[EINVAL] The value of attr is invalid.

The posix_trace_attr_init() function shall fail if:

[ENOMEM] Insufficient memory exists to initialize the trace attributes object.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

972 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

30954

30955

30956

30957

30958

30959

30960

30961

30962

30963

30964

30965

30966

30967

30968

30969

30970

30971

30972

30973

30974

30975

30976

30977

30978

30979

30980

30981

30982

30983

30984

30985

30986

30987

30988

30989

30990

30991

30992

30993

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces posix_trace_attr_destroy()

FUTURE DIRECTIONS
The posix_trace_attr_destroy() and posix_trace_attr_init() functions may be removed in a future
version.

SEE ALSO
posix_trace_create(), posix_trace_get_attr(), uname(), the Base Definitions volume of
IEEE Std 1003.1-200x, <trace.h>

CHANGE HISTORY
First released in Issue 6. Derived from IEEE Std 1003.1q-2000.

IEEE PASC Interpretation 1003.1 #123 is applied.

Issue 7
The posix_trace_attr_destroy() and posix_trace_attr_init() functions are marked obsolescent.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 973

30994

30995

30996

30997

30998

30999

31000

31001

31002

31003

31004

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

posix_trace_attr_getclockres() System Interfaces

NAME
posix_trace_attr_getclockres, posix_trace_attr_getcreatetime, posix_trace_attr_getgenversion,
posix_trace_attr_getname, posix_trace_attr_setname — retrieve and set information about a
trace stream (TRACING)

SYNOPSIS
OB TRC #include <time.h>

#include <trace.h>

int posix_trace_attr_getclockres(const trace_attr_t * attr,
struct timespec * resolution);

int posix_trace_attr_getcreatetime(const trace_attr_t * attr,
struct timespec * createtime);

#include <trace.h>

int posix_trace_attr_getgenversion(const trace_attr_t * attr,
char * genversion);

int posix_trace_attr_getname(const trace_attr_t * attr,
char * tracename);

int posix_trace_attr_setname(trace_attr_t * attr,
const char * tracename);

DESCRIPTION
The posix_trace_attr_getclockres() function shall copy the clock resolution of the clock used to
generate timestamps from the clock-resolution attribute of the attributes object pointed to by the
attr argument into the structure pointed to by the resolution argument.

The posix_trace_attr_getcreatetime() function shall copy the trace stream creation time from the
creation-time attribute of the attributes object pointed to by the attr argument into the structure
pointed to by the createtime argument. The creation-time attribute shall represent the time of
creation of the trace stream.

The posix_trace_attr_getgenversion() function shall copy the string containing version information
from the generation-version attribute of the attributes object pointed to by the attr argument into
the string pointed to by the genversion argument. The genversion argument shall be the address of
a character array which can store at least {TRACE_NAME_MAX} characters.

The posix_trace_attr_getname() function shall copy the string containing the trace name from the
trace-name attribute of the attributes object pointed to by the attr argument into the string
pointed to by the tracename argument. The tracename argument shall be the address of a character
array which can store at least {TRACE_NAME_MAX} characters.

The posix_trace_attr_setname() function shall set the name in the trace-name attribute of the
attributes object pointed to by the attr argument, using the trace name string supplied by the
tracename argument. If the supplied string contains more than {TRACE_NAME_MAX}
characters, the name copied into the trace-name attribute may be truncated to one less than the
length of {TRACE_NAME_MAX} characters. The default value is a null string.

RETURN VALUE
Upon successful completion, these functions shall return a value of zero. Otherwise, they shall
return the corresponding error number.

If successful, the posix_trace_attr_getclockres() function stores the clock-resolution attribute value in
the object pointed to by resolution. Otherwise, the content of this object is unspecified.

If successful, the posix_trace_attr_getcreatetime() function stores the trace stream creation time in

974 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

31005

31006

31007

31008

31009

31010

31011

31012

31013

31014

31015

31016

31017

31018

31019

31020

31021

31022

31023

31024

31025

31026

31027

31028

31029

31030

31031

31032

31033

31034

31035

31036

31037

31038

31039

31040

31041

31042

31043

31044

31045

31046

31047

31048

31049

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces posix_trace_attr_getclockres()

the object pointed to by createtime. Otherwise, the content of this object is unspecified.

If successful, the posix_trace_attr_getgenversion() function stores the trace version information in
the string pointed to by genversion. Otherwise, the content of this string is unspecified.

If successful, the posix_trace_attr_getname() function stores the trace name in the string pointed
to by tracename. Otherwise, the content of this string is unspecified.

ERRORS
The posix_trace_attr_getclockres(), posix_trace_attr_getcreatetime(), posix_trace_attr_getgenversion(),
and posix_trace_attr_getname() functions may fail if:

[EINVAL] The value specified by one of the arguments is invalid.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
The posix_trace_attr_getclockres(), posix_trace_attr_getcreatetime(), posix_trace_attr_getgenversion(),
posix_trace_attr_getname(), and posix_trace_attr_setname() functions may be removed in a future
version.

SEE ALSO
posix_trace_attr_init(), posix_trace_create(), posix_trace_get_attr(), uname(), the Base Definitions
volume of IEEE Std 1003.1-200x, <time.h>, <trace.h>

CHANGE HISTORY
First released in Issue 6. Derived from IEEE Std 1003.1q-2000.

Issue 7
The posix_trace_attr_getclockres(), posix_trace_attr_getcreatetime(), posix_trace_attr_getgenversion(),
posix_trace_attr_getname(), and posix_trace_attr_setname() functions are marked obsolescent.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 975

31050

31051

31052

31053

31054

31055

31056

31057

31058

31059

31060

31061

31062

31063

31064

31065

31066

31067

31068

31069

31070

31071

31072

31073

31074

31075

31076

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

posix_trace_attr_getinherited() System Interfaces

NAME
posix_trace_attr_getinherited, posix_trace_attr_getlogfullpolicy,
posix_trace_attr_getstreamfullpolicy, posix_trace_attr_setinherited,
posix_trace_attr_setlogfullpolicy, posix_trace_attr_setstreamfullpolicy — retrieve and set the
behavior of a trace stream (TRACING)

SYNOPSIS
OB TRC #include <trace.h>

TRI int posix_trace_attr_getinherited(const trace_attr_t *restrict attr,
int *restrict inheritancepolicy);

TRL int posix_trace_attr_getlogfullpolicy(const trace_attr_t *restrict attr,
int *restrict logpolicy);

int posix_trace_attr_getstreamfullpolicy(const trace_attr_t *restrict
attr, i nt *restrict streampolicy);

TRI int posix_trace_attr_setinherited(trace_attr_t * attr,
int inheritancepolicy);

TRL int posix_trace_attr_setlogfullpolicy(trace_attr_t * attr,
int logpolicy);

int posix_trace_attr_setstreamfullpolicy(trace_attr_t * attr,
int streampolicy);

DESCRIPTION
TRI The posix_trace_attr_getinherited() and posix_trace_attr_setinherited() functions, respectively, shall

get and set the inheritance policy stored in the inheritance attribute for traced processes across the
fork() and spawn() operations. The inheritance attribute of the attributes object pointed to by the
attr argument shall be set to one of the following values defined by manifest constants in the
<trace.h> header:

POSIX_TRACE_CLOSE_FOR_CHILD
After a fork() or spawn() operation, the child shall not be traced, and tracing of the parent
shall continue.

POSIX_TRACE_INHERITED
After a fork() or spawn() operation, if the parent is being traced, its child shall be
concurrently traced using the same trace stream.

The default value for the inheritance attribute is POSIX_TRACE_CLOSE_FOR_CHILD.

TRL The posix_trace_attr_getlogfullpolicy() and posix_trace_attr_setlogfullpolicy() functions,
respectively, shall get and set the trace log full policy stored in the log-full-policy attribute of the
attributes object pointed to by the attr argument.

The log-full-policy attribute shall be set to one of the following values defined by manifest
constants in the <trace.h> header:

POSIX_TRACE_LOOP
The trace log shall loop until the associated trace stream is stopped. This policy means that
when the trace log gets full, the file system shall reuse the resources allocated to the oldest
trace events that were recorded. In this way, the trace log will always contain the most
recent trace events flushed.

POSIX_TRACE_UNTIL_FULL
The trace stream shall be flushed to the trace log until the trace log is full. This condition can
be deduced from the posix_log_full_status member status (see the posix_trace_status_info
structure defined in <trace.h>). The last recorded trace event shall be the
POSIX_TRACE_STOP trace event.

976 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

31077

31078

31079

31080

31081

31082

31083

31084

31085

31086

31087

31088

31089

31090

31091

31092

31093

31094

31095

31096

31097

31098

31099

31100

31101

31102

31103

31104

31105

31106

31107

31108

31109

31110

31111

31112

31113

31114

31115

31116

31117

31118

31119

31120

31121

31122

31123

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces posix_trace_attr_getinherited()

POSIX_TRACE_APPEND
The associated trace stream shall be flushed to the trace log without log size limitation. If
the application specifies POSIX_TRACE_APPEND, the implementation shall ignore the log-
max-size attribute.

The default value for the log-full-policy attribute is POSIX_TRACE_LOOP.

The posix_trace_attr_getstreamfullpolicy() and posix_trace_attr_setstreamfullpolicy() functions,
respectively, shall get and set the trace stream full policy stored in the stream-full-policy attribute
of the attributes object pointed to by the attr argument.

The stream-full-policy attribute shall be set to one of the following values defined by manifest
constants in the <trace.h> header:

POSIX_TRACE_LOOP
The trace stream shall loop until explicitly stopped by the posix_trace_stop() function. This
policy means that when the trace stream is full, the trace system shall reuse the resources
allocated to the oldest trace events recorded. In this way, the trace stream will always
contain the most recent trace events recorded.

POSIX_TRACE_UNTIL_FULL
The trace stream will run until the trace stream resources are exhausted. Then the trace
stream will stop. This condition can be deduced from posix_stream_status and
posix_stream_full_status (see the posix_trace_status_info structure defined in <trace.h>).
When this trace stream is read, a POSIX_TRACE_STOP trace event shall be reported after
reporting the last recorded trace event. The trace system shall reuse the resources allocated
to any trace events already reported—see the posix_trace_getnext_event(),
posix_trace_trygetnext_event(), and posix_trace_timedgetnext_event() functions—or already
flushed for an active trace stream with log if the Trace Log option is supported; see the
posix_trace_flush() function. The trace system shall restart the trace stream when it is empty
and may restart it sooner. A POSIX_TRACE_START trace event shall be reported before
reporting the next recorded trace event.

TRL POSIX_TRACE_FLUSH
If the Trace Log option is supported, this policy is identical to the
POSIX_TRACE_UNTIL_FULL trace stream full policy except that the trace stream shall be
flushed regularly as if posix_trace_flush() had been explicitly called. Defining this policy for
an active trace stream without log shall be invalid.

The default value for the stream-full-policy attribute shall be POSIX_TRACE_LOOP for an active
trace stream without log.

TRL If the Trace Log option is supported, the default value for the stream-full-policy attribute shall be
POSIX_TRACE_FLUSH for an active trace stream with log.

RETURN VALUE
Upon successful completion, these functions shall return a value of zero. Otherwise, they shall
return the corresponding error number.

TRI If successful, the posix_trace_attr_getinherited() function shall store the inheritance attribute value
in the object pointed to by inheritancepolicy. Otherwise, the content of this object is undefined.

TRL If successful, the posix_trace_attr_getlogfullpolicy() function shall store the log-full-policy attribute
value in the object pointed to by logpolicy. Otherwise, the content of this object is undefined.

If successful, the posix_trace_attr_getstreamfullpolicy() function shall store the stream-full-policy
attribute value in the object pointed to by streampolicy. Otherwise, the content of this object is
undefined.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 977

31124

31125

31126

31127

31128

31129

31130

31131

31132

31133

31134

31135

31136

31137

31138

31139

31140

31141

31142

31143

31144

31145

31146

31147

31148

31149

31150

31151

31152

31153

31154

31155

31156

31157

31158

31159

31160

31161

31162

31163

31164

31165

31166

31167

31168

31169

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

posix_trace_attr_getinherited() System Interfaces

ERRORS
These functions may fail if:

[EINVAL] The value specified by at least one of the arguments is invalid.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
The posix_trace_attr_getinherited(), posix_trace_attr_getlogfullpolicy(),
posix_trace_attr_getstreamfullpolicy(), posix_trace_attr_setinherited(),
posix_trace_attr_setlogfullpolicy(), and posix_trace_attr_setstreamfullpolicy() functions may be
removed in a future version.

SEE ALSO
fork(), posix_trace_attr_init(), posix_trace_create(), posix_trace_flush(), posix_trace_get_attr(),
posix_trace_getnext_event(), posix_trace_start(), posix_trace_timedgetnext_event(), the Base
Definitions volume of IEEE Std 1003.1-200x, <trace.h>

CHANGE HISTORY
First released in Issue 6. Derived from IEEE Std 1003.1q-2000.

IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/39 is applied, adding the TRL and TRC
margin codes to the posix_trace_attr_setlogfullpolicy() function.

Issue 7
SD5-XSH-ERN-116 is applied, adding the missing restrict keyword to the
posix_trace_attr_getstreamfullpolicy() function declaration.

These functions are marked obsolescent.

978 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

31170

31171

31172

31173

31174

31175

31176

31177

31178

31179

31180

31181

31182

31183

31184

31185

31186

31187

31188

31189

31190

31191

31192

31193

31194

31195

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces posix_trace_attr_getlogsize()

NAME
posix_trace_attr_getlogsize, posix_trace_attr_getmaxdatasize,
posix_trace_attr_getmaxsystemeventsize, posix_trace_attr_getmaxusereventsize,
posix_trace_attr_getstreamsize, posix_trace_attr_setlogsize, posix_trace_attr_setmaxdatasize,
posix_trace_attr_setstreamsize — retrieve and set trace stream size attributes (TRACING)

SYNOPSIS
OB TRC #include <sys/types.h>

#include <trace.h>

TRL int posix_trace_attr_getlogsize(const trace_attr_t *restrict attr,
size_t *restrict logsize);

int posix_trace_attr_getmaxdatasize(const trace_attr_t *restrict attr,
size_t *restrict maxdatasize);

int posix_trace_attr_getmaxsystemeventsize(
const trace_attr_t *restrict attr,
size_t *restrict eventsize);

int posix_trace_attr_getmaxusereventsize(
const trace_attr_t *restrict attr,
size_t data_len, s ize_t *restrict eventsize);

int posix_trace_attr_getstreamsize(const trace_attr_t *restrict attr,
size_t *restrict streamsize);

TRL int posix_trace_attr_setlogsize(trace_attr_t * attr,
size_t logsize);

int posix_trace_attr_setmaxdatasize(trace_attr_t * attr,
size_t maxdatasize);

int posix_trace_attr_setstreamsize(trace_attr_t * attr,
size_t streamsize);

DESCRIPTION
TRL The posix_trace_attr_getlogsize() function shall copy the log size, in bytes, from the log-max-size

attribute of the attributes object pointed to by the attr argument into the variable pointed to by
the logsize argument. This log size is the maximum total of bytes that shall be allocated for
system and user trace events in the trace log. The default value for the log-max-size attribute is
implementation-defined.

The posix_trace_attr_setlogsize() function shall set the maximum allowed size, in bytes, in the log-
max-size attribute of the attributes object pointed to by the attr argument, using the size value
supplied by the logsize argument.

The trace log size shall be used if the log-full-policy attribute is set to POSIX_TRACE_LOOP or
POSIX_TRACE_UNTIL_FULL. If the log-full-policy attribute is set to POSIX_TRACE_APPEND,
the implementation shall ignore the log-max-size attribute.

The posix_trace_attr_getmaxdatasize() function shall copy the maximum user trace event data
size, in bytes, from the max-data-size attribute of the attributes object pointed to by the attr
argument into the variable pointed to by the maxdatasize argument. The default value for the
max-data-size attribute is implementation-defined.

The posix_trace_attr_getmaxsystemeventsize() function shall calculate the maximum memory size,
in bytes, required to store a single system trace event. This value is calculated for the trace
stream attributes object pointed to by the attr argument and is returned in the variable pointed
to by the eventsize argument.

The values returned as the maximum memory sizes of the user and system trace events shall be
such that if the sum of the maximum memory sizes of a set of the trace events that may be

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 979

31196

31197

31198

31199

31200

31201

31202

31203

31204

31205

31206

31207

31208

31209

31210

31211

31212

31213

31214

31215

31216

31217

31218

31219

31220

31221

31222

31223

31224

31225

31226

31227

31228

31229

31230

31231

31232

31233

31234

31235

31236

31237

31238

31239

31240

31241

31242

31243

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

posix_trace_attr_getlogsize() System Interfaces

recorded in a trace stream is less than or equal to the stream-min-size attribute of that trace
stream, the system provides the necessary resources for recording all those trace events, without
loss.

The posix_trace_attr_getmaxusereventsize() function shall calculate the maximum memory size, in
bytes, required to store a single user trace event generated by a call to posix_trace_event() with a
data_len parameter equal to the data_len value specified in this call. This value is calculated for
the trace stream attributes object pointed to by the attr argument and is returned in the variable
pointed to by the eventsize argument.

The posix_trace_attr_getstreamsize() function shall copy the stream size, in bytes, from the stream-
min-size attribute of the attributes object pointed to by the attr argument into the variable
pointed to by the streamsize argument.

This stream size is the current total memory size reserved for system and user trace events in the
trace stream. The default value for the stream-min-size attribute is implementation-defined. The
stream size refers to memory used to store trace event records. Other stream data (for example,
trace attribute values) shall not be included in this size.

The posix_trace_attr_setmaxdatasize() function shall set the maximum allowed size, in bytes, in
the max-data-size attribute of the attributes object pointed to by the attr argument, using the size
value supplied by the maxdatasize argument. This maximum size is the maximum allowed size
for the user data argument which may be passed to posix_trace_event(). The implementation
shall be allowed to truncate data passed to trace_user_event which is longer than maxdatasize.

The posix_trace_attr_setstreamsize() function shall set the minimum allowed size, in bytes, in the
stream-min-size attribute of the attributes object pointed to by the attr argument, using the size
value supplied by the streamsize argument.

RETURN VALUE
Upon successful completion, these functions shall return a value of zero. Otherwise, they shall
return the corresponding error number.

TRL The posix_trace_attr_getlogsize() function stores the maximum trace log allowed size in the object
pointed to by logsize, if successful.

The posix_trace_attr_getmaxdatasize() function stores the maximum trace event record memory
size in the object pointed to by maxdatasize, if successful.

The posix_trace_attr_getmaxsystemeventsize() function stores the maximum memory size to store a
single system trace event in the object pointed to by eventsize, if successful.

The posix_trace_attr_getmaxusereventsize() function stores the maximum memory size to store a
single user trace event in the object pointed to by eventsize, if successful.

The posix_trace_attr_getstreamsize() function stores the maximum trace stream allowed size in the
object pointed to by streamsize, if successful.

ERRORS
These functions may fail if:

[EINVAL] The value specified by one of the arguments is invalid.

980 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

31244

31245

31246

31247

31248

31249

31250

31251

31252

31253

31254

31255

31256

31257

31258

31259

31260

31261

31262

31263

31264

31265

31266

31267

31268

31269

31270

31271

31272

31273

31274

31275

31276

31277

31278

31279

31280

31281

31282

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces posix_trace_attr_getlogsize()

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
The posix_trace_attr_getlogsize(), posix_trace_attr_getmaxdatasize(),
posix_trace_attr_getmaxsystemeventsize(), posix_trace_attr_getmaxusereventsize(),
posix_trace_attr_getstreamsize(), posix_trace_attr_setlogsize(), posix_trace_attr_setmaxdatasize(), and
posix_trace_attr_setstreamsize() functions may be withdrawn in a future version.

SEE ALSO
posix_trace_attr_init(), posix_trace_create(), posix_trace_event(), posix_trace_get_attr(), the Base
Definitions volume of IEEE Std 1003.1-200x, <sys/types.h>, <trace.h>

CHANGE HISTORY
First released in Issue 6. Derived from IEEE Std 1003.1q-2000.

Issue 7
These functions are marked obsolescent.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 981

31283

31284

31285

31286

31287

31288

31289

31290

31291

31292

31293

31294

31295

31296

31297

31298

31299

31300

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

posix_trace_attr_getname() System Interfaces

NAME
posix_trace_attr_getname — retrieve and set information about a trace stream (TRACING)

SYNOPSIS
OB TRC #include <trace.h>

int posix_trace_attr_getname(const trace_attr_t * attr,
char * tracename);

DESCRIPTION
Refer to posix_trace_attr_getclockres().

982 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

31301

31302

31303

31304

31305

31306

31307

31308

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces posix_trace_attr_getstreamfullpolicy()

NAME
posix_trace_attr_getstreamfullpolicy — retrieve and set the behavior of a trace stream
(TRACING)

SYNOPSIS
OB TRC #include <trace.h>

int posix_trace_attr_getstreamfullpolicy(const trace_attr_t *restrict
attr, i nt *restrict streampolicy);

DESCRIPTION
Refer to posix_trace_attr_getinherited().

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 983

31309

31310

31311

31312

31313

31314

31315

31316

31317

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

posix_trace_attr_getstreamsize() System Interfaces

NAME
posix_trace_attr_getstreamsize — retrieve and set trace stream size attributes (TRACING)

SYNOPSIS
OB TRC #include <sys/types.h>

#include <trace.h>

int posix_trace_attr_getstreamsize(const trace_attr_t *restrict attr,
size_t *restrict streamsize);

DESCRIPTION
Refer to posix_trace_attr_getlogsize().

984 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

31318

31319

31320

31321

31322

31323

31324

31325

31326

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces posix_trace_attr_init()

NAME
posix_trace_attr_init — initialize the trace stream attributes object (TRACING)

SYNOPSIS
OB TRC #include <trace.h>

int posix_trace_attr_init(trace_attr_t * attr);

DESCRIPTION
Refer to posix_trace_attr_destroy().

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 985

31327

31328

31329

31330

31331

31332

31333

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

posix_trace_attr_setinherited() System Interfaces

NAME
posix_trace_attr_setinherited, posix_trace_attr_setlogfullpolicy — retrieve and set the behavior
of a trace stream (TRACING)

SYNOPSIS
OB TRC #include <trace.h>

TRI int posix_trace_attr_setinherited(trace_attr_t * attr,
int inheritancepolicy);

TRL int posix_trace_attr_setlogfullpolicy(trace_attr_t * attr,
int logpolicy);

DESCRIPTION
Refer to posix_trace_attr_getinherited().

986 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

31334

31335

31336

31337

31338

31339

31340

31341

31342

31343

31344

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces posix_trace_attr_setlogsize()

NAME
posix_trace_attr_setlogsize, posix_trace_attr_setmaxdatasize — retrieve and set trace stream size
attributes (TRACING)

SYNOPSIS
OB TRC #include <sys/types.h>

#include <trace.h>

TRL int posix_trace_attr_setlogsize(trace_attr_t * attr,
size_t logsize);

TRC int posix_trace_attr_setmaxdatasize(trace_attr_t * attr,
size_t maxdatasize);

DESCRIPTION
Refer to posix_trace_attr_getlogsize().

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 987

31345

31346

31347

31348

31349

31350

31351

31352

31353

31354

31355

31356

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

posix_trace_attr_setname() System Interfaces

NAME
posix_trace_attr_setname — retrieve and set information about a trace stream (TRACING)

SYNOPSIS
OB TRC #include <trace.h>

int posix_trace_attr_setname(trace_attr_t * attr,
const char * tracename);

DESCRIPTION
Refer to posix_trace_attr_getclockres().

988 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

31357

31358

31359

31360

31361

31362

31363

31364

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces posix_trace_attr_setstreamfullpolicy()

NAME
posix_trace_attr_setstreamfullpolicy — retrieve and set the behavior of a trace stream
(TRACING)

SYNOPSIS
OB TRC #include <trace.h>

int posix_trace_attr_setstreamfullpolicy(trace_attr_t * attr,
int streampolicy);

DESCRIPTION
Refer to posix_trace_attr_getinherited().

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 989

31365

31366

31367

31368

31369

31370

31371

31372

31373

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

posix_trace_attr_setstreamsize() System Interfaces

NAME
posix_trace_attr_setstreamsize — retrieve and set trace stream size attributes (TRACING)

SYNOPSIS
OB TRC #include <sys/types.h>

#include <trace.h>

int posix_trace_attr_setstreamsize(trace_attr_t * attr,
size_t streamsize);

DESCRIPTION
Refer to

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces posix_trace_clear()

NAME
posix_trace_clear — clear trace stream and trace log (TRACING)

SYNOPSIS
OB TRC #include <sys/types.h>

#include <trace.h>

int posix_trace_clear(trace_id_t trid);

DESCRIPTION
The posix_trace_clear() function shall reinitialize the trace stream identified by the argument trid
as if it were returning from the posix_trace_create() function, except that the same allocated
resources shall be reused, the mapping of trace event type identifiers to trace event names shall
be unchanged, and the trace stream status shall remain unchanged (that is, if it was running, it
remains running and if it was suspended, it remains suspended).

All trace events in the trace stream recorded before the call to posix_trace_clear() shall be lost. The
posix_stream_full_status status shall be set to POSIX_TRACE_NOT_FULL. There is no guarantee
that all trace events that occurred during the posix_trace_clear() call are recorded; the behavior
with respect to trace points that may occur during this call is unspecified.

OB TRL If the Trace Log option is supported and the trace stream has been created with a log, the
posix_trace_clear() function shall reinitialize the trace stream with the same behavior as if the
trace stream was created without the log, plus it shall reinitialize the trace log associated with
the trace stream identified by the argument trid as if it were returning from the
posix_trace_create_withlog() function, except that the same allocated resources, for the trace log,
may be reused and the associated trace stream status remains unchanged. The first trace event
recorded in the trace log after the call to posix_trace_clear() shall be the same as the first trace
event recorded in the active trace stream after the call to posix_trace_clear(). The
posix_log_full_status status shall be set to POSIX_TRACE_NOT_FULL. There is no guarantee that
all trace events that occurred during the posix_trace_clear() call are recorded in the trace log; the
behavior with respect to trace points that may occur during this call is unspecified. If the log full
policy is POSIX_TRACE_APPEND, the effect of a call to this function is unspecified for the trace
log associated with the trace stream identified by the trid argument.

RETURN VALUE
Upon successful completion, the posix_trace_clear() function shall return a value of zero.
Otherwise, it shall return the corresponding error number.

ERRORS
The posix_trace_clear() function shall fail if:

[EINVAL] The value of the trid argument does not correspond to an active trace stream.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 991

31383

31384

31385

31386

31387

31388

31389

31390

31391

31392

31393

31394

31395

31396

31397

31398

31399

31400

31401

31402

31403

31404

31405

31406

31407

31408

31409

31410

31411

31412

31413

31414

31415

31416

31417

31418

31419

31420

31421

31422

31423

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

posix_trace_clear() System Interfaces

FUTURE DIRECTIONS
The posix_trace_clear() function may be withdrawn in a future version.

SEE ALSO
posix_trace_attr_init(), posix_trace_create(), posix_trace_flush(), posix_trace_get_attr(), the Base
Definitions volume of IEEE Std 1003.1-200x, <sys/types.h>, <trace.h>

CHANGE HISTORY
First released in Issue 6. Derived from IEEE Std 1003.1q-2000.

IEEE PASC Interpretation 1003.1 #123 is applied.

Issue 7
The posix_trace_clear() function is marked obsolescent.

992 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

31424

31425

31426

31427

31428

31429

31430

31431

31432

31433

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces posix_trace_close()

NAME
posix_trace_close, posix_trace_open, posix_trace_rewind — trace log management (TRACING)

SYNOPSIS
OB TRC #include <trace.h>

TRL int posix_trace_close(trace_id_t trid);
int posix_trace_open(int file_desc, t race_id_t * trid);
int posix_trace_rewind(trace_id_t trid);

DESCRIPTION
The posix_trace_close() function shall deallocate the trace log identifier indicated by trid, and all
of its associated resources. If there is no valid trace log pointed to by the trid, this function shall
fail.

The posix_trace_open() function shall allocate the necessary resources and establish the
connection between a trace log identified by the file_desc argument and a trace stream identifier
identified by the object pointed to by the trid argument. The file_desc argument should be a valid
open file descriptor that corresponds to a trace log. The file_desc argument shall be open for
reading. The current trace event timestamp, which specifies the timestamp of the trace event that
will be read by the next call to posix_trace_getnext_event(), shall be set to the timestamp of the
oldest trace event recorded in the trace log identified by trid.

The posix_trace_open() function shall return a trace stream identifier in the variable pointed to by
the trid argument, that may only be used by the following functions:

posix_trace_close()
posix_trace_eventid_equal()
posix_trace_eventid_get_name()
posix_trace_eventtypelist_getnext_id()
posix_trace_eventtypelist_rewind()

posix_trace_get_attr()
posix_trace_get_status()
posix_trace_getnext_event()
posix_trace_rewind()

In particular, notice that the operations normally used by a trace controller process, such as
posix_trace_start(), posix_trace_stop(), or posix_trace_shutdown(), cannot be invoked using the
trace stream identifier returned by the posix_trace_open() function.

The posix_trace_rewind() function shall reset the current trace event timestamp, which specifies
the timestamp of the trace event that will be read by the next call to posix_trace_getnext_event(),
to the timestamp of the oldest trace event recorded in the trace log identified by trid.

RETURN VALUE
Upon successful completion, these functions shall return a value of zero. Otherwise, they shall
return the corresponding error number.

If successful, the posix_trace_open() function stores the trace stream identifier value in the object
pointed to by trid.

ERRORS
The posix_trace_open() function shall fail if:

[EINTR] The operation was interrupted by a signal and thus no trace log was opened.

[EINVAL] The object pointed to by file_desc does not correspond to a valid trace log.

The posix_trace_close() and posix_trace_rewind() functions may fail if:

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 993

31434

31435

31436

31437

31438

31439

31440

31441

31442

31443

31444

31445

31446

31447

31448

31449

31450

31451

31452

31453

31454

31455

31456

31457

31458

31459

31460

31461

31462

31463

31464

31465

31466

31467

31468

31469

31470

31471

31472

31473

31474

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

posix_trace_close() System Interfaces

[EINVAL] The object pointed to by trid does not correspond to a valid trace log.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
The posix_trace_close(), posix_trace_open(), and posix_trace_rewind() functions may be removed in
a future version.

SEE ALSO
posix_trace_get_attr(), posix_trace_get_filter(), posix_trace_getnext_event(), the Base Definitions
volume of IEEE Std 1003.1-200x, <trace.h>

CHANGE HISTORY
First released in Issue 6. Derived from IEEE Std 1003.1q-2000.

IEEE PASC Interpretation 1003.1 #123 is applied.

Issue 7
The posix_trace_close(), posix_trace_open(), and posix_trace_rewind() functions are marked
obsolescent.

994 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

31475

31476

31477

31478

31479

31480

31481

31482

31483

31484

31485

31486

31487

31488

31489

31490

31491

31492

31493

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces posix_trace_create()

NAME
posix_trace_create, posix_trace_create_withlog, posix_trace_flush, posix_trace_shutdown —
trace stream initialization, flush, and shutdown from a process (TRACING)

SYNOPSIS
OB TRC #include <sys/types.h>

#include <trace.h>

int posix_trace_create(pid_t pid,
const trace_attr_t *restrict attr,
trace_id_t *restrict trid);

TRL int posix_trace_create_withlog(pid_t pid,
const trace_attr_t *restrict attr, i nt file_desc,
trace_id_t *restrict trid);

int posix_trace_flush(trace_id_t trid);
int posix_trace_shutdown(trace_id_t trid);

DESCRIPTION
The posix_trace_create() function shall create an active trace stream. It allocates all the resources
needed by the trace stream being created for tracing the process specified by pid in accordance
with the attr argument. The attr argument represents the initial attributes of the trace stream and
shall have been initialized by the function posix_trace_attr_init() prior to the posix_trace_create()
call. If the argument attr is NULL, the default attributes shall be used. The attr attributes object
shall be manipulated through a set of functions described in the posix_trace_attr family of
functions. If the attributes of the object pointed to by attr are modified later, the attributes of the
trace stream shall not be affected. The creation-time attribute of the newly created trace stream
shall be set to the value of the system clock, if the Timers option is not supported, or to the value
of the CLOCK_REALTIME clock, if the Timers option is supported.

The pid argument represents the target process to be traced. If the process executing this function
does not have appropriate privileges to trace the process identified by pid, an error shall be
returned. If the pid argument is zero, the calling process shall be traced.

The posix_trace_create() function shall store the trace stream identifier of the new trace stream in
the object pointed to by the trid argument. This trace stream identifier shall be used in
subsequent calls to control tracing. The trid argument may only be used by the following
functions:

posix_trace_clear()
posix_trace_eventid_equal()
posix_trace_eventid_get_name()
posix_trace_eventtypelist_getnext_id()
posix_trace_eventtypelist_rewind()
posix_trace_get_attr()
posix_trace_get_status()

posix_trace_getnext_event()
posix_trace_shutdown()
posix_trace_start()
posix_trace_stop()
posix_trace_timedgetnext_event()
posix_trace_trid_eventid_open()
posix_trace_trygetnext_event()

TEF If the Trace Event Filter option is supported, the following additional functions may use the trid
argument:

posix_trace_get_filter() posix_trace_set_filter()

In particular, notice that the operations normally used by a trace analyzer process, such as
posix_trace_rewind() or posix_trace_close(), cannot be invoked using the trace stream identifier
returned by the posix_trace_create() function.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 995

31494

31495

31496

31497

31498

31499

31500

31501

31502

31503

31504

31505

31506

31507

31508

31509

31510

31511

31512

31513

31514

31515

31516

31517

31518

31519

31520

31521

31522

31523

31524

31525

31526

31527

31528

31529

31530

31531

31532

31533

31534

31535

31536

31537

31538

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

posix_trace_create() System Interfaces

TEF A trace stream shall be created in a suspended state. If the Trace Event Filter option is
supported, its trace event type filter shall be empty.

The posix_trace_create() function may be called multiple times from the same or different
processes, with the system-wide limit indicated by the runtime invariant value
{TRACE_SYS_MAX}, which has the minimum value {_POSIX_TRACE_SYS_MAX}.

The trace stream identifier returned by the posix_trace_create() function in the argument pointed
to by trid is valid only in the process that made the function call. If it is used from another
process, that is a child process, in functions defined in IEEE Std 1003.1-200x, these functions shall
return with the error [EINVAL].

TRL The posix_trace_create_withlog() function shall be equivalent to posix_trace_create(), except that it
associates a trace log with this stream. The file_desc argument shall be the file descriptor
designating the trace log destination. The function shall fail if this file descriptor refers to a file
with a file type that is not compatible with the log policy associated with the trace log. The list of
the appropriate file types that are compatible with each log policy is implementation-defined.

The posix_trace_create_withlog() function shall return in the parameter pointed to by trid the trace
stream identifier, which uniquely identifies the newly created trace stream, and shall be used in
subsequent calls to control tracing. The trid argument may only be used by the following
functions:

posix_trace_clear()
posix_trace_eventid_equal()
posix_trace_eventid_get_name()
posix_trace_eventtypelist_getnext_id()
posix_trace_eventtypelist_rewind()
posix_trace_flush()
posix_trace_get_attr()

posix_trace_get_status()
posix_trace_getnext_event()
posix_trace_shutdown()
posix_trace_start()
posix_trace_stop()
posix_trace_timedgetnext_event()
posix_trace_trid_eventid_open()

TEF TRL If the Trace Event Filter option is supported, the following additional functions may use the trid
argument:

posix_trace_get_filter() posix_trace_set_filter()

TRL In particular, notice that the operations normally used by a trace analyzer process, such as
posix_trace_rewind() or posix_trace_close(), cannot be invoked using the trace stream identifier
returned by the posix_trace_create_withlog() function.

The posix_trace_flush() function shall initiate a flush operation which copies the contents of the
trace stream identified by the argument trid into the trace log associated with the trace stream at
the creation time. If no trace log has been associated with the trace stream pointed to by trid, this
function shall return an error. The termination of the flush operation can be polled by the
posix_trace_get_status() function. During the flush operation, it shall be possible to trace new
trace events up to the point when the trace stream becomes full. After flushing is completed, the

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces posix_trace_create()

POSIX_TRACE_APPEND
The trace events that have not yet been flushed shall be appended to the trace log.

The posix_trace_shutdown() function shall stop the tracing of trace events in the trace stream
identified by trid, as if posix_trace_stop() had been invoked. The posix_trace_shutdown() function
shall free all the resources associated with the trace stream.

The posix_trace_shutdown() function shall not return until all the resources associated with the
trace stream have been freed. When the posix_trace_shutdown() function returns, the trid
argument becomes an invalid trace stream identifier. A call to this function shall unconditionally
deallocate the resources regardless of whether all trace events have been retrieved by the
analyzer process. Any thread blocked on one of the trace_getnext_event() functions (which
specified this trid) before this call is unblocked with the error [EINVAL].

If the process exits, invokes a member of the exec family of functions, or is terminated, the trace
streams that the process had created and that have not yet been shut down, shall be
automatically shut down as if an explicit call were made to the posix_trace_shutdown() function.

TRL For an active trace stream with log, when the posix_trace_shutdown() function is called, all trace
events that have not yet been flushed to the trace log shall be flushed, as in the
posix_trace_flush() function, and the trace log shall be closed.

When a trace log is closed, all the information that may be retrieved later from the trace log
through the trace interface shall have been written to the trace log. This information includes the
trace attributes, the list of trace event types (with the mapping between trace event names and
trace event type identifiers), and the trace status.

In addition, unspecified information shall be written to the trace log to allow detection of a valid
trace log during the posix_trace_open() operation.

The posix_trace_shutdown() function shall not return until all trace events have been flushed.

RETURN VALUE
Upon successful completion, these functions shall return a value of zero. Otherwise, they shall
return the corresponding error number.

TRL The posix_trace_create() and posix_trace_create_withlog() functions store the trace stream
identifier value in the object pointed to by trid, if successful.

ERRORS
TRL The posix_trace_create() and posix_trace_create_withlog() functions shall fail if:

[EAGAIN] No more trace streams can be started now. {TRACE_SYS_MAX} has been
exceeded.

[EINTR] The operation was interrupted by a signal. No trace stream was created.

[EINVAL] One or more of the trace parameters specified by the attr parameter is invalid.

[ENOMEM] The implementation does not currently have sufficient memory to create the
trace stream with the specified parameters.

[EPERM] The caller does not have appropriate privilege to trace the process specified by
pid.

[ESRCH] The pid argument does not refer to an existing process.

TRL The posix_trace_create_withlog() function shall fail if:

[EBADF] The file_desc argument is not a valid file descriptor open for writing.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 997

31584

31585

31586

31587

31588

31589

31590

31591

31592

31593

31594

31595

31596

31597

31598

31599

31600

31601

31602

31603

31604

31605

31606

31607

31608

31609

31610

31611

31612

31613

31614

31615

31616

31617

31618

31619

31620

31621

31622

31623

31624

31625

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

posix_trace_create() System Interfaces

[EINVAL] The file_desc argument refers to a file with a file type that does not support the
log policy associated with the trace log.

[ENOSPC] No space left on device. The device corresponding to the argument file_desc
does not contain the space required to create this trace log.

TRL The posix_trace_flush() and posix_trace_shutdown() functions shall fail if:

[EINVAL] The value of the trid argument does not correspond to an active trace stream
with log.

[EFBIG] The trace log file has attempted to exceed an implementation-defined
maximum file size.

[ENOSPC] No space left on device.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
The posix_trace_create(), posix_trace_create_withlog(), posix_trace_flush(), and
posix_trace_shutdown() functions may be withdrawn in a future version.

SEE ALSO
clock_getres(), exec , posix_trace_attr_init(), posix_trace_clear(), posix_trace_close(),
posix_trace_eventid_equal(), posix_trace_eventtypelist_getnext_id(), posix_trace_flush(),
posix_trace_get_attr(), posix_trace_get_filter(), posix_trace_get_status(), posix_trace_getnext_event(),
posix_trace_open(), posix_trace_set_filter(), posix_trace_shutdown(), posix_trace_start(),
posix_trace_timedgetnext_event(), posix_trace_trid_eventid_open(), posix_trace_start(), time(), the
Base Definitions volume of IEEE Std 1003.1-200x, <sys/types.h>, <trace.h>

CHANGE HISTORY
First released in Issue 6. Derived from IEEE Std 1003.1q-2000.

Issue 7
These functions are marked obsolescent.

SD5-XSH-ERN-154 is applied, updating the DESCRIPTION to remove the
posix_trace_trygetnext_event() function from the list of functions that use the trid argument.

998 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

31626

31627

31628

31629

31630

31631

31632

31633

31634

31635

31636

31637

31638

31639

31640

31641

31642

31643

31644

31645

31646

31647

31648

31649

31650

31651

31652

31653

31654

31655

31656

31657

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces posix_trace_event()

NAME
posix_trace_event, posix_trace_eventid_open — trace functions for instrumenting application
code (TRACING)

SYNOPSIS
OB TRC #include <sys/types.h>

#include <trace.h>

void posix_trace_event(trace_event_id_t event_id,
const void *restrict data_ptr, s ize_t data_len);

int posix_trace_eventid_open(const char *restrict event_name,
trace_event_id_t *restrict event_id);

DESCRIPTION
The posix_trace_event() function shall record the event_id and the user data pointed to by data_ptr
in the trace stream into which the calling process is being traced and in which event_id is not
filtered out. If the total size of the user trace event data represented by data_len is not greater
than the declared maximum size for user trace event data, then the truncation-status attribute of
the trace event recorded is POSIX_TRACE_NOT_TRUNCATED. Otherwise, the user trace event
data is truncated to this declared maximum size and the truncation-status attribute of the trace
event recorded is POSIX_TRACE_TRUNCATED_RECORD.

If there is no trace stream created for the process or if the created trace stream is not running, or
if the trace event specified by event_id is filtered out in the trace stream, the posix_trace_event()
function shall have no effect.

The posix_trace_eventid_open() function shall associate a user trace event name with a trace event
type identifier for the calling process. The trace event name is the string pointed to by the
argument event_name. It shall have a maximum of {TRACE_EVENT_NAME_MAX} characters
(which has the minimum value {_POSIX_TRACE_EVENT_NAME_MAX}). The number of user
trace event type identifiers that can be defined for any given process is limited by the maximum
value {TRACE_USER_EVENT_MAX}, which has the minimum value
{POSIX_TRACE_USER_EVENT_MAX}.

If the Trace Inherit option is not supported, the posix_trace_eventid_open() function shall associate
the user trace event name pointed to by the event_name argument with a trace event type
identifier that is unique for the traced process, and is returned in the variable pointed to by the
event_id argument. If the user trace event name has already been mapped for the traced process,
then the previously assigned trace event type identifier shall be returned. If the per-process user
trace event name limit represented by {TRACE_USER_EVENT_MAX} has been reached, the pre-
defined POSIX_TRACE_UNNAMED_USEREVENT (see Table 2-7 (on page 81)) user trace event
shall be returned.

TRI If the Trace Inherit option is supported, the posix_trace_eventid_open() function shall associate the
user trace event name pointed to by the event_name argument with a trace event type identifier
that is unique for all the processes being traced in this same trace stream, and is returned in the
variable pointed to by the event_id argument. If the user trace event name has already been
mapped for the traced processes, then the previously assigned trace event type identifier shall be
returned. If the per-process user trace event name limit represented by
{TRACE_USER_EVENT_MAX} has been reached, the pre-defined
POSIX_TRACE_UNNAMED_USEREVENT (Table 2-7 (on page 81)) user trace event shall be
returned.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 999

31658

31659

31660

31661

31662

31663

31664

31665

31666

31667

31668

31669

31670

31671

31672

31673

31674

31675

31676

31677

31678

31679

31680

31681

31682

31683

31684

31685

31686

31687

31688

31689

31690

31691

31692

31693

31694

31695

31696

31697

31698

31699

31700

31701

31702

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces posix_trace_eventid_equal()

NAME
posix_trace_eventid_equal, posix_trace_eventid_get_name, posix_trace_trid_eventid_open —
manipulate the trace event type identifier (TRACING)

SYNOPSIS
OB TRC #include <trace.h>

int posix_trace_eventid_equal(trace_id_t trid, t race_event_id_t event1,
trace_event_id_t event2);

int posix_trace_eventid_get_name(trace_id_t trid,
trace_event_id_t event, c har * event_name);

TEF int posix_trace_trid_eventid_open(trace_id_t trid,
const char *restrict event_name,
trace_event_id_t *restrict event);

DESCRIPTION
The posix_trace_eventid_equal() function shall compare the trace event type identifiers event1 and
event2 from the same trace stream or the same trace log identified by the trid argument. If the
trace event type identifiers event1 and event2 are from different trace streams, the return value
shall be unspecified.

The posix_trace_eventid_get_name() function shall return, in the argument pointed to by
event_name, the trace event name associated with the trace event type identifier identified by the
argument event, for the trace stream or for the trace log identified by the trid argument. The
name of the trace event shall have a maximum of {TRACE_EVENT_NAME_MAX} characters
(which has the minimum value {_POSIX_TRACE_EVENT_NAME_MAX}). Successive calls to
this function with the same trace event type identifier and the same trace stream identifier shall
return the same event name.

TEF The posix_trace_trid_eventid_open() function shall associate a user trace event name with a trace
event type identifier for a given trace stream. The trace stream is identified by the trid argument,
and it shall be an active trace stream. The trace event name is the string pointed to by the
argument event_name. It shall have a maximum of {TRACE_EVENT_NAME_MAX} characters
(which has the minimum value {_POSIX_TRACE_EVENT_NAME_MAX}). The number of user
trace event type identifiers that can be defined for any given process is limited by the maximum
value {TRACE_USER_EVENT_MAX}, which has the minimum value
{_POSIX_TRACE_USER_EVENT_MAX}.

If the Trace Inherit option is not supported, the posix_trace_trid_eventid_open() function shall
associate the user trace event name pointed to by the event_name argument with a trace event
type identifier that is unique for the process being traced in the trace stream identified by the trid
argument, and is returned in the variable pointed to by the event argument. If the user trace
event name has already been mapped for the traced process, then the previously assigned trace
event type identifier shall be returned. If the per-process user trace event name limit represented
by {TRACE_USER_EVENT_MAX} has been reached, the pre-defined
POSIX_TRACE_UNNAMED_USEREVENT (see Table 2-7 (on page 81)) user trace event shall be
returned.

TEF TRI If the Trace Inherit option is supported, the posix_trace_trid_eventid_open() function shall
associate the user trace event name pointed to by the event_name argument with a trace event
type identifier that is unique for all the processes being traced in the trace stream identified by
the trid argument, and is returned in the variable pointed to by the event argument. If the user
trace event name has already been mapped for the traced processes, then the previously
assigned trace event type identifier shall be returned. If the per-process user trace event name

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1001

31737

31738

31739

31740

31741

31742

31743

31744

31745

31746

31747

31748

31749

31750

31751

31752

31753

31754

31755

31756

31757

31758

31759

31760

31761

31762

31763

31764

31765

31766

31767

31768

31769

31770

31771

31772

31773

31774

31775

31776

31777

31778

31779

31780

31781

31782

31783

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

posix_trace_eventid_equal() System Interfaces

limit represented by {TRACE_USER_EVENT_MAX} has been reached, the pre-defined
POSIX_TRACE_UNNAMED_USEREVENT (see Table 2-7 (on page 81)) user trace event shall be
returned.

RETURN VALUE
TEF Upon successful completion, the posix_trace_eventid_get_name() and

posix_trace_trid_eventid_open() functions shall return a value of zero. Otherwise, they shall return
the corresponding error number.

The posix_trace_eventid_equal() function shall return a non-zero value if event1 and event2 are
equal; otherwise, a value of zero shall be returned. No errors are defined. If either event1 or
event2 are not valid trace event type identifiers for the trace stream specified by trid or if the trid
is invalid, the behavior shall be unspecified.

The posix_trace_eventid_get_name() function stores the trace event name value in the object
pointed to by event_name, if successful.

TEF The posix_trace_trid_eventid_open() function stores the trace event type identifier value in the
object pointed to by event, if successful.

ERRORS
TEF The posix_trace_eventid_get_name() and posix_trace_trid_eventid_open() functions shall fail if:

[EINVAL] The trid argument was not a valid trace stream identifier.

TEF The posix_trace_trid_eventid_open() function shall fail if:

TEF [ENAMETOOLONG]
The size of the name pointed to by the event_name argument was longer than
the implementation-defined value {TRACE_EVENT_NAME_MAX}.

The posix_trace_eventid_get_name() function shall fail if:

[EINVAL] The trace event type identifier event was not associated with any name.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
The posix_trace_eventid_equal(), posix_trace_eventid_get_name(), and
posix_trace_trid_eventid_open() functions may be withdrawn in a future version.

SEE ALSO
Table 2-7 (on page 81), exec , posix_trace_event(), posix_trace_getnext_event(), the Base Definitions
volume of IEEE Std 1003.1-200x, <trace.h>

CHANGE HISTORY
First released in Issue 6. Derived from IEEE Std 1003.1q-2000.

IEEE PASC Interpretations 1003.1 #123 and #129 are applied.

Issue 7
These functions are marked obsolescent.

1002 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

31784

31785

31786

31787

31788

31789

31790

31791

31792

31793

31794

31795

31796

31797

31798

31799

31800

31801

31802

31803

31804

31805

31806

31807

31808

31809

31810

31811

31812

31813

31814

31815

31816

31817

31818

31819

31820

31821

31822

31823

31824

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces posix_trace_eventid_open()

NAME
posix_trace_eventid_open — trace functions for instrumenting application code (TRACING)

SYNOPSIS
OB TRC #include <sys/types.h>

#include <trace.h>

int posix_trace_eventid_open(const char *restrict event_name,
trace_event_id_t *restrict event_id);

DESCRIPTION
Refer to posix_trace_event().

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1003

31825

31826

31827

31828

31829

31830

31831

31832

31833

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

posix_trace_eventset_add() System Interfaces

NAME
posix_trace_eventset_add, posix_trace_eventset_del, posix_trace_eventset_empty,
posix_trace_eventset_fill, posix_trace_eventset_ismember — manipulate trace event type sets
(TRACING)

SYNOPSIS
OB TRC #include <trace.h>

TEF int posix_trace_eventset_add(trace_event_id_t event_id,
trace_event_set_t * set);

int posix_trace_eventset_del(trace_event_id_t event_id,
trace_event_set_t * set);

int posix_trace_eventset_empty(trace_event_set_t * set);
int posix_trace_eventset_fill(trace_event_set_t * set, i nt what);
int posix_trace_eventset_ismember(trace_event_id_t event_id,

const trace_event_set_t *restrict set, i nt *restrict ismember);

DESCRIPTION
These primitives manipulate sets of trace event types. They operate on data objects addressable
by the application, not on the current trace event filter of any trace stream.

The posix_trace_eventset_add() and posix_trace_eventset_del() functions, respectively, shall add or
delete the individual trace event type specified by the value of the argument event_id to or from
the trace event type set pointed to by the argument set. Adding a trace event type already in the
set or deleting a trace event type not in the set shall not be considered an error.

The posix_trace_eventset_empty() function shall initialize the trace event type set pointed to by
the set argument such that all trace event types defined, both system and user, shall be excluded
from the set.

The posix_trace_eventset_fill() function shall initialize the trace event type set pointed to by the
argument set, such that the set of trace event types defined by the argument what shall be
included in the set. The value of the argument what shall consist of one of the following values,
as defined in the <trace.h> header:

POSIX_TRACE_WOPID_EVENTS
All the process-independent implementation-defined system trace event types are included
in the set.

POSIX_TRACE_SYSTEM_EVENTS
All the implementation-defined system trace event types are included in the set, as are those
defined in IEEE Std 1003.1-200x.

POSIX_TRACE_ALL_EVENTS
All trace event types defined, both system and user, are included in the set.

Applications shall call either posix_trace_eventset_empty() or posix_trace_eventset_fill() at least
once for each object of type trace_event_set_t prior to any other use of that object. If such an
object is not initialized in this way, but is nonetheless supplied as an argument to any of the
posix_trace_eventset_add(), posix_trace_eventset_del(), or posix_trace_eventset_ismember() functions,
the results are undefined.

The posix_trace_eventset_ismember() function shall test whether the trace event type specified by
the value of the argument event_id is a member of the set pointed to by the argument set. The
value returned in the object pointed to by ismember argument is zero if the trace event type
identifier is not a member of the set and a value different from zero if it is a member of the set.

1004 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

31834

31835

31836

31837

31838

31839

31840

31841

31842

31843

31844

31845

31846

31847

31848

31849

31850

31851

31852

31853

31854

31855

31856

31857

31858

31859

31860

31861

31862

31863

31864

31865

31866

31867

31868

31869

31870

31871

31872

31873

31874

31875

31876

31877

31878

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces posix_trace_eventset_add()

RETURN VALUE
Upon successful completion, these functions shall return a value of zero. Otherwise, they shall
return the corresponding error number.

ERRORS
These functions may fail if:

[EINVAL] The value of one of the arguments is invalid.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
The posix_trace_eventset_add(), posix_trace_eventset_del(), posix_trace_eventset_empty(),
posix_trace_eventset_fill(), and posix_trace_eventset_ismember() functions may be removed in a
future version.

SEE ALSO
posix_trace_set_filter(), posix_trace_trid_eventid_open(), the Base Definitions volume of
IEEE Std 1003.1-200x, <trace.h>

CHANGE HISTORY
First released in Issue 6. Derived from IEEE Std 1003.1q-2000.

Issue 7
The posix_trace_eventset_add(), posix_trace_eventset_del(), posix_trace_eventset_empty(),
posix_trace_eventset_fill(), and posix_trace_eventset_ismember() functions are marked obsolescent.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1005

31879

31880

31881

31882

31883

31884

31885

31886

31887

31888

31889

31890

31891

31892

31893

31894

31895

31896

31897

31898

31899

31900

31901

31902

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

posix_trace_eventtypelist_getnext_id() System Interfaces

NAME
posix_trace_eventtypelist_getnext_id, posix_trace_eventtypelist_rewind — iterate over a
mapping of trace event types (TRACING)

SYNOPSIS
OB TRC #include <trace.h>

int posix_trace_eventtypelist_getnext_id(trace_id_t trid,
trace_event_id_t *restrict event, i nt *restrict unavailable);

int posix_trace_eventtypelist_rewind(trace_id_t trid);

DESCRIPTION
The first time posix_trace_eventtypelist_getnext_id() is called, the function shall return in the
variable pointed to by event the first trace event type identifier of the list of trace events of the
trace stream identified by the trid argument. Successive calls to
posix_trace_eventtypelist_getnext_id() return in the variable pointed to by event the next trace
event type identifier in that same list. Each time a trace event type identifier is successfully
written into the variable pointed to by the event argument, the variable pointed to by the
unavailable argument shall be set to zero. When no more trace event type identifiers are available,
and so none is returned, the variable pointed to by the unavailable argument shall be set to a
value different from zero.

The posix_trace_eventtypelist_rewind() function shall reset the next trace event type identifier to
be read to the first trace event type identifier from the list of trace events used in the trace stream
identified by trid.

RETURN VALUE
Upon successful completion, these functions shall return a value of zero. Otherwise, they shall
return the corresponding error number.

The posix_trace_eventtypelist_getnext_id() function stores the trace event type identifier value in
the object pointed to by event, if successful.

ERRORS
These functions shall fail if:

[EINVAL] The trid argument was not a valid trace stream identifier.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
The posix_trace_eventtypelist_getnext_id() and posix_trace_eventtypelist_rewind() functions may be
removed in a future version.

SEE ALSO
posix_trace_event(), posix_trace_getnext_event(), posix_trace_trid_eventid_open(), the Base
Definitions volume of IEEE Std 1003.1-200x, <trace.h>

1006 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

31903

31904

31905

31906

31907

31908

31909

31910

31911

31912

31913

31914

31915

31916

31917

31918

31919

31920

31921

31922

31923

31924

31925

31926

31927

31928

31929

31930

31931

31932

31933

31934

31935

31936

31937

31938

31939

31940

31941

31942

31943

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces posix_trace_eventtypelist_getnext_id()

CHANGE HISTORY
First released in Issue 6. Derived from IEEE Std 1003.1q-2000.

IEEE PASC Interpretations 1003.1 #123 and #129 are applied.

Issue 7
The posix_trace_eventtypelist_getnext_id() and posix_trace_eventtypelist_rewind() functions are
marked obsolescent.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1007

31944

31945

31946

31947

31948

31949

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

posix_trace_flush() System Interfaces

NAME
posix_trace_flush — trace stream flush from a process (TRACING)

SYNOPSIS
OB TRC #include <sys/types.h>

#include <trace.h>

TRL int posix_trace_flush(trace_id_t trid);

DESCRIPTION
Refer to posix_trace_create().

1008 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

31950

31951

31952

31953

31954

31955

31956

31957

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces posix_trace_get_attr()

NAME
posix_trace_get_attr, posix_trace_get_status — retrieve the trace attributes or trace status
(TRACING)

SYNOPSIS
OB TRC #include <trace.h>

int posix_trace_get_attr(trace_id_t trid, t race_attr_t * attr);
int posix_trace_get_status(trace_id_t trid,

struct posix_trace_status_info * statusinfo);

DESCRIPTION
The posix_trace_get_attr() function shall copy the attributes of the active trace stream identified

TRL by trid into the object pointed to by the attr argument. If the Trace Log option is supported, trid
may represent a pre-recorded trace log.

The posix_trace_get_status() function shall return, in the structure pointed to by the statusinfo
argument, the current trace status for the trace stream identified by the trid argument. These
status values returned in the structure pointed to by statusinfo shall have been appropriately

TRL read to ensure that the returned values are consistent. If the Trace Log option is supported and
the trid argument refers to a pre-recorded trace stream, the status shall be the status of the
completed trace stream.

Each time the posix_trace_get_status() function is used, the overrun status of the trace stream
TRL shall be reset to POSIX_TRACE_NO_OVERRUN immediately after the call completes. If the

Trace Log option is supported, the posix_trace_get_status() function shall behave the same as
when the option is not supported except for the following differences:

• If the trid argument refers to a trace stream with log, each time the posix_trace_get_status()
function is used, the log overrun status of the trace stream shall be reset to
POSIX_TRACE_NO_OVERRUN and the flush_error status shall be reset to zero
immediately after the call completes.

• If the trid argument refers to a pre-recorded trace stream, the status returned shall be the
status of the completed trace stream and the status values of the trace stream shall not be
reset.

RETURN VALUE
Upon successful completion, these functions shall return a value of zero. Otherwise, they shall
return the corresponding error number.

The posix_trace_get_attr() function stores the trace attributes in the object pointed to by attr, if
successful.

The posix_trace_get_status() function stores the trace status in the object pointed to by statusinfo,
if successful.

ERRORS
These functions shall fail if:

[EINVAL] The trace stream argument trid does not correspond to a valid active trace
stream or a valid trace log.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1009

31958

31959

31960

31961

31962

31963

31964

31965

31966

31967

31968

31969

31970

31971

31972

31973

31974

31975

31976

31977

31978

31979

31980

31981

31982

31983

31984

31985

31986

31987

31988

31989

31990

31991

31992

31993

31994

31995

31996

31997

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

posix_trace_get_attr() System Interfaces

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
The posix_trace_get_attr() and posix_trace_get_status() functions may be withdrawn in a future
version.

SEE ALSO
posix_trace_attr_destroy(), posix_trace_attr_init(), posix_trace_create(), posix_trace_open(), the Base
Definitions volume of IEEE Std 1003.1-200x, <trace.h>

CHANGE HISTORY
First released in Issue 6. Derived from IEEE Std 1003.1q-2000.

IEEE PASC Interpretation 1003.1 #123 is applied.

Issue 7
The posix_trace_get_attr() and posix_trace_get_status() functions are marked obsolescent.

1010 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

31998

31999

32000

32001

32002

32003

32004

32005

32006

32007

32008

32009

32010

32011

32012

32013

32014

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces posix_trace_get_filter()

NAME
posix_trace_get_filter, posix_trace_set_filter — retrieve and set the filter of an initialized trace
stream (TRACING)

SYNOPSIS
OB TRC #include <trace.h>

TEF int posix_trace_get_filter(trace_id_t trid, t race_event_set_t * set);
int posix_trace_set_filter(trace_id_t trid,

const trace_event_set_t * set, i nt how);

DESCRIPTION
The posix_trace_get_filter() function shall retrieve, into the argument pointed to by set, the actual
trace event filter from the trace stream specified by trid.

The posix_trace_set_filter() function shall change the set of filtered trace event types after a trace
stream identified by the trid argument is created. This function may be called prior to starting
the trace stream, or while the trace stream is active. By default, if no call is made to
posix_trace_set_filter(), all trace events shall be recorded (that is, none of the trace event types are
filtered out).

If this function is called while the trace is in progress, a special system trace event,
POSIX_TRACE_FILTER, shall be recorded in the trace indicating both the old and the new sets
of filtered trace event types (see Table 2-4 and Table 2-6 (on page 80)).

If the posix_trace_set_filter() function is interrupted by a signal, an error shall be returned and the
filter shall not be changed. In this case, the state of the trace stream shall not be changed.

The value of the argument how indicates the manner in which the set is to be changed and shall
have one of the following values, as defined in the <trace.h> header:

POSIX_TRACE_SET_EVENTSET
The resulting set of trace event types to be filtered shall be the trace event type set pointed
to by the argument set.

POSIX_TRACE_ADD_EVENTSET
The resulting set of trace event types to be filtered shall be the union of the current set and
the trace event type set pointed to by the argument set.

POSIX_TRACE_SUB_EVENTSET
The resulting set of trace event types to be filtered shall be all trace event types in the
current set that are not in the set pointed to by the argument set; that is, remove each
element of the specified set from the current filter.

RETURN VALUE
Upon successful completion, these functions shall return a value of zero. Otherwise, they shall
return the corresponding error number.

The posix_trace_get_filter() function stores the set of filtered trace event types in set, if successful.

ERRORS
These functions shall fail if:

[EINVAL] The value of the trid argument does not correspond to an active trace stream
or the value of the argument pointed to by set is invalid.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1011

32015

32016

32017

32018

32019

32020

32021

32022

32023

32024

32025

32026

32027

32028

32029

32030

32031

32032

32033

32034

32035

32036

32037

32038

32039

32040

32041

32042

32043

32044

32045

32046

32047

32048

32049

32050

32051

32052

32053

32054

32055

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

posix_trace_get_filter() System Interfaces

[EINTR] The operation was interrupted by a signal.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
The posix_trace_get_filter() and posix_trace_set_filter() functions may be removed in a future
version.

SEE ALSO
Table 2-4 (on page 79), Table 2-6 (on page 80), posix_trace_eventset_add(), the Base Definitions
volume of IEEE Std 1003.1-200x, <trace.h>

CHANGE HISTORY
First released in Issue 6. Derived from IEEE Std 1003.1q-2000.

IEEE PASC Interpretation 1003.1 #123 is applied.

Issue 7
The posix_trace_get_filter() and posix_trace_set_filter() functions are marked obsolescent.

1012 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

32056

32057

32058

32059

32060

32061

32062

32063

32064

32065

32066

32067

32068

32069

32070

32071

32072

32073

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces posix_trace_get_status()

NAME
posix_trace_get_status — retrieve the trace status (TRACING)

SYNOPSIS
OB TRC #include <trace.h>

int posix_trace_get_status(trace_id_t trid,
struct posix_trace_status_info * statusinfo);

DESCRIPTION
Refer to posix_trace_get_attr().

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1013

32074

32075

32076

32077

32078

32079

32080

32081

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

posix_trace_getnext_event() System Interfaces

NAME
posix_trace_getnext_event, posix_trace_timedgetnext_event, posix_trace_trygetnext_event —
retrieve a trace event (TRACING)

SYNOPSIS
OB TRC #include <sys/types.h>

#include <trace.h>

int posix_trace_getnext_event(trace_id_t trid,
struct posix_trace_event_info *restrict event,
void *restrict data, s ize_t num_bytes,
size_t *restrict data_len, i nt *restrict unavailable);

int posix_trace_timedgetnext_event(trace_id_t trid,
struct posix_trace_event_info *restrict event,
void *restrict data, s ize_t num_bytes,
size_t *restrict data_len, i nt *restrict unavailable,
const struct timespec *restrict abs_timeout);

int posix_trace_trygetnext_event(trace_id_t trid,
struct posix_trace_event_info *restrict event,
void *restrict data, s ize_t num_bytes,
size_t *restrict data_len, i nt *restrict unavailable);

DESCRIPTION
The posix_trace_getnext_event() function shall report a recorded trace event either from an active

TRL trace stream without log or a pre-recorded trace stream identified by the trid argument. The
posix_trace_trygetnext_event() function shall report a recorded trace event from an active trace
stream without log identified by the trid argument.

The trace event information associated with the recorded trace event shall be copied by the
function into the structure pointed to by the argument event and the data associated with the
trace event shall be copied into the buffer pointed to by the data argument.

The posix_trace_getnext_event() function shall block if the trid argument identifies an active trace
stream and there is currently no trace event ready to be retrieved. When returning, if a recorded
trace event was reported, the variable pointed to by the unavailable argument shall be set to zero.
Otherwise, the variable pointed to by the unavailable argument shall be set to a value different
from zero.

The posix_trace_timedgetnext_event() function shall attempt to get another trace event from an
active trace stream without log, as in the posix_trace_getnext_event() function. However, if no
trace event is available from the trace stream, the implied wait shall be terminated when the
timeout specified by the argument abs_timeout expires, and the function shall return the error
[ETIMEDOUT].

The timeout shall expire when the absolute time specified by abs_timeout passes, as measured by
the clock upon which timeouts are based (that is, when the value of that clock equals or exceeds
abs_timeout), or if the absolute time specified by abs_timeout has already passed at the time of the
call.

The timeout shall be based on the CLOCK_REALTIME clock. The resolution of the timeout shall
be the resolution of the clock on which it is based. The timespec data type is defined in the
<time.h> header.

Under no circumstance shall the function fail with a timeout if a trace event is immediately
available from the trace stream. The validity of the abs_timeout argument need not be checked if

1014 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

32082

32083

32084

32085

32086

32087

32088

32089

32090

32091

32092

32093

32094

32095

32096

32097

32098

32099

32100

32101

32102

32103

32104

32105

32106

32107

32108

32109

32110

32111

32112

32113

32114

32115

32116

32117

32118

32119

32120

32121

32122

32123

32124

32125

32126

32127

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces posix_trace_getnext_event()

a trace event is immediately available from the trace stream.

The behavior of this function for a pre-recorded trace stream is unspecified.

TRL The posix_trace_trygetnext_event() function shall not block. This function shall return an error if
the trid argument identifies a pre-recorded trace stream. If a recorded trace event was reported,
the variable pointed to by the unavailable argument shall be set to zero. Otherwise, if no trace
event was reported, the variable pointed to by the unavailable argument shall be set to a value
different from zero.

The argument num_bytes shall be the size of the buffer pointed to by the data argument. The
argument data_len reports to the application the length in bytes of the data record just
transferred. If num_bytes is greater than or equal to the size of the data associated with the trace
event pointed to by the event argument, all the recorded data shall be transferred. In this case,
the truncation-status member of the trace event structure shall be either
POSIX_TRACE_NOT_TRUNCATED, if the trace event data was recorded without truncation
while tracing, or POSIX_TRACE_TRUNCATED_RECORD, if the trace event data was truncated
when it was recorded. If the num_bytes argument is less than the length of recorded trace event
data, the data transferred shall be truncated to a length of num_bytes, the value stored in the
variable pointed to by data_len shall be equal to num_bytes, and the truncation-status member of
the event structure argument shall be set to POSIX_TRACE_TRUNCATED_READ (see the
posix_trace_event_info structure defined in <trace.h>).

The report of a trace event shall be sequential starting from the oldest recorded trace event. Trace
events shall be reported in the order in which they were generated, up to an implementation-
defined time resolution that causes the ordering of trace events occurring very close to each
other to be unknown. Once reported, a trace event cannot be reported again from an active trace
stream. Once a trace event is reported from an active trace stream without log, the trace stream
shall make the resources associated with that trace event available to record future generated
trace events.

RETURN VALUE
Upon successful completion, these functions shall return a value of zero. Otherwise, they shall
return the corresponding error number.

If successful, these functions store:

• The recorded trace event in the object pointed to by event

• The trace event information associated with the recorded trace event in the object pointed
to by data

• The length of this trace event information in the object pointed to by data_len

• The value of zero in the object pointed to by unavailable

ERRORS
These functions shall fail if:

[EINVAL] The trace stream identifier argument trid is invalid.

The posix_trace_getnext_event() and posix_trace_timedgetnext_event() functions shall fail if:

[EINTR] The operation was interrupted by a signal, and so the call had no effect.

The posix_trace_trygetnext_event() function shall fail if:

[EINVAL] The trace stream identifier argument trid does not correspond to an active
trace stream.

The posix_trace_timedgetnext_event() function shall fail if:

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1015

32128

32129

32130

32131

32132

32133

32134

32135

32136

32137

32138

32139

32140

32141

32142

32143

32144

32145

32146

32147

32148

32149

32150

32151

32152

32153

32154

32155

32156

32157

32158

32159

32160

32161

32162

32163

32164

32165

32166

32167

32168

32169

32170

32171

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

posix_trace_getnext_event() System Interfaces

[EINVAL] There is no trace event immediately available from the trace stream, and the
timeout argument is invalid.

[ETIMEDOUT] No trace event was available from the trace stream before the specified
timeout timeout expired.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
The posix_trace_getnext_event(), posix_trace_timedgetnext_event(), and
posix_trace_trygetnext_event() functions may be removed in a future version.

SEE ALSO
posix_trace_create(), posix_trace_open(), the Base Definitions volume of IEEE Std 1003.1-200x,
<sys/types.h>, <trace.h>

CHANGE HISTORY
First released in Issue 6. Derived from IEEE Std 1003.1q-2000.

IEEE PASC Interpretation 1003.1 #123 is applied.

Issue 7
The posix_trace_getnext_event(), posix_trace_timedgetnext_event(), and
posix_trace_trygetnext_event() functions are marked obsolescent.

Functionality relating to the Timers option is moved to the Base.

1016 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

32172

32173

32174

32175

32176

32177

32178

32179

32180

32181

32182

32183

32184

32185

32186

32187

32188

32189

32190

32191

32192

32193

32194

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces posix_trace_open()

NAME
posix_trace_open, posix_trace_rewind — trace log management (TRACING)

SYNOPSIS
OB TRC #include <trace.h>

TRL int posix_trace_open(int file_desc, t race_id_t * trid);
int posix_trace_rewind(trace_id_t trid);

DESCRIPTION
Refer to posix_trace_close().

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1017

32195

32196

32197

32198

32199

32200

32201

32202

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

posix_trace_set_filter() System Interfaces

NAME
posix_trace_set_filter — set filter of an initialized trace stream (TRACING)

SYNOPSIS
OB TRC #include <trace.h>

TEF int posix_trace_set_filter(trace_id_t trid,
const trace_event_set_t * set, i nt how);

DESCRIPTION
Refer to posix_trace_get_filter().

1018 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

32203

32204

32205

32206

32207

32208

32209

32210

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces posix_trace_shutdown()

NAME
posix_trace_shutdown — trace stream shutdown from a process (TRACING)

SYNOPSIS
OB TRC #include <sys/types.h>

#include <trace.h>

int posix_trace_shutdown(trace_id_t trid);

DESCRIPTION
Refer to posix_trace_create().

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1019

32211

32212

32213

32214

32215

32216

32217

32218

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

posix_trace_start() System Interfaces

NAME
posix_trace_start, posix_trace_stop — trace start and stop (TRACING)

SYNOPSIS
OB TRC #include <trace.h>

int posix_trace_start(trace_id_t trid);
int posix_trace_stop (trace_id_t trid);

DESCRIPTION
The posix_trace_start() and posix_trace_stop() functions, respectively, shall start and stop the trace
stream identified by the argument trid.

The effect of calling the posix_trace_start() function shall be recorded in the trace stream as the
POSIX_TRACE_START system trace event and the status of the trace stream shall become
POSIX_TRACE_RUNNING. If the trace stream is in progress when this function is called, the
POSIX_TRACE_START system trace event shall not be recorded and the trace stream shall
continue to run. If the trace stream is full, the POSIX_TRACE_START system trace event shall
not be recorded and the status of the trace stream shall not be changed.

The effect of calling the posix_trace_stop() function shall be recorded in the trace stream as the
POSIX_TRACE_STOP system trace event and the status of the trace stream shall become
POSIX_TRACE_SUSPENDED. If the trace stream is suspended when this function is called, the
POSIX_TRACE_STOP system trace event shall not be recorded and the trace stream shall remain
suspended. If the trace stream is full, the POSIX_TRACE_STOP system trace event shall not be
recorded and the status of the trace stream shall not be changed.

RETURN VALUE
Upon successful completion, these functions shall return a value of zero. Otherwise, they shall
return the corresponding error number.

ERRORS
These functions shall fail if:

[EINVAL] The value of the argument trid does not correspond to an active trace stream
and thus no trace stream was started or stopped.

[EINTR] The operation was interrupted by a signal and thus the trace stream was not
necessarily started or stopped.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
The posix_trace_start() and posix_trace_stop() functions may be removed in a future version.

SEE ALSO
posix_trace_create(), the Base Definitions volume of IEEE Std 1003.1-200x, <trace.h>

1020 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

32219

32220

32221

32222

32223

32224

32225

32226

32227

32228

32229

32230

32231

32232

32233

32234

32235

32236

32237

32238

32239

32240

32241

32242

32243

32244

32245

32246

32247

32248

32249

32250

32251

32252

32253

32254

32255

32256

32257

32258

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces posix_trace_start()

CHANGE HISTORY
First released in Issue 6. Derived from IEEE Std 1003.1q-2000.

IEEE PASC Interpretation 1003.1 #123 is applied.

Issue 7
The posix_trace_start() and posix_trace_stop() functions are marked obsolescent.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1021

32259

32260

32261

32262

32263

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

posix_trace_timedgetnext_event() System Interfaces

NAME
posix_trace_timedgetnext_event — retrieve a trace event (TRACING)

SYNOPSIS
OB TRC #include <sys/types.h>

#include <trace.h>

int posix_trace_timedgetnext_event(trace_id_t trid,
struct posix_trace_event_info *restrict event,
void *restrict data, s ize_t num_bytes,
size_t *restrict data_len, i nt *restrict unavailable,
const struct timespec *restrict abs_timeout);

DESCRIPTION
Refer to posix_trace_getnext_event().

1022 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

32264

32265

32266

32267

32268

32269

32270

32271

32272

32273

32274

32275

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces posix_trace_trid_eventid_open()

NAME
posix_trace_trid_eventid_open — open a trace event type identifier (TRACING)

SYNOPSIS
OB TRC #include <trace.h>

TEF int posix_trace_trid_eventid_open(trace_id_t trid,
const char *restrict event_name,
trace_event_id_t *restrict event);

DESCRIPTION
Refer to posix_trace_eventid_equal().

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1023

32276

32277

32278

32279

32280

32281

32282

32283

32284

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

posix_trace_trygetnext_event() System Interfaces

NAME
posix_trace_trygetnext_event — retrieve a trace event (TRACING)

SYNOPSIS
OB TRC #include <sys/types.h>

#include <trace.h>

int posix_trace_trygetnext_event(trace_id_t trid,
struct posix_trace_event_info *restrict event,
void *restrict data, s ize_t num_bytes,
size_t *restrict data_len, i nt *restrict unavailable);

DESCRIPTION
Refer to posix_trace_getnext_event().

1024 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

32285

32286

32287

32288

32289

32290

32291

32292

32293

32294

32295

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces posix_typed_mem_get_info()

NAME
posix_typed_mem_get_info — query typed memory information (ADVANCED REALTIME)

SYNOPSIS
TYM #include <sys/mman.h>

int posix_typed_mem_get_info(int fildes,
struct posix_typed_mem_info * info);

DESCRIPTION
The posix_typed_mem_get_info() function shall return, in the posix_tmi_length field of the
posix_typed_mem_info structure pointed to by info, the maximum length which may be
successfully allocated by the typed memory object designated by fildes. This maximum length
shall take into account the flag POSIX_TYPED_MEM_ALLOCATE or
POSIX_TYPED_MEM_ALLOCATE_CONTIG specified when the typed memory object
represented by fildes was opened. The maximum length is dynamic; therefore, the value
returned is valid only while the current mapping of the corresponding typed memory pool
remains unchanged.

If fildes represents a typed memory object opened with neither the
POSIX_TYPED_MEM_ALLOCATE flag nor the POSIX_TYPED_MEM_ALLOCATE_CONTIG
flag specified, the returned value of info->posix_tmi_length is unspecified.

The posix_typed_mem_get_info() function may return additional implementation-defined
information in other fields of the posix_typed_mem_info structure pointed to by info.

If the memory object specified by fildes is not a typed memory object, then the behavior of this
function is undefined.

RETURN VALUE
Upon successful completion, the posix_typed_mem_get_info() function shall return zero;
otherwise, the corresponding error status value shall be returned.

ERRORS
The posix_typed_mem_get_info() function shall fail if:

[EBADF] The fildes argument is not a valid open file descriptor.

[ENODEV] The fildes argument is not connected to a memory object supported by this
function.

This function shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
An application that needs to allocate a block of typed memory with length dependent upon the
amount of memory currently available must either query the typed memory object to obtain the
amount available, or repeatedly invoke mmap() attempting to guess an appropriate length.
While the latter method is existing practice with malloc(), it is awkward and imprecise. The
posix_typed_mem_get_info() function allows an application to immediately determine available
memory. This is particularly important for typed memory objects that may in some cases be
scarce resources. Note that when a typed memory pool is a shared resource, some form of
mutual-exclusion or synchronization may be required while typed memory is being queried and

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1025

32296

32297

32298

32299

32300

32301

32302

32303

32304

32305

32306

32307

32308

32309

32310

32311

32312

32313

32314

32315

32316

32317

32318

32319

32320

32321

32322

32323

32324

32325

32326

32327

32328

32329

32330

32331

32332

32333

32334

32335

32336

32337

32338

32339

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

posix_typed_mem_get_info() System Interfaces

allocated to prevent race conditions.

The existing fstat() function is not suitable for this purpose. We realize that implementations
may wish to provide other attributes of typed memory objects (for example, alignment
requirements, page size, and so on). The fstat() function returns a structure which is not
extensible and, furthermore, contains substantial information that is inappropriate for typed
memory objects.

FUTURE DIRECTIONS
None.

SEE ALSO
fstat(), mmap(), posix_typed_mem_open(), the Base Definitions volume of IEEE Std 1003.1-200x,
<sys/mman.h>

CHANGE HISTORY
First released in Issue 6. Derived from IEEE Std 1003.1j-2000.

1026 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

32340

32341

32342

32343

32344

32345

32346

32347

32348

32349

32350

32351

32352

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces posix_typed_mem_open()

NAME
posix_typed_mem_open — open a typed memory object (ADVANCED REALTIME)

SYNOPSIS
TYM #include <sys/mman.h>

int posix_typed_mem_open(const char * name, i nt oflag, i nt tflag);

DESCRIPTION
The posix_typed_mem_open() function shall establish a connection between the typed memory
object specified by the string pointed to by name and a file descriptor. It shall create an open file
description that refers to the typed memory object and a file descriptor that refers to that open
file description. The file descriptor is used by other functions to refer to that typed memory
object. It is unspecified whether the name appears in the file system and is visible to other
functions that take pathnames as arguments. The name argument shall conform to the
construction rules for a pathname. If name begins with the slash character, then processes calling
posix_typed_mem_open() with the same value of name shall refer to the same typed memory
object. If name does not begin with the slash character, the effect is implementation-defined. The
interpretation of slash characters other than the leading slash character in name is
implementation-defined.

Each typed memory object supported in a system shall be identified by a name which specifies
not only its associated typed memory pool, but also the path or port by which it is accessed. That
is, the same typed memory pool accessed via several different ports shall have several different
corresponding names. The binding between names and typed memory objects is established in
an implementation-defined manner. Unlike shared memory objects, there is no way within
IEEE Std 1003.1-200x for a program to create a typed memory object.

The value of tflag shall determine how the typed memory object behaves when subsequently
mapped by calls to mmap(). At most, one of the following flags defined in <sys/mman.h> may
be specified:

POSIX_TYPED_MEM_ALLOCATE
Allocate on mmap().

POSIX_TYPED_MEM_ALLOCATE_CONTIG
Allocate contiguously on mmap().

POSIX_TYPED_MEM_MAP_ALLOCATABLE
Map on mmap(), without affecting allocatability.

If tflag has the flag POSIX_TYPED_MEM_ALLOCATE specified, any subsequent call to mmap()
using the returned file descriptor shall result in allocation and mapping of typed memory from
the specified typed memory pool. The allocated memory may be a contiguous previously
unallocated area of the typed memory pool or several non-contiguous previously unallocated
areas (mapped to a contiguous portion of the process address space). If tflag has the flag
POSIX_TYPED_MEM_ALLOCATE_CONTIG specified, any subsequent call to mmap() using the
returned file descriptor shall result in allocation and mapping of a single contiguous previously
unallocated area of the typed memory pool (also mapped to a contiguous portion of the process
address space). If tflag has none of the flags POSIX_TYPED_MEM_ALLOCATE or
POSIX_TYPED_MEM_ALLOCATE_CONTIG specified, any subsequent call to mmap() using the
returned file descriptor shall map an application-chosen area from the specified typed memory
pool such that this mapped area becomes unavailable for allocation until unmapped by all
processes. If tflag has the flag POSIX_TYPED_MEM_MAP_ALLOCATABLE specified, any
subsequent call to mmap() using the returned file descriptor shall map an application-chosen

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1027

32353

32354

32355

32356

32357

32358

32359

32360

32361

32362

32363

32364

32365

32366

32367

32368

32369

32370

32371

32372

32373

32374

32375

32376

32377

32378

32379

32380

32381

32382

32383

32384

32385

32386

32387

32388

32389

32390

32391

32392

32393

32394

32395

32396

32397

32398

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

posix_typed_mem_open() System Interfaces

area from the specified typed memory pool without an effect on the availability of that area for
allocation; that is, mapping such an object leaves each byte of the mapped area unallocated if it
was unallocated prior to the mapping or allocated if it was allocated prior to the mapping. The
appropriate privilege to specify the POSIX_TYPED_MEM_MAP_ALLOCATABLE flag is
implementation-defined.

If successful, posix_typed_mem_open() shall return a file descriptor for the typed memory object
that is the lowest numbered file descriptor not currently open for that process. The open file
description is new, and therefore the file descriptor shall not share it with any other processes. It
is unspecified whether the file offset is set. The FD_CLOEXEC file descriptor flag associated
with the new file descriptor shall be cleared.

The behavior of msync(), ftruncate(), and all file operations other than mmap(),
posix_mem_offset(), posix_typed_mem_get_info(), fstat(), dup(), dup2(), and close(), is unspecified
when passed a file descriptor connected to a typed memory object by this function.

The file status flags of the open file description shall be set according to the value of oflag.
Applications shall specify exactly one of the three access mode values described below and
defined in the <fcntl.h> header, as the value of oflag.

O_RDONLY Open for read access only.

O_WRONLY Open for write access only.

O_RDWR Open for read or write access.

RETURN VALUE
Upon successful completion, the posix_typed_mem_open() function shall return a non-negative
integer representing the lowest numbered unused file descriptor. Otherwise, it shall return −1
and set errno to indicate the error.

ERRORS
The posix_typed_mem_open() function shall fail if:

[EACCES] The typed memory object exists and the permissions specified by oflag are
denied.

[EINTR] The posix_typed_mem_open() operation was interrupted by a signal.

[EINVAL] The flags specified in tflag are invalid (more than one of
POSIX_TYPED_MEM_ALLOCATE,
POSIX_TYPED_MEM_ALLOCATE_CONTIG, or
POSIX_TYPED_MEM_MAP_ALLOCATABLE is specified).

[EMFILE] All file descriptors available to the process are currently open.

[ENAMETOOLONG]
The length of the name argument exceeds {PATH_MAX} or a pathname
component is longer than {NAME_MAX}.

[ENFILE] Too many file descriptors are currently open in the system.

[ENOENT] The named typed memory object does not exist.

[EPERM] The caller lacks the appropriate privilege to specify the flag
POSIX_TYPED_MEM_MAP_ALLOCATABLE in argument tflag.

1028 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

32399

32400

32401

32402

32403

32404

32405

32406

32407

32408

32409

32410

32411

32412

32413

32414

32415

32416

32417

32418

32419

32420

32421

32422

32423

32424

32425

32426

32427

32428

32429

32430

32431

32432

32433

32434

32435

32436

32437

32438

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces posix_typed_mem_open()

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
close(), dup(), exec , fcntl(), fstat(), ftruncate(), mmap(), msync(), posix_mem_offset(),
posix_typed_mem_get_info(), umask(), the Base Definitions volume of IEEE Std 1003.1-200x,
<fcntl.h>, <sys/mman.h>

CHANGE HISTORY
First released in Issue 6. Derived from IEEE Std 1003.1j-2000.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1029

32439

32440

32441

32442

32443

32444

32445

32446

32447

32448

32449

32450

32451

32452

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

pow() System Interfaces

NAME
pow, powf, powl — power function

SYNOPSIS
#include <math.h>

double pow(double x, d ouble y);
float powf(float x, f loat y);
long double powl(long double x, l ong double y);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

These functions shall compute the value of x raised to the power y, xy. If x is negative, the
application shall ensure that y is an integer value.

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-
zero, an error has occurred.

RETURN VALUE
Upon successful completion, these functions shall return the value of x raised to the power y.

MX For finite values of x < 0, and finite non-integer values of y, a domain error shall occur and
either a NaN (if representable), or an implementation-defined value shall be returned.

If the correct value would cause overflow, a range error shall occur and pow(), powf(), and
powl() shall return ±HUGE_VAL, ±HUGE_VALF, and ±HUGE_VALL, respectively, with the
same sign as the correct value of the function.

If the correct value would cause underflow, and is not representable, a range error may occur,
MX and either 0.0 (if supported), or an implementation-defined value shall be returned.

CX For y < 0, if x is zero, a pole error may occur and pow(), powf(), and powl() shall return
MX ±HUGE_VAL, ±HUGE_VALF, and ±HUGE_VALL, respectively. On systems that support the

IEC 60559 Floating-Point option, a pole error shall occur and pow(), powf(), and powl() shall
return ±HUGE_VAL, ±HUGE_VALF, and ±HUGE_VALL, respectively if y is an odd integer, or
HUGE_VAL, HUGE_VALF, and HUGE_VALL, respectively if y is not an odd integer.

MX If x or y is a NaN, a NaN shall be returned (unless specified elsewhere in this description).

For any value of y (including NaN), if x is +1, 1.0 shall be returned.

For any value of x (including NaN), if y is ±0, 1.0 shall be returned.

For any odd integer value of y > 0, if x is ±0, ±0 shall be returned.

For y > 0 and not an odd integer, if x is ±0, +0 shall be returned.

If x is −1, and y is ±Inf, 1.0 shall be returned.

For |x| < 1, if y is −Inf, +Inf shall be returned.

For |x| > 1, if y is −Inf, +0 shall be returned.

For |x| < 1, if y is +Inf, +0 shall be returned.

For |x| > 1, if y is +Inf, +Inf shall be returned.

1030 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

32453

32454

32455

32456

32457

32458

32459

32460

32461

32462

32463

32464

32465

32466

32467

32468

32469

32470

32471

32472

32473

32474

32475

32476

32477

32478

32479

32480

32481

32482

32483

32484

32485

32486

32487

32488

32489

32490

32491

32492

32493

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces pow()

For y an odd integer < 0, if x is −Inf, −0 shall be returned.

For y < 0 and not an odd integer, if x is −Inf, +0 shall be returned.

For y an odd integer > 0, if x is −Inf, −Inf shall be returned.

For y > 0 and not an odd integer, if x is −Inf, +Inf shall be returned.

For y < 0, if x is +Inf, +0 shall be returned.

For y > 0, if x is +Inf, +Inf shall be returned.

If the correct value would cause underflow, and is representable, a range error may occur and
the correct value shall be returned.

ERRORS
These functions shall fail if:

Domain Error The value of x is negative and y is a finite non-integer.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [EDOM]. If the integer expression (math_errhandling
& MATH_ERREXCEPT) is non-zero, then the invalid floating-point exception
shall be raised.

MX Pole Error The value of x is zero and y is negative.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the divide-by-zero
floating-point exception shall be raised.

Range Error The result overflows.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the overflow
floating-point exception shall be raised.

These functions may fail if:

Pole Error The value of x is zero and y is negative.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the divide-by-zero
floating-point exception shall be raised.

Range Error The result underflows.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the underflow
floating-point exception shall be raised.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1031

32494

32495

32496

32497

32498

32499

32500

32501

32502

32503

32504

32505

32506

32507

32508

32509

32510

32511

32512

32513

32514

32515

32516

32517

32518

32519

32520

32521

32522

32523

32524

32525

32526

32527

32528

32529

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

pow() System Interfaces

EXAMPLES
None.

APPLICATION USAGE
On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling &
MATH_ERREXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
exp(), feclearexcept(), fetestexcept(), isnan(), the Base Definitions volume of IEEE Std 1003.1-200x,
Section 4.18, Treatment of Error Conditions for Mathematical Functions, <math.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The DESCRIPTION is updated to indicate how an application should check for an error. This
text was previously published in the APPLICATION USAGE section.

Issue 6
The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

The powf() and powl() functions are added for alignment with the ISO/IEC 9899: 1999 standard.

The DESCRIPTION, RETURN VALUE, ERRORS, and APPLICATION USAGE sections are
revised to align with the ISO/IEC 9899: 1999 standard.

IEC 60559: 1989 standard floating-point extensions over the ISO/IEC 9899: 1999 standard are
marked.

IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/42 is applied, correcting the third
paragraph in the RETURN VALUE section.

Issue 7
ISO/IEC 9899: 1999 standard, Technical Corrigendum 2 #51 (SD5-XSH-ERN-81) is applied.

1032 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

32530

32531

32532

32533

32534

32535

32536

32537

32538

32539

32540

32541

32542

32543

32544

32545

32546

32547

32548

32549

32550

32551

32552

32553

32554

32555

32556

32557

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces pread()

NAME
pread — read from a file

SYNOPSIS
#include <unistd.h>

ssize_t pread(int fildes, v oid * buf, s ize_t nbyte, o ff_t offset);

DESCRIPTION
Refer to read().

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1033

32558

32559

32560

32561

32562

32563

32564

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

printf() System Interfaces

NAME
printf — print formatted output

SYNOPSIS
#include <stdio.h>

int printf(const char *restrict format, . ..);

DESCRIPTION
Refer to fprintf().

1034 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

32565

32566

32567

32568

32569

32570

32571

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces pselect()

NAME
pselect, select — synchronous I/O multiplexing

SYNOPSIS
#include <sys/select.h>

int pselect(int nfds, f d_set *restrict readfds,
fd_set *restrict writefds, f d_set *restrict errorfds,
const struct timespec *restrict timeout,
const sigset_t *restrict sigmask);

int select(int nfds, f d_set *restrict readfds,
fd_set *restrict writefds, f d_set *restrict errorfds,
struct timeval *restrict timeout);

void FD_CLR(int fd, f d_set * fdset);
int FD_ISSET(int fd, f d_set * fdset);
void FD_SET(int fd, f d_set * fdset);
void FD_ZERO(fd_set * fdset);

DESCRIPTION
The pselect() function shall examine the file descriptor sets whose addresses are passed in the
readfds, writefds, and errorfds parameters to see whether some of their descriptors are ready for
reading, are ready for writing, or have an exceptional condition pending, respectively.

The select() function shall be equivalent to the pselect() function, except as follows:

• For the select() function, the timeout period is given in seconds and microseconds in an
argument of type struct timeval, whereas for the pselect() function the timeout period is
given in seconds and nanoseconds in an argument of type struct timespec.

• The select() function has no sigmask argument; it shall behave as pselect() does when
sigmask is a null pointer.

• Upon successful completion, the select() function may modify the object pointed to by the
timeout argument.

The pselect() and select() functions shall support regular files, terminal and pseudo-terminal
OB XSR devices, STREAMS-based files, FIFOs, pipes, and sockets. The behavior of pselect() and select()

on file descriptors that refer to other types of file is unspecified.

The nfds argument specifies the range of descriptors to be tested. The first nfds descriptors shall
be checked in each set; that is, the descriptors from zero through nfds−1 in the descriptor sets
shall be examined.

If the readfds argument is not a null pointer, it points to an object of type fd_set that on input
specifies the file descriptors to be checked for being ready to read, and on output indicates
which file descriptors are ready to read.

If the writefds argument is not a null pointer, it points to an object of type fd_set that on input
specifies the file descriptors to be checked for being ready to write, and on output indicates
which file descriptors are ready to write.

If the errorfds argument is not a null pointer, it points to an object of type fd_set that on input
specifies the file descriptors to be checked for error conditions pending, and on output indicates
which file descriptors have error conditions pending.

Upon successful completion, the pselect() or select() function shall modify the objects pointed to
by the readfds, writefds, and errorfds arguments to indicate which file descriptors are ready for
reading, ready for writing, or have an error condition pending, respectively, and shall return the

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1035

32572

32573

32574

32575

32576

32577

32578

32579

32580

32581

32582

32583

32584

32585

32586

32587

32588

32589

32590

32591

32592

32593

32594

32595

32596

32597

32598

32599

32600

32601

32602

32603

32604

32605

32606

32607

32608

32609

32610

32611

32612

32613

32614

32615

32616

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

pselect() System Interfaces

total number of ready descriptors in all the output sets. For each file descriptor less than nfds, the
corresponding bit shall be set on successful completion if it was set on input and the associated
condition is true for that file descriptor.

If none of the selected descriptors are ready for the requested operation, the pselect() or select()
function shall block until at least one of the requested operations becomes ready, until the
timeout occurs, or until interrupted by a signal. The timeout parameter controls how long the
pselect() or select() function shall take before timing out. If the timeout parameter is not a null
pointer, it specifies a maximum interval to wait for the selection to complete. If the specified
time interval expires without any requested operation becoming ready, the function shall return.
If the timeout parameter is a null pointer, then the call to pselect() or select() shall block
indefinitely until at least one descriptor meets the specified criteria. To effect a poll, the timeout
parameter should not be a null pointer, and should point to a zero-valued timespec structure.

The use of a timeout does not affect any pending timers set up by alarm() or setitimer().

Implementations may place limitations on the maximum timeout interval supported. All
implementations shall support a maximum timeout interval of at least 31 days. If the timeout
argument specifies a timeout interval greater than the implementation-defined maximum value,
the maximum value shall be used as the actual timeout value. Implementations may also place
limitations on the granularity of timeout intervals. If the requested timeout interval requires a
finer granularity than the implementation supports, the actual timeout interval shall be rounded
up to the next supported value.

If sigmask is not a null pointer, then the pselect() function shall replace the signal mask of the
caller by the set of signals pointed to by sigmask before examining the descriptors, and shall
restore the signal mask of the calling thread before returning.

A descriptor shall be considered ready for reading when a call to an input function with
O_NONBLOCK clear would not block, whether or not the function would transfer data
successfully. (The function might return data, an end-of-file indication, or an error other than
one indicating that it is blocked, and in each of these cases the descriptor shall be considered
ready for reading.)

A descriptor shall be considered ready for writing when a call to an output function with
O_NONBLOCK clear would not block, whether or not the function would transfer data
successfully.

If a socket has a pending error, it shall be considered to have an exceptional condition pending.
Otherwise, what constitutes an exceptional condition is file type-specific. For a file descriptor for
use with a socket, it is protocol-specific except as noted below. For other file types it is
implementation-defined. If the operation is meaningless for a particular file type, pselect() or
select() shall indicate that the descriptor is ready for read or write operations, and shall indicate
that the descriptor has no exceptional condition pending.

If a descriptor refers to a socket, the implied input function is the recvmsg() function with
parameters requesting normal and ancillary data, such that the presence of either type shall
cause the socket to be marked as readable. The presence of out-of-band data shall be checked if
the socket option SO_OOBINLINE has been enabled, as out-of-band data is enqueued with
normal data. If the socket is currently listening, then it shall be marked as readable if an
incoming connection request has been received, and a call to the accept() function shall complete
without blocking.

If a descriptor refers to a socket, the implied output function is the sendmsg() function supplying
an amount of normal data equal to the current value of the SO_SNDLOWAT option for the
socket. If a non-blocking call to the connect() function has been made for a socket, and the
connection attempt has either succeeded or failed leaving a pending error, the socket shall be
marked as writable.

1036 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

32617

32618

32619

32620

32621

32622

32623

32624

32625

32626

32627

32628

32629

32630

32631

32632

32633

32634

32635

32636

32637

32638

32639

32640

32641

32642

32643

32644

32645

32646

32647

32648

32649

32650

32651

32652

32653

32654

32655

32656

32657

32658

32659

32660

32661

32662

32663

32664

32665

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces pselect()

A socket shall be considered to have an exceptional condition pending if a receive operation
with O_NONBLOCK clear for the open file description and with the MSG_OOB flag set would
return out-of-band data without blocking. (It is protocol-specific whether the MSG_OOB flag
would be used to read out-of-band data.) A socket shall also be considered to have an
exceptional condition pending if an out-of-band data mark is present in the receive queue. Other
circumstances under which a socket may be considered to have an exceptional condition
pending are protocol-specific and implementation-defined.

If the readfds, writefds, and errorfds arguments are all null pointers and the timeout argument is
not a null pointer, the pselect() or select() function shall block for the time specified, or until
interrupted by a signal. If the readfds, writefds, and errorfds arguments are all null pointers and
the timeout argument is a null pointer, the pselect() or select() function shall block until
interrupted by a signal.

File descriptors associated with regular files shall always select true for ready to read, ready to
write, and error conditions.

On failure, the objects pointed to by the readfds, writefds, and errorfds arguments shall not be
modified. If the timeout interval expires without the specified condition being true for any of the
specified file descriptors, the objects pointed to by the readfds, writefds, and errorfds arguments
shall have all bits set to 0.

File descriptor masks of type fd_set can be initialized and tested with FD_CLR(), FD_ISSET(),
FD_SET(), and FD_ZERO(). It is unspecified whether each of these is a macro or a function. If a
macro definition is suppressed in order to access an actual function, or a program defines an
external identifier with any of these names, the behavior is undefined.

FD_CLR(fd, fdsetp) shall remove the file descriptor fd from the set pointed to by fdsetp. If fd is not
a member of this set, there shall be no effect on the set, nor will an error be returned.

FD_ISSET(fd, fdsetp) shall evaluate to non-zero if the file descriptor fd is a member of the set
pointed to by fdsetp, and shall evaluate to zero otherwise.

FD_SET(fd, fdsetp) shall add the file descriptor fd to the set pointed to by fdsetp. If the file
descriptor fd is already in this set, there shall be no effect on the set, nor will an error be
returned.

FD_ZERO(fdsetp) shall initialize the descriptor set pointed to by fdsetp to the null set. No error is
returned if the set is not empty at the time FD_ZERO() is invoked.

The behavior of these macros is undefined if the fd argument is less than 0 or greater than or
equal to FD_SETSIZE, or if fd is not a valid file descriptor, or if any of the arguments are
expressions with side effects.

If a thread gets canceled during a pselect() call, the signal mask in effect when executing the
registered cleanup functions is either the original signal mask or the signal mask installed as part
of the pselect() call.

RETURN VALUE
Upon successful completion, the pselect() and select() functions shall return the total number of
bits set in the bit masks. Otherwise, −1 shall be returned, and errno shall be set to indicate the
error.

FD_CLR(), FD_SET(), and FD_ZERO() do not return a value. FD_ISSET() shall return a non-
zero value if the bit for the file descriptor fd is set in the file descriptor set pointed to by fdset, and
0 otherwise.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1037

32666

32667

32668

32669

32670

32671

32672

32673

32674

32675

32676

32677

32678

32679

32680

32681

32682

32683

32684

32685

32686

32687

32688

32689

32690

32691

32692

32693

32694

32695

32696

32697

32698

32699

32700

32701

32702

32703

32704

32705

32706

32707

32708

32709

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

pselect() System Interfaces

ERRORS
Under the following conditions, pselect() and select() shall fail and set errno to:

[EBADF] One or more of the file descriptor sets specified a file descriptor that is not a
valid open file descriptor.

[EINTR] The function was interrupted before any of the selected events occurred and
before the timeout interval expired.

XSI If SA_RESTART has been set for the interrupting signal, it is implementation-
defined whether the function restarts or returns with [EINTR].

[EINVAL] An invalid timeout interval was specified.

[EINVAL] The nfds argument is less than 0 or greater than FD_SETSIZE.

OB XSR [EINVAL] One of the specified file descriptors refers to a STREAM or multiplexer that is
linked (directly or indirectly) downstream from a multiplexer.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
In previous versions of the Single UNIX Specification, the select() function was defined in the
<sys/time.h> header. This is now changed to <sys/select.h>. The rationale for this change was
as follows: the introduction of the pselect() function included the <sys/select.h> header and the
<sys/select.h> header defines all the related definitions for the pselect() and select() functions.
Backwards-compatibility to existing XSI implementations is handled by allowing <sys/time.h>
to include <sys/select.h>.

Code which wants to avoid the ambiguity of the signal mask for thread cancellation handlers
can install an additional cancellation handler which resets the signal mask to the expected value.

void cleanup(void *arg)
{

sigset_t *ss = (sigset_t *) arg;
pthread_sigmask(SIG_SETMASK, ss, NULL);

}

int call_pselect(int nfds, fd_set *readfds, fd_set *writefds,
fd_set errorfds, const struct timespec *timeout,
const sigset_t *sigmask)

{
sigset_t oldmask;
int result;
pthread_sigmask(SIG_SETMASK, NULL, &oldmask);
pthread_cleanup_push(cleanup, &oldmask);
result = pselect(nfds, readfds, writefds, errorfds, timeout, sigmask);
pthread_cleanup_pop(0);
return result;

}

FUTURE DIRECTIONS
None.

1038 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

32710

32711

32712

32713

32714

32715

32716

32717

32718

32719

32720

32721

32722

32723

32724

32725

32726

32727

32728

32729

32730

32731

32732

32733

32734

32735

32736

32737

32738

32739

32740

32741

32742

32743

32744

32745

32746

32747

32748

32749

32750

32751

32752

32753

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces pselect()

SEE ALSO
accept(), alarm(), connect(), fcntl(), poll(), read(), recvmsg(), sendmsg(), setitimer(), write(), the
Base Definitions volume of IEEE Std 1003.1-200x, <sys/select.h>, <sys/time.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

In the ERRORS section, the text has been changed to indicate that [EINVAL] is returned when
nfds is less than 0 or greater than FD_SETSIZE. It previously stated less than 0, or greater than or
equal to FD_SETSIZE.

Text about timeout is moved from the APPLICATION USAGE section to the DESCRIPTION.

Issue 6
The Open Group Corrigendum U026/6 is applied, changing the occurrences of readfs and writefs
in the select() DESCRIPTION to be readfds and writefds.

Text referring to sockets is added to the DESCRIPTION.

The DESCRIPTION and ERRORS sections are updated so that references to STREAMS are
marked as part of the XSI STREAMS Option Group.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• These functions are now mandatory.

The pselect() function is added for alignment with IEEE Std 1003.1g-2000 and additional detail
related to sockets semantics is added to the DESCRIPTION.

The select() function now requires inclusion of <sys/select.h>.

The restrict keyword is added to the select() prototype for alignment with the
ISO/IEC 9899: 1999 standard.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/70 is applied, updating the
DESCRIPTION to reference the signal mask in terms of the calling thread rather than the
process.

Issue 7
SD5-XSH-ERN-122 is applied, adding text to the DESCRIPTION for when a thread is canceled
during a call to pselect(), and adding example code to the RATIONALE.

Functionality relating to the XSI STREAMS option is marked obsolescent.

Functionality relating to the Threads option is moved to the Base.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1039

32754

32755

32756

32757

32758

32759

32760

32761

32762

32763

32764

32765

32766

32767

32768

32769

32770

32771

32772

32773

32774

32775

32776

32777

32778

32779

32780

32781

32782

32783

32784

32785

32786

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

psiginfo() System Interfaces

NAME
psiginfo, psignal — print signal information to standard error

SYNOPSIS
CX #include <signal.h>

void psiginfo(siginfo_t * pinfo, c onst char * message);
void psignal(int signum, c onst char * message);

DESCRIPTION
The psiginfo() and psignal() functions shall print a message out on stderr associated with a signal
number. If message is not null and is not the empty string, then the string pointed to by the
message argument shall be printed first, followed by a colon, a space, and the signal description
string indicated by signum, or by the signal associated with pinfo. If the message argument is null
or points to an empty string, then only the signal description shall be printed. For psiginfo(), the
argument pinfo references a valid siginfo_t structure. For psignal(), if signum is not a valid signal
number, the behavior is implementation-defined.

RETURN VALUE
These functions shall not return a value.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
System V historically has psignal() and psiginfo() in <siginfo.h>. However, the <siginfo.h>
header is not specified in the Base Definitions volume of IEEE Std 1003.1-200x, and the type
siginfo_t is defined in <signal.h>.

FUTURE DIRECTIONS
None.

SEE ALSO
perror(), strsignal(), the Base Definitions volume of IEEE Std 1003.1-200x, <signal.h>

CHANGE HISTORY
First released in Issue 7.

1040 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

32787

32788

32789

32790

32791

32792

32793

32794

32795

32796

32797

32798

32799

32800

32801

32802

32803

32804

32805

32806

32807

32808

32809

32810

32811

32812

32813

32814

32815

32816

32817

32818

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces psignal()

NAME
psignal — print signal information to standard error

SYNOPSIS
CX #include <signal.h>

void psignal(int signum, c onst char * message);

DESCRIPTION
Refer to psiginfo().

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1041

32819

32820

32821

32822

32823

32824

32825

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

pthread_atfork() System Interfaces

NAME
pthread_atfork — register fork handlers

SYNOPSIS
#include <pthread.h>

int pthread_atfork(void (* prepare)(void), void (* parent)(void),
void (* child)(void));

DESCRIPTION
The pthread_atfork() function shall declare fork handlers to be called before and after fork(), in
the context of the thread that called fork(). The prepare fork handler shall be called before fork()
processing commences. The parent fork handle shall be called after fork() processing completes
in the parent process. The child fork handler shall be called after fork() processing completes in
the child process. If no handling is desired at one or more of these three points, the
corresponding fork handler address(es) may be set to NULL.

The order of calls to pthread_atfork() is significant. The parent and child fork handlers shall be
called in the order in which they were established by calls to pthread_atfork(). The prepare fork
handlers shall be called in the opposite order.

RETURN VALUE
Upon successful completion, pthread_atfork() shall return a value of zero; otherwise, an error
number shall be returned to indicate the error.

ERRORS
The pthread_atfork() function shall fail if:

[ENOMEM] Insufficient table space exists to record the fork handler addresses.

The pthread_atfork() function shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
There are at least two serious problems with the semantics of fork() in a multi-threaded
program. One problem has to do with state (for example, memory) covered by mutexes.
Consider the case where one thread has a mutex locked and the state covered by that mutex is
inconsistent while another thread calls fork(). In the child, the mutex is in the locked state
(locked by a nonexistent thread and thus can never be unlocked). Having the child simply
reinitialize the mutex is unsatisfactory since this approach does not resolve the question about
how to correct or otherwise deal with the inconsistent state in the child.

It is suggested that programs that use fork() call an exec function very soon afterwards in the
child process, thus resetting all states. In the meantime, only a short list of async-signal-safe
library routines are promised to be available.

Unfortunately, this solution does not address the needs of multi-threaded libraries. Application
programs may not be aware that a multi-threaded library is in use, and they feel free to call any
number of library routines between the fork() and exec calls, just as they always have. Indeed,
they may be extant single-threaded programs and cannot, therefore, be expected to obey new
restrictions imposed by the threads library.

On the other hand, the multi-threaded library needs a way to protect its internal state during
fork() in case it is re-entered later in the child process. The problem arises especially in multi-

1042 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

32826

32827

32828

32829

32830

32831

32832

32833

32834

32835

32836

32837

32838

32839

32840

32841

32842

32843

32844

32845

32846

32847

32848

32849

32850

32851

32852

32853

32854

32855

32856

32857

32858

32859

32860

32861

32862

32863

32864

32865

32866

32867

32868

32869

32870

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces pthread_atfork()

threaded I/O libraries, which are almost sure to be invoked between the fork() and exec calls to
effect I/O redirection. The solution may require locking mutex variables during fork(), or it may
entail simply resetting the state in the child after the fork() processing completes.

The pthread_atfork() function provides multi-threaded libraries with a means to protect
themselves from innocent application programs that call fork(), and it provides multi-threaded
application programs with a standard mechanism for protecting themselves from fork() calls in a
library routine or the application itself.

The expected usage is that the prepare handler acquires all mutex locks and the other two fork
handlers release them.

For example, an application can supply a prepare routine that acquires the necessary mutexes the
library maintains and supply child and parent routines that release those mutexes, thus ensuring
that the child gets a consistent snapshot of the state of the library (and that no mutexes are left
stranded). Alternatively, some libraries might be able to supply just a child routine that
reinitializes the mutexes in the library and all associated states to some known value (for
example, what it was when the image was originally executed).

When fork() is called, only the calling thread is duplicated in the child process. Synchronization
variables remain in the same state in the child as they were in the parent at the time fork() was
called. Thus, for example, mutex locks may be held by threads that no longer exist in the child
process, and any associated states may be inconsistent. The parent process may avoid this by
explicit code that acquires and releases locks critical to the child via pthread_atfork(). In addition,
any critical threads need to be recreated and reinitialized to the proper state in the child (also via
pthread_atfork()).

A higher-level package may acquire locks on its own data structures before invoking lower-level
packages. Under this scenario, the order specified for fork handler calls allows a simple rule of
initialization for avoiding package deadlock: a package initializes all packages on which it
depends before it calls the pthread_atfork() function for itself.

FUTURE DIRECTIONS
None.

SEE ALSO
atexit(), exec , fork(), the Base Definitions volume of IEEE Std 1003.1-200x, <sys/types.h>

CHANGE HISTORY
First released in Issue 5. Derived from the POSIX Threads Extension.

IEEE PASC Interpretation 1003.1c #4 is applied.

Issue 6
The pthread_atfork() function is marked as part of the Threads option.

The <pthread.h> header is added to the SYNOPSIS.

Issue 7
The pthread_atfork() function is moved from the Threads option to the Base.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1043

32871

32872

32873

32874

32875

32876

32877

32878

32879

32880

32881

32882

32883

32884

32885

32886

32887

32888

32889

32890

32891

32892

32893

32894

32895

32896

32897

32898

32899

32900

32901

32902

32903

32904

32905

32906

32907

32908

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

pthread_attr_destroy() System Interfaces

NAME
pthread_attr_destroy, pthread_attr_init — destroy and initialize the thread attributes object

SYNOPSIS
#include <pthread.h>

int pthread_attr_destroy(pthread_attr_t * attr);
int pthread_attr_init(pthread_attr_t * attr);

DESCRIPTION
The pthread_attr_destroy() function shall destroy a thread attributes object. An implementation
may cause pthread_attr_destroy() to set attr to an implementation-defined invalid value. A
destroyed attr attributes object can be reinitialized using pthread_attr_init(); the results of
otherwise referencing the object after it has been destroyed are undefined.

The pthread_attr_init() function shall initialize a thread attributes object attr with the default
value for all of the individual attributes used by a given implementation.

The resulting attributes object (possibly modified by setting individual attribute values) when
used by pthread_create() defines the attributes of the thread created. A single attributes object can
be used in multiple simultaneous calls to pthread_create(). Results are undefined if
pthread_attr_init() is called specifying an already initialized attr attributes object.

RETURN VALUE
Upon successful completion, pthread_attr_destroy() and pthread_attr_init() shall return a value of
0; otherwise, an error number shall be returned to indicate the error.

ERRORS
The pthread_attr_init() function shall fail if:

[ENOMEM] Insufficient memory exists to initialize the thread attributes object.

The pthread_attr_destroy() function may fail if:

[EINVAL] The value specified by attr does not refer to an initialized thread attribute
object.

The pthread_attr_init() function may fail if:

[EBUSY] The implementation has detected an attempt to reinitialize the thread attribute
referenced by attr, a previously initialized, but not yet destroyed, thread
attribute.

These functions shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
Attributes objects are provided for threads, mutexes, and condition variables as a mechanism to
support probable future standardization in these areas without requiring that the function itself
be changed.

Attributes objects provide clean isolation of the configurable aspects of threads. For example,
‘‘stack size’’ is an important attribute of a thread, but it cannot be expressed portably. When
porting a threaded program, stack sizes often need to be adjusted. The use of attributes objects
can help by allowing the changes to be isolated in a single place, rather than being spread across

1044 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

32909

32910

32911

32912

32913

32914

32915

32916

32917

32918

32919

32920

32921

32922

32923

32924

32925

32926

32927

32928

32929

32930

32931

32932

32933

32934

32935

32936

32937

32938

32939

32940

32941

32942

32943

32944

32945

32946

32947

32948

32949

32950

32951

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces pthread_attr_destroy()

every instance of thread creation.

Attributes objects can be used to set up ‘‘classes’ of threads with similar attributes; for example,
‘‘threads with large stacks and high priority’’ or ‘‘threads with minimal stacks’’. These classes
can be defined in a single place and then referenced wherever threads need to be created.
Changes to ‘‘class’’ decisions become straightforward, and detailed analysis of each
pthread_create() call is not required.

The attributes objects are defined as opaque types as an aid to extensibility. If these objects had
been specified as structures, adding new attributes would force recompilation of all multi-
threaded programs when the attributes objects are extended; this might not be possible if
different program components were supplied by different vendors.

Additionally, opaque attributes objects present opportunities for improving performance.
Argument validity can be checked once when attributes are set, rather than each time a thread is
created. Implementations often need to cache kernel objects that are expensive to create.
Opaque attributes objects provide an efficient mechanism to detect when cached objects become
invalid due to attribute changes.

Since assignment is not necessarily defined on a given opaque type, implementation-defined
default values cannot be defined in a portable way. The solution to this problem is to allow
attributes objects to be initialized dynamically by attributes object initialization functions, so that
default values can be supplied automatically by the implementation.

The following proposal was provided as a suggested alternative to the supplied attributes:

1. Maintain the style of passing a parameter formed by the bitwise-inclusive OR of flags to
the initialization routines (pthread_create(), pthread_mutex_init(), pthread_cond_init()). The
parameter containing the flags should be an opaque type for extensibility. If no flags are
set in the parameter, then the objects are created with default characteristics. An
implementation may specify implementation-defined flag values and associated
behavior.

2. If further specialization of mutexes and condition variables is necessary, implementations
may specify additional procedures that operate on the pthread_mutex_t and
pthread_cond_t objects (instead of on attributes objects).

The difficulties with this solution are:

1. A bitmask is not opaque if bits have to be set into bitvector attributes objects using
explicitly-coded bitwise-inclusive OR operations. If the set of options exceeds an int,
application programmers need to know the location of each bit. If bits are set or read by
encapsulation (that is, get and set functions), then the bitmask is merely an
implementation of attributes objects as currently defined and should not be exposed to
the programmer.

2. Many attributes are not Boolean or very small integral values. For example, scheduling
policy may be placed in 3-bit or 4-bit, but priority requires 5-bit or more, thereby taking
up at least 8 bits out of a possible 16 bits on machines with 16-bit integers. Because of this,
the bitmask can only reasonably control whether particular attributes are set or not, and it
cannot serve as the repository of the value itself. The value needs to be specified as a
function parameter (which is non-extensible), or by setting a structure field (which is non-
opaque), or by get and set functions (making the bitmask a redundant addition to the
attributes objects).

Stack size is defined as an optional attribute because the very notion of a stack is inherently
machine-dependent. Some implementations may not be able to change the size of the stack, for
example, and others may not need to because stack pages may be discontiguous and can be
allocated and released on demand.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1045

32952

32953

32954

32955

32956

32957

32958

32959

32960

32961

32962

32963

32964

32965

32966

32967

32968

32969

32970

32971

32972

32973

32974

32975

32976

32977

32978

32979

32980

32981

32982

32983

32984

32985

32986

32987

32988

32989

32990

32991

32992

32993

32994

32995

32996

32997

32998

32999

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

pthread_attr_destroy() System Interfaces

The attribute mechanism has been designed in large measure for extensibility. Future extensions
to the attribute mechanism or to any attributes object defined in this volume of
IEEE Std 1003.1-200x has to be done with care so as not to affect binary-compatibility.

Attributes objects, even if allocated by means of dynamic allocation functions such as malloc(),
may have their size fixed at compile time. This means, for example, a pthread_create() in an
implementation with extensions to pthread_attr_t cannot look beyond the area that the binary
application assumes is valid. This suggests that implementations should maintain a size field in
the attributes object, as well as possibly version information, if extensions in different directions
(possibly by different vendors) are to be accommodated.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_attr_getstacksize(), pthread_attr_getdetachstate(), pthread_create(), the Base Definitions
volume of IEEE Std 1003.1-200x, <pthread.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Threads Extension.

Issue 6
The pthread_attr_destroy() and pthread_attr_init() functions are marked as part of the Threads
option.

IEEE PASC Interpretation 1003.1 #107 is applied, noting that the effect of initializing an already
initialized thread attributes object is undefined.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/71 is applied, updating the ERRORS
section to add the optional [EINVAL] error for the pthread_attr_destroy() function, and the
optional [EBUSY] error for the pthread_attr_init() function.

Issue 7
The pthread_attr_destroy() and pthread_attr_init() functions are moved from the Threads option
to the Base.

1046 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

33000

33001

33002

33003

33004

33005

33006

33007

33008

33009

33010

33011

33012

33013

33014

33015

33016

33017

33018

33019

33020

33021

33022

33023

33024

33025

33026

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces pthread_attr_getdetachstate()

NAME
pthread_attr_getdetachstate, pthread_attr_setdetachstate — get and set the detachstate attribute

SYNOPSIS
#include <pthread.h>

int pthread_attr_getdetachstate(const pthread_attr_t * attr,
int * detachstate);

int pthread_attr_setdetachstate(pthread_attr_t * attr, i nt detachstate);

DESCRIPTION
The detachstate attribute controls whether the thread is created in a detached state. If the thread
is created detached, then use of the ID of the newly created thread by the pthread_detach() or
pthread_join() function is an error.

The pthread_attr_getdetachstate() and pthread_attr_setdetachstate() functions, respectively, shall get
and set the detachstate attribute in the attr object.

For pthread_attr_getdetachstate(), detachstate shall be set to either
PTHREAD_CREATE_DETACHED or PTHREAD_CREATE_JOINABLE.

For pthread_attr_setdetachstate(), the application shall set detachstate to either
PTHREAD_CREATE_DETACHED or PTHREAD_CREATE_JOINABLE.

A value of PTHREAD_CREATE_DETACHED shall cause all threads created with attr to be in
the detached state, whereas using a value of PTHREAD_CREATE_JOINABLE shall cause all
threads created with attr to be in the joinable state. The default value of the detachstate attribute
shall be PTHREAD_CREATE_JOINABLE.

RETURN VALUE
Upon successful completion, pthread_attr_getdetachstate() and pthread_attr_setdetachstate() shall
return a value of 0; otherwise, an error number shall be returned to indicate the error.

The pthread_attr_getdetachstate() function stores the value of the detachstate attribute in detachstate
if successful.

ERRORS
The pthread_attr_setdetachstate() function shall fail if:

[EINVAL] The value of detachstate was not valid

These functions may fail if:

[EINVAL] The value specified by attr does not refer to an initialized thread attribute
object.

These functions shall not return an error code of [EINTR].

EXAMPLES

Retrieving the detachstate Attribute

This example shows how to obtain the detachstate attribute of a thread attribute object.

#include <pthread.h>

pthread_attr_t thread_attr;
int detachstate;
int rc;

/* code initializing thread_attr */

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1047

33027

33028

33029

33030

33031

33032

33033

33034

33035

33036

33037

33038

33039

33040

33041

33042

33043

33044

33045

33046

33047

33048

33049

33050

33051

33052

33053

33054

33055

33056

33057

33058

33059

33060

33061

33062

33063

33064

33065

33066

33067

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

pthread_attr_getdetachstate() System Interfaces

...

rc = pthread_attr_getdetachstate (&thread_attr, &detachstate);
if (rc!=0) {

/* handle error */
...

}
else {

/* legal values for detachstate are:
* P THREAD_CREATE_DETACHED or PTHREAD_CREATE_JOINABLE
*/
...

}

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_attr_destroy(), pthread_attr_getstacksize(), pthread_create(), the Base Definitions volume of
IEEE Std 1003.1-200x, <pthread.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Threads Extension.

Issue 6
The pthread_attr_setdetachstate() and pthread_attr_getdetachstate() functions are marked as part of
the Threads option.

The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/72 is applied, adding the example to the
EXAMPLES section.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/73 is applied, updating the ERRORS
section to include the optional [EINVAL] error.

Issue 7
The pthread_attr_setdetachstate() and pthread_attr_getdetachstate() functions are moved from the
Threads option to the Base.

1048 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

33068

33069

33070

33071

33072

33073

33074

33075

33076

33077

33078

33079

33080

33081

33082

33083

33084

33085

33086

33087

33088

33089

33090

33091

33092

33093

33094

33095

33096

33097

33098

33099

33100

33101

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces pthread_attr_getguardsize()

NAME
pthread_attr_getguardsize, pthread_attr_setguardsize — get and set the thread guardsize
attribute

SYNOPSIS
#include <pthread.h>

int pthread_attr_getguardsize(const pthread_attr_t *restrict attr,
size_t *restrict guardsize);

int pthread_attr_setguardsize(pthread_attr_t *attr,
size_t guardsize);

DESCRIPTION
The pthread_attr_getguardsize() function shall get the guardsize attribute in the attr object. This
attribute shall be returned in the guardsize parameter.

The pthread_attr_setguardsize() function shall set the guardsize attribute in the attr object. The new
value of this attribute shall be obtained from the guardsize parameter. If guardsize is zero, a guard
area shall not be provided for threads created with attr. If guardsize is greater than zero, a guard
area of at least size guardsize bytes shall be provided for each thread created with attr.

The guardsize attribute controls the size of the guard area for the created thread’s stack. The
guardsize attribute provides protection against overflow of the stack pointer. If a thread’s stack is
created with guard protection, the implementation allocates extra memory at the overflow end
of the stack as a buffer against stack overflow of the stack pointer. If an application overflows
into this buffer an error shall result (possibly in a SIGSEGV signal being delivered to the thread).

A conforming implementation may round up the value contained in guardsize to a multiple of
the configurable system variable {PAGESIZE} (see <sys/mman.h>). If an implementation
rounds up the value of guardsize to a multiple of {PAGESIZE}, a call to pthread_attr_getguardsize()
specifying attr shall store in the guardsize parameter the guard size specified by the previous
pthread_attr_setguardsize() function call.

The default value of the guardsize attribute is {PAGESIZE} bytes. The actual value of {PAGESIZE}
is implementation-defined.

If the stackaddr attribute has been set (that is, the caller is allocating and managing its own thread
stacks), the guardsize attribute shall be ignored and no protection shall be provided by the
implementation. It is the responsibility of the application to manage stack overflow along with
stack allocation and management in this case.

RETURN VALUE
If successful, the pthread_attr_getguardsize() and pthread_attr_setguardsize() functions shall return
zero; otherwise, an error number shall be returned to indicate the error.

ERRORS
These functions shall fail if:

[EINVAL] The parameter guardsize is invalid.

These functions may fail if:

[EINVAL] The value specified by attr does not refer to an initialized thread attribute
object.

These functions shall not return an error code of [EINTR].

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1049

33102

33103

33104

33105

33106

33107

33108

33109

33110

33111

33112

33113

33114

33115

33116

33117

33118

33119

33120

33121

33122

33123

33124

33125

33126

33127

33128

33129

33130

33131

33132

33133

33134

33135

33136

33137

33138

33139

33140

33141

33142

33143

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

pthread_attr_getguardsize() System Interfaces

EXAMPLES

Retrieving the guardsize Attribute

This example shows how to obtain the guardsize attribute of a thread attribute object.

#include <pthread.h>

pthread_attr_t thread_attr;
size_t guardsize;
int rc;

/* code initializing thread_attr */
...

rc = pthread_attr_getguardsize (&thread_attr, &guardsize);
if (rc != 0) {

/* handle error */
...

}
else {

if (guardsize > 0) {
/* a guard area of at least guardsize bytes is provided */
...
}
else {
/* no guard area provided */
...
}

}

APPLICATION USAGE
None.

RATIONALE
The guardsize attribute is provided to the application for two reasons:

1. Overflow protection can potentially result in wasted system resources. An application
that creates a large number of threads, and which knows its threads never overflow their
stack, can save system resources by turning off guard areas.

2. When threads allocate large data structures on the stack, large guard areas may be needed
to detect stack overflow.

FUTURE DIRECTIONS
None.

SEE ALSO
The Base Definitions volume of IEEE Std 1003.1-200x, <pthread.h>, <sys/mman.h>

CHANGE HISTORY
First released in Issue 5.

Issue 6
In the ERRORS section, a third [EINVAL] error condition is removed as it is covered by the
second error condition.

The restrict keyword is added to the pthread_attr_getguardsize() prototype for alignment with the
ISO/IEC 9899: 1999 standard.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/74 is applied, updating the ERRORS
section to remove the [EINVAL] error (‘‘The attribute attr is invalid.’’), and replacing it with the

1050 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

33144

33145

33146

33147

33148

33149

33150

33151

33152

33153

33154

33155

33156

33157

33158

33159

33160

33161

33162

33163

33164

33165

33166

33167

33168

33169

33170

33171

33172

33173

33174

33175

33176

33177

33178

33179

33180

33181

33182

33183

33184

33185

33186

33187

33188

33189

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces pthread_attr_getguardsize()

optional [EINVAL] error.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/76 is applied, adding the example to the
EXAMPLES section.

Issue 7
SD5-XSH-ERN-111 is applied, removing the reference to the stack attribute in the DESCRIPTION.

The pthread_attr_getguardsize() and pthread_attr_setguardsize() functions are moved from the XSI
option to the Base.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1051

33190

33191

33192

33193

33194

33195

33196

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

pthread_attr_getinheritsched() System Interfaces

NAME
pthread_attr_getinheritsched, pthread_attr_setinheritsched — get and set the inheritsched
attribute (REALTIME THREADS)

SYNOPSIS
TPS #include <pthread.h>

int pthread_attr_getinheritsched(const pthread_attr_t *restrict attr,
int *restrict inheritsched);

int pthread_attr_setinheritsched(pthread_attr_t * attr,
int inheritsched);

DESCRIPTION
The pthread_attr_getinheritsched(), and pthread_attr_setinheritsched() functions, respectively, shall
get and set the inheritsched attribute in the attr argument.

When the attributes objects are used by pthread_create(), the inheritsched attribute determines
how the other scheduling attributes of the created thread shall be set.

The supported values of inheritsched shall be:

PTHREAD_INHERIT_SCHED
Specifies that the thread scheduling attributes shall be inherited from the creating thread,
and the scheduling attributes in this attr argument shall be ignored.

PTHREAD_EXPLICIT_SCHED
Specifies that the thread scheduling attributes shall be set to the corresponding values from
this attributes object.

The symbols PTHREAD_INHERIT_SCHED and PTHREAD_EXPLICIT_SCHED are defined in
the <pthread.h> header.

The following thread scheduling attributes defined by IEEE Std 1003.1-200x are affected by the
inheritsched attribute: scheduling policy (schedpolicy), scheduling parameters (schedparam), and
scheduling contention scope (contentionscope).

RETURN VALUE
If successful, the pthread_attr_getinheritsched() and pthread_attr_setinheritsched() functions shall
return zero; otherwise, an error number shall be returned to indicate the error.

ERRORS
The pthread_attr_getinheritsched() function may fail if:

[EINVAL] The value specified by attr does not refer to an initialized thread attribute
object.

The pthread_attr_setinheritsched() function may fail if:

[EINVAL] The value of inheritsched is not valid.

[EINVAL] The value specified by attr does not refer to an initialized thread attribute
object.

[ENOTSUP] An attempt was made to set the attribute to an unsupported value.

These functions shall not return an error code of [EINTR].

1052 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

33197

33198

33199

33200

33201

33202

33203

33204

33205

33206

33207

33208

33209

33210

33211

33212

33213

33214

33215

33216

33217

33218

33219

33220

33221

33222

33223

33224

33225

33226

33227

33228

33229

33230

33231

33232

33233

33234

33235

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces pthread_attr_getinheritsched()

EXAMPLES
None.

APPLICATION USAGE
After these attributes have been set, a thread can be created with the specified attributes using
pthread_create(). Using these routines does not affect the current running thread.

See Section 2.9.4 for further details on thread scheduling attributes and their default settings.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_attr_destroy(), pthread_attr_getscope(), pthread_attr_getschedpolicy(),
pthread_attr_getschedparam(), pthread_create(), the Base Definitions volume of
IEEE Std 1003.1-200x, <pthread.h>, <sched.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Threads Extension.

Marked as part of the Realtime Threads Feature Group.

Issue 6
The pthread_attr_getinheritsched() and pthread_attr_setinheritsched() functions are marked as part
of the Threads and Thread Execution Scheduling options.

The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Thread Execution Scheduling option.

The restrict keyword is added to the pthread_attr_getinheritsched() prototype for alignment with
the ISO/IEC 9899: 1999 standard.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/75 is applied, clarifying the values of
inheritsched in the DESCRIPTION and adding two optional [EINVAL] errors to the ERRORS
section for checking when attr refers to an uninitialized thread attribute object.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/77 is applied, adding a reference to
Section 2.9.4 in the APPLICATION USAGE section.

Issue 7
The pthread_attr_getinheritsched() and pthread_attr_setinheritsched() functions are moved from the
Threads option.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1053

33236

33237

33238

33239

33240

33241

33242

33243

33244

33245

33246

33247

33248

33249

33250

33251

33252

33253

33254

33255

33256

33257

33258

33259

33260

33261

33262

33263

33264

33265

33266

33267

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

pthread_attr_getschedparam() System Interfaces

NAME
pthread_attr_getschedparam, pthread_attr_setschedparam — get and set the schedparam
attribute

SYNOPSIS
#include <pthread.h>

int pthread_attr_getschedparam(const pthread_attr_t *restrict attr,
struct sched_param *restrict param);

int pthread_attr_setschedparam(pthread_attr_t *restrict attr,
const struct sched_param *restrict param);

DESCRIPTION
The pthread_attr_getschedparam(), and pthread_attr_setschedparam() functions, respectively, shall
get and set the scheduling parameter attributes in the attr argument. The contents of the param
structure are defined in the <sched.h> header. For the SCHED_FIFO and SCHED_RR policies,
the only required member of param is sched_priority.

TSP For the SCHED_SPORADIC policy, the required members of the param structure are
sched_priority, sched_ss_low_priority, sched_ss_repl_period, sched_ss_init_budget, and
sched_ss_max_repl. The specified sched_ss_repl_period must be greater than or equal to the
specified sched_ss_init_budget for the function to succeed; if it is not, then the function shall fail.
The value of sched_ss_max_repl shall be within the inclusive range [1,{SS_REPL_MAX}] for the
function to succeed; if not, the function shall fail.

RETURN VALUE
If successful, the pthread_attr_getschedparam() and pthread_attr_setschedparam() functions shall
return zero; otherwise, an error number shall be returned to indicate the error.

ERRORS
The pthread_attr_getschedparam() function may fail if:

[EINVAL] The value specified by attr does not refer to an initialized thread attribute
object.

The pthread_attr_setschedparam() function may fail if:

[EINVAL] The value of param is not valid, or the value specified by attr does not refer to
an initialized thread attribute object.

[ENOTSUP] An attempt was made to set the attribute to an unsupported value.

These functions shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
After these attributes have been set, a thread can be created with the specified attributes using
pthread_create(). Using these routines does not affect the current running thread.

RATIONALE
None.

FUTURE DIRECTIONS
None.

1054 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

33268

33269

33270

33271

33272

33273

33274

33275

33276

33277

33278

33279

33280

33281

33282

33283

33284

33285

33286

33287

33288

33289

33290

33291

33292

33293

33294

33295

33296

33297

33298

33299

33300

33301

33302

33303

33304

33305

33306

33307

33308

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces pthread_attr_getschedparam()

SEE ALSO
pthread_attr_destroy(), pthread_attr_getscope(), pthread_attr_getinheritsched(),
pthread_attr_getschedpolicy(), pthread_create(), the Base Definitions volume of
IEEE Std 1003.1-200x, <pthread.h>, <sched.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Threads Extension.

Issue 6
The pthread_attr_getschedparam() and pthread_attr_setschedparam() functions are marked as part
of the Threads option.

The SCHED_SPORADIC scheduling policy is added for alignment with IEEE Std 1003.1d-1999.

The restrict keyword is added to the pthread_attr_getschedparam() and
pthread_attr_setschedparam() prototypes for alignment with the ISO/IEC 9899: 1999 standard.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/78 is applied, updating the ERRORS
section to include optional errors for the case when attr refers to an uninitialized thread attribute
object.

Issue 7
The pthread_attr_getschedparam() and pthread_attr_setschedparam() functions are moved from the
Threads option to the Base.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1055

33309

33310

33311

33312

33313

33314

33315

33316

33317

33318

33319

33320

33321

33322

33323

33324

33325

33326

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

pthread_attr_getschedpolicy() System Interfaces

NAME
pthread_attr_getschedpolicy, pthread_attr_setschedpolicy — get and set the schedpolicy
attribute (REALTIME THREADS)

SYNOPSIS
TPS #include <pthread.h>

int pthread_attr_getschedpolicy(const pthread_attr_t *restrict attr,
int *restrict policy);

int pthread_attr_setschedpolicy(pthread_attr_t * attr, i nt policy);

DESCRIPTION
The pthread_attr_getschedpolicy() and pthread_attr_setschedpolicy() functions, respectively, shall
get and set the schedpolicy attribute in the attr argument.

The supported values of policy shall include SCHED_FIFO, SCHED_RR, and SCHED_OTHER,
which are defined in the <sched.h> header. When threads executing with the scheduling policy

TSP SCHED_FIFO, SCHED_RR, or SCHED_SPORADIC are waiting on a mutex, they shall acquire
the mutex in priority order when the mutex is unlocked.

RETURN VALUE
If successful, the pthread_attr_getschedpolicy() and pthread_attr_setschedpolicy() functions shall
return zero; otherwise, an error number shall be returned to indicate the error.

ERRORS
The pthread_attr_getschedpolicy() function may fail if:

[EINVAL] The value specified by attr does not refer to an initialized thread attribute
object.

The pthread_attr_setschedpolicy() function may fail if:

[EINVAL] The value of policy is not valid, or the value specified by attr does not refer to
an initialized thread attribute object.

[ENOTSUP] An attempt was made to set the attribute to an unsupported value.

These functions shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
After these attributes have been set, a thread can be created with the specified attributes using
pthread_create(). Using these routines does not affect the current running thread.

See Section 2.9.4 for further details on thread scheduling attributes and their default settings.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_attr_destroy(), pthread_attr_getscope(), pthread_attr_getinheritsched(),
pthread_attr_getschedparam(), pthread_create(), the Base Definitions volume of
IEEE Std 1003.1-200x, <pthread.h>, <sched.h>

1056 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

33327

33328

33329

33330

33331

33332

33333

33334

33335

33336

33337

33338

33339

33340

33341

33342

33343

33344

33345

33346

33347

33348

33349

33350

33351

33352

33353

33354

33355

33356

33357

33358

33359

33360

33361

33362

33363

33364

33365

33366

33367

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces pthread_attr_getschedpolicy()

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Threads Extension.

Marked as part of the Realtime Threads Feature Group.

Issue 6
The pthread_attr_getschedpolicy() and pthread_attr_setschedpolicy() functions are marked as part of
the Threads and Thread Execution Scheduling options.

The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Thread Execution Scheduling option.

The SCHED_SPORADIC scheduling policy is added for alignment with IEEE Std 1003.1d-1999.

The restrict keyword is added to the pthread_attr_getschedpolicy() prototype for alignment with
the ISO/IEC 9899: 1999 standard.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/79 is applied, adding a reference to
Section 2.9.4 in the APPLICATION USAGE section.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/80 is applied, updating the ERRORS
section to include optional errors for the case when attr refers to an uninitialized thread attribute
object.

Issue 7
The pthread_attr_getschedpolicy() and pthread_attr_setschedpolicy() functions are moved from the
Threads option.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1057

33368

33369

33370

33371

33372

33373

33374

33375

33376

33377

33378

33379

33380

33381

33382

33383

33384

33385

33386

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

pthread_attr_getscope() System Interfaces

NAME
pthread_attr_getscope, pthread_attr_setscope — get and set the contentionscope attribute
(REALTIME THREADS)

SYNOPSIS
TPS #include <pthread.h>

int pthread_attr_getscope(const pthread_attr_t *restrict attr,
int *restrict contentionscope);

int pthread_attr_setscope(pthread_attr_t * attr, i nt contentionscope);

DESCRIPTION
The pthread_attr_getscope() and pthread_attr_setscope() functions, respectively, shall get and set
the contentionscope attribute in the attr object.

The contentionscope attribute may have the values PTHREAD_SCOPE_SYSTEM, signifying
system scheduling contention scope, or PTHREAD_SCOPE_PROCESS, signifying process
scheduling contention scope. The symbols PTHREAD_SCOPE_SYSTEM and
PTHREAD_SCOPE_PROCESS are defined in the <pthread.h> header.

RETURN VALUE
If successful, the pthread_attr_getscope() and pthread_attr_setscope() functions shall return zero;
otherwise, an error number shall be returned to indicate the error.

ERRORS
The pthread_attr_getscope() function may fail if:

[EINVAL] The value specified by attr does not refer to an initialized thread attribute
object.

The pthread_attr_setscope() function may fail if:

[EINVAL] The value of contentionscope is not valid, or the value specified by attr does not
refer to an initialized thread attribute object.

[ENOTSUP] An attempt was made to set the attribute to an unsupported value.

These functions shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
After these attributes have been set, a thread can be created with the specified attributes using
pthread_create(). Using these routines does not affect the current running thread.

See Section 2.9.4 for further details on thread scheduling attributes and their default settings.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_attr_destroy(), pthread_attr_getinheritsched(), pthread_attr_getschedpolicy(),
pthread_attr_getschedparam(), pthread_create(), the Base Definitions volume of
IEEE Std 1003.1-200x, <pthread.h>, <sched.h>

1058 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

33387

33388

33389

33390

33391

33392

33393

33394

33395

33396

33397

33398

33399

33400

33401

33402

33403

33404

33405

33406

33407

33408

33409

33410

33411

33412

33413

33414

33415

33416

33417

33418

33419

33420

33421

33422

33423

33424

33425

33426

33427

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces pthread_attr_getscope()

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Threads Extension.

Marked as part of the Realtime Threads Feature Group.

Issue 6
The pthread_attr_getscope() and pthread_attr_setscope() functions are marked as part of the
Threads and Thread Execution Scheduling options.

The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Thread Execution Scheduling option.

The restrict keyword is added to the pthread_attr_getscope() prototype for alignment with the
ISO/IEC 9899: 1999 standard.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/81 is applied, adding a reference to
Section 2.9.4 in the APPLICATION USAGE section.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/82 is applied, updating the ERRORS
section to include optional errors for the case when attr refers to an uninitialized thread attribute
object.

Issue 7
The pthread_attr_getscope() and pthread_attr_setscope() functions are moved from the Threads
option.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1059

33428

33429

33430

33431

33432

33433

33434

33435

33436

33437

33438

33439

33440

33441

33442

33443

33444

33445

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

pthread_attr_getstack() System Interfaces

NAME
pthread_attr_getstack, pthread_attr_setstack — get and set stack attributes

SYNOPSIS
TSA TSS #include <pthread.h>

int pthread_attr_getstack(const pthread_attr_t *restrict attr,
void **restrict stackaddr, s ize_t *restrict stacksize);

int pthread_attr_setstack(pthread_attr_t * attr, v oid * stackaddr,
size_t stacksize);

DESCRIPTION
The pthread_attr_getstack() and pthread_attr_setstack() functions, respectively, shall get and set the
thread creation stack attributes stackaddr and stacksize in the attr object.

The stack attributes specify the area of storage to be used for the created thread’s stack. The base
(lowest addressable byte) of the storage shall be stackaddr, and the size of the storage shall be
stacksize bytes. The stacksize shall be at least {PTHREAD_STACK_MIN}. The stackaddr shall be
aligned appropriately to be used as a stack; for example, pthread_attr_setstack() may fail with
[EINVAL] if (stackaddr & 0x7) is not 0. All pages within the stack described by stackaddr and
stacksize shall be both readable and writable by the thread.

If the pthread_attr_getstack() function is called before the stackaddr attribute has been set, the
behavior is unspecified.

RETURN VALUE
Upon successful completion, these functions shall return a value of 0; otherwise, an error
number shall be returned to indicate the error.

The pthread_attr_getstack() function shall store the stack attribute values in stackaddr and stacksize
if successful.

ERRORS

The pthread_attr_setstack() function shall fail if:

[EINVAL] The value of stacksize is less than {PTHREAD_STACK_MIN} or exceeds an
implementation-defined limit.

The pthread_attr_getstack() function may fail if:

[EINVAL] The value specified by attr does not refer to an initialized thread attribute
object.

The pthread_attr_setstack() function may fail if:

[EINVAL] The value of stackaddr does not have proper alignment to be used as a stack, or
(stackaddr + stacksize) lacks proper alignment, or the value specified by attr
does not refer to an initialized thread attribute object.

[EACCES] The stack page(s) described by stackaddr and stacksize are not both readable
and writable by the thread.

These functions shall not return an error code of [EINTR].

1060 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

33446

33447

33448

33449

33450

33451

33452

33453

33454

33455

33456

33457

33458

33459

33460

33461

33462

33463

33464

33465

33466

33467

33468

33469

33470

33471

33472

33473

33474

33475

33476

33477

33478

33479

33480

33481

33482

33483

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces pthread_attr_getstack()

EXAMPLES
None.

APPLICATION USAGE
These functions are appropriate for use by applications in an environment where the stack for a
thread must be placed in some particular region of memory.

While it might seem that an application could detect stack overflow by providing a protected
page outside the specified stack region, this cannot be done portably. Implementations are free
to place the thread’s initial stack pointer anywhere within the specified region to accommodate
the machine’s stack pointer behavior and allocation requirements. Furthermore, on some
architectures, such as the IA-64, ‘‘overflow’’ might mean that two separate stack pointers
allocated within the region will overlap somewhere in the middle of the region.

After a successful call to pthread_attr_setstack(), the storage area specified by the stackaddr
parameter is under the control of the implementation, as described in Section 2.9.8 (on page 59).

The specification of the stackaddr attribute presents several ambiguities that make portable use of
these functions impossible.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_attr_init(), pthread_attr_setdetachstate(), pthread_attr_setstacksize(), pthread_create(), the
Base Definitions volume of IEEE Std 1003.1-200x, <limits.h>, <pthread.h>

CHANGE HISTORY
First released in Issue 6. Developed as part of the XSI option and brought into the BASE by IEEE
PASC Interpretation 1003.1 #101.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/83 is applied, updating the
APPLICATION USAGE section to refer to Section 2.9.8 (on page 59).

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC/D6/84 is applied, updating the ERRORS
section to include optional errors for the case when attr refers to an uninitialized thread attribute
object.

Issue 7
SD5-XSH-ERN-66 is applied, correcting the use of attr in the [EINVAL] error condition.

Austin Group Interpretation 1003.1-2001 #057 is applied, clarifying the behavior if the function is
called before the stackaddr attribute is set.

SD5-XSH-ERN-157 is applied, updating the APPLICATION USAGE section.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1061

33484

33485

33486

33487

33488

33489

33490

33491

33492

33493

33494

33495

33496

33497

33498

33499

33500

33501

33502

33503

33504

33505

33506

33507

33508

33509

33510

33511

33512

33513

33514

33515

33516

33517

33518

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

pthread_attr_getstacksize() System Interfaces

NAME
pthread_attr_getstacksize, pthread_attr_setstacksize — get and set the stacksize attribute

SYNOPSIS
TSS #include <pthread.h>

int pthread_attr_getstacksize(const pthread_attr_t *restrict attr,
size_t *restrict stacksize);

int pthread_attr_setstacksize(pthread_attr_t * attr, s ize_t stacksize);

DESCRIPTION
The pthread_attr_getstacksize() and pthread_attr_setstacksize() functions, respectively, shall get and
set the thread creation stacksize attribute in the attr object.

The stacksize attribute shall define the minimum stack size (in bytes) allocated for the created
threads stack.

RETURN VALUE
Upon successful completion, pthread_attr_getstacksize() and pthread_attr_setstacksize() shall
return a value of 0; otherwise, an error number shall be returned to indicate the error.

The pthread_attr_getstacksize() function stores the stacksize attribute value in stacksize if
successful.

ERRORS
The pthread_attr_setstacksize() function shall fail if:

[EINVAL] The value of stacksize is less than {PTHREAD_STACK_MIN} or exceeds a
system-imposed limit.

These functions may fail if:

[EINVAL] The value specified by attr does not refer to an initialized thread attribute
object.

These functions shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_attr_destroy(), pthread_attr_getdetachstate(), pthread_create(), the Base Definitions volume
of IEEE Std 1003.1-200x, <limits.h>, <pthread.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Threads Extension.

1062 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

33519

33520

33521

33522

33523

33524

33525

33526

33527

33528

33529

33530

33531

33532

33533

33534

33535

33536

33537

33538

33539

33540

33541

33542

33543

33544

33545

33546

33547

33548

33549

33550

33551

33552

33553

33554

33555

33556

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces pthread_attr_getstacksize()

Issue 6
The pthread_attr_getstacksize() and pthread_attr_setstacksize() functions are marked as part of the
Threads and Thread Stack Size Attribute options.

The restrict keyword is added to the pthread_attr_getstacksize() prototype for alignment with the
ISO/IEC 9899: 1999 standard.

IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/43 is applied, correcting the margin code
in the SYNOPSIS from TSA to TSS and updating the CHANGE HISTORY from ‘‘Thread Stack
Address Attribute’’ option to ‘‘Thread Stack Size Attribute’’ option.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/87 is applied, updating the ERRORS
section to include optional errors for the case when attr refers to an uninitialized thread attribute
object.

Issue 7
The pthread_attr_getstacksize() and pthread_attr_setstacksize() functions are moved from the
Threads option.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1063

33557

33558

33559

33560

33561

33562

33563

33564

33565

33566

33567

33568

33569

33570

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

pthread_attr_init() System Interfaces

NAME
pthread_attr_init — initialize the thread attributes object

SYNOPSIS
#include <pthread.h>

int pthread_attr_init(pthread_attr_t * attr);

DESCRIPTION
Refer to pthread_attr_destroy().

1064 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

33571

33572

33573

33574

33575

33576

33577

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces pthread_attr_setdetachstate()

NAME
pthread_attr_setdetachstate — set the detachstate attribute

SYNOPSIS
#include <pthread.h>

int pthread_attr_setdetachstate(pthread_attr_t * attr, i nt detachstate);

DESCRIPTION
Refer to pthread_attr_getdetachstate().

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1065

33578

33579

33580

33581

33582

33583

33584

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

pthread_attr_setguardsize() System Interfaces

NAME
pthread_attr_setguardsize — set the thread guardsize attribute

SYNOPSIS
#include <pthread.h>

int pthread_attr_setguardsize(pthread_attr_t *attr,
size_t guardsize);

DESCRIPTION
Refer to pthread_attr_getguardsize().

1066 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

33585

33586

33587

33588

33589

33590

33591

33592

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces pthread_attr_setinheritsched()

NAME
pthread_attr_setinheritsched — set the inheritsched attribute (REALTIME THREADS)

SYNOPSIS
TPS #include <pthread.h>

int pthread_attr_setinheritsched(pthread_attr_t * attr,
int inheritsched);

DESCRIPTION
Refer to pthread_attr_getinheritsched().

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1067

33593

33594

33595

33596

33597

33598

33599

33600

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

pthread_attr_setschedparam() System Interfaces

NAME
pthread_attr_setschedparam — set the schedparam attribute

SYNOPSIS
#include <pthread.h>

int pthread_attr_setschedparam(pthread_attr_t *restrict attr,
const struct sched_param *restrict param);

DESCRIPTION
Refer to pthread_attr_getschedparam().

1068 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

33601

33602

33603

33604

33605

33606

33607

33608

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces pthread_attr_setschedpolicy()

NAME
pthread_attr_setschedpolicy — set the schedpolicy attribute (REALTIME THREADS)

SYNOPSIS
TPS #include <pthread.h>

int pthread_attr_setschedpolicy(pthread_attr_t * attr, i nt policy);

DESCRIPTION
Refer to pthread_attr_getschedpolicy().

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1069

33609

33610

33611

33612

33613

33614

33615

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

pthread_attr_setscope() System Interfaces

NAME
pthread_attr_setscope — set the contentionscope attribute (REALTIME THREADS)

SYNOPSIS
TPS #include <pthread.h>

int pthread_attr_setscope(pthread_attr_t * attr, i nt contentionscope);

DESCRIPTION
Refer to pthread_attr_getscope().

1070 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

33616

33617

33618

33619

33620

33621

33622

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces pthread_attr_setstack()

NAME
pthread_attr_setstack — set the stack attribute

SYNOPSIS
TSA TSS #include <pthread.h>

int pthread_attr_setstack(pthread_attr_t * attr, v oid * stackaddr,
size_t stacksize);

DESCRIPTION
Refer to pthread_attr_getstack().

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1071

33623

33624

33625

33626

33627

33628

33629

33630

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

pthread_attr_setstacksize() System Interfaces

NAME
pthread_attr_setstacksize — set the stacksize attribute

SYNOPSIS
TSS #include <pthread.h>

int pthread_attr_setstacksize(pthread_attr_t * attr, s ize_t stacksize);

DESCRIPTION
Refer to pthread_attr_getstacksize().

1072 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

33631

33632

33633

33634

33635

33636

33637

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces pthread_barrier_destroy()

NAME
pthread_barrier_destroy, pthread_barrier_init — destroy and initialize a barrier object

SYNOPSIS
#include <pthread.h>

int pthread_barrier_destroy(pthread_barrier_t * barrier);
int pthread_barrier_init(pthread_barrier_t *restrict barrier,

const pthread_barrierattr_t *restrict attr, u nsigned count);

DESCRIPTION
The pthread_barrier_destroy() function shall destroy the barrier referenced by barrier and release
any resources used by the barrier. The effect of subsequent use of the barrier is undefined until
the barrier is reinitialized by another call to pthread_barrier_init(). An implementation may use
this function to set barrier to an invalid value. The results are undefined if
pthread_barrier_destroy() is called when any thread is blocked on the barrier, or if this function is
called with an uninitialized barrier.

The pthread_barrier_init() function shall allocate any resources required to use the barrier
referenced by barrier and shall initialize the barrier with attributes referenced by attr. If attr is
NULL, the default barrier attributes shall be used; the effect is the same as passing the address of
a default barrier attributes object. The results are undefined if pthread_barrier_init() is called
when any thread is blocked on the barrier (that is, has not returned from the
pthread_barrier_wait() call). The results are undefined if a barrier is used without first being
initialized. The results are undefined if pthread_barrier_init() is called specifying an already
initialized barrier.

The count argument specifies the number of threads that must call pthread_barrier_wait() before
any of them successfully return from the call. The value specified by count must be greater than
zero.

If the pthread_barrier_init() function fails, the barrier shall not be initialized and the contents of
barrier are undefined.

Only the object referenced by barrier may be used for performing synchronization. The result of
referring to copies of that object in calls to pthread_barrier_destroy() or pthread_barrier_wait() is
undefined.

RETURN VALUE
Upon successful completion, these functions shall return zero; otherwise, an error number shall
be returned to indicate the error.

ERRORS
The pthread_barrier_destroy() function may fail if:

[EBUSY] The implementation has detected an attempt to destroy a barrier while it is in
use (for example, while being used in a pthread_barrier_wait() call) by another
thread.

[EINVAL] The value specified by barrier is invalid.

The pthread_barrier_init() function shall fail if:

[EAGAIN] The system lacks the necessary resources to initialize another barrier.

[EINVAL] The value specified by count is equal to zero.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1073

33638

33639

33640

33641

33642

33643

33644

33645

33646

33647

33648

33649

33650

33651

33652

33653

33654

33655

33656

33657

33658

33659

33660

33661

33662

33663

33664

33665

33666

33667

33668

33669

33670

33671

33672

33673

33674

33675

33676

33677

33678

33679

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

pthread_barrier_destroy() System Interfaces

[ENOMEM] Insufficient memory exists to initialize the barrier.

The pthread_barrier_init() function may fail if:

[EBUSY] The implementation has detected an attempt to reinitialize a barrier while it is
in use (for example, while being used in a pthread_barrier_wait() call) by
another thread.

[EINVAL] The value specified by attr is invalid.

These functions shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_barrier_wait(), the Base Definitions volume of IEEE Std 1003.1-200x, <pthread.h>

CHANGE HISTORY
First released in Issue 6. Derived from IEEE Std 1003.1j-2000.

Issue 7
The pthread_barrier_destroy() and pthread_barrier_init() functions are moved from the Barriers
option to the Base.

1074 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

33680

33681

33682

33683

33684

33685

33686

33687

33688

33689

33690

33691

33692

33693

33694

33695

33696

33697

33698

33699

33700

33701

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces pthread_barrier_wait()

NAME
pthread_barrier_wait — synchronize at a barrier

SYNOPSIS
#include <pthread.h>

int pthread_barrier_wait(pthread_barrier_t * barrier);

DESCRIPTION
The pthread_barrier_wait() function shall synchronize participating threads at the barrier
referenced by barrier. The calling thread shall block until the required number of threads have
called pthread_barrier_wait() specifying the barrier.

When the required number of threads have called pthread_barrier_wait() specifying the barrier,
the constant PTHREAD_BARRIER_SERIAL_THREAD shall be returned to one unspecified
thread and zero shall be returned to each of the remaining threads. At this point, the barrier shall
be reset to the state it had as a result of the most recent pthread_barrier_init() function that
referenced it.

The constant PTHREAD_BARRIER_SERIAL_THREAD is defined in <pthread.h> and its value
shall be distinct from any other value returned by pthread_barrier_wait().

The results are undefined if this function is called with an uninitialized barrier.

If a signal is delivered to a thread blocked on a barrier, upon return from the signal handler the
thread shall resume waiting at the barrier if the barrier wait has not completed (that is, if the
required number of threads have not arrived at the barrier during the execution of the signal
handler); otherwise, the thread shall continue as normal from the completed barrier wait. Until
the thread in the signal handler returns from it, it is unspecified whether other threads may
proceed past the barrier once they have all reached it.

A thread that has blocked on a barrier shall not prevent any unblocked thread that is eligible to
use the same processing resources from eventually making forward progress in its execution.
Eligibility for processing resources shall be determined by the scheduling policy.

RETURN VALUE
Upon successful completion, the pthread_barrier_wait() function shall return
PTHREAD_BARRIER_SERIAL_THREAD for a single (arbitrary) thread synchronized at the
barrier and zero for each of the other threads. Otherwise, an error number shall be returned to
indicate the error.

ERRORS
The pthread_barrier_wait() function may fail if:

[EINVAL] The value specified by barrier does not refer to an initialized barrier object.

This function shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
Applications using this function may be subject to priority inversion, as discussed in the Base
Definitions volume of IEEE Std 1003.1-200x, Section 3.285, Priority Inversion.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1075

33702

33703

33704

33705

33706

33707

33708

33709

33710

33711

33712

33713

33714

33715

33716

33717

33718

33719

33720

33721

33722

33723

33724

33725

33726

33727

33728

33729

33730

33731

33732

33733

33734

33735

33736

33737

33738

33739

33740

33741

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

pthread_barrier_wait() System Interfaces

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_barrier_destroy(), the Base Definitions volume of IEEE Std 1003.1-200x, Section 4.10,
Memory Synchronization, <pthread.h>

CHANGE HISTORY
First released in Issue 6. Derived from IEEE Std 1003.1j-2000.

In the SYNOPSIS, the inclusion of <sys/types.h> is no longer required.

Issue 7
The pthread_barrier_wait() function is moved from the Barriers option to the Base.

1076 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

33742

33743

33744

33745

33746

33747

33748

33749

33750

33751

33752

33753

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces pthread_barrierattr_destroy()

NAME
pthread_barrierattr_destroy, pthread_barrierattr_init — destroy and initialize the barrier
attributes object

SYNOPSIS
#include <pthread.h>

int pthread_barrierattr_destroy(pthread_barrierattr_t * attr);
int pthread_barrierattr_init(pthread_barrierattr_t * attr);

DESCRIPTION
The pthread_barrierattr_destroy() function shall destroy a barrier attributes object. A destroyed
attr attributes object can be reinitialized using pthread_barrierattr_init(); the results of otherwise
referencing the object after it has been destroyed are undefined. An implementation may cause
pthread_barrierattr_destroy() to set the object referenced by attr to an invalid value.

The pthread_barrierattr_init() function shall initialize a barrier attributes object attr with the
default value for all of the attributes defined by the implementation.

Results are undefined if pthread_barrierattr_init() is called specifying an already initialized attr
attributes object.

After a barrier attributes object has been used to initialize one or more barriers, any function
affecting the attributes object (including destruction) shall not affect any previously initialized
barrier.

RETURN VALUE
If successful, the pthread_barrierattr_destroy() and pthread_barrierattr_init() functions shall return
zero; otherwise, an error number shall be returned to indicate the error.

ERRORS
The pthread_barrierattr_destroy() function may fail if:

[EINVAL] The value specified by attr is invalid.

The pthread_barrierattr_init() function shall fail if:

[ENOMEM] Insufficient memory exists to initialize the barrier attributes object.

These functions shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_barrierattr_getpshared(), pthread_barrierattr_setpshared(), the Base Definitions volume of
IEEE Std 1003.1-200x, <pthread.h>.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1077

33754

33755

33756

33757

33758

33759

33760

33761

33762

33763

33764

33765

33766

33767

33768

33769

33770

33771

33772

33773

33774

33775

33776

33777

33778

33779

33780

33781

33782

33783

33784

33785

33786

33787

33788

33789

33790

33791

33792

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

pthread_barrierattr_destroy() System Interfaces

CHANGE HISTORY
First released in Issue 6. Derived from IEEE Std 1003.1j-2000.

In the SYNOPSIS, the inclusion of <sys/types.h> is no longer required.

Issue 7
The pthread_barrierattr_destroy() and pthread_barrierattr_init() functions are moved from the
Barriers option to the Base.

1078 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

33793

33794

33795

33796

33797

33798

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

pthread_barrierattr_getpshared() System Interfaces

EXAMPLES
None.

APPLICATION USAGE
The pthread_barrierattr_getpshared() and pthread_barrierattr_setpshared() functions are part of the
Thread Process-Shared Synchronization option and need not be provided on all
implementations.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_barrier_destroy(), pthread_barrierattr_destroy(), pthread_barrierattr_init(), the Base
Definitions volume of IEEE Std 1003.1-200x, <pthread.h>

CHANGE HISTORY
First released in Issue 6. Derived from IEEE Std 1003.1j-2000

Issue 7
The pthread_barrierattr_getpshared() and pthread_barrierattr_setpshared() functions are moved from
the Barriers option.

1080 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

33835

33836

33837

33838

33839

33840

33841

33842

33843

33844

33845

33846

33847

33848

33849

33850

33851

33852

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces pthread_barrierattr_init()

NAME
pthread_barrierattr_init — initialize the barrier attributes object

SYNOPSIS
#include <pthread.h>

int pthread_barrierattr_init(pthread_barrierattr_t * attr);

DESCRIPTION
Refer to pthread_barrierattr_destroy().

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1081

33853

33854

33855

33856

33857

33858

33859

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

pthread_barrierattr_setpshared() System Interfaces

NAME
pthread_barrierattr_setpshared — set the process-shared attribute of the barrier attributes object

SYNOPSIS
TSH #include <pthread.h>

int pthread_barrierattr_setpshared(pthread_barrierattr_t * attr,
int pshared);

DESCRIPTION
Refer to pthread_barrierattr_getpshared().

1082 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

33860

33861

33862

33863

33864

33865

33866

33867

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces pthread_cancel()

NAME
pthread_cancel — cancel execution of a thread

SYNOPSIS
#include <pthread.h>

int pthread_cancel(pthread_t thread);

DESCRIPTION
The pthread_cancel() function shall request that thread be canceled. The target thread’s
cancelability state and type determines when the cancellation takes effect. When the cancellation
is acted on, the cancellation cleanup handlers for thread shall be called. When the last
cancellation cleanup handler returns, the thread-specific data destructor functions shall be called
for thread. When the last destructor function returns, thread shall be terminated.

The cancellation processing in the target thread shall run asynchronously with respect to the
calling thread returning from pthread_cancel().

RETURN VALUE
If successful, the pthread_cancel() function shall return zero; otherwise, an error number shall be
returned to indicate the error.

ERRORS
The pthread_cancel() function may fail if:

[ESRCH] No thread could be found corresponding to that specified by the given thread
ID.

The pthread_cancel() function shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
Two alternative functions were considered for sending the cancellation notification to a thread.
One would be to define a new SIGCANCEL signal that had the cancellation semantics when
delivered; the other was to define the new pthread_cancel() function, which would trigger the
cancellation semantics.

The advantage of a new signal was that so much of the delivery criteria were identical to that
used when trying to deliver a signal that making cancellation notification a signal was seen as
consistent. Indeed, many implementations implement cancellation using a special signal. On the
other hand, there would be no signal functions that could be used with this signal except
pthread_kill(), and the behavior of the delivered cancellation signal would be unlike any
previously existing defined signal.

The benefits of a special function include the recognition that this signal would be defined
because of the similar delivery criteria and that this is the only common behavior between a
cancellation request and a signal. In addition, the cancellation delivery mechanism does not
have to be implemented as a signal. There are also strong, if not stronger, parallels with
language exception mechanisms than with signals that are potentially obscured if the delivery
mechanism is visibly closer to signals.

In the end, it was considered that as there were so many exceptions to the use of the new signal
with existing signals functions it would be misleading. A special function has resolved this
problem. This function was carefully defined so that an implementation wishing to provide the

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1083

33868

33869

33870

33871

33872

33873

33874

33875

33876

33877

33878

33879

33880

33881

33882

33883

33884

33885

33886

33887

33888

33889

33890

33891

33892

33893

33894

33895

33896

33897

33898

33899

33900

33901

33902

33903

33904

33905

33906

33907

33908

33909

33910

33911

33912

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

pthread_cancel() System Interfaces

cancellation functions on top of signals could do so. The special function also means that
implementations are not obliged to implement cancellation with signals.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_exit(), pthread_cond_timedwait(), pthread_join(), pthread_setcancelstate(), the Base
Definitions volume of IEEE Std 1003.1-200x, <pthread.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Threads Extension.

Issue 6
The pthread_cancel() function is marked as part of the Threads option.

Issue 7
The pthread_cancel() function is moved from the Threads option to the Base.

1084 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

33913

33914

33915

33916

33917

33918

33919

33920

33921

33922

33923

33924

33925

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces pthread_cleanup_pop()

NAME
pthread_cleanup_pop, pthread_cleanup_push — establish cancellation handlers

SYNOPSIS
#include <pthread.h>

void pthread_cleanup_pop(int execute);
void pthread_cleanup_push(void (* routine)(void*), void * arg);

DESCRIPTION
The pthread_cleanup_pop() function shall remove the routine at the top of the calling thread’s
cancellation cleanup stack and optionally invoke it (if execute is non-zero).

The pthread_cleanup_push() function shall push the specified cancellation cleanup handler routine
onto the calling thread’s cancellation cleanup stack. The cancellation cleanup handler shall be
popped from the cancellation cleanup stack and invoked with the argument arg when:

• The thread exits (that is, calls pthread_exit()).

• The thread acts upon a cancellation request.

• The thread calls pthread_cleanup_pop() with a non-zero execute argument.

These functions may be implemented as macros. The application shall ensure that they appear
as statements, and in pairs within the same lexical scope (that is, the pthread_cleanup_push()
macro may be thought to expand to a token list whose first token is ’{’ with
pthread_cleanup_pop() expanding to a token list whose last token is the corresponding ’}’).

The effect of calling longjmp() or siglongjmp() is undefined if there have been any calls to
pthread_cleanup_push() or pthread_cleanup_pop() made without the matching call since the jump
buffer was filled. The effect of calling longjmp() or siglongjmp() from inside a cancellation
cleanup handler is also undefined unless the jump buffer was also filled in the cancellation
cleanup handler.

The effect of the use of return, break, continue, and goto to prematurely leave a code block
described by a pair of pthread_cleanup_push() and pthread_cleanup_pop() functions calls is
undefined.

RETURN VALUE
The pthread_cleanup_push() and pthread_cleanup_pop() functions shall not return a value.

ERRORS
No errors are defined.

These functions shall not return an error code of [EINTR].

EXAMPLES
The following is an example using thread primitives to implement a cancelable, writers-priority
read-write lock:

typedef struct {
pthread_mutex_t lock;
pthread_cond_t rcond,

wcond;
int lock_count; /* < 0 .. Held by writer. */

/* > 0 .. Held by lock_count readers. */
/* = 0 .. Held by nobody. */

int waiting_writers; /* Count of waiting writers. */
} r wlock;

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1085

33926

33927

33928

33929

33930

33931

33932

33933

33934

33935

33936

33937

33938

33939

33940

33941

33942

33943

33944

33945

33946

33947

33948

33949

33950

33951

33952

33953

33954

33955

33956

33957

33958

33959

33960

33961

33962

33963

33964

33965

33966

33967

33968

33969

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

pthread_cleanup_pop() System Interfaces

void
waiting_reader_cleanup(void *arg)
{

rwlock *l;

l = (rwlock *) arg;
pthread_mutex_unlock(&l->lock);

}

void
lock_for_read(rwlock *l)
{

pthread_mutex_lock(&l->lock);
pthread_cleanup_push(waiting_reader_cleanup, l);
while ((l->lock_count < 0) && (l->waiting_writers != 0))

pthread_cond_wait(&l->rcond, &l->lock);
l->lock_count++;

/*
* Note the pthread_cleanup_pop executes
* waiting_reader_cleanup.
*/
pthread_cleanup_pop(1);

}

void
release_read_lock(rwlock *l)
{

pthread_mutex_lock(&l->lock);
if (- -l->lock_count == 0)

pthread_cond_signal(&l->wcond);
pthread_mutex_unlock(l);

}

void
waiting_writer_cleanup(void *arg)
{

rwlock *l;

l = (rwlock *) arg;
if ((- -l->waiting_writers == 0) && (l->lock_count >= 0)) {

/*
* T his only happens if we have been canceled.
*/
pthread_cond_broadcast(&l->wcond);

}
pthread_mutex_unlock(&l->lock);

}

void
lock_for_write(rwlock *l)
{

pthread_mutex_lock(&l->lock);
l->waiting_writers++;
pthread_cleanup_push(waiting_writer_cleanup, l);
while (l->lock_count != 0)

pthread_cond_wait(&l->wcond, &l->lock);
l->lock_count = −1;

1086 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

33970

33971

33972

33973

33974

33975

33976

33977

33978

33979

33980

33981

33982

33983

33984

33985

33986

33987

33988

33989

33990

33991

33992

33993

33994

33995

33996

33997

33998

33999

34000

34001

34002

34003

34004

34005

34006

34007

34008

34009

34010

34011

34012

34013

34014

34015

34016

34017

34018

34019

34020

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces pthread_cleanup_pop()

/*
* Note the pthread_cleanup_pop executes
* waiting_writer_cleanup.
*/
pthread_cleanup_pop(1);

}

void
release_write_lock(rwlock *l)
{

pthread_mutex_lock(&l->lock);
l->lock_count = 0;
if (l->waiting_writers == 0)

pthread_cond_broadcast(&l->rcond)
else

pthread_cond_signal(&l->wcond);
pthread_mutex_unlock(&l->lock);

}

/*
* T his function is called to initialize the read/write lock.
*/

void
initialize_rwlock(rwlock *l)
{

pthread_mutex_init(&l->lock, pthread_mutexattr_default);
pthread_cond_init(&l->wcond, pthread_condattr_default);
pthread_cond_init(&l->rcond, pthread_condattr_default);
l->lock_count = 0;
l->waiting_writers = 0;

}

reader_thread()
{

lock_for_read(&lock);
pthread_cleanup_push(release_read_lock, &lock);

/*
* T hread has read lock.
*/
pthread_cleanup_pop(1);

}

writer_thread()
{

lock_for_write(&lock);
pthread_cleanup_push(release_write_lock, &lock);

/*
* T hread has write lock.
*/

pthread_cleanup_pop(1);
}

APPLICATION USAGE
The two routines that push and pop cancellation cleanup handlers, pthread_cleanup_push() and
pthread_cleanup_pop(), can be thought of as left and right parentheses. They always need to be
matched.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1087

34021

34022

34023

34024

34025

34026

34027

34028

34029

34030

34031

34032

34033

34034

34035

34036

34037

34038

34039

34040

34041

34042

34043

34044

34045

34046

34047

34048

34049

34050

34051

34052

34053

34054

34055

34056

34057

34058

34059

34060

34061

34062

34063

34064

34065

34066

34067

34068

34069

34070

34071

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

pthread_cleanup_pop() System Interfaces

RATIONALE
The restriction that the two routines that push and pop cancellation cleanup handlers,
pthread_cleanup_push() and pthread_cleanup_pop(), have to appear in the same lexical scope
allows for efficient macro or compiler implementations and efficient storage management. A
sample implementation of these routines as macros might look like this:

#define pthread_cleanup_push(rtn,arg) { \
struct _pthread_handler_rec __cleanup_handler, **__head; \
__cleanup_handler.rtn = rtn; \
__cleanup_handler.arg = arg; \
(void) pthread_getspecific(_pthread_handler_key, &__head); \
__cleanup_handler.next = *__head; \
*__head = &__cleanup_handler;

#define pthread_cleanup_pop(ex) \
*__head = __cleanup_handler.next; \
if (ex) (*__cleanup_handler.rtn)(__cleanup_handler.arg); \

}

A more ambitious implementation of these routines might do even better by allowing the
compiler to note that the cancellation cleanup handler is a constant and can be expanded inline.

This volume of IEEE Std 1003.1-200x currently leaves unspecified the effect of calling longjmp()
from a signal handler executing in a POSIX System Interfaces function. If an implementation
wants to allow this and give the programmer reasonable behavior, the longjmp() function has to
call all cancellation cleanup handlers that have been pushed but not popped since the time
setjmp() was called.

Consider a multi-threaded function called by a thread that uses signals. If a signal were
delivered to a signal handler during the operation of qsort() and that handler were to call
longjmp() (which, in turn, did not call the cancellation cleanup handlers) the helper threads
created by the qsort() function would not be canceled. Instead, they would continue to execute
and write into the argument array even though the array might have been popped off the stack.

Note that the specified cleanup handling mechanism is especially tied to the C language and,
while the requirement for a uniform mechanism for expressing cleanup is language-
independent, the mechanism used in other languages may be quite different. In addition, this
mechanism is really only necessary due to the lack of a real exception mechanism in the C
language, which would be the ideal solution.

There is no notion of a cancellation cleanup-safe function. If an application has no cancellation
points in its signal handlers, blocks any signal whose handler may have cancellation points
while calling async-unsafe functions, or disables cancellation while calling async-unsafe
functions, all functions may be safely called from cancellation cleanup routines.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_cancel(), pthread_setcancelstate(), the Base Definitions volume of IEEE Std 1003.1-200x,
<pthread.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Threads Extension.

Issue 6
The pthread_cleanup_pop() and pthread_cleanup_push() functions are marked as part of the
Threads option.

The APPLICATION USAGE section is added.

1088 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

34072

34073

34074

34075

34076

34077

34078

34079

34080

34081

34082

34083

34084

34085

34086

34087

34088

34089

34090

34091

34092

34093

34094

34095

34096

34097

34098

34099

34100

34101

34102

34103

34104

34105

34106

34107

34108

34109

34110

34111

34112

34113

34114

34115

34116

34117

34118

34119

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces pthread_cleanup_pop()

The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/88 is applied, updating the
DESCRIPTION to describe the consequences of prematurely leaving a code block defined by the
pthread_cleanup_push() and pthread_cleanup_pop() functions.

Issue 7
The pthread_cleanup_pop() and pthread_cleanup_push() functions are moved from the Threads
option to the Base.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1089

34120

34121

34122

34123

34124

34125

34126

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

pthread_cond_broadcast() System Interfaces

NAME
pthread_cond_broadcast, pthread_cond_signal — broadcast or signal a condition

SYNOPSIS
#include <pthread.h>

int pthread_cond_broadcast(pthread_cond_t * cond);
int pthread_cond_signal(pthread_cond_t * cond);

DESCRIPTION
These functions shall unblock threads blocked on a condition variable.

The pthread_cond_broadcast() function shall unblock all threads currently blocked on the
specified condition variable cond.

The pthread_cond_signal() function shall unblock at least one of the threads that are blocked on
the specified condition variable cond (if any threads are blocked on cond).

If more than one thread is blocked on a condition variable, the scheduling policy shall determine
the order in which threads are unblocked. When each thread unblocked as a result of a
pthread_cond_broadcast() or pthread_cond_signal() returns from its call to pthread_cond_wait() or
pthread_cond_timedwait(), the thread shall own the mutex with which it called
pthread_cond_wait() or pthread_cond_timedwait(). The thread(s) that are unblocked shall contend
for the mutex according to the scheduling policy (if applicable), and as if each had called
pthread_mutex_lock().

The pthread_cond_broadcast() or pthread_cond_signal() functions may be called by a thread
whether or not it currently owns the mutex that threads calling pthread_cond_wait() or
pthread_cond_timedwait() have associated with the condition variable during their waits;
however, if predictable scheduling behavior is required, then that mutex shall be locked by the
thread calling pthread_cond_broadcast() or pthread_cond_signal().

The pthread_cond_broadcast() and pthread_cond_signal() functions shall have no effect if there are
no threads currently blocked on cond.

RETURN VALUE
If successful, the pthread_cond_broadcast() and pthread_cond_signal() functions shall return zero;
otherwise, an error number shall be returned to indicate the error.

ERRORS
The pthread_cond_broadcast() and pthread_cond_signal() function may fail if:

[EINVAL] The value cond does not refer to an initialized condition variable.

These functions shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
The pthread_cond_broadcast() function is used whenever the shared-variable state has been
changed in a way that more than one thread can proceed with its task. Consider a single
producer/multiple consumer problem, where the producer can insert multiple items on a list
that is accessed one item at a time by the consumers. By calling the pthread_cond_broadcast()
function, the producer would notify all consumers that might be waiting, and thereby the
application would receive more throughput on a multi-processor. In addition,
pthread_cond_broadcast() makes it easier to implement a read-write lock. The
pthread_cond_broadcast() function is needed in order to wake up all waiting readers when a
writer releases its lock. Finally, the two-phase commit algorithm can use this broadcast function

1090 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

34127

34128

34129

34130

34131

34132

34133

34134

34135

34136

34137

34138

34139

34140

34141

34142

34143

34144

34145

34146

34147

34148

34149

34150

34151

34152

34153

34154

34155

34156

34157

34158

34159

34160

34161

34162

34163

34164

34165

34166

34167

34168

34169

34170

34171

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces pthread_cond_broadcast()

to notify all clients of an impending transaction commit.

It is not safe to use the pthread_cond_signal() function in a signal handler that is invoked
asynchronously. Even if it were safe, there would still be a race between the test of the Boolean
pthread_cond_wait() that could not be efficiently eliminated.

Mutexes and condition variables are thus not suitable for releasing a waiting thread by signaling
from code running in a signal handler.

RATIONALE

Multiple Awakenings by Condition Signal

On a multi-processor, it may be impossible for an implementation of pthread_cond_signal() to
avoid the unblocking of more than one thread blocked on a condition variable. For example,
consider the following partial implementation of pthread_cond_wait() and pthread_cond_signal(),
executed by two threads in the order given. One thread is trying to wait on the condition
variable, another is concurrently executing pthread_cond_signal(), while a third thread is already
waiting.

pthread_cond_wait(mutex, cond):
value = cond->value; /* 1 */
pthread_mutex_unlock(mutex); /* 2 */
pthread_mutex_lock(cond->mutex); /* 10 */
if (value == cond->value) { /* 11 */

me->next_cond = cond->waiter;
cond->waiter = me;
pthread_mutex_unlock(cond->mutex);
unable_to_run(me);

} e lse
pthread_mutex_unlock(cond->mutex); /* 12 */

pthread_mutex_lock(mutex); /* 13 */

pthread_cond_signal(cond):
pthread_mutex_lock(cond->mutex); /* 3 */
cond->value++; /* 4 */
if (cond->waiter) { /* 5 */

sleeper = cond->waiter; /* 6 */
cond->waiter = sleeper->next_cond; /* 7 */
able_to_run(sleeper); /* 8 */

}
pthread_mutex_unlock(cond->mutex); /* 9 */

The effect is that more than one thread can return from its call to pthread_cond_wait() or
pthread_cond_timedwait() as a result of one call to pthread_cond_signal(). This effect is called
‘‘spurious wakeup’’. Note that the situation is self-correcting in that the number of threads that
are so awakened is finite; for example, the next thread to call pthread_cond_wait() after the
sequence of events above blocks.

While this problem could be resolved, the loss of efficiency for a fringe condition that occurs
only rarely is unacceptable, especially given that one has to check the predicate associated with a
condition variable anyway. Correcting this problem would unnecessarily reduce the degree of
concurrency in this basic building block for all higher-level synchronization operations.

An added benefit of allowing spurious wakeups is that applications are forced to code a
predicate-testing-loop around the condition wait. This also makes the application tolerate
superfluous condition broadcasts or signals on the same condition variable that may be coded in
some other part of the application. The resulting applications are thus more robust. Therefore,
IEEE Std 1003.1-200x explicitly documents that spurious wakeups may occur.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1091

34172

34173

34174

34175

34176

34177

34178

34179

34180

34181

34182

34183

34184

34185

34186

34187

34188

34189

34190

34191

34192

34193

34194

34195

34196

34197

34198

34199

34200

34201

34202

34203

34204

34205

34206

34207

34208

34209

34210

34211

34212

34213

34214

34215

34216

34217

34218

34219

34220

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

pthread_cond_broadcast() System Interfaces

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_cond_destroy(), pthread_cond_timedwait(), the Base Definitions volume of
IEEE Std 1003.1-200x, Section 4.10, Memory Synchronization, <pthread.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Threads Extension.

Issue 6
The pthread_cond_broadcast() and pthread_cond_signal() functions are marked as part of the
Threads option.

The APPLICATION USAGE section is added.

Issue 7
The pthread_cond_broadcast() and pthread_cond_signal() functions are moved from the Threads
option to the Base.

1092 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

34221

34222

34223

34224

34225

34226

34227

34228

34229

34230

34231

34232

34233

34234

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces pthread_cond_destroy()

NAME
pthread_cond_destroy, pthread_cond_init — destroy and initialize condition variables

SYNOPSIS
#include <pthread.h>

int pthread_cond_destroy(pthread_cond_t * cond);
int pthread_cond_init(pthread_cond_t *restrict cond,

const pthread_condattr_t *restrict attr);
pthread_cond_t cond = PTHREAD_COND_INITIALIZER;

DESCRIPTION
The pthread_cond_destroy() function shall destroy the given condition variable specified by cond;
the object becomes, in effect, uninitialized. An implementation may cause pthread_cond_destroy()
to set the object referenced by cond to an invalid value. A destroyed condition variable object can
be reinitialized using pthread_cond_init(); the results of otherwise referencing the object after it
has been destroyed are undefined.

It shall be safe to destroy an initialized condition variable upon which no threads are currently
blocked. Attempting to destroy a condition variable upon which other threads are currently
blocked results in undefined behavior.

The pthread_cond_init() function shall initialize the condition variable referenced by cond with
attributes referenced by attr. If attr is NULL, the default condition variable attributes shall be
used; the effect is the same as passing the address of a default condition variable attributes
object. Upon successful initialization, the state of the condition variable shall become initialized.

Only cond itself may be used for performing synchronization. The result of referring to copies of
cond in calls to pthread_cond_wait(), pthread_cond_timedwait(), pthread_cond_signal(),
pthread_cond_broadcast(), and pthread_cond_destroy() is undefined.

Attempting to initialize an already initialized condition variable results in undefined behavior.

In cases where default condition variable attributes are appropriate, the macro
PTHREAD_COND_INITIALIZER can be used to initialize condition variables that are statically
allocated. The effect shall be equivalent to dynamic initialization by a call to pthread_cond_init()
with parameter attr specified as NULL, except that no error checks are performed.

RETURN VALUE
If successful, the pthread_cond_destroy() and pthread_cond_init() functions shall return zero;
otherwise, an error number shall be returned to indicate the error.

The [EBUSY] and [EINVAL] error checks, if implemented, shall act as if they were performed
immediately at the beginning of processing for the function and caused an error return prior to
modifying the state of the condition variable specified by cond.

ERRORS
The pthread_cond_destroy() function may fail if:

[EBUSY] The implementation has detected an attempt to destroy the object referenced
by cond while it is referenced (for example, while being used in a
pthread_cond_wait() or pthread_cond_timedwait()) by another thread.

[EINVAL] The value specified by cond is invalid.

The pthread_cond_init() function shall fail if:

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1093

34235

34236

34237

34238

34239

34240

34241

34242

34243

34244

34245

34246

34247

34248

34249

34250

34251

34252

34253

34254

34255

34256

34257

34258

34259

34260

34261

34262

34263

34264

34265

34266

34267

34268

34269

34270

34271

34272

34273

34274

34275

34276

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

pthread_cond_destroy() System Interfaces

[EAGAIN] The system lacked the necessary resources (other than memory) to initialize
another condition variable.

[ENOMEM] Insufficient memory exists to initialize the condition variable.

The pthread_cond_init() function may fail if:

[EBUSY] The implementation has detected an attempt to reinitialize the object
referenced by cond, a previously initialized, but not yet destroyed, condition
variable.

[EINVAL] The value specified by attr is invalid.

These functions shall not return an error code of [EINTR].

EXAMPLES
A condition variable can be destroyed immediately after all the threads that are blocked on it are
awakened. For example, consider the following code:

struct list {
pthread_mutex_t lm;
...

}

struct elt {
key k;
int busy;
pthread_cond_t notbusy;
...

}

/* Find a list element and reserve it. */
struct elt *
list_find(struct list *lp, key k)
{

struct elt *ep;

pthread_mutex_lock(&lp->lm);
while ((ep = find_elt(l, k) != NULL) && ep->busy)

pthread_cond_wait(&ep->notbusy, &lp->lm);
if (ep != NULL)

ep->busy = 1;
pthread_mutex_unlock(&lp->lm);
return(ep);

}

delete_elt(struct list *lp, struct elt *ep)
{

pthread_mutex_lock(&lp->lm);
assert(ep->busy);
... remove ep from list ...
ep->busy = 0; /* Paranoid. */

(A) pthread_cond_broadcast(&ep->notbusy);
pthread_mutex_unlock(&lp->lm);

(B) pthread_cond_destroy(&rp->notbusy);
free(ep);

}

In this example, the condition variable and its list element may be freed (line B) immediately
after all threads waiting for it are awakened (line A), since the mutex and the code ensure that

1094 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

34277

34278

34279

34280

34281

34282

34283

34284

34285

34286

34287

34288

34289

34290

34291

34292

34293

34294

34295

34296

34297

34298

34299

34300

34301

34302

34303

34304

34305

34306

34307

34308

34309

34310

34311

34312

34313

34314

34315

34316

34317

34318

34319

34320

34321

34322

34323

34324

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces pthread_cond_destroy()

no other thread can touch the element to be deleted.

APPLICATION USAGE
None.

RATIONALE
See pthread_mutex_init(); a similar rationale applies to condition variables.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_cond_broadcast(), pthread_cond_signal(), pthread_cond_timedwait(), the Base Definitions
volume of IEEE Std 1003.1-200x, <pthread.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Threads Extension.

Issue 6
The pthread_cond_destroy() and pthread_cond_init() functions are marked as part of the Threads
option.

IEEE PASC Interpretation 1003.1c #34 is applied, updating the DESCRIPTION.

The restrict keyword is added to the pthread_cond_init() prototype for alignment with the
ISO/IEC 9899: 1999 standard.

Issue 7
The pthread_cond_destroy() and pthread_cond_init() functions are moved from the Threads option
to the Base.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1095

34325

34326

34327

34328

34329

34330

34331

34332

34333

34334

34335

34336

34337

34338

34339

34340

34341

34342

34343

34344

34345

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

pthread_cond_signal() System Interfaces

NAME
pthread_cond_signal — signal a condition

SYNOPSIS
#include <pthread.h>

int pthread_cond_signal(pthread_cond_t * cond);

DESCRIPTION
Refer to pthread_cond_broadcast().

1096 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

34346

34347

34348

34349

34350

34351

34352

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces pthread_cond_timedwait()

NAME
pthread_cond_timedwait, pthread_cond_wait — wait on a condition

SYNOPSIS
#include <pthread.h>

int pthread_cond_timedwait(pthread_cond_t *restrict cond,
pthread_mutex_t *restrict mutex,
const struct timespec *restrict abstime);

int pthread_cond_wait(pthread_cond_t *restrict cond,
pthread_mutex_t *restrict mutex);

DESCRIPTION
The pthread_cond_timedwait() and pthread_cond_wait() functions shall block on a condition
variable. They shall be called with mutex locked by the calling thread or undefined behavior
results.

These functions atomically release mutex and cause the calling thread to block on the condition
variable cond; atomically here means ‘‘atomically with respect to access by another thread to the
mutex and then the condition variable’’. That is, if another thread is able to acquire the mutex
after the about-to-block thread has released it, then a subsequent call to pthread_cond_broadcast()
or pthread_cond_signal() in that thread shall behave as if it were issued after the about-to-block
thread has blocked.

Upon successful return, the mutex shall have been locked and shall be owned by the calling
thread. If mutex is a robust mutex where an owner terminated while holding the lock and the
state is recoverable, the mutex shall be acquired even though the function returns an error code.

When using condition variables there is always a Boolean predicate involving shared variables
associated with each condition wait that is true if the thread should proceed. Spurious wakeups
from the pthread_cond_timedwait() or pthread_cond_wait() functions may occur. Since the return
from pthread_cond_timedwait() or pthread_cond_wait() does not imply anything about the value of
this predicate, the predicate should be re-evaluated upon such return.

When a thread waits on a condition variable, having specified a particular mutex to either the
pthread_cond_timedwait() or the pthread_cond_wait() operation, a dynamic binding is formed
between that mutex and condition variable that remains in effect as long as at least one thread is
blocked on the condition variable. During this time, the effect of an attempt by any thread to
wait on that condition variable using a different mutex is undefined. Once all waiting threads
have been unblocked (as by the pthread_cond_broadcast() operation), the next wait operation on
that condition variable shall form a new dynamic binding with the mutex specified by that wait
operation. Even though the dynamic binding between condition variable and mutex may be
removed or replaced between the time a thread is unblocked from a wait on the condition
variable and the time that it returns to the caller or begins cancellation cleanup, the unblocked
thread shall always re-acquire the mutex specified in the condition wait operation call from
which it is returning.

A condition wait (whether timed or not) is a cancellation point. When the cancelability type of a
thread is set to PTHREAD_CANCEL_DEFERRED, a side effect of acting upon a cancellation
request while in a condition wait is that the mutex is (in effect) re-acquired before calling the first
cancellation cleanup handler. The effect is as if the thread were unblocked, allowed to execute up
to the point of returning from the call to pthread_cond_timedwait() or pthread_cond_wait(), but at
that point notices the cancellation request and instead of returning to the caller of
pthread_cond_timedwait() or pthread_cond_wait(), starts the thread cancellation activities, which
includes calling cancellation cleanup handlers.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1097

34353

34354

34355

34356

34357

34358

34359

34360

34361

34362

34363

34364

34365

34366

34367

34368

34369

34370

34371

34372

34373

34374

34375

34376

34377

34378

34379

34380

34381

34382

34383

34384

34385

34386

34387

34388

34389

34390

34391

34392

34393

34394

34395

34396

34397

34398

34399

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

pthread_cond_timedwait() System Interfaces

A thread that has been unblocked because it has been canceled while blocked in a call to
pthread_cond_timedwait() or pthread_cond_wait() shall not consume any condition signal that may
be directed concurrently at the condition variable if there are other threads blocked on the
condition variable.

The pthread_cond_timedwait() function shall be equivalent to pthread_cond_wait(), except that an
error is returned if the absolute time specified by abstime passes (that is, system time equals or
exceeds abstime) before the condition cond is signaled or broadcasted, or if the absolute time
specified by abstime has already been passed at the time of the call.

The condition variable shall have a clock attribute which specifies the clock that shall be used to
measure the time specified by the abstime argument. When such timeouts occur,
pthread_cond_timedwait() shall nonetheless release and re-acquire the mutex referenced by mutex.
The pthread_cond_timedwait() function is also a cancellation point.

If a signal is delivered to a thread waiting for a condition variable, upon return from the signal
handler the thread resumes waiting for the condition variable as if it was not interrupted, or it
shall return zero due to spurious wakeup.

RETURN VALUE
Except in the case of [ETIMEDOUT], all these error checks shall act as if they were performed
immediately at the beginning of processing for the function and shall cause an error return, in
effect, prior to modifying the state of the mutex specified by mutex or the condition variable
specified by cond.

Upon successful completion, a value of zero shall be returned; otherwise, an error number shall
be returned to indicate the error.

ERRORS
The pthread_cond_timedwait() function shall fail if:

[ETIMEDOUT] The time specified by abstime to pthread_cond_timedwait() has passed.

[EINVAL] The abstime argument specified a nanosecond value less than zero or greater
than or equal to 1000 million.

[ENOTRECOVERABLE]
The state protected by the mutex is not recoverable. The mutex is not locked.

[EOWNERDEAD]
The mutex is a robust mutex and the process containing the previous owner
thread terminated while holding the mutex lock. The mutex lock has been
acquired and it is up to the new owner to make the state consistent.

These functions may fail if:

[EINVAL] The value specified by cond or mutex is invalid.

[EOWNERDEAD]
The mutex is a robust mutex and the previous owning thread terminated
while holding the mutex lock. The mutex lock has been acquired and it is up
to the new owner to make the state consistent.

[EPERM] The mutex was not owned by the current thread at the time of the call.

These functions shall not return an error code of [EINTR].

1098 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

34400

34401

34402

34403

34404

34405

34406

34407

34408

34409

34410

34411

34412

34413

34414

34415

34416

34417

34418

34419

34420

34421

34422

34423

34424

34425

34426

34427

34428

34429

34430

34431

34432

34433

34434

34435

34436

34437

34438

34439

34440

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces pthread_cond_timedwait()

EXAMPLES
None.

APPLICATION USAGE
Applications that have assumed that non-zero return values are errors will need updating for
use with robust mutexes, since a valid return for a thread acquiring a mutex which is protecting
a currently inconsistent state is [EOWNERDEAD]. Applications that do not check the error
returns, due to ruling out the possibility of such errors arising, should not use robust mutexes. If
an application is supposed to work with normal and robust mutexes, it should check all return
values for error conditions and if necessary take appropriate action.

RATIONALE

Condition Wait Semantics

It is important to note that when pthread_cond_wait() and pthread_cond_timedwait() return
without error, the associated predicate may still be false. Similarly, when
pthread_cond_timedwait() returns with the timeout error, the associated predicate may be true
due to an unavoidable race between the expiration of the timeout and the predicate state change.

The application needs to recheck the predicate on any return because it cannot be sure there is
another thread waiting on the thread to handle the signal, and if there is not then the signal is
lost. The burden is on the application to check the predicate.

Some implementations, particularly on a multi-processor, may sometimes cause multiple
threads to wake up when the condition variable is signaled simultaneously on different
processors.

In general, whenever a condition wait returns, the thread has to re-evaluate the predicate
associated with the condition wait to determine whether it can safely proceed, should wait
again, or should declare a timeout. A return from the wait does not imply that the associated
predicate is either true or false.

It is thus recommended that a condition wait be enclosed in the equivalent of a ‘‘while loop’’
that checks the predicate.

Timed Wait Semantics

An absolute time measure was chosen for specifying the timeout parameter for two reasons.
First, a relative time measure can be easily implemented on top of a function that specifies
absolute time, but there is a race condition associated with specifying an absolute timeout on top
of a function that specifies relative timeouts. For example, assume that clock_gettime() returns
the current time and cond_relative_timed_wait() uses relative timeouts:

clock_gettime(CLOCK_REALTIME, &now)
reltime = sleep_til_this_absolute_time -now;
cond_relative_timed_wait(c, m, &reltime);

If the thread is preempted between the first statement and the last statement, the thread blocks
for too long. Blocking, however, is irrelevant if an absolute timeout is used. An absolute timeout
also need not be recomputed if it is used multiple times in a loop, such as that enclosing a
condition wait.

For cases when the system clock is advanced discontinuously by an operator, it is expected that
implementations process any timed wait expiring at an intervening time as if that time had
actually occurred.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1099

34441

34442

34443

34444

34445

34446

34447

34448

34449

34450

34451

34452

34453

34454

34455

34456

34457

34458

34459

34460

34461

34462

34463

34464

34465

34466

34467

34468

34469

34470

34471

34472

34473

34474

34475

34476

34477

34478

34479

34480

34481

34482

34483

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

pthread_cond_timedwait() System Interfaces

Cancellation and Condition Wait

A condition wait, whether timed or not, is a cancellation point. That is, the functions
pthread_cond_wait() or pthread_cond_timedwait() are points where a pending (or concurrent)
cancellation request is noticed. The reason for this is that an indefinite wait is possible at these
points—whatever event is being waited for, even if the program is totally correct, might never
occur; for example, some input data being awaited might never be sent. By making condition
wait a cancellation point, the thread can be canceled and perform its cancellation cleanup
handler even though it may be stuck in some indefinite wait.

A side effect of acting on a cancellation request while a thread is blocked on a condition variable
is to re-acquire the mutex before calling any of the cancellation cleanup handlers. This is done in
order to ensure that the cancellation cleanup handler is executed in the same state as the critical
code that lies both before and after the call to the condition wait function. This rule is also
required when interfacing to POSIX threads from languages, such as Ada or C++, which may
choose to map cancellation onto a language exception; this rule ensures that each exception
handler guarding a critical section can always safely depend upon the fact that the associated
mutex has already been locked regardless of exactly where within the critical section the
exception was raised. Without this rule, there would not be a uniform rule that exception
handlers could follow regarding the lock, and so coding would become very cumbersome.

Therefore, since some statement has to be made regarding the state of the lock when a
cancellation is delivered during a wait, a definition has been chosen that makes application
coding most convenient and error free.

When acting on a cancellation request while a thread is blocked on a condition variable, the
implementation is required to ensure that the thread does not consume any condition signals
directed at that condition variable if there are any other threads waiting on that condition
variable. This rule is specified in order to avoid deadlock conditions that could occur if these
two independent requests (one acting on a thread and the other acting on the condition variable)
were not processed independently.

Performance of Mutexes and Condition Variables

Mutexes are expected to be locked only for a few instructions. This practice is almost
automatically enforced by the desire of programmers to avoid long serial regions of execution
(which would reduce total effective parallelism).

When using mutexes and condition variables, one tries to ensure that the usual case is to lock the
mutex, access shared data, and unlock the mutex. Waiting on a condition variable should be a
relatively rare situation. For example, when implementing a read-write lock, code that acquires a
read-lock typically needs only to increment the count of readers (under mutual-exclusion) and
return. The calling thread would actually wait on the condition variable only when there is
already an active writer. So the efficiency of a synchronization operation is bounded by the cost
of mutex lock/unlock and not by condition wait. Note that in the usual case there is no context
switch.

This is not to say that the efficiency of condition waiting is unimportant. Since there needs to be
at least one context switch per Ada rendezvous, the efficiency of waiting on a condition variable
is important. The cost of waiting on a condition variable should be little more than the minimal
cost for a context switch plus the time to unlock and lock the mutex.

1100 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

34484

34485

34486

34487

34488

34489

34490

34491

34492

34493

34494

34495

34496

34497

34498

34499

34500

34501

34502

34503

34504

34505

34506

34507

34508

34509

34510

34511

34512

34513

34514

34515

34516

34517

34518

34519

34520

34521

34522

34523

34524

34525

34526

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces pthread_cond_timedwait()

Features of Mutexes and Condition Variables

It had been suggested that the mutex acquisition and release be decoupled from condition wait.
This was rejected because it is the combined nature of the operation that, in fact, facilitates
realtime implementations. Those implementations can atomically move a high-priority thread
between the condition variable and the mutex in a manner that is transparent to the caller. This
can prevent extra context switches and provide more deterministic acquisition of a mutex when
the waiting thread is signaled. Thus, fairness and priority issues can be dealt with directly by the
scheduling discipline. Furthermore, the current condition wait operation matches existing
practice.

Scheduling Behavior of Mutexes and Condition Variables

Synchronization primitives that attempt to interfere with scheduling policy by specifying an
ordering rule are considered undesirable. Threads waiting on mutexes and condition variables
are selected to proceed in an order dependent upon the scheduling policy rather than in some
fixed order (for example, FIFO or priority). Thus, the scheduling policy determines which
thread(s) are awakened and allowed to proceed.

Timed Condition Wait

The pthread_cond_timedwait() function allows an application to give up waiting for a particular
condition after a given amount of time. An example of its use follows:

(void) pthread_mutex_lock(&t.mn);
t.waiters++;

clock_gettime(CLOCK_REALTIME, &ts);
ts.tv_sec += 5;
rc = 0;
while (! mypredicate(&t) && rc == 0)

rc = pthread_cond_timedwait(&t.cond, &t.mn, &ts);
t.waiters- -;
if (rc == 0) setmystate(&t);

(void) pthread_mutex_unlock(&t.mn);

By making the timeout parameter absolute, it does not need to be recomputed each time the
program checks its blocking predicate. If the timeout was relative, it would have to be
recomputed before each call. This would be especially difficult since such code would need to
take into account the possibility of extra wakeups that result from extra broadcasts or signals on
the condition variable that occur before either the predicate is true or the timeout is due.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_cond_signal(), pthread_cond_broadcast(), the Base Definitions volume of
IEEE Std 1003.1-200x, Section 4.10, Memory Synchronization, <pthread.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Threads Extension.

Issue 6
The pthread_cond_timedwait() and pthread_cond_wait() functions are marked as part of the
Threads option.

The Open Group Corrigendum U021/9 is applied, correcting the prototype for the
pthread_cond_wait() function.

The DESCRIPTION is updated for alignment with IEEE Std 1003.1j-2000 by adding semantics
for the Clock Selection option.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1101

34527

34528

34529

34530

34531

34532

34533

34534

34535

34536

34537

34538

34539

34540

34541

34542

34543

34544

34545

34546

34547

34548

34549

34550

34551

34552

34553

34554

34555

34556

34557

34558

34559

34560

34561

34562

34563

34564

34565

34566

34567

34568

34569

34570

34571

34572

34573

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

pthread_cond_timedwait() System Interfaces

The ERRORS section has an additional case for [EPERM] in response to IEEE PASC
Interpretation 1003.1c #28.

The restrict keyword is added to the pthread_cond_timedwait() and pthread_cond_wait()
prototypes for alignment with the ISO/IEC 9899: 1999 standard.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/89 is applied, updating the
DESCRIPTION for consistency with the pthread_cond_destroy() function that states it is safe to
destroy an initialized condition variable upon which no threads are currently blocked.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/90 is applied, updating words in the
DESCRIPTION from ‘‘the cancelability enable state’’ to ‘‘the cancelability type’’.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/91 is applied, updating the ERRORS
section to remove the error case related to abstime from the pthread_cond_wait() function, and to
make the error case related to abstime mandatory for pthread_cond_timedwait() for consistency
with other functions.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/92 is applied, adding a new paragraph to
the RATIONALE section stating that an application should check the predicate on any return
from this function.

Issue 7
SD5-XSH-ERN-44 is applied, changing the definition of the ‘‘shall fail’’ case of the [EINVAL]
error.

Changes are made from The Open Group Technical Standard, 2006, Extended API Set Part 3.

The pthread_cond_timedwait() and pthread_cond_wait() functions are moved from the Threads
option to the Base.

1102 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

34574

34575

34576

34577

34578

34579

34580

34581

34582

34583

34584

34585

34586

34587

34588

34589

34590

34591

34592

34593

34594

34595

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces pthread_condattr_destroy()

NAME
pthread_condattr_destroy, pthread_condattr_init — destroy and initialize the condition variable
attributes object

SYNOPSIS
#include <pthread.h>

int pthread_condattr_destroy(pthread_condattr_t * attr);
int pthread_condattr_init(pthread_condattr_t * attr);

DESCRIPTION
The pthread_condattr_destroy() function shall destroy a condition variable attributes object; the
object becomes, in effect, uninitialized. An implementation may cause pthread_condattr_destroy()
to set the object referenced by attr to an invalid value. A destroyed attr attributes object can be
reinitialized using pthread_condattr_init(); the results of otherwise referencing the object after it
has been destroyed are undefined.

The pthread_condattr_init() function shall initialize a condition variable attributes object attr with
the default value for all of the attributes defined by the implementation.

Results are undefined if pthread_condattr_init() is called specifying an already initialized attr
attributes object.

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

pthread_condattr_destroy() System Interfaces

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_attr_destroy(), pthread_cond_destroy(), pthread_condattr_getpshared(), pthread_create(),
pthread_mutex_destroy(), the Base Definitions volume of IEEE Std 1003.1-200x, <pthread.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Threads Extension.

Issue 6
The pthread_condattr_destroy() and pthread_condattr_init() functions are marked as part of the
Threads option.

Issue 7
The pthread_condattr_destroy() and pthread_condattr_init() functions are moved from the Threads
option to the Base.

1104 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

34637

34638

34639

34640

34641

34642

34643

34644

34645

34646

34647

34648

34649

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces pthread_condattr_getclock()

NAME
pthread_condattr_getclock, pthread_condattr_setclock — get and set the clock selection
condition variable attribute

SYNOPSIS
#include <pthread.h>

int pthread_condattr_getclock(const pthread_condattr_t *restrict attr,
clockid_t *restrict clock_id);

int pthread_condattr_setclock(pthread_condattr_t * attr,
clockid_t clock_id);

DESCRIPTION
The pthread_condattr_getclock() function shall obtain the value of the clock attribute from the
attributes object referenced by attr. The pthread_condattr_setclock() function shall set the clock
attribute in an initialized attributes object referenced by attr. If pthread_condattr_setclock() is
called with a clock_id argument that refers to a CPU-time clock, the call shall fail.

The clock attribute is the clock ID of the clock that shall be used to measure the timeout service of
pthread_cond_timedwait(). The default value of the clock attribute shall refer to the system clock.

RETURN VALUE
If successful, the pthread_condattr_getclock() function shall return zero and store the value of the
clock attribute of attr into the object referenced by the clock_id argument. Otherwise, an error
number shall be returned to indicate the error.

If successful, the pthread_condattr_setclock() function shall return zero; otherwise, an error
number shall be returned to indicate the error.

ERRORS
These functions may fail if:

[EINVAL] The value specified by attr is invalid.

The pthread_condattr_setclock() function may fail if:

[EINVAL] The value specified by clock_id does not refer to a known clock, or is a CPU-
time clock.

These functions shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_cond_destroy(), pthread_cond_timedwait(), pthread_condattr_destroy(),
pthread_condattr_getpshared() (on page 1107),1 pthread_condattr_init(),
pthread_condattr_setpshared() (on page 1111),1 pthread_create(), pthread_mutex_init(), the Base
Definitions volume of IEEE Std 1003.1-200x, <pthread.h>

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1105

34650

34651

34652

34653

34654

34655

34656

34657

34658

34659

34660

34661

34662

34663

34664

34665

34666

34667

34668

34669

34670

34671

34672

34673

34674

34675

34676

34677

34678

34679

34680

34681

34682

34683

34684

34685

34686

34687

34688

34689

34690

34691

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

pthread_condattr_getclock() System Interfaces

CHANGE HISTORY
First released in Issue 6. Derived from IEEE Std 1003.1j-2000.

Issue 7
The pthread_condattr_getclock() and pthread_condattr_setclock() functions are moved from the
Clock Selection option to the Base.

1106 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

34692

34693

34694

34695

34696

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces pthread_condattr_getpshared()

NAME
pthread_condattr_getpshared, pthread_condattr_setpshared — get and set the process-shared
condition variable attributes

SYNOPSIS
TSH #include <pthread.h>

int pthread_condattr_getpshared(const pthread_condattr_t *restrict attr,
int *restrict pshared);

int pthread_condattr_setpshared(pthread_condattr_t * attr,
int pshared);

DESCRIPTION
The pthread_condattr_getpshared() function shall obtain the value of the process-shared attribute
from the attributes object referenced by attr. The pthread_condattr_setpshared() function shall set
the process-shared attribute in an initialized attributes object referenced by attr.

The process-shared attribute is set to PTHREAD_PROCESS_SHARED to permit a condition
variable to be operated upon by any thread that has access to the memory where the condition
variable is allocated, even if the condition variable is allocated in memory that is shared by
multiple processes. If the process-shared attribute is PTHREAD_PROCESS_PRIVATE, the
condition variable shall only be operated upon by threads created within the same process as the
thread that initialized the condition variable; if threads of differing processes attempt to operate
on such a condition variable, the behavior is undefined. The default value of the attribute is
PTHREAD_PROCESS_PRIVATE.

RETURN VALUE
If successful, the pthread_condattr_setpshared() function shall return zero; otherwise, an error
number shall be returned to indicate the error.

If successful, the pthread_condattr_getpshared() function shall return zero and store the value of
the process-shared attribute of attr into the object referenced by the pshared parameter. Otherwise,
an error number shall be returned to indicate the error.

ERRORS
The pthread_condattr_getpshared() and pthread_condattr_setpshared() functions may fail if:

[EINVAL] The value specified by attr is invalid.

The pthread_condattr_setpshared() function may fail if:

[EINVAL] The new value specified for the attribute is outside the range of legal values
for that attribute.

These functions shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1107

34697

34698

34699

34700

34701

34702

34703

34704

34705

34706

34707

34708

34709

34710

34711

34712

34713

34714

34715

34716

34717

34718

34719

34720

34721

34722

34723

34724

34725

34726

34727

34728

34729

34730

34731

34732

34733

34734

34735

34736

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

pthread_condattr_getpshared() System Interfaces

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_create(), pthread_cond_destroy(), pthread_condattr_destroy(), pthread_mutex_destroy(), the
Base Definitions volume of IEEE Std 1003.1-200x, <pthread.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Threads Extension.

Issue 6
The pthread_condattr_getpshared() and pthread_condattr_setpshared() functions are marked as part
of the Threads and Thread Process-Shared Synchronization options.

The restrict keyword is added to the pthread_condattr_getpshared() prototype for alignment with
the ISO/IEC 9899: 1999 standard.

Issue 7
The pthread_condattr_getpshared() and pthread_condattr_setpshared() functions are moved from the
Threads option.

1108 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

34737

34738

34739

34740

34741

34742

34743

34744

34745

34746

34747

34748

34749

34750

34751

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces pthread_condattr_init()

NAME
pthread_condattr_init — initialize the condition variable attributes object

SYNOPSIS
#include <pthread.h>

int pthread_condattr_init(pthread_condattr_t * attr);

DESCRIPTION
Refer to pthread_condattr_destroy().

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1109

34752

34753

34754

34755

34756

34757

34758

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

pthread_condattr_setclock() System Interfaces

NAME
pthread_condattr_setclock — set the clock selection condition variable attribute

SYNOPSIS
#include <pthread.h>

int pthread_condattr_setclock(pthread_condattr_t * attr,
clockid_t clock_id);

DESCRIPTION
Refer to pthread_condattr_getclock().

1110 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

34759

34760

34761

34762

34763

34764

34765

34766

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces pthread_condattr_setpshared()

NAME
pthread_condattr_setpshared — set the process-shared condition variable attribute

SYNOPSIS
TSH #include <pthread.h>

int pthread_condattr_setpshared(pthread_condattr_t * attr,
int pshared);

DESCRIPTION
Refer to pthread_condattr_getpshared().

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1111

34767

34768

34769

34770

34771

34772

34773

34774

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

pthread_create() System Interfaces

NAME
pthread_create — thread creation

SYNOPSIS
#include <pthread.h>

int pthread_create(pthread_t *restrict thread,
const pthread_attr_t *restrict attr,
void *(* start_routine)(void*), void *restrict arg);

DESCRIPTION
The pthread_create() function shall create a new thread, with attributes specified by attr, within a
process. If attr is NULL, the default attributes shall be used. If the attributes specified by attr are
modified later, the thread’s attributes shall not be affected. Upon successful completion,
pthread_create() shall store the ID of the created thread in the location referenced by thread.

The thread is created executing start_routine with arg as its sole argument. If the start_routine
returns, the effect shall be as if there was an implicit call to pthread_exit() using the return value
of start_routine as the exit status. Note that the thread in which main() was originally invoked
differs from this. When it returns from main(), the effect shall be as if there was an implicit call to
exit() using the return value of main() as the exit status.

The signal state of the new thread shall be initialized as follows:

• The signal mask shall be inherited from the creating thread.

• The set of signals pending for the new thread shall be empty.

XSI The alternate stack shall not be inherited.

The floating-point environment shall be inherited from the creating thread.

If pthread_create() fails, no new thread is created and the contents of the location referenced by
thread are undefined.

TCT If _POSIX_THREAD_CPUTIME is defined, the new thread shall have a CPU-time clock
accessible, and the initial value of this clock shall be set to zero.

RETURN VALUE
If successful, the pthread_create() function shall return zero; otherwise, an error number shall be
returned to indicate the error.

ERRORS
The pthread_create() function shall fail if:

[EAGAIN] The system lacked the necessary resources to create another thread, or the
system-imposed limit on the total number of threads in a process
{PTHREAD_THREADS_MAX} would be exceeded.

[EPERM] The caller does not have appropriate permission to set the required scheduling
parameters or scheduling policy.

The pthread_create() function may fail if:

[EINVAL] The attributes specified by attr are invalid.

The pthread_create() function shall not return an error code of [EINTR].

1112 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

34775

34776

34777

34778

34779

34780

34781

34782

34783

34784

34785

34786

34787

34788

34789

34790

34791

34792

34793

34794

34795

34796

34797

34798

34799

34800

34801

34802

34803

34804

34805

34806

34807

34808

34809

34810

34811

34812

34813

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces pthread_create()

EXAMPLES
None.

APPLICATION USAGE
There is no requirement on the implementation that the ID of the created thread be available
before the newly created thread starts executing. The calling thread can obtain the ID of the
created thread through the return value of the pthread_create() function, and the newly created
thread can obtain its ID by a call to pthread_self().

RATIONALE
A suggested alternative to pthread_create() would be to define two separate operations: create
and start. Some applications would find such behavior more natural. Ada, in particular,
separates the ‘‘creation’’ of a task from its ‘‘activation’’.

Splitting the operation was rejected by the standard developers for many reasons:

• The number of calls required to start a thread would increase from one to two and thus
place an additional burden on applications that do not require the additional
synchronization. The second call, however, could be avoided by the additional
complication of a start-up state attribute.

• An extra state would be introduced: ‘‘created but not started’’. This would require the
standard to specify the behavior of the thread operations when the target has not yet
started executing.

• For those applications that require such behavior, it is possible to simulate the two separate
steps with the facilities that are currently provided. The start_routine() can synchronize by
waiting on a condition variable that is signaled by the start operation.

An Ada implementor can choose to create the thread at either of two points in the Ada program:
when the task object is created, or when the task is activated (generally at a ‘‘begin’’). If the first
approach is adopted, the start_routine() needs to wait on a condition variable to receive the order

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

pthread_create() System Interfaces

• For many implementations, the entire stack of the calling thread would need to be
duplicated, since in many architectures there is no way to determine the size of the calling
frame.

• Efficiency is reduced since at least some part of the stack has to be copied, even though in
most cases the thread never needs the copied context, since it merely calls the desired start
routine.

FUTURE DIRECTIONS
None.

SEE ALSO
fork(), pthread_exit(), pthread_join(), the Base Definitions volume of IEEE Std 1003.1-200x, Section
4.10, Memory Synchronization, <pthread.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Threads Extension.

Issue 6
The pthread_create() function is marked as part of the Threads option.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The [EPERM] mandatory error condition is added.

The thread CPU-time clock semantics are added for alignment with IEEE Std 1003.1d-1999.

The restrict keyword is added to the pthread_create() prototype for alignment with the
ISO/IEC 9899: 1999 standard.

The DESCRIPTION is updated to make it explicit that the floating-point environment is
inherited from the creating thread.

IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/44 is applied, adding text that the
alternate stack is not inherited.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/93 is applied, updating the ERRORS
section to remove the mandatory [EINVAL] error (‘‘The value specified by attr is invalid’’), and
adding the optional [EINVAL] error (‘‘The attributes specified by attr are invalid’’).

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/94 is applied, adding the APPLICATION
USAGE section.

Issue 7
The pthread_create() function is moved from the Threads option to the Base.

1114 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

34861

34862

34863

34864

34865

34866

34867

34868

34869

34870

34871

34872

34873

34874

34875

34876

34877

34878

34879

34880

34881

34882

34883

34884

34885

34886

34887

34888

34889

34890

34891

34892

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces pthread_detach()

NAME
pthread_detach — detach a thread

SYNOPSIS
#include <pthread.h>

int pthread_detach(pthread_t thread);

DESCRIPTION
The pthread_detach() function shall indicate to the implementation that storage for the thread
thread can be reclaimed when that thread terminates. If thread has not terminated,
pthread_detach() shall not cause it to terminate. The effect of multiple pthread_detach() calls on the
same target thread is unspecified.

RETURN VALUE
If the call succeeds, pthread_detach() shall return 0; otherwise, an error number shall be returned
to indicate the error.

ERRORS
The pthread_detach() function may fail if:

[EINVAL] The implementation has detected that the value specified by thread does not
refer to a joinable thread.

[ESRCH] No thread could be found corresponding to that specified by the given thread
ID.

The pthread_detach() function shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
The pthread_join() or pthread_detach() functions should eventually be called for every thread that
is created so that storage associated with the thread may be reclaimed.

It has been suggested that a ‘‘detach’’ function is not necessary; the detachstate thread creation
attribute is sufficient, since a thread need never be dynamically detached. However, need arises
in at least two cases:

1. In a cancellation handler for a pthread_join() it is nearly essential to have a
pthread_detach() function in order to detach the thread on which pthread_join() was
waiting. Without it, it would be necessary to have the handler do another pthread_join() to
attempt to detach the thread, which would both delay the cancellation processing for an
unbounded period and introduce a new call to pthread_join(), which might itself need a
cancellation handler. A dynamic detach is nearly essential in this case.

2. In order to detach the ‘‘initial thread’’ (as may be desirable in processes that set up server
threads).

FUTURE DIRECTIONS
None.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1115

34893

34894

34895

34896

34897

34898

34899

34900

34901

34902

34903

34904

34905

34906

34907

34908

34909

34910

34911

34912

34913

34914

34915

34916

34917

34918

34919

34920

34921

34922

34923

34924

34925

34926

34927

34928

34929

34930

34931

34932

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

pthread_detach() System Interfaces

SEE ALSO
pthread_join(), the Base Definitions volume of IEEE Std 1003.1-200x, <pthread.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Threads Extension.

Issue 6
The pthread_detach() function is marked as part of the Threads option.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/95 is applied, updating the ERRORS
section so that the [EINVAL] and [ESRCH] error cases become optional.

Issue 7
The pthread_detach() function is moved from the Threads option to the Base.

1116 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

34933

34934

34935

34936

34937

34938

34939

34940

34941

34942

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces pthread_equal()

NAME
pthread_equal — compare thread IDs

SYNOPSIS
#include <pthread.h>

int pthread_equal(pthread_t t1, p thread_t t2);

DESCRIPTION
This function shall compare the thread IDs t1 and t2.

RETURN VALUE
The pthread_equal() function shall return a non-zero value if t1 and t2 are equal; otherwise, zero
shall be returned.

If either t1 or t2 are not valid thread IDs, the behavior is undefined.

ERRORS
No errors are defined.

The pthread_equal() function shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
Implementations may choose to define a thread ID as a structure. This allows additional
flexibility and robustness over using an int. For example, a thread ID could include a sequence
number that allows detection of ‘‘dangling IDs’’ (copies of a thread ID that has been detached).
Since the C language does not support comparison on structure types, the pthread_equal()
function is provided to compare thread IDs.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_create(), pthread_self(), the Base Definitions volume of IEEE Std 1003.1-200x, <pthread.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Threads Extension.

Issue 6
The pthread_equal() function is marked as part of the Threads option.

Issue 7
The pthread_equal() function is moved from the Threads option to the Base.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1117

34943

34944

34945

34946

34947

34948

34949

34950

34951

34952

34953

34954

34955

34956

34957

34958

34959

34960

34961

34962

34963

34964

34965

34966

34967

34968

34969

34970

34971

34972

34973

34974

34975

34976

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

pthread_exit() System Interfaces

NAME
pthread_exit — thread termination

SYNOPSIS
#include <pthread.h>

void pthread_exit(void * value_ptr);

DESCRIPTION
The pthread_exit() function shall terminate the calling thread and make the value value_ptr
available to any successful join with the terminating thread. Any cancellation cleanup handlers
that have been pushed and not yet popped shall be popped in the reverse order that they were
pushed and then executed. After all cancellation cleanup handlers have been executed, if the
thread has any thread-specific data, appropriate destructor functions shall be called in an
unspecified order. Thread termination does not release any application visible process resources,
including, but not limited to, mutexes and file descriptors, nor does it perform any process-level
cleanup actions, including, but not limited to, calling any atexit() routines that may exist.

An implicit call to pthread_exit() is made when a thread other than the thread in which main()
was first invoked returns from the start routine that was used to create it. The function’s return
value shall serve as the thread’s exit status.

The behavior of pthread_exit() is undefined if called from a cancellation cleanup handler or
destructor function that was invoked as a result of either an implicit or explicit call to
pthread_exit().

After a thread has terminated, the result of access to local (auto) variables of the thread is
undefined. Thus, references to local variables of the exiting thread should not be used for the
pthread_exit() value_ptr parameter value.

The process shall exit with an exit status of 0 after the last thread has been terminated. The
behavior shall be as if the implementation called exit() with a zero argument at thread
termination time.

RETURN VALUE
The pthread_exit() function cannot return to its caller.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
The normal mechanism by which a thread terminates is to return from the routine that was
specified in the pthread_create() call that started it. The pthread_exit() function provides the
capability for a thread to terminate without requiring a return from the start routine of that
thread, thereby providing a function analogous to exit().

Regardless of the method of thread termination, any cancellation cleanup handlers that have
been pushed and not yet popped are executed, and the destructors for any existing thread-
specific data are executed. This volume of IEEE Std 1003.1-200x requires that cancellation
cleanup handlers be popped and called in order. After all cancellation cleanup handlers have
been executed, thread-specific data destructors are called, in an unspecified order, for each item
of thread-specific data that exists in the thread. This ordering is necessary because cancellation

1118 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

34977

34978

34979

34980

34981

34982

34983

34984

34985

34986

34987

34988

34989

34990

34991

34992

34993

34994

34995

34996

34997

34998

34999

35000

35001

35002

35003

35004

35005

35006

35007

35008

35009

35010

35011

35012

35013

35014

35015

35016

35017

35018

35019

35020

35021

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces pthread_exit()

cleanup handlers may rely on thread-specific data.

As the meaning of the status is determined by the application (except when the thread has been
canceled, in which case it is PTHREAD_CANCELED), the implementation has no idea what an
illegal status value is, which is why no address error checking is done.

FUTURE DIRECTIONS
None.

SEE ALSO
exit(), pthread_create(), pthread_join(), the Base Definitions volume of IEEE Std 1003.1-200x,
<pthread.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Threads Extension.

Issue 6
The pthread_exit() function is marked as part of the Threads option.

Issue 7
The pthread_exit() function is moved from the Threads option to the Base.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1119

35022

35023

35024

35025

35026

35027

35028

35029

35030

35031

35032

35033

35034

35035

35036

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

pthread_getconcurrency() System Interfaces

NAME
pthread_getconcurrency, pthread_setconcurrency — get and set the level of concurrency

SYNOPSIS
OB XSI #include <pthread.h>

int pthread_getconcurrency(void);
int pthread_setconcurrency(int new_level);

DESCRIPTION
Unbound threads in a process may or may not be required to be simultaneously active. By
default, the threads implementation ensures that a sufficient number of threads are active so that
the process can continue to make progress. While this conserves system resources, it may not
produce the most effective level of concurrency.

The pthread_setconcurrency() function allows an application to inform the threads
implementation of its desired concurrency level, new_level. The actual level of concurrency
provided by the implementation as a result of this function call is unspecified.

If new_level is zero, it causes the implementation to maintain the concurrency level at its
discretion as if pthread_setconcurrency() had never been called.

The pthread_getconcurrency() function shall return the value set by a previous call to the
pthread_setconcurrency() function. If the pthread_setconcurrency() function was not previously
called, this function shall return zero to indicate that the implementation is maintaining the
concurrency level.

A call to pthread_setconcurrency() shall inform the implementation of its desired concurrency
level. The implementation shall use this as a hint, not a requirement.

If an implementation does not support multiplexing of user threads on top of several kernel-
scheduled entities, the pthread_setconcurrency() and pthread_getconcurrency() functions are
provided for source code compatibility but they shall have no effect when called. To maintain
the function semantics, the new_level parameter is saved when pthread_setconcurrency() is called
so that a subsequent call to pthread_getconcurrency() shall return the same value.

RETURN VALUE
If successful, the pthread_setconcurrency() function shall return zero; otherwise, an error number
shall be returned to indicate the error.

The pthread_getconcurrency() function shall always return the concurrency level set by a previous
call to pthread_setconcurrency(). If the pthread_setconcurrency() function has never been called,
pthread_getconcurrency() shall return zero.

ERRORS
The pthread_setconcurrency() function shall fail if:

[EINVAL] The value specified by new_level is negative.

[EAGAIN] The value specified by new_level would cause a system resource to be
exceeded.

These functions shall not return an error code of [EINTR].

1120 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

35037

35038

35039

35040

35041

35042

35043

35044

35045

35046

35047

35048

35049

35050

35051

35052

35053

35054

35055

35056

35057

35058

35059

35060

35061

35062

35063

35064

35065

35066

35067

35068

35069

35070

35071

35072

35073

35074

35075

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces pthread_getconcurrency()

EXAMPLES
None.

APPLICATION USAGE
Application developers should note that an implementation can always ignore any calls to
pthread_setconcurrency() and return a constant for pthread_getconcurrency(). For this reason, it is
not recommended that portable applications use this function.

RATIONALE
None.

FUTURE DIRECTIONS
These functions may be removed in a future version.

SEE ALSO
The Base Definitions volume of IEEE Std 1003.1-200x, <pthread.h>

CHANGE HISTORY
First released in Issue 5.

Issue 7
The pthread_getconcurrency() and pthread_setconcurrency() functions are marked obsolescent.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1121

35076

35077

35078

35079

35080

35081

35082

35083

35084

35085

35086

35087

35088

35089

35090

35091

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

pthread_getcpuclockid() System Interfaces

NAME
pthread_getcpuclockid — access a thread CPU-time clock (ADVANCED REALTIME
THREADS)

SYNOPSIS
TCT #include <pthread.h>

#include <time.h>

int pthread_getcpuclockid(pthread_t thread_id, c lockid_t * clock_id);

DESCRIPTION
The pthread_getcpuclockid() function shall return in clock_id the clock ID of the CPU-time clock of
the thread specified by thread_id, if the thread specified by thread_id exists.

RETURN VALUE
Upon successful completion, pthread_getcpuclockid() shall return zero; otherwise, an error
number shall be returned to indicate the error.

ERRORS
The pthread_getcpuclockid() function may fail if:

[ESRCH] The value specified by thread_id does not refer to an existing thread.

EXAMPLES
None.

APPLICATION USAGE
The pthread_getcpuclockid() function is part of the Thread CPU-Time Clocks option and need not
be provided on all implementations.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
clock_getcpuclockid(), clock_getres(), timer_create(), the Base Definitions volume of
IEEE Std 1003.1-200x, <pthread.h>, <time.h>

CHANGE HISTORY
First released in Issue 6. Derived from IEEE Std 1003.1d-1999.

In the SYNOPSIS, the inclusion of <sys/types.h> is no longer required.

Issue 7
The pthread_getcpuclockid() function is moved from the Threads option.

1122 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

35092

35093

35094

35095

35096

35097

35098

35099

35100

35101

35102

35103

35104

35105

35106

35107

35108

35109

35110

35111

35112

35113

35114

35115

35116

35117

35118

35119

35120

35121

35122

35123

35124

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces pthread_getschedparam()

NAME
pthread_getschedparam, pthread_setschedparam — dynamic thread scheduling parameters
access (REALTIME THREADS)

SYNOPSIS
TPS #include <pthread.h>

int pthread_getschedparam(pthread_t thread, i nt *restrict policy,
struct sched_param *restrict param);

int pthread_setschedparam(pthread_t thread, i nt policy,
const struct sched_param * param);

DESCRIPTION
The pthread_getschedparam() and pthread_setschedparam() functions shall, respectively, get and set
the scheduling policy and parameters of individual threads within a multi-threaded process to
be retrieved and set. For SCHED_FIFO and SCHED_RR, the only required member of the
sched_param structure is the priority sched_priority. For SCHED_OTHER, the affected
scheduling parameters are implementation-defined.

The pthread_getschedparam() function shall retrieve the scheduling policy and scheduling
parameters for the thread whose thread ID is given by thread and shall store those values in
policy and param, respectively. The priority value returned from pthread_getschedparam() shall be
the value specified by the most recent pthread_setschedparam(), pthread_setschedprio(), or
pthread_create() call affecting the target thread. It shall not reflect any temporary adjustments to
its priority as a result of any priority inheritance or ceiling functions. The pthread_setschedparam()
function shall set the scheduling policy and associated scheduling parameters for the thread
whose thread ID is given by thread to the policy and associated parameters provided in policy
and param, respectively.

The policy parameter may have the value SCHED_OTHER, SCHED_FIFO, or SCHED_RR. The
scheduling parameters for the SCHED_OTHER policy are implementation-defined. The
SCHED_FIFO and SCHED_RR policies shall have a single scheduling parameter, priority.

TSP If _POSIX_THREAD_SPORADIC_SERVER is defined, then the policy argument may have the
value SCHED_SPORADIC, with the exception for the pthread_setschedparam() function that if the
scheduling policy was not SCHED_SPORADIC at the time of the call, it is implementation-
defined whether the function is supported; in other words, the implementation need not allow
the application to dynamically change the scheduling policy to SCHED_SPORADIC. The
sporadic server scheduling policy has the associated parameters sched_ss_low_priority,
sched_ss_repl_period, sched_ss_init_budget, sched_priority, and sched_ss_max_repl. The specified
sched_ss_repl_period shall be greater than or equal to the specified sched_ss_init_budget for the
function to succeed; if it is not, then the function shall fail. The value of sched_ss_max_repl shall
be within the inclusive range [1,{SS_REPL_MAX}] for the function to succeed; if not, the function
shall fail.

If the pthread_setschedparam() function fails, the scheduling parameters shall not be changed for
the target thread.

RETURN VALUE
If successful, the pthread_getschedparam() and pthread_setschedparam() functions shall return zero;
otherwise, an error number shall be returned to indicate the error.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1123

35125

35126

35127

35128

35129

35130

35131

35132

35133

35134

35135

35136

35137

35138

35139

35140

35141

35142

35143

35144

35145

35146

35147

35148

35149

35150

35151

35152

35153

35154

35155

35156

35157

35158

35159

35160

35161

35162

35163

35164

35165

35166

35167

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

pthread_getschedparam() System Interfaces

ERRORS
The pthread_getschedparam() function may fail if:

[ESRCH] The value specified by thread does not refer to an existing thread.

The pthread_setschedparam() function may fail if:

[EINVAL] The value specified by policy or one of the scheduling parameters associated
with the scheduling policy policy is invalid.

[ENOTSUP] An attempt was made to set the policy or scheduling parameters to an
unsupported value.

TSP [ENOTSUP] An attempt was made to dynamically change the scheduling policy to
SCHED_SPORADIC, and the implementation does not support this change.

[EPERM] The caller does not have the appropriate permission to set either the
scheduling parameters or the scheduling policy of the specified thread.

[EPERM] The implementation does not allow the application to modify one of the
parameters to the value specified.

[ESRCH] The value specified by thread does not refer to a existing thread.

These functions shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_setschedprio(), sched_getparam(), sched_getscheduler(), the Base Definitions volume of
IEEE Std 1003.1-200x, <pthread.h>, <sched.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Threads Extension.

Issue 6
The pthread_getschedparam() and pthread_setschedparam() functions are marked as part of the
Threads and Thread Execution Scheduling options.

The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Thread Execution Scheduling option.

The Open Group Corrigendum U026/2 is applied, correcting the prototype for the
pthread_setschedparam() function so that its second argument is of type int.

The SCHED_SPORADIC scheduling policy is added for alignment with IEEE Std 1003.1d-1999.

The restrict keyword is added to the pthread_getschedparam() prototype for alignment with the
ISO/IEC 9899: 1999 standard.

The Open Group Corrigendum U047/1 is applied.

IEEE PASC Interpretation 1003.1 #96 is applied, noting that priority values can also be set by a
call to the pthread_setschedprio() function.

1124 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

35168

35169

35170

35171

35172

35173

35174

35175

35176

35177

35178

35179

35180

35181

35182

35183

35184

35185

35186

35187

35188

35189

35190

35191

35192

35193

35194

35195

35196

35197

35198

35199

35200

35201

35202

35203

35204

35205

35206

35207

35208

35209

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces pthread_getschedparam()

Issue 7
The pthread_getschedparam() and pthread_setschedparam() functions are moved from the Threads
option.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1125

35210

35211

35212

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

pthread_getspecific() System Interfaces

NAME
pthread_getspecific, pthread_setspecific — thread-specific data management

SYNOPSIS
#include <pthread.h>

void *pthread_getspecific(pthread_key_t key);
int pthread_setspecific(pthread_key_t key, c onst void * value);

DESCRIPTION
The pthread_getspecific() function shall return the value currently bound to the specified key on
behalf of the calling thread.

The pthread_setspecific() function shall associate a thread-specific value with a key obtained via a
previous call to pthread_key_create(). Different threads may bind different values to the same
key. These values are typically pointers to blocks of dynamically allocated memory that have
been reserved for use by the calling thread.

The effect of calling pthread_getspecific() or pthread_setspecific() with a key value not obtained
from pthread_key_create() or after key has been deleted with pthread_key_delete() is undefined.

Both pthread_getspecific() and pthread_setspecific() may be called from a thread-specific data
destructor function. A call to pthread_getspecific() for the thread-specific data key being
destroyed shall return the value NULL, unless the value is changed (after the destructor starts)
by a call to pthread_setspecific(). Calling pthread_setspecific() from a thread-specific data
destructor routine may result either in lost storage (after at least
PTHREAD_DESTRUCTOR_ITERATIONS attempts at destruction) or in an infinite loop.

Both functions may be implemented as macros.

RETURN VALUE
The pthread_getspecific() function shall return the thread-specific data value associated with the
given key. If no thread-specific data value is associated with key, then the value NULL shall be
returned.

If successful, the pthread_setspecific() function shall return zero; otherwise, an error number shall
be returned to indicate the error.

ERRORS
No errors are returned from pthread_getspecific().

The pthread_setspecific() function shall fail if:

[ENOMEM] Insufficient memory exists to associate the non-NULL value with the key.

The pthread_setspecific() function may fail if:

[EINVAL] The key value is invalid.

The pthread_setspecific() function shall not return an error code of [EINTR].

1126 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

35213

35214

35215

35216

35217

35218

35219

35220

35221

35222

35223

35224

35225

35226

35227

35228

35229

35230

35231

35232

35233

35234

35235

35236

35237

35238

35239

35240

35241

35242

35243

35244

35245

35246

35247

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces pthread_getspecific()

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
Performance and ease-of-use of pthread_getspecific() are critical for functions that rely on
maintaining state in thread-specific data. Since no errors are required to be detected by it, and
since the only error that could be detected is the use of an invalid key, the function to
pthread_getspecific() has been designed to favor speed and simplicity over error reporting.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_key_create(), the Base Definitions volume of IEEE Std 1003.1-200x, <pthread.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Threads Extension.

Issue 6
The pthread_getspecific() and pthread_setspecific() functions are marked as part of the Threads
option.

IEEE PASC Interpretation 1003.1c #3 (Part 6) is applied, updating the DESCRIPTION.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/96 is applied, updating the ERRORS
section so that the [ENOMEM] error case is changed from ‘‘to associate the value with the key’’
to ‘‘to associate the non-NULL value with the key’’.

Issue 7
Austin Group Interpretation 1003.1-2001 #063 is applied, updating the ERRORS section.

The pthread_getspecific() and pthread_setspecific() functions are moved from the Threads option to
the Base.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1127

35248

35249

35250

35251

35252

35253

35254

35255

35256

35257

35258

35259

35260

35261

35262

35263

35264

35265

35266

35267

35268

35269

35270

35271

35272

35273

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

pthread_join() System Interfaces

NAME
pthread_join — wait for thread termination

SYNOPSIS
#include <pthread.h>

int pthread_join(pthread_t thread, v oid ** value_ptr);

DESCRIPTION
The pthread_join() function shall suspend execution of the calling thread until the target thread
terminates, unless the target thread has already terminated. On return from a successful
pthread_join() call with a non-NULL value_ptr argument, the value passed to pthread_exit() by
the terminating thread shall be made available in the location referenced by value_ptr. When a
pthread_join() returns successfully, the target thread has been terminated. The results of multiple
simultaneous calls to pthread_join() specifying the same target thread are undefined. If the
thread calling pthread_join() is canceled, then the target thread shall not be detached.

It is unspecified whether a thread that has exited but remains unjoined counts against
{PTHREAD_THREADS_MAX}.

RETURN VALUE
If successful, the pthread_join() function shall return zero; otherwise, an error number shall be
returned to indicate the error.

ERRORS
The pthread_join() function shall fail if:

[ESRCH] No thread could be found corresponding to that specified by the given thread
ID.

The pthread_join() function may fail if:

[EDEADLK] A deadlock was detected or the value of thread specifies the calling thread.

[EINVAL] The value specified by thread does not refer to a joinable thread.

The pthread_join() function shall not return an error code of [EINTR].

EXAMPLES
An example of thread creation and deletion follows:

typedef struct {
int *ar;
long n;

} s ubarray;

void *
incer(void *arg)
{

long i;

for (i = 0; i < ((subarray *)arg)->n; i++)
((subarray *)arg)->ar[i]++;

}

int main(void)
{

int ar[1000000];
pthread_t th1, th2;
subarray sb1, sb2;

1128 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

35274

35275

35276

35277

35278

35279

35280

35281

35282

35283

35284

35285

35286

35287

35288

35289

35290

35291

35292

35293

35294

35295

35296

35297

35298

35299

35300

35301

35302

35303

35304

35305

35306

35307

35308

35309

35310

35311

35312

35313

35314

35315

35316

35317

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces pthread_join()

sb1.ar = &ar[0];
sb1.n = 500000;
(void) pthread_create(&th1, NULL, incer, &sb1);

sb2.ar = &ar[500000];
sb2.n = 500000;
(void) pthread_create(&th2, NULL, incer, &sb2);

(void) pthread_join(th1, NULL);
(void) pthread_join(th2, NULL);
return 0;

}

APPLICATION USAGE
None.

RATIONALE
The pthread_join() function is a convenience that has proven useful in multi-threaded
applications. It is true that a programmer could simulate this function if it were not provided by
passing extra state as part of the argument to the start_routine(). The terminating thread would
set a flag to indicate termination and broadcast a condition that is part of that state; a joining
thread would wait on that condition variable. While such a technique would allow a thread to
wait on more complex conditions (for example, waiting for multiple threads to terminate),
waiting on individual thread termination is considered widely useful. Also, including the
pthread_join() function in no way precludes a programmer from coding such complex waits.
Thus, while not a primitive, including pthread_join() in this volume of IEEE Std 1003.1-200x was
considered valuable.

The pthread_join() function provides a simple mechanism allowing an application to wait for a
thread to terminate. After the thread terminates, the application may then choose to clean up
resources that were used by the thread. For instance, after pthread_join() returns, any
application-provided stack storage could be reclaimed.

The pthread_join() or pthread_detach() function should eventually be called for every thread that
is created with the detachstate attribute set to PTHREAD_CREATE_JOINABLE so that storage
associated with the thread may be reclaimed.

The interaction between pthread_join() and cancellation is well-defined for the following reasons:

• The pthread_join() function, like all other non-async-cancel-safe functions, can only be
called with deferred cancelability type.

• Cancellation cannot occur in the disabled cancelability state.

Thus, only the default cancelability state need be considered. As specified, either the
pthread_join() call is canceled, or it succeeds, but not both. The difference is obvious to the
application, since either a cancellation handler is run or pthread_join() returns. There are no race
conditions since pthread_join() was called in the deferred cancelability state.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_create(), wait(), the Base Definitions volume of IEEE Std 1003.1-200x, Section 4.10,
Memory Synchronization, <pthread.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Threads Extension.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1129

35318

35319

35320

35321

35322

35323

35324

35325

35326

35327

35328

35329

35330

35331

35332

35333

35334

35335

35336

35337

35338

35339

35340

35341

35342

35343

35344

35345

35346

35347

35348

35349

35350

35351

35352

35353

35354

35355

35356

35357

35358

35359

35360

35361

35362

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

pthread_join() System Interfaces

Issue 6
The pthread_join() function is marked as part of the Threads option.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/97 is applied, updating the ERRORS
section so that the [EINVAL] error is made optional and the words ‘‘the implementation has
detected’’ are removed from it.

Issue 7
The pthread_join() function is moved from the Threads option to the Base.

1130 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

35363

35364

35365

35366

35367

35368

35369

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces pthread_key_create()

NAME
pthread_key_create — thread-specific data key creation

SYNOPSIS
#include <pthread.h>

int pthread_key_create(pthread_key_t * key, v oid (* destructor)(void*));

DESCRIPTION
The pthread_key_create() function shall create a thread-specific data key visible to all threads in
the process. Key values provided by pthread_key_create() are opaque objects used to locate
thread-specific data. Although the same key value may be used by different threads, the values
bound to the key by pthread_setspecific() are maintained on a per-thread basis and persist for the
life of the calling thread.

Upon key creation, the value NULL shall be associated with the new key in all active threads.
Upon thread creation, the value NULL shall be associated with all defined keys in the new
thread.

An optional destructor function may be associated with each key value. At thread exit, if a key
value has a non-NULL destructor pointer, and the thread has a non-NULL value associated with
that key, the value of the key is set to NULL, and then the function pointed to is called with the
previously associated value as its sole argument. The order of destructor calls is unspecified if
more than one destructor exists for a thread when it exits.

If, after all the destructors have been called for all non-NULL values with associated destructors,
there are still some non-NULL values with associated destructors, then the process is repeated.
If, after at least {PTHREAD_DESTRUCTOR_ITERATIONS} iterations of destructor calls for
outstanding non-NULL values, there are still some non-NULL values with associated
destructors, implementations may stop calling destructors, or they may continue calling
destructors until no non-NULL values with associated destructors exist, even though this might
result in an infinite loop.

RETURN VALUE
If successful, the pthread_key_create() function shall store the newly created key value at *key and
shall return zero. Otherwise, an error number shall be returned to indicate the error.

ERRORS
The pthread_key_create() function shall fail if:

[EAGAIN] The system lacked the necessary resources to create another thread-specific
data key, or the system-imposed limit on the total number of keys per process
{PTHREAD_KEYS_MAX} has been exceeded.

[ENOMEM] Insufficient memory exists to create the key.

The pthread_key_create() function shall not return an error code of [EINTR].

EXAMPLES
The following example demonstrates a function that initializes a thread-specific data key when it
is first called, and associates a thread-specific object with each calling thread, initializing this
object when necessary.

static pthread_key_t key;
static pthread_once_t key_once = PTHREAD_ONCE_INIT;

static void
make_key()
{

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1131

35370

35371

35372

35373

35374

35375

35376

35377

35378

35379

35380

35381

35382

35383

35384

35385

35386

35387

35388

35389

35390

35391

35392

35393

35394

35395

35396

35397

35398

35399

35400

35401

35402

35403

35404

35405

35406

35407

35408

35409

35410

35411

35412

35413

35414

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

pthread_key_create() System Interfaces

(void) pthread_key_create(&key, NULL);
}

func()
{

void *ptr;

(void) pthread_once(&key_once, make_key);
if ((ptr = pthread_getspecific(key)) == NULL) {

ptr = malloc(OBJECT_SIZE);
...
(void) pthread_setspecific(key, ptr);

}
...

}

Note that the key has to be initialized before pthread_getspecific() or pthread_setspecific() can be
used. The pthread_key_create() call could either be explicitly made in a module initialization
routine, or it can be done implicitly by the first call to a module as in this example. Any attempt
to use the key before it is initialized is a programming error, making the code below incorrect.

static pthread_key_t key;

func()
{

void *ptr;

/* KEY NOT INITIALIZED!!! THIS WON’T WORK!!! */
if ((ptr = pthread_getspecific(key)) == NULL &&

pthread_setspecific(key, NULL) != 0) {
pthread_key_create(&key, NULL);
...

}
}

APPLICATION USAGE
None.

RATIONALE

Destructor Functions

Normally, the value bound to a key on behalf of a particular thread is a pointer to storage
allocated dynamically on behalf of the calling thread. The destructor functions specified with
pthread_key_create() are intended to be used to free this storage when the thread exits. Thread
cancellation cleanup handlers cannot be used for this purpose because thread-specific data may
persist outside the lexical scope in which the cancellation cleanup handlers operate.

If the value associated with a key needs to be updated during the lifetime of the thread, it may
be necessary to release the storage associated with the old value before the new value is bound.
Although the pthread_setspecific() function could do this automatically, this feature is not needed
often enough to justify the added complexity. Instead, the programmer is responsible for freeing
the stale storage:

pthread_getspecific(key, &old);
new = allocate();
destructor(old);
pthread_setspecific(key, new);

1132 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

35415

35416

35417

35418

35419

35420

35421

35422

35423

35424

35425

35426

35427

35428

35429

35430

35431

35432

35433

35434

35435

35436

35437

35438

35439

35440

35441

35442

35443

35444

35445

35446

35447

35448

35449

35450

35451

35452

35453

35454

35455

35456

35457

35458

35459

35460

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces pthread_key_create()

Note: The above example could leak storage if run with asynchronous cancellation enabled. No such
problems occur in the default cancellation state if no cancellation points occur between the get
and set.

There is no notion of a destructor-safe function. If an application does not call pthread_exit()
from a signal handler, or if it blocks any signal whose handler may call pthread_exit() while
calling async-unsafe functions, all functions may be safely called from destructors.

Non-Idempotent Data Key Creation

There were requests to make pthread_key_create() idempotent with respect to a given key address
parameter. This would allow applications to call pthread_key_create() multiple times for a given
key address and be guaranteed that only one key would be created. Doing so would require the
key value to be previously initialized (possibly at compile time) to a known null value and
would require that implicit mutual-exclusion be performed based on the address and contents of
the key parameter in order to guarantee that exactly one key would be created.

Unfortunately, the implicit mutual-exclusion would not be limited to only pthread_key_create().
On many implementations, implicit mutual-exclusion would also have to be performed by
pthread_getspecific() and pthread_setspecific() in order to guard against using incompletely stored
or not-yet-visible key values. This could significantly increase the cost of important operations,
particularly pthread_getspecific().

Thus, this proposal was rejected. The pthread_key_create() function performs no implicit
synchronization. It is the responsibility of the programmer to ensure that it is called exactly once
per key before use of the key. Several straightforward mechanisms can already be used to
accomplish this, including calling explicit module initialization functions, using mutexes, and
using pthread_once(). This places no significant burden on the programmer, introduces no
possibly confusing ad hoc implicit synchronization mechanism, and potentially allows
commonly used thread-specific data operations to be more efficient.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_getspecific(), pthread_key_delete(), the Base Definitions volume of IEEE Std 1003.1-200x,
<pthread.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Threads Extension.

Issue 6
The pthread_key_create() function is marked as part of the Threads option.

IEEE PASC Interpretation 1003.1c #8 is applied, updating the DESCRIPTION.

Issue 7
The pthread_key_create() function is moved from the Threads option to the Base.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1133

35461

35462

35463

35464

35465

35466

35467

35468

35469

35470

35471

35472

35473

35474

35475

35476

35477

35478

35479

35480

35481

35482

35483

35484

35485

35486

35487

35488

35489

35490

35491

35492

35493

35494

35495

35496

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

pthread_key_delete() System Interfaces

NAME
pthread_key_delete — thread-specific data key deletion

SYNOPSIS
#include <pthread.h>

int pthread_key_delete(pthread_key_t key);

DESCRIPTION
The pthread_key_delete() function shall delete a thread-specific data key previously returned by
pthread_key_create(). The thread-specific data values associated with key need not be NULL at
the time pthread_key_delete() is called. It is the responsibility of the application to free any
application storage or perform any cleanup actions for data structures related to the deleted key
or associated thread-specific data in any threads; this cleanup can be done either before or after
pthread_key_delete() is called. Any attempt to use key following the call to pthread_key_delete()
results in undefined behavior.

The pthread_key_delete() function shall be callable from within destructor functions. No
destructor functions shall be invoked by pthread_key_delete(). Any destructor function that may
have been associated with key shall no longer be called upon thread exit.

RETURN VALUE
If successful, the pthread_key_delete() function shall return zero; otherwise, an error number shall
be returned to indicate the error.

ERRORS
The pthread_key_delete() function may fail if:

[EINVAL] The key value is invalid.

The pthread_key_delete() function shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
A thread-specific data key deletion function has been included in order to allow the resources
associated with an unused thread-specific data key to be freed. Unused thread-specific data keys
can arise, among other scenarios, when a dynamically loaded module that allocated a key is
unloaded.

Conforming applications are responsible for performing any cleanup actions needed for data
structures associated with the key to be deleted, including data referenced by thread-specific
data values. No such cleanup is done by pthread_key_delete(). In particular, destructor functions
are not called. There are several reasons for this division of responsibility:

1. The associated destructor functions used to free thread-specific data at thread exit time
are only guaranteed to work correctly when called in the thread that allocated the thread-
specific data. (Destructors themselves may utilize thread-specific data.) Thus, they cannot
be used to free thread-specific data in other threads at key deletion time. Attempting to
have them called by other threads at key deletion time would require other threads to be
asynchronously interrupted. But since interrupted threads could be in an arbitrary state,
including holding locks necessary for the destructor to run, this approach would fail. In
general, there is no safe mechanism whereby an implementation could free thread-
specific data at key deletion time.

1134 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

35497

35498

35499

35500

35501

35502

35503

35504

35505

35506

35507

35508

35509

35510

35511

35512

35513

35514

35515

35516

35517

35518

35519

35520

35521

35522

35523

35524

35525

35526

35527

35528

35529

35530

35531

35532

35533

35534

35535

35536

35537

35538

35539

35540

35541

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces pthread_key_delete()

2. Even if there were a means of safely freeing thread-specific data associated with keys to
be deleted, doing so would require that implementations be able to enumerate the
threads with non-NULL data and potentially keep them from creating more thread-
specific data while the key deletion is occurring. This special case could cause extra
synchronization in the normal case, which would otherwise be unnecessary.

For an application to know that it is safe to delete a key, it has to know that all the threads that
might potentially ever use the key do not attempt to use it again. For example, it could know
this if all the client threads have called a cleanup procedure declaring that they are through with
the module that is being shut down, perhaps by setting a reference count to zero.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_key_create(), the Base Definitions volume of IEEE Std 1003.1-200x, <pthread.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Threads Extension.

Issue 6
The pthread_key_delete() function is marked as part of the Threads option.

Issue 7
The pthread_key_delete() function is moved from the Threads option to the Base.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1135

35542

35543

35544

35545

35546

35547

35548

35549

35550

35551

35552

35553

35554

35555

35556

35557

35558

35559

35560

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

pthread_kill() System Interfaces

NAME
pthread_kill — send a signal to a thread

SYNOPSIS
CX #include <signal.h>

int pthread_kill(pthread_t thread, i nt sig);

DESCRIPTION
The pthread_kill() function shall request that a signal be delivered to the specified thread.

As in kill(), if sig is zero, error checking shall be performed but no signal shall actually be sent.

RETURN VALUE
Upon successful completion, the function shall return a value of zero. Otherwise, the function
shall return an error number. If the pthread_kill() function fails, no signal shall be sent.

ERRORS
The pthread_kill() function shall fail if:

[ESRCH] No thread could be found corresponding to that specified by the given thread
ID.

[EINVAL] The value of the sig argument is an invalid or unsupported signal number.

The pthread_kill() function shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
The pthread_kill() function provides a mechanism for asynchronously directing a signal at a
thread in the calling process. This could be used, for example, by one thread to affect broadcast
delivery of a signal to a set of threads.

Note that pthread_kill() only causes the signal to be handled in the context of the given thread;
the signal action (termination or stopping) affects the process as a whole.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
kill(), pthread_self(), raise(), the Base Definitions volume of IEEE Std 1003.1-200x, <signal.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Threads Extension.

Issue 6
The pthread_kill() function is marked as part of the Threads option.

The APPLICATION USAGE section is added.

Issue 7
The pthread_kill() function is moved from the Threads option to the Base.

1136 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

35561

35562

35563

35564

35565

35566

35567

35568

35569

35570

35571

35572

35573

35574

35575

35576

35577

35578

35579

35580

35581

35582

35583

35584

35585

35586

35587

35588

35589

35590

35591

35592

35593

35594

35595

35596

35597

35598

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces pthread_mutex_consistent()

NAME
pthread_mutex_consistent — mark state protected by robust mutex as consistent

SYNOPSIS
#include <pthread.h>

int pthread_mutex_consistent(pthread_mutex_t * mutex);

DESCRIPTION
If mutex is a robust mutex in an inconsistent state, the pthread_mutex_consistent() function can be
used to mark the state protected by the mutex referenced by mutex as consistent again.

If an owner of a robust mutex terminates while holding the mutex, the mutex becomes
inconsistent and the next thread that acquires the mutex lock shall be notified of the state by the
return value [EOWNERDEAD]. In this case, the mutex does not become normally usable again
until the state is marked consistent.

If the thread which acquired the mutex lock with the return value [EOWNERDEAD] terminates
before calling either pthread_mutex_consistent() or pthread_mutex_unlock(), the next thread that
acquires the mutex lock shall be notified about the state of the mutex by the return value
[EOWNERDEAD].

RETURN VALUE
Upon successful completion, the pthread_mutex_consistent() function shall return zero.
Otherwise, an error value shall be returned to indicate the error.

ERRORS
The pthread_mutex_consistent() function shall fail if:

[EINVAL] The mutex object referenced by mutex is not robust or does not protect an
inconsistent state.

The pthread_mutex_consistent() function may fail if:

[EINVAL] The value mutex is invalid.

These functions shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
The pthread_mutex_consistent() function is only responsible for notifying the implementation that
the state protected by the mutex has been recovered and that normal operations with the mutex
can be resumed. It is the responsibility of the application to recover the state so it can be reused.
If the application is not able to perform the recovery, it can notify the implementation that the
situation is unrecoverable by a call to pthread_mutex_unlock() without a prior call to
pthread_mutex_consistent(), in which case subsequent threads that attempt to lock the mutex will
fail to acquire the lock and be returned [ENOTRECOVERABLE].

RATIONALE
None.

FUTURE DIRECTIONS
None.

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

pthread_mutex_consistent() System Interfaces

SEE ALSO
pthread_mutex_lock(), pthread_mutexattr_getrobust(), the Base Definitions volume of
IEEE Std 1003.1-200x, <pthread.h>

CHANGE HISTORY
First released in Issue 7.

The pthread_mutex_consistent() function is moved from the Threads option to the Base.

1138 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

35639

35640

35641

35642

35643

35644

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces pthread_mutex_destroy()

NAME
pthread_mutex_destroy, pthread_mutex_init — destroy and initialize a mutex

SYNOPSIS
#include <pthread.h>

int pthread_mutex_destroy(pthread_mutex_t * mutex);
int pthread_mutex_init(pthread_mutex_t *restrict mutex,

const pthread_mutexattr_t *restrict attr);
pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;

DESCRIPTION
The pthread_mutex_destroy() function shall destroy the mutex object referenced by mutex; the
mutex object becomes, in effect, uninitialized. An implementation may cause
pthread_mutex_destroy() to set the object referenced by mutex to an invalid value. A destroyed
mutex object can be reinitialized using pthread_mutex_init(); the results of otherwise referencing
the object after it has been destroyed are undefined.

It shall be safe to destroy an initialized mutex that is unlocked. Attempting to destroy a locked
mutex results in undefined behavior.

The pthread_mutex_init() function shall initialize the mutex referenced by mutex with attributes
specified by attr. If attr is NULL, the default mutex attributes are used; the effect shall be the
same as passing the address of a default mutex attributes object. Upon successful initialization,
the state of the mutex becomes initialized and unlocked.

Only mutex itself may be used for performing synchronization. The result of referring to copies
of mutex in calls to pthread_mutex_lock(), pthread_mutex_trylock(), pthread_mutex_unlock(), and
pthread_mutex_destroy() is undefined.

Attempting to initialize an already initialized mutex results in undefined behavior.

In cases where default mutex attributes are appropriate, the macro
PTHREAD_MUTEX_INITIALIZER can be used to initialize mutexes that are statically allocated.
The effect shall be equivalent to dynamic initialization by a call to pthread_mutex_init() with
parameter attr specified as NULL, except that no error checks are performed.

RETURN VALUE
If successful, the pthread_mutex_destroy() and pthread_mutex_init() functions shall return zero;
otherwise, an error number shall be returned to indicate the error.

The [EBUSY] and [EINVAL] error checks, if implemented, act as if they were performed
immediately at the beginning of processing for the function and shall cause an error return prior
to modifying the state of the mutex specified by mutex.

ERRORS
The pthread_mutex_destroy() function may fail if:

[EBUSY] The implementation has detected an attempt to destroy the object referenced
by mutex while it is locked or referenced (for example, while being used in a
pthread_cond_timedwait() or pthread_cond_wait()) by another thread.

[EINVAL] The value specified by mutex is invalid.

The pthread_mutex_init() function shall fail if:

[EAGAIN] The system lacked the necessary resources (other than memory) to initialize
another mutex.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1139

35645

35646

35647

35648

35649

35650

35651

35652

35653

35654

35655

35656

35657

35658

35659

35660

35661

35662

35663

35664

35665

35666

35667

35668

35669

35670

35671

35672

35673

35674

35675

35676

35677

35678

35679

35680

35681

35682

35683

35684

35685

35686

35687

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

pthread_mutex_destroy() System Interfaces

[ENOMEM] Insufficient memory exists to initialize the mutex.

[EPERM] The caller does not have the privilege to perform the operation.

The pthread_mutex_init() function may fail if:

[EBUSY] The implementation has detected an attempt to reinitialize the object
referenced by mutex, a previously initialized, but not yet destroyed, mutex.

[EINVAL] The value specified by attr is invalid.

[EINVAL] The attributes object referenced by attr has the robust mutex attribute set
without the process-shared attribute being set.

These functions shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE

Alternate Implementations Possible

This volume of IEEE Std 1003.1-200x supports several alternative implementations of mutexes.
An implementation may store the lock directly in the object of type pthread_mutex_t.
Alternatively, an implementation may store the lock in the heap and merely store a pointer,
handle, or unique ID in the mutex object. Either implementation has advantages or may be
required on certain hardware configurations. So that portable code can be written that is
invariant to this choice, this volume of IEEE Std 1003.1-200x does not define assignment or
equality for this type, and it uses the term ‘‘initialize’’ to reinforce the (more restrictive) notion
that the lock may actually reside in the mutex object itself.

Note that this precludes an over-specification of the type of the mutex or condition variable and
motivates the opaqueness of the type.

An implementation is permitted, but not required, to have pthread_mutex_destroy() store an
illegal value into the mutex. This may help detect erroneous programs that try to lock (or
otherwise reference) a mutex that has already been destroyed.

Tradeoff Between Error Checks and Performance Supported

Many of the error checks were made optional in order to let implementations trade off
performance versus degree of error checking according to the needs of their specific applications
and execution environment. As a general rule, errors or conditions caused by the system (such
as insufficient memory) always need to be reported, but errors due to an erroneously coded
application (such as failing to provide adequate synchronization to prevent a mutex from being
deleted while in use) are made optional.

A wide range of implementations is thus made possible. For example, an implementation
intended for application debugging may implement all of the error checks, but an
implementation running a single, provably correct application under very tight performance
constraints in an embedded computer might implement minimal checks. An implementation
might even be provided in two versions, similar to the options that compilers provide: a full-
checking, but slower version; and a limited-checking, but faster version. To forbid this
optionality would be a disservice to users.

By carefully limiting the use of ‘‘undefined behavior’’ only to things that an erroneous (badly
coded) application might do, and by defining that resource-not-available errors are mandatory,
this volume of IEEE Std 1003.1-200x ensures that a fully-conforming application is portable

1140 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

35688

35689

35690

35691

35692

35693

35694

35695

35696

35697

35698

35699

35700

35701

35702

35703

35704

35705

35706

35707

35708

35709

35710

35711

35712

35713

35714

35715

35716

35717

35718

35719

35720

35721

35722

35723

35724

35725

35726

35727

35728

35729

35730

35731

35732

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces pthread_mutex_destroy()

across the full range of implementations, while not forcing all implementations to add overhead
to check for numerous things that a correct program never does.

Why No Limits are Defined

Defining symbols for the maximum number of mutexes and condition variables was considered
but rejected because the number of these objects may change dynamically. Furthermore, many
implementations place these objects into application memory; thus, there is no explicit
maximum.

Static Initializers for Mutexes and Condition Variables

Providing for static initialization of statically allocated synchronization objects allows modules
with private static synchronization variables to avoid runtime initialization tests and overhead.
Furthermore, it simplifies the coding of self-initializing modules. Such modules are common in
C libraries, where for various reasons the design calls for self-initialization instead of requiring
an explicit module initialization function to be called. An example use of static initialization
follows.

Without static initialization, a self-initializing routine foo() might look as follows:

static pthread_once_t foo_once = PTHREAD_ONCE_INIT;
static pthread_mutex_t foo_mutex;

void foo_init()
{

pthread_mutex_init(&foo_mutex, NULL);
}

void foo()
{

pthread_once(&foo_once, foo_init);
pthread_mutex_lock(&foo_mutex);

/* Do work. */
pthread_mutex_unlock(&foo_mutex);

}

With static initialization, the same routine could be coded as follows:

static pthread_mutex_t foo_mutex = PTHREAD_MUTEX_INITIALIZER;

void foo()
{

pthread_mutex_lock(&foo_mutex);
/* Do work. */

pthread_mutex_unlock(&foo_mutex);
}

Note that the static initialization both eliminates the need for the initialization test inside
pthread_once() and the fetch of &foo_mutex to learn the address to be passed to
pthread_mutex_lock() or pthread_mutex_unlock().

Thus, the C code written to initialize static objects is simpler on all systems and is also faster on a
large class of systems; those where the (entire) synchronization object can be stored in
application memory.

Yet the locking performance question is likely to be raised for machines that require mutexes to
be allocated out of special memory. Such machines actually have to have mutexes and possibly
condition variables contain pointers to the actual hardware locks. For static initialization to work
on such machines, pthread_mutex_lock() also has to test whether or not the pointer to the actual

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1141

35733

35734

35735

35736

35737

35738

35739

35740

35741

35742

35743

35744

35745

35746

35747

35748

35749

35750

35751

35752

35753

35754

35755

35756

35757

35758

35759

35760

35761

35762

35763

35764

35765

35766

35767

35768

35769

35770

35771

35772

35773

35774

35775

35776

35777

35778

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

pthread_mutex_destroy() System Interfaces

lock has been allocated. If it has not, pthread_mutex_lock() has to initialize it before use. The
reservation of such resources can be made when the program is loaded, and hence return codes
have not been added to mutex locking and condition variable waiting to indicate failure to
complete initialization.

This runtime test in pthread_mutex_lock() would at first seem to be extra work; an extra test is
required to see whether the pointer has been initialized. On most machines this would actually
be implemented as a fetch of the pointer, testing the pointer against zero, and then using the
pointer if it has already been initialized. While the test might seem to add extra work, the extra
effort of testing a register is usually negligible since no extra memory references are actually
done. As more and more machines provide caches, the real expenses are memory references, not
instructions executed.

Alternatively, depending on the machine architecture, there are often ways to eliminate all
overhead in the most important case: on the lock operations that occur after the lock has been
initialized. This can be done by shifting more overhead to the less frequent operation:
initialization. Since out-of-line mutex allocation also means that an address has to be
dereferenced to find the actual lock, one technique that is widely applicable is to have static
initialization store a bogus value for that address; in particular, an address that causes a machine
fault to occur. When such a fault occurs upon the first attempt to lock such a mutex, validity
checks can be done, and then the correct address for the actual lock can be filled in. Subsequent
lock operations incur no extra overhead since they do not ‘‘fault’’. This is merely one technique
that can be used to support static initialization, while not adversely affecting the performance of
lock acquisition. No doubt there are other techniques that are highly machine-dependent.

The locking overhead for machines doing out-of-line mutex allocation is thus similar for
modules being implicitly initialized, where it is improved for those doing mutex allocation
entirely inline. The inline case is thus made much faster, and the out-of-line case is not
significantly worse.

Besides the issue of locking performance for such machines, a concern is raised that it is possible
that threads would serialize contending for initialization locks when attempting to finish
initializing statically allocated mutexes. (Such finishing would typically involve taking an
internal lock, allocating a structure, storing a pointer to the structure in the mutex, and releasing
the internal lock.) First, many implementations would reduce such serialization by hashing on
the mutex address. Second, such serialization can only occur a bounded number of times. In
particular, it can happen at most as many times as there are statically allocated synchronization
objects. Dynamically allocated objects would still be initialized via pthread_mutex_init() or
pthread_cond_init().

Finally, if none of the above optimization techniques for out-of-line allocation yields sufficient
performance for an application on some implementation, the application can avoid static
initialization altogether by explicitly initializing all synchronization objects with the
corresponding pthread_*_init() functions, which are supported by all implementations. An
implementation can also document the tradeoffs and advise which initialization technique is
more efficient for that particular implementation.

Destroying Mutexes

A mutex can be destroyed immediately after it is unlocked. For example, consider the following
code:

struct obj {
pthread_mutex_t om;

int refcnt;
...

};

1142 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

35779

35780

35781

35782

35783

35784

35785

35786

35787

35788

35789

35790

35791

35792

35793

35794

35795

35796

35797

35798

35799

35800

35801

35802

35803

35804

35805

35806

35807

35808

35809

35810

35811

35812

35813

35814

35815

35816

35817

35818

35819

35820

35821

35822

35823

35824

35825

35826

35827

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces pthread_mutex_destroy()

obj_done(struct obj *op)
{

pthread_mutex_lock(&op->om);
if (- -op->refcnt == 0) {

pthread_mutex_unlock(&op->om);
(A) pthread_mutex_destroy(&op->om);
(B) free(op);

} e lse
(C) pthread_mutex_unlock(&op->om);
}

In this case obj is reference counted and obj_done() is called whenever a reference to the object is
dropped. Implementations are required to allow an object to be destroyed and freed and
potentially unmapped (for example, lines A and B) immediately after the object is unlocked (line
C).

Robust Mutexes

Implementations are required to provide robust mutexes for mutexes with the process-shared
attribute set to PTHREAD_PROCESS_SHARED. Implementations are allowed, but not required,
to provide robust mutexes when the process-shared attribute is set to
PTHREAD_PROCESS_PRIVATE.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_mutex_getprioceiling(), pthread_mutexattr_getrobust(), pthread_mutex_lock(),
pthread_mutex_timedlock(), pthread_mutexattr_getpshared(), the Base Definitions volume of
IEEE Std 1003.1-200x, <pthread.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Threads Extension.

Issue 6
The pthread_mutex_destroy() and pthread_mutex_init() functions are marked as part of the
Threads option.

The pthread_mutex_timedlock() function is added to the SEE ALSO section for alignment with
IEEE Std 1003.1d-1999.

IEEE PASC Interpretation 1003.1c #34 is applied, updating the DESCRIPTION.

The restrict keyword is added to the pthread_mutex_init() prototype for alignment with the
ISO/IEC 9899: 1999 standard.

Issue 7
Changes are made from The Open Group Technical Standard, 2006, Extended API Set Part 3.

The pthread_mutex_destroy() and pthread_mutex_init() functions are moved from the Threads
option to the Base.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1143

35828

35829

35830

35831

35832

35833

35834

35835

35836

35837

35838

35839

35840

35841

35842

35843

35844

35845

35846

35847

35848

35849

35850

35851

35852

35853

35854

35855

35856

35857

35858

35859

35860

35861

35862

35863

35864

35865

35866

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

pthread_mutex_getprioceiling() System Interfaces

NAME
pthread_mutex_getprioceiling, pthread_mutex_setprioceiling — get and set the priority ceiling
of a mutex (REALTIME THREADS)

SYNOPSIS
RPP|TPP #include <pthread.h>

int pthread_mutex_getprioceiling(const pthread_mutex_t *restrict mutex,
int *restrict prioceiling);

int pthread_mutex_setprioceiling(pthread_mutex_t *restrict mutex,
int prioceiling, i nt *restrict old_ceiling);

DESCRIPTION
The pthread_mutex_getprioceiling() function shall return the current priority ceiling of the mutex.

The pthread_mutex_setprioceiling() function shall either lock the mutex if it is unlocked, or block
until it can successfully lock the mutex, then it shall change the mutex’s priority ceiling and
release the mutex. When the change is successful, the previous value of the priority ceiling shall
be returned in old_ceiling. The process of locking the mutex need not adhere to the priority
protect protocol.

If pthread_mutex_setprioceiling() is called while holding the mutex, the result is undefined unless
the mutex is of type PTHREAD_MUTEX_RECURSIVE.

If the pthread_mutex_setprioceiling() function fails, the mutex priority ceiling shall not be
changed.

RETURN VALUE
If successful, the pthread_mutex_getprioceiling() and pthread_mutex_setprioceiling() functions shall
return zero; otherwise, an error number shall be returned to indicate the error.

ERRORS
These functions shall fail if:

[EINVAL] The protocol attribute of mutex is PTHREAD_PRIO_NONE.

These functions may fail if:

[EDEADLK] The current thread already owns the mutex.

[EINVAL] The priority requested by prioceiling is out of range.

[EINVAL] The value specified by mutex does not refer to a currently existing mutex.

[EPERM] The caller does not have the privilege to perform the operation.

These functions shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

1144 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

35867

35868

35869

35870

35871

35872

35873

35874

35875

35876

35877

35878

35879

35880

35881

35882

35883

35884

35885

35886

35887

35888

35889

35890

35891

35892

35893

35894

35895

35896

35897

35898

35899

35900

35901

35902

35903

35904

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces pthread_mutex_getprioceiling()

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_mutex_destroy(), pthread_mutex_lock(), pthread_mutex_timedlock(), the Base Definitions
volume of IEEE Std 1003.1-200x, <pthread.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Threads Extension.

Marked as part of the Realtime Threads Feature Group.

Issue 6
The pthread_mutex_getprioceiling() and pthread_mutex_setprioceiling() functions are marked as
part of the Threads and Thread Priority Protection options.

The [ENOSYS] error conditions have been removed.

The pthread_mutex_timedlock() function is added to the SEE ALSO section for alignment with
IEEE Std 1003.1d-1999.

The restrict keyword is added to the pthread_mutex_getprioceiling() and
pthread_mutex_setprioceiling() prototypes for alignment with the ISO/IEC 9899: 1999 standard.

Issue 7
SD5-XSH-ERN-39 is applied.

Austin Group Interpretation 1003.1-2001 #052 is applied, adding [EDEADLK] as a ‘‘may fail’’
error.

SD5-XSH-ERN-158 is applied, updating the ERRORS section to include a ‘‘shall fail’’ error case
for when the protocol attribute of mutex is PTHREAD_PRIO_NONE.

The pthread_mutex_getprioceiling() and pthread_mutex_setprioceiling() functions are moved from
the Threads option to require support of either the Robust Mutex Priority Protection option or
the Non-Robust Mutex Priority Protection option.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1145

35905

35906

35907

35908

35909

35910

35911

35912

35913

35914

35915

35916

35917

35918

35919

35920

35921

35922

35923

35924

35925

35926

35927

35928

35929

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

pthread_mutex_init() System Interfaces

NAME
pthread_mutex_init — destroy and initialize a mutex

SYNOPSIS
#include <pthread.h>

int pthread_mutex_init(pthread_mutex_t *restrict mutex,
const pthread_mutexattr_t *restrict attr);

pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;

DESCRIPTION
Refer to pthread_mutex_destroy().

1146 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

35930

35931

35932

35933

35934

35935

35936

35937

35938

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces pthread_mutex_lock()

NAME
pthread_mutex_lock, pthread_mutex_trylock, pthread_mutex_unlock — lock and unlock a
mutex

SYNOPSIS
#include <pthread.h>

int pthread_mutex_lock(pthread_mutex_t * mutex);
int pthread_mutex_trylock(pthread_mutex_t * mutex);
int pthread_mutex_unlock(pthread_mutex_t * mutex);

DESCRIPTION
The mutex object referenced by mutex shall be locked by calling pthread_mutex_lock(). If the
mutex is already locked, the calling thread shall block until the mutex becomes available. This
operation shall return with the mutex object referenced by mutex in the locked state with the
calling thread as its owner.

If the mutex type is PTHREAD_MUTEX_NORMAL, deadlock detection shall not be provided.
Attempting to relock the mutex causes deadlock. If a thread attempts to unlock a mutex that it
has not locked or a mutex which is unlocked, undefined behavior results.

If the mutex type is PTHREAD_MUTEX_ERRORCHECK, then error checking shall be provided.
If a thread attempts to relock a mutex that it has already locked, an error shall be returned. If a
thread attempts to unlock a mutex that it has not locked or a mutex which is unlocked, an error
shall be returned.

If the mutex type is PTHREAD_MUTEX_RECURSIVE, then the mutex shall maintain the
concept of a lock count. When a thread successfully acquires a mutex for the first time, the lock
count shall be set to one. Every time a thread relocks this mutex, the lock count shall be
incremented by one. Each time the thread unlocks the mutex, the lock count shall be
decremented by one. When the lock count reaches zero, the mutex shall become available for
other threads to acquire. If a thread attempts to unlock a mutex that it has not locked or a mutex
which is unlocked, an error shall be returned.

If the mutex type is PTHREAD_MUTEX_DEFAULT, attempting to recursively lock the mutex
results in undefined behavior. Attempting to unlock the mutex if it was not locked by the calling
thread results in undefined behavior. Attempting to unlock the mutex if it is not locked results in
undefined behavior.

The pthread_mutex_trylock() function shall be equivalent to pthread_mutex_lock(), except that if
the mutex object referenced by mutex is currently locked (by any thread, including the current
thread), the call shall return immediately. If the mutex type is PTHREAD_MUTEX_RECURSIVE
and the mutex is currently owned by the calling thread, the mutex lock count shall be
incremented by one and the pthread_mutex_trylock() function shall immediately return success.

The pthread_mutex_unlock() function shall release the mutex object referenced by mutex. The
manner in which a mutex is released is dependent upon the mutex’s type attribute. If there are
threads blocked on the mutex object referenced by mutex when pthread_mutex_unlock() is called,
resulting in the mutex becoming available, the scheduling policy shall determine which thread
shall acquire the mutex.

(In the case of PTHREAD_MUTEX_RECURSIVE mutexes, the mutex shall become available
when the count reaches zero and the calling thread no longer has any locks on this mutex.)

If a signal is delivered to a thread waiting for a mutex, upon return from the signal handler the
thread shall resume waiting for the mutex as if it was not interrupted.

If mutex is a robust mutex and the process containing the owning thread terminated while

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1147

35939

35940

35941

35942

35943

35944

35945

35946

35947

35948

35949

35950

35951

35952

35953

35954

35955

35956

35957

35958

35959

35960

35961

35962

35963

35964

35965

35966

35967

35968

35969

35970

35971

35972

35973

35974

35975

35976

35977

35978

35979

35980

35981

35982

35983

35984

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

pthread_mutex_lock() System Interfaces

holding the mutex lock, a call to pthread_mutex_lock() shall return the error value
[EOWNERDEAD]. If mutex is a robust mutex and the owning thread terminated while holding
the mutex lock, a call to pthread_mutex_lock() may return the error value [EOWNERDEAD] even
if the process in which the owning thread resides has not terminated. In these cases, the mutex is
locked by the thread but the state it protects is marked as inconsistent. The application should
ensure that the state is made consistent for reuse and when that is complete call
pthread_mutex_consistent(). If the application is unable to recover the state, it should unlock the
mutex without a prior call to pthread_mutex_consistent(), after which the mutex is marked
permanently unusable.

RETURN VALUE
If successful, the pthread_mutex_lock() and pthread_mutex_unlock() functions shall return zero;
otherwise, an error number shall be returned to indicate the error.

The pthread_mutex_trylock() function shall return zero if a lock on the mutex object referenced by
mutex is acquired. Otherwise, an error number is returned to indicate the error.

ERRORS
The pthread_mutex_lock() and pthread_mutex_trylock() functions shall fail if:

RPP|TPP [EINVAL] The mutex was created with the protocol attribute having the value
PTHREAD_PRIO_PROTECT and the calling thread’s priority is higher than
the mutex’s current priority ceiling.

[ENOTRECOVERABLE]
The state protected by the mutex is not recoverable. The mutex is not locked.

[EOWNERDEAD]
The mutex is a robust mutex and the process containing the previous owning
thread terminated while holding the mutex lock. The mutex lock has been
acquired and it is up to the new owner to make the state consistent.

The pthread_mutex_trylock() function shall fail if:

[EBUSY] The mutex could not be acquired because it was already locked.

The pthread_mutex_unlock() function shall fail if:

[EPERM] The current thread does not own the mutex and the mutex is a robust mutex.

The pthread_mutex_lock(), pthread_mutex_trylock(), and pthread_mutex_unlock() functions may fail
if:

[EINVAL] The value specified by mutex does not refer to an initialized mutex object.

[EAGAIN] The mutex could not be acquired because the maximum number of recursive
locks for mutex has been exceeded.

The pthread_mutex_lock() and pthread_mutex_trylock() functions may fail if:

[EOWNERDEAD]
The mutex is a robust mutex and the previous owning thread terminated
while holding the mutex lock. The mutex lock has been acquired and it is up
to the new owner to make the state consistent.

The pthread_mutex_lock() function may fail if:

[EDEADLK] A deadlock condition was detected or the current thread already owns the
mutex.

The pthread_mutex_unlock() function may fail if:

1148 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

35985

35986

35987

35988

35989

35990

35991

35992

35993

35994

35995

35996

35997

35998

35999

36000

36001

36002

36003

36004

36005

36006

36007

36008

36009

36010

36011

36012

36013

36014

36015

36016

36017

36018

36019

36020

36021

36022

36023

36024

36025

36026

36027

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces pthread_mutex_lock()

[EPERM] The current thread does not own the mutex.

These functions shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
Applications that have assumed that non-zero return values are errors will need updating for
use with robust mutexes, since a valid return for a thread acquiring a mutex which is protecting
a currently inconsistent state is [EOWNERDEAD]. Applications that do not check the error
returns, due to ruling out the possibility of such errors arising, should not use robust mutexes. If
an application is supposed to work with normal and robust mutexes it should check all return
values for error conditions and if necessary take appropriate action.

RATIONALE
Mutex objects are intended to serve as a low-level primitive from which other thread
synchronization functions can be built. As such, the implementation of mutexes should be as
efficient as possible, and this has ramifications on the features available at the interface.

The mutex functions and the particular default settings of the mutex attributes have been
motivated by the desire to not preclude fast, inlined implementations of mutex locking and
unlocking.

Since most attributes only need to be checked when a thread is going to be blocked, the use of
attributes does not slow the (common) mutex-locking case.

Likewise, while being able to extract the thread ID of the owner of a mutex might be desirable, it
would require storing the current thread ID when each mutex is locked, and this could incur
unacceptable levels of overhead. Similar arguments apply to a mutex_tryunlock operation.

For further rationale on the extended mutex types, see the Rationale (Informative) volume of
IEEE Std 1003.1-200x.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_mutex_consistent(), pthread_mutex_destroy(), pthread_mutex_timedlock(),
pthread_mutexattr_getrobust(), the Base Definitions volume of IEEE Std 1003.1-200x, Section 4.10,
Memory Synchronization, <pthread.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Threads Extension.

Issue 6
The pthread_mutex_lock(), pthread_mutex_trylock(), and pthread_mutex_unlock() functions are
marked as part of the Threads option.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The behavior when attempting to relock a mutex is defined.

The pthread_mutex_timedlock() function is added to the SEE ALSO section for alignment with
IEEE Std 1003.1d-1999.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/98 is applied, updating the ERRORS
section so that the [EDEADLK] error includes detection of a deadlock condition. The
RATIONALE section is also reworded to take into account non-XSI-conformant systems.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1149

36028

36029

36030

36031

36032

36033

36034

36035

36036

36037

36038

36039

36040

36041

36042

36043

36044

36045

36046

36047

36048

36049

36050

36051

36052

36053

36054

36055

36056

36057

36058

36059

36060

36061

36062

36063

36064

36065

36066

36067

36068

36069

36070

36071

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

pthread_mutex_lock() System Interfaces

Issue 7
SD5-XSH-ERN-43 is applied, marking the ‘‘shall fail’’ case of the [EINVAL] error as dependent
on the Thread Priority Protection option.

Changes are made from The Open Group Technical Standard, 2006, Extended API Set Part 3.

The pthread_mutex_lock(), pthread_mutex_trylock(), and pthread_mutex_unlock() functions are
moved from the Threads option to the Base.

The PTHREAD_MUTEX_NORMAL, PTHREAD_MUTEX_ERRORCHECK,
PTHREAD_MUTEX_RECURSIVE, and PTHREAD_MUTEX_DEFAULT extended mutex types
are moved from the XSI option to the Base.

1150 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

36072

36073

36074

36075

36076

36077

36078

36079

36080

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces pthread_mutex_setprioceiling()

NAME
pthread_mutex_setprioceiling — change the priority ceiling of a mutex (REALTIME
THREADS)

SYNOPSIS
RPP|TPP #include <pthread.h>

int pthread_mutex_setprioceiling(pthread_mutex_t *restrict mutex,
int prioceiling, i nt *restrict old_ceiling);

DESCRIPTION
Refer to pthread_mutex_getprioceiling().

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1151

36081

36082

36083

36084

36085

36086

36087

36088

36089

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

pthread_mutex_timedlock() System Interfaces

NAME
pthread_mutex_timedlock — lock a mutex

SYNOPSIS
#include <pthread.h>
#include <time.h>

int pthread_mutex_timedlock(pthread_mutex_t *restrict mutex,
const struct timespec *restrict abs_timeout);

DESCRIPTION
The pthread_mutex_timedlock() function shall lock the mutex object referenced by mutex. If the
mutex is already locked, the calling thread shall block until the mutex becomes available as in
the pthread_mutex_lock() function. If the mutex cannot be locked without waiting for another
thread to unlock the mutex, this wait shall be terminated when the specified timeout expires.

The timeout shall expire when the absolute time specified by abs_timeout passes, as measured by
the clock on which timeouts are based (that is, when the value of that clock equals or exceeds
abs_timeout), or if the absolute time specified by abs_timeout has already been passed at the time
of the call.

The timeout shall be based on the CLOCK_REALTIME clock. The resolution of the timeout shall
be the resolution of the clock on which it is based. The timespec data type is defined in the
<time.h> header.

Under no circumstance shall the function fail with a timeout if the mutex can be locked
immediately. The validity of the abs_timeout parameter need not be checked if the mutex can be
locked immediately.

RPI|TPI As a consequence of the priority inheritance rules (for mutexes initialized with the
PRIO_INHERIT protocol), if a timed mutex wait is terminated because its timeout expires, the
priority of the owner of the mutex shall be adjusted as necessary to reflect the fact that this
thread is no longer among the threads waiting for the mutex.

If mutex is a robust mutex and the process containing the owning thread terminated while
holding the mutex lock, a call to pthread_mutex_timedlock() shall return the error value
[EOWNERDEAD]. If mutex is a robust mutex and the owning thread terminated while holding
the mutex lock, a call to pthread_mutex_timedlock() may return the error value [EOWNERDEAD]
even if the process in which the owning thread resides has not terminated. In these cases, the
mutex is locked by the thread but the state it protects is marked as inconsistent. The application
should ensure that the state is made consistent for reuse and when that is complete call
pthread_mutex_consistent(). If the application is unable to recover the state, it should unlock the
mutex without a prior call to pthread_mutex_consistent(), after which the mutex is marked
permanently unusable.

RETURN VALUE
If successful, the pthread_mutex_timedlock() function shall return zero; otherwise, an error
number shall be returned to indicate the error.

ERRORS
The pthread_mutex_timedlock() function shall fail if:

[EINVAL] The mutex was created with the protocol attribute having the value
PTHREAD_PRIO_PROTECT and the calling thread’s priority is higher than
the mutex’ current priority ceiling.

1152 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

36090

36091

36092

36093

36094

36095

36096

36097

36098

36099

36100

36101

36102

36103

36104

36105

36106

36107

36108

36109

36110

36111

36112

36113

36114

36115

36116

36117

36118

36119

36120

36121

36122

36123

36124

36125

36126

36127

36128

36129

36130

36131

36132

36133

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces pthread_mutex_timedlock()

[EINVAL] The process or thread would have blocked, and the abs_timeout parameter
specified a nanoseconds field value less than zero or greater than or equal to
1 000 million.

[ENOTRECOVERABLE]
The state protected by the mutex is not recoverable. The mutex is not locked.

[EOWNERDEAD]
The mutex is a robust mutex and the process containing the previous owning
thread terminated while holding the mutex lock. The mutex lock has been
acquired and it is up to the new owner to make the state consistent.

[ETIMEDOUT] The mutex could not be locked before the specified timeout expired.

The pthread_mutex_timedlock() function may fail if:

[EINVAL] The value specified by mutex does not refer to an initialized mutex object.

[EAGAIN] The mutex could not be acquired because the maximum number of recursive
locks for mutex has been exceeded.

[EDEADLK] A deadlock condition was detected or the current thread already owns the
mutex.

[EOWNERDEAD]
The mutex is a robust mutex and the previous owning thread terminated
while holding the mutex lock. The mutex lock has been acquired and it is up
to the new owner to make the state consistent.

This function shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
Applications that have assumed that non-zero return values are errors will need updating for
use with robust mutexes, since a valid return for a thread acquiring a mutex which is protecting
a currently inconsistent state is [EOWNERDEAD]. Applications that do not check the error
returns, due to ruling out the possibility of such errors arising, should not use robust mutexes. If
an application is supposed to work with normal and robust mutexes, it should check all return
values for error conditions and if necessary take appropriate action.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_mutex_destroy(), pthread_mutex_lock(), pthread_mutex_trylock(), time(), the Base
Definitions volume of IEEE Std 1003.1-200x, Section 4.10, Memory Synchronization,
<pthread.h>, <time.h>

CHANGE HISTORY
First released in Issue 6. Derived from IEEE Std 1003.1d-1999.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/99 is applied, marking the last paragraph
in the DESCRIPTION as part of the Thread Priority Inheritance option.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/100 is applied, updating the ERRORS
section so that the [EDEADLK] error includes detection of a deadlock condition.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1153

36134

36135

36136

36137

36138

36139

36140

36141

36142

36143

36144

36145

36146

36147

36148

36149

36150

36151

36152

36153

36154

36155

36156

36157

36158

36159

36160

36161

36162

36163

36164

36165

36166

36167

36168

36169

36170

36171

36172

36173

36174

36175

36176

36177

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

pthread_mutex_timedlock() System Interfaces

Issue 7
Changes are made from The Open Group Technical Standard, 2006, Extended API Set Part 3.

The pthread_mutex_timedlock() function is moved from the Timeouts option to the Base.

Functionality relating to the Timers option is moved to the Base.

1154 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

36178

36179

36180

36181

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces pthread_mutex_trylock()

NAME
pthread_mutex_trylock, pthread_mutex_unlock — lock and unlock a mutex

SYNOPSIS
#include <pthread.h>

int pthread_mutex_trylock(pthread_mutex_t * mutex);
int pthread_mutex_unlock(pthread_mutex_t * mutex);

DESCRIPTION
Refer to pthread_mutex_lock().

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1155

36182

36183

36184

36185

36186

36187

36188

36189

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

pthread_mutexattr_destroy() System Interfaces

NAME
pthread_mutexattr_destroy, pthread_mutexattr_init — destroy and initialize the mutex
attributes object

SYNOPSIS
#include <pthread.h>

int pthread_mutexattr_destroy(pthread_mutexattr_t * attr);
int pthread_mutexattr_init(pthread_mutexattr_t * attr);

DESCRIPTION
The pthread_mutexattr_destroy() function shall destroy a mutex attributes object; the object
becomes, in effect, uninitialized. An implementation may cause pthread_mutexattr_destroy() to
set the object referenced by attr to an invalid value. A destroyed attr attributes object can be
reinitialized using pthread_mutexattr_init(); the results of otherwise referencing the object after it
has been destroyed are undefined.

The pthread_mutexattr_init() function shall initialize a mutex attributes object attr with the
default value for all of the attributes defined by the implementation.

Results are undefined if pthread_mutexattr_init() is called specifying an already initialized attr
attributes object.

After a mutex attributes object has been used to initialize one or more mutexes, any function
affecting the attributes object (including destruction) shall not affect any previously initialized
mutexes.

RETURN VALUE
Upon successful completion, pthread_mutexattr_destroy() and pthread_mutexattr_init() shall
return zero; otherwise, an error number shall be returned to indicate the error.

ERRORS
The pthread_mutexattr_destroy() function may fail if:

[EINVAL] The value specified by attr is invalid.

The pthread_mutexattr_init() function shall fail if:

[ENOMEM] Insufficient memory exists to initialize the mutex attributes object.

These functions shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
See pthread_attr_init() for a general explanation of attributes. Attributes objects allow
implementations to experiment with useful extensions and permit extension of this volume of
IEEE Std 1003.1-200x without changing the existing functions. Thus, they provide for future
extensibility of this volume of IEEE Std 1003.1-200x and reduce the temptation to standardize
prematurely on semantics that are not yet widely implemented or understood.

Examples of possible additional mutex attributes that have been discussed are spin_only,
limited_spin, no_spin, recursive, and metered. (To explain what the latter attributes might mean:
recursive mutexes would allow for multiple re-locking by the current owner; metered mutexes
would transparently keep records of queue length, wait time, and so on.) Since there is not yet
wide agreement on the usefulness of these resulting from shared implementation and usage

1156 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

36190

36191

36192

36193

36194

36195

36196

36197

36198

36199

36200

36201

36202

36203

36204

36205

36206

36207

36208

36209

36210

36211

36212

36213

36214

36215

36216

36217

36218

36219

36220

36221

36222

36223

36224

36225

36226

36227

36228

36229

36230

36231

36232

36233

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces pthread_mutexattr_destroy()

experience, they are not yet specified in this volume of IEEE Std 1003.1-200x. Mutex attributes
objects, however, make it possible to test out these concepts for possible standardization at a
later time.

Mutex Attributes and Performance

Care has been taken to ensure that the default values of the mutex attributes have been defined
such that mutexes initialized with the defaults have simple enough semantics so that the locking
and unlocking can be done with the equivalent of a test-and-set instruction (plus possibly a few
other basic instructions).

There is at least one implementation method that can be used to reduce the cost of testing at
lock-time if a mutex has non-default attributes. One such method that an implementation can
employ (and this can be made fully transparent to fully conforming POSIX applications) is to
secretly pre-lock any mutexes that are initialized to non-default attributes. Any later attempt to
lock such a mutex causes the implementation to branch to the ‘‘slow path’’ as if the mutex were
unavailable; then, on the slow path, the implementation can do the ‘‘real work’’ to lock a non-
default mutex. The underlying unlock operation is more complicated since the implementation
never really wants to release the pre-lock on this kind of mutex. This illustrates that, depending
on the hardware, there may be certain optimizations that can be used so that whatever mutex
attributes are considered ‘‘most frequently used’’ can be processed most efficiently.

Process Shared Memory and Synchronization

The existence of memory mapping functions in this volume of IEEE Std 1003.1-200x leads to the
possibility that an application may allocate the synchronization objects from this section in
memory that is accessed by multiple processes (and therefore, by threads of multiple processes).

In order to permit such usage, while at the same time keeping the usual case (that is, usage
within a single process) efficient, a process-shared option has been defined.

If an implementation supports the _POSIX_THREAD_PROCESS_SHARED option, then the
process-shared attribute can be used to indicate that mutexes or condition variables may be
accessed by threads of multiple processes.

The default setting of PTHREAD_PROCESS_PRIVATE has been chosen for the process-shared
attribute so that the most efficient forms of these synchronization objects are created by default.

Synchronization variables that are initialized with the PTHREAD_PROCESS_PRIVATE process-
shared attribute may only be operated on by threads in the process that initialized them.
Synchronization variables that are initialized with the PTHREAD_PROCESS_SHARED process-
shared attribute may be operated on by any thread in any process that has access to it. In
particular, these processes may exist beyond the lifetime of the initializing process. For example,
the following code implements a simple counting semaphore in a mapped file that may be used
by many processes.

/* sem.h */
struct semaphore {

pthread_mutex_t lock;
pthread_cond_t nonzero;
unsigned count;

};
typedef struct semaphore semaphore_t;

semaphore_t *semaphore_create(char *semaphore_name);
semaphore_t *semaphore_open(char *semaphore_name);
void semaphore_post(semaphore_t *semap);
void semaphore_wait(semaphore_t *semap);
void semaphore_close(semaphore_t *semap);

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1157

36234

36235

36236

36237

36238

36239

36240

36241

36242

36243

36244

36245

36246

36247

36248

36249

36250

36251

36252

36253

36254

36255

36256

36257

36258

36259

36260

36261

36262

36263

36264

36265

36266

36267

36268

36269

36270

36271

36272

36273

36274

36275

36276

36277

36278

36279

36280

36281

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

pthread_mutexattr_destroy() System Interfaces

/* sem.c */
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/mman.h>
#include <fcntl.h>
#include <pthread.h>
#include "sem.h"

semaphore_t *
semaphore_create(char *semaphore_name)
{
int fd;

semaphore_t *semap;
pthread_mutexattr_t psharedm;
pthread_condattr_t psharedc;

fd = open(semaphore_name, O_RDWR | O_CREAT | O_EXCL, 0666);
if (fd < 0)

return (NULL);
(void) ftruncate(fd, sizeof(semaphore_t));
(void) pthread_mutexattr_init(&psharedm);
(void) pthread_mutexattr_setpshared(&psharedm,

PTHREAD_PROCESS_SHARED);
(void) pthread_condattr_init(&psharedc);
(void) pthread_condattr_setpshared(&psharedc,

PTHREAD_PROCESS_SHARED);
semap = (semaphore_t *) mmap(NULL, sizeof(semaphore_t),

PROT_READ | PROT_WRITE, MAP_SHARED,
fd, 0);

close (fd);
(void) pthread_mutex_init(&semap->lock, &psharedm);
(void) pthread_cond_init(&semap->nonzero, &psharedc);
semap->count = 0;
return (semap);

}

semaphore_t *
semaphore_open(char *semaphore_name)
{

int fd;
semaphore_t *semap;

fd = open(semaphore_name, O_RDWR, 0666);
if (fd < 0)

return (NULL);
semap = (semaphore_t *) mmap(NULL, sizeof(semaphore_t),

PROT_READ | PROT_WRITE, MAP_SHARED,
fd, 0);

close (fd);
return (semap);

}

void
semaphore_post(semaphore_t *semap)
{

pthread_mutex_lock(&semap->lock);
if (semap->count == 0)

1158 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

36282

36283

36284

36285

36286

36287

36288

36289

36290

36291

36292

36293

36294

36295

36296

36297

36298

36299

36300

36301

36302

36303

36304

36305

36306

36307

36308

36309

36310

36311

36312

36313

36314

36315

36316

36317

36318

36319

36320

36321

36322

36323

36324

36325

36326

36327

36328

36329

36330

36331

36332

36333

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces pthread_mutexattr_destroy()

pthread_cond_signal(&semapx->nonzero);
semap->count++;
pthread_mutex_unlock(&semap->lock);

}

void
semaphore_wait(semaphore_t *semap)
{

pthread_mutex_lock(&semap->lock);
while (semap->count == 0)

pthread_cond_wait(&semap->nonzero, &semap->lock);
semap->count- -;
pthread_mutex_unlock(&semap->lock);

}

void
semaphore_close(semaphore_t *semap)
{

munmap((void *) semap, sizeof(semaphore_t));
}

The following code is for three separate processes that create, post, and wait on a semaphore in
the file /tmp/semaphore. Once the file is created, the post and wait programs increment and
decrement the counting semaphore (waiting and waking as required) even though they did not
initialize the semaphore.

/* create.c */
#include "pthread.h"
#include "sem.h"

int
main()
{

semaphore_t *semap;

semap = semaphore_create("/tmp/semaphore");
if (semap == NULL)

exit(1);
semaphore_close(semap);
return (0);

}

/* post */
#include "pthread.h"
#include "sem.h"

int
main()
{

semaphore_t *semap;

semap = semaphore_open("/tmp/semaphore");
if (semap == NULL)

exit(1);
semaphore_post(semap);
semaphore_close(semap);
return (0);

}

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1159

36334

36335

36336

36337

36338

36339

36340

36341

36342

36343

36344

36345

36346

36347

36348

36349

36350

36351

36352

36353

36354

36355

36356

36357

36358

36359

36360

36361

36362

36363

36364

36365

36366

36367

36368

36369

36370

36371

36372

36373

36374

36375

36376

36377

36378

36379

36380

36381

36382

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

pthread_mutexattr_destroy() System Interfaces

/* wait */
#include "pthread.h"
#include "sem.h"

int
main()
{

semaphore_t *semap;

semap = semaphore_open("/tmp/semaphore");
if (semap == NULL)

exit(1);
semaphore_wait(semap);
semaphore_close(semap);
return (0);

}

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_cond_destroy(), pthread_create(), pthread_mutex_destroy(), pthread_mutexattr_destroy(), the
Base Definitions volume of IEEE Std 1003.1-200x, <pthread.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Threads Extension.

Issue 6
The pthread_mutexattr_destroy() and pthread_mutexattr_init() functions are marked as part of the
Threads option.

IEEE PASC Interpretation 1003.1c #27 is applied, updating the ERRORS section.

Issue 7
The pthread_mutexattr_destroy() and pthread_mutexattr_init() functions are moved from the
Threads option to the Base.

1160 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

36383

36384

36385

36386

36387

36388

36389

36390

36391

36392

36393

36394

36395

36396

36397

36398

36399

36400

36401

36402

36403

36404

36405

36406

36407

36408

36409

36410

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces pthread_mutexattr_getprioceiling()

NAME
pthread_mutexattr_getprioceiling, pthread_mutexattr_setprioceiling — get and set the
prioceiling attribute of the mutex attributes object (REALTIME THREADS)

SYNOPSIS
RPP|TPP #include <pthread.h>

int pthread_mutexattr_getprioceiling(const pthread_mutexattr_t *
restrict attr, i nt *restrict prioceiling);

int pthread_mutexattr_setprioceiling(pthread_mutexattr_t * attr,
int prioceiling);

DESCRIPTION
The pthread_mutexattr_getprioceiling() and pthread_mutexattr_setprioceiling() functions,
respectively, shall get and set the priority ceiling attribute of a mutex attributes object pointed to
by attr which was previously created by the function pthread_mutexattr_init().

The prioceiling attribute contains the priority ceiling of initialized mutexes. The values of
prioceiling are within the maximum range of priorities defined by SCHED_FIFO.

The prioceiling attribute defines the priority ceiling of initialized mutexes, which is the minimum
priority level at which the critical section guarded by the mutex is executed. In order to avoid
priority inversion, the priority ceiling of the mutex shall be set to a priority higher than or equal
to the highest priority of all the threads that may lock that mutex. The values of prioceiling are
within the maximum range of priorities defined under the SCHED_FIFO scheduling policy.

RETURN VALUE
Upon successful completion, the pthread_mutexattr_getprioceiling() and
pthread_mutexattr_setprioceiling() functions shall return zero; otherwise, an error number shall be
returned to indicate the error.

ERRORS
The pthread_mutexattr_getprioceiling() and pthread_mutexattr_setprioceiling() functions may fail if:

[EINVAL] The value specified by attr or prioceiling is invalid.

[EPERM] The caller does not have the privilege to perform the operation.

These functions shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_cond_destroy(), pthread_create(), pthread_mutex_destroy(), the Base Definitions volume of
IEEE Std 1003.1-200x, <pthread.h>

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1161

36411

36412

36413

36414

36415

36416

36417

36418

36419

36420

36421

36422

36423

36424

36425

36426

36427

36428

36429

36430

36431

36432

36433

36434

36435

36436

36437

36438

36439

36440

36441

36442

36443

36444

36445

36446

36447

36448

36449

36450

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

pthread_mutexattr_getprioceiling() System Interfaces

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Threads Extension.

Marked as part of the Realtime Threads Feature Group.

Issue 6
The pthread_mutexattr_getprioceiling() and pthread_mutexattr_setprioceiling() functions are marked
as part of the Threads and Thread Priority Protection options.

The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Thread Priority Protection option.

The [ENOTSUP] error condition has been removed since these functions do not have a protocol
argument.

The restrict keyword is added to the pthread_mutexattr_getprioceiling() prototype for alignment
with the ISO/IEC 9899: 1999 standard.

Issue 7
The pthread_mutexattr_getprioceiling() and pthread_mutexattr_setprioceiling() functions are moved
from the Threads option to require support of either the Robust Mutex Priority Protection option
or the Non-Robust Mutex Priority Protection option.

1162 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

36451

36452

36453

36454

36455

36456

36457

36458

36459

36460

36461

36462

36463

36464

36465

36466

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces pthread_mutexattr_getprotocol()

NAME
pthread_mutexattr_getprotocol, pthread_mutexattr_setprotocol — get and set the protocol
attribute of the mutex attributes object (REALTIME THREADS)

SYNOPSIS
MC1 #include <pthread.h>

int pthread_mutexattr_getprotocol(const pthread_mutexattr_t *
restrict attr, i nt *restrict protocol);

int pthread_mutexattr_setprotocol(pthread_mutexattr_t * attr,
int protocol);

DESCRIPTION
The pthread_mutexattr_getprotocol() and pthread_mutexattr_setprotocol() functions, respectively,
shall get and set the protocol attribute of a mutex attributes object pointed to by attr which was
previously created by the function pthread_mutexattr_init().

The protocol attribute defines the protocol to be followed in utilizing mutexes. The value of
protocol may be one of:

RPI|TPI PTHREAD_PRIO_INHERIT
MC1 PTHREAD_PRIO_NONE
RPP|TPP PTHREAD_PRIO_PROTECT

which are defined in the <pthread.h> header. The default value of the attribute shall be
PTHREAD_PRIO_NONE.

When a thread owns a mutex with the PTHREAD_PRIO_NONE protocol attribute, its priority
and scheduling shall not be affected by its mutex ownership.

RPI When a thread is blocking higher priority threads because of owning one or more robust
mutexes with the PTHREAD_PRIO_INHERIT protocol attribute, it shall execute at the higher of
its priority or the priority of the highest priority thread waiting on any of the robust mutexes
owned by this thread and initialized with this protocol.

TPI When a thread is blocking higher priority threads because of owning one or more non-robust
mutexes with the PTHREAD_PRIO_INHERIT protocol attribute, it shall execute at the higher of
its priority or the priority of the highest priority thread waiting on any of the non-robust
mutexes owned by this thread and initialized with this protocol.

RPP When a thread owns one or more robust mutexes initialized with the
PTHREAD_PRIO_PROTECT protocol, it shall execute at the higher of its priority or the highest
of the priority ceilings of all the robust mutexes owned by this thread and initialized with this
attribute, regardless of whether other threads are blocked on any of these robust mutexes or not.

TPP When a thread owns one or more non-robust mutexes initialized with the
PTHREAD_PRIO_PROTECT protocol, it shall execute at the higher of its priority or the highest
of the priority ceilings of all the non-robust mutexes owned by this thread and initialized with
this attribute, regardless of whether other threads are blocked on any of these non-robust
mutexes or not.

While a thread is holding a mutex which has been initialized with the
PTHREAD_PRIO_INHERIT or PTHREAD_PRIO_PROTECT protocol attributes, it shall not be
subject to being moved to the tail of the scheduling queue at its priority in the event that its
original priority is changed, such as by a call to sched_setparam(). Likewise, when a thread

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1163

36467

36468

36469

36470

36471

36472

36473

36474

36475

36476

36477

36478

36479

36480

36481

36482

36483

36484

36485

36486

36487

36488

36489

36490

36491

36492

36493

36494

36495

36496

36497

36498

36499

36500

36501

36502

36503

36504

36505

36506

36507

36508

36509

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

pthread_mutexattr_getprotocol() System Interfaces

unlocks a mutex that has been initialized with the PTHREAD_PRIO_INHERIT or
PTHREAD_PRIO_PROTECT protocol attributes, it shall not be subject to being moved to the tail
of the scheduling queue at its priority in the event that its original priority is changed.

If a thread simultaneously owns several mutexes initialized with different protocols, it shall
execute at the highest of the priorities that it would have obtained by each of these protocols.

RPI|TPI When a thread makes a call to pthread_mutex_lock(), the mutex was initialized with the protocol
attribute having the value PTHREAD_PRIO_INHERIT, when the calling thread is blocked
because the mutex is owned by another thread, that owner thread shall inherit the priority level
of the calling thread as long as it continues to own the mutex. The implementation shall update
its execution priority to the maximum of its assigned priority and all its inherited priorities.
Furthermore, if this owner thread itself becomes blocked on another mutex, the same priority
inheritance effect shall be propagated to this other owner thread, in a recursive manner.

RETURN VALUE
Upon successful completion, the pthread_mutexattr_getprotocol() and
pthread_mutexattr_setprotocol() functions shall return zero; otherwise, an error number shall be
returned to indicate the error.

ERRORS
The pthread_mutexattr_setprotocol() function shall fail if:

[ENOTSUP] The value specified by protocol is an unsupported value.

The pthread_mutexattr_getprotocol() and pthread_mutexattr_setprotocol() functions may fail if:

[EINVAL] The value specified by attr or protocol is invalid.

[EPERM] The caller does not have the privilege to perform the operation.

These functions shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_cond_destroy(), pthread_create(), pthread_mutex_destroy(), the Base Definitions volume of
IEEE Std 1003.1-200x, <pthread.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Threads Extension.

Marked as part of the Realtime Threads Feature Group.

Issue 6
The pthread_mutexattr_getprotocol() and pthread_mutexattr_setprotocol() functions are marked as
part of the Threads option and either the Thread Priority Protection or Thread Priority
Inheritance options.

The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Thread Priority Protection or Thread Priority Inheritance
options.

The restrict keyword is added to the pthread_mutexattr_getprotocol() prototype for alignment

1164 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

36510

36511

36512

36513

36514

36515

36516

36517

36518

36519

36520

36521

36522

36523

36524

36525

36526

36527

36528

36529

36530

36531

36532

36533

36534

36535

36536

36537

36538

36539

36540

36541

36542

36543

36544

36545

36546

36547

36548

36549

36550

36551

36552

36553

36554

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces pthread_mutexattr_getprotocol()

with the ISO/IEC 9899: 1999 standard.

Issue 7
The pthread_mutexattr_getprotocol() and pthread_mutexattr_setprotocol() functions are moved from
the Threads option to require support of either the Non-Robust Mutex Priority Protection option
or the Non-Robust Mutex Priority Inheritance option or the Robust Mutex Priority Protection
option or the Robust Mutex Priority Inheritance option.

SD5-XSH-ERN-135 is applied, updating the DESCRIPTION to define a default value for the
protocol attribute.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1165

36555

36556

36557

36558

36559

36560

36561

36562

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

pthread_mutexattr_getpshared() System Interfaces

NAME
pthread_mutexattr_getpshared, pthread_mutexattr_setpshared — get and set the process-shared
attribute

SYNOPSIS
TSH #include <pthread.h>

int pthread_mutexattr_getpshared(const pthread_mutexattr_t *
restrict attr, i nt *restrict pshared);

int pthread_mutexattr_setpshared(pthread_mutexattr_t * attr,
int pshared);

DESCRIPTION
The pthread_mutexattr_getpshared() function shall obtain the value of the process-shared attribute
from the attributes object referenced by attr. The pthread_mutexattr_setpshared() function shall
set the process-shared attribute in an initialized attributes object referenced by attr.

The process-shared attribute is set to PTHREAD_PROCESS_SHARED to permit a mutex to be
operated upon by any thread that has access to the memory where the mutex is allocated, even if
the mutex is allocated in memory that is shared by multiple processes. If the process-shared
attribute is PTHREAD_PROCESS_PRIVATE, the mutex shall only be operated upon by threads
created within the same process as the thread that initialized the mutex; if threads of differing
processes attempt to operate on such a mutex, the behavior is undefined. The default value of
the attribute shall be PTHREAD_PROCESS_PRIVATE.

RETURN VALUE
Upon successful completion, pthread_mutexattr_setpshared() shall return zero; otherwise, an error
number shall be returned to indicate the error.

Upon successful completion, pthread_mutexattr_getpshared() shall return zero and store the value
of the process-shared attribute of attr into the object referenced by the pshared parameter.
Otherwise, an error number shall be returned to indicate the error.

ERRORS
The pthread_mutexattr_getpshared() and pthread_mutexattr_setpshared() functions may fail if:

[EINVAL] The value specified by attr is invalid.

The pthread_mutexattr_setpshared() function may fail if:

[EINVAL] The new value specified for the attribute is outside the range of legal values
for that attribute.

These functions shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

1166 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

36563

36564

36565

36566

36567

36568

36569

36570

36571

36572

36573

36574

36575

36576

36577

36578

36579

36580

36581

36582

36583

36584

36585

36586

36587

36588

36589

36590

36591

36592

36593

36594

36595

36596

36597

36598

36599

36600

36601

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces pthread_mutexattr_getpshared()

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_cond_destroy(), pthread_create(), pthread_mutex_destroy(), pthread_mutexattr_destroy(), the
Base Definitions volume of IEEE Std 1003.1-200x, <pthread.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Threads Extension.

Issue 6
The pthread_mutexattr_getpshared() and pthread_mutexattr_setpshared() functions are marked as
part of the Threads and Thread Process-Shared Synchronization options.

The restrict keyword is added to the pthread_mutexattr_getpshared() prototype for alignment
with the ISO/IEC 9899: 1999 standard.

Issue 7
The pthread_mutexattr_getpshared() and pthread_mutexattr_setpshared() functions are moved from
the Threads option.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1167

36602

36603

36604

36605

36606

36607

36608

36609

36610

36611

36612

36613

36614

36615

36616

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

pthread_mutexattr_getrobust() System Interfaces

NAME
pthread_mutexattr_getrobust, pthread_mutexattr_setrobust — get and set the mutex robust
attribute

SYNOPSIS
#include <pthread.h>

int pthread_mutexattr_getrobust(const pthread_mutexattr_t *restrict
attr, i nt *restrict robust);

int pthread_mutexattr_setrobust(pthread_mutexattr_t * attr,
int robust);

DESCRIPTION
The pthread_mutexattr_getrobust() and pthread_mutexattr_setrobust() functions, respectively, shall
get and set the mutex robust attribute. This attribute is set in the robust parameter. Valid values
for robust include:

PTHREAD_MUTEX_STALLED
No special actions are taken if the owner of the mutex is terminated while holding the
mutex lock. This can lead to deadlocks if no other thread can unlock the mutex.
This is the default value.

PTHREAD_MUTEX_ROBUST
If the process containing the owning thread of a robust mutex terminates while holding the
mutex lock, the next thread that acquires the mutex shall be notified about the termination
by the return value [EOWNERDEAD] from the locking function. If the owning thread of a
robust mutex terminates while holding the mutex lock, the next thread that acquires the
mutex may be notified about the termination by the return value [EOWNERDEAD]. The
notified thread can then attempt to mark the state protected by the mutex as consistent
again by a call to pthread_mutex_consistent(). After a subsequent successful call to
pthread_mutex_unlock(), the mutex lock shall be released and can be used normally by other
threads. If the mutex is unlocked without a call to pthread_mutex_consistent(), it shall be in a
permanently unusable state and all attempts to lock the mutex shall fail with the error
[ENOTRECOVERABLE]. The only permissible operation on such a mutex is
pthread_mutex_destroy().

RETURN VALUE
Upon successful completion, the pthread_mutexattr_getrobust() function shall return zero and
store the value of the robust attribute of attr into the object referenced by the robust parameter.
Otherwise, an error value shall be returned to indicate the error. If successful, the
pthread_mutexattr_setrobust() function shall return zero; otherwise, an error number shall be
returned to indicate the error.

ERRORS
The pthread_mutexattr_setrobust() function shall fail if:

[EINVAL] The value of robust is invalid.

The pthread_mutexattr_getrobust() and pthread_mutexattr_setrobust() functions may fail if:

[EINVAL] The value specified by attr is invalid.

These functions shall not return an error code of [EINTR].

1168 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

36617

36618

36619

36620

36621

36622

36623

36624

36625

36626

36627

36628

36629

36630

36631

36632

36633

36634

36635

36636

36637

36638

36639

36640

36641

36642

36643

36644

36645

36646

36647

36648

36649

36650

36651

36652

36653

36654

36655

36656

36657

36658

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

pthread_mutexattr_gettype() System Interfaces

NAME
pthread_mutexattr_gettype, pthread_mutexattr_settype — get and set the mutex type attribute

SYNOPSIS
#include <pthread.h>

int pthread_mutexattr_gettype(const pthread_mutexattr_t *restrict attr,
int *restrict type);

int pthread_mutexattr_settype(pthread_mutexattr_t *attr, i nt type);

DESCRIPTION
The pthread_mutexattr_gettype() and pthread_mutexattr_settype() functions, respectively, shall get
and set the mutex type attribute. This attribute is set in the type parameter to these functions. The
default value of the type attribute is PTHREAD_MUTEX_DEFAULT.

The type of mutex is contained in the type attribute of the mutex attributes. Valid mutex types
include:

PTHREAD_MUTEX_NORMAL
This type of mutex does not detect deadlock. A thread attempting to relock this mutex
without first unlocking it shall deadlock. Attempting to unlock a mutex locked by a
different thread results in undefined behavior. Attempting to unlock an unlocked mutex
results in undefined behavior.

PTHREAD_MUTEX_ERRORCHECK
This type of mutex provides error checking. A thread attempting to relock this mutex
without first unlocking it shall return with an error. A thread attempting to unlock a mutex

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces pthread_mutexattr_gettype()

ERRORS
The pthread_mutexattr_settype() function shall fail if:

[EINVAL] The value type is invalid.

The pthread_mutexattr_gettype() and pthread_mutexattr_settype() functions may fail if:

[EINVAL] The value specified by attr is invalid.

These functions shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
It is advised that an application should not use a PTHREAD_MUTEX_RECURSIVE mutex with
condition variables because the implicit unlock performed for a pthread_cond_timedwait() or
pthread_cond_wait() may not actually release the mutex (if it had been locked multiple times). If
this happens, no other thread can satisfy the condition of the predicate.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_cond_timedwait(), the Base Definitions volume of IEEE Std 1003.1-200x, <pthread.h>

CHANGE HISTORY
First released in Issue 5.

Issue 6
The Open Group Corrigendum U033/3 is applied. The SYNOPSIS for
pthread_mutexattr_gettype() is updated so that the first argument is of type const
pthread_mutexattr_t *.

The restrict keyword is added to the pthread_mutexattr_gettype() prototype for alignment with
the ISO/IEC 9899: 1999 standard.

Issue 7
The pthread_mutexattr_gettype() and pthread_mutexattr_settype() functions are moved from the
XSI option to the Base.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1171

36726

36727

36728

36729

36730

36731

36732

36733

36734

36735

36736

36737

36738

36739

36740

36741

36742

36743

36744

36745

36746

36747

36748

36749

36750

36751

36752

36753

36754

36755

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

pthread_mutexattr_init() System Interfaces

NAME
pthread_mutexattr_init — initialize the mutex attributes object

SYNOPSIS
#include <pthread.h>

int pthread_mutexattr_init(pthread_mutexattr_t * attr);

DESCRIPTION
Refer to pthread_mutexattr_destroy().

1172 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

36756

36757

36758

36759

36760

36761

36762

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces pthread_mutexattr_setprioceiling()

NAME
pthread_mutexattr_setprioceiling — set the prioceiling attribute of the mutex attributes object
(REALTIME THREADS)

SYNOPSIS
RPP|TPP #include <pthread.h>

int pthread_mutexattr_setprioceiling(pthread_mutexattr_t * attr,
int prioceiling);

DESCRIPTION
Refer to pthread_mutexattr_getprioceiling().

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1173

36763

36764

36765

36766

36767

36768

36769

36770

36771

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

pthread_mutexattr_setprotocol() System Interfaces

NAME
pthread_mutexattr_setprotocol — set the protocol attribute of the mutex attributes object
(REALTIME THREADS)

SYNOPSIS
MC1 #include <pthread.h>

int pthread_mutexattr_setprotocol(pthread_mutexattr_t * attr,
int protocol);

DESCRIPTION
Refer to pthread_mutexattr_getprotocol().

1174 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

36772

36773

36774

36775

36776

36777

36778

36779

36780

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces pthread_mutexattr_setpshared()

NAME
pthread_mutexattr_setpshared — set the process-shared attribute

SYNOPSIS
TSH #include <pthread.h>

int pthread_mutexattr_setpshared(pthread_mutexattr_t * attr,
int pshared);

DESCRIPTION
Refer to pthread_mutexattr_getpshared().

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1175

36781

36782

36783

36784

36785

36786

36787

36788

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

pthread_mutexattr_setrobust() System Interfaces

NAME
pthread_mutexattr_setrobust — get and set the mutex robust attribute

SYNOPSIS
#include <pthread.h>

int pthread_mutexattr_setrobust(pthread_mutexattr_t * attr,
int robust);

DESCRIPTION
Refer to pthread_mutexattr_getrobust().

1176 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

36789

36790

36791

36792

36793

36794

36795

36796

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces pthread_mutexattr_settype()

NAME
pthread_mutexattr_settype — set the mutex type attribute

SYNOPSIS
#include <pthread.h>

int pthread_mutexattr_settype(pthread_mutexattr_t *attr, i nt type);

DESCRIPTION
Refer to pthread_mutexattr_gettype().

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1177

36797

36798

36799

36800

36801

36802

36803

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

pthread_once() System Interfaces

NAME
pthread_once — dynamic package initialization

SYNOPSIS
#include <pthread.h>

int pthread_once(pthread_once_t * once_control,
void (* init_routine)(void));

pthread_once_t once_control = PTHREAD_ONCE_INIT;

DESCRIPTION
The first call to pthread_once() by any thread in a process, with a given once_control, shall call the
init_routine with no arguments. Subsequent calls of pthread_once() with the same once_control
shall not call the init_routine. On return from pthread_once(), init_routine shall have completed.
The once_control parameter shall determine whether the associated initialization routine has been
called.

The pthread_once() function is not a cancellation point. However, if init_routine is a cancellation
point and is canceled, the effect on once_control shall be as if pthread_once() was never called.

The constant PTHREAD_ONCE_INIT is defined in the <pthread.h> header.

The behavior of pthread_once() is undefined if once_control has automatic storage duration or is
not initialized by PTHREAD_ONCE_INIT.

RETURN VALUE
Upon successful completion, pthread_once() shall return zero; otherwise, an error number shall
be returned to indicate the error.

ERRORS
The pthread_once() function may fail if:

[EINVAL] If either once_control or init_routine is invalid.

The pthread_once() function shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
Some C libraries are designed for dynamic initialization. That is, the global initialization for the
library is performed when the first procedure in the library is called. In a single-threaded
program, this is normally implemented using a static variable whose value is checked on entry
to a routine, as follows:

static int random_is_initialized = 0;
extern int initialize_random();

int random_function()
{

if (random_is_initialized == 0) {
initialize_random();
random_is_initialized = 1;

}
... /* Operations performed after initialization. */

}

1178 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

36804

36805

36806

36807

36808

36809

36810

36811

36812

36813

36814

36815

36816

36817

36818

36819

36820

36821

36822

36823

36824

36825

36826

36827

36828

36829

36830

36831

36832

36833

36834

36835

36836

36837

36838

36839

36840

36841

36842

36843

36844

36845

36846

36847

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces pthread_once()

To keep the same structure in a multi-threaded program, a new primitive is needed. Otherwise,
library initialization has to be accomplished by an explicit call to a library-exported initialization
function prior to any use of the library.

For dynamic library initialization in a multi-threaded process, a simple initialization flag is not
sufficient; the flag needs to be protected against modification by multiple threads
simultaneously calling into the library. Protecting the flag requires the use of a mutex; however,
mutexes have to be initialized before they are used. Ensuring that the mutex is only initialized
once requires a recursive solution to this problem.

The use of pthread_once() not only supplies an implementation-guaranteed means of dynamic
initialization, it provides an aid to the reliable construction of multi-threaded and realtime
systems. The preceding example then becomes:

#include <pthread.h>
static pthread_once_t random_is_initialized = PTHREAD_ONCE_INIT;
extern int initialize_random();

int random_function()
{

(void) pthread_once(&random_is_initialized, initialize_random);
... /* Operations performed after initialization. */

}

Note that a pthread_once_t cannot be an array because some compilers do not accept the
construct &<array_name>.

FUTURE DIRECTIONS
None.

SEE ALSO
The Base Definitions volume of IEEE Std 1003.1-200x, <pthread.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Threads Extension.

Issue 6
The pthread_once() function is marked as part of the Threads option.

The [EINVAL] error is added as a may fail case for if either argument is invalid.

Issue 7
The pthread_once() function is moved from the Threads option to the Base.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1179

36848

36849

36850

36851

36852

36853

36854

36855

36856

36857

36858

36859

36860

36861

36862

36863

36864

36865

36866

36867

36868

36869

36870

36871

36872

36873

36874

36875

36876

36877

36878

36879

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

pthread_rwlock_destroy() System Interfaces

NAME
pthread_rwlock_destroy, pthread_rwlock_init — destroy and initialize a read-write lock object

SYNOPSIS
#include <pthread.h>

int pthread_rwlock_destroy(pthread_rwlock_t * rwlock,
int pthread_rwlock_init(pthread_rwlock_t *restrict rwlock,

const pthread_rwlockattr_t *restrict attr);
XSI pthread_rwlock_t rwlock = PTHREAD_RWLOCK_INITIALIZER;

DESCRIPTION
The pthread_rwlock_destroy() function shall destroy the read-write lock object referenced by
rwlock and release any resources used by the lock. The effect of subsequent use of the lock is
undefined until the lock is reinitialized by another call to pthread_rwlock_init(). An
implementation may cause pthread_rwlock_destroy() to set the object referenced by rwlock to an
invalid value. Results are undefined if pthread_rwlock_destroy() is called when any thread holds
rwlock. Attempting to destroy an uninitialized read-write lock results in undefined behavior.

The pthread_rwlock_init() function shall allocate any resources required to use the read-write lock
referenced by rwlock and initializes the lock to an unlocked state with attributes referenced by
attr. If attr is NULL, the default read-write lock attributes shall be used; the effect is the same as
passing the address of a default read-write lock attributes object. Once initialized, the lock can be
used any number of times without being reinitialized. Results are undefined if
pthread_rwlock_init() is called specifying an already initialized read-write lock. Results are
undefined if a read-write lock is used without first being initialized.

If the pthread_rwlock_init() function fails, rwlock shall not be initialized and the contents of rwlock
are undefined.

Only the object referenced by rwlock may be used for performing synchronization. The result of
referring to copies of that object in calls to pthread_rwlock_destroy(), pthread_rwlock_rdlock(),
pthread_rwlock_timedrdlock(), pthread_rwlock_timedwrlock(), pthread_rwlock_tryrdlock(),
pthread_rwlock_trywrlock(), pthread_rwlock_unlock(), or pthread_rwlock_wrlock() is undefined.

XSI In cases where default read-write lock attributes are appropriate, the macro
PTHREAD_RWLOCK_INITIALIZER can be used to initialize read-write locks that are statically
allocated. The effect shall be equivalent to dynamic initialization by a call to pthread_rwlock_init()
with the attr parameter specified as NULL, except that no error checks are performed.

RETURN VALUE
If successful, the pthread_rwlock_destroy() and pthread_rwlock_init() functions shall return zero;
otherwise, an error number shall be returned to indicate the error.

The [EBUSY] and [EINVAL] error checks, if implemented, act as if they were performed
immediately at the beginning of processing for the function and caused an error return prior to
modifying the state of the read-write lock specified by rwlock.

ERRORS
The pthread_rwlock_destroy() function may fail if:

[EBUSY] The implementation has detected an attempt to destroy the object referenced
by rwlock while it is locked.

[EINVAL] The value specified by rwlock is invalid.

The pthread_rwlock_init() function shall fail if:

1180 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

36880

36881

36882

36883

36884

36885

36886

36887

36888

36889

36890

36891

36892

36893

36894

36895

36896

36897

36898

36899

36900

36901

36902

36903

36904

36905

36906

36907

36908

36909

36910

36911

36912

36913

36914

36915

36916

36917

36918

36919

36920

36921

36922

36923

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces pthread_rwlock_destroy()

[EAGAIN] The system lacked the necessary resources (other than memory) to initialize
another read-write lock.

[ENOMEM] Insufficient memory exists to initialize the read-write lock.

[EPERM] The caller does not have the privilege to perform the operation.

The pthread_rwlock_init() function may fail if:

[EBUSY] The implementation has detected an attempt to reinitialize the object
referenced by rwlock, a previously initialized but not yet destroyed read-write
lock.

[EINVAL] The value specified by attr is invalid.

These functions shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
Applications using these and related read-write lock functions may be subject to priority
inversion, as discussed in the Base Definitions volume of IEEE Std 1003.1-200x, Section 3.285,
Priority Inversion.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_rwlock_rdlock(), pthread_rwlock_timedrdlock(), pthread_rwlock_timedwrlock(),
pthread_rwlock_tryrdlock(), pthread_rwlock_trywrlock(), pthread_rwlock_unlock(),
pthread_rwlock_wrlock(), the Base Definitions volume of IEEE Std 1003.1-200x, <pthread.h>

CHANGE HISTORY
First released in Issue 5.

Issue 6
The following changes are made for alignment with IEEE Std 1003.1j-2000:

• The margin code in the SYNOPSIS is changed to THR to indicate that the functionality is
now part of the Threads option (previously it was part of the Read-Write Locks option in
IEEE Std 1003.1j-2000 and also part of the XSI extension). The initializer macro is also
deleted from the SYNOPSIS.

• The DESCRIPTION is updated as follows:

— It explicitly notes allocation of resources upon initialization of a read-write lock
object.

— A paragraph is added specifying that copies of read-write lock objects may not be
used.

• An [EINVAL] error is added to the ERRORS section for pthread_rwlock_init(), indicating
that the rwlock value is invalid.

• The SEE ALSO section is updated.

The restrict keyword is added to the pthread_rwlock_init() prototype for alignment with the
ISO/IEC 9899: 1999 standard.

IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/45 is applied, adding APPLICATION
USAGE relating to priority inversion.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1181

36924

36925

36926

36927

36928

36929

36930

36931

36932

36933

36934

36935

36936

36937

36938

36939

36940

36941

36942

36943

36944

36945

36946

36947

36948

36949

36950

36951

36952

36953

36954

36955

36956

36957

36958

36959

36960

36961

36962

36963

36964

36965

36966

36967

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

pthread_rwlock_destroy() System Interfaces

Issue 7
Austin Group Interpretation 1003.1-2001 #048 is applied, adding the
PTHREAD_RWLOCK_INITIALIZER macro.

The pthread_rwlock_destroy() and pthread_rwlock_init() functions are moved from the Threads
option to the Base.

1182 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

36968

36969

36970

36971

36972

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces pthread_rwlock_rdlock()

NAME
pthread_rwlock_rdlock, pthread_rwlock_tryrdlock — lock a read-write lock object for reading

SYNOPSIS
#include <pthread.h>

int pthread_rwlock_rdlock(pthread_rwlock_t *rwlock);
int pthread_rwlock_tryrdlock(pthread_rwlock_t *rwlock);

DESCRIPTION
The pthread_rwlock_rdlock() function shall apply a read lock to the read-write lock referenced by
rwlock. The calling thread acquires the read lock if a writer does not hold the lock and there are
no writers blocked on the lock.

TPS If the Thread Execution Scheduling option is supported, and the threads involved in the lock are
executing with the scheduling policies SCHED_FIFO or SCHED_RR, the calling thread shall not
acquire the lock if a writer holds the lock or if writers of higher or equal priority are blocked on
the lock; otherwise, the calling thread shall acquire the lock.

TPS TSP If the Thread Execution Scheduling option is supported, and the threads involved in the lock are
executing with the SCHED_SPORADIC scheduling policy, the calling thread shall not acquire
the lock if a writer holds the lock or if writers of higher or equal priority are blocked on the lock;
otherwise, the calling thread shall acquire the lock.

If the Thread Execution Scheduling option is not supported, it is implementation-defined
whether the calling thread acquires the lock when a writer does not hold the lock and there are
writers blocked on the lock. If a writer holds the lock, the calling thread shall not acquire the
read lock. If the read lock is not acquired, the calling thread shall block until it can acquire the
lock. The calling thread may deadlock if at the time the call is made it holds a write lock.

A thread may hold multiple concurrent read locks on rwlock (that is, successfully call the
pthread_rwlock_rdlock() function n times). If so, the application shall ensure that the thread
performs matching unlocks (that is, it calls the pthread_rwlock_unlock() function n times).

The maximum number of simultaneous read locks that an implementation guarantees can be
applied to a read-write lock shall be implementation-defined. The pthread_rwlock_rdlock()
function may fail if this maximum would be exceeded.

The pthread_rwlock_tryrdlock() function shall apply a read lock as in the pthread_rwlock_rdlock()
function, with the exception that the function shall fail if the equivalent pthread_rwlock_rdlock()
call would have blocked the calling thread. In no case shall the pthread_rwlock_tryrdlock()
function ever block; it always either acquires the lock or fails and returns immediately.

Results are undefined if any of these functions are called with an uninitialized read-write lock.

If a signal is delivered to a thread waiting for a read-write lock for reading, upon return from the
signal handler the thread resumes waiting for the read-write lock for reading as if it was not
interrupted.

RETURN VALUE
If successful, the pthread_rwlock_rdlock() function shall return zero; otherwise, an error number
shall be returned to indicate the error.

The pthread_rwlock_tryrdlock() function shall return zero if the lock for reading on the read-write
lock object referenced by rwlock is acquired. Otherwise, an error number shall be returned to
indicate the error.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1183

36973

36974

36975

36976

36977

36978

36979

36980

36981

36982

36983

36984

36985

36986

36987

36988

36989

36990

36991

36992

36993

36994

36995

36996

36997

36998

36999

37000

37001

37002

37003

37004

37005

37006

37007

37008

37009

37010

37011

37012

37013

37014

37015

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

pthread_rwlock_rdlock() System Interfaces

ERRORS
The pthread_rwlock_tryrdlock() function shall fail if:

[EBUSY] The read-write lock could not be acquired for reading because a writer holds
the lock or a writer with the appropriate priority was blocked on it.

The pthread_rwlock_rdlock() and pthread_rwlock_tryrdlock() functions may fail if:

[EINVAL] The value specified by rwlock does not refer to an initialized read-write lock
object.

[EAGAIN] The read lock could not be acquired because the maximum number of read
locks for rwlock has been exceeded.

The pthread_rwlock_rdlock() function may fail if:

[EDEADLK] A deadlock condition was detected or the current thread already owns the
read-write lock for writing.

These functions shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
Applications using these functions may be subject to priority inversion, as discussed in the Base
Definitions volume of IEEE Std 1003.1-200x, Section 3.285, Priority Inversion.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_rwlock_destroy(), pthread_rwlock_timedrdlock(), pthread_rwlock_timedwrlock(),
pthread_rwlock_trywrlock(), pthread_rwlock_unlock(), pthread_rwlock_wrlock(), the Base Definitions
volume of IEEE Std 1003.1-200x, Section 4.10, Memory Synchronization, <pthread.h>

CHANGE HISTORY
First released in Issue 5.

Issue 6
The following changes are made for alignment with IEEE Std 1003.1j-2000:

• The margin code in the SYNOPSIS is changed to THR to indicate that the functionality is
now part of the Threads option (previously it was part of the Read-Write Locks option in
IEEE Std 1003.1j-2000 and also part of the XSI extension).

• The DESCRIPTION is updated as follows:

— Conditions under which writers have precedence over readers are specified.

— Failure of pthread_rwlock_tryrdlock() is clarified.

— A paragraph on the maximum number of read locks is added.

• In the ERRORS sections, [EBUSY] is modified to take into account write priority, and
[EDEADLK] is deleted as a pthread_rwlock_tryrdlock() error.

• The SEE ALSO section is updated.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/101 is applied, updating the ERRORS
section so that the [EDEADLK] error includes detection of a deadlock condition.

1184 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

37016

37017

37018

37019

37020

37021

37022

37023

37024

37025

37026

37027

37028

37029

37030

37031

37032

37033

37034

37035

37036

37037

37038

37039

37040

37041

37042

37043

37044

37045

37046

37047

37048

37049

37050

37051

37052

37053

37054

37055

37056

37057

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces pthread_rwlock_rdlock()

Issue 7
The pthread_rwlock_rdlock() and pthread_rwlock_tryrdlock() functions are moved from the Threads
option to the Base.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1185

37058

37059

37060

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

pthread_rwlock_timedrdlock() System Interfaces

NAME
pthread_rwlock_timedrdlock — lock a read-write lock for reading

SYNOPSIS
#include <pthread.h>
#include <time.h>

int pthread_rwlock_timedrdlock(pthread_rwlock_t *restrict rwlock,
const struct timespec *restrict abs_timeout);

DESCRIPTION
The pthread_rwlock_timedrdlock() function shall apply a read lock to the read-write lock
referenced by rwlock as in the pthread_rwlock_rdlock() function. However, if the lock cannot be
acquired without waiting for other threads to unlock the lock, this wait shall be terminated
when the specified timeout expires. The timeout shall expire when the absolute time specified
by abs_timeout passes, as measured by the clock on which timeouts are based (that is, when the
value of that clock equals or exceeds abs_timeout), or if the absolute time specified by abs_timeout
has already been passed at the time of the call.

The timeout shall be based on the CLOCK_REALTIME clock. The resolution of the timeout shall
be the resolution of the CLOCK_REALTIME clock. The timespec data type is defined in the
<time.h> header. Under no circumstances shall the function fail with a timeout if the lock can be
acquired immediately. The validity of the abs_timeout parameter need not be checked if the lock
can be immediately acquired.

If a signal that causes a signal handler to be executed is delivered to a thread blocked on a read-
write lock via a call to pthread_rwlock_timedrdlock(), upon return from the signal handler the
thread shall resume waiting for the lock as if it was not interrupted.

The calling thread may deadlock if at the time the call is made it holds a write lock on rwlock.
The results are undefined if this function is called with an uninitialized read-write lock.

RETURN VALUE
The pthread_rwlock_timedrdlock() function shall return zero if the lock for reading on the read-
write lock object referenced by rwlock is acquired. Otherwise, an error number shall be returned
to indicate the error.

ERRORS
The pthread_rwlock_timedrdlock() function shall fail if:

[ETIMEDOUT] The lock could not be acquired before the specified timeout expired.

The pthread_rwlock_timedrdlock() function may fail if:

[EAGAIN] The read lock could not be acquired because the maximum number of read
locks for lock would be exceeded.

[EDEADLK] A deadlock condition was detected or the calling thread already holds a write
lock on rwlock.

[EINVAL] The value specified by rwlock does not refer to an initialized read-write lock
object, or the abs_timeout nanosecond value is less than zero or greater than or
equal to 1 000 million.

This function shall not return an error code of [EINTR].

1186 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

37061

37062

37063

37064

37065

37066

37067

37068

37069

37070

37071

37072

37073

37074

37075

37076

37077

37078

37079

37080

37081

37082

37083

37084

37085

37086

37087

37088

37089

37090

37091

37092

37093

37094

37095

37096

37097

37098

37099

37100

37101

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces pthread_rwlock_timedrdlock()

EXAMPLES
None.

APPLICATION USAGE
Applications using this function may be subject to priority inversion, as discussed in the Base
Definitions volume of IEEE Std 1003.1-200x, Section 3.285, Priority Inversion.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_rwlock_destroy(), pthread_rwlock_rdlock(), pthread_rwlock_timedwrlock(),
pthread_rwlock_tryrdlock(), pthread_rwlock_trywrlock(), pthread_rwlock_unlock(),
pthread_rwlock_wrlock(), the Base Definitions volume of IEEE Std 1003.1-200x, Section 4.10,
Memory Synchronization, <pthread.h>, <time.h>

CHANGE HISTORY
First released in Issue 6. Derived from IEEE Std 1003.1j-2000.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/102 is applied, updating the ERRORS
section so that the [EDEADLK] error includes detection of a deadlock condition.

Issue 7
The pthread_rwlock_timedrdlock() function is moved from the Timeouts option to the Base.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1187

37102

37103

37104

37105

37106

37107

37108

37109

37110

37111

37112

37113

37114

37115

37116

37117

37118

37119

37120

37121

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

pthread_rwlock_timedwrlock() System Interfaces

NAME
pthread_rwlock_timedwrlock — lock a read-write lock for writing

SYNOPSIS
#include <pthread.h>
#include <time.h>

int pthread_rwlock_timedwrlock(pthread_rwlock_t *restrict rwlock,
const struct timespec *restrict abs_timeout);

DESCRIPTION
The pthread_rwlock_timedwrlock() function shall apply a write lock to the read-write lock
referenced by rwlock as in the pthread_rwlock_wrlock() function. However, if the lock cannot be
acquired without waiting for other threads to unlock the lock, this wait shall be terminated
when the specified timeout expires. The timeout shall expire when the absolute time specified
by abs_timeout passes, as measured by the clock on which timeouts are based (that is, when the
value of that clock equals or exceeds abs_timeout), or if the absolute time specified by abs_timeout
has already been passed at the time of the call.

The timeout shall be based on the CLOCK_REALTIME clock. The resolution of the timeout shall
be the resolution of the CLOCK_REALTIME clock. The timespec data type is defined in the
<time.h> header. Under no circumstances shall the function fail with a timeout if the lock can be
acquired immediately. The validity of the abs_timeout parameter need not be checked if the lock
can be immediately acquired.

If a signal that causes a signal handler to be executed is delivered to a thread blocked on a read-
write lock via a call to pthread_rwlock_timedwrlock(), upon return from the signal handler the
thread shall resume waiting for the lock as if it was not interrupted.

The calling thread may deadlock if at the time the call is made it holds the read-write lock. The
results are undefined if this function is called with an uninitialized read-write lock.

RETURN VALUE
The pthread_rwlock_timedwrlock() function shall return zero if the lock for writing on the read-
write lock object referenced by rwlock is acquired. Otherwise, an error number shall be returned
to indicate the error.

ERRORS
The pthread_rwlock_timedwrlock() function shall fail if:

[ETIMEDOUT] The lock could not be acquired before the specified timeout expired.

The pthread_rwlock_timedwrlock() function may fail if:

[EDEADLK] A deadlock condition was detected or the calling thread already holds the
rwlock.

[EINVAL] The value specified by rwlock does not refer to an initialized read-write lock
object, or the abs_timeout nanosecond value is less than zero or greater than or
equal to 1 000 million.

This function shall not return an error code of [EINTR].

1188 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

37122

37123

37124

37125

37126

37127

37128

37129

37130

37131

37132

37133

37134

37135

37136

37137

37138

37139

37140

37141

37142

37143

37144

37145

37146

37147

37148

37149

37150

37151

37152

37153

37154

37155

37156

37157

37158

37159

37160

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces pthread_rwlock_timedwrlock()

EXAMPLES
None.

APPLICATION USAGE
Applications using this function may be subject to priority inversion, as discussed in the Base
Definitions volume of IEEE Std 1003.1-200x, Section 3.285, Priority Inversion.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_rwlock_destroy(), pthread_rwlock_rdlock(), pthread_rwlock_timedrdlock(),
pthread_rwlock_tryrdlock(), pthread_rwlock_trywrlock(), pthread_rwlock_unlock(),
pthread_rwlock_wrlock(), the Base Definitions volume of IEEE Std 1003.1-200x, Section 4.10,
Memory Synchronization, <pthread.h>, <time.h>

CHANGE HISTORY
First released in Issue 6. Derived from IEEE Std 1003.1j-2000.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/103 is applied, updating the ERRORS
section so that the [EDEADLK] error includes detection of a deadlock condition.

Issue 7
The pthread_rwlock_timedwrlock() function is moved from the Timeouts option to the Base.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1189

37161

37162

37163

37164

37165

37166

37167

37168

37169

37170

37171

37172

37173

37174

37175

37176

37177

37178

37179

37180

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

pthread_rwlock_tryrdlock() System Interfaces

NAME
pthread_rwlock_tryrdlock — lock a read-write lock object for reading

SYNOPSIS
#include <pthread.h>

int pthread_rwlock_tryrdlock(pthread_rwlock_t *rwlock);

DESCRIPTION
Refer to pthread_rwlock_rdlock().

1190 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

37181

37182

37183

37184

37185

37186

37187

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces pthread_rwlock_trywrlock()

NAME
pthread_rwlock_trywrlock, pthread_rwlock_wrlock — lock a read-write lock object for writing

SYNOPSIS
#include <pthread.h>

int pthread_rwlock_trywrlock(pthread_rwlock_t *rwlock);
int pthread_rwlock_wrlock(pthread_rwlock_t *rwlock);

DESCRIPTION
The pthread_rwlock_trywrlock() function shall apply a write lock like the pthread_rwlock_wrlock()
function, with the exception that the function shall fail if any thread currently holds rwlock (for
reading or writing).

The pthread_rwlock_wrlock() function shall apply a write lock to the read-write lock referenced by
rwlock. The calling thread acquires the write lock if no other thread (reader or writer) holds the
read-write lock rwlock. Otherwise, the thread shall block until it can acquire the lock. The calling
thread may deadlock if at the time the call is made it holds the read-write lock (whether a read
or write lock).

Implementations may favor writers over readers to avoid writer starvation.

Results are undefined if any of these functions are called with an uninitialized read-write lock.

If a signal is delivered to a thread waiting for a read-write lock for writing, upon return from the
signal handler the thread resumes waiting for the read-write lock for writing as if it was not
interrupted.

RETURN VALUE
The pthread_rwlock_trywrlock() function shall return zero if the lock for writing on the read-write
lock object referenced by rwlock is acquired. Otherwise, an error number shall be returned to
indicate the error.

If successful, the pthread_rwlock_wrlock() function shall return zero; otherwise, an error number
shall be returned to indicate the error.

ERRORS
The pthread_rwlock_trywrlock() function shall fail if:

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

pthread_rwlock_trywrlock() System Interfaces

EXAMPLES
None.

APPLICATION USAGE
Applications using these functions may be subject to priority inversion, as discussed in the Base
Definitions volume of IEEE Std 1003.1-200x, Section 3.285, Priority Inversion.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_rwlock_destroy(), pthread_rwlock_rdlock(), pthread_rwlock_timedrdlock(),
pthread_rwlock_timedwrlock(), pthread_rwlock_tryrdlock(), pthread_rwlock_unlock(), the Base
Definitions volume of IEEE Std 1003.1-200x, Section 4.10, Memory Synchronization, <pthread.h>

CHANGE HISTORY
First released in Issue 5.

Issue 6
The following changes are made for alignment with IEEE Std 1003.1j-2000:

• The margin code in the SYNOPSIS is changed to THR to indicate that the functionality is
now part of the Threads option (previously it was part of the Read-Write Locks option in
IEEE Std 1003.1j-2000 and also part of the XSI extension).

• The [EDEADLK] error is deleted as a pthread_rwlock_trywrlock() error.

• The SEE ALSO section is updated.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/104 is applied, updating the ERRORS
section so that the [EDEADLK] error includes detection of a deadlock condition.

Issue 7
The pthread_rwlock_trywrlock() and pthread_rwlock_wrlock() functions are moved from the
Threads option to the Base.

1192 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

37225

37226

37227

37228

37229

37230

37231

37232

37233

37234

37235

37236

37237

37238

37239

37240

37241

37242

37243

37244

37245

37246

37247

37248

37249

37250

37251

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces pthread_rwlock_unlock()

NAME
pthread_rwlock_unlock — unlock a read-write lock object

SYNOPSIS
#include <pthread.h>

int pthread_rwlock_unlock(pthread_rwlock_t *rwlock);

DESCRIPTION
The pthread_rwlock_unlock() function shall release a lock held on the read-write lock object
referenced by rwlock. Results are undefined if the read-write lock rwlock is not held by the
calling thread.

If this function is called to release a read lock from the read-write lock object and there are other
read locks currently held on this read-write lock object, the read-write lock object remains in the
read locked state. If this function releases the last read lock for this read-write lock object, the
read-write lock object shall be put in the unlocked state with no owners.

If this function is called to release a write lock for this read-write lock object, the read-write lock
object shall be put in the unlocked state.

If there are threads blocked on the lock when it becomes available, the scheduling policy shall
TPS determine which thread(s) shall acquire the lock. If the Thread Execution Scheduling option is

supported, when threads executing with the scheduling policies SCHED_FIFO, SCHED_RR, or
SCHED_SPORADIC are waiting on the lock, they shall acquire the lock in priority order when
the lock becomes available. For equal priority threads, write locks shall take precedence over
read locks. If the Thread Execution Scheduling option is not supported, it is implementation-
defined whether write locks take precedence over read locks.

Results are undefined if any of these functions are called with an uninitialized read-write lock.

RETURN VALUE
If successful, the pthread_rwlock_unlock() function shall return zero; otherwise, an error number
shall be returned to indicate the error.

ERRORS
The pthread_rwlock_unlock() function may fail if:

[EINVAL] The value specified by rwlock does not refer to an initialized read-write lock
object.

[EPERM] The current thread does not hold a lock on the read-write lock.

The pthread_rwlock_unlock() function shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1193

37252

37253

37254

37255

37256

37257

37258

37259

37260

37261

37262

37263

37264

37265

37266

37267

37268

37269

37270

37271

37272

37273

37274

37275

37276

37277

37278

37279

37280

37281

37282

37283

37284

37285

37286

37287

37288

37289

37290

37291

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

pthread_rwlock_unlock() System Interfaces

SEE ALSO
pthread_rwlock_destroy(), pthread_rwlock_rdlock(), pthread_rwlock_timedrdlock(),
pthread_rwlock_timedwrlock(), pthread_rwlock_tryrdlock(), pthread_rwlock_trywrlock(),
pthread_rwlock_wrlock(), the Base Definitions volume of IEEE Std 1003.1-200x, Section 4.10,
Memory Synchronization, <pthread.h>

CHANGE HISTORY
First released in Issue 5.

Issue 6
The following changes are made for alignment with IEEE Std 1003.1j-2000:

• The margin code in the SYNOPSIS is changed to THR to indicate that the functionality is
now part of the Threads option (previously it was part of the Read-Write Locks option in
IEEE Std 1003.1j-2000 and also part of the XSI extension).

• The DESCRIPTION is updated as follows:

— The conditions under which writers have precedence over readers are specified.

— The concept of read-write lock owner is deleted.

• The SEE ALSO section is updated.

Issue 7
The pthread_rwlock_unlock() function is moved from the Threads option to the Base.

1194 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

37292

37293

37294

37295

37296

37297

37298

37299

37300

37301

37302

37303

37304

37305

37306

37307

37308

37309

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces pthread_rwlock_wrlock()

NAME
pthread_rwlock_wrlock — lock a read-write lock object for writing

SYNOPSIS
#include <pthread.h>

int pthread_rwlock_wrlock(pthread_rwlock_t *rwlock);

DESCRIPTION
Refer to pthread_rwlock_trywrlock().

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1195

37310

37311

37312

37313

37314

37315

37316

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

pthread_rwlockattr_destroy() System Interfaces

NAME
pthread_rwlockattr_destroy, pthread_rwlockattr_init — destroy and initialize the read-write
lock attributes object

SYNOPSIS
#include <pthread.h>

int pthread_rwlockattr_destroy(pthread_rwlockattr_t *attr);
int pthread_rwlockattr_init(pthread_rwlockattr_t *attr);

DESCRIPTION
The pthread_rwlockattr_destroy() function shall destroy a read-write lock attributes object. A
destroyed attr attributes object can be reinitialized using pthread_rwlockattr_init(); the results of
otherwise referencing the object after it has been destroyed are undefined. An implementation
may cause pthread_rwlockattr_destroy() to set the object referenced by attr to an invalid value.

The pthread_rwlockattr_init() function shall initialize a read-write lock attributes object attr with
the default value for all of the attributes defined by the implementation.

Results are undefined if pthread_rwlockattr_init() is called specifying an already initialized attr
attributes object.

After a read-write lock attributes object has been used to initialize one or more read-write locks,
any function affecting the attributes object (including destruction) shall not affect any previously
initialized read-write locks.

RETURN VALUE
If successful, the pthread_rwlockattr_destroy() and pthread_rwlockattr_init() functions shall return
zero; otherwise, an error number shall be returned to indicate the error.

ERRORS
The pthread_rwlockattr_destroy() function may fail if:

[EINVAL] The value specified by attr is invalid.

The pthread_rwlockattr_init() function shall fail if:

[ENOMEM] Insufficient memory exists to initialize the read-write lock attributes object.

These functions shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_rwlock_destroy(), pthread_rwlockattr_getpshared(), pthread_rwlockattr_setpshared(), the Base
Definitions volume of IEEE Std 1003.1-200x, <pthread.h>

1196 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

37317

37318

37319

37320

37321

37322

37323

37324

37325

37326

37327

37328

37329

37330

37331

37332

37333

37334

37335

37336

37337

37338

37339

37340

37341

37342

37343

37344

37345

37346

37347

37348

37349

37350

37351

37352

37353

37354

37355

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces pthread_rwlockattr_destroy()

CHANGE HISTORY
First released in Issue 5.

Issue 6
The following changes are made for alignment with IEEE Std 1003.1j-2000:

• The margin code in the SYNOPSIS is changed to THR to indicate that the functionality is
now part of the Threads option (previously it was part of the Read-Write Locks option in
IEEE Std 1003.1j-2000 and also part of the XSI extension).

• The SEE ALSO section is updated.

Issue 7
The pthread_rwlockattr_destroy() and pthread_rwlockattr_init() functions are moved from the
Threads option to the Base.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1197

37356

37357

37358

37359

37360

37361

37362

37363

37364

37365

37366

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

pthread_rwlockattr_getpshared() System Interfaces

NAME
pthread_rwlockattr_getpshared, pthread_rwlockattr_setpshared — get and set the process-
shared attribute of the read-write lock attributes object

SYNOPSIS
TSH #include <pthread.h>

int pthread_rwlockattr_getpshared(const pthread_rwlockattr_t *
restrict attr, i nt *restrict pshared);

int pthread_rwlockattr_setpshared(pthread_rwlockattr_t *attr,
int pshared);

DESCRIPTION
The pthread_rwlockattr_getpshared() function shall obtain the value of the process-shared attribute
from the initialized attributes object referenced by attr. The pthread_rwlockattr_setpshared()
function shall set the process-shared attribute in an initialized attributes object referenced by attr.

The process-shared attribute shall be set to PTHREAD_PROCESS_SHARED to permit a read-write
lock to be operated upon by any thread that has access to the memory where the read-write lock
is allocated, even if the read-write lock is allocated in memory that is shared by multiple
processes. If the process-shared attribute is PTHREAD_PROCESS_PRIVATE, the read-write lock
shall only be operated upon by threads created within the same process as the thread that
initialized the read-write lock; if threads of differing processes attempt to operate on such a
read-write lock, the behavior is undefined. The default value of the process-shared attribute shall
be PTHREAD_PROCESS_PRIVATE.

Additional attributes, their default values, and the names of the associated functions to get and
set those attribute values are implementation-defined.

RETURN VALUE
Upon successful completion, the pthread_rwlockattr_getpshared() function shall return zero and
store the value of the process-shared attribute of attr into the object referenced by the pshared
parameter. Otherwise, an error number shall be returned to indicate the error.

If successful, the pthread_rwlockattr_setpshared() function shall return zero; otherwise, an error
number shall be returned to indicate the error.

ERRORS
The pthread_rwlockattr_getpshared() and pthread_rwlockattr_setpshared() functions may fail if:

[EINVAL] The value specified by attr is invalid.

The pthread_rwlockattr_setpshared() function may fail if:

[EINVAL] The new value specified for the attribute is outside the range of legal values
for that attribute.

These functions shall not return an error code of [EINTR].

1198 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

37367

37368

37369

37370

37371

37372

37373

37374

37375

37376

37377

37378

37379

37380

37381

37382

37383

37384

37385

37386

37387

37388

37389

37390

37391

37392

37393

37394

37395

37396

37397

37398

37399

37400

37401

37402

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces pthread_rwlockattr_getpshared()

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_rwlock_destroy(), pthread_rwlockattr_destroy(), pthread_rwlockattr_init(), the Base
Definitions volume of IEEE Std 1003.1-200x, <pthread.h>

CHANGE HISTORY
First released in Issue 5.

Issue 6
The following changes are made for alignment with IEEE Std 1003.1j-2000:

• The margin code in the SYNOPSIS is changed to THR TSH to indicate that the
functionality is now part of the Threads option (previously it was part of the Read-Write
Locks option in IEEE Std 1003.1j-2000 and also part of the XSI extension).

• The DESCRIPTION notes that additional attributes are implementation-defined.

• The SEE ALSO section is updated.

The restrict keyword is added to the pthread_rwlockattr_getpshared() prototype for alignment
with the ISO/IEC 9899: 1999 standard.

Issue 7
The pthread_rwlockattr_getpshared() and pthread_rwlockattr_setpshared() functions are moved from
the Threads option.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1199

37403

37404

37405

37406

37407

37408

37409

37410

37411

37412

37413

37414

37415

37416

37417

37418

37419

37420

37421

37422

37423

37424

37425

37426

37427

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

pthread_rwlockattr_init() System Interfaces

NAME
pthread_rwlockattr_init — initialize the read-write lock attributes object

SYNOPSIS
#include <pthread.h>

int pthread_rwlockattr_init(pthread_rwlockattr_t *attr);

DESCRIPTION
Refer to pthread_rwlockattr_destroy().

1200 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

37428

37429

37430

37431

37432

37433

37434

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces pthread_rwlockattr_setpshared()

NAME
pthread_rwlockattr_setpshared — set the process-shared attribute of the read-write lock
attributes object

SYNOPSIS
TSH #include <pthread.h>

int pthread_rwlockattr_setpshared(pthread_rwlockattr_t *attr,
int pshared);

DESCRIPTION
Refer to pthread_rwlockattr_getpshared().

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1201

37435

37436

37437

37438

37439

37440

37441

37442

37443

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

pthread_self() System Interfaces

NAME
pthread_self — get the calling thread ID

SYNOPSIS
#include <pthread.h>

pthread_t pthread_self(void);

DESCRIPTION
The pthread_self() function shall return the thread ID of the calling thread.

RETURN VALUE
The pthread_self() function shall always be successful and no return value is reserved to indicate
an error.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
The pthread_self() function provides a capability similar to the getpid() function for processes
and the rationale is the same: the creation call does not provide the thread ID to the created
thread.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_create(), pthread_equal(), the Base Definitions volume of IEEE Std 1003.1-200x,
<pthread.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Threads Extension.

Issue 6
The pthread_self() function is marked as part of the Threads option.

Issue 7
Austin Group Interpretation 1003.1-2001 #063 is applied, updating the RETURN VALUE section.

The pthread_self() function is moved from the Threads option to the Base.

1202 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

37444

37445

37446

37447

37448

37449

37450

37451

37452

37453

37454

37455

37456

37457

37458

37459

37460

37461

37462

37463

37464

37465

37466

37467

37468

37469

37470

37471

37472

37473

37474

37475

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces pthread_setcancelstate()

NAME
pthread_setcancelstate, pthread_setcanceltype, pthread_testcancel — set cancelability state

SYNOPSIS
#include <pthread.h>

int pthread_setcancelstate(int state, i nt * oldstate);
int pthread_setcanceltype(int type, i nt * oldtype);
void pthread_testcancel(void);

DESCRIPTION
The pthread_setcancelstate() function shall atomically both set the calling thread’s cancelability
state to the indicated state and return the previous cancelability state at the location referenced
by oldstate. Legal values for state are PTHREAD_CANCEL_ENABLE and
PTHREAD_CANCEL_DISABLE.

The pthread_setcanceltype() function shall atomically both set the calling thread’s cancelability
type to the indicated type and return the previous cancelability type at the location referenced by
oldtype. Legal values for type are PTHREAD_CANCEL_DEFERRED and
PTHREAD_CANCEL_ASYNCHRONOUS.

The cancelability state and type of any newly created threads, including the thread in which
main() was first invoked, shall be PTHREAD_CANCEL_ENABLE and
PTHREAD_CANCEL_DEFERRED respectively.

The pthread_testcancel() function shall create a cancellation point in the calling thread. The
pthread_testcancel() function shall have no effect if cancelability is disabled.

RETURN VALUE
If successful, the pthread_setcancelstate() and pthread_setcanceltype() functions shall return zero;
otherwise, an error number shall be returned to indicate the error.

ERRORS
The pthread_setcancelstate() function may fail if:

[EINVAL] The specified state is not PTHREAD_CANCEL_ENABLE or
PTHREAD_CANCEL_DISABLE.

The pthread_setcanceltype() function may fail if:

[EINVAL] The specified type is not PTHREAD_CANCEL_DEFERRED or
PTHREAD_CANCEL_ASYNCHRONOUS.

These functions shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
The pthread_setcancelstate() and pthread_setcanceltype() functions control the points at which a
thread may be asynchronously canceled. For cancellation control to be usable in modular
fashion, some rules need to be followed.

An object can be considered to be a generalization of a procedure. It is a set of procedures and
global variables written as a unit and called by clients not known by the object. Objects may
depend on other objects.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1203

37476

37477

37478

37479

37480

37481

37482

37483

37484

37485

37486

37487

37488

37489

37490

37491

37492

37493

37494

37495

37496

37497

37498

37499

37500

37501

37502

37503

37504

37505

37506

37507

37508

37509

37510

37511

37512

37513

37514

37515

37516

37517

37518

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

pthread_setcancelstate() System Interfaces

First, cancelability should only be disabled on entry to an object, never explicitly enabled. On
exit from an object, the cancelability state should always be restored to its value on entry to the
object.

This follows from a modularity argument: if the client of an object (or the client of an object that
uses that object) has disabled cancelability, it is because the client does not want to be concerned
about cleaning up if the thread is canceled while executing some sequence of actions. If an object
is called in such a state and it enables cancelability and a cancellation request is pending for that
thread, then the thread is canceled, contrary to the wish of the client that disabled.

Second, the cancelability type may be explicitly set to either deferred or asynchronous upon entry
to an object. But as with the cancelability state, on exit from an object the cancelability type
should always be restored to its value on entry to the object.

Finally, only functions that are cancel-safe may be called from a thread that is asynchronously
cancelable.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_cancel(), the Base Definitions volume of IEEE Std 1003.1-200x, <pthread.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Threads Extension.

Issue 6
The pthread_setcancelstate(), pthread_setcanceltype(), and pthread_testcancel() functions are marked
as part of the Threads option.

Issue 7
The pthread_setcancelstate(), pthread_setcanceltype(), and pthread_testcancel() functions are moved
from the Threads option to the Base.

1204 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

37519

37520

37521

37522

37523

37524

37525

37526

37527

37528

37529

37530

37531

37532

37533

37534

37535

37536

37537

37538

37539

37540

37541

37542

37543

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces pthread_setconcurrency()

NAME
pthread_setconcurrency — set the level of concurrency

SYNOPSIS
OB XSI #include <pthread.h>

int pthread_setconcurrency(int new_level);

DESCRIPTION
Refer to pthread_getconcurrency().

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1205

37544

37545

37546

37547

37548

37549

37550

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

pthread_setschedparam() System Interfaces

NAME
pthread_setschedparam — dynamic thread scheduling parameters access (REALTIME
THREADS)

SYNOPSIS
TPS #include <pthread.h>

int pthread_setschedparam(pthread_t thread, i nt policy,
const struct sched_param * param);

DESCRIPTION
Refer to pthread_getschedparam().

1206 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

37551

37552

37553

37554

37555

37556

37557

37558

37559

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces pthread_setschedprio()

NAME
pthread_setschedprio — dynamic thread scheduling parameters access (REALTIME
THREADS)

SYNOPSIS
TPS #include <pthread.h>

int pthread_setschedprio(pthread_t thread, i nt prio);

DESCRIPTION
The pthread_setschedprio() function shall set the scheduling priority for the thread whose thread
ID is given by thread to the value given by prio. See Scheduling Policies for a description on how
this function call affects the ordering of the thread in the thread list for its new priority.

If the pthread_setschedprio() function fails, the scheduling priority of the target thread shall not be
changed.

RETURN VALUE
If successful, the pthread_setschedprio() function shall return zero; otherwise, an error number
shall be returned to indicate the error.

ERRORS
The pthread_setschedprio() function may fail if:

[EINVAL] The value of prio is invalid for the scheduling policy of the specified thread.

[ENOTSUP] An attempt was made to set the priority to an unsupported value.

[EPERM] The caller does not have the appropriate permission to set the scheduling
priority of the specified thread.

[ESRCH] The value specified by thread does not refer to an existing thread.

The pthread_setschedprio() function shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
The pthread_setschedprio() function provides a way for an application to temporarily raise its
priority and then lower it again, without having the undesired side effect of yielding to other
threads of the same priority. This is necessary if the application is to implement its own
strategies for bounding priority inversion, such as priority inheritance or priority ceilings. This
capability is especially important if the implementation does not support the Thread Priority
Protection or Thread Priority Inheritance options, but even if those options are supported it is
needed if the application is to bound priority inheritance for other resources, such as
semaphores.

The standard developers considered that while it might be preferable conceptually to solve this
problem by modifying the specification of pthread_setschedparam(), it was too late to make such a
change, as there may be implementations that would need to be changed. Therefore, this new
function was introduced.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1207

37560

37561

37562

37563

37564

37565

37566

37567

37568

37569

37570

37571

37572

37573

37574

37575

37576

37577

37578

37579

37580

37581

37582

37583

37584

37585

37586

37587

37588

37589

37590

37591

37592

37593

37594

37595

37596

37597

37598

37599

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

pthread_setschedprio() System Interfaces

FUTURE DIRECTIONS
None.

SEE ALSO
Scheduling Policies (on page 44), pthread_getschedparam(), the Base Definitions volume of
IEEE Std 1003.1-200x, <pthread.h>

CHANGE HISTORY
First released in Issue 6. Included as a response to IEEE PASC Interpretation 1003.1 #96.

Issue 7
Austin Group Interpretation 1003.1-2001 #069 is applied, updating the [EPERM] error.

The pthread_setschedprio() function is moved from the Threads option.

1208 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

37600

37601

37602

37603

37604

37605

37606

37607

37608

37609

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces pthread_setspecific()

NAME
pthread_setspecific — thread-specific data management

SYNOPSIS
#include <pthread.h>

int pthread_setspecific(pthread_key_t key, c onst void * value);

DESCRIPTION
Refer to pthread_getspecific().

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1209

37610

37611

37612

37613

37614

37615

37616

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

pthread_sigmask() System Interfaces

NAME
pthread_sigmask, sigprocmask — examine and change blocked signals

SYNOPSIS
CX #include <signal.h>

int pthread_sigmask(int how, c onst sigset_t *restrict set,
sigset_t *restrict oset);

int sigprocmask(int how, c onst sigset_t *restrict set,
sigset_t *restrict oset);

DESCRIPTION
The pthread_sigmask() function shall examine or change (or both) the calling thread’s signal
mask, regardless of the number of threads in the process. The function shall be equivalent to
sigprocmask(), without the restriction that the call be made in a single-threaded process.

In a single-threaded process, the sigprocmask() function shall examine or change (or both) the
signal mask of the calling thread.

If the argument set is not a null pointer, it points to a set of signals to be used to change the
currently blocked set.

The argument how indicates the way in which the set is changed, and the application shall
ensure it consists of one of the following values:

SIG_BLOCK The resulting set shall be the union of the current set and the signal set
pointed to by set.

SIG_SETMASK The resulting set shall be the signal set pointed to by set.

SIG_UNBLOCK The resulting set shall be the intersection of the current set and the
complement of the signal set pointed to by set.

If the argument oset is not a null pointer, the previous mask shall be stored in the location
pointed to by oset. If set is a null pointer, the value of the argument how is not significant and the
thread’s signal mask shall be unchanged; thus the call can be used to enquire about currently
blocked signals.

If there are any pending unblocked signals after the call to sigprocmask(), at least one of those
signals shall be delivered before the call to sigprocmask() returns.

It is not possible to block those signals which cannot be ignored. This shall be enforced by the
system without causing an error to be indicated.

If any of the SIGFPE, SIGILL, SIGSEGV, or SIGBUS signals are generated while they are blocked,
the result is undefined, unless the signal was generated by the kill() function, the sigqueue()
function, or the raise() function.

If sigprocmask() fails, the thread’s signal mask shall not be changed.

The use of the sigprocmask() function is unspecified in a multi-threaded process.

RETURN VALUE
Upon successful completion pthread_sigmask() shall return 0; otherwise, it shall return the
corresponding error number.

Upon successful completion, sigprocmask() shall return 0; otherwise, −1 shall be returned, errno
shall be set to indicate the error, and the signal mask of the process shall be unchanged.

1210 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

37617

37618

37619

37620

37621

37622

37623

37624

37625

37626

37627

37628

37629

37630

37631

37632

37633

37634

37635

37636

37637

37638

37639

37640

37641

37642

37643

37644

37645

37646

37647

37648

37649

37650

37651

37652

37653

37654

37655

37656

37657

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces pthread_sigmask()

ERRORS
The pthread_sigmask() and sigprocmask() functions shall fail if:

[EINVAL] The value of the how argument is not equal to one of the defined values.

The pthread_sigmask() function shall not return an error code of [EINTR].

EXAMPLES

Signalling in a Multi-Threaded Process

This example shows the use of pthread_sigmask() in order to deal with signals in a multi-
threaded process. It provides a fairly general framework that could be easily adapted/extended.

#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>
#include <signal.h>
#include <string.h>
#include <errno.h>
...

static sigset_t signal_mask; /* signals to block */

int main (int argc, char *argv[])
{

pthread_t sig_thr_id; /* signal handler thread ID */
int rc; /* return code */

sigemptyset (&signal_mask);
sigaddset (&signal_mask, SIGINT);
sigaddset (&signal_mask, SIGTERM);
rc = pthread_sigmask (SIG_BLOCK, &signal_mask, NULL);
if (rc != 0) {

/* handle error */
...

}
/* any newly created threads inherit the signal mask */

rc = pthread_create (&sig_thr_id, NULL, signal_thread, NULL);
if (rc != 0) {

/* handle error */
...

}

/* APPLICATION CODE */
...

}

void *signal_thread (void *arg)
{

int sig_caught; /* signal caught */
int rc; /* returned code */

rc = sigwait (&signal_mask, &sig_caught);
if (rc != 0) {

/* handle error */
}
switch (sig_caught)
{

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1211

37658

37659

37660

37661

37662

37663

37664

37665

37666

37667

37668

37669

37670

37671

37672

37673

37674

37675

37676

37677

37678

37679

37680

37681

37682

37683

37684

37685

37686

37687

37688

37689

37690

37691

37692

37693

37694

37695

37696

37697

37698

37699

37700

37701

37702

37703

37704

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

pthread_sigmask() System Interfaces

case SIGINT: /* process SIGINT */
...
break;

case SIGTERM: /* process SIGTERM */
...
break;

default: /* should normally not happen */
fprintf (stderr, "\nUnexpected signal %d\n", sig_caught);
break;

}
}

APPLICATION USAGE
None.

RATIONALE
When a thread’s signal mask is changed in a signal-catching function that is installed by
sigaction(), the restoration of the signal mask on return from the signal-catching function
overrides that change (see sigaction()). If the signal-catching function was installed with
signal(), it is unspecified whether this occurs.

See kill() for a discussion of the requirement on delivery of signals.

FUTURE DIRECTIONS
None.

SEE ALSO
exec , sigaction(), sigaddset(), sigdelset(), sigemptyset(), sigfillset(), sigismember(), sigpending(),
sigqueue(), sigsuspend(), the Base Definitions volume of IEEE Std 1003.1-200x, <signal.h>

CHANGE HISTORY
First released in Issue 3. Included for alignment with the POSIX.1-1988 standard.

Issue 5
The DESCRIPTION is updated for alignment with the POSIX Threads Extension.

The pthread_sigmask() function is added for alignment with the POSIX Threads Extension.

Issue 6
The pthread_sigmask() function is marked as part of the Threads option.

The SYNOPSIS for sigprocmask() is marked as a CX extension to note that the presence of this
function in the <signal.h> header is an extension to the ISO C standard.

The following changes are made for alignment with the ISO POSIX-1: 1996 standard:

• The DESCRIPTION is updated to explicitly state the functions which may generate the
signal.

The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

The restrict keyword is added to the pthread_sigmask() and sigprocmask() prototypes for
alignment with the ISO/IEC 9899: 1999 standard.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/105 is applied, updating ‘‘process’ signal
mask’’ to ‘‘thread’s signal mask’’ in the DESCRIPTION and RATIONALE sections.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/106 is applied, adding the example to the
EXAMPLES section.

1212 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

37705

37706

37707

37708

37709

37710

37711

37712

37713

37714

37715

37716

37717

37718

37719

37720

37721

37722

37723

37724

37725

37726

37727

37728

37729

37730

37731

37732

37733

37734

37735

37736

37737

37738

37739

37740

37741

37742

37743

37744

37745

37746

37747

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces pthread_sigmask()

Issue 7
The pthread_sigmask() function is moved from the Threads option to the Base.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1213

37748

37749

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

pthread_spin_destroy() System Interfaces

NAME
pthread_spin_destroy, pthread_spin_init — destroy or initialize a spin lock object

SYNOPSIS
#include <pthread.h>

int pthread_spin_destroy(pthread_spinlock_t * lock);
int pthread_spin_init(pthread_spinlock_t * lock, i nt pshared);

DESCRIPTION
The pthread_spin_destroy() function shall destroy the spin lock referenced by lock and release any
resources used by the lock. The effect of subsequent use of the lock is undefined until the lock is
reinitialized by another call to pthread_spin_init(). The results are undefined if
pthread_spin_destroy() is called when a thread holds the lock, or if this function is called with an
uninitialized thread spin lock.

The pthread_spin_init() function shall allocate any resources required to use the spin lock
referenced by lock and initialize the lock to an unlocked state.

TSH If the Thread Process-Shared Synchronization option is supported and the value of pshared is
PTHREAD_PROCESS_SHARED, the implementation shall permit the spin lock to be operated
upon by any thread that has access to the memory where the spin lock is allocated, even if it is
allocated in memory that is shared by multiple processes.

If the Thread Process-Shared Synchronization option is supported and the value of pshared is
PTHREAD_PROCESS_PRIVATE, or if the option is not supported, the spin lock shall only be

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces pthread_spin_destroy()

[ENOMEM] Insufficient memory exists to initialize the lock.

These functions shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_spin_lock(), pthread_spin_unlock(), the Base Definitions volume of IEEE Std 1003.1-200x,
<pthread.h>

CHANGE HISTORY
First released in Issue 6. Derived from IEEE Std 1003.1j-2000.

In the SYNOPSIS, the inclusion of <sys/types.h> is no longer required.

Issue 7
The pthread_spin_destroy() and pthread_spin_init() functions are moved from the Spin Locks
option to the Base.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1215

37791

37792

37793

37794

37795

37796

37797

37798

37799

37800

37801

37802

37803

37804

37805

37806

37807

37808

37809

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

pthread_spin_lock() System Interfaces

NAME
pthread_spin_lock, pthread_spin_trylock — lock a spin lock object

SYNOPSIS
#include <pthread.h>

int pthread_spin_lock(pthread_spinlock_t * lock);
int pthread_spin_trylock(pthread_spinlock_t * lock);

DESCRIPTION
The pthread_spin_lock() function shall lock the spin lock referenced by lock. The calling thread
shall acquire the lock if it is not held by another thread. Otherwise, the thread shall spin (that is,
shall not return from the pthread_spin_lock() call) until the lock becomes available. The results are
undefined if the calling thread holds the lock at the time the call is made. The
pthread_spin_trylock() function shall lock the spin lock referenced by lock if it is not held by any
thread. Otherwise, the function shall fail.

The results are undefined if any of these functions is called with an uninitialized spin lock.

RETURN VALUE
Upon successful completion, these functions shall return zero; otherwise, an error number shall
be returned to indicate the error.

ERRORS
These functions may fail if:

[EINVAL] The value specified by lock does not refer to an initialized spin lock object.

The pthread_spin_lock() function may fail if:

[EDEADLK] A deadlock condition was detected or the calling thread already holds the
lock.

The pthread_spin_trylock() function shall fail if:

[EBUSY] A thread currently holds the lock.

These functions shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
Applications using this function may be subject to priority inversion, as discussed in the Base
Definitions volume of IEEE Std 1003.1-200x, Section 3.285, Priority Inversion.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_spin_destroy(), pthread_spin_unlock(), the Base Definitions volume of
IEEE Std 1003.1-200x, Section 4.10, Memory Synchronization, <pthread.h>

CHANGE HISTORY
First released in Issue 6. Derived from IEEE Std 1003.1j-2000.

In the SYNOPSIS, the inclusion of <sys/types.h> is no longer required.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/107 is applied, updating the ERRORS

1216 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

37810

37811

37812

37813

37814

37815

37816

37817

37818

37819

37820

37821

37822

37823

37824

37825

37826

37827

37828

37829

37830

37831

37832

37833

37834

37835

37836

37837

37838

37839

37840

37841

37842

37843

37844

37845

37846

37847

37848

37849

37850

37851

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces pthread_spin_lock()

section so that the [EDEADLK] error includes detection of a deadlock condition.

Issue 7
The pthread_spin_lock() and pthread_spin_trylock() functions are moved from the Spin Locks
option to the Base.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1217

37852

37853

37854

37855

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

pthread_spin_unlock() System Interfaces

NAME
pthread_spin_unlock — unlock a spin lock object

SYNOPSIS
#include <pthread.h>

int pthread_spin_unlock(pthread_spinlock_t * lock);

DESCRIPTION
The pthread_spin_unlock() function shall release the spin lock referenced by lock which was
locked via the pthread_spin_lock() or pthread_spin_trylock() functions. The results are undefined if
the lock is not held by the calling thread. If there are threads spinning on the lock when
pthread_spin_unlock() is called, the lock becomes available and an unspecified spinning thread
shall acquire the lock.

The results are undefined if this function is called with an uninitialized thread spin lock.

RETURN VALUE
Upon successful completion, the pthread_spin_unlock() function shall return zero; otherwise, an
error number shall be returned to indicate the error.

ERRORS
The pthread_spin_unlock() function may fail if:

[EINVAL] An invalid argument was specified.

[EPERM] The calling thread does not hold the lock.

This function shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_spin_destroy(), pthread_spin_lock(), the Base Definitions volume of IEEE Std 1003.1-200x,
Section 4.10, Memory Synchronization, <pthread.h>

CHANGE HISTORY
First released in Issue 6. Derived from IEEE Std 1003.1j-2000.

In the SYNOPSIS, the inclusion of <sys/types.h> is no longer required.

Issue 7
The pthread_spin_unlock() function is moved from the Spin Locks option to the Base.

1218 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

37856

37857

37858

37859

37860

37861

37862

37863

37864

37865

37866

37867

37868

37869

37870

37871

37872

37873

37874

37875

37876

37877

37878

37879

37880

37881

37882

37883

37884

37885

37886

37887

37888

37889

37890

37891

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces pthread_testcancel()

NAME
pthread_testcancel — set cancelability state

SYNOPSIS
#include <pthread.h>

void pthread_testcancel(void);

DESCRIPTION
Refer to pthread_setcancelstate().

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1219

37892

37893

37894

37895

37896

37897

37898

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

ptsname() System Interfaces

NAME
ptsname — get name of the slave pseudo-terminal device

SYNOPSIS
XSI #include <stdlib.h>

char *ptsname(int fildes);

DESCRIPTION
The ptsname() function shall return the name of the slave pseudo-terminal device associated
with a master pseudo-terminal device. The fildes argument is a file descriptor that refers to the
master device. The ptsname() function shall return a pointer to a string containing the pathname
of the corresponding slave device.

The ptsname() function need not be thread-safe. A function that is not required to be thread-safe
is not required to be reentrant.

RETURN VALUE
Upon successful completion, ptsname() shall return a pointer to a string which is the name of the
pseudo-terminal slave device. Upon failure, ptsname() shall return a null pointer. This could
occur if fildes is an invalid file descriptor or if the slave device name does not exist in the file
system.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
The value returned may point to a static data area that is overwritten by each call to ptsname().

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
grantpt(), open(), ttyname(), unlockpt(), the Base Definitions volume of IEEE Std 1003.1-200x,
<stdlib.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

A note indicating that this function need not be reentrant is added to the DESCRIPTION.

1220 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

37899

37900

37901

37902

37903

37904

37905

37906

37907

37908

37909

37910

37911

37912

37913

37914

37915

37916

37917

37918

37919

37920

37921

37922

37923

37924

37925

37926

37927

37928

37929

37930

37931

37932

37933

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces putc()

NAME
putc — put a byte on a stream

SYNOPSIS
#include <stdio.h>

int putc(int c, F ILE * stream);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

The putc() function shall be equivalent to fputc(), except that if it is implemented as a macro it
may evaluate stream more than once, so the argument should never be an expression with side
effects.

RETURN VALUE
Refer to fputc().

ERRORS
Refer to fputc().

EXAMPLES
None.

APPLICATION USAGE
Since it may be implemented as a macro, putc() may treat a stream argument with side effects
incorrectly. In particular, putc(c,*f++) does not necessarily work correctly. Therefore, use of this
function is not recommended in such situations; fputc() should be used instead.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fputc(), the Base Definitions volume of IEEE Std 1003.1-200x, <stdio.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1221

37934

37935

37936

37937

37938

37939

37940

37941

37942

37943

37944

37945

37946

37947

37948

37949

37950

37951

37952

37953

37954

37955

37956

37957

37958

37959

37960

37961

37962

37963

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

putc_unlocked() System Interfaces

NAME
putc_unlocked — stdio with explicit client locking

SYNOPSIS
CX #include <stdio.h>

int putc_unlocked(int c, F ILE * stream);

DESCRIPTION
Refer to getc_unlocked().

1222 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

37964

37965

37966

37967

37968

37969

37970

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces putchar()

NAME
putchar — put a byte on a stdout stream

SYNOPSIS
#include <stdio.h>

int putchar(int c);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

The function call putchar(c) shall be equivalent to putc(c,stdout).

RETURN VALUE
Refer to fputc().

ERRORS
Refer to fputc().

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
putc(), the Base Definitions volume of IEEE Std 1003.1-200x, <stdio.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1223

37971

37972

37973

37974

37975

37976

37977

37978

37979

37980

37981

37982

37983

37984

37985

37986

37987

37988

37989

37990

37991

37992

37993

37994

37995

37996

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

putchar_unlocked() System Interfaces

NAME
putchar_unlocked — stdio with explicit client locking

SYNOPSIS
CX #include <stdio.h>

int putchar_unlocked(int c);

DESCRIPTION
Refer to getc_unlocked().

1224 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

37997

37998

37999

38000

38001

38002

38003

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces putenv()

NAME
putenv — change or add a value to an environment

SYNOPSIS
XSI #include <stdlib.h>

int putenv(char * string);

DESCRIPTION
The putenv() function shall use the string argument to set environment variable values. The
string argument should point to a string of the form "name=value". The putenv() function shall
make the value of the environment variable name equal to value by altering an existing variable
or creating a new one. In either case, the string pointed to by string shall become part of the
environment, so altering the string shall change the environment. The space used by string is no
longer used once a new string which defines name is passed to putenv().

The putenv() function need not be thread-safe. A function that is not required to be thread-safe is
not required to be reentrant.

RETURN VALUE
Upon successful completion, putenv() shall return 0; otherwise, it shall return a non-zero value
and set errno to indicate the error.

ERRORS
The putenv() function may fail if:

[ENOMEM] Insufficient memory was available.

EXAMPLES

Changing the Value of an Environment Variable

The following example changes the value of the HOME environment variable to the value
/usr/home.

#include <stdlib.h>
...
static char *var = "HOME=/usr/home";
int ret;

ret = putenv(var);

APPLICATION USAGE
The putenv() function manipulates the environment pointed to by environ, and can be used in
conjunction with getenv().

See exec , for restrictions on changing the environment in multi-threaded applications.

This routine may use malloc() to enlarge the environment.

A potential error is to call putenv() with an automatic variable as the argument, then return from
the calling function while string is still part of the environment.

The setenv() function is preferred over this function.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1225

38004

38005

38006

38007

38008

38009

38010

38011

38012

38013

38014

38015

38016

38017

38018

38019

38020

38021

38022

38023

38024

38025

38026

38027

38028

38029

38030

38031

38032

38033

38034

38035

38036

38037

38038

38039

38040

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

putenv() System Interfaces

RATIONALE
The standard developers noted that putenv() is the only function available to add to the
environment without permitting memory leaks.

FUTURE DIRECTIONS
None.

SEE ALSO
exec , getenv(), malloc(), setenv(), the Base Definitions volume of IEEE Std 1003.1-200x, <stdlib.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The type of the argument to this function is changed from const char * to char *. This was
indicated as a FUTURE DIRECTION in previous issues.

A note indicating that this function need not be reentrant is added to the DESCRIPTION.

Issue 6
IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/48 is applied, clarifying wording in the
DESCRIPTION and adding a new paragraph into APPLICATION USAGE referring readers to
exec.

1226 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

38041

38042

38043

38044

38045

38046

38047

38048

38049

38050

38051

38052

38053

38054

38055

38056

38057

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces putmsg()

NAME
putmsg, putpmsg — send a message on a STREAM (STREAMS)

SYNOPSIS
OB XSR #include <stropts.h>

int putmsg(int fildes, c onst struct strbuf * ctlptr,
const struct strbuf * dataptr, i nt flags);

int putpmsg(int fildes, c onst struct strbuf * ctlptr,
const struct strbuf * dataptr, i nt band, i nt flags);

DESCRIPTION
The putmsg() function shall create a message from a process buffer(s) and send the message to a
STREAMS file. The message may contain either a data part, a control part, or both. The data and
control parts are distinguished by placement in separate buffers, as described below. The
semantics of each part are defined by the STREAMS module that receives the message.

The putpmsg() function is equivalent to putmsg(), except that the process can send messages in
different priority bands. Except where noted, all requirements on putmsg() also pertain to
putpmsg().

The fildes argument specifies a file descriptor referencing an open STREAM. The ctlptr and
dataptr arguments each point to a strbuf structure.

The ctlptr argument points to the structure describing the control part, if any, to be included in
the message. The buf member in the strbuf structure points to the buffer where the control
information resides, and the len member indicates the number of bytes to be sent. The maxlen
member is not used by putmsg(). In a similar manner, the argument dataptr specifies the data, if
any, to be included in the message. The flags argument indicates what type of message should be
sent and is described further below.

To send the data part of a message, the application shall ensure that dataptr is not a null pointer
and the len member of dataptr is 0 or greater. To send the control part of a message, the
application shall ensure that the corresponding values are set for ctlptr. No data (control) part
shall be sent if either dataptr(ctlptr) is a null pointer or the len member of dataptr(ctlptr) is set to
−1.

For putmsg(), if a control part is specified and flags is set to RS_HIPRI, a high priority message
shall be sent. If no control part is specified, and flags is set to RS_HIPRI, putmsg() shall fail and
set errno to [EINVAL]. If flags is set to 0, a normal message (priority band equal to 0) shall be
sent. If a control part and data part are not specified and flags is set to 0, no message shall be
sent and 0 shall be returned.

For putpmsg(), the flags are different. The flags argument is a bitmask with the following
mutually-exclusive flags defined: MSG_HIPRI and MSG_BAND. If flags is set to 0, putpmsg()
shall fail and set errno to [EINVAL]. If a control part is specified and flags is set to MSG_HIPRI
and band is set to 0, a high-priority message shall be sent. If flags is set to MSG_HIPRI and either
no control part is specified or band is set to a non-zero value, putpmsg() shall fail and set errno to
[EINVAL]. If flags is set to MSG_BAND, then a message shall be sent in the priority band
specified by band. If a control part and data part are not specified and flags is set to MSG_BAND,
no message shall be sent and 0 shall be returned.

The putmsg() function shall block if the STREAM write queue is full due to internal flow control
conditions, with the following exceptions:

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1227

38058

38059

38060

38061

38062

38063

38064

38065

38066

38067

38068

38069

38070

38071

38072

38073

38074

38075

38076

38077

38078

38079

38080

38081

38082

38083

38084

38085

38086

38087

38088

38089

38090

38091

38092

38093

38094

38095

38096

38097

38098

38099

38100

38101

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

putmsg() System Interfaces

• For high-priority messages, putmsg() shall not block on this condition and continues
processing the message.

• For other messages, putmsg() shall not block but shall fail when the write queue is full and
O_NONBLOCK is set.

The putmsg() function shall also block, unless prevented by lack of internal resources, while
waiting for the availability of message blocks in the STREAM, regardless of priority or whether
O_NONBLOCK has been specified. No partial message shall be sent.

RETURN VALUE
Upon successful completion, putmsg() and putpmsg() shall return 0; otherwise, they shall return
−1 and set errno to indicate the error.

ERRORS
The putmsg() and putpmsg() functions shall fail if:

[EAGAIN] A non-priority message was specified, the O_NONBLOCK flag is set, and the
STREAM write queue is full due to internal flow control conditions; or buffers
could not be allocated for the message that was to be created.

[EBADF] fildes is not a valid file descriptor open for writing.

[EINTR] A signal was caught during putmsg().

[EINVAL] An undefined value is specified in flags, or flags is set to RS_HIPRI or
MSG_HIPRI and no control part is supplied, or the STREAM or multiplexer
referenced by fildes is linked (directly or indirectly) downstream from a
multiplexer, or flags is set to MSG_HIPRI and band is non-zero (for putpmsg()
only).

[ENOSR] Buffers could not be allocated for the message that was to be created due to
insufficient STREAMS memory resources.

[ENOSTR] A STREAM is not associated with fildes.

[ENXIO] A hangup condition was generated downstream for the specified STREAM.

[EPIPE] or [EIO] The fildes argument refers to a STREAMS-based pipe and the other end of the
pipe is closed. A SIGPIPE signal is generated for the calling thread.

[ERANGE] The size of the data part of the message does not fall within the range
specified by the maximum and minimum packet sizes of the topmost
STREAM module. This value is also returned if the control part of the message
is larger than the maximum configured size of the control part of a message,
or if the data part of a message is larger than the maximum configured size of
the data part of a message.

In addition, putmsg() and putpmsg() shall fail if the STREAM head had processed an
asynchronous error before the call. In this case, the value of errno does not reflect the result of
putmsg() or putpmsg(), but reflects the prior error.

1228 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

38102

38103

38104

38105

38106

38107

38108

38109

38110

38111

38112

38113

38114

38115

38116

38117

38118

38119

38120

38121

38122

38123

38124

38125

38126

38127

38128

38129

38130

38131

38132

38133

38134

38135

38136

38137

38138

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces putmsg()

EXAMPLES

Sending a High-Priority Message

The value of fd is assumed to refer to an open STREAMS file. This call to putmsg() does the
following:

1. Creates a high-priority message with a control part and a data part, using the buffers
pointed to by ctrlbuf and databuf , respectively.

2. Sends the message to the STREAMS file identified by fd.

#include <stropts.h>
#include <string.h>
...
int fd;
char *ctrlbuf = "This is the control part";
char *databuf = "This is the data part";
struct strbuf ctrl;
struct strbuf data;
int ret;

ctrl.buf = ctrlbuf;
ctrl.len = strlen(ctrlbuf);

data.buf = databuf;
data.len = strlen(databuf);

ret = putmsg(fd, &ctrl, &data, MSG_HIPRI);

Using putpmsg()

This example has the same effect as the previous example. In this example, however, the
putpmsg() function creates and sends the message to the STREAMS file.

#include <stropts.h>
#include <string.h>
...
int fd;
char *ctrlbuf = "This is the control part";
char *databuf = "This is the data part";
struct strbuf ctrl;
struct strbuf data;
int ret;

ctrl.buf = ctrlbuf;
ctrl.len = strlen(ctrlbuf);

data.buf = databuf;
data.len = strlen(databuf);

ret = putpmsg(fd, &ctrl, &data, 0, MSG_HIPRI);

APPLICATION USAGE
None.

RATIONALE
None.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1229

38139

38140

38141

38142

38143

38144

38145

38146

38147

38148

38149

38150

38151

38152

38153

38154

38155

38156

38157

38158

38159

38160

38161

38162

38163

38164

38165

38166

38167

38168

38169

38170

38171

38172

38173

38174

38175

38176

38177

38178

38179

38180

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

putmsg() System Interfaces

FUTURE DIRECTIONS
The putmsg() and putpmsg() functions may be removed in a future version.

SEE ALSO
Section 2.6 (on page 38), getmsg(), poll(), read(), write(), the Base Definitions volume of
IEEE Std 1003.1-200x, <stropts.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

The following text is removed from the DESCRIPTION: ‘‘The STREAM head guarantees that the
control part of a message generated by putmsg() is at least 64 bytes in length’’.

Issue 6
This function is marked as part of the XSI STREAMS Option Group.

The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

Issue 7
The putmsg() and putpmsg() functions are marked obsolescent.

1230 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

38181

38182

38183

38184

38185

38186

38187

38188

38189

38190

38191

38192

38193

38194

38195

38196

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces puts()

NAME
puts — put a string on standard output

SYNOPSIS
#include <stdio.h>

int puts(const char * s);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

The puts() function shall write the string pointed to by s, followed by a <newline>, to the
standard output stream stdout. The terminating null byte shall not be written.

CX The st_ctime and st_mtime fields of the file shall be marked for update between the successful
execution of puts() and the next successful completion of a call to fflush() or fclose() on the same
stream or a call to exit() or abort().

RETURN VALUE
Upon successful completion, puts() shall return a non-negative number. Otherwise, it shall

CX return EOF, shall set an error indicator for the stream, and errno shall be set to indicate the error.

ERRORS
Refer to fputc().

EXAMPLES

Printing to Standard Output

The following example gets the current time, converts it to a string using localtime() and
asctime(), and prints it to standard output using puts(). It then prints the number of minutes to
an event for which it is waiting.

#include <time.h>
#include <stdio.h>
...
time_t now;
int minutes_to_event;
...
time(&now);
printf("The time is ");
puts(asctime(localtime(&now)));
printf("There are %d minutes to the event.\n",

minutes_to_event);
...

APPLICATION USAGE
The puts() function appends a <newline>, while fputs() does not.

RATIONALE
None.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1231

38197

38198

38199

38200

38201

38202

38203

38204

38205

38206

38207

38208

38209

38210

38211

38212

38213

38214

38215

38216

38217

38218

38219

38220

38221

38222

38223

38224

38225

38226

38227

38228

38229

38230

38231

38232

38233

38234

38235

38236

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

puts() System Interfaces

FUTURE DIRECTIONS
None.

SEE ALSO
fopen(), fputs(), putc(), the Base Definitions volume of IEEE Std 1003.1-200x, <stdio.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
Extensions beyond the ISO C standard are marked.

1232 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

38237

38238

38239

38240

38241

38242

38243

38244

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces pututxline()

NAME
pututxline — put an entry into the user accounting database

SYNOPSIS
XSI #include <utmpx.h>

struct utmpx *pututxline(const struct utmpx * utmpx);

DESCRIPTION
Refer to endutxent().

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1233

38245

38246

38247

38248

38249

38250

38251

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

putwc() System Interfaces

NAME
putwc — put a wide character on a stream

SYNOPSIS
#include <stdio.h>
#include <wchar.h>

wint_t putwc(wchar_t wc, F ILE * stream);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

The putwc() function shall be equivalent to fputwc(), except that if it is implemented as a macro
it may evaluate stream more than once, so the argument should never be an expression with side
effects.

RETURN VALUE
Refer to fputwc().

ERRORS
Refer to fputwc().

EXAMPLES
None.

APPLICATION USAGE
Since it may be implemented as a macro, putwc() may treat a stream argument with side effects
incorrectly. In particular, putwc(wc,*f++) need not work correctly. Therefore, use of this function
is not recommended; fputwc() should be used instead.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fputwc(), the Base Definitions volume of IEEE Std 1003.1-200x, <stdio.h>, <wchar.h>

CHANGE HISTORY
First released as a World-wide Portability Interface in Issue 4.

Issue 5
Aligned with ISO/IEC 9899: 1990/Amendment 1: 1995 (E). Specifically, the type of argument wc
is changed from wint_t to wchar_t.

The Optional Header (OH) marking is removed from <stdio.h>.

1234 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

38252

38253

38254

38255

38256

38257

38258

38259

38260

38261

38262

38263

38264

38265

38266

38267

38268

38269

38270

38271

38272

38273

38274

38275

38276

38277

38278

38279

38280

38281

38282

38283

38284

38285

38286

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces putwchar()

NAME
putwchar — put a wide character on a stdout stream

SYNOPSIS
#include <wchar.h>

wint_t putwchar(wchar_t wc);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

The function call putwchar(wc) shall be equivalent to putwc(wc,stdout).

RETURN VALUE
Refer to fputwc().

ERRORS
Refer to fputwc().

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fputwc(), putwc(), the Base Definitions volume of IEEE Std 1003.1-200x, <wchar.h>

CHANGE HISTORY
First released in Issue 4.

Issue 5
Aligned with ISO/IEC 9899: 1990/Amendment 1: 1995 (E). Specifically, the type of argument wc
is changed from wint_t to wchar_t.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1235

38287

38288

38289

38290

38291

38292

38293

38294

38295

38296

38297

38298

38299

38300

38301

38302

38303

38304

38305

38306

38307

38308

38309

38310

38311

38312

38313

38314

38315

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

pwrite() System Interfaces

NAME
pwrite — write on a file

SYNOPSIS
#include <unistd.h>

ssize_t pwrite(int fildes, c onst void * buf, s ize_t nbyte,
off_t offset);

DESCRIPTION
Refer to write().

1236 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

38316

38317

38318

38319

38320

38321

38322

38323

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces qsort()

NAME
qsort — sort a table of data

SYNOPSIS
#include <stdlib.h>

void qsort(void * base, s ize_t nel, s ize_t width,
int (* compar)(const void *, const void *));

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

The qsort() function shall sort an array of nel objects, the initial element of which is pointed to by
base. The size of each object, in bytes, is specified by the width argument. If the nel argument has
the value zero, the comparison function pointed to by compar shall not be called and no
rearrangement shall take place.

The application shall ensure that the comparison function pointed to by compar does not alter the
contents of the array. The implementation may reorder elements of the array between calls to the
comparison function, but shall not alter the contents of any individual element.

When the same objects (consisting of width bytes, irrespective of their current positions in the
array) are passed more than once to the comparison function, the results shall be consistent with
one another. That is, they shall define a total ordering on the array.

The contents of the array shall be sorted in ascending order according to a comparison function.
The compar argument is a pointer to the comparison function, which is called with two
arguments that point to the elements being compared. The application shall ensure that the
function returns an integer less than, equal to, or greater than 0, if the first argument is
considered respectively less than, equal to, or greater than the second. If two members compare
as equal, their order in the sorted array is unspecified.

RETURN VALUE
The qsort() function shall not return a value.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
The comparison function need not compare every byte, so arbitrary data may be contained in
the elements in addition to the values being compared.

RATIONALE
The requirement that each argument (hereafter referred to as p) to the comparison function is a
pointer to elements of the array implies that for every call, for each argument separately, all of
the following expressions are non-zero:

((char *)p − (char *)base) % width == 0
(char *)p >= (char *)base
(char *)p < (char *)base + nel * width

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1237

38324

38325

38326

38327

38328

38329

38330

38331

38332

38333

38334

38335

38336

38337

38338

38339

38340

38341

38342

38343

38344

38345

38346

38347

38348

38349

38350

38351

38352

38353

38354

38355

38356

38357

38358

38359

38360

38361

38362

38363

38364

38365

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

qsort() System Interfaces

FUTURE DIRECTIONS
None.

SEE ALSO
alphasort(), the Base Definitions volume of IEEE Std 1003.1-200x, <stdlib.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/49 is applied, adding the last sentence to
the first non-shaded paragraph in the DESCRIPTION, and the following two paragraphs. The
RATIONALE is also updated. These changes are for alignment with the ISO C standard.

1238 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

38366

38367

38368

38369

38370

38371

38372

38373

38374

38375

38376

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces raise()

NAME
raise — send a signal to the executing process

SYNOPSIS
#include <signal.h>

int raise(int sig);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

CX The raise() function shall send the signal sig to the executing thread or process. If a signal
handler is called, the raise() function shall not return until after the signal handler does.

CX The effect of the raise() function shall be equivalent to calling:

pthread_kill(pthread_self(), sig);

RETURN VALUE
CX Upon successful completion, 0 shall be returned. Otherwise, a non-zero value shall be returned

and errno shall be set to indicate the error.

ERRORS
The raise() function shall fail if:

CX [EINVAL] The value of the sig argument is an invalid signal number.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
The term ‘‘thread’’ is an extension to the ISO C standard.

FUTURE DIRECTIONS
None.

SEE ALSO
kill(), sigaction(), the Base Definitions volume of IEEE Std 1003.1-200x, <signal.h>,
<sys/types.h>

CHANGE HISTORY
First released in Issue 4. Derived from the ANSI C standard.

Issue 5
The DESCRIPTION is updated for alignment with the POSIX Threads Extension.

Issue 6
Extensions beyond the ISO C standard are marked.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• In the RETURN VALUE section, the requirement to set errno on error is added.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1239

38377

38378

38379

38380

38381

38382

38383

38384

38385

38386

38387

38388

38389

38390

38391

38392

38393

38394

38395

38396

38397

38398

38399

38400

38401

38402

38403

38404

38405

38406

38407

38408

38409

38410

38411

38412

38413

38414

38415

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

raise() System Interfaces

• The [EINVAL] error condition is added.

Issue 7
Functionality relating to the Threads option is moved to the Base.

1240 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

38416

38417

38418

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces rand()

NAME
rand, rand_r, srand — pseudo-random number generator

SYNOPSIS
#include <stdlib.h>

int rand(void);
CX int rand_r(unsigned * seed);

void srand(unsigned seed);

DESCRIPTION
CX For rand() and srand(): The functionality described on this reference page is aligned with the

ISO C standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of IEEE Std 1003.1-200x defers to the ISO C standard.

The rand() function shall compute a sequence of pseudo-random integers in the range
XSI [0,{RAND_MAX}] with a period of at least 232.

CX The rand() function need not be thread-safe. A function that is not required to be thread-safe is
not required to be reentrant.

The rand_r() function shall compute a sequence of pseudo-random integers in the range
[0,{RAND_MAX}]. (The value of the {RAND_MAX} macro shall be at least 32 767.)

If rand_r() is called with the same initial value for the object pointed to by seed and that object is
not modified between successive returns and calls to rand_r(), the same sequence shall be
generated.

The srand() function uses the argument as a seed for a new sequence of pseudo-random
numbers to be returned by subsequent calls to rand(). If srand() is then called with the same
seed value, the sequence of pseudo-random numbers shall be repeated. If rand() is called before
any calls to srand() are made, the same sequence shall be generated as when srand() is first
called with a seed value of 1.

The implementation shall behave as if no function defined in this volume of
IEEE Std 1003.1-200x calls rand() or srand().

RETURN VALUE
The rand() function shall return the next pseudo-random number in the sequence.

CX The rand_r() function shall return a pseudo-random integer.

The srand() function shall not return a value.

ERRORS
No errors are defined.

EXAMPLES

Generating a Pseudo-Random Number Sequence

The following example demonstrates how to generate a sequence of pseudo-random numbers.

#include <stdio.h>
#include <stdlib.h>
...

long count, i;
char *keystr;
int elementlen, len;
char c;

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1241

38419

38420

38421

38422

38423

38424

38425

38426

38427

38428

38429

38430

38431

38432

38433

38434

38435

38436

38437

38438

38439

38440

38441

38442

38443

38444

38445

38446

38447

38448

38449

38450

38451

38452

38453

38454

38455

38456

38457

38458

38459

38460

38461

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

rand() System Interfaces

...
/* Initial random number generator. */

srand(1);

/* Create keys using only lowercase characters */
len = 0;
for (i=0; i<count; i++) {

while (len < elementlen) {
c = (char) (rand() % 128);
if (islower(c))

keystr[len++] = c;
}

keystr[len] = ’\0’;
printf("%s Element%0*ld\n", keystr, elementlen, i);
len = 0;

}

Generating the Same Sequence on Different Machines

The following code defines a pair of functions that could be incorporated into applications
wishing to ensure that the same sequence of numbers is generated across different machines.

static unsigned long next = 1;
int myrand(void) /* RAND_MAX assumed to be 32767. */
{

next = next * 1103515245 + 12345;
return((unsigned)(next/65536) % 32768);

}

void mysrand(unsigned seed)
{

next = seed;
}

APPLICATION USAGE
The drand48() function provides a much more elaborate random number generator.

The limitations on the amount of state that can be carried between one function call and another
mean the rand_r() function can never be implemented in a way which satisfies all of the
requirements on a pseudo-random number generator. Therefore this function should be avoided
whenever non-trivial requirements (including safety) have to be fulfilled.

RATIONALE
The ISO C standard rand() and srand() functions allow per-process pseudo-random streams
shared by all threads. Those two functions need not change, but there has to be mutual-
exclusion that prevents interference between two threads concurrently accessing the random
number generator.

With regard to rand(), there are two different behaviors that may be wanted in a multi-threaded
program:

1. A single per-process sequence of pseudo-random numbers that is shared by all threads
that call rand()

2. A different sequence of pseudo-random numbers for each thread that calls rand()

This is provided by the modified thread-safe function based on whether the seed value is global
to the entire process or local to each thread.

1242 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

38462

38463

38464

38465

38466

38467

38468

38469

38470

38471

38472

38473

38474

38475

38476

38477

38478

38479

38480

38481

38482

38483

38484

38485

38486

38487

38488

38489

38490

38491

38492

38493

38494

38495

38496

38497

38498

38499

38500

38501

38502

38503

38504

38505

38506

38507

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces rand()

This does not address the known deficiencies of the rand() function implementations, which
have been approached by maintaining more state. In effect, this specifies new thread-safe forms
of a deficient function.

FUTURE DIRECTIONS
None.

SEE ALSO
drand48(), the Base Definitions volume of IEEE Std 1003.1-200x, <stdlib.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The rand_r() function is included for alignment with the POSIX Threads Extension.

A note indicating that the rand() function need not be reentrant is added to the DESCRIPTION.

Issue 6
Extensions beyond the ISO C standard are marked.

The rand_r() function is marked as part of the Thread-Safe Functions option.

Issue 7
The rand_r() function is moved from the Thread-Safe Functions option to the Base.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1243

38508

38509

38510

38511

38512

38513

38514

38515

38516

38517

38518

38519

38520

38521

38522

38523

38524

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

random() System Interfaces

NAME
random — generate pseudo-random number

SYNOPSIS
XSI #include <stdlib.h>

long random(void);

DESCRIPTION
Refer to initstate().

1244 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

38525

38526

38527

38528

38529

38530

38531

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces read()

NAME
pread, read — read from a file

SYNOPSIS
#include <unistd.h>

ssize_t pread(int fildes, v oid * buf, s ize_t nbyte, o ff_t offset);
ssize_t read(int fildes, v oid * buf, s ize_t nbyte);

DESCRIPTION
The read() function shall attempt to read nbyte bytes from the file associated with the open file
descriptor, fildes, into the buffer pointed to by buf . The behavior of multiple concurrent reads on
the same pipe, FIFO, or terminal device is unspecified.

Before any action described below is taken, and if nbyte is zero, the read() function may detect
and return errors as described below. In the absence of errors, or if error detection is not
performed, the read() function shall return zero and have no other results.

On files that support seeking (for example, a regular file), the read() shall start at a position in
the file given by the file offset associated with fildes. The file offset shall be incremented by the
number of bytes actually read.

Files that do not support seeking—for example, terminals—always read from the current
position. The value of a file offset associated with such a file is undefined.

No data transfer shall occur past the current end-of-file. If the starting position is at or after the
end-of-file, 0 shall be returned. If the file refers to a device special file, the result of subsequent
read() requests is implementation-defined.

If the value of nbyte is greater than {SSIZE_MAX}, the result is implementation-defined.

When attempting to read from an empty pipe or FIFO:

• If no process has the pipe open for writing, read() shall return 0 to indicate end-of-file.

• If some process has the pipe open for writing and O_NONBLOCK is set, read() shall return
−1 and set errno to [EAGAIN].

• If some process has the pipe open for writing and O_NONBLOCK is clear, read() shall
block the calling thread until some data is written or the pipe is closed by all processes that
had the pipe open for writing.

When attempting to read a file (other than a pipe or FIFO) that supports non-blocking reads and
has no data currently available:

• If O_NONBLOCK is set, read() shall return −1 and set errno to [EAGAIN].

• If O_NONBLOCK is clear, read() shall block the calling thread until some data becomes
available.

• The use of the O_NONBLOCK flag has no effect if there is some data available.

The read() function reads data previously written to a file. If any portion of a regular file prior to
the end-of-file has not been written, read() shall return bytes with value 0. For example, lseek()
allows the file offset to be set beyond the end of existing data in the file. If data is later written at
this point, subsequent reads in the gap between the previous end of data and the newly written
data shall return bytes with value 0 until data is written into the gap.

Upon successful completion, where nbyte is greater than 0, read() shall mark for update the
st_atime field of the file, and shall return the number of bytes read. This number shall never be

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

read() System Interfaces

file is less than nbyte, if the read() request was interrupted by a signal, or if the file is a pipe or
FIFO or special file and has fewer than nbyte bytes immediately available for reading. For
example, a read() from a file associated with a terminal may return one typed line of data.

If a read() is interrupted by a signal before it reads any data, it shall return −1 with errno set to
[EINTR].

If a read() is interrupted by a signal after it has successfully read some data, it shall return the
number of bytes read.

For regular files, no data transfer shall occur past the offset maximum established in the open
file description associated with fildes.

If fildes refers to a socket, read() shall be equivalent to recv() with no flags set.

SIO If the O_DSYNC and O_RSYNC bits have been set, read I/O operations on the file descriptor
shall complete as defined by synchronized I/O data integrity completion. If the O_SYNC and
O_RSYNC bits have been set, read I/O operations on the file descriptor shall complete as
defined by synchronized I/O file integrity completion.

SHM If fildes refers to a shared memory object, the result of the read() function is unspecified.

TYM If fildes refers to a typed memory object, the result of the read() function is unspecified.

OB XSR A read() from a STREAMS file can read data in three different modes: byte-stream mode, message-
nondiscard mode, and message-discard mode. The default shall be byte-stream mode. This can be
changed using the I_SRDOPT ioctl() request, and can be tested with I_GRDOPT ioctl(). In byte-
stream mode, read() shall retrieve data from the STREAM until as many bytes as were requested
are transferred, or until there is no more data to be retrieved. Byte-stream mode ignores
message boundaries.

In STREAMS message-nondiscard mode, read() shall retrieve data until as many bytes as were
requested are transferred, or until a message boundary is reached. If read() does not retrieve all
the data in a message, the remaining data shall be left on the STREAM, and can be retrieved by
the next read() call. Message-discard mode also retrieves data until as many bytes as were
requested are transferred, or a message boundary is reached. However, unread data remaining
in a message after the read() returns shall be discarded, and shall not be available for a
subsequent read(), getmsg(), or getpmsg() call.

How read() handles zero-byte STREAMS messages is determined by the current read mode
setting. In byte-stream mode, read() shall accept data until it has read nbyte bytes, or until there
is no more data to read, or until a zero-byte message block is encountered. The read() function
shall then return the number of bytes read, and place the zero-byte message back on the
STREAM to be retrieved by the next read(), getmsg(), or getpmsg(). In message-nondiscard
mode or message-discard mode, a zero-byte message shall return 0 and the message shall be
removed from the STREAM. When a zero-byte message is read as the first message on a
STREAM, the message shall be removed from the STREAM and 0 shall be returned, regardless
of the read mode.

A read() from a STREAMS file shall return the data in the message at the front of the STREAM
head read queue, regardless of the priority band of the message.

By default, STREAMs are in control-normal mode, in which a read() from a STREAMS file can
only process messages that contain a data part but do not contain a control part. The read() shall
fail if a message containing a control part is encountered at the STREAM head. This default
action can be changed by placing the STREAM in either control-data mode or control-discard
mode with the I_SRDOPT ioctl() command. In control-data mode, read() shall convert any
control part to data and pass it to the application before passing any data part originally present
in the same message. In control-discard mode, read() shall discard message control parts but
return to the process any data part in the message.

1246 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

38575

38576

38577

38578

38579

38580

38581

38582

38583

38584

38585

38586

38587

38588

38589

38590

38591

38592

38593

38594

38595

38596

38597

38598

38599

38600

38601

38602

38603

38604

38605

38606

38607

38608

38609

38610

38611

38612

38613

38614

38615

38616

38617

38618

38619

38620

38621

38622

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces read()

In addition, read() shall fail if the STREAM head had processed an asynchronous error before
the call. In this case, the value of errno shall not reflect the result of read(), but reflect the prior
error. If a hangup occurs on the STREAM being read, read() shall continue to operate normally
until the STREAM head read queue is empty. Thereafter, it shall return 0.

The pread() function shall be equivalent to

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

read() System Interfaces

[ENOBUFS] Insufficient resources were available in the system to perform the operation.

[ENOMEM] Insufficient memory was available to fulfill the request.

[ENXIO] A request was made of a nonexistent device, or the request was outside the
capabilities of the device.

The pread() function shall fail, and the file pointer shall remain unchanged, if:

[EINVAL] The offset argument is invalid. The value is negative.

[EOVERFLOW] The file is a regular file and an attempt was made to read at or beyond the
offset maximum associated with the file.

[ENXIO] A request was outside the capabilities of the device.

[ESPIPE] fildes is associated with a pipe or FIFO.

EXAMPLES

Reading Data into a Buffer

The following example reads data from the file associated with the file descriptor fd into the
buffer pointed to by buf .

#include <sys/types.h>
#include <unistd.h>
...
char buf[20];
size_t nbytes;
ssize_t bytes_read;
int fd;
...
nbytes = sizeof(buf);
bytes_read = read(fd, buf, nbytes);
...

APPLICATION USAGE
None.

RATIONALE
This volume of IEEE Std 1003.1-200x does not specify the value of the file offset after an error is
returned; there are too many cases. For programming errors, such as [EBADF], the concept is
meaningless since no file is involved. For errors that are detected immediately, such as
[EAGAIN], clearly the pointer should not change. After an interrupt or hardware error, however,
an updated value would be very useful and is the behavior of many implementations.

Note that a read() of zero bytes does not modify st_atime. A read() that requests more than zero
bytes, but returns zero, shall modify st_atime.

Implementations are allowed, but not required, to perform error checking for read() requests of
zero bytes.

1248 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

38666

38667

38668

38669

38670

38671

38672

38673

38674

38675

38676

38677

38678

38679

38680

38681

38682

38683

38684

38685

38686

38687

38688

38689

38690

38691

38692

38693

38694

38695

38696

38697

38698

38699

38700

38701

38702

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces read()

Input and Output

The use of I/O with large byte counts has always presented problems. Ideas such as lread() and
lwrite() (using and returning longs) were considered at one time. The current solution is to use
abstract types on the ISO C standard function to read() and write(). The abstract types can be
declared so that existing functions work, but can also be declared so that larger types can be
represented in future implementations. It is presumed that whatever constraints limit the
maximum range of size_t also limit portable I/O requests to the same range. This volume of
IEEE Std 1003.1-200x also limits the range further by requiring that the byte count be limited so
that a signed return value remains meaningful. Since the return type is also a (signed) abstract
type, the byte count can be defined by the implementation to be larger than an int can hold.

The standard developers considered adding atomicity requirements to a pipe or FIFO, but
recognized that due to the nature of pipes and FIFOs there could be no guarantee of atomicity of
reads of {PIPE_BUF} or any other size that would be an aid to applications portability.

This volume of IEEE Std 1003.1-200x requires that no action be taken for read() or write() when
nbyte is zero. This is not intended to take precedence over detection of errors (such as invalid
buffer pointers or file descriptors). This is consistent with the rest of this volume of
IEEE Std 1003.1-200x, but the phrasing here could be misread to require detection of the zero
case before any other errors. A value of zero is to be considered a correct value, for which the
semantics are a no-op.

I/O is intended to be atomic to ordinary files and pipes and FIFOs. Atomic means that all the
bytes from a single operation that started out together end up together, without interleaving
from other I/O operations. It is a known attribute of terminals that this is not honored, and
terminals are explicitly (and implicitly permanently) excepted, making the behavior unspecified.
The behavior for other device types is also left unspecified, but the wording is intended to imply
that future standards might choose to specify atomicity (or not).

There were recommendations to add format parameters to read() and write() in order to handle
networked transfers among heterogeneous file system and base hardware types. Such a facility
may be required for support by the OSI presentation of layer services. However, it was
determined that this should correspond with similar C-language facilities, and that is beyond
the scope of this volume of IEEE Std 1003.1-200x. The concept was suggested to the developers
of the ISO C standard for their consideration as a possible area for future work.

In 4.3 BSD, a read() or write() that is interrupted by a signal before transferring any data does
not by default return an [EINTR] error, but is restarted. In 4.2 BSD, 4.3 BSD, and the Eighth
Edition, there is an additional function, select(), whose purpose is to pause until specified
activity (data to read, space to write, and so on) is detected on specified file descriptors. It is
common in applications written for those systems for select() to be used before read() in
situations (such as keyboard input) where interruption of I/O due to a signal is desired.

The issue of which files or file types are interruptible is considered an implementation design
issue. This is often affected primarily by hardware and reliability issues.

There are no references to actions taken following an ‘‘unrecoverable error ’’. It is considered
beyond the scope of this volume of IEEE Std 1003.1-200x to describe what happens in the case of
hardware errors.

Previous versions of IEEE Std 1003.1-200x allowed two very different behaviors with regard to
the handling of interrupts. In order to minimize the resulting confusion, it was decided that
IEEE Std 1003.1-200x should support only one of these behaviors. Historical practice on
AT&T-derived systems was to have read() and write() return −1 and set errno to [EINTR] when
interrupted after some, but not all, of the data requested had been transferred. However, the U.S.
Department of Commerce FIPS 151-1 and FIPS 151-2 require the historical BSD behavior, in
which read() and write() return the number of bytes actually transferred before the interrupt. If
−1 is returned when any data is transferred, it is difficult to recover from the error on a seekable

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1249

38703

38704

38705

38706

38707

38708

38709

38710

38711

38712

38713

38714

38715

38716

38717

38718

38719

38720

38721

38722

38723

38724

38725

38726

38727

38728

38729

38730

38731

38732

38733

38734

38735

38736

38737

38738

38739

38740

38741

38742

38743

38744

38745

38746

38747

38748

38749

38750

38751

38752

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

read() System Interfaces

device and impossible on a non-seekable device. Most new implementations support this
behavior. The behavior required by IEEE Std 1003.1-200x is to return the number of bytes
transferred.

IEEE Std 1003.1-200x does not specify when an implementation that buffers read()s actually
moves the data into the user-supplied buffer, so an implementation may choose to do this at the
latest possible moment. Therefore, an interrupt arriving earlier may not cause read() to return a
partial byte count, but rather to return −1 and set errno to [EINTR].

Consideration was also given to combining the two previous options, and setting errno to
[EINTR] while returning a short count. However, not only is there no existing practice that
implements this, it is also contradictory to the idea that when errno is set, the function
responsible shall return −1.

FUTURE DIRECTIONS
None.

SEE ALSO
fcntl(), ioctl(), lseek(), open(), pipe(), readv(), the Base Definitions volume of
IEEE Std 1003.1-200x, Chapter 11, General Terminal Interface, <stropts.h>, <sys/uio.h>,
<unistd.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The DESCRIPTION is updated for alignment with the POSIX Realtime Extension and the POSIX
Threads Extension.

Large File Summit extensions are added.

The pread() function is added.

Issue 6
The DESCRIPTION and ERRORS sections are updated so that references to STREAMS are
marked as part of the XSI STREAMS Option Group.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The DESCRIPTION now states that if read() is interrupted by a signal after it has
successfully read some data, it returns the number of bytes read. In Issue 3, it was optional
whether read() returned the number of bytes read, or whether it returned −1 with errno set
to [EINTR]. This is a FIPS requirement.

• In the DESCRIPTION, text is added to indicate that for regular files, no data transfer
occurs past the offset maximum established in the open file description associated with
fildes. This change is to support large files.

• The [EOVERFLOW] mandatory error condition is added.

• The [ENXIO] optional error condition is added.

Text referring to sockets is added to the DESCRIPTION.

The following changes were made to align with the IEEE P1003.1a draft standard:

• The effect of reading zero bytes is clarified.

The DESCRIPTION is updated for alignment with IEEE Std 1003.1j-2000 by specifying that
read() results are unspecified for typed memory objects.

New RATIONALE is added to explain the atomicity requirements for input and output
operations.

1250 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

38753

38754

38755

38756

38757

38758

38759

38760

38761

38762

38763

38764

38765

38766

38767

38768

38769

38770

38771

38772

38773

38774

38775

38776

38777

38778

38779

38780

38781

38782

38783

38784

38785

38786

38787

38788

38789

38790

38791

38792

38793

38794

38795

38796

38797

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces read()

The following error conditions are added for operations on sockets: [EAGAIN],
[ECONNRESET], [ENOTCONN], and [ETIMEDOUT].

The [EIO] error is made optional.

The following error conditions are added for operations on sockets: [ENOBUFS] and
[ENOMEM].

The readv() function is split out into a separate reference page.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/108 is applied, updating the [EAGAIN]
error in the ERRORS section from ‘‘the process would be delayed’’ to ‘‘the thread would be
delayed’’.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/109 is applied, making an editorial
correction in the RATIONALE section.

Issue 7
The pread() function is moved from the XSI option to the Base.

Functionality relating to the XSI STREAMS option is marked obsolescent.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1251

38798

38799

38800

38801

38802

38803

38804

38805

38806

38807

38808

38809

38810

38811

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

readdir() System Interfaces

NAME
readdir, readdir_r — read a directory

SYNOPSIS
#include <dirent.h>

struct dirent *readdir(DIR * dirp);
int readdir_r(DIR *restrict dirp, s truct dirent *restrict entry,

struct dirent **restrict result);

DESCRIPTION
The type DIR, which is defined in the <dirent.h> header, represents a directory stream, which is
an ordered sequence of all the directory entries in a particular directory. Directory entries
represent files; files may be removed from a directory or added to a directory asynchronously to
the operation of readdir().

The readdir() function shall return a pointer to a structure representing the directory entry at the
current position in the directory stream specified by the argument dirp, and position the
directory stream at the next entry. It shall return a null pointer upon reaching the end of the
directory stream. The structure dirent defined in the <dirent.h> header describes a directory
entry.

The readdir() function shall not return directory entries containing empty names. If entries for
dot or dot-dot exist, one entry shall be returned for dot and one entry shall be returned for dot-
dot; otherwise, they shall not be returned.

The pointer returned by readdir() points to data which may be overwritten by another call to
readdir() on the same directory stream. This data is not overwritten by another call to readdir()
on a different directory stream.

If a file is removed from or added to the directory after the most recent call to opendir() or
rewinddir(), whether a subsequent call to readdir() returns an entry for that file is unspecified.

The readdir() function may buffer several directory entries per actual read operation; readdir()
shall mark for update the st_atime field of the directory each time the directory is actually read.

After a call to fork(), either the parent or child (but not both) may continue processing the
XSI directory stream using readdir(), rewinddir(), or seekdir(). If both the parent and child processes

use these functions, the result is undefined.

If the entry names a symbolic link, the value of the d_ino member is unspecified.

The readdir() function need not be thread-safe. A function that is not required to be thread-safe is
not required to be reentrant.

The readdir_r() function shall initialize the dirent structure referenced by entry to represent the
directory entry at the current position in the directory stream referred to by dirp, store a pointer
to this structure at the location referenced by result, and position the directory stream at the next
entry.

The storage pointed to by entry shall be large enough for a dirent with an array of char d_name
members containing at least {NAME_MAX}+1 elements.

Upon successful return, the pointer returned at *result shall have the same value as the argument
entry. Upon reaching the end of the directory stream, this pointer shall have the value NULL.

The readdir_r() function shall not return directory entries containing empty names.

If a file is removed from or added to the directory after the most recent call to opendir() or
rewinddir(), whether a subsequent call to readdir_r() returns an entry for that file is unspecified.

1252 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

38812

38813

38814

38815

38816

38817

38818

38819

38820

38821

38822

38823

38824

38825

38826

38827

38828

38829

38830

38831

38832

38833

38834

38835

38836

38837

38838

38839

38840

38841

38842

38843

38844

38845

38846

38847

38848

38849

38850

38851

38852

38853

38854

38855

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces readdir()

The readdir_r() function may buffer several directory entries per actual read operation; the
readdir_r() function shall mark for update the st_atime field of the directory each time the
directory is actually read.

Applications wishing to check for error situations should set errno to 0 before calling readdir(). If
errno is set to non-zero on return, an error occurred.

RETURN VALUE
Upon successful completion, readdir() shall return a pointer to an object of type struct dirent.
When an error is encountered, a null pointer shall be returned and errno shall be set to indicate
the error. When the end of the directory is encountered, a null pointer shall be returned and
errno is not changed.

If successful, the readdir_r() function shall return zero; otherwise, an error number shall be
returned to indicate the error.

ERRORS
The readdir() and readdir_r() functions shall fail if:

[EOVERFLOW] One of the values in the structure to be returned cannot be represented
correctly.

The readdir() and readdir_r() functions may fail if:

[EBADF] The dirp argument does not refer to an open directory stream.

[ENOENT] The current position of the directory stream is invalid.

EXAMPLES
The following sample program searches the current directory for each of the arguments supplied
on the command line.

#include <dirent.h>
#include <errno.h>
#include <stdio.h>
#include <string.h>

static void lookup(const char *arg)
{

DIR *dirp;
struct dirent *dp;

if ((dirp = opendir(".")) == NULL) {
perror("couldn’t open ’.’");
return;

}

do {
errno = 0;
if ((dp = readdir(dirp)) != NULL) {

if (strcmp(dp->d_name, arg) != 0)
continue;

(void) printf("found %s\n", arg);
(void) closedir(dirp);

return;

}
} w hile (dp != NULL);

if (errno != 0)
perror("error reading directory");

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1253

38856

38857

38858

38859

38860

38861

38862

38863

38864

38865

38866

38867

38868

38869

38870

38871

38872

38873

38874

38875

38876

38877

38878

38879

38880

38881

38882

38883

38884

38885

38886

38887

38888

38889

38890

38891

38892

38893

38894

38895

38896

38897

38898

38899

38900

38901

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

readdir() System Interfaces

else
(void) printf("failed to find %s\n", arg);

(void) closedir(dirp);
return;

}

int main(int argc, char *argv[])
{

int i;
for (i = 1; i < argc; i++)

lookup(argv[i]);
return (0);

}

APPLICATION USAGE
The readdir() function should be used in conjunction with opendir(), closedir(), and rewinddir() to
examine the contents of the directory.

The readdir_r() function is thread-safe and shall return values in a user-supplied buffer instead
of possibly using a static data area that may be overwritten by each call.

RATIONALE
The returned value of readdir() merely represents a directory entry. No equivalence should be
inferred.

Historical implementations of readdir() obtain multiple directory entries on a single read
operation, which permits subsequent readdir() operations to operate from the buffered
information. Any wording that required each successful readdir() operation to mark the
directory st_atime field for update would disallow such historical performance-oriented
implementations.

Since readdir() returns NULL when it detects an error and when the end of the directory is
encountered, an application that needs to tell the difference must set errno to zero before the call
and check it if NULL is returned. Since the function must not change errno in the second case
and must set it to a non-zero value in the first case, a zero errno after a call returning NULL
indicates end-of-directory; otherwise, an error.

Routines to deal with this problem more directly were proposed:

int derror (dirp)
DIR * dirp;

void clearderr (dirp)
DIR * dirp;

The first would indicate whether an error had occurred, and the second would clear the error
indication. The simpler method involving errno was adopted instead by requiring that readdir()
not change errno when end-of-directory is encountered.

An error or signal indicating that a directory has changed while open was considered but
rejected.

The thread-safe version of the directory reading function returns values in a user-supplied buffer
instead of possibly using a static data area that may be overwritten by each call. Either the
{NAME_MAX} compile-time constant or the corresponding pathconf() option can be used to
determine the maximum sizes of returned pathnames.

1254 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

38902

38903

38904

38905

38906

38907

38908

38909

38910

38911

38912

38913

38914

38915

38916

38917

38918

38919

38920

38921

38922

38923

38924

38925

38926

38927

38928

38929

38930

38931

38932

38933

38934

38935

38936

38937

38938

38939

38940

38941

38942

38943

38944

38945

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces readdir()

FUTURE DIRECTIONS
None.

SEE ALSO
closedir(), dirfd(), exec , fdopendir(), fstatat(), rewinddir(), symlink(), the Base Definitions volume
of IEEE Std 1003.1-200x, <dirent.h>, <sys/types.h>

CHANGE HISTORY
First released in Issue 2.

Issue 5
Large File Summit extensions are added.

The readdir_r() function is included for alignment with the POSIX Threads Extension.

A note indicating that the readdir() function need not be reentrant is added to the
DESCRIPTION.

Issue 6
The readdir_r() function is marked as part of the Thread-Safe Functions option.

The Open Group Corrigendum U026/7 is applied, correcting the prototype for readdir_r().

The Open Group Corrigendum U026/8 is applied, clarifying the wording of the successful
return for the readdir_r() function.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
required for conforming implementations of previous POSIX specifications, it was not
required for UNIX applications.

• A statement is added to the DESCRIPTION indicating the disposition of certain fields in
struct dirent when an entry refers to a symbolic link.

• The [EOVERFLOW] mandatory error condition is added. This change is to support large
files.

• The [ENOENT] optional error condition is added.

The APPLICATION USAGE section is updated to include a note on the thread-safe function and
its avoidance of possibly using a static data area.

The restrict keyword is added to the readdir_r() prototype for alignment with the
ISO/IEC 9899: 1999 standard.

IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/50 is applied, replacing the EXAMPLES
section with a new example.

Issue 7
Austin Group Interpretation 1003.1-2001 #059 is applied, updating the ERRORS section.

The readdir_r() function is moved from the Thread-Safe Functions option to the Base.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1255

38946

38947

38948

38949

38950

38951

38952

38953

38954

38955

38956

38957

38958

38959

38960

38961

38962

38963

38964

38965

38966

38967

38968

38969

38970

38971

38972

38973

38974

38975

38976

38977

38978

38979

38980

38981

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

readlink() System Interfaces

NAME
readlink, readlinkat — read the contents of a symbolic link relative to a directory file descriptor

SYNOPSIS
#include <unistd.h>

ssize_t readlink(const char *restrict path, c har *restrict buf,
size_t bufsize);

ssize_t readlinkat(int fd, c onst char * path, c har * buf,
size_t bufsize);

DESCRIPTION
The readlink() function shall place the contents of the symbolic link referred to by path in the
buffer buf which has size bufsize. If the number of bytes in the symbolic link is less than bufsize,
the contents of the remainder of buf are unspecified. If the buf argument is not large enough to
contain the link content, the first bufsize bytes shall be placed in buf .

If the value of bufsize is greater than {SSIZE_MAX}, the result is implementation-defined.

The readlinkat() function shall be equivalent to the readlink() function except in the case where
path specifies a relative path. In this case the symbolic link whose content is read is relative to the
directory associated with the file descriptor fd instead of the current working directory. It is
unspecified whether directory searches are permitted based on whether the file was opened
with search permission or on the current permissions of the directory underlying the file
descriptor.

If readlinkat() is passed the special value AT_FDCWD in the fd parameter, the current working
directory is used and the behavior shall be identical to a call to readlink().

RETURN VALUE
Upon successful completion, readlink() shall return the count of bytes placed in the buffer.
Otherwise, it shall return a value of −1, leave the buffer unchanged, and set errno to indicate the
error.

Upon successful completion, the readlinkat() function shall return 0. Otherwise, it shall return −1
and set errno to indicate the error.

ERRORS
These functions shall fail if:

[EACCES] Search permission is denied for a component of the path prefix of path.

[EINVAL] The path argument names a file that is not a symbolic link.

[EIO] An I/O error occurred while reading from the file system.

[ELOOP] A loop exists in symbolic links encountered during resolution of the path
argument.

[ENAMETOOLONG]
The length of the path argument exceeds {PATH_MAX} or a pathname
component is longer than {NAME_MAX}.

[ENOENT] A component of path does not name an existing file or path is an empty string.

[ENOTDIR] A component of the path prefix is not a directory.

The readlinkat() function shall fail if:

1256 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

38982

38983

38984

38985

38986

38987

38988

38989

38990

38991

38992

38993

38994

38995

38996

38997

38998

38999

39000

39001

39002

39003

39004

39005

39006

39007

39008

39009

39010

39011

39012

39013

39014

39015

39016

39017

39018

39019

39020

39021

39022

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces readlink()

[EBADF] The path argument does not specify an absolute path and the fd argument is
neither AT_FDCWD nor a valid file descriptor open for searching.

These functions may fail if:

[EACCES] Read permission is denied for the directory.

[ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during
resolution of the path argument.

[ENAMETOOLONG]
As a result of encountering a symbolic link in resolution of the path argument,
the length of the substituted pathname string exceeded {PATH_MAX}.

The readlinkat() function may fail if:

[ENOTDIR] The path argument is not an absolute path and fd is neither AT_FDCWD nor a
file descriptor associated with a directory.

EXAMPLES

Reading the Name of a Symbolic Link

The following example shows how to read the name of a symbolic link named /modules/pass1.

#include <unistd.h>

char buf[1024];
ssizet_t len;
...
if ((len = readlink("/modules/pass1", buf, sizeof(buf)-1)) != -1)

buf[len] = ’\0’;

APPLICATION USAGE
Conforming applications should not assume that the returned contents of the symbolic link are
null-terminated.

RATIONALE
Since IEEE Std 1003.1-200x does not require any association of file times with symbolic links,
there is no requirement that file times be updated by readlink(). The type associated with bufsiz
is a size_t in order to be consistent with both the ISO C standard and the definition of read().
The behavior specified for readlink() when bufsiz is zero represents historical practice. For this
case, the standard developers considered a change whereby readlink() would return the number
of non-null bytes contained in the symbolic link with the buffer buf remaining unchanged;
however, since the stat structure member st_size value can be used to determine the size of
buffer necessary to contain the contents of the symbolic link as returned by readlink(), this
proposal was rejected, and the historical practice retained.

The purpose of the readlinkat() function is to read the content of symbolic links in directories
other than the current working directory without exposure to race conditions. Any part of the
path of a file could be changed in parallel to a call to readlink(), resulting in unspecified behavior.
By opening a file descriptor for the target directory and using the readlinkat() function it can be
guaranteed that the symbolic link read is located relative to the desired directory.

FUTURE DIRECTIONS
None.

SEE ALSO
fstatat(), symlink(), the Base Definitions volume of IEEE Std 1003.1-200x, <unistd.h>

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1257

39023

39024

39025

39026

39027

39028

39029

39030

39031

39032

39033

39034

39035

39036

39037

39038

39039

39040

39041

39042

39043

39044

39045

39046

39047

39048

39049

39050

39051

39052

39053

39054

39055

39056

39057

39058

39059

39060

39061

39062

39063

39064

39065

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

readlink() System Interfaces

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Issue 6
The return type is changed to ssize_t, to align with the IEEE P1003.1a draft standard.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• This function is made mandatory.

• In this function it is possible for the return value to exceed the range of the type ssize_t
(since size_t has a larger range of positive values than ssize_t). A sentence restricting the
size of the size_t object is added to the description to resolve this conflict.

The following changes are made for alignment with the ISO POSIX-1: 1996 standard:

• The FUTURE DIRECTIONS section is changed to None.

The following changes were made to align with the IEEE P1003.1a draft standard:

• The [ELOOP] optional error condition is added.

The restrict keyword is added to the readlink() prototype for alignment with the
ISO/IEC 9899: 1999 standard.

Issue 7
The readlinkat() function is added from The Open Group Technical Standard, 2006, Extended
API Set Part 2.

1258 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

39066

39067

39068

39069

39070

39071

39072

39073

39074

39075

39076

39077

39078

39079

39080

39081

39082

39083

39084

39085

39086

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces readlinkat()

NAME
readlinkat — read the contents of a symbolic link relative to a directory file descriptor

SYNOPSIS
#include <unistd.h>

ssize_t readlinkat(int fd, c onst char * path, c har * buf,
size_t bufsize);

DESCRIPTION
Refer to readlink().

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1259

39087

39088

39089

39090

39091

39092

39093

39094

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

readv() System Interfaces

NAME
readv — read a vector

SYNOPSIS
XSI #include <sys/uio.h>

ssize_t readv(int fildes, c onst struct iovec * iov, i nt iovcnt);

DESCRIPTION
The readv() function shall be equivalent to read(), except as described below. The readv()
function shall place the input data into the iovcnt buffers specified by the members of the iov
array: iov[0], iov[1], . . ., iov[iovcnt−1]. The iovcnt argument is valid if greater than 0 and less than
or equal to {IOV_MAX}.

Each iovec entry specifies the base address and length of an area in memory where data should
be placed. The readv() function shall always fill an area completely before proceeding to the
next.

Upon successful completion, readv() shall mark for update the st_atime field of the file.

RETURN VALUE
Refer to read().

ERRORS
Refer to read().

In addition, the readv() function shall fail if:

[EINVAL] The sum of the iov_len values in the iov array overflowed an ssize_t.

The readv() function may fail if:

[EINVAL] The iovcnt argument was less than or equal to 0, or greater than {IOV_MAX}.

EXAMPLES

Reading Data into an Array

The following example reads data from the file associated with the file descriptor fd into the
buffers specified by members of the iov array.

#include <sys/types.h>
#include <sys/uio.h>
#include <unistd.h>
...
ssize_t bytes_read;
int fd;
char buf0[20];
char buf1[30];
char buf2[40];
int iovcnt;
struct iovec iov[3];

iov[0].iov_base = buf0;
iov[0].iov_len = sizeof(buf0);
iov[1].iov_base = buf1;
iov[1].iov_len = sizeof(buf1);
iov[2].iov_base = buf2;

1260 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

39095

39096

39097

39098

39099

39100

39101

39102

39103

39104

39105

39106

39107

39108

39109

39110

39111

39112

39113

39114

39115

39116

39117

39118

39119

39120

39121

39122

39123

39124

39125

39126

39127

39128

39129

39130

39131

39132

39133

39134

39135

39136

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces readv()

iov[2].iov_len = sizeof(buf2);
...
iovcnt = sizeof(iov) / sizeof(struct iovec);

bytes_read = readv(fd, iov, iovcnt);
...

APPLICATION USAGE
None.

RATIONALE
Refer to read().

FUTURE DIRECTIONS
None.

SEE ALSO
read(), writev(), the Base Definitions volume of IEEE Std 1003.1-200x, <sys/uio.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 6
Split out from the read() reference page.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1261

39137

39138

39139

39140

39141

39142

39143

39144

39145

39146

39147

39148

39149

39150

39151

39152

39153

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

realloc() System Interfaces

NAME
realloc — memory reallocator

SYNOPSIS
#include <stdlib.h>

void *realloc(void * ptr, s ize_t size);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

The realloc() function shall change the size of the memory object pointed to by ptr to the size
specified by size. The contents of the object shall remain unchanged up to the lesser of the new
and old sizes. If the new size of the memory object would require movement of the object, the
space for the previous instantiation of the object is freed. If the new size is larger, the contents of
the newly allocated portion of the object are unspecified. If size is 0 and ptr is not a null pointer,
the object pointed to is freed. If the space cannot be allocated, the object shall remain unchanged.

If ptr is a null pointer, realloc() shall be equivalent to malloc() for the specified size.

If ptr does not match a pointer returned earlier by calloc(), malloc(), or realloc() or if the space has
previously been deallocated by a call to free() or realloc(), the behavior is undefined.

The order and contiguity of storage allocated by successive calls to realloc() is unspecified. The
pointer returned if the allocation succeeds shall be suitably aligned so that it may be assigned to
a pointer to any type of object and then used to access such an object in the space allocated (until
the space is explicitly freed or reallocated). Each such allocation shall yield a pointer to an object
disjoint from any other object. The pointer returned shall point to the start (lowest byte address)
of the allocated space. If the space cannot be allocated, a null pointer shall be returned.

RETURN VALUE
Upon successful completion with a size not equal to 0, realloc() shall return a pointer to the
(possibly moved) allocated space. If size is 0, either a null pointer or a unique pointer that can be
successfully passed to free() shall be returned. If there is not enough available memory, realloc()

CX shall return a null pointer and set errno to [ENOMEM].

ERRORS
The realloc() function shall fail if:

CX [ENOMEM] Insufficient memory is available.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

1262 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

39154

39155

39156

39157

39158

39159

39160

39161

39162

39163

39164

39165

39166

39167

39168

39169

39170

39171

39172

39173

39174

39175

39176

39177

39178

39179

39180

39181

39182

39183

39184

39185

39186

39187

39188

39189

39190

39191

39192

39193

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces realloc()

SEE ALSO
calloc(), free(), malloc(), the Base Definitions volume of IEEE Std 1003.1-200x, <stdlib.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
Extensions beyond the ISO C standard are marked.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• In the RETURN VALUE section, if there is not enough available memory, the setting of
errno to [ENOMEM] is added.

• The [ENOMEM] error condition is added.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1263

39194

39195

39196

39197

39198

39199

39200

39201

39202

39203

39204

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

realpath() System Interfaces

NAME
realpath — resolve a pathname

SYNOPSIS
XSI #include <stdlib.h>

char *realpath(const char *restrict file_name,
char *restrict resolved_name);

DESCRIPTION
The realpath() function shall derive, from the pathname pointed to by file_name, an absolute
pathname that names the same file, whose resolution does not involve ’.’ , ’..’ , or symbolic
links. The generated pathname shall be stored as a null-terminated string, up to a maximum of
{PATH_MAX} bytes, in the buffer pointed to by resolved_name.

If resolved_name is a null pointer, the behavior of realpath() is implementation-defined.

RETURN VALUE
Upon successful completion, realpath() shall return a pointer to the resolved name. Otherwise,
realpath() shall return a null pointer and set errno to indicate the error, and the contents of the
buffer pointed to by resolved_name are undefined.

ERRORS
The realpath() function shall fail if:

[EACCES] Read or search permission was denied for a component of file_name.

[EINVAL] The file_name argument is a null pointer.

[EIO] An error occurred while reading from the file system.

[ELOOP] A loop exists in symbolic links encountered during resolution of the file_name
argument.

[ENAMETOOLONG]
The length of the file_name argument exceeds {PATH_MAX} or a pathname
component is longer than {NAME_MAX}.

[ENOENT] A component of file_name does not name an existing file or file_name points to
an empty string.

[ENOTDIR] A component of the path prefix is not a directory.

The realpath() function may fail if:

[ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during
resolution of the file_name argument.

[ENAMETOOLONG]
Pathname resolution of a symbolic link produced an intermediate result
whose length exceeds {PATH_MAX}.

[ENOMEM] Insufficient storage space is available.

1264 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

39205

39206

39207

39208

39209

39210

39211

39212

39213

39214

39215

39216

39217

39218

39219

39220

39221

39222

39223

39224

39225

39226

39227

39228

39229

39230

39231

39232

39233

39234

39235

39236

39237

39238

39239

39240

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces realpath()

EXAMPLES

Generating an Absolute Pathname

The following example generates an absolute pathname for the file identified by the symlinkpath
argument. The generated pathname is stored in the actualpath array.

#include <stdlib.h>
...
char *symlinkpath = "/tmp/symlink/file";
char actualpath [PATH_MAX+1];
char *ptr;

ptr = realpath(symlinkpath, actualpath);

APPLICATION USAGE
None.

RATIONALE
Since the maximum pathname length is arbitrary unless {PATH_MAX} is defined, an application
generally cannot supply a resolved_name buffer with size {{PATH_MAX}+1}.

FUTURE DIRECTIONS
In the future, passing a null pointer to realpath() for the resolved_name argument may be defined
to have realpath() allocate space for the generated pathname.

SEE ALSO
getcwd(), sysconf(), the Base Definitions volume of IEEE Std 1003.1-200x, <stdlib.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Issue 6
The restrict keyword is added to the realpath() prototype for alignment with the
ISO/IEC 9899: 1999 standard.

The wording of the mandatory [ELOOP] error condition is updated, and a second optional
[ELOOP] error condition is added.

IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/51 is applied, adding new text to the
DESCRIPTION for the case when resolved_name is a null pointer, changing the [EINVAL] error
text, adding text to the RATIONALE, and adding text to FUTURE DIRECTIONS.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/110 is applied, updating the ERRORS
section to refer to the file_name argument, rather than a non-existent path argument.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1265

39241

39242

39243

39244

39245

39246

39247

39248

39249

39250

39251

39252

39253

39254

39255

39256

39257

39258

39259

39260

39261

39262

39263

39264

39265

39266

39267

39268

39269

39270

39271

39272

39273

39274

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

recv() System Interfaces

NAME
recv — receive a message from a connected socket

SYNOPSIS
#include <sys/socket.h>

ssize_t recv(int socket, v oid * buffer, s ize_t length, i nt flags);

DESCRIPTION
The recv() function shall receive a message from a connection-mode or connectionless-mode
socket. It is normally used with connected sockets because it does not permit the application to
retrieve the source address of received data.

The recv() function takes the following arguments:

socket Specifies the socket file descriptor.

buffer Points to a buffer where the message should be stored.

length Specifies the length in bytes of the buffer pointed to by the buffer argument.

flags Specifies the type of message reception. Values of this argument are formed by
logically OR’ing zero or more of the following values:

MSG_PEEK Peeks at an incoming message. The data is treated as unread and
the next recv() or similar function shall still return this data.

MSG_OOB Requests out-of-band data. The significance and semantics of
out-of-band data are protocol-specific.

MSG_WAITALL On SOCK_STREAM sockets this requests that the function block
until the full amount of data can be returned. The function may
return the smaller amount of data if the socket is a message-
based socket, if a signal is caught, if the connection is terminated,
if MSG_PEEK was specified, or if an error is pending for the
socket.

The recv() function shall return the length of the message written to the buffer pointed to by the
buffer argument. For message-based sockets, such as SOCK_DGRAM and SOCK_SEQPACKET,
the entire message shall be read in a single operation. If a message is too long to fit in the
supplied buffer, and MSG_PEEK is not set in the flags argument, the excess bytes shall be
discarded. For stream-based sockets, such as SOCK_STREAM, message boundaries shall be
ignored. In this case, data shall be returned to the user as soon as it becomes available, and no
data shall be discarded.

If the MSG_WAITALL flag is not set, data shall be returned only up to the end of the first
message.

If no messages are available at the socket and O_NONBLOCK is not set on the socket’s file
descriptor, recv() shall block until a message arrives. If no messages are available at the socket
and O_NONBLOCK is set on the socket’s file descriptor, recv() shall fail and set errno to
[EAGAIN] or [EWOULDBLOCK].

RETURN VALUE
Upon successful completion, recv() shall return the length of the message in bytes. If no
messages are available to be received and the peer has performed an orderly shutdown, recv()
shall return 0. Otherwise, −1 shall be returned and errno set to indicate the error.

1266 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

39275

39276

39277

39278

39279

39280

39281

39282

39283

39284

39285

39286

39287

39288

39289

39290

39291

39292

39293

39294

39295

39296

39297

39298

39299

39300

39301

39302

39303

39304

39305

39306

39307

39308

39309

39310

39311

39312

39313

39314

39315

39316

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces recv()

ERRORS
The recv() function shall fail if:

[EAGAIN] or [EWOULDBLOCK]
The socket’s file descriptor is marked O_NONBLOCK and no data is waiting
to be received; or MSG_OOB is set and no out-of-band data is available and
either the socket’s file descriptor is marked O_NONBLOCK or the socket does
not support blocking to await out-of-band data.

[EBADF] The socket argument is not a valid file descriptor.

[ECONNRESET] A connection was forcibly closed by a peer.

[EINTR] The recv() function was interrupted by a signal that was caught, before any
data was available.

[EINVAL] The MSG_OOB flag is set and no out-of-band data is available.

[ENOTCONN] A receive is attempted on a connection-mode socket that is not connected.

[ENOTSOCK] The socket argument does not refer to a socket.

[EOPNOTSUPP] The specified flags are not supported for this socket type or protocol.

[ETIMEDOUT] The connection timed out during connection establishment, or due to a
transmission timeout on active connection.

The recv() function may fail if:

[EIO] An I/O error occurred while reading from or writing to the file system.

[ENOBUFS] Insufficient resources were available in the system to perform the operation.

[ENOMEM] Insufficient memory was available to fulfill the request.

EXAMPLES
None.

APPLICATION USAGE
The recv() function is equivalent to recvfrom() with a zero address_len argument, and to read() if
no flags are used.

The select() and poll() functions can be used to determine when data is available to be received.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
poll(), read(), recvmsg(), recvfrom(), select(),

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

recvfrom() System Interfaces

NAME
recvfrom — receive a message from a socket

SYNOPSIS
#include <sys/socket.h>

ssize_t recvfrom(int socket, v oid *restrict buffer, s ize_t length,
int flags, s truct sockaddr *restrict address,
socklen_t *restrict address_len);

DESCRIPTION
The recvfrom() function shall receive a message from a connection-mode or connectionless-mode
socket. It is normally used with connectionless-mode sockets because it permits the application
to retrieve the source address of received data.

The recvfrom() function takes the following arguments:

socket Specifies the socket file descriptor.

buffer Points to the buffer where the message should be stored.

length Specifies the length in bytes of the buffer pointed to by the buffer argument.

flags Specifies the type of message reception. Values of this argument are formed by
logically OR’ing zero or more of the following values:

MSG_PEEK Peeks at an incoming message. The data is treated as unread
and the next recvfrom() or similar function shall still return
this data.

MSG_OOB Requests out-of-band data. The significance and semantics
of out-of-band data are protocol-specific.

MSG_WAITALL On SOCK_STREAM sockets this requests that the function
block until the full amount of data can be returned. The
function may return the smaller amount of data if the socket
is a message-based socket, if a signal is caught, if the
connection is terminated, if MSG_PEEK was specified, or if
an error is pending for the socket.

address A null pointer, or points to a sockaddr structure in which the sending address
is to be stored. The length and format of the address depend on the address
family of the socket.

address_len Specifies the length of the sockaddr structure pointed to by the address
argument.

The recvfrom() function shall return the length of the message written to the buffer pointed to by
RS the buffer argument. For message-based sockets, such as SOCK_RAW, SOCK_DGRAM, and

SOCK_SEQPACKET, the entire message shall be read in a single operation. If a message is too
long to fit in the supplied buffer, and MSG_PEEK is not set in the flags argument, the excess
bytes shall be discarded. For stream-based sockets, such as SOCK_STREAM, message
boundaries shall be ignored. In this case, data shall be returned to the user as soon as it becomes
available, and no data shall be discarded.

If the MSG_WAITALL flag is not set, data shall be returned only up to the end of the first
message.

Not all protocols provide the source address for messages. If the address argument is not a null
pointer and the protocol provides the source address of messages, the source address of the

1268 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

39353

39354

39355

39356

39357

39358

39359

39360

39361

39362

39363

39364

39365

39366

39367

39368

39369

39370

39371

39372

39373

39374

39375

39376

39377

39378

39379

39380

39381

39382

39383

39384

39385

39386

39387

39388

39389

39390

39391

39392

39393

39394

39395

39396

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces recvfrom()

received message shall be stored in the sockaddr structure pointed to by the address argument,
and the length of this address shall be stored in the object pointed to by the address_len
argument.

If the actual length of the address is greater than the length of the supplied sockaddr structure,
the stored address shall be truncated.

If the address argument is not a null pointer and the protocol does not provide the source address
of messages, the value stored in the object pointed to by address is unspecified.

If no messages are available at the socket and O_NONBLOCK is not set on the socket’s file
descriptor, recvfrom() shall block until a message arrives. If no messages are available at the
socket and O_NONBLOCK is set on the socket’s file descriptor, recvfrom() shall fail and set errno
to [EAGAIN] or [EWOULDBLOCK].

RETURN VALUE
Upon successful completion, recvfrom() shall return the length of the message in bytes. If no
messages are available to be received and the peer has performed an orderly shutdown,
recvfrom() shall return 0. Otherwise, the function shall return −1 and set errno to indicate the
error.

ERRORS
The recvfrom() function shall fail if:

[EAGAIN] or [EWOULDBLOCK]
The socket’s file descriptor is marked O_NONBLOCK and no data is waiting
to be received; or MSG_OOB is set and no out-of-band data is available and
either the socket’s file descriptor is marked O_NONBLOCK or the socket does
not support blocking to await out-of-band data.

[EBADF] The socket argument is not a valid file descriptor.

[ECONNRESET] A connection was forcibly closed by a peer.

[EINTR] A signal interrupted recvfrom() before any data was available.

[EINVAL] The MSG_OOB flag is set and no out-of-band data is available.

[ENOTCONN] A receive is attempted on a connection-mode socket that is not connected.

[ENOTSOCK] The socket argument does not refer to a socket.

[EOPNOTSUPP] The specified flags are not supported for this socket type.

[ETIMEDOUT] The connection timed out during connection establishment, or due to a
transmission timeout on active connection.

The recvfrom() function may fail if:

[EIO] An I/O error occurred while reading from or writing to the file system.

[ENOBUFS] Insufficient resources were available in the system to perform the operation.

[ENOMEM] Insufficient memory was available to fulfill the request.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1269

39397

39398

39399

39400

39401

39402

39403

39404

39405

39406

39407

39408

39409

39410

39411

39412

39413

39414

39415

39416

39417

39418

39419

39420

39421

39422

39423

39424

39425

39426

39427

39428

39429

39430

39431

39432

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

recvfrom() System Interfaces

EXAMPLES
None.

APPLICATION USAGE
The select() and poll() functions can be used to determine when data is available to be received.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
poll(), read(), recv(), recvmsg(), select(), send(), sendmsg(), sendto(), shutdown(), socket(), write(),
the Base Definitions volume of IEEE Std 1003.1-200x, <sys/socket.h>

CHANGE HISTORY
First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

1270 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

39433

39434

39435

39436

39437

39438

39439

39440

39441

39442

39443

39444

39445

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces recvmsg()

NAME
recvmsg — receive a message from a socket

SYNOPSIS
#include <sys/socket.h>

ssize_t recvmsg(int socket, s truct msghdr * message, i nt flags);

DESCRIPTION
The recvmsg() function shall receive a message from a connection-mode or connectionless-mode
socket. It is normally used with connectionless-mode sockets because it permits the application
to retrieve the source address of received data.

The recvmsg() function takes the following arguments:

socket Specifies the socket file descriptor.

message Points to a msghdr structure, containing both the buffer to store the source
address and the buffers for the incoming message. The length and format of
the address depend on the address family of the socket. The msg_flags member
is ignored on input, but may contain meaningful values on output.

flags Specifies the type of message reception. Values of this argument are formed by
logically OR’ing zero or more of the following values:

MSG_OOB Requests out-of-band data. The significance and semantics
of out-of-band data are protocol-specific.

MSG_PEEK Peeks at the incoming message.

MSG_WAITALL On SOCK_STREAM sockets this requests that the function
block until the full amount of data can be returned. The
function may return the smaller amount of data if the socket
is a message-based socket, if a signal is caught, if the
connection is terminated, if MSG_PEEK was specified, or if
an error is pending for the socket.

The recvmsg() function shall receive messages from unconnected or connected sockets and shall
return the length of the message.

The recvmsg() function shall return the total length of the message. For message-based sockets,
such as SOCK_DGRAM and SOCK_SEQPACKET, the entire message shall be read in a single
operation. If a message is too long to fit in the supplied buffers, and MSG_PEEK is not set in the
flags argument, the excess bytes shall be discarded, and MSG_TRUNC shall be set in the
msg_flags member of the msghdr

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

recvmsg() System Interfaces

required. The msg_iov and msg_iovlen fields are used to specify where the received data shall be
stored. msg_iov points to an array of iovec structures; msg_iovlen shall be set to the dimension of
this array. In each iovec structure, the iov_base field specifies a storage area and the iov_len field
gives its size in bytes. Each storage area indicated by msg_iov is filled with received data in turn
until all of the received data is stored or all of the areas have been filled.

Upon successful completion, the msg_flags member of the message header shall be the bitwise-
inclusive OR of all of the following flags that indicate conditions detected for the received
message:

MSG_EOR End-of-record was received (if supported by the protocol).

MSG_OOB Out-of-band data was received.

MSG_TRUNC Normal data was truncated.

MSG_CTRUNC Control data was truncated.

RETURN VALUE
Upon successful completion, recvmsg() shall return the length of the message in bytes. If no
messages are available to be received and the peer has performed an orderly shutdown,
recvmsg() shall return 0. Otherwise, −1 shall be returned and errno set to indicate the error.

ERRORS
The recvmsg() function shall fail if:

[EAGAIN] or [EWOULDBLOCK]
The socket’s file descriptor is marked O_NONBLOCK and no data is waiting
to be received; or MSG_OOB is set and no out-of-band data is available and
either the socket’s file descriptor is marked O_NONBLOCK or the socket does
not support blocking to await out-of-band data.

[EBADF] The socket argument is not a valid open file descriptor.

[ECONNRESET] A connection was forcibly closed by a peer.

[EINTR] This function was interrupted by a signal before any data was available.

[EINVAL] The sum of the iov_len values overflows a ssize_t, or the MSG_OOB flag is set
and no out-of-band data is available.

[EMSGSIZE] The msg_iovlen member of the msghdr structure pointed to by message is less
than or equal to 0, or is greater than {IOV_MAX}.

[ENOTCONN] A receive is attempted on a connection-mode socket that is not connected.

[ENOTSOCK] The socket argument does not refer to a socket.

[EOPNOTSUPP] The specified flags are not supported for this socket type.

[ETIMEDOUT] The connection timed out during connection establishment, or due to a
transmission timeout on active connection.

The recvmsg() function may fail if:

[EIO] An I/O error occurred while reading from or writing to the file system.

[ENOBUFS] Insufficient resources were available in the system to perform the operation.

[ENOMEM] Insufficient memory was available to fulfill the request.

1272 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

39490

39491

39492

39493

39494

39495

39496

39497

39498

39499

39500

39501

39502

39503

39504

39505

39506

39507

39508

39509

39510

39511

39512

39513

39514

39515

39516

39517

39518

39519

39520

39521

39522

39523

39524

39525

39526

39527

39528

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces recvmsg()

EXAMPLES
None.

APPLICATION USAGE
The select() and poll() functions can be used to determine when data is available to be received.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
poll(), recv(), recvfrom(), select(), send(), sendmsg(), sendto(), shutdown(), socket(), the Base
Definitions volume of IEEE Std 1003.1-200x, <sys/socket.h>

CHANGE HISTORY
First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1273

39529

39530

39531

39532

39533

39534

39535

39536

39537

39538

39539

39540

39541

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

regcomp() System Interfaces

NAME
regcomp, regerror, regexec, regfree — regular expression matching

SYNOPSIS
#include <regex.h>

int regcomp(regex_t *restrict preg, c onst char *restrict pattern,
int cflags);

size_t regerror(int errcode, c onst regex_t *restrict preg,
char *restrict errbuf, s ize_t errbuf_size);

int regexec(const regex_t *restrict preg, c onst char *restrict string,
size_t nmatch, r egmatch_t pmatch[restrict], int eflags);

void regfree(regex_t * preg);

DESCRIPTION
These functions interpret basic and extended regular expressions as described in the Base
Definitions volume of IEEE Std 1003.1-200x, Chapter 9, Regular Expressions.

The regex_t structure is defined in <regex.h> and contains at least the following member:

Member Type Member Name Description

size_t re_nsub Number of parenthesized subexpressions.

The regmatch_t structure is defined in <regex.h> and contains at least the following members:

Member Type Member Name Description

regoff_t rm_so Byte offset from start of string to start of substring.
regoff_t rm_eo Byte offset from start of string of the first character

after the end of substring.

The regcomp() function shall compile the regular expression contained in the string pointed to by
the pattern argument and place the results in the structure pointed to by preg. The cflags
argument is the bitwise-inclusive OR of zero or more of the following flags, which are defined in
the <regex.h> header:

REG_EXTENDED Use Extended Regular Expressions.

REG_ICASE Ignore case in match. (See the Base Definitions volume of
IEEE Std 1003.1-200x, Chapter 9, Regular Expressions.)

REG_NOSUB Report only success/fail in regexec().

REG_NEWLINE Change the handling of <newline>s, as described in the text.

The default regular expression type for pattern is a Basic Regular Expression. The application can
specify Extended Regular Expressions using the REG_EXTENDED cflags flag.

If the REG_NOSUB flag was not set in cflags, then regcomp() shall set re_nsub to the number of
parenthesized subexpressions (delimited by "\(\)" in basic regular expressions or "()" in
extended regular expressions) found in pattern.

The regexec() function compares the null-terminated string specified by string with the compiled
regular expression preg initialized by a previous call to regcomp(). If it finds a match, regexec()
shall return 0; otherwise, it shall return non-zero indicating either no match or an error. The
eflags argument is the bitwise-inclusive OR of zero or more of the following flags, which are
defined in the <regex.h> header:

1274 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

39542

39543

39544

39545

39546

39547

39548

39549

39550

39551

39552

39553

39554

39555

39556

39557

39558

39559

39560

39561

39562

39563

39564

39565

39566

39567

39568

39569

39570

39571

39572

39573

39574

39575

39576

39577

39578

39579

39580

39581

39582

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces regcomp()

REG_NOTBOL The first character of the string pointed to by string is not the beginning of the
line. Therefore, the circumflex character (’ˆ’), when taken as a special
character, shall not match the beginning of string.

REG_NOTEOL The last character of the string pointed to by string is not the end of the line.
Therefore, the dollar sign (’$’), when taken as a special character, shall not
match the end of string.

If nmatch is 0 or REG_NOSUB was set in the cflags argument to regcomp(), then regexec() shall
ignore the pmatch argument. Otherwise, the application shall ensure that the pmatch argument
points to an array with at least nmatch elements, and regexec() shall fill in the elements of that
array with offsets of the substrings of string that correspond to the parenthesized subexpressions
of pattern: pmatch[i].rm_so shall be the byte offset of the beginning and pmatch[i].rm_eo shall be
one greater than the byte offset of the end of substring i. (Subexpression i begins at the ith
matched open parenthesis, counting from 1.) Offsets in pmatch[0] identify the substring that
corresponds to the entire regular expression. Unused elements of pmatch up to pmatch[nmatch−1]
shall be filled with −1. If there are more than nmatch subexpressions in pattern (pattern itself
counts as a subexpression), then regexec() shall still do the match, but shall record only the first
nmatch substrings.

When matching a basic or extended regular expression, any given parenthesized subexpression
of pattern might participate in the match of several different substrings of string, or it might not
match any substring even though the pattern as a whole did match. The following rules shall be
used to determine which substrings to report in pmatch when matching regular expressions:

1. If subexpression i in a regular expression is not contained within another subexpression,
and it participated in the match several times, then the byte offsets in pmatch[i] shall
delimit the last such match.

2. If subexpression i is not contained within another subexpression, and it did not
participate in an otherwise successful match, the byte offsets in pmatch[i] shall be −1. A
subexpression does not participate in the match when:

’*’ or "\{\}" appears immediately after the subexpression in a basic regular
expression, or ’*’ , ’?’ , or "{ }" appears immediately after the subexpression in
an extended regular expression, and the subexpression did not match (matched 0
times)

or:

’|’ is used in an extended regular expression to select this subexpression or
another, and the other subexpression matched.

3. If subexpression i is contained within another subexpression j, and i is not contained
within any other subexpression that is contained within j, and a match of subexpression j
is reported in pmatch[j], then the match or non-match of subexpression i reported in
pmatch[i] shall be as described in 1. and 2. above, but within the substring reported in
pmatch[j] rather than the whole string. The offsets in pmatch[i] are still relative to the start
of string.

4. If subexpression i is contained in subexpression j, and the byte offsets in pmatch[j] are −1,
then the pointers in pmatch[i] shall also be −1.

5. If subexpression i matched a zero-length string, then both byte offsets in pmatch[i] shall be
the byte offset of the character or null terminator immediately following the zero-length
string.

If, when regexec() is called, the locale is different from when the regular expression was
compiled, the result is undefined.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1275

39583

39584

39585

39586

39587

39588

39589

39590

39591

39592

39593

39594

39595

39596

39597

39598

39599

39600

39601

39602

39603

39604

39605

39606

39607

39608

39609

39610

39611

39612

39613

39614

39615

39616

39617

39618

39619

39620

39621

39622

39623

39624

39625

39626

39627

39628

39629

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

regcomp() System Interfaces

If REG_NEWLINE is not set in cflags, then a <newline> in pattern or string shall be treated as an
ordinary character. If REG_NEWLINE is set, then <newline> shall be treated as an ordinary
character except as follows:

1. A <newline> in string shall not be matched by a period outside a bracket expression or by
any form of a non-matching list (see the Base Definitions volume of IEEE Std 1003.1-200x,
Chapter 9, Regular Expressions).

2. A circumflex (’ˆ’) in pattern, when used to specify expression anchoring (see the Base
Definitions volume of IEEE Std 1003.1-200x, Section 9.3.8, BRE Expression Anchoring),
shall match the zero-length string immediately after a <newline> in string, regardless of
the setting of REG_NOTBOL.

3. A dollar sign (’$’) in pattern, when used to specify expression anchoring, shall match the
zero-length string immediately before a <newline> in string, regardless of the setting of
REG_NOTEOL.

The regfree() function frees any memory allocated by regcomp() associated with preg.

The following constants are defined as error return values:

REG_NOMATCH regexec() failed to match.

REG_BADPAT Invalid regular expression.

REG_ECOLLATE Invalid collating element referenced.

REG_ECTYPE Invalid character class type referenced.

REG_EESCAPE Trailing ’\’ in pattern.

REG_ESUBREG Number in "\digit" invalid or in error.

REG_EBRACK "[]" imbalance.

REG_EPAREN "\(\)" or "()" imbalance.

REG_EBRACE "\{\}" imbalance.

REG_BADBR Content of "\{\}" invalid: not a number, number too large, more than
two numbers, first larger than second.

REG_ERANGE Invalid endpoint in range expression.

REG_ESPACE Out of memory.

REG_BADRPT ’?’ , ’*’ , or ’+’ not preceded by valid regular expression.

The regerror() function provides a mapping from error codes returned by regcomp() and
regexec() to unspecified printable strings. It generates a string corresponding to the value of the
errcode argument, which the application shall ensure is the last non-zero value returned by
regcomp() or regexec() with the given value of preg. If errcode is not such a value, the content of
the generated string is unspecified.

If preg is a null pointer, but errcode is a value returned by a previous call to regexec() or regcomp(),
the regerror() still generates an error string corresponding to the value of errcode, but it might not
be as detailed under some implementations.

If the errbuf_size argument is not 0, regerror() shall place the generated string into the buffer of
size errbuf_size bytes pointed to by errbuf. If the string (including the terminating null) cannot fit
in the buffer, regerror() shall truncate the string and null-terminate the result.

If errbuf_size is 0, regerror() shall ignore the errbuf argument, and return the size of the buffer
needed to hold the generated string.

If the preg argument to regexec() or regfree() is not a compiled regular expression returned by

1276 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

39630

39631

39632

39633

39634

39635

39636

39637

39638

39639

39640

39641

39642

39643

39644

39645

39646

39647

39648

39649

39650

39651

39652

39653

39654

39655

39656

39657

39658

39659

39660

39661

39662

39663

39664

39665

39666

39667

39668

39669

39670

39671

39672

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces regcomp()

regcomp(), the result is undefined. A preg is no longer treated as a compiled regular expression
after it is given to regfree().

RETURN VALUE
Upon successful completion, the regcomp() function shall return 0. Otherwise, it shall return an
integer value indicating an error as described in <regex.h>, and the content of preg is undefined.
If a code is returned, the interpretation shall be as given in <regex.h>.

If regcomp() detects an invalid RE, it may return REG_BADPAT, or it may return one of the error
codes that more precisely describes the error.

Upon successful completion, the regexec() function shall return 0. Otherwise, it shall return
REG_NOMATCH to indicate no match.

Upon successful completion, the regerror() function shall return the number of bytes needed to
hold the entire generated string, including the null termination. If the return value is greater
than errbuf_size, the string returned in the buffer pointed to by errbuf has been truncated.

The regfree() function shall not return a value.

ERRORS
No errors are defined.

EXAMPLES

#include <regex.h>

/*
* Match string against the extended regular expression in
* p attern, treating errors as no match.
*
* Return 1 for match, 0 for no match.
*/

int
match(const char *string, char *pattern)
{

int status;
regex_t re;

if (regcomp(&re, pattern, REG_EXTENDED|REG_NOSUB) != 0) {
return(0); /* Report error. */

}
status = regexec(&re, string, (size_t) 0, NULL, 0);
regfree(&re);
if (status != 0) {

return(0); /* Report error. */
}
return(1);

}

The following demonstrates how the REG_NOTBOL flag could be used with regexec() to find all
substrings in a line that match a pattern supplied by a user. (For simplicity of the example, very
little error checking is done.)

(void) regcomp (&re, pattern, 0);
/* This call to regexec() finds the first match on the line. */
error = regexec (&re, &buffer[0], 1, &pm, 0);
while (error == 0) { /* While matches found. */

/* Substring found between pm.rm_so and pm.rm_eo. */
/* This call to regexec() finds the next match. */

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1277

39673

39674

39675

39676

39677

39678

39679

39680

39681

39682

39683

39684

39685

39686

39687

39688

39689

39690

39691

39692

39693

39694

39695

39696

39697

39698

39699

39700

39701

39702

39703

39704

39705

39706

39707

39708

39709

39710

39711

39712

39713

39714

39715

39716

39717

39718

39719

39720

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

regcomp() System Interfaces

error = regexec (&re, buffer + pm.rm_eo, 1, &pm, REG_NOTBOL);
}

APPLICATION USAGE
An application could use:

regerror(code,preg,(char *)NULL,(size_t)0)

to find out how big a buffer is needed for the generated string, malloc() a buffer to hold the
string, and then call regerror() again to get the string. Alternatively, it could allocate a fixed,
static buffer that is big enough to hold most strings, and then use malloc() to allocate a larger
buffer if it finds that this is too small.

To match a pattern as described in the Shell and Utilities volume of IEEE Std 1003.1-200x, Section
2.13, Pattern Matching Notation, use the fnmatch() function.

RATIONALE
The regexec() function must fill in all nmatch elements of pmatch, where nmatch and pmatch are
supplied by the application, even if some elements of pmatch do not correspond to
subexpressions in pattern. The application writer should note that there is probably no reason
for using a value of nmatch that is larger than preg−>re_nsub+1.

The REG_NEWLINE flag supports a use of RE matching that is needed in some applications like
text editors. In such applications, the user supplies an RE asking the application to find a line
that matches the given expression. An anchor in such an RE anchors at the beginning or end of
any line. Such an application can pass a sequence of <newline>-separated lines to regexec() as a
single long string and specify REG_NEWLINE to regcomp() to get the desired behavior. The
application must ensure that there are no explicit <newline>s in pattern if it wants to ensure that
any match occurs entirely within a single line.

The REG_NEWLINE flag affects the behavior of regexec(), but it is in the cflags parameter to
regcomp() to allow flexibility of implementation. Some implementations will want to generate
the same compiled RE in regcomp() regardless of the setting of REG_NEWLINE and have
regexec() handle anchors differently based on the setting of the flag. Other implementations will
generate different compiled REs based on the REG_NEWLINE.

The REG_ICASE flag supports the operations taken by the grep −i option and the historical
implementations of ex and vi. Including this flag will make it easier for application code to be
written that does the same thing as these utilities.

The substrings reported in pmatch[] are defined using offsets from the start of the string rather
than pointers. This allows type-safe access to both constant and non-constant strings.

The type regoff_t is used for the elements of pmatch[] to ensure that the application can
represent large arrays in memory (important for an application conforming to the Shell and
Utilities volume of IEEE Std 1003.1-200x).

The 1992 edition of this standard required regoff_t to be at least as wide as off_t, to facilitate
future extensions in which the string to be searched is taken from a file. However, these future
extensions have not appeared. The requirement rules out popular implementations with 32-bit
regoff_t and 64-bit off_t, so it has been withdrawn.

The standard developers rejected the inclusion of a regsub() function that would be used to do
substitutions for a matched RE. While such a routine would be useful to some applications, its
utility would be much more limited than the matching function described here. Both RE parsing
and substitution are possible to implement without support other than that required by the
ISO C standard, but matching is much more complex than substituting. The only difficult part of
substitution, given the information supplied by regexec(), is finding the next character in a string
when there can be multi-byte characters. That is a much larger issue, and one that needs a more
general solution.

1278 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

39721

39722

39723

39724

39725

39726

39727

39728

39729

39730

39731

39732

39733

39734

39735

39736

39737

39738

39739

39740

39741

39742

39743

39744

39745

39746

39747

39748

39749

39750

39751

39752

39753

39754

39755

39756

39757

39758

39759

39760

39761

39762

39763

39764

39765

39766

39767

39768

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces regcomp()

The errno variable has not been used for error returns to avoid filling the errno name space for
this feature.

The interface is defined so that the matched substrings rm_sp and rm_ep are in a separate
regmatch_t structure instead of in regex_t. This allows a single compiled RE to be used
simultaneously in several contexts; in main() and a signal handler, perhaps, or in multiple
threads of lightweight processes. (The preg argument to regexec() is declared with type const, so
the implementation is not permitted to use the structure to store intermediate results.) It also
allows an application to request an arbitrary number of substrings from an RE. The number of
subexpressions in the RE is reported in re_nsub in preg. With this change to regexec(),
consideration was given to dropping the REG_NOSUB flag since the user can now specify this
with a zero nmatch argument to regexec(). However, keeping REG_NOSUB allows an
implementation to use a different (perhaps more efficient) algorithm if it knows in regcomp() that
no subexpressions need be reported. The implementation is only required to fill in pmatch if
nmatch is not zero and if REG_NOSUB is not specified. Note that the size_t type, as defined in
the ISO C standard, is unsigned, so the description of regexec() does not need to address
negative values of nmatch.

REG_NOTBOL was added to allow an application to do repeated searches for the same pattern
in a line. If the pattern contains a circumflex character that should match the beginning of a line,
then the pattern should only match when matched against the beginning of the line. Without
the REG_NOTBOL flag, the application could rewrite the expression for subsequent matches,
but in the general case this would require parsing the expression. The need for REG_NOTEOL is
not as clear; it was added for symmetry.

The addition of the regerror() function addresses the historical need for conforming application
programs to have access to error information more than ‘‘Function failed to compile/match your
RE for unknown reasons’’.

This interface provides for two different methods of dealing with error conditions. The specific
error codes (REG_EBRACE, for example), defined in <regex.h>, allow an application to recover
from an error if it is so able. Many applications, especially those that use patterns supplied by a
user, will not try to deal with specific error cases, but will just use regerror() to obtain a human-
readable error message to present to the user.

The regerror() function uses a scheme similar to confstr() to deal with the problem of allocating
memory to hold the generated string. The scheme used by strerror() in the ISO C standard was
considered unacceptable since it creates difficulties for multi-threaded applications.

The preg argument is provided to regerror() to allow an implementation to generate a more
descriptive message than would be possible with errcode alone. An implementation might, for
example, save the character offset of the offending character of the pattern in a field of preg, and
then include that in the generated message string. The implementation may also ignore preg.

A REG_FILENAME flag was considered, but omitted. This flag caused regexec() to match
patterns as described in the Shell and Utilities volume of IEEE Std 1003.1-200x, Section 2.13,
Pattern Matching Notation instead of REs. This service is now provided by the fnmatch()
function.

Notice that there is a difference in philosophy between the ISO POSIX-2: 1993 standard and
IEEE Std 1003.1-200x in how to handle a ‘‘bad’’ regular expression. The ISO POSIX-2: 1993
standard says that many bad constructs ‘‘produce undefined results’’, or that ‘‘the interpretation
is undefined’’. IEEE Std 1003.1-200x, however, says that the interpretation of such REs is
unspecified. The term ‘‘undefined’’ means that the action by the application is an error, of similar
severity to passing a bad pointer to a function.

The regcomp() and regexec() functions are required to accept any null-terminated string as the
pattern argument. If the meaning of the string is ‘‘undefined’’, the behavior of the function is
‘‘unspecified’’. IEEE Std 1003.1-200x does not specify how the functions will interpret the

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1279

39769

39770

39771

39772

39773

39774

39775

39776

39777

39778

39779

39780

39781

39782

39783

39784

39785

39786

39787

39788

39789

39790

39791

39792

39793

39794

39795

39796

39797

39798

39799

39800

39801

39802

39803

39804

39805

39806

39807

39808

39809

39810

39811

39812

39813

39814

39815

39816

39817

39818

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

regcomp() System Interfaces

pattern; they might return error codes, or they might do pattern matching in some completely
unexpected way, but they should not do something like abort the process.

FUTURE DIRECTIONS
None.

SEE ALSO
fnmatch(), glob(), Shell and Utilities volume of IEEE Std 1003.1-200x, Section 2.13, Pattern
Matching Notation, Base Definitions volume of IEEE Std 1003.1-200x, Chapter 9, Regular
Expressions, <regex.h>, <sys/types.h>

CHANGE HISTORY
First released in Issue 4. Derived from the ISO POSIX-2 standard.

Issue 5
Moved from POSIX2 C-language Binding to BASE.

Issue 6
In the SYNOPSIS, the optional include of the <sys/types.h> header is removed.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
required for conforming implementations of previous POSIX specifications, it was not
required for UNIX applications.

The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

The REG_ENOSYS constant is removed.

The restrict keyword is added to the regcomp(), regerror(), and regexec() prototypes for
alignment with the ISO/IEC 9899: 1999 standard.

Issue 7
SD5-XBD-ERN-60 is applied.

1280 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

39819

39820

39821

39822

39823

39824

39825

39826

39827

39828

39829

39830

39831

39832

39833

39834

39835

39836

39837

39838

39839

39840

39841

39842

39843

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces remainder()

NAME
remainder, remainderf, remainderl — remainder function

SYNOPSIS
#include <math.h>

double remainder(double x, d ouble y);
float remainderf(float x, f loat y);
long double remainderl(long double x, l ong double y);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

These functions shall return the floating-point remainder r=x−ny when y is non-zero. The value
n is the integral value nearest the exact value x/y. When | n−x/y |=½, the value n is chosen to
be even.

The behavior of remainder() shall be independent of the rounding mode.

RETURN VALUE
Upon successful completion, these functions shall return the floating-point remainder r=x−ny
when y is non-zero.

On systems that do not support the IEC 60559 Floating-Point option, if y is zero, it is
implementation-defined whether a domain error occurs or zero is returned.

MX If x or y is NaN, a NaN shall be returned.

If x is infinite or y is 0 and the other is non-NaN, a domain error shall occur, and either a NaN (if
supported), or an implementation-defined value shall be returned.

ERRORS
These functions shall fail if:

MX Domain Error The x argument is ±Inf, or the y argument is ±0 and the other argument is non-
NaN.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [EDOM]. If the integer expression (math_errhandling
& MATH_ERREXCEPT) is non-zero, then the invalid floating-point exception
shall be raised.

These functions may fail if:

Domain Error The y argument is zero.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [EDOM]. If the integer expression (math_errhandling
& MATH_ERREXCEPT) is non-zero, then the invalid floating-point exception
shall be raised.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1281

39844

39845

39846

39847

39848

39849

39850

39851

39852

39853

39854

39855

39856

39857

39858

39859

39860

39861

39862

39863

39864

39865

39866

39867

39868

39869

39870

39871

39872

39873

39874

39875

39876

39877

39878

39879

39880

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

remainder() System Interfaces

EXAMPLES
None.

APPLICATION USAGE
On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling &
MATH_ERREXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
abs(), div(), feclearexcept(), fetestexcept(), ldiv(), the Base Definitions volume of
IEEE Std 1003.1-200x, Section 4.18, Treatment of Error Conditions for Mathematical Functions,
<math.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Issue 6
The remainder() function is no longer marked as an extension.

The remainderf() and remainderl() functions are added for alignment with the ISO/IEC 9899: 1999
standard.

The DESCRIPTION, RETURN VALUE, ERRORS, and APPLICATION USAGE sections are
revised to align with the ISO/IEC 9899: 1999 standard.

IEC 60559: 1989 standard floating-point extensions over the ISO/IEC 9899: 1999 standard are
marked.

Issue 7
ISO/IEC 9899: 1999 standard, Technical Corrigendum 2 #55 (SD5-XSH-ERN-82) is applied.

1282 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

39881

39882

39883

39884

39885

39886

39887

39888

39889

39890

39891

39892

39893

39894

39895

39896

39897

39898

39899

39900

39901

39902

39903

39904

39905

39906

39907

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces remove()

NAME
remove — remove a file

SYNOPSIS
#include <stdio.h>

int remove(const char * path);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

The remove() function shall cause the file named by the pathname pointed to by path to be no
longer accessible by that name. A subsequent attempt to open that file using that name shall fail,
unless it is created anew.

CX If path does not name a directory, remove(path) shall be equivalent to unlink(path).

If path names a directory, remove(path) shall be equivalent to rmdir(path).

RETURN VALUE
CX Refer to rmdir() or unlink().

ERRORS
CX Refer to rmdir() or unlink().

EXAMPLES

Removing Access to a File

The following example shows how to remove access to a file named /home/cnd/old_mods.

#include <stdio.h>

int status;
...
status = remove("/home/cnd/old_mods");

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
rmdir(), unlink(), the Base Definitions volume of IEEE Std 1003.1-200x, <stdio.h>

CHANGE HISTORY
First released in Issue 3. Included for alignment with the POSIX.1-1988 standard and the ISO C
standard.

Issue 6
Extensions beyond the ISO C standard are marked.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1283

39908

39909

39910

39911

39912

39913

39914

39915

39916

39917

39918

39919

39920

39921

39922

39923

39924

39925

39926

39927

39928

39929

39930

39931

39932

39933

39934

39935

39936

39937

39938

39939

39940

39941

39942

39943

39944

39945

39946

39947

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

remove() System Interfaces

• The DESCRIPTION, RETURN VALUE, and ERRORS sections are updated so that if path is
not a directory, remove() is equivalent to unlink(), and if it is a directory, it is equivalent to
rmdir().

1284 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

39948

39949

39950

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces remque()

NAME
remque — remove an element from a queue

SYNOPSIS
XSI #include <search.h>

void remque(void * element);

DESCRIPTION
Refer to insque().

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1285

39951

39952

39953

39954

39955

39956

39957

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

remquo() System Interfaces

NAME
remquo, remquof, remquol — remainder functions

SYNOPSIS
#include <math.h>

double remquo(double x, d ouble y, i nt * quo);
float remquof(float x, f loat y, i nt * quo);
long double remquol(long double x, l ong double y, i nt * quo);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

The remquo(), remquof(), and remquol() functions shall compute the same remainder as the
remainder(), remainderf(), and remainderl() functions, respectively. In the object pointed to by quo,
they store a value whose sign is the sign of x/y and whose magnitude is congruent modulo 2n to
the magnitude of the integral quotient of x/y, where n is an implementation-defined integer
greater than or equal to 3. If y is zero, the value stored in the object pointed to by quo is
unspecified.

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-
zero, an error has occurred.

RETURN VALUE
These functions shall return x REM y.

On systems that do not support the IEC 60559 Floating-Point option, if y is zero, it is
implementation-defined whether a domain error occurs or zero is returned.

MX If x or y is NaN, a NaN shall be returned.

If x is ±Inf or y is zero and the other argument is non-NaN, a domain error shall occur, and either
a NaN (if supported), or an implementation-defined value shall be returned.

ERRORS
These functions shall fail if:

MX Domain Error The x argument is ±Inf, or the y argument is ±0 and the other argument is non-
NaN.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [EDOM]. If the integer expression (math_errhandling
& MATH_ERREXCEPT) is non-zero, then the invalid floating-point exception
shall be raised.

These functions may fail if:

Domain Error The y argument is zero.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [EDOM]. If the integer expression (math_errhandling
& MATH_ERREXCEPT) is non-zero, then the invalid floating-point exception
shall be raised.

1286 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

39958

39959

39960

39961

39962

39963

39964

39965

39966

39967

39968

39969

39970

39971

39972

39973

39974

39975

39976

39977

39978

39979

39980

39981

39982

39983

39984

39985

39986

39987

39988

39989

39990

39991

39992

39993

39994

39995

39996

39997

39998

39999

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces remquo()

EXAMPLES
None.

APPLICATION USAGE
On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling &
MATH_ERREXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
These functions are intended for implementing argument reductions which can exploit a few
low-order bits of the quotient. Note that x may be so large in magnitude relative to y that an
exact representation of the quotient is not practical.

FUTURE DIRECTIONS
None.

SEE ALSO
feclearexcept(), fetestexcept(), remainder(), the Base Definitions volume of IEEE Std 1003.1-200x,
Section 4.18, Treatment of Error Conditions for Mathematical Functions, <math.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7
ISO/IEC 9899: 1999 standard, Technical Corrigendum 2 #56 (SD5-XSH-ERN-83) is applied.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1287

40000

40001

40002

40003

40004

40005

40006

40007

40008

40009

40010

40011

40012

40013

40014

40015

40016

40017

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

rename() System Interfaces

NAME
rename, renameat — rename file relative to directory file descriptor

SYNOPSIS
#include <stdio.h>

int rename(const char * old, c onst char * new);
CX int renameat(int oldfd, c onst char * old, i nt newfd,

const char * new);

DESCRIPTION
CX For rename(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of IEEE Std 1003.1-200x defers to the ISO C standard.

The rename() function shall change the name of a file. The old argument points to the pathname
of the file to be renamed. The new argument points to the new pathname of the file.

CX If either the old or new argument names a symbolic link, rename() shall operate on the symbolic
link itself, and shall not resolve the last component of the argument. If the old argument and the
new argument resolve to the same existing file, rename() shall return successfully and perform no
other action.

If the old argument points to the pathname of a file that is not a directory, the new argument shall
not point to the pathname of a directory. If the link named by the new argument exists, it shall be
removed and old renamed to new. In this case, a link named new shall remain visible to other
processes throughout the renaming operation and refer either to the file referred to by new or old
before the operation began. Write access permission is required for both the directory containing
old and the directory containing new.

If the old argument points to the pathname of a directory, the new argument shall not point to the
pathname of a file that is not a directory. If the directory named by the new argument exists, it
shall be removed and old renamed to new. In this case, a link named new shall exist throughout
the renaming operation and shall refer either to the directory referred to by new or old before the
operation began. If new names an existing directory, it shall be required to be an empty directory.

If either pathname argument refers to a path whose final component is either dot or dot-dot,
rename() shall fail.

If the old argument points to a pathname of a symbolic link, the symbolic link shall be renamed.
If the new argument points to a pathname of a symbolic link, the symbolic link shall be removed.

The new pathname shall not contain a path prefix that names old. Write access permission is
required for the directory containing old and the directory containing new. If the old argument
points to the pathname of a directory, write access permission may be required for the directory
named by old, and, if it exists, the directory named by new.

If the link named by the new argument exists and the file’s link count becomes 0 when it is
removed and no process has the file open, the space occupied by the file shall be freed and the
file shall no longer be accessible. If one or more processes have the file open when the last link is
removed, the link shall be removed before rename() returns, but the removal of the file contents
shall be postponed until all references to the file are closed.

Upon successful completion, rename() shall mark for update the st_ctime and st_mtime fields of
the parent directory of each file.

If the rename() function fails for any reason other than [EIO], any file named by new shall be

1288 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

40018

40019

40020

40021

40022

40023

40024

40025

40026

40027

40028

40029

40030

40031

40032

40033

40034

40035

40036

40037

40038

40039

40040

40041

40042

40043

40044

40045

40046

40047

40048

40049

40050

40051

40052

40053

40054

40055

40056

40057

40058

40059

40060

40061

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces rename()

unaffected.

The renameat() function shall be equivalent to the rename() function except in the case where
either old or new specifies a relative path. If old is a relative path, the file to be renamed is located
relative to the directory associated with the file descriptor oldfd instead of the current working
directory. If new is a relative path, the same happens only relative to the directory associated
with newfd. It is unspecified whether directory searches are permitted based on whether the file
was opened with search permission or on the current permissions of the directory underlying
the file descriptor.

If renameat() is passed the special value AT_FDCWD in the oldfd or newfd parameter, the current
working directory shall be used in the determination of the file for the respective path parameter.

RETURN VALUE
CX Upon successful completion, the rename() function shall return 0. Otherwise, it shall return −1,

errno shall be set to indicate the error, and neither the file named by old nor the file named by
new shall be changed or created.

CX Upon successful completion, the renameat() function shall return 0. Otherwise, it shall return −1
and set errno to indicate the error.

ERRORS
CX The rename() and renameat() functions shall fail if:

CX [EACCES] A component of either path prefix denies search permission; or one of the
directories containing old or new denies write permissions; or, write
permission is required and is denied for a directory pointed to by the old or
new arguments.

CX [EBUSY] The directory named by old or new is currently in use by the system or another
process, and the implementation considers this an error.

CX [EEXIST] or [ENOTEMPTY]
The link named by new is a directory that is not an empty directory.

CX [EINVAL] The new directory pathname contains a path prefix that names the old
directory, or either pathname argument contains a final component that is dot
or dot-dot.

CX [EIO] A physical I/O error has occurred.

CX [EISDIR] The new argument points to a directory and the old argument points to a file
that is not a directory.

CX [ELOOP] A loop exists in symbolic links encountered during resolution of the path
argument.

CX [EMLINK] The file named by old is a directory, and the link count of the parent directory
of new would exceed {LINK_MAX}.

CX [ENAMETOOLONG]
The length of the old or new argument exceeds {PATH_MAX} or a pathname
component is longer than {NAME_MAX}.

CX [ENOENT] The link named by old does not name an existing file, or either old or new
points to an empty string.

CX [ENOSPC] The directory that would contain new cannot be extended.

CX [ENOTDIR] A component of either path prefix is not a directory; or the old argument
names a directory and new argument names a non-directory file.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1289

40062

40063

40064

40065

40066

40067

40068

40069

40070

40071

40072

40073

40074

40075

40076

40077

40078

40079

40080

40081

40082

40083

40084

40085

40086

40087

40088

40089

40090

40091

40092

40093

40094

40095

40096

40097

40098

40099

40100

40101

40102

40103

40104

40105

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

rename() System Interfaces

XSI [EPERM] or [EACCES]
The S_ISVTX flag is set on the directory containing the file referred to by old
and the caller is not the file owner, nor is the caller the directory owner, nor
does the caller have appropriate privileges; or new refers to an existing file, the
S_ISVTX flag is set on the directory containing this file, and the caller is not
the file owner, nor is the caller the directory owner, nor does the caller have
appropriate privileges.

CX [EROFS] The requested operation requires writing in a directory on a read-only file
system.

CX [EXDEV] The links named by new and old are on different file systems and the
implementation does not support links between file systems.

CX In addition, the renameat() function shall fail if:

[EBADF] The old argument does not specify an absolute path and the oldfd argument is
neither AT_FDCWD nor a valid file descriptor open for searching, or the new
argument does not specify an absolute path and the newfd argument is neither
AT_FDCWD nor a valid file descriptor open for searching.

CX The rename() and renameat() functions may fail if:

OB XSR [EBUSY] The file named by the old or new arguments is a named STREAM.

CX [ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during
resolution of the path argument.

CX [ENAMETOOLONG]
As a result of encountering a symbolic link in resolution of the path argument,
the length of the substituted pathname string exceeded {PATH_MAX}.

CX [ETXTBSY] The file to be renamed is a pure procedure (shared text) file that is being
executed.

CX The renameat() function may fail if:

[ENOTDIR] The old argument is not an absolute path and oldfd is neither AT_FDCWD nor
a file descriptor associated with a directory, or the new argument is not an
absolute path and newfd is neither AT_FDCWD nor a file descriptor associated
with a directory.

EXAMPLES

Renaming a File

The following example shows how to rename a file named /home/cnd/mod1 to
/home/cnd/mod2.

#include <stdio.h>

int status;
...
status = rename("/home/cnd/mod1", "/home/cnd/mod2");

APPLICATION USAGE
Some implementations mark for update the st_ctime field of renamed files and some do not.
Applications which make use of the st_ctime field may behave differently with respect to
renamed files unless they are designed to allow for either behavior.

1290 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

40106

40107

40108

40109

40110

40111

40112

40113

40114

40115

40116

40117

40118

40119

40120

40121

40122

40123

40124

40125

40126

40127

40128

40129

40130

40131

40132

40133

40134

40135

40136

40137

40138

40139

40140

40141

40142

40143

40144

40145

40146

40147

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces rename()

RATIONALE
This rename() function is equivalent for regular files to that defined by the ISO C standard. Its
inclusion here expands that definition to include actions on directories and specifies behavior
when the new parameter names a file that already exists. That specification requires that the
action of the function be atomic.

One of the reasons for introducing this function was to have a means of renaming directories
while permitting implementations to prohibit the use of link() and unlink() with directories,
thus constraining links to directories to those made by mkdir().

The specification that if old and new refer to the same file is intended to guarantee that:

rename("x", "x");

does not remove the file.

Renaming dot or dot-dot is prohibited in order to prevent cyclical file system paths.

See also the descriptions of [ENOTEMPTY] and [ENAMETOOLONG] in rmdir() and [EBUSY] in
unlink(). For a discussion of [EXDEV], see link().

The purpose of the renameat() function is to rename files in directories other than the current
working directory without exposure to race conditions. Any part of the path of a file could be
changed in parallel to a call to rename(), resulting in unspecified behavior. By opening file
descriptors for the source and target directories and using the renameat() function it can be
guaranteed that that renamed file is located correctly and the resulting file is in the desired
directory.

FUTURE DIRECTIONS
None.

SEE ALSO
link(), rmdir(), symlink(), unlink(), the Base Definitions volume of IEEE Std 1003.1-200x,
<stdio.h>

CHANGE HISTORY
First released in Issue 3. Included for alignment with the POSIX.1-1988 standard.

Issue 5
The [EBUSY] error is added to the optional part of the ERRORS section.

Issue 6
Extensions beyond the ISO C standard are marked.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The [EIO] mandatory error condition is added.

• The [ELOOP] mandatory error condition is added.

• A second [ENAMETOOLONG] is added as an optional error condition.

• The [ETXTBSY] optional error condition is added.

The following changes were made to align with the IEEE P1003.1a draft standard:

• Details are added regarding the treatment of symbolic links.

• The [ELOOP] optional error condition is added.

The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1291

40148

40149

40150

40151

40152

40153

40154

40155

40156

40157

40158

40159

40160

40161

40162

40163

40164

40165

40166

40167

40168

40169

40170

40171

40172

40173

40174

40175

40176

40177

40178

40179

40180

40181

40182

40183

40184

40185

40186

40187

40188

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

rename() System Interfaces

Issue 7
Austin Group Interpretation 1003.1-2001 #076 is applied, clarifying the behavior if the final
component of a path is either dot or dot-dot, and adding the associated [EINVAL] error case.

The renameat() function is added from The Open Group Technical Standard, 2006, Extended API
Set Part 2.

1292 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

40189

40190

40191

40192

40193

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces renameat()

NAME
renameat — rename file relative to directory file descriptor

SYNOPSIS
CX #include <stdio.h>

int renameat(int oldfd, c onst char * old, i nt newfd,
const char * new);

DESCRIPTION
Refer to rename().

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1293

40194

40195

40196

40197

40198

40199

40200

40201

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

rewind() System Interfaces

NAME
rewind — reset the file position indicator in a stream

SYNOPSIS
#include <stdio.h>

void rewind(FILE * stream);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

The call:

rewind(stream)

shall be equivalent to:

(void) fseek(stream, 0L, SEEK_SET)

except that rewind() shall also clear the error indicator.

CX Since rewind() does not return a value, an application wishing to detect errors should clear errno,
then call rewind(), and if errno is non-zero, assume an error has occurred.

RETURN VALUE
The rewind() function shall not return a value.

ERRORS
CX Refer to fseek() with the exception of [EINVAL] which does not apply.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fseek(), the Base Definitions volume of IEEE Std 1003.1-200x, <stdio.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
Extensions beyond the ISO C standard are marked.

1294 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

40202

40203

40204

40205

40206

40207

40208

40209

40210

40211

40212

40213

40214

40215

40216

40217

40218

40219

40220

40221

40222

40223

40224

40225

40226

40227

40228

40229

40230

40231

40232

40233

40234

40235

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces rewinddir()

NAME
rewinddir — reset the position of a directory stream to the beginning of a directory

SYNOPSIS
#include <dirent.h>

void rewinddir(DIR * dirp);

DESCRIPTION
The rewinddir() function shall reset the position of the directory stream to which dirp refers to the
beginning of the directory. It shall also cause the directory stream to refer to the current state of
the corresponding directory, as a call to opendir() would have done. If dirp does not refer to a
directory stream, the effect is undefined.

After a call to the fork() function, either the parent or child (but not both) may continue
XSI processing the directory stream using readdir(), rewinddir(), or seekdir(). If both the parent and

child processes use these functions, the result is undefined.

RETURN VALUE
The rewinddir() function shall not return a value.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
The rewinddir() function should be used in conjunction with opendir(), readdir(), and closedir() to
examine the contents of the directory. This method is recommended for portability.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
closedir(), fdopendir(), readdir(), the Base Definitions volume of IEEE Std 1003.1-200x, <dirent.h>
<sys/types.h>

CHANGE HISTORY
First released in Issue 2.

Issue 6
In the SYNOPSIS, the optional include of the <sys/types.h> header is removed.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
requir

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

rint() System Interfaces

NAME
rint, rintf, rintl — round-to-nearest integral value

SYNOPSIS
#include <math.h>

double rint(double x);
float rintf(float x);
long double rintl(long double x);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

These functions shall return the integral value (represented as a double) nearest x in the
direction of the current rounding mode. The current rounding mode is implementation-defined.

If the current rounding mode rounds toward negative infinity, then rint() shall be equivalent to
floor(). If the current rounding mode rounds toward positive infinity, then rint() shall be
equivalent to ceil().

These functions differ from the nearbyint(), nearbyintf(), and nearbyintl() functions only in that
they may raise the inexact floating-point exception if the result differs in value from the
argument.

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-
zero, an error has occurred.

RETURN VALUE
Upon successful completion, these functions shall return the integer (represented as a double
precision number) nearest x in the direction of the current rounding mode.

MX If x is NaN, a NaN shall be returned.

If x is ±0 or ±Inf, x shall be returned.

XSI If the correct value would cause overflow, a range error shall occur and rint(), rintf(), and rintl()
shall return the value of the macro ±HUGE_VAL, ±HUGE_VALF, and ±HUGE_VALL (with the
same sign as x), respectively.

ERRORS
These functions shall fail if:

XSI Range Error The result would cause an overflow.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the overflow
floating-point exception shall be raised.

1296 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

40274

40275

40276

40277

40278

40279

40280

40281

40282

40283

40284

40285

40286

40287

40288

40289

40290

40291

40292

40293

40294

40295

40296

40297

40298

40299

40300

40301

40302

40303

40304

40305

40306

40307

40308

40309

40310

40311

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces rint()

EXAMPLES
None.

APPLICATION USAGE
On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling &
MATH_ERREXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
abs(), ceil(), feclearexcept(), fetestexcept(), floor(), isnan(), nearbyint(), the Base Definitions volume
of IEEE Std 1003.1-200x, Section 4.18, Treatment of Error Conditions for Mathematical Functions,
<math.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Issue 6
The following changes are made for alignment with the ISO/IEC 9899: 1999 standard:

• The rintf() and rintl() functions are added.

• The rint() function is no longer marked as an extension.

• The DESCRIPTION, RETURN VALUE, ERRORS, and APPLICATION USAGE sections are
revised to align with the ISO/IEC 9899: 1999 standard.

IEC 60559: 1989 standard floating-point extensions over the ISO/IEC 9899: 1999 standard
are marked.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1297

40312

40313

40314

40315

40316

40317

40318

40319

40320

40321

40322

40323

40324

40325

40326

40327

40328

40329

40330

40331

40332

40333

40334

40335

40336

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

rmdir() System Interfaces

NAME
rmdir — remove a directory

SYNOPSIS
#include <unistd.h>

int rmdir(const char * path);

DESCRIPTION
The rmdir() function shall remove a directory whose name is given by path. The directory shall
be removed only if it is an empty directory.

If the directory is the root directory or the current working directory of any process, it is
unspecified whether the function succeeds, or whether it shall fail and set errno to [EBUSY].

If path names a symbolic link, then rmdir() shall fail and set errno to [ENOTDIR].

If the path argument refers to a path whose final component is either dot or dot-dot, rmdir() shall
fail.

If the directory’s link count becomes 0 and no process has the directory open, the space occupied
by the directory shall be freed and the directory shall no longer be accessible. If one or more
processes have the directory open when the last link is removed, the dot and dot-dot entries, if
present, shall be removed before rmdir() returns and no new entries may be created in the
directory, but the directory shall not be removed until all references to the directory are closed.

If the directory is not an empty directory, rmdir() shall fail and set errno to [EEXIST] or
[ENOTEMPTY].

Upon successful completion, the rmdir() function shall mark for update the st_ctime and
st_mtime fields of the parent directory.

RETURN VALUE
Upon successful completion, the function rmdir() shall return 0. Otherwise, −1 shall be returned,
and errno set to indicate the error. If −1 is returned, the named directory shall not be changed.

ERRORS
The rmdir() function shall fail if:

[EACCES] Search permission is denied on a component of the path prefix, or write
permission is denied on the parent directory of the directory to be removed.

[EBUSY] The directory to be removed is currently in use by the system or some process
and the implementation considers this to be an error.

[EEXIST] or [ENOTEMPTY]
The path argument names a directory that is not an empty directory, or there
are hard links to the directory other than dot or a single entry in dot-dot.

[EINVAL] The path argument contains a last component that is dot.

[EIO] A physical I/O error has occurred.

[ELOOP] A loop exists in symbolic links encountered during resolution of the path
argument.

[ENAMETOOLONG]
The length of the path argument exceeds {PATH_MAX} or a pathname
component is longer than {NAME_MAX}.

1298 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

40337

40338

40339

40340

40341

40342

40343

40344

40345

40346

40347

40348

40349

40350

40351

40352

40353

40354

40355

40356

40357

40358

40359

40360

40361

40362

40363

40364

40365

40366

40367

40368

40369

40370

40371

40372

40373

40374

40375

40376

40377

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces rmdir()

[ENOENT] A component of path does not name an existing file, or the path argument
names a nonexistent directory or points to an empty string.

[ENOTDIR] A component of path is not a directory.

XSI [EPERM] or [EACCES]
The S_ISVTX flag is set on the parent directory of the directory to be removed
and the caller is not the owner of the directory to be removed, nor is the caller
the owner of the parent directory, nor does the caller have the appropriate
privileges.

[EROFS] The directory entry to be removed resides on a read-only file system.

The rmdir() function may fail if:

[ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during
resolution of the path argument.

[ENAMETOOLONG]
As a result of encountering a symbolic link in resolution of the path argument,
the length of the substituted pathname string exceeded {PATH_MAX}.

EXAMPLES

Removing a Directory

The following example shows how to remove a directory named /home/cnd/mod1.

#include <unistd.h>

int status;
...
status = rmdir("/home/cnd/mod1");

APPLICATION USAGE
None.

RATIONALE
The rmdir() and rename() functions originated in 4.2 BSD, and they used [ENOTEMPTY] for the
condition when the directory to be removed does not exist or new already exists. When the 1984
/usr/group standard was published, it contained [EEXIST] instead. When these functions were
adopted into System V, the 1984 /usr/group standard was used as a reference. Therefore,
several existing applications and implementations support/use both forms, and no agreement
could be reached on either value. All implementations are required to supply both [EEXIST] and
[ENOTEMPTY] in <errno.h> with distinct values, so that applications can use both values in C-
language case statements.

The meaning of deleting pathname/dot is unclear, because the name of the file (directory) in the
parent directory to be removed is not clear, particularly in the presence of multiple links to a
directory.

The POSIX.1-1990 standard was silent with regard to the behavior of rmdir() when there are
multiple hard links to the directory being removed. The requirement to set errno to [EEXIST] or
[ENOTEMPTY] clarifies the behavior in this case.

If the current working directory of the process is being removed, that should be an allowed
error.

Virtually all existing implementations detect [ENOTEMPTY] or the case of dot-dot. The text in
Section 2.3 about returning any one of the possible errors permits that behavior to continue. The
[ELOOP] error may be returned if more than {SYMLOOP_MAX} symbolic links are encountered
during resolution of the path argument.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1299

40378

40379

40380

40381

40382

40383

40384

40385

40386

40387

40388

40389

40390

40391

40392

40393

40394

40395

40396

40397

40398

40399

40400

40401

40402

40403

40404

40405

40406

40407

40408

40409

40410

40411

40412

40413

40414

40415

40416

40417

40418

40419

40420

40421

40422

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

rmdir() System Interfaces

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.3 (on page 21), mkdir(), remove(), rename(), unlink(), the Base Definitions volume of
IEEE Std 1003.1-200x, <unistd.h>

CHANGE HISTORY
First released in Issue 3. Included for alignment with the POSIX.1-1988 standard.

Issue 6
The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The DESCRIPTION is updated to indicate the results of naming a symbolic link in path.

• The [EIO] mandatory error condition is added.

• The [ELOOP] mandatory error condition is added.

• A second [ENAMETOOLONG] is added as an optional error condition.

The following changes were made to align with the IEEE P1003.1a draft standard:

• The [ELOOP] optional error condition is added.

1300 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

40423

40424

40425

40426

40427

40428

40429

40430

40431

40432

40433

40434

40435

40436

40437

40438

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces round()

NAME
round, roundf, roundl — round to the nearest integer value in a floating-point format

SYNOPSIS
#include <math.h>

double round(double x);
float roundf(float x);
long double roundl(long double x);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

These functions shall round their argument to the nearest integer value in floating-point format,
rounding halfway cases away from zero, regardless of the current rounding direction.

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-
zero, an error has occurred.

RETURN VALUE
Upon successful completion, these functions shall return the rounded integer value.

MX If x is NaN, a NaN shall be returned.

If x is ±0 or ±Inf, x shall be returned.

XSI If the correct value would cause overflow, a range error shall occur and round(), roundf(), and
roundl() shall return the value of the macro ±HUGE_VAL, ±HUGE_VALF, and ±HUGE_VALL
(with the same sign as x), respectively.

ERRORS
These functions may fail if:

XSI Range Error The result overflows.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the overflow
floating-point exception shall be raised.

EXAMPLES
None.

APPLICATION USAGE
On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling &
MATH_ERREXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
None.

FUTURE DIRECTIONS
None.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1301

40439

40440

40441

40442

40443

40444

40445

40446

40447

40448

40449

40450

40451

40452

40453

40454

40455

40456

40457

40458

40459

40460

40461

40462

40463

40464

40465

40466

40467

40468

40469

40470

40471

40472

40473

40474

40475

40476

40477

40478

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

round() System Interfaces

SEE ALSO
feclearexcept(), fetestexcept(), the Base Definitions volume of IEEE Std 1003.1-200x, Section 4.18,
Tr eatment of Error Conditions for Mathematical Functions, <math.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

1302 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

40479

40480

40481

40482

40483

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces scalbln()

NAME
scalbln, scalblnf, scalblnl, scalbn, scalbnf, scalbnl — compute exponent using FLT_RADIX

SYNOPSIS
#include <math.h>

double scalbln(double x, l ong n);
float scalblnf(float x, l ong n);
long double scalblnl(long double x, l ong n);
double scalbn(double x, i nt n);
float scalbnf(float x, i nt n);
long double scalbnl(long double x, i nt n);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

These functions shall compute x * FLT_RADIXn efficiently, not normally by computing
FLT_RADIXn explicitly.

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-
zero, an error has occurred.

RETURN VALUE
Upon successful completion, these functions shall return x * FLT_RADIXn.

If the result would cause overflow, a range error shall occur and these functions shall return
±HUGE_VAL, ±HUGE_VALF, and ±HUGE_VALL (according to the sign of x) as appropriate for
the return type of the function.

If the correct value would cause underflow, and is not representable, a range error may occur,
MX and either 0.0 (if supported), or an implementation-defined value shall be returned.

MX If x is NaN, a NaN shall be returned.

If x is ±0 or ±Inf, x shall be returned.

If n is 0, x shall be returned.

If the correct value would cause underflow, and is representable, a range error may occur and
the correct value shall be returned.

ERRORS
These functions shall fail if:

Range Error The result overflows.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the overflow
floating-point exception shall be raised.

These functions may fail if:

Range Error The result underflows.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1303

40484

40485

40486

40487

40488

40489

40490

40491

40492

40493

40494

40495

40496

40497

40498

40499

40500

40501

40502

40503

40504

40505

40506

40507

40508

40509

40510

40511

40512

40513

40514

40515

40516

40517

40518

40519

40520

40521

40522

40523

40524

40525

40526

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

scalbln() System Interfaces

(math_errhandling & MATH_ERREXCEPT) is non-zero, then the underflow
floating-point exception shall be raised.

EXAMPLES
None.

APPLICATION USAGE
On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling &
MATH_ERREXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
These functions are named so as to avoid conflicting with the historical definition of the scalb()
function from the Single UNIX Specification. The difference is that the scalb() function has a
second argument of double instead of int. The scalb() function is not part of the ISO C standard.
The three functions whose second type is long are provided because the factor required to scale
from the smallest positive floating-point value to the largest finite one, on many
implementations, is too large to represent in the minimum-width int format.

FUTURE DIRECTIONS
None.

SEE ALSO
feclearexcept(), fetestexcept(), the Base Definitions volume of IEEE Std 1003.1-200x, Section 4.18,
Tr eatment of Error Conditions for Mathematical Functions, <math.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

1304 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

40527

40528

40529

40530

40531

40532

40533

40534

40535

40536

40537

40538

40539

40540

40541

40542

40543

40544

40545

40546

40547

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces scandir()

NAME
scandir — scan a directory

SYNOPSIS
#include <dirent.h>

int scandir(const char * dir, s truct dirent *** namelist,
int (* sel)(const struct dirent *),
int (* compar)(const struct dirent **, const struct dirent **));

DESCRIPTION
Refer to alphasort().

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1305

40548

40549

40550

40551

40552

40553

40554

40555

40556

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

scanf() System Interfaces

NAME
scanf — convert formatted input

SYNOPSIS
#include <stdio.h>

int scanf(const char *restrict format, . ..);

DESCRIPTION
Refer to fscanf().

1306 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

40557

40558

40559

40560

40561

40562

40563

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces sched_get_priority_max()

NAME
sched_get_priority_max, sched_get_priority_min — get priority limits (REALTIME)

SYNOPSIS
PS|TPS #include <sched.h>

int sched_get_priority_max(int policy);
int sched_get_priority_min(int policy);

DESCRIPTION
The sched_get_priority_max() and sched_get_priority_min() functions shall return the appropriate
maximum or minimum, respectively, for the scheduling policy specified by policy.

The value of policy shall be one of the scheduling policy values defined in <sched.h>.

RETURN VALUE
If successful, the sched_get_priority_max() and sched_get_priority_min() functions shall return the
appropriate maximum or minimum values, respectively. If unsuccessful, they shall return a
value of −1 and set errno to indicate the error.

ERRORS
The sched_get_priority_max() and sched_get_priority_min() functions shall fail if:

[EINVAL] The value of the policy parameter does not represent a defined scheduling
policy.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
sched_getparam(), sched_setparam(), sched_getscheduler(), sched_rr_get_interval(),
sched_setscheduler(), the Base Definitions volume of IEEE Std 1003.1-200x, <sched.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

Issue 6
These functions are marked as part of the Process Scheduling option.

The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Process Scheduling option.

The [ESRCH] error condition has been removed since these functions do not take a pid
argument.

IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/52 is applied, changing the PS margin
code in the SYNOPSIS to PS|TPS.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1307

40564

40565

40566

40567

40568

40569

40570

40571

40572

40573

40574

40575

40576

40577

40578

40579

40580

40581

40582

40583

40584

40585

40586

40587

40588

40589

40590

40591

40592

40593

40594

40595

40596

40597

40598

40599

40600

40601

40602

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

sched_getparam() System Interfaces

NAME
sched_getparam — get scheduling parameters (REALTIME)

SYNOPSIS
PS #include <sched.h>

int sched_getparam(pid_t pid, s truct sched_param * param);

DESCRIPTION
The sched_getparam() function shall return the scheduling parameters of a process specified by
pid in the sched_param structure pointed to by param.

If a process specified by pid exists, and if the calling process has permission, the scheduling
parameters for the process whose process ID is equal to pid shall be returned.

If pid is zero, the scheduling parameters for the calling process shall be returned. The behavior of
the sched_getparam() function is unspecified if the value of pid is negative.

RETURN VALUE
Upon successful completion, the sched_getparam() function shall return zero. If the call to
sched_getparam() is unsuccessful, the function shall return a value of −1 and set errno to indicate
the error.

ERRORS
The sched_getparam() function shall fail if:

[EPERM] The requesting process does not have permission to obtain the scheduling
parameters of the specified process.

[ESRCH] No process can be found corresponding to that specified by pid.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
sched_getscheduler(), sched_setparam(), sched_setscheduler(), the Base Definitions volume of
IEEE Std 1003.1-200x, <sched.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

Issue 6
The sched_getparam() function is marked as part of the Process Scheduling option.

The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Process Scheduling option.

1308 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

40603

40604

40605

40606

40607

40608

40609

40610

40611

40612

40613

40614

40615

40616

40617

40618

40619

40620

40621

40622

40623

40624

40625

40626

40627

40628

40629

40630

40631

40632

40633

40634

40635

40636

40637

40638

40639

40640

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces sched_getscheduler()

NAME
sched_getscheduler — get scheduling policy (REALTIME)

SYNOPSIS
PS #include <sched.h>

int sched_getscheduler(pid_t pid);

DESCRIPTION
The sched_getscheduler() function shall return the scheduling policy of the process specified by
pid. If the value of pid is negative, the behavior of the sched_getscheduler() function is
unspecified.

The values that can be returned by sched_getscheduler() are defined in the <sched.h> header.

If a process specified by pid exists, and if the calling process has permission, the scheduling
policy shall be returned for the process whose process ID is equal to pid.

If pid is zero, the scheduling policy shall be returned for the calling process.

RETURN VALUE
Upon successful completion, the sched_getscheduler() function shall return the scheduling policy
of the specified process. If unsuccessful, the function shall return −1 and set errno to indicate the
error.

ERRORS
The sched_getscheduler() function shall fail if:

[EPERM] The requesting process does not have permission to determine the scheduling
policy of the specified process.

[ESRCH] No process can be found corresponding to that specified by pid.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
sched_getparam(), sched_setparam(), sched_setscheduler(), the Base Definitions volume of
IEEE Std 1003.1-200x, <sched.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

Issue 6
The sched_getscheduler() function is marked as part of the Process Scheduling option.

The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Process Scheduling option.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1309

40641

40642

40643

40644

40645

40646

40647

40648

40649

40650

40651

40652

40653

40654

40655

40656

40657

40658

40659

40660

40661

40662

40663

40664

40665

40666

40667

40668

40669

40670

40671

40672

40673

40674

40675

40676

40677

40678

40679

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

sched_rr_get_interval() System Interfaces

NAME
sched_rr_get_interval — get execution time limits (REALTIME)

SYNOPSIS
PS|TPS #include <sched.h>

int sched_rr_get_interval(pid_t pid, s truct timespec * interval);

DESCRIPTION
The sched_rr_get_interval() function shall update the timespec structure referenced by the
interval argument to contain the current execution time limit (that is, time quantum) for the
process specified by pid. If pid is zero, the current execution time limit for the calling process
shall be returned.

RETURN VALUE
If successful, the sched_rr_get_interval() function shall return zero. Otherwise, it shall return a
value of −1 and set errno to indicate the error.

ERRORS
The sched_rr_get_interval() function shall fail if:

[ESRCH] No process can be found corresponding to that specified by pid.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
sched_getparam(), sched_get_priority_max(), sched_getscheduler(), sched_setparam(),
sched_setscheduler(), the Base Definitions volume of IEEE Std 1003.1-200x, <sched.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

Issue 6
The sched_rr_get_interval() function is marked as part of the Process Scheduling option.

The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Process Scheduling option.

IEEE Std 1003.1-2001/Cor 1-2002, XSH/TC1/D6/53 is applied, changing the PS margin code in
the SYNOPSIS to PS|TPS.

1310 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

40680

40681

40682

40683

40684

40685

40686

40687

40688

40689

40690

40691

40692

40693

40694

40695

40696

40697

40698

40699

40700

40701

40702

40703

40704

40705

40706

40707

40708

40709

40710

40711

40712

40713

40714

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces sched_setparam()

NAME
sched_setparam — set scheduling parameters (REALTIME)

SYNOPSIS
PS #include <sched.h>

int sched_setparam(pid_t pid, c onst struct sched_param * param);

DESCRIPTION
The sched_setparam() function shall set the scheduling parameters of the process specified by pid
to the values specified by the sched_param structure pointed to by param. The value of the
sched_priority member in the sched_param structure shall be any integer within the inclusive
priority range for the current scheduling policy of the process specified by pid. Higher
numerical values for the priority represent higher priorities. If the value of pid is negative, the
behavior of the sched_setparam() function is unspecified.

If a process specified by pid exists, and if the calling process has permission, the scheduling
parameters shall be set for the process whose process ID is equal to pid.

If pid is zero, the scheduling parameters shall be set for the calling process.

The conditions under which one process has permission to change the scheduling parameters of
another process are implementation-defined.

Implementations may require the requesting process to have the appropriate privilege to set its
own scheduling parameters or those of another process.

See Scheduling Policies for a description on how this function affects the scheduling of the
threads within the target process.

SS If the current scheduling policy for the target process is not SCHED_FIFO, SCHED_RR, or
SCHED_SPORADIC, the result is implementation-defined; this case includes the
SCHED_OTHER policy.

SS The specified sched_ss_repl_period shall be greater than or equal to the specified
sched_ss_init_budget for the function to succeed; if it is not, then the function shall fail.

The value of sched_ss_max_repl shall be within the inclusive range [1,{SS_REPL_MAX}] for the
function to succeed; if not, the function shall fail.

This function is not atomic with respect to other threads in the process. Threads may continue to
execute while this function call is in the process of changing the scheduling policy for the
underlying kernel-scheduled entities used by the process contention scope threads.

RETURN VALUE
If successful, the sched_setparam() function shall return zero.

If the call to sched_setparam() is unsuccessful, the priority shall remain unchanged, and the
function shall return a value of −1 and set errno to indicate the error.

ERRORS
The sched_setparam() function shall fail if:

[EINVAL] One or more of the requested scheduling parameters is outside the range
defined for the scheduling policy of the specified pid.

[EPERM] The requesting process does not have permission to set the scheduling
parameters for the specified process, or does not have the appropriate
privilege to invoke sched_setparam().

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1311

40715

40716

40717

40718

40719

40720

40721

40722

40723

40724

40725

40726

40727

40728

40729

40730

40731

40732

40733

40734

40735

40736

40737

40738

40739

40740

40741

40742

40743

40744

40745

40746

40747

40748

40749

40750

40751

40752

40753

40754

40755

40756

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

sched_setparam() System Interfaces

[ESRCH] No process can be found corresponding to that specified by pid.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Scheduling Policies (on page 44), sched_getparam(), sched_getscheduler(), sched_setscheduler(), the
Base Definitions volume of IEEE Std 1003.1-200x, <sched.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

Issue 6
The sched_setparam() function is marked as part of the Process Scheduling option.

The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Process Scheduling option.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• In the DESCRIPTION, the effect of this function on a thread’s scheduling parameters is
added.

• Sections describing two-level scheduling and atomicity of the function are added.

The SCHED_SPORADIC scheduling policy is added for alignment with IEEE Std 1003.1d-1999.

IEEE PASC Interpretation 1003.1 #100 is applied.

Issue 7
Austin Group Interpretation 1003.1-2001 #061 is applied, updating the DESCRIPTION.

1312 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

40757

40758

40759

40760

40761

40762

40763

40764

40765

40766

40767

40768

40769

40770

40771

40772

40773

40774

40775

40776

40777

40778

40779

40780

40781

40782

40783

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces sched_setscheduler()

NAME
sched_setscheduler — set scheduling policy and parameters (REALTIME)

SYNOPSIS
PS #include <sched.h>

int sched_setscheduler(pid_t pid, i nt policy,
const struct sched_param * param);

DESCRIPTION
The sched_setscheduler() function shall set the scheduling policy and scheduling parameters of
the process specified by pid to policy and the parameters specified in the sched_param structure
pointed to by param, respectively. The value of the sched_priority member in the sched_param
structure shall be any integer within the inclusive priority range for the scheduling policy
specified by policy. If the value of pid is negative, the behavior of the sched_setscheduler()
function is unspecified.

The possible values for the policy parameter are defined in the <sched.h> header.

If a process specified by pid exists, and if the calling process has permission, the scheduling
policy and scheduling parameters shall be set for the process whose process ID is equal to pid.

If pid is zero, the scheduling policy and scheduling parameters shall be set for the calling
process.

The conditions under which one process has the appropriate privilege to change the scheduling
parameters of another process are implementation-defined.

Implementations may require that the requesting process have permission to set its own
scheduling parameters or those of another process. Additionally, implementation-defined
restrictions may apply as to the appropriate privileges required to set the scheduling policy of
the process, or the scheduling policy of another process, to a particular value.

The sched_setscheduler() function shall be considered successful if it succeeds in setting the
scheduling policy and scheduling parameters of the process specified by pid to the values
specified by policy and the structure pointed to by param, respectively.

See Scheduling Policies for a description on how this function affects the scheduling of the
threads within the target process.

SS If the current scheduling policy for the target process is not SCHED_FIFO, SCHED_RR, or
SCHED_SPORADIC, the result is implementation-defined; this case includes the
SCHED_OTHER policy.

SS The specified sched_ss_repl_period shall be greater than or equal to the specified
sched_ss_init_budget for the function to succeed; if it is not, then the function shall fail.

The value of sched_ss_max_repl shall be within the inclusive range [1,{SS_REPL_MAX}] for the
function to succeed; if not, the function shall fail.

This function is not atomic with respect to other threads in the process. Threads may continue to
execute while this function call is in the process of changing the scheduling policy and
associated scheduling parameters for the underlying kernel-scheduled entities used by the
process contention scope threads.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1313

40784

40785

40786

40787

40788

40789

40790

40791

40792

40793

40794

40795

40796

40797

40798

40799

40800

40801

40802

40803

40804

40805

40806

40807

40808

40809

40810

40811

40812

40813

40814

40815

40816

40817

40818

40819

40820

40821

40822

40823

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

sched_setscheduler() System Interfaces

RETURN VALUE
Upon successful completion, the function shall return the former scheduling policy of the
specified process. If the sched_setscheduler() function fails to complete successfully, the policy
and scheduling parameters shall remain unchanged, and the function shall return a value of −1
and set errno to indicate the error.

ERRORS
The sched_setscheduler() function shall fail if:

[EINVAL] The value of the policy parameter is invalid, or one or more of the parameters
contained in param is outside the valid range for the specified scheduling
policy.

[EPERM] The requesting process does not have permission to set either or both of the
scheduling parameters or the scheduling policy of the specified process.

[ESRCH] No process can be found corresponding to that specified by pid.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Scheduling Policies (on page 44), sched_getparam(), sched_getscheduler(), sched_setparam(), the
Base Definitions volume of IEEE Std 1003.1-200x, <sched.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

Issue 6
The sched_setscheduler() function is marked as part of the Process Scheduling option.

The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Process Scheduling option.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• In the DESCRIPTION, the effect of this function on a thread’s scheduling parameters is
added.

• Sections describing two-level scheduling and atomicity of the function are added.

The SCHED_SPORADIC scheduling policy is added for alignment with IEEE Std 1003.1d-1999.

Issue 7
Austin Group Interpretation 1003.1-2001 #061 is applied, updating the DESCRIPTION.

1314 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

40824

40825

40826

40827

40828

40829

40830

40831

40832

40833

40834

40835

40836

40837

40838

40839

40840

40841

40842

40843

40844

40845

40846

40847

40848

40849

40850

40851

40852

40853

40854

40855

40856

40857

40858

40859

40860

40861

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces sched_yield()

NAME
sched_yield — yield the processor

SYNOPSIS
#include <sched.h>

int sched_yield(void);

DESCRIPTION
The sched_yield() function shall force the running thread to relinquish the processor until it again
becomes the head of its thread list. It takes no arguments.

RETURN VALUE
The sched_yield() f

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

seed48() System Interfaces

NAME
seed48 — seed a uniformly distributed pseudo-random non-negative long integer generator

SYNOPSIS
XSI #include <stdlib.h>

unsigned short *seed48(unsigned short seed16v[3]);

DESCRIPTION
Refer to drand48().

1316 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

40897

40898

40899

40900

40901

40902

40903

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces seekdir()

NAME
seekdir — set the position of a directory stream

SYNOPSIS
XSI #include <dirent.h>

void seekdir(DIR * dirp, l ong loc);

DESCRIPTION
The seekdir() function shall set the position of the next readdir() operation on the directory
stream specified by dirp to the position specified by loc. The value of loc should have been
returned from an earlier call to telldir(). The new position reverts to the one associated with the
directory stream when telldir() was performed.

If the value of loc was not obtained from an earlier call to telldir(), or if a call to rewinddir()
occurred between the call to telldir() and the call to seekdir(), the results of subsequent calls to
readdir() are unspecified.

RETURN VALUE
The seekdir() function shall not return a value.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
The original standard developers perceived that there were restrictions on the use of the
seekdir() and telldir() functions related to implementation details, and for that reason these
functions need not be supported on all POSIX-conforming systems. They are required on
implementations supporting the XSI option.

One of the perceived problems of implementation is that returning to a given point in a directory
is quite difficult to describe formally, in spite of its intuitive appeal, when systems that use B-
trees, hashing functions, or other similar mechanisms to order their directories are considered.
The definition of seekdir() and telldir() does not specify whether, when using these interfaces, a
given directory entry will be seen at all, or more than once.

On systems not supporting these functions, their capability can sometimes be accomplished by
saving a filename found by readdir() and later using rewinddir() and a loop on readdir() to
relocate the position from which the filename was saved.

FUTURE DIRECTIONS
None.

SEE ALSO
fdopendir(), readdir(), telldir(), the Base Definitions volume of IEEE Std 1003.1-200x, <dirent.h>,
<stdio.h>, <sys/types.h>

CHANGE HISTORY
First released in Issue 2.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1317

40904

40905

40906

40907

40908

40909

40910

40911

40912

40913

40914

40915

40916

40917

40918

40919

40920

40921

40922

40923

40924

40925

40926

40927

40928

40929

40930

40931

40932

40933

40934

40935

40936

40937

40938

40939

40940

40941

40942

40943

40944

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

seekdir() System Interfaces

Issue 6
In the SYNOPSIS, the inclusion of <sys/types.h> is no longer required.

1318 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

40945

40946

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces select()

NAME
select — synchronous I/O multiplexing

SYNOPSIS
#include <sys/select.h>

int select(int nfds, f d_set *restrict readfds,
fd_set *restrict writefds, f d_set *restrict errorfds,
struct timeval *restrict timeout);

DESCRIPTION
Refer to pselect().

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1319

40947

40948

40949

40950

40951

40952

40953

40954

40955

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

sem_close() System Interfaces

NAME
sem_close — close a named semaphore

SYNOPSIS
#include <semaphore.h>

int sem_close(sem_t * sem);

DESCRIPTION
The sem_close() function shall indicate that the calling process is finished using the named
semaphore indicated by sem. The effects of calling sem_close() for an unnamed semaphore (one
created by sem_init()) are undefined. The sem_close() function shall deallocate (that is, make
available for reuse by a subsequent sem_open() by this process) any system resources allocated
by the system for use by this process for this semaphore. The effect of subsequent use of the
semaphore indicated by sem by this process is undefined. If the semaphore has not been
removed with a successful call to sem_unlink(), then sem_close() has no effect on the state of the
semaphore. If the sem_unlink() function has been successfully invoked for name after the most
recent call to sem_open() with O_CREAT for this semaphore, then when all processes that have
opened the semaphore close it, the semaphore is no longer accessible.

RETURN VALUE
Upon successful completion, a value of zero shall be returned. Otherwise, a value of −1 shall be
returned and errno set to indicate the error.

ERRORS
The sem_close() function may fail if:

[EINVAL] The sem argument is not a valid semaphore descriptor.

EXAMPLES
None.

APPLICATION USAGE
The sem_close() function is part of the Semaphores option and need not be available on all
implementations.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
semctl(), semget(), semop(), sem_init(), sem_open(), sem_unlink(), the Base Definitions volume of
IEEE Std 1003.1-200x, <semaphore.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

Issue 6
The sem_close() function is marked as part of the Semaphores option.

The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Semaphores option.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/113 is applied, updating the ERRORS
section so that the [EINVAL] error becomes optional.

1320 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

40956

40957

40958

40959

40960

40961

40962

40963

40964

40965

40966

40967

40968

40969

40970

40971

40972

40973

40974

40975

40976

40977

40978

40979

40980

40981

40982

40983

40984

40985

40986

40987

40988

40989

40990

40991

40992

40993

40994

40995

40996

40997

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces sem_close()

Issue 7
The sem_close() function is moved from the Semaphores option to the Base.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1321

40998

40999

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

sem_destroy() System Interfaces

NAME
sem_destroy — destroy an unnamed semaphore

SYNOPSIS
#include <semaphore.h>

int sem_destroy(sem_t * sem);

DESCRIPTION
The sem_destroy() function shall destroy the unnamed semaphore indicated by sem. Only a
semaphore that was created using sem_init() may be destroyed using sem_destroy(); the effect of
calling sem_destroy() with a named semaphore is undefined. The effect of subsequent use of the
semaphore sem is undefined until sem is reinitialized by another call to sem_init().

It is safe to destroy an initialized semaphore upon which no threads are currently blocked. The
effect of destroying a semaphore upon which other threads are currently blocked is undefined.

RETURN VALUE
Upon successful completion, a value of zero shall be returned. Otherwise, a value of −1 shall be
returned and errno set to indicate the error.

ERRORS
The sem_destroy() function may fail if:

[EINVAL] The sem argument is not a valid semaphore.

[EBUSY] There are currently processes blocked on the semaphore.

EXAMPLES
None.

APPLICATION USAGE
The sem_destroy() function is part of the Semaphores option and need not be available on all
implementations.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
semctl(), semget(), semop(), sem_init(), sem_open(), the Base Definitions volume of
IEEE Std 1003.1-200x, <semaphore.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

Issue 6
The sem_destroy() function is marked as part of the Semaphores option.

The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Semaphores option.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/114 is applied, updating the ERRORS
section so that the [EINVAL] error becomes optional.

1322 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

41000

41001

41002

41003

41004

41005

41006

41007

41008

41009

41010

41011

41012

41013

41014

41015

41016

41017

41018

41019

41020

41021

41022

41023

41024

41025

41026

41027

41028

41029

41030

41031

41032

41033

41034

41035

41036

41037

41038

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces sem_destroy()

Issue 7
The dem_destroy() function is moved from the Semaphores option to the Base.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1323

41039

41040

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

sem_getvalue() System Interfaces

NAME
sem_getvalue — get the value of a semaphore

SYNOPSIS
#include <semaphore.h>

int sem_getvalue(sem_t *restrict sem, i nt *restrict sval);

DESCRIPTION
The sem_getvalue() function shall update the location referenced by the sval argument to have
the value of the semaphore referenced by sem without affecting the state of the semaphore. The
updated value represents an actual semaphore value that occurred at some unspecified time
during the call, but it need not be the actual value of the semaphore when it is returned to the
calling process.

If sem is locked, then the object to which sval points shall either be set to zero or to a negative
number whose absolute value represents the number of processes waiting for the semaphore at
some unspecified time during the call.

RETURN VALUE
Upon successful completion, the sem_getvalue() function shall return a value of zero. Otherwise,
it shall return a value of −1 and set errno to indicate the error.

ERRORS
The sem_getvalue() function may fail if:

[EINVAL] The sem argument does not refer to a valid semaphore.

EXAMPLES
None.

APPLICATION USAGE
The sem_getvalue() function is part of the Semaphores option and need not be available on all
implementations.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
semctl(), semget(), semop(), sem_post(), sem_timedwait(), sem_trywait(), sem_wait(), the Base
Definitions volume of IEEE Std 1003.1-200x, <semaphore.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

Issue 6
The sem_getvalue() function is marked as part of the Semaphores option.

The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Semaphores option.

The sem_timedwait() function is added to the SEE ALSO section for alignment with IEEE Std
1003.1d-1999.

The restrict keyword is added to the sem_getvalue() prototype for alignment with the
ISO/IEC 9899: 1999 standard.

IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/54 is applied.

1324 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

41041

41042

41043

41044

41045

41046

41047

41048

41049

41050

41051

41052

41053

41054

41055

41056

41057

41058

41059

41060

41061

41062

41063

41064

41065

41066

41067

41068

41069

41070

41071

41072

41073

41074

41075

41076

41077

41078

41079

41080

41081

41082

41083

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces sem_getvalue()

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/115 is applied, updating the ERRORS
section so that the [EINVAL] error becomes optional.

Issue 7
The sem_getvalue() function is moved from the Semaphores option to the Base.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1325

41084

41085

41086

41087

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

sem_init() System Interfaces

NAME
sem_init — initialize an unnamed semaphore

SYNOPSIS
#include <semaphore.h>

int sem_init(sem_t * sem, i nt pshared, u nsigned value);

DESCRIPTION
The sem_init() function shall initialize the unnamed semaphore referred to by sem. The value of
the initialized semaphore shall be value. Following a successful call to sem_init(), the semaphore
may be used in subsequent calls to sem_wait(), sem_timedwait(), sem_trywait(), sem_post(), and
sem_destroy(). This semaphore shall remain usable until the semaphore is destroyed.

If the pshared argument has a non-zero value, then the semaphore is shared between processes;
in this case, any process that can access the semaphore sem can use sem for performing
sem_wait(), sem_timedwait(), sem_trywait(), sem_post(), and sem_destroy() operations.

Only sem itself may be used for performing synchronization. The result of referring to copies of
sem in calls to sem_wait(), sem_timedwait(), sem_trywait(), sem_post(), and sem_destroy() is
undefined.

If the pshared argument is zero, then the semaphore is shared between threads of the process; any
thread in this process can use sem for performing sem_wait(), sem_timedwait(), sem_trywait(),
sem_post(), and sem_destroy() operations. The use of the semaphore by threads other than those
created in the same process is undefined.

Attempting to initialize an already initialized semaphore results in undefined behavior.

RETURN VALUE
Upon successful completion, the sem_init() function shall initialize the semaphore in sem.
Otherwise, it shall return −1 and set errno to indicate the error.

ERRORS
The sem_init() function shall fail if:

[EINVAL] The value argument exceeds {SEM_VALUE_MAX}.

[ENOSPC] A resource required to initialize the semaphore has been exhausted, or the
limit on semaphores ({SEM_NSEMS_MAX}) has been reached.

[EPERM] The process lacks the appropriate privileges to initialize the semaphore.

EXAMPLES
None.

APPLICATION USAGE
The sem_init() function is part of the Semaphores option and need not be available on all
implementations.

RATIONALE
Although this volume of IEEE Std 1003.1-200x fails to specify a successful return value, it is
likely that a later version may require the implementation to return a value of zero if the call to
sem_init() is successful.

FUTURE DIRECTIONS
None.

1326 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

41088

41089

41090

41091

41092

41093

41094

41095

41096

41097

41098

41099

41100

41101

41102

41103

41104

41105

41106

41107

41108

41109

41110

41111

41112

41113

41114

41115

41116

41117

41118

41119

41120

41121

41122

41123

41124

41125

41126

41127

41128

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces sem_init()

SEE ALSO
sem_destroy(), sem_post(), sem_timedwait(), sem_trywait(), sem_wait(), the Base Definitions
volume of IEEE Std 1003.1-200x, <semaphore.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

Issue 6
The sem_init() function is marked as part of the Semaphores option.

The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Semaphores option.

The sem_timedwait() function is added to the SEE ALSO section for alignment with IEEE Std
1003.1d-1999.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/116 is applied, updating the
DESCRIPTION to add the sem_timedwait() function for alignment with IEEE Std 1003.1d-1999.

Issue 7
The sem_init() function is moved from the Semaphores option to the Base.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1327

41129

41130

41131

41132

41133

41134

41135

41136

41137

41138

41139

41140

41141

41142

41143

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

sem_open() System Interfaces

NAME
sem_open — initialize and open a named semaphore

SYNOPSIS
#include <semaphore.h>

sem_t *sem_open(const char * name, i nt oflag, . ..);

DESCRIPTION
The sem_open() function shall establish a connection between a named semaphore and a process.
Following a call to sem_open() with semaphore name name, the process may reference the
semaphore associated with name using the address returned from the call. This semaphore may
be used in subsequent calls to sem_wait(), sem_timedwait(), sem_trywait(), sem_post(), and
sem_close(). The semaphore remains usable by this process until the semaphore is closed by a
successful call to sem_close(), _exit(), or one of the exec functions.

The oflag argument controls whether the semaphore is created or merely accessed by the call to
sem_open(). The following flag bits may be set in oflag:

O_CREAT This flag is used to create a semaphore if it does not already exist. If O_CREAT is
set and the semaphore already exists, then O_CREAT has no effect, except as noted
under O_EXCL. Otherwise, sem_open() creates a named semaphore. The O_CREAT
flag requires a third and a fourth argument: mode, which is of type mode_t, and
value, which is of type unsigned. The semaphore is created with an initial value of
value. Valid initial values for semaphores are less than or equal to
{SEM_VALUE_MAX}.

The user ID of the semaphore is set to the effective user ID of the process; the
group ID of the semaphore is set to a system default group ID or to the effective
group ID of the process. The permission bits of the semaphore are set to the value
of the mode argument except those set in the file mode creation mask of the process.
When bits in mode other than the file permission bits are specified, the effect is
unspecified.

After the semaphore named name has been created by sem_open() with the
O_CREAT flag, other processes can connect to the semaphore by calling
sem_open() with the same value of name.

O_EXCL If O_EXCL and O_CREAT are set, sem_open() fails if the semaphore name exists.
The check for the existence of the semaphore and the creation of the semaphore if it
does not exist are atomic with respect to other processes executing sem_open() with
O_EXCL and O_CREAT set. If O_EXCL is set and O_CREAT is not set, the effect is
undefined.

If flags other than O_CREAT and O_EXCL are specified in the oflag parameter, the
effect is unspecified.

The name argument points to a string naming a semaphore object. It is unspecified whether the
name appears in the file system and is visible to functions that take pathnames as arguments.
The name argument conforms to the construction rules for a pathname, except that the
interpretation of slash characters other than the leading slash character in name is
implementation-defined, and that the length limits for the name argument are implementation-
defined and need not be the same as the path name limits {PATH_MAX} and {NAME_MAX}. If
name begins with the slash character, then processes calling sem_open() with the same value of
name shall refer to the same semaphore object, as long as that name has not been removed. If
name does not begin with the slash character, the effect is implementation-defined.

1328 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

41144

41145

41146

41147

41148

41149

41150

41151

41152

41153

41154

41155

41156

41157

41158

41159

41160

41161

41162

41163

41164

41165

41166

41167

41168

41169

41170

41171

41172

41173

41174

41175

41176

41177

41178

41179

41180

41181

41182

41183

41184

41185

41186

41187

41188

41189

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces sem_open()

If a process makes multiple successful calls to sem_open() with the same value for name, the same
semaphore address shall be returned for each such successful call, provided that there have been
no calls to sem_unlink() for this semaphore, and at least one previous successful sem_open() call
for this semaphore has not been matched with a sem_close() call.

References to copies of the semaphore produce undefined results.

RETURN VALUE
Upon successful completion, the sem_open() function shall return the address of the semaphore.
Otherwise, it shall return a value of SEM_FAILED and set errno to indicate the error. The symbol
SEM_FAILED is defined in the <semaphore.h> header. No successful return from sem_open()
shall return the value SEM_FAILED.

ERRORS
If any of the following conditions occur, the sem_open() function shall return SEM_FAILED and
set errno to the corresponding value:

[EACCES] The named semaphore exists and the permissions specified by oflag are
denied, or the named semaphore does not exist and permission to create the
named semaphore is denied.

[EEXIST] O_CREAT and O_EXCL are set and the named semaphore already exists.

[EINTR] The sem_open() operation was interrupted by a signal.

[EINVAL] The sem_open() operation is not supported for the given name, or O_CREAT
was specified in oflag and value was greater than {SEM_VALUE_MAX}.

[EMFILE] Too many semaphore descriptors or file descriptors are currently in use by this
process.

[ENFILE] Too many semaphores are currently open in the system.

[ENOENT] O_CREAT is not set and the named semaphore does not exist.

[ENOMEM] There is insufficient memory for the creation of the new named semaphore.

[ENOSPC] There is insufficient space on a storage device for the creation of the new
named semaphore.

If any of the following conditions occur, the sem_open() function may return SEM_FAILED and
set errno to the corresponding value:

[ENAMETOOLONG]
The length of the name argument exceeds {_POSIX_PATH_MAX} on systems

XSI that do not support the XSI option or exceeds {_XOPEN_PATH_MAX} on XSI
systems, or has a pathname component that is longer than

XSI {_POSIX_NAME_MAX} on systems that do not support the XSI option or
longer than {_XOPEN_NAME_MAX} on XSI systems.

EXAMPLES
None.

APPLICATION USAGE
The sem_open() function is part of the Semaphores option and need not be available on all
implementations.

RATIONALE
Early drafts required an error return value of −1 with the type sem_t * for the sem_open()
function, which is not guaranteed to be portable across implementations. The revised text
provides the symbolic error code SEM_FAILED to eliminate the type conflict.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1329

41190

41191

41192

41193

41194

41195

41196

41197

41198

41199

41200

41201

41202

41203

41204

41205

41206

41207

41208

41209

41210

41211

41212

41213

41214

41215

41216

41217

41218

41219

41220

41221

41222

41223

41224

41225

41226

41227

41228

41229

41230

41231

41232

41233

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

sem_open() System Interfaces

FUTURE DIRECTIONS
None.

SEE ALSO
semctl(), semget(), semop(), sem_close(), sem_post(), sem_timedwait(), sem_trywait(), sem_unlink(),
sem_wait(), the Base Definitions volume of IEEE Std 1003.1-200x, <semaphore.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

Issue 6
The sem_open() function is marked as part of the Semaphores option.

The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Semaphores option.

The sem_timedwait() function is added to the SEE ALSO section for alignment with IEEE Std
1003.1d-1999.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/117 is applied, updating the
DESCRIPTION to add the sem_timedwait() function for alignment with IEEE Std 1003.1d-1999.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/118 is applied, updating the
DESCRIPTION to describe the conditions to return the same semaphore address on a call to
sem_open(). The words ‘‘and at least one previous successful sem_open() call for this semaphore
has not been matched with a sem_close() call’’ are added.

Issue 7
Austin Group Interpretation 1003.1-2001 #066 is applied, updating the [ENOSPC] error case and
adding the [ENOMEM] error case.

Austin Group Interpretation 1003.1-2001 #077 is applied, clarifying the name argument and
adding [ENAMETOOLONG] as a ‘‘may fail’’ error.

The sem_open() function is moved from the Semaphores option to the Base.

1330 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

41234

41235

41236

41237

41238

41239

41240

41241

41242

41243

41244

41245

41246

41247

41248

41249

41250

41251

41252

41253

41254

41255

41256

41257

41258

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces sem_post()

NAME
sem_post — unlock a semaphore

SYNOPSIS
#include <semaphore.h>

int sem_post(sem_t * sem);

DESCRIPTION
The sem_post() function shall unlock the semaphore referenced by sem by performing a
semaphore unlock operation on that semaphore.

If the semaphore value resulting from this operation is positive, then no threads were blocked
waiting for the semaphore to become unlocked; the semaphore value is simply incremented.

If the value of the semaphore resulting from this operation is zero, then one of the threads
blocked waiting for the semaphore shall be allowed to return successfully from its call to

PS sem_wait(). If the Process Scheduling option is supported, the thread to be unblocked shall be
chosen in a manner appropriate to the scheduling policies and parameters in effect for the
blocked threads. In the case of the schedulers SCHED_FIFO and SCHED_RR, the highest
priority waiting thread shall be unblocked, and if there is more than one highest priority thread
blocked waiting for the semaphore, then the highest priority thread that has been waiting the
longest shall be unblocked. If the Process Scheduling option is not defined, the choice of a thread
to unblock is unspecified.

SS If the Process Sporadic Server option is supported, and the scheduling policy is
SCHED_SPORADIC, the semantics are as per SCHED_FIFO above.

The sem_post() function shall be reentrant with respect to signals and may be invoked from a
signal-catching function.

RETURN VALUE
If successful, the sem_post() function shall return zero; otherwise, the function shall return −1
and set errno to indicate the error.

ERRORS
The sem_post() function may fail if:

[EINVAL] The sem argument does not refer to a valid semaphore.

EXAMPLES
None.

APPLICATION USAGE
The sem_post() function is part of the Semaphores option and need not be available on all
implementations.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
semctl(), semget(), semop(), sem_timedwait(), sem_trywait(), sem_wait(), the Base Definitions
volume of IEEE Std 1003.1-200x, Section 4.10, Memory Synchronization, <semaphore.h>

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1331

41259

41260

41261

41262

41263

41264

41265

41266

41267

41268

41269

41270

41271

41272

41273

41274

41275

41276

41277

41278

41279

41280

41281

41282

41283

41284

41285

41286

41287

41288

41289

41290

41291

41292

41293

41294

41295

41296

41297

41298

41299

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

sem_post() System Interfaces

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

Issue 6
The sem_post() function is marked as part of the Semaphores option.

The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Semaphores option.

The sem_timedwait() function is added to the SEE ALSO section for alignment with IEEE Std
1003.1d-1999.

SCHED_SPORADIC is added to the list of scheduling policies for which the thread that is to be
unblocked is specified for alignment with IEEE Std 1003.1d-1999.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/119 is applied, updating the ERRORS
section so that the [EINVAL] error becomes optional.

Issue 7
The sem_post() function is moved from the Semaphores option to the Base.

1332 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

41300

41301

41302

41303

41304

41305

41306

41307

41308

41309

41310

41311

41312

41313

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces sem_timedwait()

NAME
sem_timedwait — lock a semaphore

SYNOPSIS
#include <semaphore.h>
#include <time.h>

int sem_timedwait(sem_t *restrict sem,
const struct timespec *restrict abs_timeout);

DESCRIPTION
The sem_timedwait() function shall lock the semaphore referenced by sem as in the sem_wait()
function. However, if the semaphore cannot be locked without waiting for another process or
thread to unlock the semaphore by performing a sem_post() function, this wait shall be
terminated when the specified timeout expires.

The timeout shall expire when the absolute time specified by abs_timeout passes, as measured by
the clock on which timeouts are based (that is, when the value of that clock equals or exceeds
abs_timeout), or if the absolute time specified by abs_timeout has already been passed at the time
of the call.

The timeout shall be based on the CLOCK_REALTIME clock. The resolution of the timeout shall
be the resolution of the clock on which it is based. The timespec data type is defined as a
structure in the <time.h> header.

Under no circumstance shall the function fail with a timeout if the semaphore can be locked
immediately. The validity of the abs_timeout need not be checked if the semaphore can be locked
immediately.

RETURN VALUE
The sem_timedwait() function shall return zero if the calling process successfully performed the
semaphore lock operation on the semaphore designated by sem. If the call was unsuccessful, the
state of the semaphore shall be unchanged, and the function shall return a value of −1 and set
errno to indicate the error.

ERRORS
The sem_timedwait() function shall fail if:

[EINVAL] The process or thread would have blocked, and the abs_timeout parameter
specified a nanoseconds field value less than zero or greater than or equal to
1 000 million.

[ETIMEDOUT] The semaphore could not be locked before the specified timeout expired.

The sem_timedwait() function may fail if:

[EDEADLK] A deadlock condition was detected.

[EINTR] A signal interrupted this function.

[EINVAL] The sem argument does not refer to a valid semaphore.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1333

41314

41315

41316

41317

41318

41319

41320

41321

41322

41323

41324

41325

41326

41327

41328

41329

41330

41331

41332

41333

41334

41335

41336

41337

41338

41339

41340

41341

41342

41343

41344

41345

41346

41347

41348

41349

41350

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

sem_timedwait() System Interfaces

EXAMPLES
None.

APPLICATION USAGE
Applications using these functions may be subject to priority inversion, as discussed in the Base
Definitions volume of IEEE Std 1003.1-200x, Section 3.285, Priority Inversion.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
sem_post(), sem_trywait(), sem_wait(), semctl(), semget(), semop(), time(), the Base Definitions
volume of IEEE Std 1003.1-200x, <semaphore.h>, <time.h>

CHANGE HISTORY
First released in Issue 6. Derived from IEEE Std 1003.1d-1999.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/120 is applied, updating the ERRORS
section so that the [EINVAL] error becomes optional.

Issue 7
The sem_timedwait() function is moved from the Semaphores option to the Base.

Functionality relating to the Timers option is moved to the Base.

1334 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

41351

41352

41353

41354

41355

41356

41357

41358

41359

41360

41361

41362

41363

41364

41365

41366

41367

41368

41369

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces sem_trywait()

NAME
sem_trywait, sem_wait — lock a semaphore

SYNOPSIS
#include <semaphore.h>

int sem_trywait(sem_t * sem);
int sem_wait(sem_t * sem);

DESCRIPTION
The sem_trywait() function shall lock the semaphore referenced by sem only if the semaphore is
currently not locked; that is, if the semaphore value is currently positive. Otherwise, it shall not
lock the semaphore.

The sem_wait() function shall lock the semaphore referenced by sem by performing a semaphore
lock operation on that semaphore. If the semaphore value is currently zero, then the calling
thread shall not return from the call to sem_wait() until it either locks the semaphore or the call is
interrupted by a signal.

Upon successful return, the state of the semaphore shall be locked and shall remain locked until
the sem_post() function is executed and returns successfully.

The sem_wait() function is interruptible by the delivery of a signal.

RETURN VALUE
The sem_trywait() and sem_wait() functions shall return zero if the calling process successfully
performed the semaphore lock operation on the semaphore designated by sem. If the call was
unsuccessful, the state of the semaphore shall be unchanged, and the function shall return a
value of −1 and set errno to indicate the error.

ERRORS
The sem_trywait() function shall fail if:

[EAGAIN] The semaphore was already locked, so it cannot be immediately locked by the
sem_trywait() operation.

The sem_trywait() and sem_wait() functions may fail if:

[EDEADLK] A deadlock condition was detected.

[EINTR] A signal interrupted this function.

[EINVAL] The sem argument does not refer to a valid semaphore.

EXAMPLES
None.

APPLICATION USAGE
Applications using these functions may be subject to priority inversion, as discussed in the Base
Definitions volume of IEEE Std 1003.1-200x, Section 3.285, Priority Inversion.

The sem_trywait() and sem_wait() functions are part of the Semaphores option and need not be
provided on all implementations.

RATIONALE
None.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1335

41370

41371

41372

41373

41374

41375

41376

41377

41378

41379

41380

41381

41382

41383

41384

41385

41386

41387

41388

41389

41390

41391

41392

41393

41394

41395

41396

41397

41398

41399

41400

41401

41402

41403

41404

41405

41406

41407

41408

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

sem_trywait() System Interfaces

FUTURE DIRECTIONS
None.

SEE ALSO
semctl(), semget(), semop(), sem_post(), sem_timedwait(), the Base Definitions volume of
IEEE Std 1003.1-200x, Section 4.10, Memory Synchronization, <semaphore.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

Issue 6
The sem_trywait() and sem_wait() functions are marked as part of the Semaphores option.

The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Semaphores option.

The sem_timedwait() function is added to the SEE ALSO section for alignment with IEEE Std
1003.1d-1999.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/121 is applied, updating the ERRORS
section so that the [EINVAL] error becomes optional.

Issue 7
SD5-XSH-ERN-54 is applied, removing the sem_wait() function from the ‘‘shall fail’’ error cases.

The sem_trywait() and sem_wait() functions are moved from the Semaphores option to the Base.

1336 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

41409

41410

41411

41412

41413

41414

41415

41416

41417

41418

41419

41420

41421

41422

41423

41424

41425

41426

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces sem_unlink()

NAME
sem_unlink — remove a named semaphore

SYNOPSIS
#include <semaphore.h>

int sem_unlink(const char * name);

DESCRIPTION
The sem_unlink() function shall remove the semaphore named by the string name. If the
semaphore named by name is currently referenced by other processes, then sem_unlink() shall
have no effect on the state of the semaphore. If one or more processes have the semaphore open
when sem_unlink() is called, destruction of the semaphore is postponed until all references to the
semaphore have been destroyed by calls to sem_close(), _exit(), or exec. Calls to sem_open() to
recreate or reconnect to the semaphore refer to a new semaphore after sem_unlink() is called. The
sem_unlink() call shall not block until all references have been destroyed; it shall return
immediately.

RETURN VALUE
Upon successful completion, the sem_unlink() function shall return a value of 0. Otherwise, the
semaphore shall not be changed and the function shall return a value of −1 and set errno to
indicate the error.

ERRORS
The sem_unlink() function shall fail if:

[EACCES] Permission is denied to unlink the named semaphore.

[ENOENT] The named semaphore does not exist.

The sem_unlink() function may fail if:

[ENAMETOOLONG]
The length of the name argument exceeds {_POSIX_PATH_MAX} on systems

XSI that do not support the XSI option or exceeds {_XOPEN_PATH_MAX} on XSI
systems, or has a pathname component that is longer than

XSI {_POSIX_NAME_MAX} on systems that do not support the XSI option or
longer than {_XOPEN_NAME_MAX} on XSI systems. A call to sem_unlink()
with a name argument that contains the same semaphore name as was
previously used in a successful sem_open() call shall not give an
[ENAMETOOLONG] error.

EXAMPLES
None.

APPLICATION USAGE
The sem_unlink() function is part of the Semaphores option and need not be available on all
implementations.

RATIONALE
None.

FUTURE DIRECTIONS
None.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1337

41427

41428

41429

41430

41431

41432

41433

41434

41435

41436

41437

41438

41439

41440

41441

41442

41443

41444

41445

41446

41447

41448

41449

41450

41451

41452

41453

41454

41455

41456

41457

41458

41459

41460

41461

41462

41463

41464

41465

41466

41467

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

sem_unlink() System Interfaces

SEE ALSO
semctl(), semget(), semop(), sem_close(), sem_open(), the Base Definitions volume of
IEEE Std 1003.1-200x, <semaphore.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

Issue 6
The sem_unlink() function is marked as part of the Semaphores option.

The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Semaphores option.

Issue 7
Austin Group Interpretation 1003.1-2001 #077 is applied, changing [ENAMETOOLONG] from a
‘‘shall fail’’ to a ‘‘may fail’’ error.

The sem_unlink() function is moved from the Semaphores option to the Base.

1338 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

41468

41469

41470

41471

41472

41473

41474

41475

41476

41477

41478

41479

41480

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces sem_wait()

NAME
sem_wait — lock a semaphore

SYNOPSIS
#include <semaphore.h>

int sem_wait(sem_t * sem);

DESCRIPTION
Refer to sem_trywait().

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1339

41481

41482

41483

41484

41485

41486

41487

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

semctl() System Interfaces

NAME
semctl — XSI semaphore control operations

SYNOPSIS
XSI #include <sys/sem.h>

int semctl(int semid, i nt semnum, i nt cmd, . ..);

DESCRIPTION
The semctl() function operates on XSI semaphores (see the Base Definitions volume of
IEEE Std 1003.1-200x, Section 4.15, Semaphore). It is unspecified whether this function
interoperates with the realtime interprocess communication facilities defined in Section 2.8 (on
page 40).

The semctl() function provides a variety of semaphore control operations as specified by cmd.
The fourth argument is optional and depends upon the operation requested. If required, it is of
type union semun, which the application shall explicitly declare:

union semun {
int val;
struct semid_ds *buf;
unsigned short *array;

} a rg;

The following semaphore control operations as specified by cmd are executed with respect to the
semaphore specified by semid and semnum. The level of permission required for each operation
is shown with each command; see Section 2.7 (on page 39). The symbolic names for the values
of cmd are defined in the <sys/sem.h> header:

GETVAL Return the value of semval; see <sys/sem.h>. Requires read permission.

SETVAL Set the value of semval to arg.val, where arg is the value of the fourth argument
to semctl(). When this command is successfully executed, the semadj value
corresponding to the specified semaphore in all processes is cleared. Requires
alter permission; see Section 2.7 (on page 39).

GETPID Return the value of sempid. Requires read permission.

GETNCNT Return the value of semncnt. Requires read permission.

GETZCNT Return the value of semzcnt. Requires read permission.

The following values of cmd operate on each semval in the set of semaphores:

GETALL Return the value of semval for each semaphore in the semaphore set and place
into the array pointed to by arg.array, where arg is the fourth argument to
semctl(). Requires read permission.

SETALL Set the value of semval for each semaphore in the semaphore set according to
the array pointed to by arg.array, where arg is the fourth argument to semctl().
When this command is successfully executed, the semadj values corresponding
to each specified semaphore in all processes are cleared. Requires alter
permission.

The following values of cmd are also available:

IPC_STAT Place the current value of each member of the semid_ds data structure
associated with semid into the structure pointed to by arg.buf , where arg is the
fourth argument to semctl(). The contents of this structure are defined in

1340 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

41488

41489

41490

41491

41492

41493

41494

41495

41496

41497

41498

41499

41500

41501

41502

41503

41504

41505

41506

41507

41508

41509

41510

41511

41512

41513

41514

41515

41516

41517

41518

41519

41520

41521

41522

41523

41524

41525

41526

41527

41528

41529

41530

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces semctl()

<sys/sem.h>. Requires read permission.

IPC_SET Set the value of the following members of the semid_ds data structure
associated with semid to the corresponding value found in the structure
pointed to by arg.buf , where arg is the fourth argument to semctl():

sem_perm.uid
sem_perm.gid
sem_perm.mode

The mode bits specified in Section 2.7.1 are copied into the corresponding bits
of the sem_perm.mode associated with semid. The stored values of any other
bits are unspecified.

This command can only be executed by a process that has an effective user ID
equal to either that of a process with appropriate privileges or to the value of
sem_perm.cuid or sem_perm.uid in the semid_ds data structure associated with
semid.

IPC_RMID Remove the semaphore identifier specified by semid from the system and
destroy the set of semaphores and semid_ds data structure associated with it.
This command can only be executed by a process that has an effective user ID
equal to either that of a process with appropriate privileges or to the value of
sem_perm.cuid or sem_perm.uid in the semid_ds data structure associated with
semid.

RETURN VALUE
If successful, the value returned by semctl() depends on cmd as follows:

GETVAL The value of semval.

GETPID The value of sempid.

GETNCNT The value of semncnt.

GETZCNT The value of semzcnt.

All others 0.

Otherwise, semctl() shall return −1 and set errno to indicate the error.

ERRORS
The semctl() function shall fail if:

[EACCES] Operation permission is denied to the calling process; see Section 2.7 (on page
39).

[EINVAL] The value of semid is not a valid semaphore identifier, or the value of semnum
is less than 0 or greater than or equal to sem_nsems, or the value of cmd is not a
valid command.

[EPERM] The argument cmd is equal to IPC_RMID or IPC_SET and the effective user ID
of the calling process is not equal to that of a process with appropriate
privileges and it is not equal to the value of sem_perm.cuid or sem_perm.uid in
the data structure associated with semid.

[ERANGE] The argument cmd is equal to SETVAL or SETALL and the value to which
semval is to be set is greater than the system-imposed maximum.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1341

41531

41532

41533

41534

41535

41536

41537

41538

41539

41540

41541

41542

41543

41544

41545

41546

41547

41548

41549

41550

41551

41552

41553

41554

41555

41556

41557

41558

41559

41560

41561

41562

41563

41564

41565

41566

41567

41568

41569

41570

41571

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

semctl() System Interfaces

EXAMPLES
None.

APPLICATION USAGE
The fourth parameter in the SYNOPSIS section is now specified as "..." in order to avoid a
clash with the ISO C standard when referring to the union semun (as defined in Issue 3) and for
backwards-compatibility.

The POSIX Realtime Extension defines alternative interfaces for interprocess communication.
Application developers who need to use IPC should design their applications so that modules
using the IPC routines described in Section 2.7 can be easily modified to use the alternative
interfaces.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.7 (on page 39), Section 2.8 (on page 40), semget(), semop(), sem_close(), sem_destroy(),
sem_getvalue(), sem_init(), sem_open(), sem_post(), sem_unlink(), sem_wait(), the Base Definitions
volume of IEEE Std 1003.1-200x, <sys/sem.h>

CHANGE HISTORY
First released in Issue 2. Derived from Issue 2 of the SVID.

Issue 5
The note about use of POSIX Realtime Extension IPC routines has been moved from FUTURE
DIRECTIONS to the APPLICATION USAGE section.

1342 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

41572

41573

41574

41575

41576

41577

41578

41579

41580

41581

41582

41583

41584

41585

41586

41587

41588

41589

41590

41591

41592

41593

41594

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces semget()

NAME
semget — get set of XSI semaphores

SYNOPSIS
XSI #include <sys/sem.h>

int semget(key_t key, i nt nsems, i nt semflg);

DESCRIPTION
The semget() function operates on XSI semaphores (see the Base Definitions volume of
IEEE Std 1003.1-200x, Section 4.15, Semaphore). It is unspecified whether this function
interoperates with the realtime interprocess communication facilities defined in Section 2.8 (on
page 40).

The semget() function shall return the semaphore identifier associated with key.

A semaphore identifier with its associated semid_ds data structure and its associated set of
nsems semaphores (see <sys/sem.h>) is created for key if one of the following is true:

• The argument key is equal to IPC_PRIVATE.

• The argument key does not already have a semaphore identifier associated with it and
(semflg &IPC_CREAT) is non-zero.

Upon creation, the semid_ds data structure associated with the new semaphore identifier is
initialized as follows:

• In the operation permissions structure sem_perm.cuid, sem_perm.uid, sem_perm.cgid, and
sem_perm.gid shall be set equal to the effective user ID and effective group ID, respectively,
of the calling process.

• The low-order 9 bits of sem_perm.mode shall be set equal to the low-order 9 bits of semflg.

• The variable sem_nsems shall be set equal to the value of nsems.

• The variable sem_otime shall be set equal to 0 and sem_ctime shall be set equal to the current
time.

• The data structure associated with each semaphore in the set need not be initialized. The
semctl() function with the command SETVAL or SETALL can be used to initialize each
semaphore.

RETURN VALUE
Upon successful completion, semget() shall return a non-negative integer, namely a semaphore
identifier; otherwise, it shall return −1 and set errno to indicate the error.

ERRORS
The semget() function shall fail if:

[EACCES] A semaphore identifier exists for key, but operation permission as specified by
the low-order 9 bits of semflg would not be granted; see Section 2.7 (on page
39).

[EEXIST] A semaphore identifier exists for the argument key but ((semflg &IPC_CREAT)
&&(semflg &IPC_EXCL)) is non-zero.

[EINVAL] The value of nsems is either less than or equal to 0 or greater than the system-
imposed limit, or a semaphore identifier exists for the argument key, but the
number of semaphores in the set associated with it is less than nsems and
nsems is not equal to 0.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1343

41595

41596

41597

41598

41599

41600

41601

41602

41603

41604

41605

41606

41607

41608

41609

41610

41611

41612

41613

41614

41615

41616

41617

41618

41619

41620

41621

41622

41623

41624

41625

41626

41627

41628

41629

41630

41631

41632

41633

41634

41635

41636

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

semget() System Interfaces

[ENOENT] A semaphore identifier does not exist for the argument key and (semflg
&IPC_CREAT) is equal to 0.

[ENOSPC] A semaphore identifier is to be created but the system-imposed limit on the
maximum number of allowed semaphores system-wide would be exceeded.

EXAMPLES

Creating a Semaphore Identifier

The following example gets a unique semaphore key using the ftok() function, then gets a
semaphore ID associated with that key using the semget() function (the first call also tests to
make sure the semaphore exists). If the semaphore does not exist, the program creates it, as
shown by the second call to semget(). In creating the semaphore for the queuing process, the
program attempts to create one semaphore with read/write permission for all. It also uses the
IPC_EXCL flag, which forces semget() to fail if the semaphore already exists.

After creating the semaphore, the program uses a call to semop() to initialize it to the values in
the sbuf array. The number of processes that can execute concurrently without queuing is
initially set to 2. The final call to semget() creates a semaphore identifier that can be used later in
the program.

#include <sys/types.h>
#include <stdio.h>
#include <sys/ipc.h>
#include <sys/sem.h>
#include <sys/stat.h>
#include <errno.h>
#include <unistd.h>
#include <stdlib.h>
#include <pwd.h>
#include <fcntl.h>
#include <limits.h>
...
key_t semkey;
int semid, pfd, fv;
struct sembuf sbuf;
char *lgn;
char filename[PATH_MAX+1];
struct stat outstat;
struct passwd *pw;
...
/* Get unique key for semaphore. */
if ((semkey = ftok("/tmp", ’a’)) == (key_t) -1) {

perror("IPC error: ftok"); exit(1);
}

/* Get semaphore ID associated with this key. */
if ((semid = semget(semkey, 0, 0)) == -1) {

/* Semaphore does not exist - Create. */
if ((semid = semget(semkey, 1, IPC_CREAT | IPC_EXCL | S_IRUSR |

S_IWUSR | S_IRGRP | S_IWGRP | S_IROTH | S_IWOTH)) != -1)
{

/* Initialize the semaphore. */
sbuf.sem_num = 0;
sbuf.sem_op = 2; /* This is the number of runs

without queuing. */

1344 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

41637

41638

41639

41640

41641

41642

41643

41644

41645

41646

41647

41648

41649

41650

41651

41652

41653

41654

41655

41656

41657

41658

41659

41660

41661

41662

41663

41664

41665

41666

41667

41668

41669

41670

41671

41672

41673

41674

41675

41676

41677

41678

41679

41680

41681

41682

41683

41684

41685

41686

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces semget()

sbuf.sem_flg = 0;
if (semop(semid, &sbuf, 1) == -1) {

perror("IPC error: semop"); exit(1);
}

}
else if (errno == EEXIST) {

if ((semid = semget(semkey, 0, 0)) == -1) {
perror("IPC error 1: semget"); exit(1);

}
}
else {

perror("IPC error 2: semget"); exit(1);
}

}
...

APPLICATION USAGE
The POSIX Realtime Extension defines alternative interfaces for interprocess communication.
Application developers who need to use IPC should design their applications so that modules
using the IPC routines described in Section 2.7 can be easily modified to use the alternative
interfaces.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.7 (on page 39), Section 2.8 (on page 40), semctl(), semop(), sem_close(), sem_destroy(),
sem_getvalue(), sem_init(), sem_open(), sem_post(), sem_unlink(), sem_wait(), the Base Definitions
volume of IEEE Std 1003.1-200x, <sys/sem.h>

CHANGE HISTORY
First released in Issue 2. Derived from Issue 2 of the SVID.

Issue 5
The note about use of POSIX Realtime Extension IPC routines has been moved from FUTURE
DIRECTIONS to a new APPLICATION USAGE section.

Issue 6
IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/122 is applied, updating the
DESCRIPTION from ‘‘each semaphore in the set shall not be initialized’’ to ‘‘each semaphore in
the set need not be initialized’’.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1345

41687

41688

41689

41690

41691

41692

41693

41694

41695

41696

41697

41698

41699

41700

41701

41702

41703

41704

41705

41706

41707

41708

41709

41710

41711

41712

41713

41714

41715

41716

41717

41718

41719

41720

41721

41722

41723

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

semop() System Interfaces

NAME
semop — XSI semaphore operations

SYNOPSIS
XSI #include <sys/sem.h>

int semop(int semid, s truct sembuf * sops, s ize_t nsops);

DESCRIPTION
The semop() function operates on XSI semaphores (see the Base Definitions volume of
IEEE Std 1003.1-200x, Section 4.15, Semaphore). It is unspecified whether this function
interoperates with the realtime interprocess communication facilities defined in Section 2.8 (on
page 40).

The semop() function shall perform atomically a user-defined array of semaphore operations on
the set of semaphores associated with the semaphore identifier specified by the argument semid.

The argument sops is a pointer to a user-defined array of semaphore operation structures. The
implementation shall not modify elements of this array unless the application uses
implementation-defined extensions.

The argument nsops is the number of such structures in the array.

Each structure, sembuf, includes the following members:

Member Type Member Name Description

short sem_num Semaphore number.
short sem_op Semaphore operation.
short sem_flg Operation flags.

Each semaphore operation specified by sem_op is performed on the corresponding semaphore
specified by semid and sem_num.

The variable sem_op specifies one of three semaphore operations:

1. If sem_op is a negative integer and the calling process has alter permission, one of the
following shall occur:

• If semval(see <sys/sem.h>) is greater than or equal to the absolute value of sem_op,
the absolute value of sem_op is subtracted from semval. Also, if (sem_flg
&SEM_UNDO) is non-zero, the absolute value of sem_op shall be added to the
semadj value of the calling process for the specified semaphore.

• If semval is less than the absolute value of sem_op and (sem_flg &IPC_NOWAIT) is
non-zero, semop() shall return immediately.

• If semval is less than the absolute value of sem_op and (sem_flg &IPC_NOWAIT) is 0,
semop() shall increment the semncnt associated with the specified semaphore and
suspend execution of the calling thread until one of the following conditions occurs:

— The value of semval becomes greater than or equal to the absolute value of
sem_op. When this occurs, the value of semncnt associated with the specified
semaphore shall be decremented, the absolute value of sem_op shall be
subtracted from semval and, if (sem_flg &SEM_UNDO) is non-zero, the
absolute value of sem_op shall be added to the semadj value of the calling
process for the specified semaphore.

1346 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

41724

41725

41726

41727

41728

41729

41730

41731

41732

41733

41734

41735

41736

41737

41738

41739

41740

41741

41742

41743

41744

41745

41746

41747

41748

41749

41750

41751

41752

41753

41754

41755

41756

41757

41758

41759

41760

41761

41762

41763

41764

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces semop()

— The semid for which the calling thread is awaiting action is removed from the
system. When this occurs, errno shall be set equal to [EIDRM] and −1 shall be
returned.

— The calling thread receives a signal that is to be caught. When this occurs, the
value of semncnt associated with the specified semaphore shall be
decremented, and the calling thread shall resume execution in the manner
prescribed in sigaction().

2. If sem_op is a positive integer and the calling process has alter permission, the value of
sem_op shall be added to semval and, if (sem_flg &SEM_UNDO) is non-zero, the value of
sem_op shall be subtracted from the semadj value of the calling process for the specified
semaphore.

3. If sem_op is 0 and the calling process has read permission, one of the following shall occur:

• If semval is 0, semop() shall return immediately.

• If semval is non-zero and (sem_flg &IPC_NOWAIT) is non-zero, semop() shall return
immediately.

• If semval is non-zero and (sem_flg &IPC_NOWAIT) is 0, semop() shall increment the
semzcnt associated with the specified semaphore and suspend execution of the
calling thread until one of the following occurs:

— The value of semval becomes 0, at which time the value of semzcnt associated
with the specified semaphore shall be decremented.

— The semid for which the calling thread is awaiting action is removed from the
system. When this occurs, errno shall be set equal to [EIDRM] and −1 shall be
returned.

— The calling thread receives a signal that is to be caught. When this occurs, the
value of semzcnt associated with the specified semaphore shall be
decremented, and the calling thread shall resume execution in the manner
prescribed in sigaction().

Upon successful completion, the value of sempid for each semaphore specified in the array
pointed to by sops shall be set equal to the process ID of the calling process.

RETURN VALUE
Upon successful completion, semop() shall return 0; otherwise, it shall return −1 and set errno to
indicate the error.

ERRORS
The semop() function shall fail if:

[E2BIG] The value of nsops is greater than the system-imposed maximum.

[EACCES] Operation permission is denied to the calling process; see Section 2.7 (on page
39).

[EAGAIN] The operation would result in suspension of the calling process but (sem_flg
&IPC_NOWAIT) is non-zero.

[EFBIG] The value of sem_num is less than 0 or greater than or equal to the number of
semaphores in the set associated with semid.

[EIDRM] The semaphore identifier semid is removed from the system.

[EINTR] The semop() function was interrupted by a signal.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1347

41765

41766

41767

41768

41769

41770

41771

41772

41773

41774

41775

41776

41777

41778

41779

41780

41781

41782

41783

41784

41785

41786

41787

41788

41789

41790

41791

41792

41793

41794

41795

41796

41797

41798

41799

41800

41801

41802

41803

41804

41805

41806

41807

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

semop() System Interfaces

[EINVAL] The value of semid is not a valid semaphore identifier, or the number of
individual semaphores for which the calling process requests a SEM_UNDO
would exceed the system-imposed limit.

[ENOSPC] The limit on the number of individual processes requesting a SEM_UNDO
would be exceeded.

[ERANGE] An operation would cause a semval to overflow the system-imposed limit, or
an operation would cause a semadj value to overflow the system-imposed
limit.

EXAMPLES

Setting Values in Semaphores

The following example sets the values of the two semaphores associated with the semid identifier
to the values contained in the sb array.

#include <sys/sem.h>
...
int semid;
struct sembuf sb[2];
int nsops = 2;
int result;

/* Adjust value of semaphore in the semaphore array semid. */
sb[0].sem_num = 0;
sb[0].sem_op = -1;
sb[0].sem_flg = SEM_UNDO | IPC_NOWAIT;
sb[1].sem_num = 1;
sb[1].sem_op = 1;
sb[1].sem_flg = 0;

result = semop(semid, sb, nsops);

Creating a Semaphore Identifier

The following example gets a unique semaphore key using the ftok() function, then gets a
semaphore ID associated with that key using the semget() function (the first call also tests to
make sure the semaphore exists). If the semaphore does not exist, the program creates it, as
shown by the second call to semget(). In creating the semaphore for the queuing process, the
program attempts to create one semaphore with read/write permission for all. It also uses the
IPC_EXCL flag, which forces semget() to fail if the semaphore already exists.

After creating the semaphore, the program uses a call to semop() to initialize it to the values in
the sbuf array. The number of processes that can execute concurrently without queuing is
initially set to 2. The final call to semget() creates a semaphore identifier that can be used later in
the program.

The final call to semop() acquires the semaphore and waits until it is free; the SEM_UNDO
option releases the semaphore when the process exits, waiting until there are less than two
processes running concurrently.

#include <sys/types.h>
#include <stdio.h>
#include <sys/ipc.h>
#include <sys/sem.h>
#include <sys/stat.h>
#include <errno.h>

1348 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

41808

41809

41810

41811

41812

41813

41814

41815

41816

41817

41818

41819

41820

41821

41822

41823

41824

41825

41826

41827

41828

41829

41830

41831

41832

41833

41834

41835

41836

41837

41838

41839

41840

41841

41842

41843

41844

41845

41846

41847

41848

41849

41850

41851

41852

41853

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces semop()

#include <unistd.h>
#include <stdlib.h>
#include <pwd.h>
#include <fcntl.h>
#include <limits.h>
...
key_t semkey;
int semid, pfd, fv;
struct sembuf sbuf;
char *lgn;
char filename[PATH_MAX+1];
struct stat outstat;
struct passwd *pw;
...
/* Get unique key for semaphore. */
if ((semkey = ftok("/tmp", ’a’)) == (key_t) -1) {

perror("IPC error: ftok"); exit(1);
}

/* Get semaphore ID associated with this key. */
if ((semid = semget(semkey, 0, 0)) == -1) {

/* Semaphore does not exist - Create. */
if ((semid = semget(semkey, 1, IPC_CREAT | IPC_EXCL | S_IRUSR |

S_IWUSR | S_IRGRP | S_IWGRP | S_IROTH | S_IWOTH)) != -1)
{

/* Initialize the semaphore. */
sbuf.sem_num = 0;
sbuf.sem_op = 2; /* This is the number of runs without queuing. */
sbuf.sem_flg = 0;
if (semop(semid, &sbuf, 1) == -1) {

perror("IPC error: semop"); exit(1);
}

}
else if (errno == EEXIST) {

if ((semid = semget(semkey, 0, 0)) == -1) {
perror("IPC error 1: semget"); exit(1);

}
}
else {

perror("IPC error 2: semget"); exit(1);
}

}
...
sbuf.sem_num = 0;
sbuf.sem_op = -1;
sbuf.sem_flg = SEM_UNDO;
if (semop(semid, &sbuf, 1) == -1) {

perror("IPC Error: semop"); exit(1);
}

APPLICATION USAGE
The POSIX Realtime Extension defines alternative interfaces for interprocess communication.
Application developers who need to use IPC should design their applications so that modules
using the IPC routines described in Section 2.7 can be easily modified to use the alternative
interfaces.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1349

41854

41855

41856

41857

41858

41859

41860

41861

41862

41863

41864

41865

41866

41867

41868

41869

41870

41871

41872

41873

41874

41875

41876

41877

41878

41879

41880

41881

41882

41883

41884

41885

41886

41887

41888

41889

41890

41891

41892

41893

41894

41895

41896

41897

41898

41899

41900

41901

41902

41903

41904

41905

41906

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

semop() System Interfaces

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.7 (on page 39), Section 2.8 (on page 40), exec , exit(), fork(), semctl(), semget(),
sem_close(), sem_destroy(), sem_getvalue(), sem_init(), sem_open(), sem_post(), sem_unlink(),
sem_wait(), the Base Definitions volume of IEEE Std 1003.1-200x, <sys/ipc.h>, <sys/sem.h>,
<sys/types.h>

CHANGE HISTORY
First released in Issue 2. Derived from Issue 2 of the SVID.

Issue 5
The note about use of POSIX Realtime Extension IPC routines has been moved from FUTURE
DIRECTIONS to a new APPLICATION USAGE section.

1350 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

41907

41908

41909

41910

41911

41912

41913

41914

41915

41916

41917

41918

41919

41920

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces send()

NAME
send — send a message on a socket

SYNOPSIS
#include <sys/socket.h>

ssize_t send(int socket, c onst void * buffer, s ize_t length, i nt flags);

DESCRIPTION
The send() function shall initiate transmission of a message from the specified socket to its peer.
The send() function shall send a message only when the socket is connected. If the socket is a
connectionless-mode socket, the message shall be sent to the pre-specified peer address.

The send() function takes the following arguments:

socket Specifies the socket file descriptor.

buffer Points to the buffer containing the message to send.

length Specifies the length of the message in bytes.

flags Specifies the type of message transmission. Values of this argument are
formed by logically OR’ing zero or more of the following flags:

MSG_EOR Terminates a record (if supported by the protocol).

MSG_OOB Sends out-of-band data on sockets that support out-of-
band communications. The significance and semantics
of out-of-band data are protocol-specific.

MSG_NOSIGNAL Requests not to send the SIGPIPE signal if an attempt to
send is made on a stream-oriented socket that is no
longer connected. The [EPIPE] error shall still be
returned.

The length of the message to be sent is specified by the length argument. If the message is too
long to pass through the underlying protocol, send() shall fail and no data shall be transmitted.

Successful completion of a call to send() does not guarantee delivery of the message. A return
value of −1 indicates only locally-detected errors.

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

send() System Interfaces

[EBADF] The socket argument is not a valid file descriptor.

[ECONNRESET] A connection was forcibly closed by a peer.

[EDESTADDRREQ]
The socket is not connection-mode and no peer address is set.

[EINTR] A signal interrupted send() before any data was transmitted.

[EMSGSIZE] The message is too large to be sent all at once, as the socket requires.

[ENOTCONN] The socket is not connected.

[ENOTSOCK] The socket argument does not refer to a socket.

[EOPNOTSUPP] The socket argument is associated with a socket that does not support one or
more of the values set in flags.

[EPIPE] The socket is shut down for writing, or the socket is connection-mode and is
no longer connected. In the latter case, and if the socket is of type
SOCK_STREAM, the SIGPIPE signal is generated to the calling thread.

The send() function may fail if:

[EACCES] The calling process does not have the appropriate privileges.

[EIO] An I/O error occurred while reading from or writing to the file system.

[ENETDOWN] The local network interface used to reach the destination is down.

[ENETUNREACH]
No route to the network is present.

[ENOBUFS] Insufficient resources were available in the system to perform the operation.

EXAMPLES
None.

APPLICATION USAGE
The send() function is equivalent to sendto() with a null pointer dest_len argument, and to write()
if no flags are used.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
connect(), getsockopt(), poll(), recv(), recvfrom(), recvmsg(), select(), sendmsg(), sendto(),
setsockopt(), shutdown(), socket(), the Base Definitions volume of IEEE Std 1003.1-200x,
<sys/socket.h>

CHANGE HISTORY
First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

Issue 7
Austin Group Interpretation 1003.1-2001 #035 is applied, updating the DESCRIPTION to clarify
the behavior when the socket is a connectionless-mode socket.

The MSG_NOSIGNAL flag is added from The Open Group Technical Standard, 2006, Extended
API Set Part 2.

1352 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

41963

41964

41965

41966

41967

41968

41969

41970

41971

41972

41973

41974

41975

41976

41977

41978

41979

41980

41981

41982

41983

41984

41985

41986

41987

41988

41989

41990

41991

41992

41993

41994

41995

41996

41997

41998

41999

42000

42001

42002

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces sendmsg()

NAME
sendmsg — send a message on a socket using a message structure

SYNOPSIS
#include <sys/socket.h>

ssize_t sendmsg(int socket, c onst struct msghdr * message, i nt flags);

DESCRIPTION
The sendmsg() function shall send a message through a connection-mode or connectionless-
mode socket. If the socket is a connectionless-mode socket, the message shall be sent to the
address specified by msghdr if no pre-specified peer address has been set. If a peer address has
been pre-specified, either the message shall be sent to the address specified in msghdr
(overriding the pre-specified peer address), or the function shall return −1 and set errno to
[EISCONN]. If the socket is connection-mode, the destination address in msghdr shall be
ignored.

The sendmsg() function takes the following arguments:

socket Specifies the socket file descriptor.

message Points to a msghdr structure, containing both the destination address and the
buffers for the outgoing message. The length and format of the address
depend on the address family of the socket. The msg_flags member is ignored.

flags Specifies the type of message transmission. The application may specify 0 or
the following flag:

MSG_EOR Terminates a record (if supported by the protocol).

MSG_OOB Sends out-of-band data on sockets that support out-of-
bound data. The significance and semantics of out-of-
band data are protocol-specific.

MSG_NOSIGNAL Requests not to send the SIGPIPE signal if an attempt to
send is made on a stream-oriented socket that is no
longer connected. The [EPIPE] error shall still be
returned.

The msg_iov and msg_iovlen fields of message specify zero or more buffers containing the data to
be sent. msg_iov points to an array of iovec structures; msg_iovlen shall be set to the dimension of
this array. In each iovec structure, the iov_base field specifies a storage area and the iov_len field
gives its size in bytes. Some of these sizes can be zero. The data from each storage area indicated
by msg_iov is sent in turn.

Successful completion of a call to sendmsg() does not guarantee delivery of the message. A
return value of −1 indicates only locally-detected errors.

If space is not available at the sending socket to hold the message to be transmitted and the
socket file descriptor does not have O_NONBLOCK set, the sendmsg() function shall block until
space is available. If space is not available at the sending socket to hold the message to be
transmitted and the socket file descriptor does have O_NONBLOCK set, the sendmsg() function
shall fail.

If the socket protocol supports broadcast and the specified address is a broadcast address for the
socket protocol, sendmsg() shall fail if the SO_BROADCAST option is not set for the socket.

The socket in use may require the process to have appropriate privileges to use the sendmsg()
function.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1353

42003

42004

42005

42006

42007

42008

42009

42010

42011

42012

42013

42014

42015

42016

42017

42018

42019

42020

42021

42022

42023

42024

42025

42026

42027

42028

42029

42030

42031

42032

42033

42034

42035

42036

42037

42038

42039

42040

42041

42042

42043

42044

42045

42046

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

sendmsg() System Interfaces

RETURN VALUE
Upon successful completion, sendmsg() shall return the number of bytes sent. Otherwise, −1
shall be returned and errno set to indicate the error.

ERRORS
The sendmsg() function shall fail if:

[EAGAIN] or [EWOULDBLOCK]
The socket’s file descriptor is marked O_NONBLOCK and the requested
operation would block.

[EAFNOSUPPORT]
Addresses in the specified address family cannot be used with this socket.

[EBADF] The socket argument is not a valid file descriptor.

[ECONNRESET] A connection was forcibly closed by a peer.

[EINTR] A signal interrupted sendmsg() before any data was transmitted.

[EINVAL] The sum of the iov_len values overflows an ssize_t.

[EMSGSIZE] The message is too large to be sent all at once (as the socket requires), or the
msg_iovlen member of the msghdr structure pointed to by message is less than
or equal to 0 or is greater than {IOV_MAX}.

[ENOTCONN] The socket is connection-mode but is not connected.

[ENOTSOCK] The socket argument does not refer to a socket.

[EOPNOTSUPP] The socket argument is associated with a socket that does not support one or
more of the values set in flags.

[EPIPE] The socket is shut down for writing, or the socket is connection-mode and is
no longer connected. In the latter case, and if the socket is of type
SOCK_STREAM, the SIGPIPE signal is generated to the calling thread.

If the address family of the socket is AF_UNIX, then sendmsg() shall fail if:

[EIO] An I/O error occurred while reading from or writing to the file system.

[ELOOP] A loop exists in symbolic links encountered during resolution of the pathname
in the socket address.

[ENAMETOOLONG]
A component of a pathname exceeded {NAME_MAX} characters, or an entire
pathname exceeded {PATH_MAX} characters.

[ENOENT] A component of the pathname does not name an existing file or the path name
is an empty string.

[ENOTDIR] A component of the path prefix of the pathname in the socket address is not a
directory.

The sendmsg() function may fail if:

[EACCES] Search permission is denied for a component of the path prefix; or write access
to the named socket is denied.

[EDESTADDRREQ]
The socket is not connection-mode and does not have its peer address set, and
no destination address was specified.

1354 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

42047

42048

42049

42050

42051

42052

42053

42054

42055

42056

42057

42058

42059

42060

42061

42062

42063

42064

42065

42066

42067

42068

42069

42070

42071

42072

42073

42074

42075

42076

42077

42078

42079

42080

42081

42082

42083

42084

42085

42086

42087

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces sendmsg()

[EHOSTUNREACH]
The destination host cannot be reached (probably because the host is down or
a remote router cannot reach it).

[EIO] An I/O error occurred while reading from or writing to the file system.

[EISCONN] A destination address was specified and the socket is already connected.

[ENETDOWN] The local network interface used to reach the destination is down.

[ENETUNREACH]
No route to the network is present.

[ENOBUFS] Insufficient resources were available in the system to perform the operation.

[ENOMEM] Insufficient memory was available to fulfill the request.

If the address family of the socket is AF_UNIX, then sendmsg() may fail if:

[ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during
resolution of the pathname in the socket address.

[ENAMETOOLONG]
Pathname resolution of a symbolic link produced an intermediate result
whose length exceeds {PATH_MAX}.

EXAMPLES
Done.

APPLICATION USAGE
The select() and poll() functions can be used to determine when it is possible to send more data.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
getsockopt(), poll(), recv(), recvfrom(), recvmsg(), select(), send(), sendto(), setsockopt(),
shutdown(), socket(), the Base Definitions volume of IEEE Std 1003.1-200x, <sys/socket.h>

CHANGE HISTORY
First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

The wording of the mandatory [ELOOP] error condition is updated, and a second optional
[ELOOP] error condition is added.

Issue 7
Austin Group Interpretation 1003.1-2001 #073 is applied, updating the DESCRIPTION.

The MSG_NOSIGNAL flag is added from The Open Group Technical Standard, 2006, Extended
API Set Part 2.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1355

42088

42089

42090

42091

42092

42093

42094

42095

42096

42097

42098

42099

42100

42101

42102

42103

42104

42105

42106

42107

42108

42109

42110

42111

42112

42113

42114

42115

42116

42117

42118

42119

42120

42121

42122

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

sendto() System Interfaces

NAME
sendto — send a message on a socket

SYNOPSIS
#include <sys/socket.h>

ssize_t sendto(int socket, c onst void * message, s ize_t length,
int flags, c onst struct sockaddr * dest_addr,
socklen_t dest_len);

DESCRIPTION
The sendto() function shall send a message through a connection-mode or connectionless-mode
socket. If the socket is a connectionless-mode socket, the message shall be sent to the address
specified by dest_addr if no pre-specified peer address has been set. If a peer address has been
pre-specified, either the message shall be sent to the address specified by dest_addr (overriding
the pre-specified peer address), or the function shall return −1 and set errno to [EISCONN]. If
the socket is connection-mode, dest_addr shall be ignored.

The sendto() function takes the following arguments:

socket Specifies the socket file descriptor.

message Points to a buffer containing the message to be sent.

length Specifies the size of the message in bytes.

flags Specifies the type of message transmission. Values of this argument are
formed by logically OR’ing zero or more of the following flags:

MSG_EOR Terminates a record (if supported by the protocol).

MSG_OOB Sends out-of-band data on sockets that support out-of-
band data. The significance and semantics of out-of-
band data are protocol-specific.

MSG_NOSIGNAL Requests not to send the SIGPIPE signal if an attempt to
send is made on a stream-oriented socket that is no
longer connected. The [EPIPE] error shall still be
returned.

dest_addr Points to a sockaddr structure containing the destination address. The length
and format of the address depend on the address family of the socket.

dest_len Specifies the length of the sockaddr structure pointed to by the dest_addr
argument.

If the socket protocol supports broadcast and the specified address is a broadcast address for the
socket protocol, sendto() shall fail if the SO_BROADCAST option is not set for the socket.

The dest_addr argument specifies the address of the target. The length argument specifies the
length of the message.

Successful completion of a call to sendto() does not guarantee delivery of the message. A return
value of −1 indicates only locally-detected errors.

If space is not available at the sending socket to hold the message to be transmitted and the
socket file descriptor does not have O_NONBLOCK set, sendto() shall block until space is
available. If space is not available at the sending socket to hold the message to be transmitted
and the socket file descriptor does have O_NONBLOCK set, sendto() shall fail.

The socket in use may require the process to have appropriate privileges to use the sendto()

1356 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

42123

42124

42125

42126

42127

42128

42129

42130

42131

42132

42133

42134

42135

42136

42137

42138

42139

42140

42141

42142

42143

42144

42145

42146

42147

42148

42149

42150

42151

42152

42153

42154

42155

42156

42157

42158

42159

42160

42161

42162

42163

42164

42165

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces sendto()

function.

RETURN VALUE
Upon successful completion, sendto() shall return the number of bytes sent. Otherwise, −1 shall
be returned and errno set to indicate the error.

ERRORS
The sendto() function shall fail if:

[EAFNOSUPPORT]
Addresses in the specified address family cannot be used with this socket.

[EAGAIN] or [EWOULDBLOCK]
The socket’s file descriptor is marked O_NONBLOCK and the requested
operation would block.

[EBADF] The socket argument is not a valid file descriptor.

[ECONNRESET] A connection was forcibly closed by a peer.

[EINTR] A signal interrupted sendto() before any data was transmitted.

[EMSGSIZE] The message is too large to be sent all at once, as the socket requires.

[ENOTCONN] The socket is connection-mode but is not connected.

[ENOTSOCK] The socket argument does not refer to a socket.

[EOPNOTSUPP] The socket argument is associated with a socket that does not support one or
more of the values set in flags.

[EPIPE] The socket is shut down for writing, or the socket is connection-mode and is
no longer connected. In the latter case, and if the socket is of type
SOCK_STREAM, the SIGPIPE signal is generated to the calling thread.

If the address family of the socket is AF_UNIX, then sendto() shall fail if:

[EIO] An I/O error occurred while reading from or writing to the file system.

[ELOOP] A loop exists in symbolic links encountered during resolution of the pathname
in the socket address.

[ENAMETOOLONG]
A component of a pathname exceeded {NAME_MAX} characters, or an entire
pathname exceeded {PATH_MAX} characters.

[ENOENT] A component of the pathname does not name an existing file or the pathname
is an empty string.

[ENOTDIR] A component of the path prefix of the pathname in the socket address is not a
directory.

The sendto() function may fail if:

[EACCES] Search permission is denied for a component of the path prefix; or write access
to the named socket is denied.

[EDESTADDRREQ]
The socket is not connection-mode and does not have its peer address set, and
no destination address was specified.

[EHOSTUNREACH]
The destination host cannot be reached (probably because the host is down or
a remote router cannot reach it).

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1357

42166

42167

42168

42169

42170

42171

42172

42173

42174

42175

42176

42177

42178

42179

42180

42181

42182

42183

42184

42185

42186

42187

42188

42189

42190

42191

42192

42193

42194

42195

42196

42197

42198

42199

42200

42201

42202

42203

42204

42205

42206

42207

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

sendto() System Interfaces

[EINVAL] The dest_len argument is not a valid length for the address family.

[EIO] An I/O error occurred while reading from or writing to the file system.

[EISCONN] A destination address was specified and the socket is already connected.

[ENETDOWN] The local network interface used to reach the destination is down.

[ENETUNREACH]
No route to the network is present.

[ENOBUFS] Insufficient resources were available in the system to perform the operation.

[ENOMEM] Insufficient memory was available to fulfill the request.

If the address family of the socket is AF_UNIX, then sendto() may fail if:

[ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during
resolution of the pathname in the socket address.

[ENAMETOOLONG]
Pathname resolution of a symbolic link produced an intermediate result
whose length exceeds {PATH_MAX}.

EXAMPLES
None.

APPLICATION USAGE
The select() and poll() functions can be used to determine when it is possible to send more data.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
getsockopt(), poll(), recv(), recvfrom(), recvmsg(), select(), send(), sendmsg(), setsockopt(),
shutdown(), socket(), the Base Definitions volume of IEEE Std 1003.1-200x, <sys/socket.h>

CHANGE HISTORY
First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

The wording of the mandatory [ELOOP] error condition is updated, and a second optional
[ELOOP] error condition is added.

Issue 7
Austin Group Interpretations 1003.1-2001 #035 and #073 are applied, updating the [EISCONN]
error and the DESCRIPTION.

The MSG_NOSIGNAL flag is added from The Open Group Technical Standard, 2006, Extended
API Set Part 2.

1358 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

42208

42209

42210

42211

42212

42213

42214

42215

42216

42217

42218

42219

42220

42221

42222

42223

42224

42225

42226

42227

42228

42229

42230

42231

42232

42233

42234

42235

42236

42237

42238

42239

42240

42241

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces setbuf()

NAME
setbuf — assign buffering to a stream

SYNOPSIS
#include <stdio.h>

void setbuf(FILE *restrict stream, c har *restrict buf);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

Except that it returns no value, the function call:

setbuf(stream, buf)

shall be equivalent to:

setvbuf(stream, buf, _IOFBF, BUFSIZ)

if buf is not a null pointer, or to:

setvbuf(stream, buf, _IONBF, BUFSIZ)

if buf is a null pointer.

RETURN VALUE
The setbuf() function shall not return a value.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
A common source of error is allocating buffer space as an ‘‘automatic’’ variable in a code block,
and then failing to close the stream in the same block.

With setbuf(), allocating a buffer of BUFSIZ bytes does not necessarily imply that all of BUFSIZ
bytes are used for the buffer area.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fopen(), setvbuf(), the Base Definitions volume of IEEE Std 1003.1-200x, <stdio.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
The prototype for setbuf() is updated for alignment with the ISO/IEC 9899: 1999 standard.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1359

42242

42243

42244

42245

42246

42247

42248

42249

42250

42251

42252

42253

42254

42255

42256

42257

42258

42259

42260

42261

42262

42263

42264

42265

42266

42267

42268

42269

42270

42271

42272

42273

42274

42275

42276

42277

42278

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

setegid() System Interfaces

NAME
setegid — set the effective group ID

SYNOPSIS
#include <unistd.h>

int setegid(gid_t gid);

DESCRIPTION
If gid is equal to the real group ID or the saved set-group-ID, or if the process has appropriate
privileges, setegid() shall set the effective group ID of the calling process to gid; the real group
ID, saved set-group-ID, and any supplementary group IDs shall remain unchanged.

The setegid() function shall not affect the supplementary group list in any way.

RETURN VALUE
Upon successful completion, 0 shall be returned; otherwise, −1 shall be returned and errno set to
indicate the error.

ERRORS
The setegid() function shall fail if:

[EINVAL] The value of the gid argument is invalid and is not supported by the
implementation.

[EPERM] The process does not have appropriate privileges and gid does not match the
real group ID or the saved set-group-ID.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
Refer to the RATIONALE section in setuid().

FUTURE DIRECTIONS
None.

SEE ALSO
exec , getegid(), geteuid(), getgid(), getuid(), seteuid(), setgid(), setregid(), setreuid(), setuid(), the
Base Definitions volume of IEEE Std 1003.1-200x, <sys/types.h>, <unistd.h>

CHANGE HISTORY
First released in Issue 6. Derived from the IEEE P1003.1a draft standard.

1360 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

42279

42280

42281

42282

42283

42284

42285

42286

42287

42288

42289

42290

42291

42292

42293

42294

42295

42296

42297

42298

42299

42300

42301

42302

42303

42304

42305

42306

42307

42308

42309

42310

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces setenv()

NAME
setenv — add or change environment variable

SYNOPSIS
CX #include <stdlib.h>

int setenv(const char * envname, c onst char * envval, i nt overwrite);

DESCRIPTION
The setenv() function shall update or add a variable in the environment of the calling process.
The envname argument points to a string containing the name of an environment variable to be
added or altered. The environment variable shall be set to the value to which envval points. The
function shall fail if envname points to a string which contains an ’=’ character. If the
environment variable named by envname already exists and the value of overwrite is non-zero,
the function shall return success and the environment shall be updated. If the environment
variable named by envname already exists and the value of overwrite is zero, the function shall
return success and the environment shall remain unchanged.

If the application modifies environ or the pointers to which it points, the behavior of setenv() is
undefined. The setenv() function shall update the list of pointers to which environ points.

The strings described by envname and envval are copied by this function.

The setenv() function need not be thread-safe. A function that is not required to be thread-safe is
not required to be reentrant.

RETURN VALUE
Upon successful completion, zero shall be returned. Otherwise, −1 shall be returned, errno set to
indicate the error, and the environment shall be unchanged.

ERRORS
The setenv() function shall fail if:

[EINVAL] The name argument is a null pointer, points to an empty string, or points to a
string containing an ’=’ character.

[ENOMEM] Insufficient memory was available to add a variable or its value to the
environment.

EXAMPLES
None.

APPLICATION USAGE
See exec , for restrictions on changing the environment in multi-threaded applications.

RATIONALE
Unanticipated results may occur if setenv() changes the external variable environ. In particular, if
the optional envp argument to main() is present, it is not changed, and thus may point to an
obsolete copy of the environment (as may any other copy of environ). However, other than the
aforementioned restriction, the developers of IEEE Std 1003.1-200x intended that the traditional
method of walking through the environment by way of the environ pointer must be supported.

It was decided that setenv() should be required by this revision because it addresses a piece of
missing functionality, and does not impose a significant burden on the implementor.

There was considerable debate as to whether the System V putenv() function or the BSD setenv()
function should be required as a mandatory function. The setenv() function was chosen because
it permitted the implementation of the unsetenv() function to delete environmental variables,

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1361

42311

42312

42313

42314

42315

42316

42317

42318

42319

42320

42321

42322

42323

42324

42325

42326

42327

42328

42329

42330

42331

42332

42333

42334

42335

42336

42337

42338

42339

42340

42341

42342

42343

42344

42345

42346

42347

42348

42349

42350

42351

42352

42353

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

setenv() System Interfaces

without specifying an additional interface. The putenv() function is available as part of the XSI
option.

The standard developers considered requiring that setenv() indicate an error when a call to it
would result in exceeding {ARG_MAX}. The requirement was rejected since the condition might
be temporary, with the application eventually reducing the environment size. The ultimate
success or failure depends on the size at the time of a call to exec, which returns an indication of
this error condition.

FUTURE DIRECTIONS
None.

SEE ALSO
exec , getenv(), unsetenv(), the Base Definitions volume of IEEE Std 1003.1-200x, <stdlib.h>,
<sys/types.h>, <unistd.h>

CHANGE HISTORY
First released in Issue 6. Derived from the IEEE P1003.1a draft standard.

IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/55 is applied, adding references to exec in
the APPLICATION USAGE and SEE ALSO sections.

1362 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

42354

42355

42356

42357

42358

42359

42360

42361

42362

42363

42364

42365

42366

42367

42368

42369

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces seteuid()

NAME
seteuid — set effective user ID

SYNOPSIS
#include <unistd.h>

int seteuid(uid_t uid);

DESCRIPTION
If uid is equal to the real user ID or the saved set-user-ID, or if the process has appropriate
privileges, seteuid() shall set the effective user ID of the calling process to uid; the real user ID
and saved set-user-ID shall remain unchanged.

The seteuid() function shall not affect the supplementary group list in any way.

RETURN VALUE
Upon successful completion, 0 shall be returned; otherwise, −1 shall be returned and errno set to
indicate the error.

ERRORS
The seteuid() function shall fail if:

[EINVAL] The value of the uid argument is invalid and is not supported by the
implementation.

[EPERM] The process does not have appropriate privileges and uid does not match the
real user ID or the saved set-user-ID.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
Refer to the RATIONALE section in setuid().

FUTURE DIRECTIONS
None.

SEE ALSO
exec , getegid(), geteuid(), getgid(), getuid(), setegid(), setgid(), setregid(), setreuid(), setuid(), the
Base Definitions volume of IEEE Std 1003.1-200x, <sys/types.h>, <unistd.h>

CHANGE HISTORY
First released in Issue 6. Derived from the IEEE P1003.1a draft standard.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/123 is applied, making an editorial
correction to the [EPERM] error in the ERRORS section.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1363

42370

42371

42372

42373

42374

42375

42376

42377

42378

42379

42380

42381

42382

42383

42384

42385

42386

42387

42388

42389

42390

42391

42392

42393

42394

42395

42396

42397

42398

42399

42400

42401

42402

42403

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

setgid() System Interfaces

NAME
setgid — set-group-ID

SYNOPSIS
#include <unistd.h>

int setgid(gid_t gid);

DESCRIPTION
If the process has appropriate privileges, setgid() shall set the real group ID, effective group ID,
and the saved set-group-ID of the calling process to gid.

If the process does not have appropriate privileges, but gid is equal to the real group ID or the
saved set-group-ID, setgid() shall set the effective group ID to gid; the real group ID and saved
set-group-ID shall remain unchanged.

The setgid() function shall not affect the supplementary group list in any way.

Any supplementary group IDs of the calling process shall remain unchanged.

RETURN VALUE
Upon successful completion, 0 is returned. Otherwise, −1 shall be returned and errno set to
indicate the error.

ERRORS
The setgid() function shall fail if:

[EINVAL] The value of the gid argument is invalid and is not supported by the
implementation.

[EPERM] The process does not have appropriate privileges and gid does not match the
real group ID or the saved set-group-ID.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
Refer to the RATIONALE section in setuid().

FUTURE DIRECTIONS
None.

SEE ALSO
exec , getegid(), geteuid(), getgid(), getuid(), setegid(), seteuid(), setregid(), setreuid(), setuid(), the
Base Definitions volume of IEEE Std 1003.1-200x, <sys/types.h>, <unistd.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
In the SYNOPSIS, the optional include of the <sys/types.h> header is removed.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
required for conforming implementations of previous POSIX specifications, it was not
required for UNIX applications.

1364 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

42404

42405

42406

42407

42408

42409

42410

42411

42412

42413

42414

42415

42416

42417

42418

42419

42420

42421

42422

42423

42424

42425

42426

42427

42428

42429

42430

42431

42432

42433

42434

42435

42436

42437

42438

42439

42440

42441

42442

42443

42444

42445

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces setgid()

• Functionality associated with _POSIX_SAVED_IDS is now mandated. This is a FIPS
requirement.

The following changes were made to align with the IEEE P1003.1a draft standard:

• The effects of setgid() in processes without appropriate privileges are changed.

• A requirement that the supplementary group list is not affected is added.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1365

42446

42447

42448

42449

42450

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

setgrent() System Interfaces

NAME
setgrent — reset the group database to the first entry

SYNOPSIS
XSI #include <grp.h>

void setgrent(void);

DESCRIPTION
Refer to endgrent().

1366 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

42451

42452

42453

42454

42455

42456

42457

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces sethostent()

NAME
sethostent — network host database functions

SYNOPSIS
#include <netdb.h>

void sethostent(int stayopen);

DESCRIPTION
Refer to endhostent().

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1367

42458

42459

42460

42461

42462

42463

42464

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

setitimer() System Interfaces

NAME
setitimer — set the value of an interval timer

SYNOPSIS
OB XSI #include <sys/time.h>

int setitimer(int which, c onst struct itimerval *restrict value,
struct itimerval *restrict ovalue);

DESCRIPTION
Refer to getitimer().

1368 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

42465

42466

42467

42468

42469

42470

42471

42472

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces setjmp()

NAME
setjmp — set jump point for a non-local goto

SYNOPSIS
#include <setjmp.h>

int setjmp(jmp_buf env);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

A call to setjmp() shall save the calling environment in its env argument for later use by
longjmp().

It is unspecified whether setjmp() is a macro or a function. If a macro definition is suppressed in
order to access an actual function, or a program defines an external identifier with the name
setjmp, the behavior is undefined.

An application shall ensure that an invocation of setjmp() appears in one of the following
contexts only:

• The entire controlling expression of a selection or iteration statement

• One operand of a relational or equality operator with the other operand an integral
constant expression, with the resulting expression being the entire controlling expression
of a selection or iteration statement

• The operand of a unary ’!’ operator with the resulting expression being the entire
controlling expression of a selection or iteration

• The entire expression of an expression statement (possibly cast to void)

If the invocation appears in any other context, the behavior is undefined.

RETURN VALUE
If the return is from a direct invocation, setjmp() shall return 0. If the return is from a call to
longjmp(), setjmp() shall return a non-zero value.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
In general, sigsetjmp() is more useful in dealing with errors and interrupts encountered in a low-
level subroutine of a program.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
longjmp(), sigsetjmp(), the Base Definitions volume of IEEE Std 1003.1-200x, <setjmp.h>

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1369

42473

42474

42475

42476

42477

42478

42479

42480

42481

42482

42483

42484

42485

42486

42487

42488

42489

42490

42491

42492

42493

42494

42495

42496

42497

42498

42499

42500

42501

42502

42503

42504

42505

42506

42507

42508

42509

42510

42511

42512

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

setjmp() System Interfaces

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

1370 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

42513

42514

42515

42516

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces setkey()

NAME
setkey — set encoding key (CRYPT)

SYNOPSIS
XSI #include <stdlib.h>

void setkey(const char * key);

DESCRIPTION
The setkey() function provides access to an implementation-defined encoding algorithm. The
argument of setkey() is an array of length 64 bytes containing only the bytes with numerical
value of 0 and 1. If this string is divided into groups of 8, the low-order bit in each group is
ignored; this gives a 56-bit key which is used by the algorithm. This is the key that shall be used
with the algorithm to encode a string block passed to encrypt().

The setkey() function shall not change the setting of errno if successful. An application wishing to
check for error situations should set errno to 0 before calling setkey(). If errno is non-zero on
return, an error has occurred.

The setkey() function need not be thread-safe. A function that is not required to be thread-safe is
not required to be reentrant.

RETURN VALUE
No values are returned.

ERRORS
The setkey() function shall fail if:

[ENOSYS] The functionality is not supported on this implementation.

EXAMPLES
None.

APPLICATION USAGE
Decoding need not be implemented in all environments. This is related to government
restrictions in some countries on encryption and decryption routines. Historical practice has
been to ship a different version of the encryption library without the decryption feature in the
routines supplied. Thus the exported version of encrypt() does encoding but not decoding.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
crypt(), encrypt(), the Base Definitions volume of IEEE Std 1003.1-200x, <stdlib.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The DESCRIPTION is updated to indicate that errno is not changed if the function is successful.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1371

42517

42518

42519

42520

42521

42522

42523

42524

42525

42526

42527

42528

42529

42530

42531

42532

42533

42534

42535

42536

42537

42538

42539

42540

42541

42542

42543

42544

42545

42546

42547

42548

42549

42550

42551

42552

42553

42554

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

setlocale() System Interfaces

NAME
setlocale — set program locale

SYNOPSIS
#include <locale.h>

char *setlocale(int category, c onst char * locale);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

The setlocale() function selects the appropriate piece of the locale of the process, as specified by
the category and locale arguments, and may be used to change or query the entire locale of the
process or portions thereof. The value LC_ALL for category names the entire locale of the process;
other values for category name only a part of the locale of the process:

LC_COLLATE Affects the behavior of regular expressions and the collation functions.

LC_CTYPE Affects the behavior of regular expressions, character classification, character
conversion functions, and wide-character functions.

CX LC_MESSAGES Affects what strings are expected by commands and utilities as affirmative or
negative responses.

XSI It also affects what strings are given by commands and utilities as affirmative
or negative responses, and the content of messages.

LC_MONETARY Affects the behavior of functions that handle monetary values.

LC_NUMERIC Affects the behavior of functions that handle numeric values.

LC_TIME Affects the behavior of the time conversion functions.

The locale argument is a pointer to a character string containing the required setting of category.
The contents of this string are implementation-defined. In addition, the following preset values
of locale are defined for all settings of category:

CX "POSIX" Specifies the minimal environment for C-language translation called the
POSIX locale. If setlocale() is not invoked, the POSIX locale is the default at
entry to main().

"C" Equivalent to "POSIX" .

CX " " Specifies an implementation-defined native environment. The determination
of the name of the new locale for the specified category depends on the value
of the associated environment variables, LC_* and LANG; see the Base
Definitions volume of IEEE Std 1003.1-200x, Chapter 7, Locale and the Base
Definitions volume of IEEE Std 1003.1-200x, Chapter 8, Environment
Variables.

A null pointer Used to direct setlocale() to query the current internationalized environment
and return the name of the locale.

CX Setting all of the categories of the locale of the process is similar to successively setting each
individual category of the locale of the process, except that all error checking is done before any
actions are performed. To set all the categories of the locale of the process, setlocale() is invoked
as:

setlocale(LC_ALL, "");

1372 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

42555

42556

42557

42558

42559

42560

42561

42562

42563

42564

42565

42566

42567

42568

42569

42570

42571

42572

42573

42574

42575

42576

42577

42578

42579

42580

42581

42582

42583

42584

42585

42586

42587

42588

42589

42590

42591

42592

42593

42594

42595

42596

42597

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces setlocale()

In this case, setlocale() shall first verify that the values of all the environment variables it needs
according to the precedence rules (described in the Base Definitions volume of
IEEE Std 1003.1-200x, Chapter 8, Environment Variables) indicate supported locales. If the value
of any of these environment variable searches yields a locale that is not supported (and non-
null), setlocale() shall return a null pointer and the locale of the process shall not be changed. If
all environment variables name supported locales, setlocale() shall proceed as if it had been
called for each category, using the appropriate value from the associated environment variable
or from the implementation-defined default if there is no such value.

The locale state is common to all threads within a process.

RETURN VALUE
Upon successful completion, setlocale() shall return the string associated with the specified
category for the new locale. Otherwise, setlocale() shall return a null pointer and the locale of the
process is not changed.

A null pointer for locale causes setlocale() to return a pointer to the string associated with the
category for the current locale of the process. The locale of the process shall not be changed.

The string returned by setlocale() is such that a subsequent call with that string and its associated
category shall restore that part of the locale of the process. The application shall not modify the
string returned which may be overwritten by a subsequent call to setlocale().

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
The following code illustrates how a program can initialize the international environment for
one language, while selectively modifying the locale of the process such that regular expressions
and string operations can be applied to text recorded in a different language:

setlocale(LC_ALL, "De");
setlocale(LC_COLLATE, "Fr@dict");

Internationalized programs must call setlocale() to initiate a specific language operation. This can
be done by calling setlocale() as follows:

setlocale(LC_ALL, "");

Changing the setting of LC_MESSAGES has no effect on catalogs that have already been opened
by calls to catopen().

RATIONALE
The ISO C standard defines a collection of functions to support internationalization. One of the
most significant aspects of these functions is a facility to set and query the international
environment. The international environment is a repository of information that affects the
behavior of certain functionality, namely:

1. Character handling

2. Collating

3. Date/time formatting

4. Numeric editing

5. Monetary formatting

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1373

42598

42599

42600

42601

42602

42603

42604

42605

42606

42607

42608

42609

42610

42611

42612

42613

42614

42615

42616

42617

42618

42619

42620

42621

42622

42623

42624

42625

42626

42627

42628

42629

42630

42631

42632

42633

42634

42635

42636

42637

42638

42639

42640

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

setlocale() System Interfaces

6. Messaging

The setlocale() function provides the application developer with the ability to set all or portions,
called categories, of the international environment. These categories correspond to the areas of
functionality mentioned above. The syntax for setlocale() is as follows:

char *setlocale(int category, c onst char * locale);

where category is the name of one of following categories, namely:

LC_COLLATE
LC_CTYPE
LC_MESSAGES
LC_MONETARY
LC_NUMERIC
LC_TIME

In addition, a special value called LC_ALL directs setlocale() to set all categories.

There are two primary uses of setlocale():

1. Querying the international environment to find out what it is set to

2. Setting the international environment, or locale, to a specific value

The behavior of setlocale() in these two areas is described below. Since it is difficult to describe
the behavior in words, examples are used to illustrate the behavior of specific uses.

To query the international environment, setlocale() is invoked with a specific category and the
NULL pointer as the locale. The NULL pointer is a special directive to setlocale() that tells it to
query rather than set the international environment. The following syntax is used to query the
name of the international environment:

setlocale({LC_ALL, LC_COLLATE, LC_CTYPE, LC_MESSAGES, LC_MONETARY, \
LC_NUMERIC, LC_TIME},(char *) NULL);

The setlocale() function shall return the string corresponding to the current international
environment. This value may be used by a subsequent call to setlocale() to reset the international
environment to this value. However, it should be noted that the return value from setlocale()
may be a pointer to a static area within the function and is not guaranteed to remain unchanged
(that is, it may be modified by a subsequent call to setlocale()). Therefore, if the purpose of
calling setlocale() is to save the value of the current international environment so it can be
changed and reset later, the return value should be copied to an array of char in the calling
program.

There are three ways to set the international environment with setlocale():

setlocale(category, string)
This usage sets a specific category in the international environment to a specific value
corresponding to the value of the string. A specific example is provided below:

setlocale(LC_ALL, "fr_FR.ISO-8859-1");

In this example, all categories of the international environment are set to the locale
corresponding to the string "fr_FR.ISO-8859-1" , or to the French language as spoken in
France using the ISO/IEC 8859-1: 1998 standard codeset.

If the string does not correspond to a valid locale, setlocale() shall return a NULL pointer
and the international environment is not changed. Otherwise, setlocale() shall return the
name of the locale just set.

1374 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

42641

42642

42643

42644

42645

42646

42647

42648

42649

42650

42651

42652

42653

42654

42655

42656

42657

42658

42659

42660

42661

42662

42663

42664

42665

42666

42667

42668

42669

42670

42671

42672

42673

42674

42675

42676

42677

42678

42679

42680

42681

42682

42683

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces setlocale()

setlocale(category, "C")
The ISO C standard states that one locale must exist on all conforming implementations.
The name of the locale is C and corresponds to a minimal international environment needed
to support the C programming language.

setlocale(category, "")
This sets a specific category to an implementation-defined default. This corresponds to the
value of the environment variables.

FUTURE DIRECTIONS
None.

SEE ALSO
exec , isalnum(), isalpha(), isblank(), iscntrl(), isdigit(), isgraph(), islower(), isprint(), ispunct(),
isspace(), isupper(), iswalnum(), iswalpha(), iswblank(), iswcntrl(), iswctype(), iswdigit(),
iswgraph(), iswlower(), iswprint(), iswpunct(), iswspace(), iswupper(), iswxdigit(), isxdigit(),
localeconv(), mblen(), mbstowcs(), mbtowc(), nl_langinfo(), printf(), scanf(), setlocale(), strcoll(),
strerror(), strfmon(), strsignal(), strtod(), strxfrm(), tolower(), toupper(), towlower(), towupper(),
uselocale(), wcscoll(), wcstod(), wcstombs(), wcsxfrm(), wctomb(), the Base Definitions volume of
IEEE Std 1003.1-200x, <langinfo.h>, <locale.h>

CHANGE HISTORY
First released in Issue 3.

Issue 5
The DESCRIPTION is updated for alignment with the POSIX Threads Extension.

Issue 6
Extensions beyond the ISO C standard are marked.

The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/124 is applied, updating the
DESCRIPTION to clarify the behavior of:

setlocale(LC_ALL, "");

Issue 7
Functionality relating to the Threads option is moved to the Base.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1375

42684

42685

42686

42687

42688

42689

42690

42691

42692

42693

42694

42695

42696

42697

42698

42699

42700

42701

42702

42703

42704

42705

42706

42707

42708

42709

42710

42711

42712

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

setlogmask() System Interfaces

NAME
setlogmask — set the log priority mask

SYNOPSIS
XSI #include <syslog.h>

int setlogmask(int maskpri);

DESCRIPTION
Refer to closelog().

1376 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

42713

42714

42715

42716

42717

42718

42719

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces setnetent()

NAME
setnetent — network database function

SYNOPSIS
#include <netdb.h>

void setnetent(int stayopen);

DESCRIPTION
Refer to endnetent().

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1377

42720

42721

42722

42723

42724

42725

42726

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

setpgid() System Interfaces

NAME
setpgid — set process group ID for job control

SYNOPSIS
#include <unistd.h>

int setpgid(pid_t pid, p id_t pgid);

DESCRIPTION
The setpgid() function shall either join an existing process group or create a new process group
within the session of the calling process. The process group ID of a session leader shall not
change. Upon successful completion, the process group ID of the process with a process ID that
matches pid shall be set to pgid. As a special case, if pid is 0, the process ID of the calling process
shall be used. Also, if pgid is 0, the process ID of the indicated process shall be used.

RETURN VALUE
Upon successful completion, setpgid() shall return 0; otherwise, −1 shall be returned and errno
shall be set to indicate the error.

ERRORS
The setpgid() function shall fail if:

[EACCES] The value of the pid argument matches the process ID of a child process of the
calling process and the child process has successfully executed one of the exec
functions.

[EINVAL] The value of the pgid argument is less than 0, or is not a value supported by
the implementation.

[EPERM] The process indicated by the pid argument is a session leader.

[EPERM] The value of the pid argument matches the process ID of a child process of the
calling process and the child process is not in the same session as the calling
process.

[EPERM] The value of the pgid argument is valid but does not match the process ID of
the process indicated by the pid argument and there is no process with a
process group ID that matches the value of the pgid argument in the same
session as the calling process.

[ESRCH] The value of the pid argument does not match the process ID of the calling
process or of a child process of the calling process.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
The setpgid() function shall group processes together for the purpose of signaling, placement in
foreground or background, and other job control actions.

The setpgid() function is similar to the setpgrp() function of 4.2 BSD, except that 4.2 BSD allowed
the specified new process group to assume any value. This presents certain security problems
and is more flexible than necessary to support job control.

To provide tighter security, setpgid() only allows the calling process to join a process group
already in use inside its session or create a new process group whose process group ID was
equal to its process ID.

1378 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

42727

42728

42729

42730

42731

42732

42733

42734

42735

42736

42737

42738

42739

42740

42741

42742

42743

42744

42745

42746

42747

42748

42749

42750

42751

42752

42753

42754

42755

42756

42757

42758

42759

42760

42761

42762

42763

42764

42765

42766

42767

42768

42769

42770

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

setpgrp() System Interfaces

NAME
setpgrp — set the process group ID

SYNOPSIS
OB XSI #include <unistd.h>

pid_t setpgrp(void);

DESCRIPTION
If the calling process is not already a session leader, setpgrp() sets the process group ID of the
calling process to the process ID of the calling process. If setpgrp() creates a new session, then the
new session has no controlling terminal.

The setpgrp() function has no effect when the calling process is a session leader.

RETURN VALUE
Upon completion, setpgrp() shall return the process group ID.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
It is unspecified whether this function behaves as setpgid(0,0) or setsid() unless the process is
already a session leader. Therefore, applications are encouraged to use setpgid() or setsid() as
appropriate.

RATIONALE
None.

FUTURE DIRECTIONS
The setpgrp() function may be removed in a future version.

SEE ALSO
exec , fork(), getpid(), getsid(), kill(), setpgid(), setsid(), the Base Definitions volume of
IEEE Std 1003.1-200x, <unistd.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Issue 7
The setpgrp() function is marked obsolescent.

1380 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

42815

42816

42817

42818

42819

42820

42821

42822

42823

42824

42825

42826

42827

42828

42829

42830

42831

42832

42833

42834

42835

42836

42837

42838

42839

42840

42841

42842

42843

42844

42845

42846

42847

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces setpriority()

NAME
setpriority — set the nice value

SYNOPSIS
XSI #include <sys/resource.h>

int setpriority(int which, i d_t who, i nt nice);

DESCRIPTION
Refer to getpriority().

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1381

42848

42849

42850

42851

42852

42853

42854

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

setprotoent() System Interfaces

NAME
setprotoent — network protocol database functions

SYNOPSIS
#include <netdb.h>

void setprotoent(int stayopen);

DESCRIPTION
Refer to endprotoent().

1382 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

42855

42856

42857

42858

42859

42860

42861

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces setpwent()

NAME
setpwent — user database function

SYNOPSIS
XSI #include <pwd.h>

void setpwent(void);

DESCRIPTION
Refer to endpwent().

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1383

42862

42863

42864

42865

42866

42867

42868

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

setregid() System Interfaces

NAME
setregid — set real and effective group IDs

SYNOPSIS
XSI #include <unistd.h>

int setregid(gid_t rgid, g id_t egid);

DESCRIPTION
The setregid() function shall set the real and effective group IDs of the calling process.

If rgid is −1, the real group ID shall not be changed; if egid is −1, the effective group ID shall not
be changed.

The real and effective group IDs may be set to different values in the same call.

Only a process with appropriate privileges can set the real group ID and the effective group ID
to any valid value.

A non-privileged process can set either the real group ID to the saved set-group-ID from one of
the exec family of functions, or the effective group ID to the saved set-group-ID or the real group
ID.

Any supplementary group IDs of the calling process remain unchanged.

RETURN VALUE
Upon successful completion, 0 shall be returned. Otherwise, −1 shall be returned and errno set to
indicate the error, and neither of the group IDs are changed.

ERRORS
The setregid() function shall fail if:

[EINVAL] The value of the rgid or egid argument is invalid or out-of-range.

[EPERM] The process does not have appropriate privileges and a change other than
changing the real group ID to the saved set-group-ID, or changing the
effective group ID to the real group ID or the saved set-group-ID, was
requested.

EXAMPLES
None.

APPLICATION USAGE
If a set-group-ID process sets its effective group ID to its real group ID, it can still set its effective
group ID back to the saved set-group-ID.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
exec , getegid(), geteuid(), getgid(), getuid(), setegid(), seteuid(), setgid(), setreuid(), setuid(), the
Base Definitions volume of IEEE Std 1003.1-200x, <unistd.h>

1384 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

42869

42870

42871

42872

42873

42874

42875

42876

42877

42878

42879

42880

42881

42882

42883

42884

42885

42886

42887

42888

42889

42890

42891

42892

42893

42894

42895

42896

42897

42898

42899

42900

42901

42902

42903

42904

42905

42906

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces setregid()

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

The DESCRIPTION is updated to indicate that the saved set-group-ID can be set by any of the
exec family of functions, not just execve().

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1385

42907

42908

42909

42910

42911

42912

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

setreuid() System Interfaces

NAME
setreuid — set real and effective user IDs

SYNOPSIS
XSI #include <unistd.h>

int setreuid(uid_t ruid, u id_t euid);

DESCRIPTION
The setreuid() function shall set the real and effective user IDs of the current process to the
values specified by the ruid and euid arguments. If ruid or euid is −1, the corresponding effective
or real user ID of the current process shall be left unchanged.

A process with appropriate privileges can set either ID to any value. An unprivileged process
can only set the effective user ID if the euid argument is equal to either the real, effective, or
saved user ID of the process.

It is unspecified whether a process without appropriate privileges is permitted to change the real
user ID to match the current real, effective, or saved set-user-ID of the process.

RETURN VALUE
Upon successful completion, 0 shall be returned. Otherwise, −1 shall be returned and errno set to
indicate the error.

ERRORS
The setreuid() function shall fail if:

[EINVAL] The value of the ruid or euid argument is invalid or out-of-range.

[EPERM] The current process does not have appropriate privileges, and either an
attempt was made to change the effective user ID to a value other than the real
user ID or the saved set-user-ID or an attempt was made to change the real
user ID to a value not permitted by the implementation.

EXAMPLES

Setting the Effective User ID to the Real User ID

The following example sets the effective user ID of the calling process to the real user ID, so that
files created later will be owned by the current user.

#include <unistd.h>
#include <sys/types.h>
...
setreuid(getuid(), getuid());
...

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

1386 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

42913

42914

42915

42916

42917

42918

42919

42920

42921

42922

42923

42924

42925

42926

42927

42928

42929

42930

42931

42932

42933

42934

42935

42936

42937

42938

42939

42940

42941

42942

42943

42944

42945

42946

42947

42948

42949

42950

42951

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces setreuid()

SEE ALSO
getegid(), geteuid(), getgid(), getuid(), setegid(), seteuid(), setgid(), setregid(), setuid(), the Base
Definitions volume of IEEE Std 1003.1-200x, <unistd.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1387

42952

42953

42954

42955

42956

42957

42958

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

setrlimit() System Interfaces

NAME
setrlimit — control maximum resource consumption

SYNOPSIS
XSI #include <sys/resource.h>

int setrlimit(int resource, c onst struct rlimit * rlp);

DESCRIPTION
Refer to getrlimit().

1388 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

42959

42960

42961

42962

42963

42964

42965

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces setservent()

NAME
setservent — network services database functions

SYNOPSIS
#include <netdb.h>

void setservent(int stayopen);

DESCRIPTION
Refer to endservent().

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1389

42966

42967

42968

42969

42970

42971

42972

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

setsid() System Interfaces

NAME
setsid — create session and set process group ID

SYNOPSIS
#include <unistd.h>

pid_t setsid(void);

DESCRIPTION
The setsid() function shall create a new session, if the calling process is not a process group
leader. Upon return the calling process shall be the session leader of this new session, shall be
the process group leader of a new process group, and shall have no controlling terminal. The
process group ID of the calling process shall be set equal to the process ID of the calling process.
The calling process shall be the only process in the new process group and the only process in
the new session.

RETURN VALUE
Upon successful completion, setsid() shall return the value of the new process group ID of the
calling process. Otherwise, it shall return (pid_t)−1 and set errno to indicate the error.

ERRORS
The setsid() function shall fail if:

[EPERM] The calling process is already a process group leader, or the process group ID
of a process other than the calling process matches the process ID of the
calling process.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
The setsid() function is similar to the setpgrp() function of System V. System V, without job
control, groups processes into process groups and creates new process groups via setpgrp(); only
one process group may be part of a login session.

Job control allows multiple process groups within a login session. In order to limit job control
actions so that they can only affect processes in the same login session, this volume of
IEEE Std 1003.1-200x adds the concept of a session that is created via setsid(). The setsid()
function also creates the initial process group contained in the session. Additional process
groups can be created via the setpgid() function. A System V process group would correspond to
a POSIX System Interfaces session containing a single POSIX process group. Note that this
function requires that the calling process not be a process group leader. The usual way to ensure
this is true is to create a new process with fork() and have it call setsid(). The fork() function
guarantees that the process ID of the new process does not match any existing process group ID.

FUTURE DIRECTIONS
None.

SEE ALSO
getsid(), setpgid(), setpgrp(), the Base Definitions volume of IEEE Std 1003.1-200x, <sys/types.h>,
<unistd.h>

1390 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

42973

42974

42975

42976

42977

42978

42979

42980

42981

42982

42983

42984

42985

42986

42987

42988

42989

42990

42991

42992

42993

42994

42995

42996

42997

42998

42999

43000

43001

43002

43003

43004

43005

43006

43007

43008

43009

43010

43011

43012

43013

43014

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces setsid()

CHANGE HISTORY
First released in Issue 3. Included for alignment with the POSIX.1-1988 standard.

Issue 6
In the SYNOPSIS, the optional include of the <sys/types.h> header is removed.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
required for conforming implementations of previous POSIX specifications, it was not
required for UNIX applications.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1391

43015

43016

43017

43018

43019

43020

43021

43022

43023

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

setsockopt() System Interfaces

NAME
setsockopt — set the socket options

SYNOPSIS
#include <sys/socket.h>

int setsockopt(int socket, i nt level, i nt option_name,
const void * option_value, s ocklen_t option_len);

DESCRIPTION
The setsockopt() function shall set the option specified by the option_name argument, at the
protocol level specified by the level argument, to the value pointed to by the option_value
argument for the socket associated with the file descriptor specified by the socket argument.

The level argument specifies the protocol level at which the option resides. To set options at the
socket level, specify the level argument as SOL_SOCKET. To set options at other levels, supply
the appropriate level identifier for the protocol controlling the option. For example, to indicate
that an option is interpreted by the TCP (Transport Control Protocol), set level to IPPROTO_TCP
as defined in the <netinet/in.h> header.

The option_name argument specifies a single option to set. The option_name argument and any
specified options are passed uninterpreted to the appropriate protocol module for
interpretations. The <sys/socket.h> header defines the socket-level options. The options are as
follows:

SO_DEBUG Turns on recording of debugging information. This option enables or
disables debugging in the underlying protocol modules. This option takes
an int value. This is a Boolean option.

SO_BROADCAST Permits sending of broadcast messages, if this is supported by the
protocol. This option takes an int value. This is a Boolean option.

SO_REUSEADDR Specifies that the rules used in validating addresses supplied to bind()
should allow reuse of local addresses, if this is supported by the protocol.
This option takes an int value. This is a Boolean option.

SO_KEEPALIVE Keeps connections active by enabling the periodic transmission of
messages, if this is supported by the protocol. This option takes an int
value.

If the connected socket fails to respond to these messages, the connection
is broken and threads writing to that socket are notified with a SIGPIPE
signal. This is a Boolean option.

SO_LINGER Lingers on a close() if data is present. This option controls the action taken
when unsent messages queue on a socket and close() is performed. If
SO_LINGER is set, the system shall block the calling thread during close()
until it can transmit the data or until the time expires. If SO_LINGER is
not specified, and close() is issued, the system handles the call in a way
that allows the calling thread to continue as quickly as possible. This
option takes a linger structure, as defined in the <sys/socket.h> header, to
specify the state of the option and linger interval.

SO_OOBINLINE Leaves received out-of-band data (data marked urgent) inline. This option
takes an int value. This is a Boolean option.

1392 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

43024

43025

43026

43027

43028

43029

43030

43031

43032

43033

43034

43035

43036

43037

43038

43039

43040

43041

43042

43043

43044

43045

43046

43047

43048

43049

43050

43051

43052

43053

43054

43055

43056

43057

43058

43059

43060

43061

43062

43063

43064

43065

43066

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces setsockopt()

SO_SNDBUF Sets send buffer size. This option takes an int value.

SO_RCVBUF Sets receive buffer size. This option takes an int value.

SO_DONTROUTE Requests that outgoing messages bypass the standard routing facilities.
The destination shall be on a directly-connected network, and messages
are directed to the appropriate network interface according to the
destination address. The effect, if any, of this option depends on what
protocol is in use. This option takes an int value. This is a Boolean option.

SO_RCVLOWAT Sets the minimum number of bytes to process for socket input operations.
The default value for SO_RCVLOWAT is 1. If SO_RCVLOWAT is set to a
larger value, blocking receive calls normally wait until they have received
the smaller of the low water mark value or the requested amount. (They
may return less than the low water mark if an error occurs, a signal is
caught, or the type of data next in the receive queue is different from that
returned; for example, out-of-band data.) This option takes an int value.
Note that not all implementations allow this option to be set.

SO_RCVTIMEO Sets the timeout value that specifies the maximum amount of time an
input function waits until it completes. It accepts a timeval structure with
the number of seconds and microseconds specifying the limit on how
long to wait for an input operation to complete. If a receive operation has
blocked for this much time without receiving additional data, it shall
return with a partial count or errno set to [EAGAIN] or
[EWOULDBLOCK] if no data is received. The default for this option is
zero, which indicates that a receive operation shall not time out. This
option takes a timeval structure. Note that not all implementations allow
this option to be set.

SO_SNDLOWAT Sets the minimum number of bytes to process for socket output
operations. Non-blocking output operations shall process no data if flow
control does not allow the smaller of the send low water mark value or
the entire request to be processed. This option takes an int value. Note
that not all implementations allow this option to be set.

SO_SNDTIMEO Sets the timeout value specifying the amount of time that an output
function blocks because flow control prevents data from being sent. If a
send operation has blocked for this time, it shall return with a partial
count or with errno set to [EAGAIN] or [EWOULDBLOCK] if no data is
sent. The default for this option is zero, which indicates that a send
operation shall not time out. This option stores a timeval structure. Note
that not all implementations allow this option to be set.

For Boolean options, 0 indicates that the option is disabled and 1 indicates that the option is
enabled.

Options at other protocol levels vary in format and name.

RETURN VALUE
Upon successful completion, setsockopt() shall return 0. Otherwise, −1 shall be returned and
errno set to indicate the error.

ERRORS
The setsockopt() function shall fail if:

[EBADF] The socket argument is not a valid file descriptor.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1393

43067

43068

43069

43070

43071

43072

43073

43074

43075

43076

43077

43078

43079

43080

43081

43082

43083

43084

43085

43086

43087

43088

43089

43090

43091

43092

43093

43094

43095

43096

43097

43098

43099

43100

43101

43102

43103

43104

43105

43106

43107

43108

43109

43110

43111

43112

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

setsockopt() System Interfaces

[EDOM] The send and receive timeout values are too big to fit into the timeout fields in
the socket structure.

[EINVAL] The specified option is invalid at the specified socket level or the socket has
been shut down.

[EISCONN] The socket is already connected, and a specified option cannot be set while the
socket is connected.

[ENOPROTOOPT]
The option is not supported by the protocol.

[ENOTSOCK] The socket argument does not refer to a socket.

The setsockopt() function may fail if:

[ENOMEM] There was insufficient memory available for the operation to complete.

[ENOBUFS] Insufficient resources are available in the system to complete the call.

EXAMPLES
None.

APPLICATION USAGE
The setsockopt() function provides an application program with the means to control socket
behavior. An application program can use setsockopt() to allocate buffer space, control timeouts,
or permit socket data broadcasts. The <sys/socket.h> header defines the socket-level options
available to setsockopt().

Options may exist at multiple protocol levels. The SO_ options are always present at the
uppermost socket level.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.10 (on page 60), bind(), endprotoent(), getsockopt(), socket(), the Base Definitions volume
of IEEE Std 1003.1-200x, <netinet/in.h>, <sys/socket.h>

CHANGE HISTORY
First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/125 is applied, updating the SO_LINGER
option in the DESCRIPTION to refer to the calling thread rather than the process.

1394 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

43113

43114

43115

43116

43117

43118

43119

43120

43121

43122

43123

43124

43125

43126

43127

43128

43129

43130

43131

43132

43133

43134

43135

43136

43137

43138

43139

43140

43141

43142

43143

43144

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces setstate()

NAME
setstate — switch pseudo-random number generator state arrays

SYNOPSIS
XSI #include <stdlib.h>

char *setstate(const char * state);

DESCRIPTION
Refer to initstate().

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1395

43145

43146

43147

43148

43149

43150

43151

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

setuid() System Interfaces

NAME
setuid — set user ID

SYNOPSIS
#include <unistd.h>

int setuid(uid_t uid);

DESCRIPTION
If the process has appropriate privileges, setuid() shall set the real user ID, effective user ID, and
the saved set-user-ID of the calling process to uid.

If the process does not have appropriate privileges, but uid is equal to the real user ID or the
saved set-user-ID, setuid() shall set the effective user ID to uid; the real user ID and saved set-
user-ID shall remain unchanged.

The setuid() function shall not affect the supplementary group list in any way.

RETURN VALUE
Upon successful completion, 0 shall be returned. Otherwise, −1 shall be returned and errno set to
indicate the error.

ERRORS
The setuid() function shall fail, return −1, and set errno to the corresponding value if one or more
of the following are true:

[EINVAL] The value of the uid argument is invalid and not supported by the
implementation.

[EPERM] The process does not have appropriate privileges and uid does not match the
real user ID or the saved set-user-ID.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
The various behaviors of the setuid() and setgid() functions when called by non-privileged
processes reflect the behavior of different historical implementations. For portability, it is
recommended that new non-privileged applications use the seteuid() and setegid() functions
instead.

The saved set-user-ID capability allows a program to regain the effective user ID established at
the last exec call. Similarly, the saved set-group-ID capability allows a program to regain the
effective group ID established at the last exec call. These capabilities are derived from System V.
Without them, a program might have to run as superuser in order to perform the same
functions, because superuser can write on the user’s files. This is a problem because such a
program can write on any user’s files, and so must be carefully written to emulate the
permissions of the calling process properly. In System V, these capabilities have traditionally
been implemented only via the setuid() and setgid() functions for non-privileged processes. The
fact that the behavior of those functions was different for privileged processes made them
difficult to use. The POSIX.1-1990 standard defined the setuid() function to behave differently
for privileged and unprivileged users. When the caller had the appropriate privilege, the
function set the real user ID, effective user ID, and saved set-user ID of the calling process on
implementations that supported it. When the caller did not have the appropriate privilege, the
function set only the effective user ID, subject to permission checks. The former use is generally

1396 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

43152

43153

43154

43155

43156

43157

43158

43159

43160

43161

43162

43163

43164

43165

43166

43167

43168

43169

43170

43171

43172

43173

43174

43175

43176

43177

43178

43179

43180

43181

43182

43183

43184

43185

43186

43187

43188

43189

43190

43191

43192

43193

43194

43195

43196

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces setuid()

needed for utilities like login and su, which are not conforming applications and thus outside the
scope of IEEE Std 1003.1-200x. These utilities wish to change the user ID irrevocably to a new
value, generally that of an unprivileged user. The latter use is needed for conforming
applications that are installed with the set-user-ID bit and need to perform operations using the
real user ID.

IEEE Std 1003.1-200x augments the latter functionality with a mandatory feature named
_POSIX_SAVED_IDS. This feature permits a set-user-ID application to switch its effective user
ID back and forth between the values of its exec-time real user ID and effective user ID.
Unfortunately, the POSIX.1-1990 standard did not permit a conforming application using this
feature to work properly when it happened to be executed with the (implementation-defined)
appropriate privilege. Furthermore, the application did not even have a means to tell whether it
had this privilege. Since the saved set-user-ID feature is quite desirable for applications, as
evidenced by the fact that NIST required it in FIPS 151-2, it has been mandated by
IEEE Std 1003.1-200x. However, there are implementors who have been reluctant to support it
given the limitation described above.

The 4.3BSD system handles the problem by supporting separate functions: setuid() (which
always sets both the real and effective user IDs, like setuid() in IEEE Std 1003.1-200x for
privileged users), and seteuid() (which always sets just the effective user ID, like setuid() in
IEEE Std 1003.1-200x for non-privileged users). This separation of functionality into distinct
functions seems desirable. 4.3BSD does not support the saved set-user-ID feature. It supports
similar functionality of switching the effective user ID back and forth via setreuid(), which
permits reversing the real and effective user IDs. This model seems less desirable than the saved
set-user-ID because the real user ID changes as a side effect. The current 4.4BSD includes saved
effective IDs and uses them for seteuid() and setegid() as described above. The setreuid() and
setregid() functions will be deprecated or removed.

The solution here is:

• Require that all implementations support the functionality of the saved set-user-ID, which
is set by the exec functions and by privileged calls to setuid().

• Add the seteuid() and setegid() functions as portable alternatives to setuid() and setgid() for
non-privileged and privileged processes.

Historical systems have provided two mechanisms for a set-user-ID process to change its
effective user ID to be the same as its real user ID in such a way that it could return to the
original effective user ID: the use of the setuid() function in the presence of a saved set-user-ID,
or the use of the BSD setreuid() function, which was able to swap the real and effective user IDs.
The changes included in IEEE Std 1003.1-200x provide a new mechanism using seteuid() in
conjunction with a saved set-user-ID. Thus, all implementations with the new seteuid()
mechanism will have a saved set-user-ID for each process, and most of the behavior controlled
by _POSIX_SAVED_IDS has been changed to agree with the case where the option was defined.
The kill() function is an exception. Implementors of the new seteuid() mechanism will generally
be required to maintain compatibility with the older mechanisms previously supported by their
systems. However, compatibility with this use of setreuid() and with the _POSIX_SAVED_IDS
behavior of kill() is unfortunately complicated. If an implementation with a saved set-user-ID
allows a process to use setreuid() to swap its real and effective user IDs, but were to leave the
saved set-user-ID unmodified, the process would then have an effective user ID equal to the
original real user ID, and both real and saved set-user-ID would be equal to the original effective
user ID. In that state, the real user would be unable to kill the process, even though the effective
user ID of the process matches that of the real user, if the kill() behavior of _POSIX_SAVED_IDS
was used. This is obviously not acceptable. The alternative choice, which is used in at least one
implementation, is to change the saved set-user-ID to the effective user ID during most calls to
setreuid(). The standard developers considered that alternative to be less correct than the
retention of the old behavior of kill() in such systems. Current conforming applications shall

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1397

43197

43198

43199

43200

43201

43202

43203

43204

43205

43206

43207

43208

43209

43210

43211

43212

43213

43214

43215

43216

43217

43218

43219

43220

43221

43222

43223

43224

43225

43226

43227

43228

43229

43230

43231

43232

43233

43234

43235

43236

43237

43238

43239

43240

43241

43242

43243

43244

43245

43246

43247

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

setuid() System Interfaces

accommodate either behavior from kill(), and there appears to be no strong reason for kill() to
check the saved set-user-ID rather than the effective user ID.

FUTURE DIRECTIONS
None.

SEE ALSO
exec , getegid(), geteuid(), getgid(), getuid(), setegid(), seteuid(), setgid(), setregid(), setreuid(), the
Base Definitions volume of IEEE Std 1003.1-200x, <sys/types.h>, <unistd.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
In the SYNOPSIS, the optional include of the <sys/types.h> header is removed.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
required for conforming implementations of previous POSIX specifications, it was not
required for UNIX applications.

• The functionality associated with _POSIX_SAVED_IDS is now mandatory. This is a FIPS
requirement.

The following changes were made to align with the IEEE P1003.1a draft standard:

• The effects of setuid() in processes without appropriate privileges are changed.

• A requirement that the supplementary group list is not affected is added.

1398 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

43248

43249

43250

43251

43252

43253

43254

43255

43256

43257

43258

43259

43260

43261

43262

43263

43264

43265

43266

43267

43268

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces setutxent()

NAME
setutxent — reset the user accounting database to the first entry

SYNOPSIS
XSI #include <utmpx.h>

void setutxent(void);

DESCRIPTION
Refer to endutxent().

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1399

43269

43270

43271

43272

43273

43274

43275

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

setvbuf() System Interfaces

NAME
setvbuf — assign buffering to a stream

SYNOPSIS
#include <stdio.h>

int setvbuf(FILE *restrict stream, c har *restrict buf, i nt type,
size_t size);

DESCRIPTION
CX

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces setvbuf()

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.5 (on page 34), fopen(), setbuf(), the Base Definitions volume of IEEE Std 1003.1-200x,
<stdio.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
Extensions beyond the ISO C standard are marked.

The setvbuf() prototype is updated for alignment with the ISO/IEC 9899: 1999 standard.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1401

43316

43317

43318

43319

43320

43321

43322

43323

43324

43325

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

shm_open() System Interfaces

NAME
shm_open — open a shared memory object (REALTIME)

SYNOPSIS
SHM #include <sys/mman.h>

int shm_open(const char * name, i nt oflag, mode_t mode);

DESCRIPTION
The shm_open() function shall establish a connection between a shared memory object and a file
descriptor. It shall create an open file description that refers to the shared memory object and a
file descriptor that refers to that open file description. The file descriptor is used by other
functions to refer to that shared memory object. The name argument points to a string naming a
shared memory object. It is unspecified whether the name appears in the file system and is
visible to other functions that take pathnames as arguments. The name argument conforms to the
construction rules for a pathname, except that the interpretation of slash characters other than
the leading slash character in name is implementation-defined, and that the length limits for the
name argument are implementation-defined and need not be the same as the pathname limits
{PATH_MAX} and {NAME_MAX}. If name begins with the slash character, then processes
calling shm_open() with the same value of name refer to the same shared memory object, as long
as that name has not been removed. If name does not begin with the slash character, the effect is
implementation-defined.

If successful, shm_open() shall return a file descriptor for the shared memory object that is the
lowest numbered file descriptor not currently open for that process. The open file description is
new, and therefore the file descriptor does not share it with any other processes. It is unspecified
whether the file offset is set. The FD_CLOEXEC file descriptor flag associated with the new file
descriptor is set.

The file status flags and file access modes of the open file description are according to the value
of oflag. The oflag argument is the bitwise-inclusive OR of the following flags defined in the
<fcntl.h> header. Applications specify exactly one of the first two values (access modes) below
in the value of oflag:

O_RDONLY Open for read access only.

O_RDWR Open for read or write access.

Any combination of the remaining flags may be specified in the value of oflag:

O_CREAT If the shared memory object exists, this flag has no effect, except as noted
under O_EXCL below. Otherwise, the shared memory object is created; the
user ID of the shared memory object shall be set to the effective user ID of the
process; the group ID of the shared memory object is set to a system default
group ID or to the effective group ID of the process. The permission bits of the
shared memory object shall be set to the value of the mode argument except
those set in the file mode creation mask of the process. When bits in mode
other than the file permission bits are set, the effect is unspecified. The mode
argument does not affect whether the shared memory object is opened for
reading, for writing, or for both. The shared memory object has a size of zero.

O_EXCL If O_EXCL and O_CREAT are set, shm_open() fails if the shared memory
object exists. The check for the existence of the shared memory object and the
creation of the object if it does not exist is atomic with respect to other
processes executing shm_open() naming the same shared memory object with
O_EXCL and O_CREAT set. If O_EXCL is set and O_CREAT is not set, the

1402 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

43326

43327

43328

43329

43330

43331

43332

43333

43334

43335

43336

43337

43338

43339

43340

43341

43342

43343

43344

43345

43346

43347

43348

43349

43350

43351

43352

43353

43354

43355

43356

43357

43358

43359

43360

43361

43362

43363

43364

43365

43366

43367

43368

43369

43370

43371

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces shm_open()

result is undefined.

O_TRUNC If the shared memory object exists, and it is successfully opened O_RDWR, the
object shall be truncated to zero length and the mode and owner shall be
unchanged by this function call. The result of using O_TRUNC with
O_RDONLY is undefined.

When a shared memory object is created, the state of the shared memory object, including all
data associated with the shared memory object, persists until the shared memory object is
unlinked and all other references are gone. It is unspecified whether the name and shared
memory object state remain valid after a system reboot.

RETURN VALUE
Upon successful completion, the shm_open() function shall return a non-negative integer
representing the lowest numbered unused file descriptor. Otherwise, it shall return −1 and set
errno to indicate the error.

ERRORS
The shm_open() function shall fail if:

[EACCES] The shared memory object exists and the permissions specified by oflag are
denied, or the shared memory object does not exist and permission to create
the shared memory object is denied, or O_TRUNC is specified and write
permission is denied.

[EEXIST] O_CREAT and O_EXCL are set and the named shared memory object already
exists.

[EINTR] The shm_open() operation was interrupted by a signal.

[EINVAL] The shm_open() operation is not supported for the given name.

[EMFILE] All file descriptors available to the process are currently open.

[ENFILE] Too many shared memory objects are currently open in the system.

[ENOENT] O_CREAT is not set and the named shared memory object does not exist.

[ENOSPC] There is insufficient space for the creation of the new shared memory object.

The shm_open() function may fail if:

[ENAMETOOLONG]
The length of the name argument exceeds {_POSIX_PATH_MAX} on systems

XSI that do not support the XSI option or exceeds {_XOPEN_PATH_MAX} on XSI
systems, or has a pathname component that is longer than

XSI {_POSIX_NAME_MAX} on systems that do not support the XSI option or
longer than {_XOPEN_NAME_MAX} on XSI systems.

EXAMPLES

Creating and Mapping a Shared Memory Object

The following code segment demonstrates the use of shm_open() to create a shared memory
object which is then sized using ftruncate() before being mapped into the process address space
using mmap():

#include <unistd.h>
#include <sys/mman.h>
...

#define MAX_LEN 10000
struct region { /* Defines "structure" of shared memory */

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1403

43372

43373

43374

43375

43376

43377

43378

43379

43380

43381

43382

43383

43384

43385

43386

43387

43388

43389

43390

43391

43392

43393

43394

43395

43396

43397

43398

43399

43400

43401

43402

43403

43404

43405

43406

43407

43408

43409

43410

43411

43412

43413

43414

43415

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

shm_open() System Interfaces

int len;
char buf[MAX_LEN];

};
struct region *rptr;
int fd;

/* Create shared memory object and set its size */

fd = shm_open("/myregion", O_CREAT | O_RDWR, S_IRUSR | S_IWUSR);
if (fd == −1)

/* Handle error */;

if (ftruncate(fd, sizeof(struct region)) == −1)
/* Handle error */;

/* Map shared memory object */

rptr = mmap(NULL, sizeof(struct region),
PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);

if (rptr == MAP_FAILED)
/* Handle error */;

/* Now we can refer to mapped region using fields of rptr;
for example, rptr->len */

...

APPLICATION USAGE
None.

RATIONALE
When the Memory Mapped Files option is supported, the normal open() call is used to obtain a
descriptor to a file to be mapped according to existing practice with mmap(). When the Shared
Memory Objects option is supported, the shm_open() function shall obtain a descriptor to the
shared memory object to be mapped.

There is ample precedent for having a file descriptor represent several types of objects. In the
POSIX.1-1990 standard, a file descriptor can represent a file, a pipe, a FIFO, a tty, or a directory.
Many implementations simply have an operations vector, which is indexed by the file descriptor
type and does very different operations. Note that in some cases the file descriptor passed to
generic operations on file descriptors is returned by open() or creat() and in some cases returned
by alternate functions, such as pipe(). The latter technique is used by shm_open().

Note that such shared memory objects can actually be implemented as mapped files. In both
cases, the size can be set after the open using ftruncate(). The shm_open() function itself does not
create a shared object of a specified size because this would duplicate an extant function that set
the size of an object referenced by a file descriptor.

On implementations where memory objects are implemented using the existing file system, the
shm_open() function may be implemented using a macro that invokes open(), and the
shm_unlink() function may be implemented using a macro that invokes unlink().

For implementations without a permanent file system, the definition of the name of the memory
objects is allowed not to survive a system reboot. Note that this allows systems with a
permanent file system to implement memory objects as data structures internal to the
implementation as well.

On implementations that choose to implement memory objects using memory directly, a
shm_open() followed by an ftruncate() and close() can be used to preallocate a shared memory
area and to set the size of that preallocation. This may be necessary for systems without virtual
memory hardware support in order to ensure that the memory is contiguous.

1404 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

43416

43417

43418

43419

43420

43421

43422

43423

43424

43425

43426

43427

43428

43429

43430

43431

43432

43433

43434

43435

43436

43437

43438

43439

43440

43441

43442

43443

43444

43445

43446

43447

43448

43449

43450

43451

43452

43453

43454

43455

43456

43457

43458

43459

43460

43461

43462

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces shm_open()

The set of valid open flags to shm_open() was restricted to O_RDONLY, O_RDWR, O_CREAT,
and O_TRUNC because these could be easily implemented on most memory mapping systems.
This volume of IEEE Std 1003.1-200x is silent on the results if the implementation cannot supply
the requested file access because of implementation-defined reasons, including hardware ones.

The error conditions [EACCES] and [ENOTSUP] are provided to inform the application that the
implementation cannot complete a request.

[EACCES] indicates for implementation-defined reasons, probably hardware-related, that the
implementation cannot comply with a requested mode because it conflicts with another
requested mode. An example might be that an application desires to open a memory object two
times, mapping different areas with different access modes. If the implementation cannot map a
single area into a process space in two places, which would be required if different access modes
were required for the two areas, then the implementation may inform the application at the time
of the second open.

[ENOTSUP] indicates for implementation-defined reasons, probably hardware-related, that the
implementation cannot comply with a requested mode at all. An example would be that the
hardware of the implementation cannot support write-only shared memory areas.

On all implementations, it may be desirable to restrict the location of the memory objects to
specific file systems for performance (such as a RAM disk) or implementation-defined reasons
(shared memory supported directly only on certain file systems). The shm_open() function may
be used to enforce these restrictions. There are a number of methods available to the application
to determine an appropriate name of the file or the location of an appropriate directory. One way
is from the environment via getenv(). Another would be from a configuration file.

This volume of IEEE Std 1003.1-200x specifies that memory objects have initial contents of zero
when created. This is consistent with current behavior for both files and newly allocated
memory. For those implementations that use physical memory, it would be possible that such
implementations could simply use available memory and give it to the process uninitialized.
This, however, is not consistent with standard behavior for the uninitialized data area, the stack,
and of course, files. Finally, it is highly desirable to set the allocated memory to zero for security
reasons. Thus, initializing memory objects to zero is required.

FUTURE DIRECTIONS
None.

SEE ALSO
close(), dup(), exec , fcntl(), mmap(), shmat(), shmctl(), shmdt(), shm_unlink(), umask(), the Base
Definitions volume of IEEE Std 1003.1-200x, <fcntl.h>, <sys/mman.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

Issue 6
The shm_open() function is marked as part of the Shared Memory Objects option.

The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Shared Memory Objects option.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/126 is applied, adding the example to the
EXAMPLES section.

Issue 7
Austin Group Interpretation 1003.1-2001 #077 is applied, clarifying the name argument and
changing [ENAMETOOLONG] from a ‘‘shall fail’’ to a ‘‘may fail’’ error.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1405

43463

43464

43465

43466

43467

43468

43469

43470

43471

43472

43473

43474

43475

43476

43477

43478

43479

43480

43481

43482

43483

43484

43485

43486

43487

43488

43489

43490

43491

43492

43493

43494

43495

43496

43497

43498

43499

43500

43501

43502

43503

43504

43505

43506

43507

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

shm_unlink() System Interfaces

NAME
shm_unlink — remove a shared memory object (REALTIME)

SYNOPSIS
SHM #include <sys/mman.h>

int shm_unlink(const char * name);

DESCRIPTION
The shm_unlink() function shall remove the name of the shared memory object named by the
string pointed to by name.

If one or more references to the shared memory object exist when the object is unlinked, the
name shall be removed before shm_unlink() returns, but the removal of the memory object
contents shall be postponed until all open and map references to the shared memory object have
been removed.

Even if the object continues to exist after the last shm_unlink(), reuse of the name shall
subsequently cause shm_open() to behave as if no shared memory object of this name exists (that
is, shm_open() will fail if O_CREAT is not set, or will create a new shared memory object if
O_CREAT is set).

RETURN VALUE
Upon successful completion, a value of zero shall be returned. Otherwise, a value of −1 shall be
returned and errno set to indicate the error. If −1 is returned, the named shared memory object
shall not be changed by this function call.

ERRORS
The shm_unlink() function shall fail if:

[EACCES] Permission is denied to unlink the named shared memory object.

[ENOENT] The named shared memory object does not exist.

The shm_unlink() function may fail if:

[ENAMETOOLONG]
The length of the name argument exceeds {_POSIX_PATH_MAX} on systems

XSI that do not support the XSI option or exceeds {_XOPEN_PATH_MAX} on XSI
systems, or has a pathname component that is longer than

XSI {_POSIX_NAME_MAX} on systems that do not support the XSI option or
longer than {_XOPEN_NAME_MAX} on XSI systems. A call to shm_unlink()
with a name argument that contains the same shared memory object name as
was previously used in a successful shm_open() call shall not give an
[ENAMETOOLONG] error.

EXAMPLES
None.

APPLICATION USAGE
Names of memory objects that were allocated with open() are deleted with unlink() in the usual
fashion. Names of memory objects that were allocated with shm_open() are deleted with
shm_unlink(). Note that the actual memory object is not destroyed until the last close and
unmap on it have occurred if it was already in use.

1406 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

43508

43509

43510

43511

43512

43513

43514

43515

43516

43517

43518

43519

43520

43521

43522

43523

43524

43525

43526

43527

43528

43529

43530

43531

43532

43533

43534

43535

43536

43537

43538

43539

43540

43541

43542

43543

43544

43545

43546

43547

43548

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces shm_unlink()

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
close(), mmap(), munmap(), shmat(), shmctl(), shmdt(), shm_open(), the Base Definitions volume
of IEEE Std 1003.1-200x, <sys/mman.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

Issue 6
The shm_unlink() function is marked as part of the Shared Memory Objects option.

In the DESCRIPTION, text is added to clarify that reusing the same name after a shm_unlink()
will not attach to the old shared memory object.

The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Shared Memory Objects option.

Issue 7
Austin Group Interpretation 1003.1-2001 #077 is applied, changing [ENAMETOOLONG] from a
‘‘shall fail’’ to a ‘‘may fail’’ error.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1407

43549

43550

43551

43552

43553

43554

43555

43556

43557

43558

43559

43560

43561

43562

43563

43564

43565

43566

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

shmat() System Interfaces

NAME
shmat — XSI shared memory attach operation

SYNOPSIS
XSI #include <sys/shm.h>

void *shmat(int shmid, c onst void * shmaddr, i nt shmflg);

DESCRIPTION
The shmat() function operates on XSI shared memory (see the Base Definitions volume of
IEEE Std 1003.1-200x, Section 3.340, Shared Memory Object). It is unspecified whether this
function interoperates with the realtime interprocess communication facilities defined in Section
2.8 (on page 40).

The shmat() function attaches the shared memory segment associated with the shared memory
identifier specified by shmid to the address space of the calling process. The segment is attached
at the address specified by one of the following criteria:

• If shmaddr is a null pointer, the segment is attached at the first available address as selected
by the system.

• If shmaddr is not a null pointer and (shmflg &SHM_RND) is non-zero, the segment is
attached at the address given by (shmaddr −((uintptr_t)shmaddr %SHMLBA)). The character
’%’ is the C-language remainder operator.

• If shmaddr is not a null pointer and (shmflg &SHM_RND) is 0, the segment is attached at
the address given by shmaddr.

• The segment is attached for reading if (shmflg &SHM_RDONLY) is non-zero and the
calling process has read permission; otherwise, if it is 0 and the calling process has read
and write permission, the segment is attached for reading and writing.

RETURN VALUE
Upon successful completion, shmat() shall increment the value of shm_nattch in the data
structure associated with the shared memory ID of the attached shared memory segment and
return the segment’s start address.

Otherwise, the shared memory segment shall not be attached, shmat() shall return −1, and errno
shall be set to indicate the error.

ERRORS
The shmat() function shall fail if:

[EACCES] Operation permission is denied to the calling process; see Section 2.7 (on page
39).

[EINVAL] The value of shmid is not a valid shared memory identifier, the shmaddr is not a
null pointer, and the value of (shmaddr −((uintptr_t)shmaddr %SHMLBA)) is an
illegal address for attaching shared memory; or the shmaddr is not a null
pointer, (shmflg &SHM_RND) is 0, and the value of shmaddr is an illegal
address for attaching shared memory.

[EMFILE] The number of shared memory segments attached to the calling process
would exceed the system-imposed limit.

[ENOMEM] The available data space is not large enough to accommodate the shared
memory segment.

1408 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

43567

43568

43569

43570

43571

43572

43573

43574

43575

43576

43577

43578

43579

43580

43581

43582

43583

43584

43585

43586

43587

43588

43589

43590

43591

43592

43593

43594

43595

43596

43597

43598

43599

43600

43601

43602

43603

43604

43605

43606

43607

43608

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces shmat()

EXAMPLES
None.

APPLICATION USAGE
The POSIX Realtime Extension defines alternative interfaces for interprocess communication.
Application developers who need to use IPC should design their applications so that modules
using the IPC routines described in Section 2.7 can be easily modified to use the alternative
interfaces.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.7 (on page 39), Section 2.8 (on page 40), exec , exit(), fork(), shmctl(), shmdt(), shmget(),
shm_open(), shm_unlink(), the Base Definitions volume of IEEE Std 1003.1-200x, <sys/shm.h>

CHANGE HISTORY
First released in Issue 2. Derived from Issue 2 of the SVID.

Issue 5
Moved from SHARED MEMORY to BASE.

The note about use of POSIX Realtime Extension IPC routines has been moved from FUTURE
DIRECTIONS to a new APPLICATION USAGE section.

Issue 6
The Open Group Corrigendum U021/13 is applied.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1409

43609

43610

43611

43612

43613

43614

43615

43616

43617

43618

43619

43620

43621

43622

43623

43624

43625

43626

43627

43628

43629

43630

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

shmctl() System Interfaces

NAME
shmctl — XSI shared memory control operations

SYNOPSIS
XSI #include <sys/shm.h>

int shmctl(int shmid, i nt cmd, s truct shmid_ds * buf);

DESCRIPTION
The shmctl() function operates on XSI shared memory (see the Base Definitions volume of
IEEE Std 1003.1-200x, Section 3.340, Shared Memory Object). It is unspecified whether this
function interoperates with the realtime interprocess communication facilities defined in Section
2.8 (on page 40).

The shmctl() function provides a variety of shared memory control operations as specified by
cmd. The following values for cmd are available:

IPC_STAT Place the current value of each member of the shmid_ds data structure
associated with shmid into the structure pointed to by buf . The contents of the
structure are defined in <sys/shm.h>.

IPC_SET Set the value of the following members of the shmid_ds data structure
associated with shmid to the corresponding value found in the structure
pointed to by buf :

shm_perm.uid
shm_perm.gid
shm_perm.mode Low-order nine bits.

IPC_SET can only be executed by a process that has an effective user ID equal
to either that of a process with appropriate privileges or to the value of
shm_perm.cuid or shm_perm.uid in the shmid_ds data structure associated with
shmid.

IPC_RMID Remove the shared memory identifier specified by shmid from the system and
destroy the shared memory segment and shmid_ds data structure associated
with it. IPC_RMID can only be executed by a process that has an effective user
ID equal to either that of a process with appropriate privileges or to the value
of shm_perm.cuid or shm_perm.uid in the shmid_ds data structure associated
with shmid.

RETURN VALUE
Upon successful completion, shmctl() shall return 0; otherwise, it shall return −1 and set errno to
indicate the error.

ERRORS
The shmctl() function shall fail if:

[EACCES] The argument cmd is equal to IPC_STAT and the calling process does not have
read permission; see Section 2.7 (on page 39).

[EINVAL] The value of shmid is not a valid shared memory identifier, or the value of cmd
is not a valid command.

[EPERM] The argument cmd is equal to IPC_RMID or IPC_SET and the effective user ID
of the calling process is not equal to that of a process with appropriate
privileges and it is not equal to the value of shm_perm.cuid or shm_perm.uid in
the data structure associated with shmid.

1410 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

43631

43632

43633

43634

43635

43636

43637

43638

43639

43640

43641

43642

43643

43644

43645

43646

43647

43648

43649

43650

43651

43652

43653

43654

43655

43656

43657

43658

43659

43660

43661

43662

43663

43664

43665

43666

43667

43668

43669

43670

43671

43672

43673

43674

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces shmctl()

The shmctl() function may fail if:

[EOVERFLOW] The cmd argument is IPC_STAT and the gid or uid value is too large to be
stored in the structure pointed to by the buf argument.

EXAMPLES
None.

APPLICATION USAGE
The POSIX Realtime Extension defines alternative interfaces for interprocess communication.
Application developers who need to use IPC should design their applications so that modules
using the IPC routines described in Section 2.7 can be easily modified to use the alternative
interfaces.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.7 (on page 39), Section 2.8 (on page 40), shmat(), shmdt(), shmget(), shm_open(),
shm_unlink(), the Base Definitions volume of IEEE Std 1003.1-200x, <sys/shm.h>

CHANGE HISTORY
First released in Issue 2. Derived from Issue 2 of the SVID.

Issue 5
Moved from SHARED MEMORY to BASE.

The note about use of POSIX Realtime Extension IPC routines has been moved from FUTURE
DIRECTIONS to a new APPLICATION USAGE section.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1411

43675

43676

43677

43678

43679

43680

43681

43682

43683

43684

43685

43686

43687

43688

43689

43690

43691

43692

43693

43694

43695

43696

43697

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

shmdt() System Interfaces

NAME
shmdt — XSI shared memory detach operation

SYNOPSIS
XSI #include <sys/shm.h>

int shmdt(const void * shmaddr);

DESCRIPTION
The shmdt() function operates on XSI shared memory (see the Base Definitions volume of
IEEE Std 1003.1-200x, Section 3.340, Shared Memory Object). It is unspecified whether this
function interoperates with the realtime interprocess communication facilities defined in Section
2.8 (on page 40).

The shmdt() function detaches the shared memory segment located at the address specified by
shmaddr from the address space of the calling process.

RETURN VALUE
Upon successful completion, shmdt() shall decrement the value of shm_nattch in the data
structure associated with the shared memory ID of the attached shared memory segment and
return 0.

Otherwise, the shared memory segment shall not be detached, shmdt() shall return −1, and errno
shall be set to indicate the error.

ERRORS
The shmdt() function shall fail if:

[EINVAL] The value of shmaddr is not the data segment start address of a shared memory
segment.

EXAMPLES
None.

APPLICATION USAGE
The POSIX Realtime Extension defines alternative interfaces for interprocess communication.
Application developers who need to use IPC should design their applications so that modules
using the IPC routines described in Section 2.7 can be easily modified to use the alternative
interfaces.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.7 (on page 39), Section 2.8 (on page 40), exec , exit(), fork(), shmat(), shmctl(), shmget(),
shm_open(), shm_unlink(), the Base Definitions volume of IEEE Std 1003.1-200x, <sys/shm.h>

CHANGE HISTORY
First released in Issue 2. Derived from Issue 2 of the SVID.

Issue 5
Moved from SHARED MEMORY to BASE.

The note about use of POSIX Realtime Extension IPC routines has been moved from FUTURE
DIRECTIONS to a new APPLICATION USAGE section.

1412 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

43698

43699

43700

43701

43702

43703

43704

43705

43706

43707

43708

43709

43710

43711

43712

43713

43714

43715

43716

43717

43718

43719

43720

43721

43722

43723

43724

43725

43726

43727

43728

43729

43730

43731

43732

43733

43734

43735

43736

43737

43738

43739

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces shmdt()

NAME
shmget — get an XSI shared memory segment

SYNOPSIS
XSI #include <sys/shm.h>

int shmget(key_t key, s ize_t size, i nt shmflg);

DESCRIPTION
The shmget() function operates on XSI shared memory (see the Base Definitions volume of
IEEE Std 1003.1-200x, Section 3.340, Shared Memory Object). It is unspecified whether this
function interoperates with the realtime interprocess communication facilities defined in Section
2.8 (on page 40).

The shmget() function shall return the shared memory identifier associated with key.

A shared memory identifier, associated data structure, and shared memory segment of at least
size bytes (see <sys/shm.h>) are created for key if one of the following is true:

• The argument key is equal to IPC_PRIVATE.

• The argument key does not already have a shared memory identifier associated with it and
(shmflg &IPC_CREAT) is non-zero.

Upon creation, the data structure associated with the new shared memory identifier shall be
initialized as follows:

• The values of shm_perm.cuid, shm_perm.uid, shm_perm.cgid, and shm_perm.gid are set equal
to the effective user ID and effective group ID, respectively, of the calling process.

• The low-order nine bits of shm_perm.mode are set equal to the low-order nine bits of shmflg.

• The value of shm_segsz is set equal to the value of size.

• The values of shm_lpid, shm_nattch, shm_atime, and shm_dtime are set equal to 0.

• The value of shm_ctime is set equal to the current time.

When the shared memory segment is created, it shall be initialized with all zero values.

RETURN VALUE
Upon successful completion, shmget() shall return a non-negative integer, namely a shared

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

shmget() System Interfaces

[ENOENT] A shared memory identifier does not exist for the argument key and (shmflg
&IPC_CREAT) is 0.

[ENOMEM] A shared memory identifier and associated shared memory segment shall be
created, but the amount of available physical memory is not sufficient to fill
the request.

[ENOSPC] A shared memory identifier is to be created, but the system-imposed limit on
the maximum number of allowed shared memory identifiers system-wide
would be exceeded.

EXAMPLES
None.

APPLICATION USAGE
The POSIX Realtime Extension defines alternative interfaces for interprocess communication.
Application developers who need to use IPC should design their applications so that modules
using the IPC routines described in Section 2.7 can be easily modified to use the alternative
interfaces.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.7 (on page 39), Section 2.8 (on page 40), shmat(), shmctl(), shmdt(), shm_open(),
shm_unlink(), the Base Definitions volume of IEEE Std 1003.1-200x, <sys/shm.h>

CHANGE HISTORY
First released in Issue 2. Derived from Issue 2 of the SVID.

Issue 5
Moved from SHARED MEMORY to BASE.

The note about use of POSIX Realtime Extension IPC routines has been moved from FUTURE
DIRECTIONS to a new APPLICATION USAGE section.

1414 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

43780

43781

43782

43783

43784

43785

43786

43787

43788

43789

43790

43791

43792

43793

43794

43795

43796

43797

43798

43799

43800

43801

43802

43803

43804

43805

43806

43807

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces shutdown()

NAME
shutdown — shut down socket send and receive operations

SYNOPSIS
#include <sys/socket.h>

int shutdown(int socket, i nt how);

DESCRIPTION
The shutdown() function shall cause all or part of a full-duplex connection on the socket
associated with the file descriptor socket to be shut down.

The shutdown() function takes the following arguments:

socket Specifies the file descriptor of the socket.

how Specifies the type of shutdown. The values are as follows:

SHUT_RD Disables further receive operations.

SHUT_WR Disables further send operations.

SHUT_RDWR Disables further send and receive operations.

The shutdown() function disables subsequent send and/or receive operations on a socket,

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

shutdown() System Interfaces

CHANGE HISTORY
First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

1416 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

43846

43847

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces sigaction()

NAME
sigaction — examine and change a signal action

SYNOPSIS
CX #include <signal.h>

int sigaction(int sig, c onst struct sigaction *restrict act,
struct sigaction *restrict oact);

DESCRIPTION
The sigaction() function allows the calling process to examine and/or specify the action to be
associated with a specific signal. The argument sig specifies the signal; acceptable values are
defined in <signal.h>.

The structure sigaction, used to describe an action to be taken, is defined in the <signal.h>
header to include at least the following members:

Member Type Member Name Description

void(*) (int) sa_handler Pointer to a signal-catching function or
one of the macros SIG_IGN or
SIG_DFL.

sigset_t sa_mask Additional set of signals to be blocked
during execution of signal-catching
function.

int sa_flags Special flags to affect behavior of signal.
void(*) (int,

siginfo_t *, void *) sa_sigaction Pointer to a signal-catching function.

The storage occupied by sa_handler and sa_sigaction may overlap, and a conforming application
shall not use both simultaneously.

If the argument act is not a null pointer, it points to a structure specifying the action to be
associated with the specified signal. If the argument oact is not a null pointer, the action
previously associated with the signal is stored in the location pointed to by the argument oact. If
the argument act is a null pointer, signal handling is unchanged; thus, the call can be used to
enquire about the current handling of a given signal. The SIGKILL and SIGSTOP signals shall
not be added to the signal mask using this mechanism; this restriction shall be enforced by the
system without causing an error to be indicated.

If the SA_SIGINFO flag (see below) is cleared in the sa_flags field of the sigaction structure, the
sa_handler field identifies the action to be associated with the specified signal. If the
SA_SIGINFO flag is set in the sa_flags field, the sa_sigaction field specifies a signal-catching
function.

The sa_flags field can be used to modify the behavior of the specified signal.

The following flags, defined in the <signal.h> header, can be set in sa_flags:

XSI SA_NOCLDSTOP Do not generate SIGCHLD when children stop or stopped children
continue.

If sig is SIGCHLD and the SA_NOCLDSTOP flag is not set in sa_flags, and
the implementation supports the SIGCHLD signal, then a SIGCHLD
signal shall be generated for the calling process whenever any of its child

XSI processes stop and a SIGCHLD signal may be generated for the calling
process whenever any of its stopped child processes are continued. If sig

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1417

43848

43849

43850

43851

43852

43853

43854

43855

43856

43857

43858

43859

43860

43861

43862

43863

43864

43865

43866

43867

43868

43869

43870

43871

43872

43873

43874

43875

43876

43877

43878

43879

43880

43881

43882

43883

43884

43885

43886

43887

43888

43889

43890

43891

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

sigaction() System Interfaces

is SIGCHLD and the SA_NOCLDSTOP flag is set in sa_flags, then the
implementation shall not generate a SIGCHLD signal in this way.

XSI SA_ONSTACK If set and an alternate signal stack has been declared with sigaltstack(), the
signal shall be delivered to the calling process on that stack. Otherwise,
the signal shall be delivered on the current stack.

SA_RESETHAND If set, the disposition of the signal shall be reset to SIG_DFL and the
SA_SIGINFO flag shall be cleared on entry to the signal handler.

Note: SIGILL and SIGTRAP cannot be automatically reset when delivered;
the system silently enforces this restriction.

Otherwise, the disposition of the signal shall not be modified on entry to
the signal handler.

In addition, if this flag is set, sigaction() behaves as if the SA_NODEFER
flag were also set.

SA_RESTART This flag affects the behavior of interruptible functions; that is, those
specified to fail with errno set to [EINTR]. If set, and a function specified
as interruptible is interrupted by this signal, the function shall restart and
shall not fail with [EINTR] unless otherwise specified. If an interruptible
function which uses a timeout is restarted, the duration of the timeout
following the restart is set to an unspecified value that does not exceed
the original timeout value. If the flag is not set, interruptible functions
interrupted by this signal shall fail with errno set to [EINTR].

SA_SIGINFO If cleared and the signal is caught, the signal-catching function shall be
entered as:

void func(int signo);

where signo is the only argument to the signal-catching function. In this
case, the application shall use the sa_handler member to describe the
signal-catching function and the application shall not modify the
sa_sigaction member.

If SA_SIGINFO is set and the signal is caught, the signal-catching
function shall be entered as:

void func(int signo, s iginfo_t * info, v oid * context);

where two additional arguments are passed to the signal-catching
function. The second argument shall point to an object of type siginfo_t
explaining the reason why the signal was generated; the third argument
can be cast to a pointer to an object of type ucontext_t to refer to the
receiving thread’s context that was interrupted when the signal was
delivered. In this case, the application shall use the sa_sigaction member to
describe the signal-catching function and the application shall not modify
the sa_handler member.

The si_signo member contains the system-generated signal number.

XSI The si_errno member may contain implementation-defined additional
error information; if non-zero, it contains an error number identifying the
condition that caused the signal to be generated.

The si_code member contains a code identifying the cause of the signal.

If the value of si_code is less than or equal to 0, then the signal was
generated by a process and si_pid and si_uid, respectively, indicate the
process ID and the real user ID of the sender. The <signal.h> header

1418 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

43892

43893

43894

43895

43896

43897

43898

43899

43900

43901

43902

43903

43904

43905

43906

43907

43908

43909

43910

43911

43912

43913

43914

43915

43916

43917

43918

43919

43920

43921

43922

43923

43924

43925

43926

43927

43928

43929

43930

43931

43932

43933

43934

43935

43936

43937

43938

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces sigaction()

description contains information about the signal-specific contents of the
elements of the siginfo_t type.

SA_NOCLDWAIT If set, and sig equals SIGCHLD, child processes of the calling processes
shall not be transformed into zombie processes when they terminate. If
the calling process subsequently waits for its children, and the process has
no unwaited-for children that were transformed into zombie processes, it
shall block until all of its children terminate, and wait(), waitid(), and
waitpid() shall fail and set errno to [ECHILD]. Otherwise, terminating
child processes shall be transformed into zombie processes, unless
SIGCHLD is set to SIG_IGN.

SA_NODEFER If set and sig is caught, sig shall not be added to the thread’s signal mask
on entry to the signal handler unless it is included in sa_mask. Otherwise,
sig shall always be added to the thread’s signal mask on entry to the
signal handler.

When a signal is caught by a signal-catching function installed by sigaction(), a new signal mask
is calculated and installed for the duration of the signal-catching function (or until a call to either
sigprocmask() or sigsuspend() is made). This mask is formed by taking the union of the current
signal mask and the value of the sa_mask for the signal being delivered, and unless
SA_NODEFER or SA_RESETHAND is set, then including the signal being delivered. If and
when the user’s signal handler returns normally, the original signal mask is restored.

Once an action is installed for a specific signal, it shall remain installed until another action is
explicitly requested (by another call to sigaction()), until the SA_RESETHAND flag causes
resetting of the handler, or until one of the exec functions is called.

If the previous action for sig had been established by signal(), the values of the fields returned in
the structure pointed to by oact are unspecified, and in particular oact->sa_handler is not
necessarily the same value passed to signal(). However, if a pointer to the same structure or a
copy thereof is passed to a subsequent call to sigaction() via the act argument, handling of the
signal shall be as if the original call to signal() were repeated.

If sigaction() fails, no new signal handler is installed.

It is unspecified whether an attempt to set the action for a signal that cannot be caught or
ignored to SIG_DFL is ignored or causes an error to be returned with errno set to [EINVAL].

If SA_SIGINFO is not set in sa_flags, then the disposition of subsequent occurrences of sig when
it is already pending is implementation-defined; the signal-catching function shall be invoked
with a single argument. If SA_SIGINFO is set in sa_flags, then subsequent occurrences of sig
generated by sigqueue() or as a result of any signal-generating function that supports the
specification of an application-defined value (when sig is already pending) shall be queued in
FIFO order until delivered or accepted; the signal-catching function shall be invoked with three
arguments. The application specified value is passed to the signal-catching function as the
si_value member of the siginfo_t structure.

The result of the use of sigaction() and a sigwait() function concurrently within a process on the
same signal is unspecified.

RETURN VALUE
Upon successful completion, sigaction() shall return 0; otherwise, −1 shall be returned, errno shall
be set to indicate the error, and no new signal-catching function shall be installed.

ERRORS
The sigaction() function shall fail if:

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1419

43939

43940

43941

43942

43943

43944

43945

43946

43947

43948

43949

43950

43951

43952

43953

43954

43955

43956

43957

43958

43959

43960

43961

43962

43963

43964

43965

43966

43967

43968

43969

43970

43971

43972

43973

43974

43975

43976

43977

43978

43979

43980

43981

43982

43983

43984

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

sigaction() System Interfaces

[EINVAL] The sig argument is not a valid signal number or an attempt is made to catch a
signal that cannot be caught or ignore a signal that cannot be ignored.

[ENOTSUP] The SA_SIGINFO bit flag is set in the sa_flags field of the sigaction structure.

The sigaction() function may fail if:

[EINVAL] An attempt was made to set the action to SIG_DFL for a signal that cannot be
caught or ignored (or both).

In addition, the sigaction() function may fail if the SA_SIGINFO flag is set in the sa_flags field of
the sigaction structure for a signal not in the range SIGRTMIN to SIGRTMAX.

EXAMPLES

Establishing a Signal Handler

The following example demonstrates the use of sigaction() to establish a handler for the SIGINT
signal.

#include <signal.h>

static void handler(int signum)
{

/* Take appropriate actions for signal delivery */
}

int main()
{

struct sigaction sa;

sa.sa_handler = handler;
sigemptyset(&sa.sa_mask);
sa.sa_flags = SA_RESTART; /* Restart functions if

interrupted by handler */
if (sigaction(SIGINT, &sa, NULL) == −1)

/* Handle error */;

/* Further code */
}

APPLICATION USAGE
The sigaction() function supersedes the signal() function, and should be used in preference. In
particular, sigaction() and signal() should not be used in the same process to control the same
signal. The behavior of reentrant functions, as defined in the DESCRIPTION, is as specified by
this volume of IEEE Std 1003.1-200x, regardless of invocation from a signal-catching function.
This is the only intended meaning of the statement that reentrant functions may be used in
signal-catching functions without restrictions. Applications must still consider all effects of such
functions on such things as data structures, files, and process state. In particular, application
writers need to consider the restrictions on interactions when interrupting sleep() and
interactions among multiple handles for a file description. The fact that any specific function is
listed as reentrant does not necessarily mean that invocation of that function from a signal-
catching function is recommended.

In order to prevent errors arising from interrupting non-reentrant function calls, applications
should protect calls to these functions either by blocking the appropriate signals or through the
use of some programmatic semaphore (see semget(), sem_init(), sem_open(), and so on). Note in
particular that even the ‘‘safe’’ functions may modify errno; the signal-catching function, if not
executing as an independent thread, may want to save and restore its value. Naturally, the same
principles apply to the reentrancy of application routines and asynchronous data access. Note
that longjmp() and siglongjmp() are not in the list of reentrant functions. This is because the code

1420 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

43985

43986

43987

43988

43989

43990

43991

43992

43993

43994

43995

43996

43997

43998

43999

44000

44001

44002

44003

44004

44005

44006

44007

44008

44009

44010

44011

44012

44013

44014

44015

44016

44017

44018

44019

44020

44021

44022

44023

44024

44025

44026

44027

44028

44029

44030

44031

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces sigaction()

executing after longjmp() and siglongjmp() can call any unsafe functions with the same danger as
calling those unsafe functions directly from the signal handler. Applications that use longjmp()
and siglongjmp() from within signal handlers require rigorous protection in order to be portable.
Many of the other functions that are excluded from the list are traditionally implemented using
either malloc() or free() functions or the standard I/O library, both of which traditionally use
data structures in a non-reentrant manner. Since any combination of different functions using a
common data structure can cause reentrancy problems, this volume of IEEE Std 1003.1-200x
does not define the behavior when any unsafe function is called in a signal handler that
interrupts an unsafe function.

If the signal occurs other than as the result of calling abort(), kill(), or raise(), the behavior is
undefined if the signal handler calls any function in the standard library other than one of the
functions listed in the table above or refers to any object with static storage duration other than
by assigning a value to a static storage duration variable of type volatile sig_atomic_t.
Furthermore, if such a call fails, the value of errno is unspecified.

Usually, the signal is executed on the stack that was in effect before the signal was delivered. An
alternate stack may be specified to receive a subset of the signals being caught.

When the signal handler returns, the receiving thread resumes execution at the point it was
interrupted unless the signal handler makes other arrangements. If longjmp() or _longjmp() is
used to leave the signal handler, then the signal mask must be explicitly restored.

This volume of IEEE Std 1003.1-200x defines the third argument of a signal handling function
when SA_SIGINFO is set as a void * instead of a ucontext_t *, but without requiring type
checking. New applications should explicitly cast the third argument of the signal handling
function to ucontext_t *.

The BSD optional four argument signal handling function is not supported by this volume of
IEEE Std 1003.1-200x. The BSD declaration would be:

void handler(int sig, i nt code, s truct sigcontext * scp,
char * addr);

where sig is the signal number, code is additional information on certain signals, scp is a pointer
to the sigcontext structure, and addr is additional address information. Much the same
information is available in the objects pointed to by the second argument of the signal handler
specified when SA_SIGINFO is set.

RATIONALE
Although this volume of IEEE Std 1003.1-200x requires that signals that cannot be ignored shall
not be added to the signal mask when a signal-catching function is entered, there is no explicit
requirement that subsequent calls to sigaction() reflect this in the information returned in the oact
argument. In other words, if SIGKILL is included in the sa_mask field of act, it is unspecified
whether or not a subsequent call to sigaction() returns with SIGKILL included in the sa_mask
field of oact.

The SA_NOCLDSTOP flag, when supplied in the act->sa_flags parameter, allows overloading
SIGCHLD with the System V semantics that each SIGCLD signal indicates a single terminated
child. Most conforming applications that catch SIGCHLD are e

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

sigaction() System Interfaces

This volume of IEEE Std 1003.1-200x requires that calls to sigaction() that supply a NULL act
argument succeed, even in the case of signals that cannot be caught or ignored (that is, SIGKILL
or SIGSTOP). The System V signal() and BSD sigvec() functions return [EINVAL] in these cases
and, in this respect, their behavior varies from sigaction().

This volume of IEEE Std 1003.1-200x requires that sigaction() properly save and restore a signal
action set up by the ISO C standard signal() function. However, there is no guarantee that the
reverse is true, nor could there be given the greater amount of information conveyed by the
sigaction structure. Because of this, applications should avoid using both functions for the same
signal in the same process. Since this cannot always be avoided in case of general-purpose
library routines, they should always be implemented with sigaction().

It was intended that the signal() function should be implementable as a library routine using
sigaction().

The POSIX Realtime Extension extends the sigaction() function as specified by the POSIX.1-1990
standard to allow the application to request on a per-signal basis via an additional signal action
flag that the extra parameters, including the application-defined signal value, if any, be passed to
the signal-catching function.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.4 (on page 28), exec , kill(), _longjmp(), longjmp(), raise(), semget(), sem_init(),
sem_open(), sigaddset(), sigaltstack(), sigdelset(), sigemptyset(), sigfillset(), sigismember(), signal(),
sigprocmask(), sigsuspend(), wait(), waitid(), waitpid(), the Base Definitions volume of
IEEE Std 1003.1-200x, <signal.h>

CHANGE HISTORY
First released in Issue 3. Included for alignment with the POSIX.1-1988 standard.

Issue 5
The DESCRIPTION is updated for alignment with the POSIX Realtime Extension and POSIX
Threads Extension.

In the DESCRIPTION, the second argument to func when SA_SIGINFO is set is no longer
permitted to be NULL, and the description of permitted siginfo_t contents is expanded by
reference to <signal.h>.

Since the X/OPEN UNIX Extension functionality is now folded into the BASE, the [ENOTSUP]
error is deleted.

Issue 6
The Open Group Corrigendum U028/7 is applied. In the paragraph entitled ‘‘Signal Effects on
Other Functions’’, a reference to sigpending() is added.

In the DESCRIPTION, the text ‘‘Signal Generation and Delivery’’, ‘‘Signal Actions’’, and ‘‘Signal
Effects on Other Functions’’ are moved to a separate section of this volume of
IEEE Std 1003.1-200x.

Text describing functionality from the Realtime Signals Extension option is marked.

The following changes are made for alignment with the ISO POSIX-1: 1996 standard:

• The [ENOTSUP] error condition is added.

The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

The restrict keyword is added to the sigaction() prototype for alignment with the
ISO/IEC 9899: 1999 standard.

References to the wait3() function are removed.

1422 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

44081

44082

44083

44084

44085

44086

44087

44088

44089

44090

44091

44092

44093

44094

44095

44096

44097

44098

44099

44100

44101

44102

44103

44104

44105

44106

44107

44108

44109

44110

44111

44112

44113

44114

44115

44116

44117

44118

44119

44120

44121

44122

44123

44124

44125

44126

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces sigaction()

The SYNOPSIS is marked CX since the presence of this function in the <signal.h> header is an
extension over the ISO C standard.

IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/57 is applied, changing text in the table
describing the sigaction structure.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/127 is applied, removing text from the
DESCRIPTION duplicated later in the same section.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/128 is applied, updating the
DESCRIPTION and APPLICATION USAGE sections. Changes are made to refer to the thread
rather than the process.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/129 is applied, adding the example to the
EXAMPLES section.

Issue 7
Austin Group Interpretations 1003.1-2001 #065 and #084 are applied, clarifying the role of the
SA_NODEFER flag with respect to the signal mask, and clarifying the SA_RESTART flag for
interrupted functions which use timeouts.

Austin Group Interpretation 1003.1-2001 #004 is applied.

Functionality relating to the Realtime Signals Extension option is moved to the Base.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1423

44127

44128

44129

44130

44131

44132

44133

44134

44135

44136

44137

44138

44139

44140

44141

44142

44143

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

sigaddset() System Interfaces

NAME
sigaddset — add a signal to a signal set

SYNOPSIS
CX #include <signal.h>

int sigaddset(sigset_t * set, i nt signo);

DESCRIPTION
The sigaddset() function adds the individual signal specified by the signo to the signal set pointed
to by set.

Applications shall call either sigemptyset() or sigfillset() at least once for each object of type
sigset_t prior to any other use of that object. If such an object is not initialized in this way, but is
nonetheless supplied as an argument to any of pthread_sigmask(), sigaction(), sigaddset(),
sigdelset(), sigismember(), sigpending(), sigprocmask(), sigsuspend(), sigtimedwait(), sigwait(), or
sigwaitinfo(), the results are undefined.

RETURN VALUE
Upon successful completion, sigaddset() shall return 0; otherwise, it shall return −1 and set errno
to indicate the error.

ERRORS
The sigaddset() function may fail if:

[EINVAL] The value of the signo argument is an invalid or unsupported signal number.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.4 (on page 28), sigaction(), sigdelset(), sigemptyset(), sigfillset(), sigismember(),
sigpending(), sigprocmask(), sigsuspend(), the Base Definitions volume of IEEE Std 1003.1-200x,
<signal.h>

CHANGE HISTORY
First released in Issue 3. Included for alignment with the POSIX.1-1988 standard.

Issue 5
The last paragraph of the DESCRIPTION was included as an APPLICATION USAGE note in
previous issues.

Issue 6
The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

The SYNOPSIS is marked CX since the presence of this function in the <signal.h> header is an
extension over the ISO C standard.

1424 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

44144

44145

44146

44147

44148

44149

44150

44151

44152

44153

44154

44155

44156

44157

44158

44159

44160

44161

44162

44163

44164

44165

44166

44167

44168

44169

44170

44171

44172

44173

44174

44175

44176

44177

44178

44179

44180

44181

44182

44183

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces sigaltstack()

NAME
sigaltstack — set and get signal alternate stack context

SYNOPSIS
XSI #include <signal.h>

int sigaltstack(const stack_t *restrict ss, s tack_t *restrict oss);

DESCRIPTION
The sigaltstack() function allows a process to define and examine the state of an alternate stack
for signal handlers for the current thread. Signals that have been explicitly declared to execute
on the alternate stack shall be delivered on the alternate stack.

If ss is not a null pointer, it points to a stack_t structure that specifies the alternate signal stack
that shall take effect upon return from sigaltstack(). The ss_flags member specifies the new stack
state. If it is set to SS_DISABLE, the stack is disabled and ss_sp and ss_size are ignored.
Otherwise, the stack shall be enabled, and the ss_sp and ss_size members specify the new address
and size of the stack.

The range of addresses starting at ss_sp up to but not including ss_sp+ss_size is available to the
implementation for use as the stack. This function makes no assumptions regarding which end
is the stack base and in which direction the stack grows as items are pushed.

If oss is not a null pointer, on successful completion it shall point to a stack_t structure that
specifies the alternate signal stack that was in effect prior to the call to sigaltstack(). The ss_sp
and ss_size members specify the address and size of that stack. The ss_flags member specifies the
stack’s state, and may contain one of the following values:

SS_ONSTACK The process is currently executing on the alternate signal stack. Attempts to
modify the alternate signal stack while the process is executing on it fail. This
flag shall not be modified by processes.

SS_DISABLE The alternate signal stack is currently disabled.

The value SIGSTKSZ is a system default specifying the number of bytes that would be used to
cover the usual case when manually allocating an alternate stack area. The value MINSIGSTKSZ
is defined to be the minimum stack size for a signal handler. In computing an alternate stack
size, a program should add that amount to its stack requirements to allow for the system
implementation overhead. The constants SS_ONSTACK, SS_DISABLE, SIGSTKSZ, and
MINSIGSTKSZ are defined in <signal.h>.

After a successful call to one of the exec functions, there are no alternate signal stacks in the new
process image.

In some implementations, a signal (whether or not indicated to execute on the alternate stack)
shall always execute on the alternate stack if it is delivered while another signal is being caught
using the alternate stack.

Use of this function by library threads that are not bound to kernel-scheduled entities results in
undefined behavior.

RETURN VALUE
Upon successful completion, sigaltstack() shall return 0; otherwise, it shall return −1 and set errno
to indicate the error.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1425

44184

44185

44186

44187

44188

44189

44190

44191

44192

44193

44194

44195

44196

44197

44198

44199

44200

44201

44202

44203

44204

44205

44206

44207

44208

44209

44210

44211

44212

44213

44214

44215

44216

44217

44218

44219

44220

44221

44222

44223

44224

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

sigaltstack() System Interfaces

ERRORS
The sigaltstack() function shall fail if:

[EINVAL] The ss argument is not a null pointer, and the ss_flags member pointed to by ss
contains flags other than SS_DISABLE.

[ENOMEM] The size of the alternate stack area is less than MINSIGSTKSZ.

[EPERM] An attempt was made to modify an active stack.

EXAMPLES

Allocating Memory for an Alternate Stack

The following example illustrates a method for allocating memory for an alternate stack.

#include <signal.h>
...
if ((sigstk.ss_sp = malloc(SIGSTKSZ)) == NULL)

/* Error return. */
sigstk.ss_size = SIGSTKSZ;
sigstk.ss_flags = 0;
if (sigaltstack(&sigstk,(stack_t *)0) < 0)

perror("sigaltstack");

APPLICATION USAGE
On some implementations, stack space is automatically extended as needed. On those
implementations, automatic extension is typically not available for an alternate stack. If the stack
overflows, the behavior is undefined.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.4 (on page 28), exec , sigaction(), sigsetjmp(), the Base Definitions volume of
IEEE Std 1003.1-200x, <signal.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

The last sentence of the DESCRIPTION was included as an APPLICATION USAGE note in
previous issues.

Issue 6
The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

The restrict keyword is added to the sigaltstack() prototype for alignment with the
ISO/IEC 9899: 1999 standard.

IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/58 is applied, updating the first sentence
to include ‘‘for the current thread’’.

1426 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

44225

44226

44227

44228

44229

44230

44231

44232

44233

44234

44235

44236

44237

44238

44239

44240

44241

44242

44243

44244

44245

44246

44247

44248

44249

44250

44251

44252

44253

44254

44255

44256

44257

44258

44259

44260

44261

44262

44263

44264

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces sigdelset()

NAME
sigdelset — delete a signal from a signal set

SYNOPSIS
CX #include <signal.h>

int sigdelset(sigset_t * set, i nt signo);

DESCRIPTION
The sigdelset() function deletes the individual signal specified by signo from the signal set
pointed to by set.

Applications should call either sigemptyset() or sigfillset() at least once for each object of type
sigset_t prior to any other use of that object. If such an object is not initialized in this way, but is
nonetheless supplied as an argument to any of pthread_sigmask(), sigaction(), sigaddset(),
sigdelset(), sigismember(), sigpending(), sigprocmask(), sigsuspend(), sigtimedwait(), sigwait(), or
sigwaitinfo(), the results are undefined.

RETURN VALUE
Upon successful completion, sigdelset() shall return 0; otherwise, it shall return −1 and set errno
to indicate the error.

ERRORS
The sigdelset() function may fail if:

[EINVAL] The signo argument is not a valid signal number, or is an unsupported signal
number.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.4 (on page 28), sigaction(), sigaddset(), sigemptyset(), sigfillset(), sigismember(),
sigpending(), sigprocmask(), sigsuspend(), the Base Definitions volume of IEEE Std 1003.1-200x,
<signal.h>

CHANGE HISTORY
First released in Issue 3. Included for alignment with the POSIX.1-1988 standard.

Issue 5
The last paragraph of the DESCRIPTION was included as an APPLICATION USAGE note in
previous issues.

Issue 6
The SYNOPSIS is marked CX since the presence of this function in the <signal.h> header is an
extension over the ISO C standard.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1427

44265

44266

44267

44268

44269

44270

44271

44272

44273

44274

44275

44276

44277

44278

44279

44280

44281

44282

44283

44284

44285

44286

44287

44288

44289

44290

44291

44292

44293

44294

44295

44296

44297

44298

44299

44300

44301

44302

44303

44304

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

sigemptyset() System Interfaces

NAME
sigemptyset — initialize and empty a signal set

SYNOPSIS
CX #include <signal.h>

int sigemptyset(sigset_t * set);

DESCRIPTION
The sigemptyset() function initializes the signal set pointed to by set, such that all signals defined
in IEEE Std 1003.1-200x are excluded.

RETURN VALUE
Upon successful completion, sigemptyset() shall return 0; otherwise, it shall return −1 and set
errno to indicate the error.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
The implementation of the sigemptyset() (or sigfillset()) function could quite trivially clear (or set)
all the bits in the signal set. Alternatively, it would be reasonable to initialize part of the
structure, such as a version field, to permit binary-compatibility between releases where the size
of the set varies. For such reasons, either sigemptyset() or sigfillset() must be called prior to any
other use of the signal set, even if such use is read-only (for example, as an argument to
sigpending()). This function is not intended for dynamic allocation.

The sigfillset() and sigemptyset() functions require that the resulting signal set include (or
exclude) all the signals defined in this volume of IEEE Std 1003.1-200x. Although it is outside the
scope of this volume of IEEE Std 1003.1-200x to place this requirement on signals that are
implemented as extensions, it is recommended that implementation-defined signals also be
affected by these functions. However, there may be a good reason for a particular signal not to
be affected. For example, blocking or ignoring an implementation-defined signal may have
undesirable side effects, whereas the default action for that signal is harmless. In such a case, it
would be preferable for such a signal to be excluded from the signal set returned by sigfillset().

In early proposals there was no distinction between invalid and unsupported signals (the names
of optional signals that were not supported by an implementation were not defined by that
implementation). The [EINVAL] error was thus specified as a required error for invalid signals.
With that distinction, it is not necessary to require implementations of these functions to
determine whether an optional signal is actually supported, as that could have a significant
performance impact for little value. The error could have been required for invalid signals and
optional for unsupported signals, but this seemed unnecessarily complex. Thus, the error is
optional in both cases.

FUTURE DIRECTIONS
None.

1428 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

44305

44306

44307

44308

44309

44310

44311

44312

44313

44314

44315

44316

44317

44318

44319

44320

44321

44322

44323

44324

44325

44326

44327

44328

44329

44330

44331

44332

44333

44334

44335

44336

44337

44338

44339

44340

44341

44342

44343

44344

44345

44346

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces sigemptyset()

SEE ALSO
Section 2.4 (on page 28), sigaction(), sigaddset(), sigdelset(), sigfillset(), sigismember(), sigpending(),
sigprocmask(), sigsuspend(), the Base Definitions volume of IEEE Std 1003.1-200x, <signal.h>

CHANGE HISTORY
First released in Issue 3. Included for alignment with the POSIX.1-1988 standard.

Issue 6
The SYNOPSIS is marked CX since the presence of this function in the <signal.h> header is an
extension over the ISO C standard.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1429

44347

44348

44349

44350

44351

44352

44353

44354

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

sigfillset() System Interfaces

NAME
sigfillset — initialize and fill a signal set

SYNOPSIS
CX #include <signal.h>

int sigfillset(sigset_t * set);

DESCRIPTION
The sigfillset() function shall initialize the signal set pointed to by set, such that all signals
defined in this volume of IEEE Std 1003.1-200x are included.

RETURN VALUE
Upon successful completion, sigfillset() shall return 0; otherwise, it shall return −1 and set errno
to indicate the error.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
Refer to sigemptyset() (on page 1428).

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.4 (on page 28), sigaction(), sigaddset(), sigdelset(), sigemptyset(), sigismember(),
sigpending(), sigprocmask(), sigsuspend(), the Base Definitions volume of IEEE Std 1003.1-200x,
<signal.h>

CHANGE HISTORY
First released in Issue 3. Included for alignment with the POSIX.1-1988 standard.

Issue 6
The SYNOPSIS is marked CX since the presence of this function in the <signal.h> header is an
extension over the ISO C standard.

1430 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

44355

44356

44357

44358

44359

44360

44361

44362

44363

44364

44365

44366

44367

44368

44369

44370

44371

44372

44373

44374

44375

44376

44377

44378

44379

44380

44381

44382

44383

44384

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces sighold()

NAME
sighold, sigignore, sigpause, sigrelse, sigset — signal management

SYNOPSIS
OB XSI #include <signal.h>

int sighold(int sig);
int sigignore(int sig);
int sigpause(int sig);
int sigrelse(int sig);
void (*sigset(int sig, v oid (* disp)(int)))(int);

DESCRIPTION
Use of any of these functions is unspecified in a multi-threaded process.

The sighold(), sigignore(), sigpause(), sigrelse(), and sigset() functions provide simplified signal
management.

The sigset() function shall modify signal dispositions. The sig argument specifies the signal,
which may be any signal except SIGKILL and SIGSTOP. The disp argument specifies the signal’s
disposition, which may be SIG_DFL, SIG_IGN, or the address of a signal handler. If sigset() is
used, and disp is the address of a signal handler, the system shall add sig to the signal mask of
the calling process before executing the signal handler; when the signal handler returns, the
system shall restore the signal mask of the calling process to its state prior to the delivery of the
signal. In addition, if sigset() is used, and disp is equal to SIG_HOLD, sig shall be added to the
signal mask of the calling process and sig’s disposition shall remain unchanged. If sigset() is
used, and disp is not equal to SIG_HOLD, sig shall be removed from the signal mask of the
calling process.

The sighold() function shall add sig to the signal mask of the calling process.

The sigrelse() function shall remove sig from the signal mask of the calling process.

The sigignore() function shall set the disposition of sig to SIG_IGN.

The sigpause() function shall remove sig from the signal mask of the calling process and suspend
the calling process until a signal is received. The sigpause() function shall restore the signal mask
of the process to its original state before returning.

If the action for the SIGCHLD signal is set to SIG_IGN, child processes of the calling processes
shall not be transformed into zombie processes when they terminate. If the calling process
subsequently waits for its children, and the process has no unwaited-for children that were
transformed into zombie processes, it shall block until all of its children terminate, and wait(),
waitid(), and waitpid() shall fail and set errno to [ECHILD].

RETURN VALUE
Upon successful completion, sigset() shall return SIG_HOLD if the signal had been blocked and
the signal’s previous disposition if it had not been blocked. Otherwise, SIG_ERR shall be
returned and errno set to indicate the error.

The sigpause() function shall suspend execution of the thread until a signal is received,
whereupon it shall return −1 and set errno to [EINTR].

For all other functions, upon successful completion, 0 shall be returned. Otherwise, −1 shall be
returned and errno set to indicate the error.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1431

44385

44386

44387

44388

44389

44390

44391

44392

44393

44394

44395

44396

44397

44398

44399

44400

44401

44402

44403

44404

44405

44406

44407

44408

44409

44410

44411

44412

44413

44414

44415

44416

44417

44418

44419

44420

44421

44422

44423

44424

44425

44426

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

sighold() System Interfaces

ERRORS
These functions shall fail if:

[EINVAL] The sig argument is an illegal signal number.

The sigset() and sigignore() functions shall fail if:

[EINVAL] An attempt is made to catch a signal that cannot be caught, or to ignore a
signal that cannot be ignored.

EXAMPLES
None.

APPLICATION USAGE
The sigaction() function provides a more comprehensive and reliable mechanism for controlling
signals; new applications should use the sigaction() function instead of the obsolescent sigset()
function.

The sighold() function, in conjunction with sigrelse() or sigpause(), may be used to establish
critical regions of code that require the delivery of a signal to be temporarily deferred. For
broader portability, the pthread_sigmask() or sigprocmask() functions should be used instead of
the obsolescent sighold() and sigrelse() functions.

For broader portability, the sigsuspend() function should be used instead of the obsolescent
sigpause() function.

RATIONALE
Each of these historic functions has a direct analog in the other functions which are required to
be per-thread and thread-safe (aside from sigprocmask(), which is replaced by pthread_sigmask()).
The sigset() function can be implemented as a simple wrapper for sigaction(). The sighold()
function is equivalent to sigprocmask() or pthread_sigmask() with SIG_BLOCK set. The sigignore()
function is equivalent to sigaction() with SIG_IGN set. The sigpause() function is equivalent to
sigsuspend(). The sigrelse() function is equivalent to sigprocmask() or pthread_sigmask() with
SIG_UNBLOCK set.

FUTURE DIRECTIONS
These functions may be removed in a future version.

SEE ALSO
Section 2.4 (on page 28), exec , pause(), pthread_sigmask(), sigaction(), signal(), sigsuspend(),
waitid(), the Base Definitions volume of IEEE Std 1003.1-200x, <signal.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

The DESCRIPTION is updated to indicate that the sigpause() function restores the signal mask of
the process to its original state before returning.

The RETURN VALUE section is updated to indicate that the sigpause() function suspends
execution of the process until a signal is received, whereupon it returns −1 and sets errno to
[EINTR].

Issue 6
The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

References to the wait3() function are removed.

The XSI functions are split out into their own reference page.

1432 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

44427

44428

44429

44430

44431

44432

44433

44434

44435

44436

44437

44438

44439

44440

44441

44442

44443

44444

44445

44446

44447

44448

44449

44450

44451

44452

44453

44454

44455

44456

44457

44458

44459

44460

44461

44462

44463

44464

44465

44466

44467

44468

44469

44470

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces sighold()

Issue 7
SD5-XSH-ERN-113 and SD5-XSH-ERN-42 are applied, marking these functions obsolescent and
updating the APPLICATION USAGE and RATIONALE sections.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1433

44471

44472

44473

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

siginterrupt() System Interfaces

NAME
siginterrupt — allow signals to interrupt functions

SYNOPSIS
OB XSI #include <signal.h>

int siginterrupt(int sig, i nt flag);

DESCRIPTION
The siginterrupt() function shall change the restart behavior when a function is interrupted by
the specified signal. The function siginterrupt(sig, flag) has an effect as if implemented as:

int siginterrupt(int sig, int flag) {
int ret;
struct sigaction act;

(void) sigaction(sig, NULL, &act);
if (flag)

act.sa_flags &= ˜SA_RESTART;
else

act.sa_flags |= SA_RESTART;
ret = sigaction(sig, &act, NULL);
return ret;

}

RETURN VALUE
Upon successful completion, siginterrupt() shall return 0; otherwise, −1 shall be returned and
errno set to indicate the error.

ERRORS
The siginterrupt() function shall fail if:

[EINVAL] The sig argument is not a valid signal number.

EXAMPLES
None.

APPLICATION USAGE
The siginterrupt() function supports programs written to historical system interfaces.
Applications should use the sigaction() with the SA_RESTART flag instead of the obsolescent
siginterrupt() function.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.4 (on page 28), sigaction(), the Base Definitions volume of IEEE Std 1003.1-200x,
<signal.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

1434 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

44474

44475

44476

44477

44478

44479

44480

44481

44482

44483

44484

44485

44486

44487

44488

44489

44490

44491

44492

44493

44494

44495

44496

44497

44498

44499

44500

44501

44502

44503

44504

44505

44506

44507

44508

44509

44510

44511

44512

44513

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces siginterrupt()

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Issue 6
IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/59 is applied, correcting the declaration in
the sample implementation given in the DESCRIPTION.

Issue 7
The siginterrupt() function is marked obsolescent.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1435

44514

44515

44516

44517

44518

44519

44520

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

sigismember() System Interfaces

NAME
sigismember — test for a signal in a signal set

SYNOPSIS
CX #include <signal.h>

int sigismember(const sigset_t * set, i nt signo);

DESCRIPTION
The sigismember() function shall test whether the signal specified by signo is a member of the set
pointed to by set.

Applications should call either sigemptyset() or sigfillset() at least once for each object of type
sigset_t prior to any other use of that object. If such an object is not initialized in this way, but is
nonetheless supplied as an argument to any of pthread_sigmask(), sigaction(), sigaddset(),
sigdelset(), sigismember(), sigpending(), sigprocmask(), sigsuspend(), sigtimedwait(), sigwait(), or
sigwaitinfo(), the results are undefined.

RETURN VALUE
Upon successful completion, sigismember() shall return 1 if the specified signal is a member of
the specified set, or 0 if it is not. Otherwise, it shall return −1 and set errno to indicate the error.

ERRORS
The sigismember() function may fail if:

[EINVAL] The signo argument is not a valid signal number, or is an unsupported signal
number.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.4 (on page 28), sigaction(), sigaddset(), sigdelset(), sigfillset(), sigemptyset(), sigpending(),
sigprocmask(), sigsuspend(), the Base Definitions volume of IEEE Std 1003.1-200x, <signal.h>

CHANGE HISTORY
First released in Issue 3. Included for alignment with the POSIX.1-1988 standard.

Issue 5
The last paragraph of the DESCRIPTION was included as an APPLICATION USAGE note in
previous issues.

Issue 6
The SYNOPSIS is marked CX since the presence of this function in the <signal.h> header is an
extension over the ISO C standard.

1436 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

44521

44522

44523

44524

44525

44526

44527

44528

44529

44530

44531

44532

44533

44534

44535

44536

44537

44538

44539

44540

44541

44542

44543

44544

44545

44546

44547

44548

44549

44550

44551

44552

44553

44554

44555

44556

44557

44558

44559

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces siglongjmp()

NAME
siglongjmp — non-local goto with signal handling

SYNOPSIS
CX #include <setjmp.h>

void siglongjmp(sigjmp_buf env, i nt val);

DESCRIPTION
The siglongjmp() function shall be equivalent to the longjmp() function, except as follows:

• References to setjmp() shall be equivalent to sigsetjmp().

• The siglongjmp() function shall restore the saved signal mask if and only if the env
argument was initialized by a call to sigsetjmp() with a non-zero savemask argument.

RETURN VALUE
After siglongjmp() is completed, program execution shall continue as if the corresponding
invocation of sigsetjmp() had just returned the value specified by val. The siglongjmp() function
shall not cause sigsetjmp() to return 0; if val is 0, sigsetjmp() shall return the value 1.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
The distinction between setjmp() or longjmp() and sigsetjmp() or siglongjmp() is only significant
for programs which use sigaction(), sigprocmask(), or sigsuspend().

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
longjmp(), setjmp(), sigprocmask(), sigsetjmp(), sigsuspend(), the Base Definitions volume of
IEEE Std 1003.1-200x, <setjmp.h>

CHANGE HISTORY
First released in Issue 3. Included for alignment with the ISO POSIX-1 standard.

Issue 5
The DESCRIPTION is updated for alignment with the POSIX Threads Extension.

Issue 6
The DESCRIPTION is rewritten in terms of longjmp().

The SYNOPSIS is marked CX since the presence of this function in the <setjmp.h> header is an
extension over the ISO C standard.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1437

44560

44561

44562

44563

44564

44565

44566

44567

44568

44569

44570

44571

44572

44573

44574

44575

44576

44577

44578

44579

44580

44581

44582

44583

44584

44585

44586

44587

44588

44589

44590

44591

44592

44593

44594

44595

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

signal() System Interfaces

NAME
signal — signal management

SYNOPSIS
#include <signal.h>

void (*signal(int sig, v oid (* func)(int)))(int);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

Use of this function is unspecified in a multi-threaded process.

The signal() function chooses one of three ways in which receipt of the signal number sig is to be
subsequently handled. If the value of func is SIG_DFL, default handling for that signal shall
occur. If the value of func is SIG_IGN, the signal shall be ignored. Otherwise, the application
shall ensure that func points to a function to be called when that signal occurs. An invocation of
such a function because of a signal, or (recursively) of any further functions called by that
invocation (other than functions in the standard library), is called a ‘‘signal handler’’.

When a signal occurs, and func points to a function, it is implementation-defined whether the
equivalent of a:

signal(sig, S IG_DFL);

is executed or the implementation prevents some implementation-defined set of signals (at least
including sig) from occurring until the current signal handling has completed. (If the value of sig
is SIGILL, the implementation may alternatively define that no action is taken.) Next the
equivalent of:

(*func)(sig);

is executed. If and when the function returns, if the value of sig was SIGFPE, SIGILL, or
SIGSEGV or any other implementation-defined value corresponding to a computational
exception, the behavior is undefined. Otherwise, the program shall resume execution at the

CX point it was interrupted. If the signal occurs as the result of calling the abort(), raise(), kill(),
pthread_kill(), or sigqueue() function, the signal handler shall not call the raise() function.

CX If the signal occurs other than as the result of calling abort(), raise(), kill(), pthread_kill(), or
sigqueue(), the behavior is undefined if the signal handler refers to any object with static storage
duration other than by assigning a value to an object declared as volatile sig_atomic_t, or if the
signal handler calls any function in the standard library other than one of the functions listed in
Section 2.4 (on page 28). Furthermore, if such a call fails, the value of errno is unspecified.

At program start-up, the equivalent of:

signal(sig, S IG_IGN);

is executed for some signals, and the equivalent of:

signal(sig, S IG_DFL);

CX is executed for all other signals (see exec).

1438 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

44596

44597

44598

44599

44600

44601

44602

44603

44604

44605

44606

44607

44608

44609

44610

44611

44612

44613

44614

44615

44616

44617

44618

44619

44620

44621

44622

44623

44624

44625

44626

44627

44628

44629

44630

44631

44632

44633

44634

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces signal()

RETURN VALUE
If the request can be honored, signal() shall return the value of func for the most recent call to
signal() for the specified signal sig. Otherwise, SIG_ERR shall be returned and a positive value
shall be stored in errno.

ERRORS
The signal() function shall fail if:

CX [EINVAL] The sig argument is not a valid signal number or an attempt is made to catch a
signal that cannot be caught or ignore a signal that cannot be ignored.

The signal() function may fail if:

CX [EINVAL] An attempt was made to set the action to SIG_DFL for a signal that cannot be
caught or ignored (or both).

EXAMPLES
None.

APPLICATION USAGE
The sigaction() function provides a more comprehensive and reliable mechanism for controlling
signals; new applications should use sigaction() rather than signal().

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.4 (on page 28), exec , pause(), sigaction(), sigsuspend(), waitid(), the Base Definitions
volume of IEEE Std 1003.1-200x, <signal.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

The DESCRIPTION is updated to indicate that the sigpause() function restores the signal mask of
the process to its original state before returning.

The RETURN VALUE section is updated to indicate that the sigpause() function suspends
execution of the process until a signal is received, whereupon it returns −1 and sets errno to
[EINTR].

Issue 6
Extensions beyond the ISO C standard are marked.

The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

The DESCRIPTION is updated for alignment with the ISO/IEC 9899: 1999 standard.

References to the wait3() function are removed.

The sighold(), sigignore(), sigrelse(), and sigset() functions are split out onto their own reference
page.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1439

44635

44636

44637

44638

44639

44640

44641

44642

44643

44644

44645

44646

44647

44648

44649

44650

44651

44652

44653

44654

44655

44656

44657

44658

44659

44660

44661

44662

44663

44664

44665

44666

44667

44668

44669

44670

44671

44672

44673

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

signbit() System Interfaces

NAME
signbit — test sign

SYNOPSIS
#include <math.h>

int signbit(real-floating x);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

The signbit() macro shall determine whether the sign of its argument value is negative. NaNs,
zeros, and infinities have a sign bit.

RETURN VALUE
The signbit() macro shall return a non-zero value if and only if the sign of its argument value is
negative.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fpclassify(), isfinite(), isinf(), isnan(), isnormal(), the Base Definitions volume of
IEEE Std 1003.1-200x, <math.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

1440 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

44674

44675

44676

44677

44678

44679

44680

44681

44682

44683

44684

44685

44686

44687

44688

44689

44690

44691

44692

44693

44694

44695

44696

44697

44698

44699

44700

44701

44702

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces sigpause()

NAME
sigpause — remove a signal from the signal mask and suspend the thread

SYNOPSIS
OB XSI #include <signal.h>

int sigpause(int sig);

DESCRIPTION
Refer to sighold().

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1441

44703

44704

44705

44706

44707

44708

44709

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

sigpending() System Interfaces

NAME
sigpending — examine pending signals

SYNOPSIS
CX #include <signal.h>

int sigpending(sigset_t * set);

DESCRIPTION
The sigpending() function shall store, in the location referenced by the set argument, the set of
signals that are blocked from delivery to the calling thread and that are pending on the process
or the calling thread.

RETURN VALUE
Upon successful completion, sigpending() shall return 0; otherwise, −1 shall be returned and
errno set to indicate the error.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
exec , sigaddset(), sigdelset(), sigemptyset(), sigfillset(), sigismember(), sigprocmask(), the Base
Definitions volume of IEEE Std 1003.1-200x, <signal.h>

CHANGE HISTORY
First released in Issue 3.

Issue 5
The DESCRIPTION is updated for alignment with the POSIX Threads Extension.

Issue 6
The SYNOPSIS is marked CX since the presence of this function in the <signal.h> header is an
extension over the ISO C standard.

1442 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

44710

44711

44712

44713

44714

44715

44716

44717

44718

44719

44720

44721

44722

44723

44724

44725

44726

44727

44728

44729

44730

44731

44732

44733

44734

44735

44736

44737

44738

44739

44740

44741

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces sigprocmask()

NAME
sigprocmask — examine and change blocked signals

SYNOPSIS
CX #include <signal.h>

int sigprocmask(int how, c onst sigset_t *restrict set,
sigset_t *restrict oset);

DESCRIPTION
Refer to pthread_sigmask().

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1443

44742

44743

44744

44745

44746

44747

44748

44749

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

sigqueue() System Interfaces

NAME
sigqueue — queue a signal to a process

SYNOPSIS
CX #include <signal.h>

int sigqueue(pid_t pid, i nt signo, c onst union sigval value);

DESCRIPTION
The sigqueue() function shall cause the signal specified by signo to be sent with the value
specified by value to the process specified by pid. If signo is zero (the null signal), error checking
is performed but no signal is actually sent. The null signal can be used to check the validity of
pid.

The conditions required for a process to have permission to queue a signal to another process are
the same as for the kill() function.

The sigqueue() function shall return immediately. If SA_SIGINFO is set for signo and if the
resources were available to queue the signal, the signal shall be queued and sent to the receiving
process. If SA_SIGINFO is not set for signo, then signo shall be sent at least once to the receiving
process; it is unspecified whether value shall be sent to the receiving process as a result of this
call.

If the value of pid causes signo to be generated for the sending process, and if signo is not blocked
for the calling thread and if no other thread has signo unblocked or is waiting in a sigwait()
function for signo, either signo or at least the pending, unblocked signal shall be delivered to the
calling thread before the sigqueue() function returns. Should any multiple pending signals in the
range SIGRTMIN to SIGRTMAX be selected for delivery, it shall be the lowest numbered one.
The selection order between realtime and non-realtime signals, or between multiple pending
non-realtime signals, is unspecified.

RETURN VALUE
Upon successful completion, the specified signal shall have been queued, and the sigqueue()
function shall return a value of zero. Otherwise, the function shall return a value of −1 and set
errno to indicate the error.

ERRORS
The sigqueue() function shall fail if:

[EAGAIN] No resources are available to queue the signal. The process has already
queued {SIGQUEUE_MAX} signals that are still pending at the receiver(s), or
a system-wide resource limit has been exceeded.

[EINVAL] The value of the signo argument is an invalid or unsupported signal number.

[EPERM] The process does not have the appropriate privilege to send the signal to the
receiving process.

[ESRCH] The process pid does not exist.

1444 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

44750

44751

44752

44753

44754

44755

44756

44757

44758

44759

44760

44761

44762

44763

44764

44765

44766

44767

44768

44769

44770

44771

44772

44773

44774

44775

44776

44777

44778

44779

44780

44781

44782

44783

44784

44785

44786

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces sigqueue()

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
The sigqueue() function allows an application to queue a realtime signal to itself or to another
process, specifying the application-defined value. This is common practice in realtime
applications on existing realtime systems. It was felt that specifying another function in the
sig. . . name space already carved out for signals was preferable to extending the interface to
kill().

Such a function became necessary when the put/get event function of the message queues was
removed. It should be noted that the sigqueue() function implies reduced performance in a
security-conscious implementation as the access permissions between the sender and receiver
have to be checked on each send when the pid is resolved into a target process. Such access
checks were necessary only at message queue open in the previous interface.

The standard developers required that sigqueue() have the same semantics with respect to the
null signal as kill(), and that the same permission checking be used. But because of the difficulty
of implementing the ‘‘broadcast’’ semantic of kill() (for example, to process groups) and the
interaction with resource allocation, this semantic was not adopted. The sigqueue() function
queues a signal to a single process specified by the pid argument.

The sigqueue() function can fail if the system has insufficient resources to queue the signal. An
explicit limit on the number of queued signals that a process could send was introduced. While
the limit is ‘‘per-sender ’’, this volume of IEEE Std 1003.1-200x does not specify that the resources
be part of the state of the sender. This would require either that the sender be maintained after
exit until all signals that it had sent to other processes were handled or that all such signals that
had not yet been acted upon be removed from the queue(s) of the receivers. This volume of
IEEE Std 1003.1-200x does not preclude this behavior, but an implementation that allocated
queuing resources from a system-wide pool (with per-sender limits) and that leaves queued
signals pending after the sender exits is also permitted.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.8.1 (on page 41), the Base Definitions volume of IEEE Std 1003.1-200x, <signal.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Realtime Extension and the
POSIX Threads Extension.

Issue 6
The sigqueue() function is marked as part of the Realtime Signals Extension option.

The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Realtime Signals Extension option.

Issue 7
The sigqueue() function is moved from the Realtime Signals Extension option to the Base.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1445

44787

44788

44789

44790

44791

44792

44793

44794

44795

44796

44797

44798

44799

44800

44801

44802

44803

44804

44805

44806

44807

44808

44809

44810

44811

44812

44813

44814

44815

44816

44817

44818

44819

44820

44821

44822

44823

44824

44825

44826

44827

44828

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

sigrelse() System Interfaces

NAME
sigrelse, sigset — signal management

SYNOPSIS
OB XSI #include <signal.h>

int sigrelse(int sig);
void (*sigset(int sig, v oid (* disp)(int)))(int);

DESCRIPTION
Refer to sighold().

1446 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

44829

44830

44831

44832

44833

44834

44835

44836

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces sigsetjmp()

NAME
sigsetjmp — set jump point for a non-local goto

SYNOPSIS
CX #include <setjmp.h>

int sigsetjmp(sigjmp_buf env, i nt savemask);

DESCRIPTION
The sigsetjmp() function shall be equivalent to the setjmp() function, except as follows:

• References to setjmp() are equivalent to sigsetjmp().

• References to longjmp() are equivalent to siglongjmp().

• If the value of the savemask argument is not 0, sigsetjmp() shall also save the current signal
mask of the calling thread as part of the calling environment.

RETURN VALUE
If the return is from a successful direct invocation, sigsetjmp() shall return 0. If the return is from
a call to siglongjmp(), sigsetjmp() shall return a non-zero value.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
The distinction between setjmp()/longjmp() and sigsetjmp()/siglongjmp() is only significant for
programs which use sigaction(), sigprocmask(), or sigsuspend().

Note that since this function is defined in terms of setjmp(), if savemask is zero, it is unspecified
whether the signal mask is saved.

RATIONALE
The ISO C standard specifies various restrictions on the usage of the setjmp() macro in order to
permit implementors to recognize the name in the compiler and not implement an actual
function. These same restrictions apply to the sigsetjmp() macro.

There are processors that cannot easily support these calls, but this was not considered a
sufficient reason to exclude them.

4.2 BSD, 4.3 BSD, and XSI-conformant systems provide functions named _setjmp() and
_longjmp() that, together with setjmp() and longjmp(), provide the same functionality as
sigsetjmp() and siglongjmp(). On those systems, setjmp() and longjmp() save and restore signal
masks, while _setjmp() and _longjmp() do not. On System V Release 3 and in corresponding
issues of the SVID, setjmp() and longjmp() are explicitly defined not to save and restore signal
masks. In order to permit existing practice in both cases, the relation of setjmp() and longjmp() to
signal masks is not specified, and a new set of functions is defined instead.

The longjmp() and siglongjmp() functions operate as in the previous issue provided the matching
setjmp() or sigsetjmp() has been performed in the same thread. Non-local jumps into contexts
saved by other threads would be at best a questionable practice and were not considered worthy
of standardization.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1447

44837

44838

44839

44840

44841

44842

44843

44844

44845

44846

44847

44848

44849

44850

44851

44852

44853

44854

44855

44856

44857

44858

44859

44860

44861

44862

44863

44864

44865

44866

44867

44868

44869

44870

44871

44872

44873

44874

44875

44876

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

sigsetjmp() System Interfaces

FUTURE DIRECTIONS
None.

SEE ALSO
siglongjmp(), signal(), sigprocmask(), sigsuspend(), the Base Definitions volume of
IEEE Std 1003.1-200x, <setjmp.h>

CHANGE HISTORY
First released in Issue 3. Included for alignment with the POSIX.1-1988 standard.

Issue 5
The DESCRIPTION is updated for alignment with the POSIX Threads Extension.

Issue 6
The DESCRIPTION is reworded in terms of setjmp().

The SYNOPSIS is marked CX since the presence of this function in the <setjmp.h> header is an
extension over the ISO C standard.

1448 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

44877

44878

44879

44880

44881

44882

44883

44884

44885

44886

44887

44888

44889

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces sigsuspend()

NAME
sigsuspend — wait for a signal

SYNOPSIS
CX #include <signal.h>

int sigsuspend(const sigset_t * sigmask);

DESCRIPTION
The sigsuspend() function shall replace the current signal mask of the calling thread with the set
of signals pointed to by sigmask and then suspend the thread until delivery of a signal whose
action is either to execute a signal-catching function or to terminate the process. This shall not
cause any other signals that may have been pending on the process to become pending on the
thread.

If the action is to terminate the process then sigsuspend() shall never return. If the action is to
execute a signal-catching function, then sigsuspend() shall return after the signal-catching
function returns, with the signal mask restored to the set that existed prior to the sigsuspend()
call.

It is not possible to block signals that cannot be ignored. This is enforced by the system without
causing an error to be indicated.

RETURN VALUE
Since sigsuspend() suspends thread execution indefinitely, there is no successful completion
return value. If a return occurs, −1 shall be returned and errno set to indicate the error.

ERRORS
The sigsuspend() function shall fail if:

[EINTR] A signal is caught by the calling process and control is returned from the
signal-catching function.

EXAMPLES
None.

APPLICATION USAGE
Normally, at the beginning of a critical code section, a specified set of signals is blocked using
the sigprocmask() function. When the thread has completed the critical section and needs to wait
for the previously blocked signal(s), it pauses by calling sigsuspend() with the mask that was
returned by the sigprocmask() call.

RATIONALE
Code which wants to avoid the ambiguity of the signal mask for thread cancellation handlers
can install an additional cancellation handler which resets the signal mask to the expected value.

void cleanup(void *arg)
{

sigset_t *ss = (sigset_t *) arg;
pthread_sigmask(SIG_SETMASK, ss, NULL);

}

int call_sigsuspend(const sigset_t *mask)
{

sigset_t oldmask;
int result;
pthread_sigmask(SIG_SETMASK, NULL, &oldmask);

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1449

44890

44891

44892

44893

44894

44895

44896

44897

44898

44899

44900

44901

44902

44903

44904

44905

44906

44907

44908

44909

44910

44911

44912

44913

44914

44915

44916

44917

44918

44919

44920

44921

44922

44923

44924

44925

44926

44927

44928

44929

44930

44931

44932

44933

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

sigsuspend() System Interfaces

pthread_cleanup_push(cleanup, &oldmask);
result = sigsuspend(sigmask);
pthread_cleanup_pop(0);
return result;

}

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.4 (on page 28), pause(), sigaction(), sigaddset(), sigdelset(), sigemptyset(), sigfillset(), the
Base Definitions volume of IEEE Std 1003.1-200x, <signal.h>

CHANGE HISTORY
First released in Issue 3. Included for alignment with the POSIX.1-1988 standard.

Issue 5
The DESCRIPTION is updated for alignment with the POSIX Threads Extension.

Issue 6
The text in the RETURN VALUE section has been changed from ‘‘suspends process execution’’
to ‘‘suspends thread execution’’. This reflects IEEE PASC Interpretation 1003.1c #40.

Text in the APPLICATION USAGE section has been replaced.

The SYNOPSIS is marked CX since the presence of this function in the <signal.h> header is an
extension over the ISO C standard.

Issue 7
SD5-XSH-ERN-122 is applied, adding the example code in the RATIONALE.

1450 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

44934

44935

44936

44937

44938

44939

44940

44941

44942

44943

44944

44945

44946

44947

44948

44949

44950

44951

44952

44953

44954

44955

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces sigtimedwait()

NAME
sigtimedwait, sigwaitinfo — wait for queued signals

SYNOPSIS
CX #include <signal.h>

int sigtimedwait(const sigset_t *restrict set,
siginfo_t *restrict info,
const struct timespec *restrict timeout);

int sigwaitinfo(const sigset_t *restrict set,
siginfo_t *restrict info);

DESCRIPTION
The sigtimedwait() function shall be equivalent to sigwaitinfo() except that if none of the signals
specified by set are pending, sigtimedwait() shall wait for the time interval specified in the
timespec structure referenced by timeout. If the timespec structure pointed to by timeout is zero-
valued and if none of the signals specified by set are pending, then sigtimedwait() shall return

MON immediately with an error. If timeout is the NULL pointer, the behavior is unspecified. If the
Monotonic Clock option is supported, the CLOCK_MONOTONIC clock shall be used to
measure the time interval specified by the timeout argument.

The sigwaitinfo() function selects the pending signal from the set specified by set. Should any of
multiple pending signals in the range SIGRTMIN to SIGRTMAX be selected, it shall be the
lowest numbered one. The selection order between realtime and non-realtime signals, or
between multiple pending non-realtime signals, is unspecified. If no signal in set is pending at
the time of the call, the calling thread shall be suspended until one or more signals in set become
pending or until it is interrupted by an unblocked, caught signal.

The sigwaitinfo() function shall be equivalent to the sigwait() function if the info argument is
NULL. If the info argument is non-NULL, the sigwaitinfo() function shall be equivalent to
sigwait(), except that the selected signal number shall be stored in the si_signo member, and the
cause of the signal shall be stored in the si_code member. If any value is queued to the selected
signal, the first such queued value shall be dequeued and, if the info argument is non-NULL, the
value shall be stored in the si_value member of info. The system resource used to queue the
signal shall be released and returned to the system for other use. If no value is queued, the
content of the si_value member is undefined. If no further signals are queued for the selected
signal, the pending indication for that signal shall be reset.

RETURN VALUE
Upon successful completion (that is, one of the signals specified by set is pending or is
generated) sigwaitinfo() and sigtimedwait() shall return the selected signal number. Otherwise,
the function shall return a value of −1 and set errno to indicate the error.

ERRORS
The sigtimedwait() function shall fail if:

[EAGAIN] No signal specified by set was generated within the specified timeout period.

The sigtimedwait() and sigwaitinfo() functions may fail if:

[EINTR] The wait was interrupted by an unblocked, caught signal. It shall be
documented in system documentation whether this error causes these
functions to fail.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1451

44956

44957

44958

44959

44960

44961

44962

44963

44964

44965

44966

44967

44968

44969

44970

44971

44972

44973

44974

44975

44976

44977

44978

44979

44980

44981

44982

44983

44984

44985

44986

44987

44988

44989

44990

44991

44992

44993

44994

44995

44996

44997

44998

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

sigtimedwait() System Interfaces

The sigtimedwait() function may also fail if:

[EINVAL] The timeout argument specified a tv_nsec value less than zero or greater than
or equal to 1 000 million.

An implementation should only check for this error if no signal is pending in set and it is
necessary to wait.

EXAMPLES
None.

APPLICATION USAGE
The sigtimedwait() function times out and returns an [EAGAIN] error. Application writers
should note that this is inconsistent with other functions such as pthread_cond_timedwait() that
return [ETIMEDOUT].

RATIONALE
Existing programming practice on realtime systems uses the ability to pause waiting for a
selected set of events and handle the first event that occurs in-line instead of in a signal-handling
function. This allows applications to be written in an event-directed style similar to a state
machine. This style of programming is useful for largescale transaction processing in which the
overall throughput of an application and the ability to clearly track states are more important
than the ability to minimize the response time of individual event handling.

It is possible to construct a signal-waiting macro function out of the realtime signal function
mechanism defined in this volume of IEEE Std 1003.1-200x. However, such a macro has to
include the definition of a generalized handler for all signals to be waited on. A significant
portion of the overhead of handler processing can be avoided if the signal-waiting function is
provided by the kernel. This volume of IEEE Std 1003.1-200x therefore provides two signal-
waiting functions—one that waits indefinitely and one with a timeout—as part of the overall
realtime signal function specification.

The specification of a function with a timeout allows an application to be written that can be
broken out of a wait after a set period of time if no event has occurred. It was argued that setting
a timer event before the wait and recognizing the timer event in the wait would also implement
the same functionality, but at a lower performance level. Because of the performance
degradation associated with the user-level specification of a timer event and the subsequent
cancellation of that timer event after the wait completes for a valid event, and the complexity
associated with handling potential race conditions associated with the user-level method, the
separate function has been included.

Note that the semantics of the sigwaitinfo() function are nearly identical to that of the sigwait()
function defined by this volume of IEEE Std 1003.1-200x. The only difference is that sigwaitinfo()
returns the queued signal value in the value argument. The return of the queued value is
required so that applications can differentiate between multiple events queued to the same
signal number.

The two distinct functions are being maintained because some implementations may choose to
implement the POSIX Threads Extension functions and not implement the queued signals
extensions. Note, though, that sigwaitinfo() does not return the queued value if the value
argument is NULL, so the POSIX Threads Extension sigwait() function can be implemented as a
macro on sigwaitinfo().

The sigtimedwait() function was separated from the sigwaitinfo() function to address concerns
regarding the overloading of the timeout pointer to indicate indefinite wait (no timeout), timed
wait, and immediate return, and concerns regarding consistency with other functions where the
conditional and timed waits were separate functions from the pure blocking function. The
semantics of sigtimedwait() are specified such that sigwaitinfo() could be implemented as a macro
with a NULL pointer for timeout.

1452 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

44999

45000

45001

45002

45003

45004

45005

45006

45007

45008

45009

45010

45011

45012

45013

45014

45015

45016

45017

45018

45019

45020

45021

45022

45023

45024

45025

45026

45027

45028

45029

45030

45031

45032

45033

45034

45035

45036

45037

45038

45039

45040

45041

45042

45043

45044

45045

45046

45047

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces sigtimedwait()

The sigwait functions provide a synchronous mechanism for threads to wait for asynchronously-
generated signals. One important question was how many threads that are suspended in a call
to a sigwait() function for a signal should return from the call when the signal is sent. Four
choices were considered:

1. Return an error for multiple simultaneous calls to sigwait functions for the same signal.

2. One or more threads return.

3. All waiting threads return.

4. Exactly one thread returns.

Prohibiting multiple calls to sigwait() for the same signal was felt to be overly restrictive. The
‘‘one or more’’ behavior made implementation of conforming packages easy at the expense of
forcing POSIX threads clients to protect against multiple simultaneous calls to sigwait() in
application code in order to achieve predictable behavior. There was concern that the ‘‘all
waiting threads’’ behavior would result in ‘‘signal broadcast storms’’, consuming excessive CPU
resources by replicating the signals in the general case. Furthermore, no convincing examples
could be presented that delivery to all was either simpler or more powerful than delivery to one.

Thus, the consensus was that exactly one thread that was suspended in a call to a sigwait
function for a signal should return when that signal occurs. This is not an onerous restriction as:

• A multi-way signal wait can be built from the single-way wait.

• Signals should only be handled by application-level code, as library routines cannot guess
what the application wants to do with signals generated for the entire process.

• Applications can thus arrange for a single thread to wait for any given signal and call any
needed routines upon its arrival.

In an application that is using signals for interprocess communication, signal processing is
typically done in one place. Alternatively, if the signal is being caught so that process cleanup
can be done, the signal handler thread can call separate process cleanup routines for each
portion of the application. Since the application main line started each portion of the application,
it is at the right abstraction level to tell each portion of the application to clean up.

Certainly, there exist programming styles where it is logical to consider waiting for a single
signal in multiple threads. A simple sigwait_multiple() routine can be constructed to achieve this
goal. A possible implementation would be to have each sigwait_multiple() caller registered as
having expressed interest in a set of signals. The caller then waits on a thread-specific condition
variable. A single server thread calls a sigwait() function on the union of all registered signals.
When the sigwait() function returns, the appropriate state is set and condition variables are
broadcast. New sigwait_multiple() callers may cause the pending sigwait() call to be canceled
and reissued in order to update the set of signals being waited for.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.8.1 (on page 41), pause(), pthread_sigmask(), sigaction(), sigpending(), sigsuspend(),
sigwait(), the Base Definitions volume of IEEE Std 1003.1-200x, <signal.h>, <time.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Realtime Extension and the
POSIX Threads Extension.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1453

45048

45049

45050

45051

45052

45053

45054

45055

45056

45057

45058

45059

45060

45061

45062

45063

45064

45065

45066

45067

45068

45069

45070

45071

45072

45073

45074

45075

45076

45077

45078

45079

45080

45081

45082

45083

45084

45085

45086

45087

45088

45089

45090

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

sigtimedwait() System Interfaces

Issue 6
These functions are marked as part of the Realtime Signals Extension option.

The Open Group Corrigendum U035/3 is applied. The SYNOPSIS of the sigwaitinfo() function
has been corrected so that the second argument is of type siginfo_t *.

The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Realtime Signals Extension option.

The DESCRIPTION is updated for alignment with IEEE Std 1003.1j-2000 by specifying that the
CLOCK_MONOTONIC clock, if supported, is used to measure timeout intervals.

The restrict keyword is added to the sigtimedwait() and sigwaitinfo() prototypes for alignment
with the ISO/IEC 9899: 1999 standard.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/130 is applied, restoring wording in the
RETURN VALUE section to that in the original base document (‘‘An implementation should
only check for this error if no signal is pending in set and it is necessary to wait’’).

Issue 7
The sigtimedwait() and sigwaitinfo() functions are moved from the Realtime Signals Extension
option to the Base.

1454 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

45091

45092

45093

45094

45095

45096

45097

45098

45099

45100

45101

45102

45103

45104

45105

45106

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces sigwait()

NAME
sigwait — wait for queued signals

SYNOPSIS
CX #include <signal.h>

int sigwait(const sigset_t *restrict set, i nt *restrict sig);

DESCRIPTION
The sigwait() function shall select a pending signal from set, atomically clear it from the system’s
set of pending signals, and return that signal number in the location referenced by sig. If prior to
the call to sigwait() there are multiple pending instances of a single signal number, it is
implementation-defined whether upon successful return there are any remaining pending
signals for that signal number. If the implementation supports queued signals and there are
multiple signals queued for the signal number selected, the first such queued signal shall cause a
return from sigwait() and the remainder shall remain queued. If no signal in set is pending at the
time of the call, the thread shall be suspended until one or more becomes pending. The signals
defined by set shall have been blocked at the time of the call to sigwait(); otherwise, the behavior
is undefined. The effect of sigwait() on the signal actions for the signals in set is unspecified.

If more than one thread is using sigwait() to wait for the same signal, no more than one of these
threads shall return from sigwait() with the signal number. If more than a single thread is
blocked in sigwait() for a signal when that signal is generated for the process, it is unspecified
which of the waiting threads returns from sigwait(). If the signal is generated for a specific
thread, as by pthread_kill(), only that thread shall return.

Should any of the multiple pending signals in the range SIGRTMIN to SIGRTMAX be selected, it
shall be the lowest numbered one. The selection order between realtime and non-realtime
signals, or between multiple pending non-realtime signals, is unspecified.

RETURN VALUE
Upon successful completion, sigwait() shall store the signal number of the received signal at the
location referenced by sig and return zero. Otherwise, an error number shall be returned to
indicate the error.

ERRORS
The sigwait() function may fail if:

[EINVAL] The set argument contains an invalid or unsupported signal number.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
To provide a convenient way for a thread to wait for a signal, this volume of
IEEE Std 1003.1-200x provides the sigwait() function. For most cases where a thread has to wait
for a signal, the sigwait() function should be quite convenient, efficient, and adequate.

However, requests were made for a lower-level primitive than sigwait() and for semaphores that
could be used by threads. After some consideration, threads were allowed to use semaphores
and sem_post() was defined to be async-signal and async-cancel-safe.

In summary, when it is necessary for code run in response to an asynchronous signal to notify a
thread, sigwait() should be used to handle the signal. Alternatively, if the implementation

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1455

45107

45108

45109

45110

45111

45112

45113

45114

45115

45116

45117

45118

45119

45120

45121

45122

45123

45124

45125

45126

45127

45128

45129

45130

45131

45132

45133

45134

45135

45136

45137

45138

45139

45140

45141

45142

45143

45144

45145

45146

45147

45148

45149

45150

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

sigwait() System Interfaces

provides semaphores, they also can be used, either following sigwait() or from within a signal
handling routine previously registered with sigaction().

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.4 (on page 28), Section 2.8.1 (on page 41), pause(), pthread_sigmask(), sigaction(),
sigpending(), sigsuspend(), sigwaitinfo(), the Base Definitions volume of IEEE Std 1003.1-200x,
<signal.h>, <time.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Realtime Extension and the
POSIX Threads Extension.

Issue 6
The restrict keyword is added to the sigwait() prototype for alignment with the
ISO/IEC 9899: 1999 standard.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/131 is applied, updating the
DESCRIPTION section to state that if more than a single thread is blocked in sigwait(), it is
unspecified which of the waiting threads returns, and that if a signal is generated for a specific
thread only that thread shall return.

Issue 7
Functionality relating to the Realtime Signals Extension option is moved to the Base.

1456 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

45151

45152

45153

45154

45155

45156

45157

45158

45159

45160

45161

45162

45163

45164

45165

45166

45167

45168

45169

45170

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces sigwaitinfo()

NAME
sigwaitinfo — wait for queued signals

SYNOPSIS
#include <signal.h>

int sigwaitinfo(const sigset_t *restrict set, s iginfo_t *restrict info);

DESCRIPTION
Refer to sigtimedwait().

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1457

45171

45172

45173

45174

45175

45176

45177

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

sin() System Interfaces

NAME
sin, sinf, sinl — sine function

SYNOPSIS
#include <math.h>

double sin(double x);
float sinf(float x);
long double sinl(long double x);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

These functions shall compute the sine of their argument x, measured in radians.

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-
zero, an error has occurred.

RETURN VALUE
Upon successful completion, these functions shall return the sine of x.

MX If x is NaN, a NaN shall be returned.

If x is ±0, x shall be returned.

If x is subnormal, a range error may occur and x should be returned.

If x is ±Inf, a domain error shall occur, and either a NaN (if supported), or an implementation-
defined value shall be returned.

ERRORS
These functions shall fail if:

MX Domain Error The x argument is ±Inf.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [EDOM]. If the integer expression (math_errhandling
& MATH_ERREXCEPT) is non-zero, then the invalid floating-point exception
shall be raised.

These functions may fail if:

MX Range Error The value of x is subnormal

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the underflow
floating-point exception shall be raised.

1458 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

45178

45179

45180

45181

45182

45183

45184

45185

45186

45187

45188

45189

45190

45191

45192

45193

45194

45195

45196

45197

45198

45199

45200

45201

45202

45203

45204

45205

45206

45207

45208

45209

45210

45211

45212

45213

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces sin()

EXAMPLES

Taking the Sine of a 45-Degree Angle

#include <math.h>
...
double radians = 45.0 * M_PI / 180;
double result;
...
result = sin(radians);

APPLICATION USAGE
These functions may lose accuracy when their argument is near a multiple of π or is far from 0.0.

On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling &
MATH_ERREXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
asin(), feclearexcept(), fetestexcept(), isnan(), the Base Definitions volume of IEEE Std 1003.1-200x,
Section 4.18, Treatment of Error Conditions for Mathematical Functions, <math.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The last two paragraphs of the DESCRIPTION were included as APPLICATION USAGE notes
in previous issues.

Issue 6
The sinf() and sinl() functions are added for alignment with the ISO/IEC 9899: 1999 standard.

The DESCRIPTION, RETURN VALUE, ERRORS, and APPLICATION USAGE sections are
revised to align with the ISO/IEC 9899: 1999 standard.

IEC 60559: 1989 standard floating-point extensions over the ISO/IEC 9899: 1999 standard are
marked.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1459

45214

45215

45216

45217

45218

45219

45220

45221

45222

45223

45224

45225

45226

45227

45228

45229

45230

45231

45232

45233

45234

45235

45236

45237

45238

45239

45240

45241

45242

45243

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

sinh() System Interfaces

NAME
sinh, sinhf, sinhl — hyperbolic sine functions

SYNOPSIS
#include <math.h>

double sinh(double x);
float sinhf(float x);
long double sinhl(long double x);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

These functions shall compute the hyperbolic sine of their argument x.

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-
zero, an error has occurred.

RETURN VALUE
Upon successful completion, these functions shall return the hyperbolic sine of x.

If the result would cause an overflow, a range error shall occur and ±HUGE_VAL,
±HUGE_VALF, and ±HUGE_VALL (with the same sign as x) shall be returned as appropriate for
the type of the function.

MX If x is NaN, a NaN shall be returned.

If x is ±0 or ±Inf, x shall be returned.

If x is subnormal, a range error may occur and x should be returned.

ERRORS
These functions shall fail if:

Range Error The result would cause an overflow.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the overflow
floating-point exception shall be raised.

These functions may fail if:

MX Range Error The value x is subnormal.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the underflow
floating-point exception shall be raised.

1460 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

45244

45245

45246

45247

45248

45249

45250

45251

45252

45253

45254

45255

45256

45257

45258

45259

45260

45261

45262

45263

45264

45265

45266

45267

45268

45269

45270

45271

45272

45273

45274

45275

45276

45277

45278

45279

45280

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces sinh()

EXAMPLES
None.

APPLICATION USAGE
On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling &
MATH_ERREXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
asinh(), cosh(), feclearexcept(), fetestexcept(), isnan(), tanh(), the Base Definitions volume of
IEEE Std 1003.1-200x, Section 4.18, Treatment of Error Conditions for Mathematical Functions,
<math.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The DESCRIPTION is updated to indicate how an application should check for an error. This
text was previously published in the APPLICATION USAGE section.

Issue 6
The sinhf() and sinhl() functions are added for alignment with the ISO/IEC 9899: 1999 standard.

The DESCRIPTION, RETURN VALUE, ERRORS, and APPLICATION USAGE sections are
revised to align with the ISO/IEC 9899: 1999 standard.

IEC 60559: 1989 standard floating-point extensions over the ISO/IEC 9899: 1999 standard are
marked.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1461

45281

45282

45283

45284

45285

45286

45287

45288

45289

45290

45291

45292

45293

45294

45295

45296

45297

45298

45299

45300

45301

45302

45303

45304

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

sinl() System Interfaces

NAME
sinl — sine function

SYNOPSIS
#include <math.h>

long double sinl(long double x);

DESCRIPTION
Refer to sin().

1462 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

45305

45306

45307

45308

45309

45310

45311

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

sleep() System Interfaces

action previously established for SIGALRM, and whether SIGALRM was blocked. If a
SIGALRM has been scheduled before the sleep() would ordinarily complete, the sleep() must be
shortened to that time and a SIGALRM generated (possibly simulated by direct invocation of the
signal-catching function) before sleep() returns. If a SIGALRM has been scheduled after the
sleep() would ordinarily complete, it must be rescheduled for the same time before sleep()
returns. The action and blocking for SIGALRM must be saved and restored.

Historical implementations often implement the SIGALRM-based version using alarm() and
pause(). One such implementation is prone to infinite hangups, as described in pause().
Another such implementation uses the C-language setjmp() and longjmp() functions to avoid
that window. That implementation introduces a different problem: when the SIGALRM signal
interrupts a signal-catching function installed by the user to catch a different signal, the
longjmp

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces snprintf()

NAME
snprintf — print formatted output

SYNOPSIS
#include <stdio.h>

int snprintf(char *restrict s, s ize_t n,
const char *restrict format, . ..);

DESCRIPTION
Refer to fprintf().

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1465

45400

45401

45402

45403

45404

45405

45406

45407

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

sockatmark() System Interfaces

NAME
sockatmark — determine whether a socket is at the out-of-band mark

SYNOPSIS
#include <sys/socket.h>

int sockatmark(int s);

DESCRIPTION
The sockatmark() function shall determine whether the socket specified by the descriptor s is at
the out-of-band data mark (see the System Interfaces volume of IEEE Std 1003.1-200x, Section
2.10.12, Socket Out-of-Band Data State). If the protocol for the socket supports out-of-band data
by marking the stream with an out-of-band data mark, the sockatmark() function shall return 1
when all data preceding the mark has been read and the out-of-band data mark is the first
element in the receive queue. The sockatmark() function shall not remove the mark from the
stream.

RETURN VALUE
Upon successful completion, the sockatmark() function shall return a value indicating whether
the socket is at an out-of-band data mark. If the protocol has marked the data stream and all data
preceding the mark has been read, the return value shall be 1; if there is no mark, or if data
precedes the mark in the receive queue, the sockatmark() function shall return 0. Otherwise, it
shall return a value of −1 and set errno to indicate the error.

ERRORS
The sockatmark() function shall fail if:

[EBADF] The s argument is not a valid file descriptor.

[ENOTTY] The file associated with the s argument is not a socket.

EXAMPLES
None.

APPLICATION USAGE
The use of this function between receive operations allows an application to determine which
received data precedes the out-of-band data and which follows the out-of-band data.

There is an inherent race condition in the use of this function. On an empty receive queue, the
current read of the location might well be at the ‘‘mark’’, but the system has no way of knowing
that the next data segment that will arrive from the network will carry the mark, and
sockatmark() will return false, and the next read operation will silently consume the mark.

Hence, this function can only be used reliably when the application already knows that the out-
of-band data has been seen by the system or that it is known that there is data waiting to be read
at the socket (via SIGURG or select()). See Section 2.10.11 (on page 62), Section 2.10.12 (on page
63), Section 2.10.14 (on page 63), and pselect() for details.

RATIONALE
The sockatmark() function replaces the historical SIOCATMARK command to ioctl() which
implemented the same functionality on many implementations. Using a wrapper function
follows the adopted conventions to avoid specifying commands to the ioctl() function, other
than those now included to support XSI STREAMS. The sockatmark() function could be
implemented as follows:

#include <sys/ioctl.h>

int sockatmark(int s)
{

1466 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

45408

45409

45410

45411

45412

45413

45414

45415

45416

45417

45418

45419

45420

45421

45422

45423

45424

45425

45426

45427

45428

45429

45430

45431

45432

45433

45434

45435

45436

45437

45438

45439

45440

45441

45442

45443

45444

45445

45446

45447

45448

45449

45450

45451

45452

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces sockatmark()

int val;
if (ioctl(s,SIOCATMARK,&val)== −1)

return(−1);
return(val);

}

The use of [ENOTTY] to indicate an incorrect descriptor type matches the historical behavior of
SIOCATMARK.

FUTURE DIRECTIONS
None.

SEE ALSO
pselect(), recv(), recvmsg(), the Base Definitions volume of IEEE Std 1003.1-200x, <sys/socket.h>

CHANGE HISTORY
First released in Issue 6. Derived from IEEE Std 1003.1g-2000.

Issue 7
SD5-XSH-ERN-100 is applied, correcting the definition of the [ENOTTY] error condition.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1467

45453

45454

45455

45456

45457

45458

45459

45460

45461

45462

45463

45464

45465

45466

45467

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

socket() System Interfaces

NAME
socket — create an endpoint for communication

SYNOPSIS
#include <sys/socket.h>

int socket(int domain, i nt type, i nt protocol);

DESCRIPTION
The socket() function shall create an unbound socket in a communications domain, and return a
file descriptor that can be used in later function calls that operate on sockets.

The socket() function takes the following arguments:

domain Specifies the communications domain in which a socket is to be created.

type Specifies the type of socket to be created.

protocol Specifies a particular protocol to be used with the socket. Specifying a protocol
of 0 causes socket() to use an unspecified default protocol appropriate for the
requested socket type.

The domain argument specifies the address family used in the communications domain. The
address families supported by the system are implementation-defined.

Symbolic constants that can be used for the domain argument are defined in the <sys/socket.h>
header.

The type argument specifies the socket type, which determines the semantics of communication
over the socket. The following socket types are defined; implementations may specify additional
socket types:

SOCK_STREAM Provides sequenced, reliable, bidirectional, connection-mode byte
streams, and may provide a transmission mechanism for out-of-band
data.

SOCK_DGRAM Provides datagrams, which are connectionless-mode, unreliable messages
of fixed maximum length.

SOCK_SEQPACKET Provides sequenced, reliable, bidirectional, connection-mode transmission
paths for records. A record can be sent using one or more output
operations and received using one or more input operations, but a single
operation never transfers part of more than one record. Record
boundaries are visible to the receiver via the MSG_EOR flag.

If the protocol argument is non-zero, it shall specify a protocol that is supported by the address
family. If the protocol argument is zero, the default protocol for this address family and type shall
be used. The protocols supported by the system are implementation-defined.

The process may need to have appropriate privileges to use the socket() function or to create
some sockets.

RETURN VALUE
Upon successful completion, socket() shall return a non-negative integer, the socket file
descriptor. Otherwise, a value of −1 shall be returned and errno set to indicate the error.

1468 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

45468

45469

45470

45471

45472

45473

45474

45475

45476

45477

45478

45479

45480

45481

45482

45483

45484

45485

45486

45487

45488

45489

45490

45491

45492

45493

45494

45495

45496

45497

45498

45499

45500

45501

45502

45503

45504

45505

45506

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces socket()

ERRORS
The socket() function shall fail if:

[EAFNOSUPPORT]
The implementation does not support the specified address family.

[EMFILE] All file descriptors available to the process are currently open.

[ENFILE] No more file descriptors are available for the system.

[EPROTONOSUPPORT]
The protocol is not supported by the address family, or the protocol is not
supported by the implementation.

[EPROTOTYPE] The socket type is not supported by the protocol.

The socket() function may fail if:

[EACCES] The process does not have appropriate privileges.

[ENOBUFS] Insufficient resources were available in the system to perform the operation.

[ENOMEM] Insufficient memory was available to fulfill the request.

EXAMPLES
None.

APPLICATION USAGE
The documentation for specific address families specifies which protocols each address family
supports. The documentation for specific protocols specifies which socket types each protocol
supports.

The application can determine whether an address family is supported by trying to create a
socket with domain set to the protocol in question.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
accept(), bind(), connect(), getsockname(), getsockopt(), listen(), recv(), recvfrom(), recvmsg(),
send(), sendmsg(), setsockopt(), shutdown(), socketpair(), the Base Definitions volume of
IEEE Std 1003.1-200x, <netinet/in.h>, <sys/socket.h>

CHANGE HISTORY
First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1469

45507

45508

45509

45510

45511

45512

45513

45514

45515

45516

45517

45518

45519

45520

45521

45522

45523

45524

45525

45526

45527

45528

45529

45530

45531

45532

45533

45534

45535

45536

45537

45538

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

socketpair() System Interfaces

NAME
socketpair — create a pair of connected sockets

SYNOPSIS
#include <sys/socket.h>

int socketpair(int domain, i nt type, i nt protocol,
int socket_vector[2]);

DESCRIPTION
The socketpair() function shall create an unbound pair of connected sockets in a specified domain,
of a specified type, under the protocol optionally specified by the protocol argument. The two
sockets shall be identical. The file descriptors used in referencing the created sockets shall be
returned in socket_vector[0] and socket_vector[1].

The socketpair() function takes the following arguments:

domain Specifies the communications domain in which the sockets are to be created.

type Specifies the type of sockets to be created.

protocol Specifies a particular protocol to be used with the sockets. Specifying a
protocol of 0 causes socketpair() to use an unspecified default protocol
appropriate for the requested socket type.

socket_vector Specifies a 2-integer array to hold the file descriptors of the created socket pair.

The type argument specifies the socket type, which determines the semantics of communications
over the socket. The following socket types are defined; implementations may specify additional
socket types:

SOCK_STREAM Provides sequenced, reliable, bidirectional, connection-mode byte
streams, and may provide a transmission mechanism for out-of-band
data.

SOCK_DGRAM Provides datagrams, which are connectionless-mode, unreliable messages
of fixed maximum length.

SOCK_SEQPACKET Provides sequenced, reliable, bidirectional, connection-mode transmission
paths for records. A record can be sent using one or more output
operations and received using one or more input operations, but a single
operation never transfers part of more than one record. Record
boundaries are visible to the receiver via the MSG_EOR flag.

If the protocol argument is non-zero, it shall specify a protocol that is supported by the address
family. If the protocol argument is zero, the default protocol for this address family and type shall
be used. The protocols supported by the system are implementation-defined.

The process may need to have appropriate privileges to use the socketpair() function or to create
some sockets.

RETURN VALUE
Upon successful completion, this function shall return 0; otherwise, −1 shall be returned and
errno set to indicate the error.

ERRORS
The socketpair() function shall fail if:

1470 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

45539

45540

45541

45542

45543

45544

45545

45546

45547

45548

45549

45550

45551

45552

45553

45554

45555

45556

45557

45558

45559

45560

45561

45562

45563

45564

45565

45566

45567

45568

45569

45570

45571

45572

45573

45574

45575

45576

45577

45578

45579

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces socketpair()

[EAFNOSUPPORT]
The implementation does not support the specified address family.

[EMFILE] All file descriptors available to the process are currently open.

[ENFILE] No more file descriptors are available for the system.

[EOPNOTSUPP] The specified protocol does not permit creation of socket pairs.

[EPROTONOSUPPORT]
The protocol is not supported by the address family, or the protocol is not
supported by the implementation.

[EPROTOTYPE] The socket type is not supported by the protocol.

The socketpair() function may fail if:

[EACCES] The process does not have appropriate privileges.

[ENOBUFS] Insufficient resources were available in the system to perform the operation.

[ENOMEM] Insufficient memory was available to fulfill the request.

EXAMPLES
None.

APPLICATION USAGE
The documentation for specific address families specifies which protocols each address family
supports. The documentation for specific protocols specifies which socket types each protocol
supports.

The socketpair() function is used primarily with UNIX domain sockets and need not be
supported for other domains.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
socket(), the Base Definitions volume of IEEE Std 1003.1-200x, <sys/socket.h>

CHANGE HISTORY
First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1471

45580

45581

45582

45583

45584

45585

45586

45587

45588

45589

45590

45591

45592

45593

45594

45595

45596

45597

45598

45599

45600

45601

45602

45603

45604

45605

45606

45607

45608

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

sprintf() System Interfaces

NAME
sprintf — print formatted output

SYNOPSIS
#include <stdio.h>

int sprintf(char *restrict s, c onst char *restrict format, . ..);

DESCRIPTION
Refer to fprintf().

1472 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

45609

45610

45611

45612

45613

45614

45615

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces sqrt()

NAME
sqrt, sqrtf, sqrtl — square root function

SYNOPSIS
#include <math.h>

double sqrt(double x);
float sqrtf(float x);
long double sqrtl(long double x);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

These functions shall compute the square root of their argument x, √ x.

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-
zero, an error has occurred.

RETURN VALUE
Upon successful completion, these functions shall return the square root of x.

MX For finite values of x < −0, a domain error shall occur, and either a NaN (if supported), or an
implementation-defined value shall be returned.

MX If x is NaN, a NaN shall be returned.

If x is ±0 or +Inf, x shall be returned.

If x is −Inf, a domain error shall occur, and either a NaN (if supported), or an implementation-
defined value shall be returned.

ERRORS
These functions shall fail if:

MX Domain Error The finite value of x is < −0, or x is −Inf.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [EDOM]. If the integer expression (math_errhandling
& MATH_ERREXCEPT) is non-zero, then the invalid floating-point exception
shall be raised.

EXAMPLES

Taking the Square Root of 9.0

#include <math.h>
...
double x = 9.0;
double result;
...
result = sqrt(x);

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1473

45616

45617

45618

45619

45620

45621

45622

45623

45624

45625

45626

45627

45628

45629

45630

45631

45632

45633

45634

45635

45636

45637

45638

45639

45640

45641

45642

45643

45644

45645

45646

45647

45648

45649

45650

45651

45652

45653

45654

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

sqrt() System Interfaces

APPLICATION USAGE
On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling &
MATH_ERREXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
feclearexcept(), fetestexcept(), isnan(), the Base Definitions volume of IEEE Std 1003.1-200x,
Section 4.18, Treatment of Error Conditions for Mathematical Functions, <math.h>, <stdio.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The DESCRIPTION is updated to indicate how an application should check for an error. This
text was previously published in the APPLICATION USAGE section.

Issue 6
The sqrtf() and sqrtl() functions are added for alignment with the ISO/IEC 9899: 1999 standard.

The DESCRIPTION, RETURN VALUE, ERRORS, and APPLICATION USAGE sections are
revised to align with the ISO/IEC 9899: 1999 standard.

IEC 60559: 1989 standard floating-point extensions over the ISO/IEC 9899: 1999 standard are
marked.

1474 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

45655

45656

45657

45658

45659

45660

45661

45662

45663

45664

45665

45666

45667

45668

45669

45670

45671

45672

45673

45674

45675

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces srand()

NAME
srand — pseudo-random number generator

SYNOPSIS
#include <stdlib.h>

void srand(unsigned seed);

DESCRIPTION
Refer to rand().

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1475

45676

45677

45678

45679

45680

45681

45682

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

srand48() System Interfaces

NAME
srand48 — seed the uniformly distributed double-precision pseudo-random number generator

SYNOPSIS
XSI #include <stdlib.h>

void srand48(long seedval);

DESCRIPTION
Refer to drand48().

1476 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

45683

45684

45685

45686

45687

45688

45689

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces srandom()

NAME
srandom — seed pseudo-random number generator

SYNOPSIS
XSI #include <stdlib.h>

void srandom(unsigned seed);

DESCRIPTION
Refer to initstate().

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1477

45690

45691

45692

45693

45694

45695

45696

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

sscanf() System Interfaces

NAME
sscanf — convert formatted input

SYNOPSIS
#include <stdio.h>

int sscanf(const char *restrict s, c onst char *restrict format, . ..);

DESCRIPTION
Refer to fscanf().

1478 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

45697

45698

45699

45700

45701

45702

45703

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces stat()

NAME
stat — get file status

SYNOPSIS
#include <sys/stat.h>

int stat(const char *restrict path, s truct stat *restrict buf);

DESCRIPTION
Refer to fstatat().

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1479

45704

45705

45706

45707

45708

45709

45710

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

statvfs() System Interfaces

NAME
statvfs — get file system information

SYNOPSIS
#include <sys/statvfs.h>

int statvfs(const char *restrict path, s truct statvfs *restrict buf);

DESCRIPTION
Refer to fstatvfs().

1480 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

45711

45712

45713

45714

45715

45716

45717

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces stdin

NAME
stderr, stdin, stdout — standard I/O streams

SYNOPSIS
#include <stdio.h>

extern FILE *stderr, *stdin, *stdout;

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

A file with associated buffering is called a stream and is declared to be a pointer to a defined type
FILE. The fopen() function shall create certain descriptive data for a stream and return a pointer
to designate the stream in all further transactions. Normally, there are three open streams with
constant pointers declared in the <stdio.h> header and associated with the standard open files.

At program start-up, three streams shall be predefined and need not be opened explicitly:
standard input (for reading conventional input), standard output (for writing conventional output),
and standard error (for writing diagnostic output). When opened, the standard error stream is not
fully buffered; the standard input and standard output streams are fully buffered if and only if
the stream can be determined not to refer to an interactive device.

CX The following symbolic values in <unistd.h> define the file descriptors that shall be associated
with the C-language stdin, stdout, and stderr when the application is started:

STDIN_FILENO Standard input value, stdin. Its value is 0.

STDOUT_FILENO Standard output value, stdout. Its value is 1.

STDERR_FILENO Standard error value, stderr. Its value is 2.

The stderr stream is expected to be open for reading and writing.

RETURN VALUE
None.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fclose(), feof(), ferror(), fileno(), fopen(), fread(), fseek(), getc(), gets(), popen(), printf(), putc(),
puts(), read(), scanf(), setbuf(), setvbuf(), tmpfile(), ungetc(), vprintf(), the Base Definitions
volume of IEEE Std 1003.1-200x, <stdio.h>, <unistd.h>

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1481

45718

45719

45720

45721

45722

45723

45724

45725

45726

45727

45728

45729

45730

45731

45732

45733

45734

45735

45736

45737

45738

45739

45740

45741

45742

45743

45744

45745

45746

45747

45748

45749

45750

45751

45752

45753

45754

45755

45756

45757

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

stdin System Interfaces

CHANGE HISTORY
First released in Issue 1.

Issue 6
Extensions beyond the ISO C standard are marked.

A note that stderr is expected to be open for reading and writing is added to the DESCRIPTION.

1482 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

45758

45759

45760

45761

45762

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces stpcpy()

NAME
stpcpy — copy a string and return a pointer to the end of the result

SYNOPSIS
CX #include <string.h>

char *stpcpy(char *restrict s1, c onst char *restrict s2);

DESCRIPTION
Refer to strcpy().

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1483

45763

45764

45765

45766

45767

45768

45769

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

stpncpy() System Interfaces

NAME
stpncpy — copy fixed length string, returning a pointer to the array end

SYNOPSIS
CX #include <string.h>

char *stpncpy(char *restrict s1, c onst char *restrict s2, s ize_t size);

DESCRIPTION
Refer to strncpy().

1484 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

45770

45771

45772

45773

45774

45775

45776

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces strcasecmp()

NAME
strcasecmp, strcasecmp_l, strncasecmp, strncasecmp_l — case-insensitive string comparisons

SYNOPSIS
#include <strings.h>

int strcasecmp(const char * s1, c onst char * s2);
int strcasecmp_l(const char * s1, c onst char * s2,

locale_t locale);
int strncasecmp(const char * s1, c onst char * s2, s ize_t n);
int strncasecmp_l(const char * s1, c onst char * s2,

size_t n, l ocale_t locale);

DESCRIPTION
The strcasecmp() and strcasecmp_l() functions shall compare, while ignoring differences in case,
the string pointed to by s1 to the string pointed to by s2. The strncasecmp() and strncasecmp_l()
functions shall compare, while ignoring differences in case, not more than n bytes from the
string pointed to by s1 to the string pointed to by s2.

The strcasecmp() and strncasecmp() functions use the current locale of the process to determine
the case of the characters.

The strcasecmp_l() and strncasecmp_l() functions use the locale represented by locale to determine
the case of the characters.

When the LC_CTYPE category of the current locale is from the POSIX locale, strcasecmp() and
strncasecmp() shall behave as if the strings had been converted to lowercase and then a byte
comparison performed. Otherwise, the results are unspecified.

RETURN VALUE
Upon completion, strcasecmp() and strcasecmp_l() shall return an integer greater than, equal to,
or less than 0, if the string pointed to by s1 is, ignoring case, greater than, equal to, or less than
the string pointed to by s2, respectively.

Upon successful completion, strncasecmp() and strncasecmp_l() shall return an integer greater
than, equal to, or less than 0, if the possibly null-terminated array pointed to by s1 is, ignoring
case, greater than, equal to, or less than the possibly null-terminated array pointed to by s2,
respectively.

ERRORS
The strcasecmp_l() and strncasecmp_l() functions may fail if:

[EINVAL] locale is not a valid locale object handle.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1485

45777

45778

45779

45780

45781

45782

45783

45784

45785

45786

45787

45788

45789

45790

45791

45792

45793

45794

45795

45796

45797

45798

45799

45800

45801

45802

45803

45804

45805

45806

45807

45808

45809

45810

45811

45812

45813

45814

45815

45816

45817

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

strcasecmp() System Interfaces

SEE ALSO
wcscasecmp(), the Base Definitions volume of IEEE Std 1003.1-200x, <strings.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Issue 7
The strcasecmp() and strncasecmp() functions are moved from the XSI option to the Base.

The strcasecmp_l() and strncasecmp_l() functions are added from The Open Group Technical
Standard, 2006, Extended API Set Part 4.

1486 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

45818

45819

45820

45821

45822

45823

45824

45825

45826

45827

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces strcat()

NAME
strcat — concatenate two strings

SYNOPSIS
#include <string.h>

char *strcat(char *restrict s1, c onst char *restrict s2);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

The strcat() function shall append a copy of the string pointed to by s2 (including the
terminating NUL character) to the end of the string pointed to by s1. The initial byte of s2
overwrites the NUL character at the end of s1. If copying takes place between objects that
overlap, the behavior is undefined.

RETURN VALUE
The strcat() function shall return s1; no return value is reserved to indicate an error.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
This issue is aligned with the ISO C standard; this does not affect compatibility with XPG3
applications. Reliable error detection by this function was never guaranteed.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
strncat(), the Base Definitions volume of IEEE Std 1003.1-200x, <string.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
The strcat() prototype is updated for alignment with the ISO/IEC 9899: 1999 standard.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1487

45828

45829

45830

45831

45832

45833

45834

45835

45836

45837

45838

45839

45840

45841

45842

45843

45844

45845

45846

45847

45848

45849

45850

45851

45852

45853

45854

45855

45856

45857

45858

45859

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

strchr() System Interfaces

NAME
strchr — string scanning operation

SYNOPSIS
#include <string.h>

char *strchr(const char * s, i nt c);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

The strchr() function shall locate the first occurrence of c (converted to a char) in the string
pointed to by s. The terminating NUL character is considered to be part of the string.

RETURN VALUE
Upon completion, strchr() shall return a pointer to the byte, or a null pointer if the byte was not
found.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
strrchr(), the Base Definitions volume of IEEE Std 1003.1-200x, <string.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
Extensions beyond the ISO C standard are marked.

1488 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

45860

45861

45862

45863

45864

45865

45866

45867

45868

45869

45870

45871

45872

45873

45874

45875

45876

45877

45878

45879

45880

45881

45882

45883

45884

45885

45886

45887

45888

45889

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces strcmp()

NAME
strcmp — compare two strings

SYNOPSIS
#include <string.h>

int strcmp(const char * s1, c onst char * s2);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

The strcmp() function shall compare the string pointed to by s1 to the string pointed to by s2.

The sign of a non-zero return value shall be determined by the sign of the difference between the
values of the first pair of bytes (both interpreted as type unsigned char) that differ in the strings
being compared.

RETURN VALUE
Upon completion, strcmp() shall return an integer greater than, equal to, or less than 0, if the
string pointed to by s1 is greater than, equal to, or less than the string pointed to by s2,
respectively.

ERRORS
No errors are defined.

EXAMPLES

Checking a Password Entry

The following example compares the information read from standard input to the value of the
name of the user entry. If the strcmp() function returns 0 (indicating a match), a further check
will be made to see if the user entered the proper old password. The crypt() function shall
encrypt the old password entered by the user, using the value of the encrypted password in the
passwd structure as the salt. If this value matches the value of the encrypted passwd in the
structure, the entered password oldpasswd is the correct user’s password. Finally, the program
encrypts the new password so that it can store the information in the passwd structure.

#include <string.h>
#include <unistd.h>
#include <stdio.h>
...
int valid_change;
struct passwd *p;
char user[100];
char oldpasswd[100];
char newpasswd[100];
char savepasswd[100];
...
if (strcmp(p->pw_name, user) == 0) {

if (strcmp(p->pw_passwd, crypt(oldpasswd, p->pw_passwd)) == 0) {
strcpy(savepasswd, crypt(newpasswd, user));
p->pw_passwd = savepasswd;
valid_change = 1;

}
else {

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1489

45890

45891

45892

45893

45894

45895

45896

45897

45898

45899

45900

45901

45902

45903

45904

45905

45906

45907

45908

45909

45910

45911

45912

45913

45914

45915

45916

45917

45918

45919

45920

45921

45922

45923

45924

45925

45926

45927

45928

45929

45930

45931

45932

45933

45934

45935

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

strcmp() System Interfaces

fprintf(stderr, "Old password is not valid\n");
}

}
...

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
strncmp(), the Base Definitions volume of IEEE Std 1003.1-200x, <string.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
Extensions beyond the ISO C standard are marked.

1490 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

45936

45937

45938

45939

45940

45941

45942

45943

45944

45945

45946

45947

45948

45949

45950

45951

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces strcoll()

NAME
strcoll, strcoll_l — string comparison using collating information

SYNOPSIS
#include <string.h>

int strcoll(const char * s1, c onst char * s2);
CX int strcoll_l(const char * s1, c onst char * s2,

locale_t locale);

DESCRIPTION
CX For strcoll(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of IEEE Std 1003.1-200x defers to the ISO C standard.

CX The strcoll() and strcoll_l() functions shall compare the string pointed to by s1 to the string
pointed to by s2, both interpreted as appropriate to the LC_COLLATE category of the current

CX locale, or of the locale represented by locale, respectively.

CX The strcoll() and strcoll_l() functions shall not change the setting of errno if successful.

Since no return value is reserved to indicate an error, an application wishing to check for error
CX situations should set errno to 0, then call strcoll(), or strcoll_l() then check errno.

RETURN VALUE
Upon successful completion, strcoll() shall return an integer greater than, equal to, or less than 0,
according to whether the string pointed to by s1 is greater than, equal to, or less than the string

CX pointed to by s2 when both are interpreted as appropriate to the current locale. On error,
strcoll() may set errno, but no return value is reserved to indicate an error.

Upon successful completion, strcoll_l() shall return an integer greater than, equal to, or less than
0, according to whether the string pointed to by s1 is greater than, equal to, or less than the
string pointed to by s2 when both are interpreted as appropriate to the locale represented by
locale. On error, strcoll_l() may set errno, but no return value is reserved to indicate an error.

ERRORS
These functions may fail if:

CX [EINVAL] The s1 or s2 arguments contain characters outside the domain of the collating
sequence.

The strcoll_l() function may fail if:

CX [EINVAL] locale is not a valid locale object handle.

EXAMPLES

Comparing Nodes

The following example uses an application-defined function, node_compare(), to compare two
nodes based on an alphabetical ordering of the string field.

#include <string.h>
...
struct node { /* These are stored in the table. */

char *string;
int length;

};

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1491

45952

45953

45954

45955

45956

45957

45958

45959

45960

45961

45962

45963

45964

45965

45966

45967

45968

45969

45970

45971

45972

45973

45974

45975

45976

45977

45978

45979

45980

45981

45982

45983

45984

45985

45986

45987

45988

45989

45990

45991

45992

45993

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

strcoll() System Interfaces

...
int node_compare(const void *node1, const void *node2)
{

return strcoll(((const struct node *)node1)->string,
((const struct node *)node2)->string);

}
...

APPLICATION USAGE
The strxfrm() and strcmp() functions should be used for sorting large lists.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
alphasort(), strcmp(), strxfrm(), the Base Definitions volume of IEEE Std 1003.1-200x, <string.h>

CHANGE HISTORY
First released in Issue 3.

Issue 5
The DESCRIPTION is updated to indicate that errno does not change if the function is successful.

Issue 6
Extensions beyond the ISO C standard are marked.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The [EINVAL] optional error condition is added.

An example is added.

Issue 7
The strcoll_l() function is added from The Open Group Technical Standard, 2006, Extended API
Set Part 4.

1492 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

45994

45995

45996

45997

45998

45999

46000

46001

46002

46003

46004

46005

46006

46007

46008

46009

46010

46011

46012

46013

46014

46015

46016

46017

46018

46019

46020

46021

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces strcpy()

NAME
stpcpy, strcpy — copy a string and return a pointer to the end of the result

SYNOPSIS
#include <string.h>

CX char *stpcpy(char *restrict s1, c onst char *restrict s2);
char *strcpy(char *restrict s1, c onst char *restrict s2);

DESCRIPTION
CX For strcpy(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of IEEE Std 1003.1-200x defers to the ISO C standard.

CX The stpcpy() and strcpy() functions shall copy the string pointed to by s2 (including the
terminating NUL character) into the array pointed to by s1.

If copying takes place between objects that overlap, the behavior is undefined.

RETURN VALUE
CX The stpcpy() function shall return a pointer to the terminating NUL character copied into the s1

buffer.

The strcpy() function shall return s1.

No return values are reserved to indicate an error.

ERRORS
No errors are defined.

EXAMPLES

Construction of a Multi-Part Message in a Single Buffer

#include <string.h>
#include <stdio.h>

int
main (void)
{

char buffer [10];
char *name = buffer;

name = stpcpy (stpcpy (stpcpy (name, "ice"),"-"), "cream");
puts (buffer);
return 0;

}

Initializing a String

The following example copies the string "----------" into the permstring variable.

#include <string.h>
...
static char permstring[11];
...
strcpy(permstring, "----------");
...

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1493

46022

46023

46024

46025

46026

46027

46028

46029

46030

46031

46032

46033

46034

46035

46036

46037

46038

46039

46040

46041

46042

46043

46044

46045

46046

46047

46048

46049

46050

46051

46052

46053

46054

46055

46056

46057

46058

46059

46060

46061

46062

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

strcpy() System Interfaces

Storing a Key and Data

The following example allocates space for a key using malloc() then uses strcpy() to place the
key there. Then it allocates space for data using malloc(), and uses strcpy() to place data there.
(The user-defined function dbfree() frees memory previously allocated to an array of type struct
element *.)

#include <string.h>
#include <stdlib.h>
#include <stdio.h>
...
/* Structure used to read data and store it. */
struct element {

char *key;
char *data;

};

struct element *tbl, *curtbl;
char *key, *data;
int count;
...
void dbfree(struct element *, int);
...
if ((curtbl->key = malloc(strlen(key) + 1)) == NULL) {

perror("malloc"); dbfree(tbl, count); return NULL;
}
strcpy(curtbl->key, key);

if ((curtbl->data = malloc(strlen(data) + 1)) == NULL) {
perror("malloc"); free(curtbl->key); dbfree(tbl, count); return NULL;

}
strcpy(curtbl->data, data);
...

APPLICATION USAGE
Character movement is performed differently in different implementations. Thus, overlapping
moves may yield surprises.

This issue is aligned with the ISO C standard; this does not affect compatibility with XPG3
applications. Reliable error detection by this function was never guaranteed.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
strncpy(), wcscpy(), the Base Definitions volume of IEEE Std 1003.1-200x, <string.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
The strcpy() prototype is updated for alignment with the ISO/IEC 9899: 1999 standard.

1494 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

46063

46064

46065

46066

46067

46068

46069

46070

46071

46072

46073

46074

46075

46076

46077

46078

46079

46080

46081

46082

46083

46084

46085

46086

46087

46088

46089

46090

46091

46092

46093

46094

46095

46096

46097

46098

46099

46100

46101

46102

46103

46104

46105

46106

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces strcpy()

Issue 7
The stpcpy() function is added from The Open Group Technical Standard, 2006, Extended API
Set Part 1.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1495

46107

46108

46109

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

strcspn() System Interfaces

NAME
strcspn — get the length of a complementary substring

SYNOPSIS
#include <string.h>

size_t strcspn(const char * s1, c onst char * s2);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

The strcspn() function shall compute the length (in bytes) of the maximum initial segment of the
string pointed to by s1 which consists entirely of bytes not from the string pointed to by s2.

RETURN VALUE
The strcspn() function shall return the length of the computed segment of the string pointed to
by s1; no return value is reserved to indicate an error.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
strspn(), the Base Definitions volume of IEEE Std 1003.1-200x, <string.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The RETURN VALUE section is updated to indicate that strcspn() returns the length of s1, and
not s1 itself as was previously stated.

Issue 6
The Open Group Corrigendum U030/1 is applied. The text of the RETURN VALUE section is
updated to indicate that the computed segment length is returned, not the s1 length.

1496 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

46110

46111

46112

46113

46114

46115

46116

46117

46118

46119

46120

46121

46122

46123

46124

46125

46126

46127

46128

46129

46130

46131

46132

46133

46134

46135

46136

46137

46138

46139

46140

46141

46142

46143

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces strdup()

NAME
strdup, strndup — duplicate a specific number of bytes from a string

SYNOPSIS
CX #include <string.h>

char *strdup(const char * s);
char *strndup(const char * s, s ize_t size);

DESCRIPTION
The strdup() function shall return a pointer to a new string, which is a duplicate of the string
pointed to by s. The returned pointer can be passed to free(). A null pointer is returned if the
new string cannot be created.

The strndup() function shall be equivalent to the strdup() function, duplicating the provided s in
a new block of memory allocated as if by using malloc(), with the exception being that strndup()
copies at most size plus one bytes into the newly allocated memory, terminating the new string
with a NUL character. If the length of s is larger than size, only size bytes shall be duplicated. If
size is larger than the length of s, all bytes in s shall be copied into the new memory buffer,
including the terminating NUL character. The newly created string shall always be properly
terminated.

RETURN VALUE
The strdup() function shall return a pointer to a new string on success. Otherwise, it shall return
a null pointer and set errno to indicate the error.

Upon successful completion, the strndup() function shall return a pointer to the newly allocated
memory containing the duplicated string. Otherwise, it shall return a null pointer and set errno
to indicate the error.

ERRORS
These functions shall fail if:

[ENOMEM] Storage space available is insufficient.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
free(), malloc(), wcsdup(), the Base Definitions volume of IEEE Std 1003.1-200x, <string.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1497

46144

46145

46146

46147

46148

46149

46150

46151

46152

46153

46154

46155

46156

46157

46158

46159

46160

46161

46162

46163

46164

46165

46166

46167

46168

46169

46170

46171

46172

46173

46174

46175

46176

46177

46178

46179

46180

46181

46182

46183

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

strdup() System Interfaces

Issue 7
Austin Group Interpretation 1003.1-2001 #044 is applied, changing the ‘‘may fail’’ [ENOMEM]
error to become a ‘‘shall fail’’ error.

The strdup() function is moved from the XSI option to the Base.

The strndup() function is added from The Open Group Technical Standard, 2006, Extended API
Set Part 1.

1498 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

46184

46185

46186

46187

46188

46189

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces strerror()

NAME
strerror, strerror_l, strerror_r — get error message string

SYNOPSIS
#include <string.h>

char *strerror(int errnum);
CX char *strerror_l(int errnum, l ocale_t locale);

int strerror_r(int errnum, c har * strerrbuf, s ize_t buflen);

DESCRIPTION
CX For strerror(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of IEEE Std 1003.1-200x defers to the ISO C standard.

The strerror() function shall map the error number in errnum to a locale-dependent error
message string and shall return a pointer to it. Typically, the values for errnum come from errno,
but strerror() shall map any value of type int to a message.

The string pointed to shall not be modified by the application. The string may be overwritten by
CX a subsequent call to strerror() or perror().

CX The string may be overwritten by a subsquent call to strerror_l() in the same thread.

The contents of the error message strings returned by strerror() should be determined by the
setting of the LC_MESSAGES category in the current locale.

The implementation shall behave as if no function defined in this volume of
IEEE Std 1003.1-200x calls strerror().

CX The strerror() and strerror_l() functions shall not change the setting of errno if successful.

Since no return value is reserved to indicate an error, an application wishing to check for error
situations should set errno to 0, then call strerror(), then check errno.

The strerror() function need not be thread-safe. A function that is not required to be thread-safe
is not required to be reentrant.

The strerror_l() function shall map the error number in errnum to a locale-dependent error
message string in the locale represented by locale and shall return a pointer to it.

The strerror_r() function shall map the error number in errnum to a locale-dependent error
message string and shall return the string in the buffer pointed to by strerrbuf , with length
buflen.

RETURN VALUE
Upon completion, whether successful or not, strerror() shall return a pointer to the generated

CX message string. On error errno may be set, but no return value is reserved to indicate an error.

Upon successful completion, strerror_l() shall return a pointer to the generated message string. If
errnum is not a valid error number, errno may be set to [EINVAL], but a pointer to a message
string shall still be returned. If any other error occurs, errno shall be set to indicate the error and
a null pointer shall be returned.

Upon successful completion, strerror_r() shall return 0. Otherwise, an error number shall be
returned to indicate the error.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1499

46190

46191

46192

46193

46194

46195

46196

46197

46198

46199

46200

46201

46202

46203

46204

46205

46206

46207

46208

46209

46210

46211

46212

46213

46214

46215

46216

46217

46218

46219

46220

46221

46222

46223

46224

46225

46226

46227

46228

46229

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

strerror() System Interfaces

ERRORS
These functions may fail if:

CX [EINVAL] The value of errnum is not a valid error number.

The strerror_l() function may fail if:

CX [EINVAL] The locale argument is not a valid locale object handle.

The strerror_r() function may fail if:

CX [ERANGE] Insufficient storage was supplied via strerrbuf and buflen to contain the
generated message string.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
The strerror_l() function is required to be thread-safe, thereby eliminating the need for an
equivalent to the strerror_r() function.

FUTURE DIRECTIONS
None.

SEE ALSO
perror(), the Base Definitions volume of IEEE Std 1003.1-200x, <string.h>

CHANGE HISTORY
First released in Issue 3.

Issue 5
The DESCRIPTION is updated to indicate that errno is not changed if the function is successful.

A note indicating that this function need not be reentrant is added to the DESCRIPTION.

Issue 6
Extensions beyond the ISO C standard are marked.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• In the RETURN VALUE section, the fact that errno may be set is added.

• The [EINVAL] optional error condition is added.

The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

The strerror_r() function is added in response to IEEE PASC Interpretation 1003.1c #39.

The strerror_r() function is marked as part of the Thread-Safe Functions option.

Issue 7
Austin Group Interpretation 1003.1-2001 #072 is applied, updating the ERRORS section.

The strerror_l() function is added from The Open Group Technical Standard, 2006, Extended API
Set Part 4.

The strerror_r() function is moved from the Thread-Safe Functions option to the Base.

1500 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

46230

46231

46232

46233

46234

46235

46236

46237

46238

46239

46240

46241

46242

46243

46244

46245

46246

46247

46248

46249

46250

46251

46252

46253

46254

46255

46256

46257

46258

46259

46260

46261

46262

46263

46264

46265

46266

46267

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces strfmon()

NAME
strfmon, strfmon_l — convert monetary value to a string

SYNOPSIS
#include <monetary.h>

ssize_t strfmon(char *restrict s, s ize_t maxsize,
const char *restrict format, . ..);

ssize_t strfmon_l(char *restrict s, s ize_t maxsize,
locale_t locale, c onst char *restrict format, . ..);

DESCRIPTION
The strfmon() function shall place characters into the array pointed to by s as controlled by the
string pointed to by format. No more than maxsize bytes are placed into the array.

The format is a character string, beginning and ending in its initial state, if any, that contains two
types of objects: plain characters, which are simply copied to the output stream, and conversion
specifications, each of which shall result in the fetching of zero or more arguments which are
converted and formatted. The results are undefined if there are insufficient arguments for the
format. If the format is exhausted while arguments remain, the excess arguments are simply
ignored.

The application shall ensure that a conversion specification consists of the following sequence:

• A ’%’ character

• Optional flags

• Optional field width

• Optional left precision

• Optional right precision

• A required conversion specifier character that determines the conversion to be performed

The strfmon_l() function shall be equivalent to the strfmon() function, except that the locale data
used is from the locale represented by locale.

Flags

One or more of the following optional flags can be specified to control the conversion:

=f An ’=’ followed by a single character f which is used as the numeric fill character. In
order to work with precision or width counts, the fill character shall be a single byte
character; if not, the behavior is undefined. The default numeric fill character is the
<space>. This flag does not affect field width filling which always uses the <space>.
This flag is ignored unless a left precision (see below) is specified.

ˆ Do not format the currency amount with grouping characters. The default is to insert
the grouping characters if defined for the current locale.

+ or (Specify the style of representing positive and negative currency amounts. Only one of
’+’ or ’(’ may be specified. If ’+’ is specified, the locale’s equivalent of ’+’ and ’ −’
are used (for example, in the U.S., the empty string if positive and ’ −’ if negative). If
’(’ is specified, negative amounts are enclosed within parentheses. If neither flag is
specified, the ’+’ style is used.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1501

46268

46269

46270

46271

46272

46273

46274

46275

46276

46277

46278

46279

46280

46281

46282

46283

46284

46285

46286

46287

46288

46289

46290

46291

46292

46293

46294

46295

46296

46297

46298

46299

46300

46301

46302

46303

46304

46305

46306

46307

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

strfmon() System Interfaces

! Suppress the currency symbol from the output conversion.

− Specify the alignment. If this flag is present the result of the conversion is left-justified
(padded to the right) rather than right-justified. This flag shall be ignored unless a field
width (see below) is specified.

Field Width

w A decimal digit string w specifying a minimum field width in bytes in which the result
of the conversion is right-justified (or left-justified if the flag ’ −’ is specified). The
default is 0.

Left Precision

#n A ’#’ followed by a decimal digit string n specifying a maximum number of digits
expected to be formatted to the left of the radix character. This option can be used to
keep the formatted output from multiple calls to the strfmon() function aligned in the
same columns. It can also be used to fill unused positions with a special character as in
"$***123.45" . This option causes an amount to be formatted as if it has the number
of digits specified by n. If more than n digit positions are required, this conversion
specification is ignored. Digit positions in excess of those actually required are filled
with the numeric fill character (see the =f flag above).

If grouping has not been suppressed with the ’ˆ’ flag, and it is defined for the current
locale, grouping separators are inserted before the fill characters (if any) are added.
Grouping separators are not applied to fill characters even if the fill character is a digit.

To ensure alignment, any characters appearing before or after the number in the
formatted output such as currency or sign symbols are padded as necessary with
<space>s to make their positive and negative formats an equal length.

Right Precision

. p A period followed by a decimal digit string p specifying the number of digits after the
radix character. If the value of the right precision p is 0, no radix character appears. If a
right precision is not included, a default specified by the current locale is used. The
amount being formatted is rounded to the specified number of digits prior to
formatting.

Conversion Specifier Characters

The conversion specifier characters and their meanings are:

i The double argument is formatted according to the locale’s international currency
format (for example, in the U.S.: USD 1,234.56). If the argument is ±Inf or NaN, the
result of the conversion is unspecified.

n The double argument is formatted according to the locale’s national currency format
(for example, in the U.S.: $1,234.56). If the argument is ±Inf or NaN, the result of the
conversion is unspecified.

% Convert to a ’%’ ; no argument is converted. The entire conversion specification shall
be %%.

1502 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

46308

46309

46310

46311

46312

46313

46314

46315

46316

46317

46318

46319

46320

46321

46322

46323

46324

46325

46326

46327

46328

46329

46330

46331

46332

46333

46334

46335

46336

46337

46338

46339

46340

46341

46342

46343

46344

46345

46346

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces strfmon()

Locale Information

The LC_MONETARY category of the locale of the process affects the behavior of this function
including the monetary radix character (which may be different from the numeric radix
character affected by the LC_NUMERIC category), the grouping separator, the currency symbols,
and formats. The international currency symbol should be conformant with the ISO 4217: 2001
standard.

If the value of maxsize is greater than {SSIZE_MAX}, the result is implementation-defined.

RETURN VALUE
If the total number of resulting bytes including the terminating null byte is not more than
maxsize, these functions shall return the number of bytes placed into the array pointed to by s,
not including the terminating NUL character. Otherwise, −1 shall be returned, the contents of the
array are unspecified, and errno shall be set to indicate the error.

ERRORS
These functions shall fail if:

[E2BIG] Conversion stopped due to lack of space in the buffer.

The strfmon_l() function may fail if:

[EINVAL] locale is not a valid locale object.

EXAMPLES
Given a locale for the U.S. and the values 123.45, −123.45, and 3456.781, the following output
might be produced. Square brackets ("[]") are used in this example to delimit the output.

%n [$123.45] Default formatting
[-$123.45]
[$3,456.78]

%11n [$123.45] Right align within an 11-character field
[- $123.45]
[$ 3,456.78]

%#5n [$ 123.45] Aligned columns for values up to 99 999
[-$ 123.45]
[$ 3 ,456.78]

%=*#5n [$***123.45] Specify a fill character
[-$***123.45]
[$ *3,456.78]

%=0#5n [$000123.45] Fill characters do not use grouping
[-$000123.45] even if the fill character is a digit
[$ 03,456.78]

%ˆ#5n [$ 123.45] Disable the grouping separator
[-$ 123.45]
[$ 3 456.78]

%ˆ#5.0n [$ 123] Round off to whole units
[-$ 123]
[$ 3 457]

%ˆ#5.4n [$ 123.4500] Increase the precision
[-$ 123.4500]
[$ 3 456.7810]

%(#5n [$ 123.45] Use an alternative pos/neg style
[($ 123.45)]

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1503

46347

46348

46349

46350

46351

46352

46353

46354

46355

46356

46357

46358

46359

46360

46361

46362

46363

46364

46365

46366

46367

46368

46369

46370

46371

46372

46373

46374

46375

46376

46377

46378

46379

46380

46381

46382

46383

46384

46385

46386

46387

46388

46389

46390

46391

46392

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

strfmon() System Interfaces

[$ 3 ,456.78]

%!(#5n [123.45] Disable the currency symbol
[(123.45)]
[3 ,456.78]

%-14#5.4n [$ 123.4500] Left-justify the output
[-$ 123.4500]
[$ 3 ,456.7810]

%14#5.4n [$ 123.4500] Corresponding right-justified output
[- $ 123.4500]
[$ 3,456.7810]

See also the EXAMPLES section in fprintf().

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
Lowercase conversion characters are reserved for future standards use and uppercase for
implementation-defined use.

SEE ALSO
fprintf(), localeconv(), the Base Definitions volume of IEEE Std 1003.1-200x, <monetary.h>

CHANGE HISTORY
First released in Issue 4.

Issue 5
Moved from ENHANCED I18N to BASE.

The [ENOSYS] error is removed.

A sentence is added to the DESCRIPTION warning about values of maxsize that are greater than
{SSIZE_MAX}.

Issue 6
The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

The restrict keyword is added to the strfmon() prototype for alignment with the
ISO/IEC 9899: 1999 standard.

The EXAMPLES section is reworked, clarifying the output format.

Issue 7
SD5-XSH-ERN-29 is applied, updating the examples for %(#5n and %!(#5n .

The strfmon() function is moved from the XSI option to the Base.

The strfmon_l() function is added from The Open Group Technical Standard, 2006, Extended API
Set Part 4.

1504 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

46393

46394

46395

46396

46397

46398

46399

46400

46401

46402

46403

46404

46405

46406

46407

46408

46409

46410

46411

46412

46413

46414

46415

46416

46417

46418

46419

46420

46421

46422

46423

46424

46425

46426

46427

46428

46429

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces strftime()

NAME
strftime, strftime_l — convert date and time to a string

SYNOPSIS
#include <time.h>

size_t strftime(char *restrict s, s ize_t maxsize,
const char *restrict format, c onst struct tm *restrict timeptr);

CX size_t strftime_l(char *restrict s, s ize_t maxsize,
const char *restrict format, c onst struct tm *restrict timeptr,
locale_t locale);

DESCRIPTION
CX For strftime(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of IEEE Std 1003.1-200x defers to the ISO C standard.

The strftime() function shall place bytes into the array pointed to by s as controlled by the string
pointed to by format. The format is a character string, beginning and ending in its initial shift
state, if any. The format string consists of zero or more conversion specifications and ordinary
characters. A conversion specification consists of a ’%’ character, possibly followed by an E or O
modifier, and a terminating conversion specifier character that determines the conversion
specification’s behavior. All ordinary characters (including the terminating NUL character) are
copied unchanged into the array. If copying takes place between objects that overlap, the
behavior is undefined. No more than maxsize bytes are placed into the array. Each conversion
specifier is replaced by appropriate characters as described in the following list. The appropriate
characters are determined using the LC_TIME category of the current locale and by the values of
zero or more members of the broken-down time structure pointed to by timeptr, as specified in
brackets in the description. If any of the specified values are outside the normal range, the
characters stored are unspecified.

CX The strftime_l() function shall be equivalent to the strftime() function, except that the locale data
used is from the locale represented by locale.

Local timezone information is used as though strftime() called tzset().

The following conversion specifications are supported:

%a Replaced by the locale’s abbreviated weekday name. [tm_wday]

%A Replaced by the locale’s full weekday name. [tm_wday]

%b Replaced by the locale’s abbreviated month name. [tm_mon]

%B Replaced by the locale’s full month name. [tm_mon]

%c Replaced by the locale’s appropriate date and time representation. (See the Base
Definitions volume of IEEE Std 1003.1-200x, <time.h>.)

%C Replaced by the year divided by 100 and truncated to an integer, as a decimal number
[00,99]. [tm_year]

%d Replaced by the day of the month as a decimal number [01,31]. [tm_mday]

%D Equivalent to %m/%d/%y. [tm_mon, tm_mday, tm_year]

%e Replaced by the day of the month as a decimal number [1,31]; a single digit is preceded
by a space. [tm_mday]

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1505

46430

46431

46432

46433

46434

46435

46436

46437

46438

46439

46440

46441

46442

46443

46444

46445

46446

46447

46448

46449

46450

46451

46452

46453

46454

46455

46456

46457

46458

46459

46460

46461

46462

46463

46464

46465

46466

46467

46468

46469

46470

46471

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

strftime() System Interfaces

%F Equivalent to %Y-%m-%d (the ISO 8601: 2000 standard date format). [tm_year, tm_mon,
tm_mday]

%g Replaced by the last 2 digits of the week-based year (see below) as a decimal number
[00,99]. [tm_year, tm_wday, tm_yday]

%G Replaced by the week-based year (see below) as a decimal number (for example, 1977).
[tm_year, tm_wday, tm_yday]

%h Equivalent to %b. [tm_mon]

%H Replaced by the hour (24-hour clock) as a decimal number [00,23]. [tm_hour]

%I Replaced by the hour (12-hour clock) as a decimal number [01,12]. [tm_hour]

%j Replaced by the day of the year as a decimal number [001,366]. [tm_yday]

%m Replaced by the month as a decimal number [01,12]. [tm_mon]

%M Replaced by the minute as a decimal number [00,59]. [tm_min]

%n Replaced by a <newline>.

%p Replaced by the locale’s equivalent of either a.m. or p.m. [tm_hour]

CX %r Replaced by the time in a.m. and p.m. notation; in the POSIX locale this shall be
equivalent to %I:%M:%S %p. [tm_hour, tm_min, tm_sec]

%R Replaced by the time in 24-hour notation (%H:%M). [tm_hour, tm_min]

%S Replaced by the second as a decimal number [00,60]. [tm_sec]

%t Replaced by a <tab>.

%T Replaced by the time (%H:%M:%S). [tm_hour, tm_min, tm_sec]

%u Replaced by the weekday as a decimal number [1,7], with 1 representing Monday.
[tm_wday]

%U Replaced by the week number of the year as a decimal number [00,53]. The first
Sunday of January is the first day of week 1; days in the new year before this are in
week 0. [tm_year, tm_wday, tm_yday]

%V Replaced by the week number of the year (Monday as the first day of the week) as a
decimal number [01,53]. If the week containing 1 January has four or more days in the
new year, then it is considered week 1. Otherwise, it is the last week of the previous
year, and the next week is week 1. Both January 4th and the first Thursday of January
are always in week 1. [tm_year, tm_wday, tm_yday]

%w Replaced by the weekday as a decimal number [0,6], with 0 representing Sunday.
[tm_wday]

%W Replaced by the week number of the year as a decimal number [00,53]. The first
Monday of January is the first day of week 1; days in the new year before this are in
week 0. [tm_year, tm_wday, tm_yday]

%x Replaced by the locale’s appropriate date representation. (See the Base Definitions
volume of IEEE Std 1003.1-200x, <time.h>.)

%X Replaced by the locale’s appropriate time representation. (See the Base Definitions
volume of IEEE Std 1003.1-200x, <time.h>.)

%y Replaced by the last two digits of the year as a decimal number [00,99]. [tm_year]

1506 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

46472

46473

46474

46475

46476

46477

46478

46479

46480

46481

46482

46483

46484

46485

46486

46487

46488

46489

46490

46491

46492

46493

46494

46495

46496

46497

46498

46499

46500

46501

46502

46503

46504

46505

46506

46507

46508

46509

46510

46511

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces strftime()

%Y Replaced by the year as a decimal number (for example, 1997). [tm_year]

%z Replaced by the offset from UTC in the ISO 8601: 2000 standard format (+hhmmor
−hhmm), or by no characters if no timezone is determinable. For example, " −0430"

CX means 4 hours 30 minutes behind UTC (west of Greenwich). If tm_isdst is zero, the
standard time offset is used. If tm_isdst is greater than zero, the daylight savings time
offset is used. If tm_isdst is negative, no characters are returned. [tm_isdst]

%Z Replaced by the timezone name or abbreviation, or by no bytes if no timezone
information exists. [tm_isdst]

%% Replaced by %.

If a conversion specification does not correspond to any of the above, the behavior is undefined.

CX If a struct tm broken-down time structure is created by localtime() or localtime_r(), or modified
by mktime(), and the value of TZ is subsequently modified, the results of the %Z and %z
strftime() conversion specifiers are undefined, when strftime() is called with such a broken-down
time structure.

If a struct tm broken-down time structure is created or modified by gmtime() or gmtime_r(), it is
unspecified whether the result of the %Zand %z conversion specifiers shall refer to UTC or the
current local timezone, when strftime() is called with such a broken-down time structure.

Modified Conversion Specifiers

Some conversion specifiers can be modified by the E or Omodifier characters to indicate that an
alternative format or specification should be used rather than the one normally used by the
unmodified conversion specifier. If the alternative format or specification does not exist for the
current locale (see ERA in the Base Definitions volume of IEEE Std 1003.1-200x, Section 7.3.5,
LC_TIME), the behavior shall be as if the unmodified conversion specification were used.

%Ec Replaced by the locale’s alternative appropriate date and time representation.

%EC Replaced by the name of the base year (period) in the locale’s alternative
representation.

%Ex Replaced by the locale’s alternative date representation.

%EX Replaced by the locale’s alternative time representation.

%Ey Replaced by the offset from %EC(year only) in the locale’s alternative representation.

%EY Replaced by the full alternative year representation.

%Od Replaced by the day of the month, using the locale’s alternative numeric symbols, filled
as needed with leading zeros if there is any alternative symbol for zero; otherwise, with
leading spaces.

%Oe Replaced by the day of the month, using the locale’s alternative numeric symbols, filled
as needed with leading spaces.

%OH Replaced by the hour (24-hour clock) using the locale’s alternative numeric symbols.

%OI Replaced by the hour (12-hour clock) using the locale’s alternative numeric symbols.

%Om Replaced by the month using the locale’s alternative numeric symbols.

%OM Replaced by the minutes using the locale’s alternative numeric symbols.

%OS Replaced by the seconds using the locale’s alternative numeric symbols.

%Ou Replaced by the weekday as a number in the locale’s alternative representation
(Monday=1).

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1507

46512

46513

46514

46515

46516

46517

46518

46519

46520

46521

46522

46523

46524

46525

46526

46527

46528

46529

46530

46531

46532

46533

46534

46535

46536

46537

46538

46539

46540

46541

46542

46543

46544

46545

46546

46547

46548

46549

46550

46551

46552

46553

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

strftime() System Interfaces

%OU Replaced by the week number of the year (Sunday as the first day of the week, rules
corresponding to %U) using the locale’s alternative numeric symbols.

%OV Replaced by the week number of the year (Monday as the first day of the week, rules
corresponding to %V) using the locale’s alternative numeric symbols.

%Ow Replaced by the number of the weekday (Sunday=0) using the locale’s alternative
numeric symbols.

%OW Replaced by the week number of the year (Monday as the first day of the week) using
the locale’s alternative numeric symbols.

%Oy Replaced by the year (offset from %C) using the locale’s alternative numeric symbols.

%g, %G, and %Vgive values according to the ISO 8601: 2000 standard week-based year. In this
system, weeks begin on a Monday and week 1 of the year is the week that includes January 4th,
which is also the week that includes the first Thursday of the year, and is also the first week that
contains at least four days in the year. If the first Monday of January is the 2nd, 3rd, or 4th, the
preceding days are part of the last week of the preceding year; thus, for Saturday 2nd January
1999, %Gis replaced by 1998 and %V is replaced by 53. If December 29th, 30th, or 31st is a
Monday, it and any following days are part of week 1 of the following year. Thus, for Tuesday
30th December 1997, %Gis replaced by 1998 and %Vis replaced by 01.

If a conversion specifier is not one of the above, the behavior is undefined.

RETURN VALUE
If the total number of resulting bytes including the terminating null byte is not more than
maxsize, these functions shall return the number of bytes placed into the array pointed to by s,
not including the terminating NUL character. Otherwise, 0 shall be returned and the contents of
the array are unspecified.

ERRORS
The strftime_l() function may fail if:

CX [EINVAL] locale is not a valid locale object handle.

EXAMPLES

Getting a Localized Date String

The following example first sets the locale to the user’s default. The locale information will be
used in the nl_langinfo() and strftime() functions. The nl_langinfo() function returns the localized
date string which specifies how the date is laid out. The strftime() function takes this
information and, using the tm structure for values, places the date and time information into
datestring.

#include <time.h>
#include <locale.h>
#include <langinfo.h>
...
struct tm *tm;
char datestring[256];
...
setlocale (LC_ALL, "");
...
strftime (datestring, sizeof(datestring), nl_langinfo (D_T_FMT), tm);
...

1508 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

46554

46555

46556

46557

46558

46559

46560

46561

46562

46563

46564

46565

46566

46567

46568

46569

46570

46571

46572

46573

46574

46575

46576

46577

46578

46579

46580

46581

46582

46583

46584

46585

46586

46587

46588

46589

46590

46591

46592

46593

46594

46595

46596

46597

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces strftime()

APPLICATION USAGE
The range of values for %Sis [00,60] rather than [00,59] to allow for the occasional leap second.

Some of the conversion specifications are duplicates of others. They are included for
compatibility with nl_cxtime() and nl_ascxtime(), which were published in Issue 2.

Applications should use %Y(4-digit years) in preference to %y(2-digit years).

In the C locale, the E and Omodifiers are ignored and the replacement strings for the following
specifiers are:

%a The first three characters of %A.

%A One of Sunday, Monday, . . ., Saturday.

%b The first three characters of %B.

%B One of January, February, . . ., December.

%c Equivalent to %a %b %e %T %Y.

%p One of AM or PM.

%r Equivalent to %I:%M:%S %p.

%x Equivalent to %m/%d/%y.

%X Equivalent to %T.

%Z Implementation-defined.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
asctime(), clock(), ctime(), difftime(), getdate(), gmtime(), localtime(), mktime(), strptime(), time(),
tzset(), uselocale(), utime(), Base Definitions volume of IEEE Std 1003.1-200x, Section 7.3.5,
LC_TIME, <time.h>

CHANGE HISTORY
First released in Issue 3.

Issue 5
The description of %OVis changed to be consistent with %Vand defines Monday as the first day
of the week.

The description of %Oyis clarified.

Issue 6
Extensions beyond the ISO C standard are marked.

The Open Group Corrigendum U033/8 is applied. The %Vconversion specifier is changed from
‘‘Otherwise, it is week 53 of the previous year, and the next week is week 1’’ to ‘‘Otherwise, it is
the last week of the previous year, and the next week is week 1’’.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The %C, %D, %e, %h, %n, %r, %R, %t, and %Tconversion specifiers are added.

• The modified conversion specifiers are added for consistency with the ISO POSIX-2
standard date utility.

The following changes are made for alignment with the ISO/IEC 9899: 1999 standard:

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1509

46598

46599

46600

46601

46602

46603

46604

46605

46606

46607

46608

46609

46610

46611

46612

46613

46614

46615

46616

46617

46618

46619

46620

46621

46622

46623

46624

46625

46626

46627

46628

46629

46630

46631

46632

46633

46634

46635

46636

46637

46638

46639

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

strftime() System Interfaces

• The strftime() prototype is updated.

• The DESCRIPTION is extensively revised.

• The %zconversion specifier is added.

A new example is added.

IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/60 is applied.

Issue 7
The strftime_l() function is added from The Open Group Technical Standard, 2006, Extended API
Set Part 4.

1510 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

46640

46641

46642

46643

46644

46645

46646

46647

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces strlen()

NAME
strlen, strnlen — get length of fixed size string

SYNOPSIS
#include <string.h>

size_t strlen(const char * s);
CX size_t strnlen(const char * s, s ize_t maxlen);

DESCRIPTION
CX For strlen(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of IEEE Std 1003.1-200x defers to the ISO C standard.

The strlen() function shall compute the number of bytes in the string to which s points, not
including the terminating NUL character.

CX The strnlen() function shall compute the smaller of the number of bytes in the string to which s
points, not including the terminating NUL character, or the value of the maxlen argument. The
strnlen() function shall never examine more than maxlen bytes of the string pointed to by s.

RETURN VALUE
The strlen() function shall return the length of s; no return value shall be reserved to indicate an
error.

CX The strnlen() function shall return an integer containing the smaller of either the length of the
string pointed to by s or maxlen.

ERRORS
No errors are defined.

EXAMPLES

Getting String Lengths

The following example sets the maximum length of key and data by using strlen() to get the
lengths of those strings.

#include <string.h>
...
struct element {

char *key;
char *data;

};
...
char *key, *data;
int len;

*keylength = *datalength = 0;
...
if ((len = strlen(key)) > *keylength)

*keylength = len;
if ((len = strlen(data)) > *datalength)

*datalength = len;
...

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1511

46648

46649

46650

46651

46652

46653

46654

46655

46656

46657

46658

46659

46660

46661

46662

46663

46664

46665

46666

46667

46668

46669

46670

46671

46672

46673

46674

46675

46676

46677

46678

46679

46680

46681

46682

46683

46684

46685

46686

46687

46688

46689

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

strlen() System Interfaces

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
wcslen(), the Base Definitions volume of IEEE Std 1003.1-200x, <string.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The RETURN VALUE section is updated to indicate that strlen() returns the length of s, and not
s itself as was previously stated.

Issue 7
The strnlen() function is added from The Open Group Technical Standard, 2006, Extended API
Set Part 1.

1512 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

46690

46691

46692

46693

46694

46695

46696

46697

46698

46699

46700

46701

46702

46703

46704

46705

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces strncasecmp()

NAME
strncasecmp, strncasecmp_l — case-insensitive string comparisons

SYNOPSIS
#include <strings.h>

int strncasecmp(const char * s1, c onst char * s2, s ize_t n);
int strncasecmp_l(const char * s1, c onst char * s2,

size_t n, l ocale_t locale);

DESCRIPTION
Refer to strcasecmp().

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1513

46706

46707

46708

46709

46710

46711

46712

46713

46714

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

strncat() System Interfaces

NAME
strncat — concatenate a string with part of another

SYNOPSIS
#include <string.h>

char *strncat(char *restrict s1, c onst char *restrict s2, s ize_t n);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

The strncat() function shall append not more than n bytes (a NUL character and bytes that
follow it are not appended) from the array pointed to by s2 to the end of the string pointed to by
s1. The initial byte of s2 overwrites the NUL character at the end of s1. A terminating NUL
character is always appended to the result. If copying takes place between objects that overlap,
the behavior is undefined.

RETURN VALUE
The strncat() function shall return s1; no return value shall be reserved to indicate an error.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
strcat(), the Base Definitions volume of IEEE Std 1003.1-200x, <string.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
The strncat() prototype is updated for alignment with the ISO/IEC 9899: 1999 standard.

1514 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

46715

46716

46717

46718

46719

46720

46721

46722

46723

46724

46725

46726

46727

46728

46729

46730

46731

46732

46733

46734

46735

46736

46737

46738

46739

46740

46741

46742

46743

46744

46745

46746

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces strncmp()

NAME
strncmp — compare part of two strings

SYNOPSIS
#include <string.h>

int strncmp(const char * s1, c onst char * s2, s ize_t n);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

The strncmp() function shall compare not more than n bytes (bytes that follow a NUL character
are not compared) from the array pointed to by s1 to the array pointed to by s2.

The sign of a non-zero return value is determined by the sign of the difference between the
values of the first pair of bytes (both interpreted as type unsigned char) that differ in the strings
being compared.

RETURN VALUE
Upon successful completion, strncmp() shall return an integer greater than, equal to, or less than
0, if the possibly null-terminated array pointed to by s1 is greater than, equal to, or less than the
possibly null-terminated array pointed to by s2 respectively.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
strcmp(), the Base Definitions volume of IEEE Std 1003.1-200x, <string.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
Extensions beyond the ISO C standard are marked.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1515

46747

46748

46749

46750

46751

46752

46753

46754

46755

46756

46757

46758

46759

46760

46761

46762

46763

46764

46765

46766

46767

46768

46769

46770

46771

46772

46773

46774

46775

46776

46777

46778

46779

46780

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

strncpy() System Interfaces

NAME
stpncpy, strncpy — copy fixed length string, returning a pointer to the array end

SYNOPSIS
#include <string.h>

CX char *stpncpy(char *restrict s1, c onst char *restrict s2, s ize_t n);
char *strncpy(char *restrict s1, c onst char *restrict s2, s ize_t n);

DESCRIPTION
CX For strncpy(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of IEEE Std 1003.1-200x defers to the ISO C standard.

CX The stpncpy() and strncpy() functions shall copy not more than n bytes (bytes that follow a NUL
character are not copied) from the array pointed to by s2 to the array pointed to by s1.

If the array pointed to by s2 is a string that is shorter than n bytes, NUL characters shall be
appended to the copy in the array pointed to by s1, until n bytes in all are written.

If copying takes place between objects that overlap, the behavior is undefined.

RETURN VALUE
CX If a NUL character is written to the destination, the stpncpy() function shall return the address of

the first such NUL character. Otherwise, it shall return &s2[n].

The strncpy() function shall return s1.

No return values are reserved to indicate an error.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
Applications must provide the space in s1 for the n bytes to be transferred, as well as ensure that
the s2 and s1 arrays do not overlap.

Character movement is performed differently in different implementations. Thus, overlapping
moves may yield surprises.

If there is no NUL character byte in the first n bytes of the array pointed to by s2, the result is not
null-terminated.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
strcpy(), wcsncpy(), the Base Definitions volume of IEEE Std 1003.1-200x, <string.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

1516 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

46781

46782

46783

46784

46785

46786

46787

46788

46789

46790

46791

46792

46793

46794

46795

46796

46797

46798

46799

46800

46801

46802

46803

46804

46805

46806

46807

46808

46809

46810

46811

46812

46813

46814

46815

46816

46817

46818

46819

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces strncpy()

Issue 6
The strncpy() prototype is updated for alignment with the ISO/IEC 9899: 1999 standard.

Issue 7
The stpncpy() function is added from The Open Group Technical Standard, 2006, Extended API
Set Part 1.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1517

46820

46821

46822

46823

46824

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

strndup() System Interfaces

NAME
strndup — duplicate a specific number of bytes from a string

SYNOPSIS
CX #include <string.h>

char *strndup(const char * s, s ize_t size);

DESCRIPTION
Refer to strdup().

1518 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

46825

46826

46827

46828

46829

46830

46831

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces strnlen()

NAME
strnlen — get length of fixed size string

SYNOPSIS
CX #include <string.h>

size_t strnlen(const char * s, s ize_t maxlen);

DESCRIPTION
Refer to strlen().

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1519

46832

46833

46834

46835

46836

46837

46838

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

strpbrk() System Interfaces

NAME
strpbrk — scan a string for a byte

SYNOPSIS
#include <string.h>

char *strpbrk(const char * s1, c onst char * s2);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

The strpbrk() function shall locate the first occurrence in the string pointed to by s1 of any byte
from the string pointed to by s2.

RETURN VALUE
Upon successful completion, strpbrk() shall return a pointer to the byte or a null pointer if no
byte from s2 occurs in s1.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
strchr(), strrchr(), the Base Definitions volume of IEEE Std 1003.1-200x, <string.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

1520 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

46839

46840

46841

46842

46843

46844

46845

46846

46847

46848

46849

46850

46851

46852

46853

46854

46855

46856

46857

46858

46859

46860

46861

46862

46863

46864

46865

46866

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces strptime()

NAME
strptime — date and time conversion

SYNOPSIS
XSI #include <time.h>

char *strptime(const char *restrict buf, c onst char *restrict format,
struct tm *restrict tm);

DESCRIPTION
The strptime() function shall convert the character string pointed to by buf to values which are
stored in the tm structure pointed to by tm, using the format specified by format.

The format is composed of zero or more directives. Each directive is composed of one of the
following: one or more white-space characters (as specified by isspace()); an ordinary character
(neither ’%’ nor a white-space character); or a conversion specification. Each conversion
specification is composed of a ’%’ character followed by a conversion character which specifies
the replacement required. The conversions are determined using the LC_TIME category of the
current locale. The application shall ensure that there is white-space or other non-alphanumeric
characters between any two conversion specifications. In the following list, where numeric
ranges of values are given (represented by the pattern [x,y]), the value shall fall within the
range given (both bounds being inclusive), and the number of characters scanned (excluding the
one matching the next directive) shall be no more than the maximum number required to
represent any value in the range without leading zeros. The following conversion specifications
are supported:

%a The day of the week, using the locale’s weekday names; either the abbreviated or full
name may be specified.

%A Equivalent to %a.

%b The month, using the locale’s month names; either the abbreviated or full name may be
specified.

%B Equivalent to %b.

%c Replaced by the locale’s appropriate date and time representation.

%C The century number [00,99]; leading zeros shall be permitted but shall not be required.

%d The day of the month [01,31]; leading zeros shall be permitted but shall not be required.

%D The date as %m/%d/%y.

%e Equivalent to %d.

%h Equivalent to %b.

%H The hour (24-hour clock) [00,23]; leading zeros shall be permitted but shall not be
required.

%I The hour (12-hour clock) [01,12]; leading zeros shall be permitted but shall not be
required.

%j The day number of the year [001,366]; leading zeros shall be permitted but shall not be
required.

%m The month number [01,12]; leading zeros shall be permitted but shall not be required.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1521

46867

46868

46869

46870

46871

46872

46873

46874

46875

46876

46877

46878

46879

46880

46881

46882

46883

46884

46885

46886

46887

46888

46889

46890

46891

46892

46893

46894

46895

46896

46897

46898

46899

46900

46901

46902

46903

46904

46905

46906

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

strptime() System Interfaces

%M The minute [00,59]; leading zeros shall be permitted but shall not be required.

%n Any white space.

%p The locale’s equivalent of a.m. or p.m.

%r 12-hour clock time using the AM/PM notation if t_fmt_ampm is not an empty string in
the LC_TIME portion of the current locale; in the POSIX locale, this shall be equivalent
to %I:%M:%S %p.

%R The time as %H:%M.

%S The seconds [00,60]; leading zeros shall be permitted but shall not be required.

%t Any white space.

%T The time as %H:%M:%S.

%U The week number of the year (Sunday as the first day of the week) as a decimal
number [00,53]; leading zeros shall be permitted but shall not be required.

%w The weekday as a decimal number [0,6], with 0 representing Sunday.

%W The week number of the year (Monday as the first day of the week) as a decimal
number [00,53]; leading zeros shall be permitted but shall not be required.

%x The date, using the locale’s date format.

%X The time, using the locale’s time format.

%y The year within century. When a century is not otherwise specified, values in the range
[69,99] shall refer to years 1969 to 1999 inclusive, and values in the range [00,68] shall
refer to years 2000 to 2068 inclusive; leading zeros shall be permitted but shall not be
required.

Note: It is expected that in a future version of IEEE Std 1003.1-200x the default century
inferred from a 2-digit year will change. (This would apply to all commands
accepting a 2-digit year as input.)

%Y The year, including the century (for example, 1988).

%% Replaced by %.

Modified Conversion Specifiers

Some conversion specifiers can be modified by the E and O modifier characters to indicate that
an alternative format or specification should be used rather than the one normally used by the
unmodified conversion specifier. If the alternative format or specification does not exist in the
current locale, the behavior shall be as if the unmodified conversion specification were used.

%Ec The locale’s alternative appropriate date and time representation.

%EC The name of the base year (period) in the locale’s alternative representation.

%Ex The locale’s alternative date representation.

%EX The locale’s alternative time representation.

%Ey The offset from %EC(year only) in the locale’s alternative representation.

%EY The full alternative year representation.

%Od The day of the month using the locale’s alternative numeric symbols; leading zeros
shall be permitted but shall not be required.

1522 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

46907

46908

46909

46910

46911

46912

46913

46914

46915

46916

46917

46918

46919

46920

46921

46922

46923

46924

46925

46926

46927

46928

46929

46930

46931

46932

46933

46934

46935

46936

46937

46938

46939

46940

46941

46942

46943

46944

46945

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces strptime()

%Oe Equivalent to %Od.

%OH The hour (24-hour clock) using the locale’s alternative numeric symbols.

%OI The hour (12-hour clock) using the locale’s alternative numeric symbols.

%Om The month using the locale’s alternative numeric symbols.

%OM The minutes using the locale’s alternative numeric symbols.

%OS The seconds using the locale’s alternative numeric symbols.

%OU The week number of the year (Sunday as the first day of the week) using the locale’s
alternative numeric symbols.

%Ow The number of the weekday (Sunday=0) using the locale’s alternative numeric
symbols.

%OW The week number of the year (Monday as the first day of the week) using the locale’s
alternative numeric symbols.

%Oy The year (offset from %C) using the locale’s alternative numeric symbols.

A conversion specification composed of white-space characters is executed by scanning input up
to the first character that is not white-space (which remains unscanned), or until no more
characters can be scanned.

A conversion specification that is an ordinary character is executed by scanning the next
character from the buffer. If the character scanned from the buffer differs from the one
comprising the directive, the directive fails, and the differing and subsequent characters remain
unscanned.

A series of conversion specifications composed of %n, %t, white-space characters, or any
combination is executed by scanning up to the first character that is not white space (which
remains unscanned), or until no more characters can be scanned.

Any other conversion specification is executed by scanning characters until a character matching
the next directive is scanned, or until no more characters can be scanned. These characters,
except the one matching the next directive, are then compared to the locale values associated
with the conversion specifier. If a match is found, values for the appropriate tm structure
members are set to values corresponding to the locale information. Case is ignored when
matching items in buf such as month or weekday names. If no match is found, strptime() fails
and no more characters are scanned.

RETURN VALUE
Upon successful completion, strptime() shall return a pointer to the character following the last
character parsed. Otherwise, a null pointer shall be returned.

ERRORS
No errors are defined.

EXAMPLES

Convert a Data-Plus-Time String to Broken-Down Time and Then into Seconds

The following example demonstrates the use of strptime() to convert a string into broken-down
time. The broken-down time is then converted into seconds since the Epoch using mktime().

#include <time.h>
...

struct tm tm;
time_t t;

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1523

46946

46947

46948

46949

46950

46951

46952

46953

46954

46955

46956

46957

46958

46959

46960

46961

46962

46963

46964

46965

46966

46967

46968

46969

46970

46971

46972

46973

46974

46975

46976

46977

46978

46979

46980

46981

46982

46983

46984

46985

46986

46987

46988

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

strptime() System Interfaces

if (strptime("6 Dec 2001 12:33:45", "%d %b %Y %H:%M:%S", &tm) == NULL)
/* Handle error */;

printf("year: %d; month: %d; day: %d;\n",
tm.tm_year, tm.tm_mon, tm.tm_mday);

printf("hour: %d; minute: %d; second: %d\n",
tm.tm_hour, tm.tm_min, tm.tm_sec);

printf("week day: %d; year day: %d\n", tm.tm_wday, tm.tm_yday);

tm.tm_isdst = −1; /* Not set by strptime(); tells mktime()
to determine whether daylight saving time
is in effect */

t = mktime(&tm);
if (t == −1)

/* Handle error */;
printf("seconds since the Epoch: %ld\n", (long) t);"

APPLICATION USAGE
Several ‘‘equivalent to’’ formats and the special processing of white-space characters are
provided in order to ease the use of identical format strings for strftime() and strptime().

It should be noted that dates constructed by the strftime() function with the %Y or %C%y
conversion specifiers may have values larger than 9999. If the strptime() function is used to read
this value using %C%y, these values will be truncated to four digits.

Applications should use %Y(year including century) in preference to %y(2-digit years).

It is unspecified whether multiple calls to strptime() using the same tm structure will update the
current contents of the structure or overwrite all contents of the structure. Conforming
applications should make a single call to strptime() with a format and all data needed to
completely specify the date and time being converted.

RATIONALE
None.

FUTURE DIRECTIONS
The strptime() function is expected to be mandatory in the next version of this volume of
IEEE Std 1003.1-200x.

SEE ALSO
scanf(), strftime(), time(), the Base Definitions volume of IEEE Std 1003.1-200x, <time.h>

CHANGE HISTORY
First released in Issue 4.

Issue 5
Moved from ENHANCED I18N to BASE.

The [ENOSYS] error is removed.

The exact meaning of the %yand %Oyspecifiers is clarified in the DESCRIPTION.

Issue 6
The Open Group Corrigendum U033/5 is applied. The %r specifier description is reworded.

The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

The restrict keyword is added to the strptime() prototype for alignment with the
ISO/IEC 9899: 1999 standard.

The Open Group Corrigendum U047/2 is applied.

The DESCRIPTION is updated to use the terms ‘‘conversion specifier’’ and ‘‘conversion

1524 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

46989

46990

46991

46992

46993

46994

46995

46996

46997

46998

46999

47000

47001

47002

47003

47004

47005

47006

47007

47008

47009

47010

47011

47012

47013

47014

47015

47016

47017

47018

47019

47020

47021

47022

47023

47024

47025

47026

47027

47028

47029

47030

47031

47032

47033

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces strptime()

specification’’ for consistency with strftime().

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/133 is applied, adding the example to the
EXAMPLES section.

Issue 7
SD5-XSH-ERN-67 is applied, correcting the APPLICATION USAGE to remove the impression
that %Yis four digit years.

Austin Group Interpretation 1003.1-2001 #041 is applied, updating the DESCRIPTION and
APPLICATION USAGE sections.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1525

47034

47035

47036

47037

47038

47039

47040

47041

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

strrchr() System Interfaces

NAME
strrchr — string scanning operation

SYNOPSIS
#include <string.h>

char *strrchr(const char * s, i nt c);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

The strrchr() function shall locate the last occurrence of c (converted to a char) in the string
pointed to by s. The terminating NUL character is considered to be part of the string.

RETURN VALUE
Upon successful completion, strrchr() shall return a pointer to the byte or a null pointer if c does
not occur in the string.

ERRORS
No errors are defined.

EXAMPLES

Finding the Base Name of a File

The following example uses strrchr() to get a pointer to the base name of a file. The strrchr()
function searches backwards through the name of the file to find the last ’/’ character in name.
This pointer (plus one) will point to the base name of the file.

#include <string.h>
...
const char *name;
char *basename;
...
basename = strrchr(name, ’/’) + 1;
...

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
strchr(), the Base Definitions volume of IEEE Std 1003.1-200x, <string.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

1526 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

47042

47043

47044

47045

47046

47047

47048

47049

47050

47051

47052

47053

47054

47055

47056

47057

47058

47059

47060

47061

47062

47063

47064

47065

47066

47067

47068

47069

47070

47071

47072

47073

47074

47075

47076

47077

47078

47079

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces strsignal()

NAME
strsignal — get name of signal

SYNOPSIS
CX #include <string.h>

char *strsignal(int signum);

DESCRIPTION
The strsignal() function shall map the signal number in signum to an implementation-defined
string and shall return a pointer to it. It shall use the same set of messages as the psignal()
function.

The string pointed to shall not be modified by the application, but may be overwritten by a
subsequent call to strsignal() or setlocale().

The contents of the message strings returned by strsignal() should be determined by the setting
of the LC_MESSAGES category in the current locale.

The implementation shall behave as if no function defined in this standard calls strsignal().

Since no return value is reserved to indicate an error, an application wishing to check for error
situations should set errno to 0, then call strsignal(), then check errno.

The strsignal() function need not be reentrant. A function that is not required to be reentrant is
not required to be thread-safe.

RETURN VALUE
Upon successful completion, strsignal() shall return a pointer to a string. Otherwise, if signum is
not a valid signal number, the return value is unspecified.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
If signum is not a valid signal number, some implementations return NULL, while for others the
strsignal() function returns a pointer to a string containing an unspecified message denoting an
unknown signal. This standard leaves this return value unspecified.

FUTURE DIRECTIONS
None.

SEE ALSO
psiginfo(), setlocale(), the Base Definitions volume of IEEE Std 1003.1-200x, <string.h>

CHANGE HISTORY
First released in Issue 7.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1527

47080

47081

47082

47083

47084

47085

47086

47087

47088

47089

47090

47091

47092

47093

47094

47095

47096

47097

47098

47099

47100

47101

47102

47103

47104

47105

47106

47107

47108

47109

47110

47111

47112

47113

47114

47115

47116

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

strspn() System Interfaces

NAME
strspn — get length of a substring

SYNOPSIS
#include <string.h>

size_t strspn(const char * s1, c onst char * s2);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

The strspn() function shall compute the length (in bytes) of the maximum initial segment of the
string pointed to by s1 which consists entirely of bytes from the string pointed to by s2.

RETURN VALUE
The strspn() function shall return the length of s1; no return value is reserved to indicate an
error.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
strcspn(), the Base Definitions volume of IEEE Std 1003.1-200x, <string.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The RETURN VALUE section is updated to indicate that strspn() returns the length of s, and not
s itself as was previously stated.

1528 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

47117

47118

47119

47120

47121

47122

47123

47124

47125

47126

47127

47128

47129

47130

47131

47132

47133

47134

47135

47136

47137

47138

47139

47140

47141

47142

47143

47144

47145

47146

47147

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces strstr()

NAME
strstr — find a substring

SYNOPSIS
#include <string.h>

char *strstr(const char * s1, c onst char * s2);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

The strstr() function shall locate the first occurrence in the string pointed to by s1 of the
sequence of bytes (excluding the terminating NUL character) in the string pointed to by s2.

RETURN VALUE
Upon successful completion, strstr() shall return a pointer to the located string or a null pointer
if the string is not found.

If s2 points to a string with zero length, the function shall return s1.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
strchr(), the Base Definitions volume of IEEE Std 1003.1-200x, <string.h>

CHANGE HISTORY
First released in Issue 3. Included for alignment with the ANSI C standard.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1529

47148

47149

47150

47151

47152

47153

47154

47155

47156

47157

47158

47159

47160

47161

47162

47163

47164

47165

47166

47167

47168

47169

47170

47171

47172

47173

47174

47175

47176

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

strtod() System Interfaces

NAME
strtod, strtof, strtold — convert a string to a double-precision number

SYNOPSIS
#include <stdlib.h>

double strtod(const char *restrict nptr, c har **restrict endptr);
float strtof(const char *restrict nptr, c har **restrict endptr);
long double strtold(const char *restrict nptr, c har **restrict endptr);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

These functions shall convert the initial portion of the string pointed to by nptr to double, float,
and long double representation, respectively. First, they decompose the input string into three
parts:

1. An initial, possibly empty, sequence of white-space characters (as specified by isspace())

2. A subject sequence interpreted as a floating-point constant or representing infinity or
NaN

3. A final string of one or more unrecognized characters, including the terminating NUL
character of the input string

Then they shall attempt to convert the subject sequence to a floating-point number, and return
the result.

The expected form of the subject sequence is an optional plus or minus sign, then one of the
following:

• A non-empty sequence of decimal digits optionally containing a radix character; then an
optional exponent part consisting of the character ’e’ or the character ’E’ , optionally
followed by a ’+’ or ’ −’ character, and then followed by one or more decimal digits

• A 0x or 0X, then a non-empty sequence of hexadecimal digits optionally containing a radix
character; then an optional binary exponent part consisting of the character ’p’ or the
character ’P’ , optionally followed by a ’+’ or ’ −’ character, and then followed by one or
more decimal digits

• One of INF or INFINITY, ignoring case

• One of NAN or NAN(n-char-sequenceopt), ignoring case in the NAN part, where:

n-char-sequence:
digit
nondigit
n-char-sequence digit
n-char-sequence nondigit

The subject sequence is defined as the longest initial subsequence of the input string, starting
with the first non-white-space character, that is of the expected form. The subject sequence
contains no characters if the input string is not of the expected form.

If the subject sequence has the expected form for a floating-point number, the sequence of
characters starting with the first digit or the decimal-point character (whichever occurs first)
shall be interpreted as a floating constant of the C language, except that the radix character shall
be used in place of a period, and that if neither an exponent part nor a radix character appears in

1530 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

47177

47178

47179

47180

47181

47182

47183

47184

47185

47186

47187

47188

47189

47190

47191

47192

47193

47194

47195

47196

47197

47198

47199

47200

47201

47202

47203

47204

47205

47206

47207

47208

47209

47210

47211

47212

47213

47214

47215

47216

47217

47218

47219

47220

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces strtod()

a decimal floating-point number, or if a binary exponent part does not appear in a hexadecimal
floating-point number, an exponent part of the appropriate type with value zero is assumed to
follow the last digit in the string. If the subject sequence begins with a minus sign, the sequence
shall be interpreted as negated. A character sequence INF or INFINITY shall be interpreted as an
infinity, if representable in the return type, else as if it were a floating constant that is too large
for the range of the return type. A character sequence NAN or NAN(n-char-sequenceopt) shall be
interpreted as a quiet NaN, if supported in the return type, else as if it were a subject sequence
part that does not have the expected form; the meaning of the n-char sequences is
implementation-defined. A pointer to the final string is stored in the object pointed to by endptr,
provided that endptr is not a null pointer.

If the subject sequence has the hexadecimal form and FLT_RADIX is a power of 2, the value
resulting from the conversion is correctly rounded.

CX The radix character is defined in the locale of the process (category LC_NUMERIC). In the
POSIX locale, or in a locale where the radix character is not defined, the radix character shall
default to a period (’.’).

CX In other than the C or POSIX locales, other implementation-defined subject sequences may be
accepted.

If the subject sequence is empty or does not have the expected form, no conversion shall be
performed; the value of str is stored in the object pointed to by endptr, provided that endptr is not
a null pointer.

CX The strtod() function shall not change the setting of errno if successful.

Since 0 is returned on error and is also a valid return on success, an application wishing to check
for error situations should set errno to 0, then call strtod(), strtof(), or strtold(), then check errno.

RETURN VALUE
Upon successful completion, these functions shall return the converted value. If no conversion
could be performed, 0 shall be returned, and errno may be set to [EINVAL].

If the correct value is outside the range of representable values, ±HUGE_VAL, ±HUGE_VALF, or
±HUGE_VALL shall be returned (according to the sign of the value), and errno shall be set to
[ERANGE].

If the correct value would cause an underflow, a value whose magnitude is no greater than the
smallest normalized positive number in the return type shall be returned and errno set to
[ERANGE].

ERRORS
These functions shall fail if:

CX [ERANGE] The value to be returned would cause overflow or underflow.

These functions may fail if:

CX [EINVAL] No conversion could be performed.

EXAMPLES
None.

APPLICATION USAGE
If the subject sequence has the hexadecimal form and FLT_RADIX is not a power of 2, and the
result is not exactly representable, the result should be one of the two numbers in the
appropriate internal format that are adjacent to the hexadecimal floating source value, with the
extra stipulation that the error should have a correct sign for the current rounding direction.

If the subject sequence has the decimal form and at most DECIMAL_DIG (defined in <float.h>)
significant digits, the result should be correctly rounded. If the subject sequence D has the

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1531

47221

47222

47223

47224

47225

47226

47227

47228

47229

47230

47231

47232

47233

47234

47235

47236

47237

47238

47239

47240

47241

47242

47243

47244

47245

47246

47247

47248

47249

47250

47251

47252

47253

47254

47255

47256

47257

47258

47259

47260

47261

47262

47263

47264

47265

47266

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

strtod() System Interfaces

decimal form and more than DECIMAL_DIG significant digits, consider the two bounding,
adjacent decimal strings L and U, both having DECIMAL_DIG significant digits, such that the
values of L, D, and U satisfy L <= D <= U. The result should be one of the (equal or adjacent)
values that would be obtained by correctly rounding L and U according to the current rounding
direction, with the extra stipulation that the error with respect to D should have a correct sign
for the current rounding direction.

The changes to strtod() introduced by the ISO/IEC 9899: 1999 standard can alter the behavior of
well-formed applications complying with the ISO/IEC 9899: 1990 standard and thus earlier
versions of the base documents. One such example would be:

int
what_kind_of_number (char *s)
{

char *endp;
double d;
long l;

d = s trtod(s, &endp);
if (s != endp && *endp == ‘\0’)

printf("It’s a float with value %g\n", d);
else
{

l = s trtol(s, &endp, 0);
if (s != endp && *endp == ‘\0’)

printf("It’s an integer with value %ld\n", 1);
else

return 1;
}
return 0;

}

If the function is called with:

what_kind_of_number ("0x10")

an ISO/IEC 9899: 1990 standard-compliant library will result in the function printing:

It’s an integer with value 16

With the ISO/IEC 9899: 1999 standard, the result is:

It’s a float with value 16

The change in behavior is due to the inclusion of floating-point numbers in hexadecimal
notation without requiring that either a decimal point or the binary exponent be present.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
isspace(), localeconv(), scanf(), setlocale(), strtol(), the Base Definitions volume of
IEEE Std 1003.1-200x, Chapter 7, Locale, <float.h>, <stdlib.h>

1532 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

47267

47268

47269

47270

47271

47272

47273

47274

47275

47276

47277

47278

47279

47280

47281

47282

47283

47284

47285

47286

47287

47288

47289

47290

47291

47292

47293

47294

47295

47296

47297

47298

47299

47300

47301

47302

47303

47304

47305

47306

47307

47308

47309

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces strtod()

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The DESCRIPTION is updated to indicate that errno is not changed if the function is successful.

Issue 6
Extensions beyond the ISO C standard are marked.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• In the RETURN VALUE and ERRORS sections, the [EINVAL] optional error condition is
added if no conversion could be performed.

The following changes are made for alignment with the ISO/IEC 9899: 1999 standard:

• The strtod() function is updated.

• The strtof() and strtold() functions are added.

• The DESCRIPTION is extensively revised.

ISO/IEC 9899: 1999 standard, Technical Corrigendum 1 is incorporated.

IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/61 is applied, correcting the second
paragraph in the RETURN VALUE section. This change clarifies the sign of the return value.

Issue 7
Austin Group Interpretation 1003.1-2001 #015 is applied.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1533

47310

47311

47312

47313

47314

47315

47316

47317

47318

47319

47320

47321

47322

47323

47324

47325

47326

47327

47328

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

strtoimax() System Interfaces

NAME
strtoimax, strtoumax — convert string to integer type

SYNOPSIS
#include <inttypes.h>

intmax_t strtoimax(const char *restrict nptr, c har **restrict endptr,
int base);

uintmax_t strtoumax(const char *restrict nptr, c har **restrict endptr,
int base);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

These functions shall be equivalent to the strtol(), strtoll(), strtoul(), and strtoull() functions,
except that the initial portion of the string shall be converted to intmax_t and uintmax_t
representation, respectively.

RETURN VALUE
These functions shall return the converted value, if any.

If no conversion could be performed, zero shall be returned.

If the correct value is outside the range of representable values, {INTMAX_MAX},
{INTMAX_MIN}, or {UINTMAX_MAX} shall be returned (according to the return type and sign
of the value, if any), and errno shall be set to [ERANGE].

ERRORS
These functions shall fail if:

[ERANGE] The value to be returned is not representable.

These functions may fail if:

[EINVAL] The value of base is not supported.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
strtol(), strtoul(), the Base Definitions volume of IEEE Std 1003.1-200x, <inttypes.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

1534 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

47329

47330

47331

47332

47333

47334

47335

47336

47337

47338

47339

47340

47341

47342

47343

47344

47345

47346

47347

47348

47349

47350

47351

47352

47353

47354

47355

47356

47357

47358

47359

47360

47361

47362

47363

47364

47365

47366

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces strtok()

NAME
strtok, strtok_r — split string into tokens

SYNOPSIS
#include <string.h>

char *strtok(char *restrict s1, c onst char *restrict s2);
CX char *strtok_r(char *restrict s, c onst char *restrict sep,

char **restrict lasts);

DESCRIPTION
CX For strtok(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of IEEE Std 1003.1-200x defers to the ISO C standard.

A sequence of calls to strtok() breaks the string pointed to by s1 into a sequence of tokens, each
of which is delimited by a byte from the string pointed to by s2. The first call in the sequence
has s1 as its first argument, and is followed by calls with a null pointer as their first argument.
The separator string pointed to by s2 may be different from call to call.

The first call in the sequence searches the string pointed to by s1 for the first byte that is not
contained in the current separator string pointed to by s2. If no such byte is found, then there
are no tokens in the string pointed to by s1 and strtok() shall return a null pointer. If such a byte
is found, it is the start of the first token.

The strtok() function then searches from there for a byte that is contained in the current separator
string. If no such byte is found, the current token extends to the end of the string pointed to by
s1, and subsequent searches for a token shall return a null pointer. If such a byte is found, it is
overwritten by a NUL character, which terminates the current token. The strtok() function saves
a pointer to the following byte, from which the next search for a token shall start.

Each subsequent call, with a null pointer as the value of the first argument, starts searching from
the saved pointer and behaves as described above.

The implementation shall behave as if no function defined in this volume of
IEEE Std 1003.1-200x calls strtok().

CX The strtok() function need not be thread-safe. A function that is not required to be thread-safe is
not required to be reentrant.

The strtok_r() function considers the null-terminated string s as a sequence of zero or more text
tokens separated by spans of one or more characters from the separator string sep. The
argument lasts points to a user-provided pointer which points to stored information necessary
for strtok_r() to continue scanning the same string.

In the first call to strtok_r(), s points to a null-terminated string, sep to a null-terminated string of
separator characters, and the value pointed to by lasts is ignored. The strtok_r() function shall
return a pointer to the first character of the first token, write a null character into s immediately
following the returned token, and update the pointer to which lasts points.

In subsequent calls, s is a null pointer and lasts shall be unchanged from the previous call so that
subsequent calls shall move through the string s, returning successive tokens until no tokens
remain. The separator string sep may be different from call to call. When no token remains in s, a
null pointer shall be returned.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1535

47367

47368

47369

47370

47371

47372

47373

47374

47375

47376

47377

47378

47379

47380

47381

47382

47383

47384

47385

47386

47387

47388

47389

47390

47391

47392

47393

47394

47395

47396

47397

47398

47399

47400

47401

47402

47403

47404

47405

47406

47407

47408

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

strtok() System Interfaces

RETURN VALUE
Upon successful completion, strtok() shall return a pointer to the first byte of a token. Otherwise,
if there is no token, strtok() shall return a null pointer.

CX The strtok_r() function shall return a pointer to the token found, or a null pointer when no token
is found.

ERRORS
No errors are defined.

EXAMPLES

Searching for Word Separators

The following example searches for tokens separated by <space>s.

#include <string.h>
...
char *token;
char *line = "LINE TO BE SEPARATED";
char *search = " ";

/* Token will point to "LINE". */
token = strtok(line, search);

/* Token will point to "TO". */
token = strtok(NULL, search);

Breaking a Line

The following example uses strtok() to break a line into two character strings separated by any
combination of <space>s, <tab>s, or <newline>s.

#include <string.h>
...
struct element {

char *key;
char *data;

};
...
char line[LINE_MAX];
char *key, *data;
...
key = strtok(line, " \n");
data = strtok(NULL, " \n");
...

APPLICATION USAGE
The strtok_r() function is thread-safe and stores its state in a user-supplied buffer instead of
possibly using a static data area that may be overwritten by an unrelated call from another
thread.

RATIONALE
The strtok() function searches for a separator string within a larger string. It returns a pointer to
the last substring between separator strings. This function uses static storage to keep track of
the current string position between calls. The new function, strtok_r(), takes an additional
argument, lasts, to keep track of the current position in the string.

1536 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

47409

47410

47411

47412

47413

47414

47415

47416

47417

47418

47419

47420

47421

47422

47423

47424

47425

47426

47427

47428

47429

47430

47431

47432

47433

47434

47435

47436

47437

47438

47439

47440

47441

47442

47443

47444

47445

47446

47447

47448

47449

47450

47451

47452

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces strtok()

FUTURE DIRECTIONS
None.

SEE ALSO
The Base Definitions volume of IEEE Std 1003.1-200x, <string.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The strtok_r() function is included for alignment with the POSIX Threads Extension.

A note indicating that the strtok() function need not be reentrant is added to the DESCRIPTION.

Issue 6
Extensions beyond the ISO C standard are marked.

The strtok_r() function is marked as part of the Thread-Safe Functions option.

In the DESCRIPTION, the note about reentrancy is expanded to cover thread-safety.

The APPLICATION USAGE section is updated to include a note on the thread-safe function and
its avoidance of possibly using a static data area.

The restrict keyword is added to the strtok() and strtok_r() prototypes for alignment with the
ISO/IEC 9899: 1999 standard.

Issue 7
The strtok_r() function is moved from the Thread-Safe Functions option to the Base.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1537

47453

47454

47455

47456

47457

47458

47459

47460

47461

47462

47463

47464

47465

47466

47467

47468

47469

47470

47471

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

strtol() System Interfaces

NAME
strtol, strtoll — convert a string to a long integer

SYNOPSIS
#include <stdlib.h>

long strtol(const char *restrict str, c har **restrict endptr, i nt base);
long long strtoll(const char *restrict str, c har **restrict endptr,

int base)

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

These functions shall convert the initial portion of the string pointed to by str to a type long and
long long representation, respectively. First, they decompose the input string into three parts:

1. An initial, possibly empty, sequence of white-space characters (as specified by isspace())

2. A subject sequence interpreted as an integer represented in some radix determined by the
value of base

3. A final string of one or more unrecognized characters, including the terminating NUL
character of the input string.

Then they shall attempt to convert the subject sequence to an integer, and return the result.

If the value of base is 0, the expected form of the subject sequence is that of a decimal constant,
octal constant, or hexadecimal constant, any of which may be preceded by a ’+’ or ’ −’ sign. A
decimal constant begins with a non-zero digit, and consists of a sequence of decimal digits. An
octal constant consists of the prefix ’0’ optionally followed by a sequence of the digits ’0’ to
’7’ only. A hexadecimal constant consists of the prefix 0x or 0X followed by a sequence of the
decimal digits and letters ’a’ (or ’A’) to ’f’ (or ’F’) with values 10 to 15 respectively.

If the value of base is between 2 and 36, the expected form of the subject sequence is a sequence
of letters and digits representing an integer with the radix specified by base, optionally preceded
by a ’+’ or ’ −’ sign. The letters from ’a’ (or ’A’) to ’z’ (or ’Z’) inclusive are ascribed the
values 10 to 35; only letters whose ascribed values are less than that of base are permitted. If the
value of base is 16, the characters 0x or 0X may optionally precede the sequence of letters and
digits, following the sign if present.

The subject sequence is defined as the longest initial subsequence of the input string, starting
with the first non-white-space character that is of the expected form. The subject sequence shall
contain no characters if the input string is empty or consists entirely of white-space characters,
or if the first non-white-space character is other than a sign or a permissible letter or digit.

If the subject sequence has the expected form and the value of base is 0, the sequence of
characters starting with the first digit shall be interpreted as an integer constant. If the subject
sequence has the expected form and the value of base is between 2 and 36, it shall be used as the
base for conversion, ascribing to each letter its value as given above. If the subject sequence
begins with a minus sign, the value resulting from the conversion shall be negated. A pointer to
the final string shall be stored in the object pointed to by endptr, provided that endptr is not a null
pointer.

CX In other than the C or POSIX locales, other implementation-defined subject sequences may be
accepted.

If the subject sequence is empty or does not have the expected form, no conversion is performed;

1538 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

47472

47473

47474

47475

47476

47477

47478

47479

47480

47481

47482

47483

47484

47485

47486

47487

47488

47489

47490

47491

47492

47493

47494

47495

47496

47497

47498

47499

47500

47501

47502

47503

47504

47505

47506

47507

47508

47509

47510

47511

47512

47513

47514

47515

47516

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces strtol()

the value of str is stored in the object pointed to by endptr, provided that endptr is not a null
pointer.

CX The strtol() function shall not change the setting of errno if successful.

Since 0, {LONG_MIN} or {LLONG_MIN}, and {LONG_MAX} or {LLONG_MAX} are returned
on error and are also valid returns on success, an application wishing to check for error
situations should set errno to 0, then call strtol() or strtoll(), then check errno.

RETURN VALUE
Upon successful completion, these functions shall return the converted value, if any. If no

CX conversion could be performed, 0 shall be returned and errno may be set to [EINVAL].

If the correct value is outside the range of representable values, {LONG_MIN}, {LONG_MAX},
{LLONG_MIN}, or {LLONG_MAX} shall be returned (according to the sign of the value), and
errno set to [ERANGE].

ERRORS
These functions shall fail if:

[ERANGE] The value to be returned is not representable.

These functions may fail if:

CX [EINVAL] The value of base is not supported.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
isalpha(), scanf(), strtod(), the Base Definitions volume of IEEE Std 1003.1-200x, <stdlib.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The DESCRIPTION is updated to indicate that errno is not changed if the function is successful.

Issue 6
Extensions beyond the ISO C standard are marked.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• In the RETURN VALUE and ERRORS sections, the [EINVAL] optional error condition is
added if no conversion could be performed.

The following changes are made for alignment with the ISO/IEC 9899: 1999 standard:

• The strtol() prototype is updated.

• The strtoll() function is added.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1539

47517

47518

47519

47520

47521

47522

47523

47524

47525

47526

47527

47528

47529

47530

47531

47532

47533

47534

47535

47536

47537

47538

47539

47540

47541

47542

47543

47544

47545

47546

47547

47548

47549

47550

47551

47552

47553

47554

47555

47556

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

strtold() System Interfaces

NAME
strtold — convert a string to a double-precision number

SYNOPSIS
#include <stdlib.h>

long double strtold(const char *restrict nptr, c har **restrict endptr);

DESCRIPTION
Refer to strtod().

1540 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

47557

47558

47559

47560

47561

47562

47563

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces strtoll()

NAME
strtoll — convert a string to a long integer

SYNOPSIS
#include <stdlib.h>

long long strtoll(const char *restrict str, c har **restrict endptr,
int base);

DESCRIPTION
Refer to strtol().

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1541

47564

47565

47566

47567

47568

47569

47570

47571

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

strtoul() System Interfaces

NAME
strtoul, strtoull — convert a string to an unsigned long

SYNOPSIS
#include <stdlib.h>

unsigned long strtoul(const char *restrict str,
char **restrict endptr, i nt base);

unsigned long long strtoull(const char *restrict str,
char **restrict endptr, i nt base);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

These functions shall convert the initial portion of the string pointed to by str to a type unsigned
long and unsigned long long representation, respectively. First, they decompose the input string
into three parts:

1. An initial, possibly empty, sequence of white-space characters (as specified by isspace())

2. A subject sequence interpreted as an integer represented in some radix determined by the
value of base

3. A final string of one or more unrecognized characters, including the terminating NUL
character of the input string

Then they shall attempt to convert the subject sequence to an unsigned integer, and return the
result.

If the value of base is 0, the expected form of the subject sequence is that of a decimal constant,
octal constant, or hexadecimal constant, any of which may be preceded by a ’+’ or ’ −’ sign. A
decimal constant begins with a non-zero digit, and consists of a sequence of decimal digits. An
octal constant consists of the prefix ’0’ optionally followed by a sequence of the digits ’0’ to
’7’ only. A hexadecimal constant consists of the prefix 0x or 0X followed by a sequence of the
decimal digits and letters ’a’ (or ’A’) to ’f’ (or ’F’) with values 10 to 15 respectively.

If the value of base is between 2 and 36, the expected form of the subject sequence is a sequence
of letters and digits representing an integer with the radix specified by base, optionally preceded
by a ’+’ or ’ −’ sign. The letters from ’a’ (or ’A’) to ’z’ (or ’Z’) inclusive are ascribed the
values 10 to 35; only letters whose ascribed values are less than that of base are permitted. If the
value of base is 16, the characters 0x or 0X may optionally precede the sequence of letters and
digits, following the sign if present.

The subject sequence is defined as the longest initial subsequence of the input string, starting
with the first non-white-space character that is of the expected form. The subject sequence shall
contain no characters if the input string is empty or consists entirely of white-space characters,
or if the first non-white-space character is other than a sign or a permissible letter or digit.

If the subject sequence has the expected form and the value of base is 0, the sequence of
characters starting with the first digit shall be interpreted as an integer constant. If the subject
sequence has the expected form and the value of base is between 2 and 36, it shall be used as the
base for conversion, ascribing to each letter its value as given above. If the subject sequence
begins with a minus sign, the value resulting from the conversion shall be negated. A pointer to
the final string shall be stored in the object pointed to by endptr, provided that endptr is not a null
pointer.

1542 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

47572

47573

47574

47575

47576

47577

47578

47579

47580

47581

47582

47583

47584

47585

47586

47587

47588

47589

47590

47591

47592

47593

47594

47595

47596

47597

47598

47599

47600

47601

47602

47603

47604

47605

47606

47607

47608

47609

47610

47611

47612

47613

47614

47615

47616

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces strtoul()

CX In other than the C or POSIX locales, other implementation-defined subject sequences may be
accepted.

If the subject sequence is empty or does not have the expected form, no conversion shall be
performed; the value of str shall be stored in the object pointed to by endptr, provided that endptr
is not a null pointer.

CX The strtoul() function shall not change the setting of errno if successful.

Since 0, {ULONG_MAX}, and {ULLONG_MAX} are returned on error and are also valid returns
on success, an application wishing to check for error situations should set errno to 0, then call
strtoul() or strtoull(), then check errno.

RETURN VALUE
Upon successful completion, these functions shall return the converted value, if any. If no

CX conversion could be performed, 0 shall be returned and errno may be set to [EINVAL]. If the
correct value is outside the range of representable values, {ULONG_MAX} or {ULLONG_MAX}
shall be returned and errno set to [ERANGE].

ERRORS
These functions shall fail if:

CX [EINVAL] The value of base is not supported.

[ERANGE] The value to be returned is not representable.

These functions may fail if:

CX [EINVAL] No conversion could be performed.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
isalpha(), scanf(), strtod(), strtol(), the Base Definitions volume of IEEE Std 1003.1-200x,
<stdlib.h>

CHANGE HISTORY
First released in Issue 4. Derived from the ANSI C standard.

Issue 5
The DESCRIPTION is updated to indicate that errno is not changed if the function is successful.

Issue 6
Extensions beyond the ISO C standard are marked.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The [EINVAL] error condition is added for when the value of base is not supported.

In the RETURN VALUE and ERRORS sections, the [EINVAL] optional error condition is
added if no conversion could be performed.

The following changes are made for alignment with the ISO/IEC 9899: 1999 standard:

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1543

47617

47618

47619

47620

47621

47622

47623

47624

47625

47626

47627

47628

47629

47630

47631

47632

47633

47634

47635

47636

47637

47638

47639

47640

47641

47642

47643

47644

47645

47646

47647

47648

47649

47650

47651

47652

47653

47654

47655

47656

47657

47658

47659

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

strtoul() System Interfaces

• The strtoul() prototype is updated.

• The strtoull() function is added.

1544 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

47660

47661

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces strtoumax()

NAME
strtoumax — convert a string to an integer type

SYNOPSIS
#include <inttypes.h>

uintmax_t strtoumax(const char *restrict nptr, c har **restrict endptr,
int base);

DESCRIPTION
Refer to strtoimax().

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1545

47662

47663

47664

47665

47666

47667

47668

47669

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

strxfrm() System Interfaces

NAME
strxfrm, strxfrm_l — string transformation

SYNOPSIS
#include <string.h>

size_t strxfrm(char *restrict s1, c onst char *restrict s2, s ize_t n);
CX size_t strxfrm_l(char *restrict s1, c onst char *restrict s2,

size_t n, l ocale_t locale);

DESCRIPTION
CX For strxfrm(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of IEEE Std 1003.1-200x defers to the ISO C standard.

CX The strxfrm() and strxfrm_l() functions shall transform the string pointed to by s2 and place the
resulting string into the array pointed to by s1. The transformation is such that if strcmp() is
applied to two transformed strings, it shall return a value greater than, equal to, or less than 0,

CX corresponding to the result of strcoll() or strcoll_l(), respectively, applied to the same two
CX original strings with the same locale. No more than n bytes are placed into the resulting array

pointed to by s1, including the terminating NUL character. If n is 0, s1 is permitted to be a null
pointer. If copying takes place between objects that overlap, the behavior is undefined.

CX The strxfrm() and strxfrm_l() functions shall not change the setting of errno if successful.

Since no return value is reserved to indicate an error, an application wishing to check for error
CX situations should set errno to 0, then call strxfrm() or strxfrm_l(), then check errno.

RETURN VALUE
CX Upon successful completion, strxfrm() and strxfrm_l() shall return the length of the

transformed string (not including the terminating NUL character). If the value returned is n or
more, the contents of the array pointed to by s1 are unspecified.

CX On error, strxfrm() and strxfrm_l() may set errno but no return value is reserved to indicate an
error.

ERRORS
These functions may fail if:

CX [EINVAL] The string pointed to by the s2 argument contains characters outside the
domain of the collating sequence.

The strxfrm_l() function may fail if:

CX [EINVAL] locale is not a valid locale object.

EXAMPLES
None.

APPLICATION USAGE
The transformation function is such that two transformed strings can be ordered by strcmp() as
appropriate to collating sequence information in the locale of the process (category
LC_COLLATE).

The fact that when n is 0 s1 is permitted to be a null pointer is useful to determine the size of the
s1 array prior to making the transformation.

1546 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

47670

47671

47672

47673

47674

47675

47676

47677

47678

47679

47680

47681

47682

47683

47684

47685

47686

47687

47688

47689

47690

47691

47692

47693

47694

47695

47696

47697

47698

47699

47700

47701

47702

47703

47704

47705

47706

47707

47708

47709

47710

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces strxfrm()

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
strcmp(), strcoll(), the Base Definitions volume of IEEE Std 1003.1-200x, <string.h>

CHANGE HISTORY
First released in Issue 3. Included for alignment with the ISO C standard.

Issue 5
The DESCRIPTION is updated to indicate that errno does not change if the function is successful.

Issue 6
Extensions beyond the ISO C standard are marked.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• In the RETURN VALUE and ERRORS sections, the [EINVAL] optional error condition is
added if no conversion could be performed.

The strxfrm() prototype is updated for alignment with the ISO/IEC 9899: 1999 standard.

Issue 7
The strxfrm_l() function is added from The Open Group Technical Standard, 2006, Extended API
Set Part 4.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1547

47711

47712

47713

47714

47715

47716

47717

47718

47719

47720

47721

47722

47723

47724

47725

47726

47727

47728

47729

47730

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

swab() System Interfaces

NAME
swab — swap bytes

SYNOPSIS
XSI #include <unistd.h>

void swab(const void *restrict src, v oid *restrict dest,
ssize_t nbytes);

DESCRIPTION
The swab() function shall copy nbytes bytes, which are pointed to by src, to the object pointed to
by dest, exchanging adjacent bytes. The nbytes argument should be even. If nbytes is odd, swab()
copies and exchanges nbytes−1 bytes and the disposition of the last byte is unspecified. If
copying takes place between objects that overlap, the behavior is undefined. If nbytes is
negative, swab() does nothing.

RETURN VALUE
None.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
The Base Definitions volume of IEEE Std 1003.1-200x, <unistd.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
The restrict keyword is added to the swab() prototype for alignment with the
ISO/IEC 9899: 1999 standard.

1548 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

47731

47732

47733

47734

47735

47736

47737

47738

47739

47740

47741

47742

47743

47744

47745

47746

47747

47748

47749

47750

47751

47752

47753

47754

47755

47756

47757

47758

47759

47760

47761

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces swprintf()

NAME
swprintf — print formatted wide-character output

SYNOPSIS
#include <stdio.h>
#include <wchar.h>

int swprintf(wchar_t *restrict ws, s ize_t n,
const wchar_t *restrict format, . ..);

DESCRIPTION
Refer to fwprintf().

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1549

47762

47763

47764

47765

47766

47767

47768

47769

47770

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

swscanf() System Interfaces

NAME
swscanf — convert formatted wide-character input

SYNOPSIS
#include <stdio.h>
#include <wchar.h>

int swscanf(const wchar_t *restrict ws,
const wchar_t *restrict format, . ..);

DESCRIPTION
Refer to fwscanf().

1550 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

47771

47772

47773

47774

47775

47776

47777

47778

47779

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces symlink()

NAME
symlink, symlinkat — make a symbolic link relative to directory file descriptor

SYNOPSIS
#include <unistd.h>

int symlink(const char * path1, c onst char * path2);
int symlinkat(const char * path1, i nt fd, c onst char * path2);

DESCRIPTION
The symlink() function shall create a symbolic link called path2 that contains the string pointed to
by path1 (path2 is the name of the symbolic link created, path1 is the string contained in the
symbolic link).

The string pointed to by path1 shall be treated only as a character string and shall not be
validated as a pathname.

If the symlink() function fails for any reason other than [EIO], any file named by path2 shall be
unaffected.

The symlinkat() function shall be equivalent to the symlink() function except in the case where
path2 specifies a relative path. In this case the symbolic link is created relative to the directory
associated with the file descriptor fd instead of the current working directory. It is unspecified
whether directory searches are permitted based on whether the file was opened with search
permission or on the current permissions of the directory underlying the file descriptor.

If symlinkat() is passed the special value AT_FDCWD in the fd parameter, the current working
directory is used and the behavior shall be identical to a call to symlink().

RETURN VALUE
Upon successful completion, these functions shall return 0. Otherwise, these functions shall
return −1 and set errno to indicate the error.

ERRORS
These functions shall fail if:

[EACCES] Write permission is denied in the directory where the symbolic link is being
created, or search permission is denied for a component of the path prefix of
path2.

[EEXIST] The path2 argument names an existing file or symbolic link.

[EIO] An I/O error occurs while reading from or writing to the file system.

[ELOOP] A loop exists in symbolic links encountered during resolution of the path2
argument.

[ENAMETOOLONG]
The length of the path2 argument exceeds {PATH_MAX} or a pathname
component is longer than {NAME_MAX} or the length of the path1 argument
is longer than {SYMLINK_MAX}.

[ENOENT] A component of path2 does not name an existing file or path2 is an empty
string.

[ENOSPC] The directory in which the entry for the new symbolic link is being placed
cannot be extended because no space is left on the file system containing the
directory, or the new symbolic link cannot be created because no space is left
on the file system which shall contain the link, or the file system is out of file-
allocation resources.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1551

47780

47781

47782

47783

47784

47785

47786

47787

47788

47789

47790

47791

47792

47793

47794

47795

47796

47797

47798

47799

47800

47801

47802

47803

47804

47805

47806

47807

47808

47809

47810

47811

47812

47813

47814

47815

47816

47817

47818

47819

47820

47821

47822

47823

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

symlink() System Interfaces

[ENOTDIR] A component of the path prefix of path2 is not a directory.

[EROFS] The new symbolic link would reside on a read-only file system.

The symlinkat() function shall fail if:

[EBADF] The path2 argument does not specify an absolute path and the fd argument is
neither AT_FDCWD nor a valid file descriptor open for searching.

These functions may fail if:

[ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during
resolution of the path2 argument.

[ENAMETOOLONG]
As a result of encountering a symbolic link in resolution of the path2
argument, the length of the substituted pathname string exceeded
{PATH_MAX} bytes (including the terminating null byte), or the length of the
string pointed to by path1 exceeded {SYMLINK_MAX}.

The symlinkat() function may fail if:

[ENOTDIR] The path2 argument is not an absolute path and fd is neither AT_FDCWD nor a
file descriptor associated with a directory.

EXAMPLES
None.

APPLICATION USAGE
Like a hard link, a symbolic link allows a file to have multiple logical names. The presence of a
hard link guarantees the existence of a file, even after the original name has been removed. A
symbolic link provides no such assurance; in fact, the file named by the path1 argument need not
exist when the link is created. A symbolic link can cross file system boundaries.

Normal permission checks are made on each component of the symbolic link pathname during
its resolution.

RATIONALE
Since IEEE Std 1003.1-200x does not require any association of file times with symbolic links,
there is no requirement that file times be updated by symlink().

The purpose of the symlinkat() function is to create symbolic links in directories other than the
current working directory without exposure to race conditions. Any part of the path of a file
could be changed in parallel to a call to symlink(), resulting in unspecified behavior. By opening
a file descriptor for the target directory and using the symlinkat() function it can be guaranteed
that the created symbolic link is located relative to the desired directory.

FUTURE DIRECTIONS
None.

SEE ALSO
fdopendir(), fstatat(), lchown(), link(), open(), readlink(), rename(), unlink(), the Base Definitions
volume of IEEE Std 1003.1-200x, <unistd.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

1552 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

47824

47825

47826

47827

47828

47829

47830

47831

47832

47833

47834

47835

47836

47837

47838

47839

47840

47841

47842

47843

47844

47845

47846

47847

47848

47849

47850

47851

47852

47853

47854

47855

47856

47857

47858

47859

47860

47861

47862

47863

47864

47865

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces symlink()

Issue 6
The following changes were made to align with the IEEE P1003.1a draft standard:

• The DESCRIPTION text is updated.

• The [ELOOP] optional error condition is added.

Issue 7
The symlinkat() function is added from The Open Group Technical Standard, 2006, Extended
API Set Part 2.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1553

47866

47867

47868

47869

47870

47871

47872

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

symlinkat() System Interfaces

NAME
symlinkat — make a symbolic link relative to directory file descriptor

SYNOPSIS
#include <unistd.h>

int symlinkat(const char * path1, i nt fd, c onst char * path2);

DESCRIPTION
Refer to symlink().

1554 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

47873

47874

47875

47876

47877

47878

47879

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces sync()

NAME
sync — schedule file system updates

SYNOPSIS
XSI #include <unistd.h>

void sync(void);

DESCRIPTION
The sync() function shall cause all information in memory that updates file systems to be
scheduled for writing out to all file systems.

The writing, although scheduled, is not necessarily complete upon return from sync().

RETURN VALUE
The sync() function shall not return a value.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fsync(), the Base Definitions volume of IEEE Std 1003.1-200x, <unistd.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1555

47880

47881

47882

47883

47884

47885

47886

47887

47888

47889

47890

47891

47892

47893

47894

47895

47896

47897

47898

47899

47900

47901

47902

47903

47904

47905

47906

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

sysconf() System Interfaces

NAME
sysconf — get configurable system variables

SYNOPSIS
#include <unistd.h>

long sysconf(int name);

DESCRIPTION
The sysconf() function provides a method for the application to determine the current value of a
configurable system limit or option (variable). The implementation shall support all of the
variables listed in the following table and may support others.

The name argument represents the system variable to be queried. The following table lists the
minimal set of system variables from <limits.h> or <unistd.h> that can be returned by sysconf(),
and the symbolic constants defined in <unistd.h> that are the corresponding values used for
name.

Variable Value of Name

{AIO_LISTIO_MAX} _SC_AIO_LISTIO_MAX
{AIO_MAX} _SC_AIO_MAX
{AIO_PRIO_DELTA_MAX} _SC_AIO_PRIO_DELTA_MAX
{ARG_MAX} _SC_ARG_MAX
{ATEXIT_MAX} _SC_ATEXIT_MAX
{BC_BASE_MAX} _SC_BC_BASE_MAX
{BC_DIM_MAX} _SC_BC_DIM_MAX
{BC_SCALE_MAX} _SC_BC_SCALE_MAX
{BC_STRING_MAX} _SC_BC_STRING_MAX
{CHILD_MAX} _SC_CHILD_MAX
Clock ticks/second _SC_CLK_TCK
{COLL_WEIGHTS_MAX} _SC_COLL_WEIGHTS_MAX
{DELAYTIMER_MAX} _SC_DELAYTIMER_MAX
{EXPR_NEST_MAX} _SC_EXPR_NEST_MAX
{HOST_NAME_MAX} _SC_HOST_NAME_MAX
{IOV_MAX} _SC_IOV_MAX
{LINE_MAX} _SC_LINE_MAX
{LOGIN_NAME_MAX} _SC_LOGIN_NAME_MAX
{NGROUPS_MAX} _SC_NGROUPS_MAX
Maximum size of getgrgid_r() and _SC_GETGR_R_SIZE_MAX
getgrnam_r() data buffers
Maximum size of getpwuid_r() and _SC_GETPW_R_SIZE_MAX
getpwnam_r() data buffers
{MQ_OPEN_MAX} _SC_MQ_OPEN_MAX
{MQ_PRIO_MAX} _SC_MQ_PRIO_MAX
{OPEN_MAX} _SC_OPEN_MAX
_POSIX_ADVISORY_INFO _SC_ADVISORY_INFO
_POSIX_BARRIERS _SC_BARRIERS
_POSIX_ASYNCHRONOUS_IO _SC_ASYNCHRONOUS_IO
_POSIX_CLOCK_SELECTION _SC_CLOCK_SELECTION
_POSIX_CPUTIME _SC_CPUTIME
_POSIX_FSYNC _SC_FSYNC
_POSIX_IPV6 _SC_IPV6
_POSIX_JOB_CONTROL _SC_JOB_CONTROL

1556 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

47907

47908

47909

47910

47911

47912

47913

47914

47915

47916

47917

47918

47919

47920

47921

47922

47923

47924

47925

47926

47927

47928

47929

47930

47931

47932

47933

47934

47935

47936

47937

47938

47939

47940

47941

47942

47943

47944

47945

47946

47947

47948

47949

47950

47951

47952

47953

47954

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces sysconf()

Variable Value of Name

_POSIX_MAPPED_FILES _SC_MAPPED_FILES
_POSIX_MEMLOCK _SC_MEMLOCK
_POSIX_MEMLOCK_RANGE _SC_MEMLOCK_RANGE
_POSIX_MEMORY_PROTECTION _SC_MEMORY_PROTECTION
_POSIX_MESSAGE_PASSING _SC_MESSAGE_PASSING
_POSIX_MONOTONIC_CLOCK _SC_MONOTONIC_CLOCK
_POSIX_PRIORITIZED_IO _SC_PRIORITIZED_IO
_POSIX_PRIORITY_SCHEDULING _SC_PRIORITY_SCHEDULING
_POSIX_RAW_SOCKETS _SC_RAW_SOCKETS
_POSIX_READER_WRITER_LOCKS _SC_READER_WRITER_LOCKS
_POSIX_REALTIME_SIGNALS _SC_REALTIME_SIGNALS
_POSIX_REGEXP _SC_REGEXP
_POSIX_SAVED_IDS _SC_SAVED_IDS
_POSIX_SEMAPHORES _SC_SEMAPHORES
_POSIX_SHARED_MEMORY_OBJECTS _SC_SHARED_MEMORY_OBJECTS
_POSIX_SHELL _SC_SHELL
_POSIX_SPAWN _SC_SPAWN
_POSIX_SPIN_LOCKS _SC_SPIN_LOCKS
_POSIX_SPORADIC_SERVER _SC_SPORADIC_SERVER
_POSIX_SS_REPL_MAX _SC_SS_REPL_MAX
_POSIX_SYNCHRONIZED_IO _SC_SYNCHRONIZED_IO
_POSIX_THREAD_ATTR_STACKADDR _SC_THREAD_ATTR_STACKADDR
_POSIX_THREAD_ATTR_STACKSIZE _SC_THREAD_ATTR_STACKSIZE
_POSIX_THREAD_CPUTIME _SC_THREAD_CPUTIME
_POSIX_THREAD_PRIO_INHERIT _SC_THREAD_PRIO_INHERIT
_POSIX_THREAD_PRIO_PROTECT _SC_THREAD_PRIO_PROTECT
_POSIX_THREAD_PRIORITY_SCHEDULING _SC_THREAD_PRIORITY_SCHEDULING
_POSIX_THREAD_PROCESS_SHARED _SC_THREAD_PROCESS_SHARED
_POSIX_THREAD_ROBUST_PRIO_INHERIT _SC_THREAD_ROBUST_PRIO_INHERIT
_POSIX_THREAD_ROBUST_PRIO_PROTECT _SC_THREAD_ROBUST_PRIO_PROTECT
_POSIX_THREAD_SAFE_FUNCTIONS _SC_THREAD_SAFE_FUNCTIONS
_POSIX_THREAD_SPORADIC_SERVER _SC_THREAD_SPORADIC_SERVER
_POSIX_THREADS _SC_THREADS
_POSIX_TIMEOUTS _SC_TIMEOUTS
_POSIX_TIMERS _SC_TIMERS
_POSIX_TRACE _SC_TRACE
_POSIX_TRACE_EVENT_FILTER _SC_TRACE_EVENT_FILTER
_POSIX_TRACE_EVENT_NAME_MAX _SC_TRACE_EVENT_NAME_MAX
_POSIX_TRACE_INHERIT _SC_TRACE_INHERIT
_POSIX_TRACE_LOG _SC_TRACE_LOG
_POSIX_TRACE_NAME_MAX _SC_TRACE_NAME_MAX
_POSIX_TRACE_SYS_MAX _SC_TRACE_SYS_MAX
_POSIX_TRACE_USER_EVENT_MAX _SC_TRACE_USER_EVENT_MAX
_POSIX_TYPED_MEMORY_OBJECTS _SC_TYPED_MEMORY_OBJECTS
_POSIX_VERSION _SC_VERSION
_POSIX_V7_ILP32_OFF32 _SC_V7_ILP32_OFF32
_POSIX_V7_ILP32_OFFBIG _SC_V7_ILP32_OFFBIG
_POSIX_V7_LP64_OFF64 _SC_V7_LP64_OFF64
_POSIX_V7_LPBIG_OFFBIG _SC_V7_LPBIG_OFFBIG

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1557

47955

47956

47957

47958

47959

47960

47961

47962

47963

47964

47965

47966

47967

47968

47969

47970

47971

47972

47973

47974

47975

47976

47977

47978

47979

47980

47981

47982

47983

47984

47985

47986

47987

47988

47989

47990

47991

47992

47993

47994

47995

47996

47997

47998

47999

48000

48001

48002

48003

48004

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

sysconf() System Interfaces

Variable Value of Name

OB _POSIX_V6_ILP32_OFF32 _SC_V6_ILP32_OFF32
_POSIX_V6_ILP32_OFFBIG _SC_V6_ILP32_OFFBIG
_POSIX_V6_LP64_OFF64 _SC_V6_LP64_OFF64
_POSIX_V6_LPBIG_OFFBIG _SC_V6_LPBIG_OFFBIG
_POSIX2_C_BIND _SC_2_C_BIND
_POSIX2_C_DEV _SC_2_C_DEV
_POSIX2_CHAR_TERM _SC_2_CHAR_TERM
_POSIX2_FORT_DEV _SC_2_FORT_DEV
_POSIX2_FORT_RUN _SC_2_FORT_RUN
_POSIX2_LOCALEDEF _SC_2_LOCALEDEF
_POSIX2_PBS _SC_2_PBS
_POSIX2_PBS_ACCOUNTING _SC_2_PBS_ACCOUNTING
_POSIX2_PBS_CHECKPOINT _SC_2_PBS_CHECKPOINT
_POSIX2_PBS_LOCATE _SC_2_PBS_LOCATE
_POSIX2_PBS_MESSAGE _SC_2_PBS_MESSAGE
_POSIX2_PBS_TRACK _SC_2_PBS_TRACK
_POSIX2_SW_DEV _SC_2_SW_DEV
_POSIX2_UPE _SC_2_UPE
_POSIX2_VERSION _SC_2_VERSION
{PAGE_SIZE} _SC_PAGE_SIZE
{PAGESIZE} _SC_PAGESIZE
{PTHREAD_DESTRUCTOR_ITERATIONS} _SC_THREAD_DESTRUCTOR_ITERATIONS
{PTHREAD_KEYS_MAX} _SC_THREAD_KEYS_MAX
{PTHREAD_STACK_MIN} _SC_THREAD_STACK_MIN
{PTHREAD_THREADS_MAX} _SC_THREAD_THREADS_MAX
{RE_DUP_MAX} _SC_RE_DUP_MAX
{RTSIG_MAX} _SC_RTSIG_MAX
{SEM_NSEMS_MAX} _SC_SEM_NSEMS_MAX
{SEM_VALUE_MAX} _SC_SEM_VALUE_MAX
{SIGQUEUE_MAX} _SC_SIGQUEUE_MAX
{STREAM_MAX} _SC_STREAM_MAX
{SYMLOOP_MAX} _SC_SYMLOOP_MAX
{TIMER_MAX} _SC_TIMER_MAX
{TTY_NAME_MAX} _SC_TTY_NAME_MAX
{TZNAME_MAX} _SC_TZNAME_MAX
_XOPEN_CRYPT _SC_XOPEN_CRYPT
_XOPEN_ENH_I18N _SC_XOPEN_ENH_I18N
_XOPEN_REALTIME _SC_XOPEN_REALTIME
_XOPEN_REALTIME_THREADS _SC_XOPEN_REALTIME_THREADS
_XOPEN_SHM _SC_XOPEN_SHM
_XOPEN_STREAMS _SC_XOPEN_STREAMS
_XOPEN_UNIX _SC_XOPEN_UNIX
_XOPEN_VERSION _SC_XOPEN_VERSION

RETURN VALUE
If name is an invalid value, sysconf() shall return −1 and set errno to indicate the error. If the
variable corresponding to name has no limit, sysconf() shall return −1 without changing the value
of errno. Note that indefinite limits do not imply infinite limits; see <limits.h>.

Otherwise, sysconf() shall return the current variable value on the system. The value returned
shall not be more restrictive than the corresponding value described to the application when it
was compiled with the implementation’s <limits.h> or <unistd.h>. The value shall not change

XSI during the lifetime of the calling process, except that sysconf(_SC_OPEN_MAX) may return
different values before and after a call to setrlimit() which changes the RLIMIT_NOFILE soft

1558 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

48005

48006

48007

48008

48009

48010

48011

48012

48013

48014

48015

48016

48017

48018

48019

48020

48021

48022

48023

48024

48025

48026

48027

48028

48029

48030

48031

48032

48033

48034

48035

48036

48037

48038

48039

48040

48041

48042

48043

48044

48045

48046

48047

48048

48049

48050

48051

48052

48053

48054

48055

48056

48057

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces sysconf()

limit.

If the variable corresponding to name is dependent on an unsupported option, the results are
unspecified.

ERRORS
The sysconf() function shall fail if:

[EINVAL] The value of the name argument is invalid.

EXAMPLES
None.

APPLICATION USAGE
As −1 is a permissible return value in a successful situation, an application wishing to check for
error situations should set errno to 0, then call sysconf(), and, if it returns −1, check to see if errno
is non-zero.

Application writers should check whether an option, such as _POSIX_TRACE, is supported
prior to obtaining and using values for related variables, such as _POSIX_TRACE_NAME_MAX.

RATIONALE
This functionality was added in response to requirements of application developers and of
system vendors who deal with many international system configurations. It is closely related to
pathconf() and fpathconf().

Although a conforming application can run on all systems by never demanding more resources
than the minimum values published in this volume of IEEE Std 1003.1-200x, it is useful for that
application to be able to use the actual value for the quantity of a resource available on any
given system. To do this, the application makes use of the value of a symbolic constant in
<limits.h> or <unistd.h>.

However, once compiled, the application must still be able to cope if the amount of resource
available is increased. To that end, an application may need a means of determining the quantity
of a resource, or the presence of an option, at execution time.

Two examples are offered:

1. Applications may wish to act differently on systems with or without job control.
Applications vendors who wish to distribute only a single binary package to all instances
of a computer architecture would be forced to assume job control is never available if it
were to rely solely on the <unistd.h> value published in this volume of
IEEE Std 1003.1-200x.

2. International applications vendors occasionally require knowledge of the number of clock
ticks per second. Without these facilities, they would be required to either distribute their
applications partially in source form or to have 50 Hz and 60 Hz versions for the various
countries in which they operate.

It is the knowledge that many applications are actually distributed widely in executable form
that leads to this facility. If limited to the most restrictive values in the headers, such applications
would have to be prepared to accept the most limited environments offered by the smallest
microcomputers. Although this is entirely portable, there was a consensus that they should be
able to take advantage of the facilities offered by large systems, without the restrictions
associated with source and object distributions.

During the discussions of this feature, it was pointed out that it is almost always possible for an
application to discern what a value might be at runtime by suitably testing the various functions
themselves. And, in any event, it could always be written to adequately deal with error returns
from the various functions. In the end, it was felt that this imposed an unreasonable level of
complication and sophistication on the application writer.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1559

48058

48059

48060

48061

48062

48063

48064

48065

48066

48067

48068

48069

48070

48071

48072

48073

48074

48075

48076

48077

48078

48079

48080

48081

48082

48083

48084

48085

48086

48087

48088

48089

48090

48091

48092

48093

48094

48095

48096

48097

48098

48099

48100

48101

48102

48103

48104

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

sysconf() System Interfaces

This runtime facility is not meant to provide ever-changing values that applications have to
check multiple times. The values are seen as changing no more frequently than once per system
initialization, such as by a system administrator or operator with an automatic configuration
program. This volume of IEEE Std 1003.1-200x specifies that they shall not change within the
lifetime of the process.

Some values apply to the system overall and others vary at the file system or directory level. The
latter are described in pathconf().

Note that all values returned must be expressible as integers. String values were considered, but
the additional flexibility of this approach was rejected due to its added complexity of
implementation and use.

Some values, such as {PATH_MAX}, are sometimes so large that they must not be used to, say,
allocate arrays. The sysconf() function returns a negative value to show that this symbolic
constant is not even defined in this case.

Similar to pathconf(), this permits the implementation not to have a limit. When one resource is
infinite, returning an error indicating that some other resource limit has been reached is
conforming behavior.

FUTURE DIRECTIONS
None.

SEE ALSO
confstr(), pathconf(), the Base Definitions volume of IEEE Std 1003.1-200x, <limits.h>,
<unistd.h>, the Shell and Utilities volume of IEEE Std 1003.1-200x, getconf

CHANGE HISTORY
First released in Issue 3. Included for alignment with the POSIX.1-1988 standard.

Issue 5
The DESCRIPTION is updated for alignment with the POSIX Realtime Extension and the POSIX
Threads Extension.

The _XBS_ variables and name values are added to the table of system variables in the
DESCRIPTION. These are all marked EX.

Issue 6
The symbol CLK_TCK is obsolescent and removed. It is replaced with the phrase ‘‘clock ticks
per second’’.

The symbol {PASS_MAX} is removed.

The following changes were made to align with the IEEE P1003.1a draft standard:

• Table entries are added for the following variables: _SC_REGEXP, _SC_SHELL,
_SC_REGEX_VERSION, _SC_SYMLOOP_MAX.

The following sysconf() variables and their associated names are added for alignment with
IEEE Std 1003.1d-1999:

_POSIX_ADVISORY_INFO
_POSIX_CPUTIME
_POSIX_SPAWN
_POSIX_SPORADIC_SERVER
_POSIX_THREAD_CPUTIME
_POSIX_THREAD_SPORADIC_SERVER
_POSIX_TIMEOUTS

The following changes are made to the DESCRIPTION for alignment with IEEE Std 1003.1j-2000:

1560 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

48105

48106

48107

48108

48109

48110

48111

48112

48113

48114

48115

48116

48117

48118

48119

48120

48121

48122

48123

48124

48125

48126

48127

48128

48129

48130

48131

48132

48133

48134

48135

48136

48137

48138

48139

48140

48141

48142

48143

48144

48145

48146

48147

48148

48149

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces sysconf()

• A statement expressing the dependency of support for some system variables on
implementation options is added.

• The following system variables are added:

_POSIX_BARRIERS
_POSIX_CLOCK_SELECTION
_POSIX_MONOTONIC_CLOCK
_POSIX_READER_WRITER_LOCKS
_POSIX_SPIN_LOCKS
_POSIX_TYPED_MEMORY_OBJECTS

The following system variables are added for alignment with IEEE Std 1003.2d-1994:

_POSIX2_PBS
_POSIX2_PBS_ACCOUNTING
_POSIX2_PBS_LOCATE
_POSIX2_PBS_MESSAGE
_POSIX2_PBS_TRACK

The following sysconf() variables and their associated names are added for alignment with
IEEE Std 1003.1q-2000:

_POSIX_TRACE
_POSIX_TRACE_EVENT_FILTER
_POSIX_TRACE_INHERIT
_POSIX_TRACE_LOG

The macros associated with the c89 programming models are marked LEGACY, and new
equivalent macros associated with c99 are introduced.

IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/62 is applied, updating the
DESCRIPTION to denote that the _PC* and _SC* symbols are now required to be supported. A
corresponding change has been made in the Base Definitions volume of IEEE Std 1003.1-200x.
The deletion in the second paragraph removes some duplicated text. Additional symbols that
were erroneously omitted from this reference page have been added.

IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/63 is applied, making it clear in the
RETURN VALUE section that the value returned for sysconf(_SC_OPEN_MAX) may change if a
call to setrlimit() adjusts the RLIMIT_NOFILE soft limit.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/134 is applied, updating the
DESCRIPTION to remove an erroneous entry for _POSIX_SYMLOOP_MAX. This corrects an
error in IEEE Std 1003.1-2001/Cor 1-2002.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/135 is applied, removing
_POSIX_FILE_LOCKING, _POSIX_MULTI_PROCESS, _POSIX2_C_VERSION, and
_XOPEN_XCU_VERSION (and their associated _SC_* variables) from the DESCRIPTION and
APPLICATION USAGE sections.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/136 is applied, adding the following
constants (and their associated _SC_* variables) to the DESCRIPTION:

_POSIX_SS_REPL_MAX
_POSIX_TRACE_EVENT_NAME_MAX
_POSIX_TRACE_NAME_MAX
_POSIX_TRACE_SYS_MAX
_POSIX_TRACE_USER_EVENT_MAX

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1561

48150

48151

48152

48153

48154

48155

48156

48157

48158

48159

48160

48161

48162

48163

48164

48165

48166

48167

48168

48169

48170

48171

48172

48173

48174

48175

48176

48177

48178

48179

48180

48181

48182

48183

48184

48185

48186

48187

48188

48189

48190

48191

48192

48193

48194

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

sysconf() System Interfaces

The RETURN VALUE and APPLICATION USAGE sections are updated to note that if variables
are dependent on unsupported options, the results are unspecified.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/137 is applied, removing
_REGEX_VERSION and _SC_REGEX_VERSION.

Issue 7
The variables for the supported programming environments are updated to be V7 and the
LEGACY variables are removed.

The following constants are added:

_POSIX_THREAD_ROBUST_PRIO_INHERIT
_POSIX_THREAD_ROBUST_PRIO_PROTECT

1562 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

48195

48196

48197

48198

48199

48200

48201

48202

48203

48204

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces syslog()

NAME
syslog — log a message

SYNOPSIS
XSI #include <syslog.h>

void syslog(int priority, c onst char * message, . .. /* argument */);

DESCRIPTION
Refer to closelog().

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1563

48205

48206

48207

48208

48209

48210

48211

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

system() System Interfaces

NAME
system — issue a command

SYNOPSIS
#include <stdlib.h>

int system(const char * command);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

If command is a null pointer, the system() function shall determine whether the host environment
has a command processor. If command is not a null pointer, the system() function shall pass the
string pointed to by command to that command processor to be executed in an implementation-
defined manner; this might then cause the program calling system() to behave in a non-
conforming manner or to terminate.

CX The system() function shall behave as if a child process were created using fork(), and the child
process invoked the sh utility using execl() as follows:

execl(< shell path>, "sh", "-c", command, (char *)0);

where <shell path> is an unspecified pathname for the sh utility. It is unspecified whether the
handlers registered with pthread_atfork() are called as part of the creation of the child process.

The system() function shall ignore the SIGINT and SIGQUIT signals, and shall block the
SIGCHLD signal, while waiting for the command to terminate. If this might cause the
application to miss a signal that would have killed it, then the application should examine the
return value from system() and take whatever action is appropriate to the application if the
command terminated due to receipt of a signal.

The system() function shall not affect the termination status of any child of the calling processes
other than the process or processes it itself creates.

The system() function shall not return until the child process has terminated.

The system() function need not be thread-safe. A function that is not required to be thread-safe is
not required to be reentrant.

RETURN VALUE
If command is a null pointer, system() shall return non-zero to indicate that a command processor

CX is available, or zero if none is available. The system() function shall always return non-zero
when command is NULL.

CX If command is not a null pointer, system() shall return the termination status of the command
language interpreter in the format specified by waitpid(). The termination status shall be as
defined for the sh utility; otherwise, the termination status is unspecified. If some error prevents
the command language interpreter from executing after the child process is created, the return
value from system() shall be as if the command language interpreter had terminated using
exit(127) or _exit(127). If a child process cannot be created, or if the termination status for the
command language interpreter cannot be obtained, system() shall return −1 and set errno to
indicate the error.

1564 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

48212

48213

48214

48215

48216

48217

48218

48219

48220

48221

48222

48223

48224

48225

48226

48227

48228

48229

48230

48231

48232

48233

48234

48235

48236

48237

48238

48239

48240

48241

48242

48243

48244

48245

48246

48247

48248

48249

48250

48251

48252

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces system()

ERRORS
CX The system() function may set errno values as described by fork().

In addition, system() may fail if:

CX [ECHILD] The status of the child process created by system() is no longer available.

EXAMPLES
None.

APPLICATION USAGE
If the return value of system() is not −1, its value can be decoded through the use of the macros
described in <sys/wait.h>. For convenience, these macros are also provided in <stdlib.h>.

Note that, while system() must ignore SIGINT and SIGQUIT and block SIGCHLD while waiting
for the child to terminate, the handling of signals in the executed command is as specified by
fork() and exec. For example, if SIGINT is being caught or is set to SIG_DFL when system() is
called, then the child is started with SIGINT handling set to SIG_DFL.

Ignoring SIGINT and SIGQUIT in the parent process prevents coordination problems (two
processes reading from the same terminal, for example) when the executed command ignores or
catches one of the signals. It is also usually the correct action when the user has given a
command to the application to be executed synchronously (as in the ’!’ command in many
interactive applications). In either case, the signal should be delivered only to the child process,
not to the application itself. There is one situation where ignoring the signals might have less
than the desired effect. This is when the application uses system() to perform some task invisible
to the user. If the user typed the interrupt character ("ˆC" , for example) while system() is being
used in this way, one would expect the application to be killed, but only the executed command
is killed. Applications that use system() in this way should carefully check the return status from
system() to see if the executed command was successful, and should take appropriate action
when the command fails.

Blocking SIGCHLD while waiting for the child to terminate prevents the application from
catching the signal and obtaining status from system()’s child process before system() can get the
status itself.

The context in which the utility is ultimately executed may differ from that in which system()
was called. For example, file descriptors that have the FD_CLOEXEC flag set are closed, and the
process ID and parent process ID are different. Also, if the executed utility changes its
environment variables or its current working directory, that change is not reflected in the caller’s
context.

There is no defined way for an application to find the specific path for the shell. However,
confstr() can provide a value for PA TH that is guaranteed to find the sh utility.

Using the system() function in more than one thread in a process or when the SIGCHLD signal is
being manipulated by more than one thread in a process may produce unexpected results.

RATIONALE
The system() function should not be used by programs that have set user (or group) ID
privileges. The fork() and exec family of functions (except execlp() and execvp()), should be used
instead. This prevents any unforeseen manipulation of the environment of the user that could
cause execution of commands not anticipated by the calling program.

There are three levels of specification for the system() function. The ISO C standard gives the
most basic. It requires that the function exists, and defines a way for an application to query
whether a command language interpreter exists. It says nothing about the command language
or the environment in which the command is interpreted.

IEEE Std 1003.1-200x places additional restrictions on system(). It requires that if there is a
command language interpreter, the environment must be as specified by fork() and exec. This

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1565

48253

48254

48255

48256

48257

48258

48259

48260

48261

48262

48263

48264

48265

48266

48267

48268

48269

48270

48271

48272

48273

48274

48275

48276

48277

48278

48279

48280

48281

48282

48283

48284

48285

48286

48287

48288

48289

48290

48291

48292

48293

48294

48295

48296

48297

48298

48299

48300

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

system() System Interfaces

ensures, for example, that close-on-exec works, that file locks are not inherited, and that the
process ID is different. It also specifies the return value from system() when the command line
can be run, thus giving the application some information about the command’s completion
status.

Finally, IEEE Std 1003.1-200x requires the command to be interpreted as in the shell command
language defined in the Shell and Utilities volume of IEEE Std 1003.1-200x.

Note that, system(NULL) is required to return non-zero, indicating that there is a command
language interpreter. At first glance, this would seem to conflict with the ISO C standard which
allows system(NULL) to return zero. There is no conflict, however. A system must have a
command language interpreter, and is non-conforming if none is present. It is therefore
permissible for the system() function on such a system to implement the behavior specified by
the ISO C standard as long as it is understood that the implementation does not conform to
IEEE Std 1003.1-200x if system(NULL) returns zero.

It was explicitly decided that when command is NULL, system() should not be required to check
to make sure that the command language interpreter actually exists with the correct mode, that
there are enough processes to execute it, and so on. The call system(NULL) could, theoretically,
check for such problems as too many existing child processes, and return zero. However, it
would be inappropriate to return zero due to such a (presumably) transient condition. If some
condition exists that is not under the control of this application and that would cause any
system() call to fail, that system has been rendered non-conforming.

Early drafts required, or allowed, system() to return with errno set to [EINTR] if it was
interrupted with a signal. This error return was removed, and a requirement that system() not
return until the child has terminated was added. This means that if a waitpid() call in system()
exits with errno set to [EINTR], system() must reissue the waitpid(). This change was made for
two reasons:

1. There is no way for an application to clean up if system() returns [EINTR], short of calling
wait(), and that could have the undesirable effect of returning the status of children other
than the one started by system().

2. While it might require a change in some historical implementations, those
implementations already have to be changed because they use wait() instead of waitpid().

Note that if the application is catching SIGCHLD signals, it will receive such a signal before a
successful system() call returns.

To conform to IEEE Std 1003.1-200x, system() must use waitpid(), or some similar function,
instead of wait().

The following code sample illustrates how system() might be implemented on an
implementation conforming to IEEE Std 1003.1-200x.

#include <signal.h>
int system(const char *cmd)
{

int stat;
pid_t pid;
struct sigaction sa, savintr, savequit;
sigset_t saveblock;
if (cmd == NULL)

return(1);
sa.sa_handler = SIG_IGN;
sigemptyset(&sa.sa_mask);
sa.sa_flags = 0;
sigemptyset(&savintr.sa_mask);

1566 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

48301

48302

48303

48304

48305

48306

48307

48308

48309

48310

48311

48312

48313

48314

48315

48316

48317

48318

48319

48320

48321

48322

48323

48324

48325

48326

48327

48328

48329

48330

48331

48332

48333

48334

48335

48336

48337

48338

48339

48340

48341

48342

48343

48344

48345

48346

48347

48348

48349

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces system()

sigemptyset(&savequit.sa_mask);
sigaction(SIGINT, &sa, &savintr);
sigaction(SIGQUIT, &sa, &savequit);
sigaddset(&sa.sa_mask, SIGCHLD);
sigprocmask(SIG_BLOCK, &sa.sa_mask, &saveblock);
if ((pid = fork()) == 0) {

sigaction(SIGINT, &savintr, (struct sigaction *)0);
sigaction(SIGQUIT, &savequit, (struct sigaction *)0);
sigprocmask(SIG_SETMASK, &saveblock, (sigset_t *)0);
execl("/bin/sh", "sh", "-c", cmd, (char *)0);
_exit(127);

}
if (pid == -1) {

stat = -1; /* errno comes from fork() */
} e lse {

while (waitpid(pid, &stat, 0) == -1) {
if (errno != EINTR){

stat = -1;
break;

}
}

}
sigaction(SIGINT, &savintr, (struct sigaction *)0);
sigaction(SIGQUIT, &savequit, (struct sigaction *)0);
sigprocmask(SIG_SETMASK, &saveblock, (sigset_t *)0);
return(stat);

}

Note that, while a particular implementation of system() (such as the one above) can assume a
particular path for the shell, such a path is not necessarily valid on another system. The above
example is not portable, and is not intended to be.

One reviewer suggested that an implementation of system() might want to use an environment
variable such as SHELL to determine which command interpreter to use. The supposed
implementation would use the default command interpreter if the one specified by the
environment variable was not available. This would allow a user, when using an application that
prompts for command lines to be processed using system(), to specify a different command
interpreter. Such an implementation is discouraged. If the alternate command interpreter did not
follow the command line syntax specified in the Shell and Utilities volume of
IEEE Std 1003.1-200x, then changing SHELL would render system() non-conforming. This would
affect applications that expected the specified behavior from system(), and since the Shell and
Utilities volume of IEEE Std 1003.1-200x does not mention that SHELL affects system(), the
application would not know that it needed to unset SHELL.

FUTURE DIRECTIONS
None.

SEE ALSO
exec , pipe(), pthread_atfork(), waitpid(), the Base Definitions volume of IEEE Std 1003.1-200x,
<limits.h>, <signal.h>, <stdlib.h>, <sys/wait.h>, the Shell and Utilities volume of
IEEE Std 1003.1-200x, sh

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1567

48350

48351

48352

48353

48354

48355

48356

48357

48358

48359

48360

48361

48362

48363

48364

48365

48366

48367

48368

48369

48370

48371

48372

48373

48374

48375

48376

48377

48378

48379

48380

48381

48382

48383

48384

48385

48386

48387

48388

48389

48390

48391

48392

48393

48394

48395

48396

48397

48398

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

system() System Interfaces

Issue 6
Extensions beyond the ISO C standard are marked.

Issue 7
SD5-XSH-ERN-30 is applied.

Austin Group Interpretation 1003.1-2001 #055 is applied, clarifying the thread-safety of this
function and treatment of at_fork() handlers.

1568 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

48399

48400

48401

48402

48403

48404

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces tan()

NAME
tan, tanf, tanl — tangent function

SYNOPSIS
#include <math.h>

double tan(double x);
float tanf(float x);
long double tanl(long double x);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

These functions shall compute the tangent of their argument x, measured in radians.

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-
zero, an error has occurred.

RETURN VALUE
Upon successful completion, these functions shall return the tangent of x.

If the correct value would cause underflow, and is not representable, a range error may occur,
MX and either 0.0 (if supported), or an implementation-defined value shall be returned.

MX If x is NaN, a NaN shall be returned.

If x is ±0, x shall be returned.

If x is subnormal, a range error may occur and x should be returned.

If x is ±Inf, a domain error shall occur, and either a NaN (if supported), or an implementation-
defined value shall be returned.

If the correct value would cause underflow, and is representable, a range error may occur and
the correct value shall be returned.

XSI If the correct value would cause overflow, a range error shall occur and tan(), tanf(), and tanl()
shall return ±HUGE_VAL, ±HUGE_VALF, and ±HUGE_VALL, respectively, with the same sign
as the correct value of the function.

ERRORS
These functions shall fail if:

MX Domain Error The value of x is ±Inf.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [EDOM]. If the integer expression (math_errhandling
& MATH_ERREXCEPT) is non-zero, then the invalid floating-point exception
shall be raised.

XSI Range Error The result overflows

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the overflow
floating-point exception shall be raised.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1569

48405

48406

48407

48408

48409

48410

48411

48412

48413

48414

48415

48416

48417

48418

48419

48420

48421

48422

48423

48424

48425

48426

48427

48428

48429

48430

48431

48432

48433

48434

48435

48436

48437

48438

48439

48440

48441

48442

48443

48444

48445

48446

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

tan() System Interfaces

These functions may fail if:

MX Range Error The result underflows, or the value of x is subnormal.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the underflow
floating-point exception shall be raised.

EXAMPLES

Taking the Tangent of a 45-Degree Angle

#include <math.h>
...
double radians = 45.0 * M_PI / 180;
double result;
...
result = tan (radians);

APPLICATION USAGE
There are no known floating-point representations such that for a normal argument, tan(x) is
either overflow or underflow.

These functions may lose accuracy when their argument is near a multiple of π/2 or is far from
0.0.

On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling &
MATH_ERREXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
atan(), feclearexcept(), fetestexcept(), isnan(), the Base Definitions volume of IEEE Std 1003.1-200x,
Section 4.18, Treatment of Error Conditions for Mathematical Functions, <math.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The last two paragraphs of the DESCRIPTION were included as APPLICATION USAGE notes
in previous issues.

Issue 6
The tanf() and tanl() functions are added for alignment with the ISO/IEC 9899: 1999 standard.

The DESCRIPTION, RETURN VALUE, ERRORS, and APPLICATION USAGE sections are
revised to align with the ISO/IEC 9899: 1999 standard.

IEC 60559: 1989 standard floating-point extensions over the ISO/IEC 9899: 1999 standard are
marked.

IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/64 is applied, correcting the last
paragraph in the RETURN VALUE section.

1570 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

48447

48448

48449

48450

48451

48452

48453

48454

48455

48456

48457

48458

48459

48460

48461

48462

48463

48464

48465

48466

48467

48468

48469

48470

48471

48472

48473

48474

48475

48476

48477

48478

48479

48480

48481

48482

48483

48484

48485

48486

48487

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces tanh()

NAME
tanh, tanhf, tanhl — hyperbolic tangent functions

SYNOPSIS
#include <math.h>

double tanh(double x);
float tanhf(float x);
long double tanhl(long double x);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

These functions shall compute the hyperbolic tangent of their argument x.

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-
zero, an error has occurred.

RETURN VALUE
Upon successful completion, these functions shall return the hyperbolic tangent of x.

MX If x is NaN, a NaN shall be returned.

If x is ±0, x shall be returned.

If x is ±Inf, ±1 shall be returned.

If x is subnormal, a range error may occur and x should be returned.

ERRORS
These functions may fail if:

MX Range Error The value of x is subnormal.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the underflow
floating-point exception shall be raised.

EXAMPLES
None.

APPLICATION USAGE
On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling &
MATH_ERREXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
atanh(), feclearexcept(), fetestexcept(), isnan(), tan(), the Base Definitions volume of
IEEE Std 1003.1-200x, Section 4.18, Treatment of Error Conditions for Mathematical Functions,
<math.h>

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1571

48488

48489

48490

48491

48492

48493

48494

48495

48496

48497

48498

48499

48500

48501

48502

48503

48504

48505

48506

48507

48508

48509

48510

48511

48512

48513

48514

48515

48516

48517

48518

48519

48520

48521

48522

48523

48524

48525

48526

48527

48528

48529

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

tanh() System Interfaces

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The DESCRIPTION is updated to indicate how an application should check for an error. This
text was previously published in the APPLICATION USAGE section.

Issue 6
The tanhf() and tanhl() functions are added for alignment with the ISO/IEC 9899: 1999 standard.

The DESCRIPTION, RETURN VALUE, ERRORS, and APPLICATION USAGE sections are
revised to align with the ISO/IEC 9899: 1999 standard.

IEC 60559: 1989 standard floating-point extensions over the ISO/IEC 9899: 1999 standard are
marked.

1572 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

48530

48531

48532

48533

48534

48535

48536

48537

48538

48539

48540

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces tanl()

NAME
tanl — tangent function

SYNOPSIS
#include <math.h>

long double tanl(long double x);

DESCRIPTION
Refer to tan().

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1573

48541

48542

48543

48544

48545

48546

48547

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

tcdrain() System Interfaces

NAME
tcdrain — wait for transmission of output

SYNOPSIS
#include <termios.h>

int tcdrain(int fildes);

DESCRIPTION
The tcdrain() function shall block until all output written to the object referred to by fildes is
transmitted. The fildes argument is an open file descriptor associated with a terminal.

Any attempts to use tcdrain() from a process which is a member of a background process group
on a fildes associated with its controlling terminal, shall cause the process group to be sent a
SIGTTOU signal. If the calling process is blocking or ignoring SIGTTOU signals, the process
shall be allowed to perform the operation, and no signal is sent.

RETURN VALUE
Upon successful completion, 0 shall be returned. Otherwise, −1 shall be returned and errno set to
indicate the error.

ERRORS
The tcdrain() function shall fail if:

[EBADF] The fildes argument is not a valid file descriptor.

[EINTR] A signal interrupted tcdrain().

[ENOTTY] The file associated with fildes is not a terminal.

The tcdrain() function may fail if:

[EIO] The process group of the writing process is orphaned, and the writing process
is not ignoring or blocking SIGTTOU.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
tcflush(), the Base Definitions volume of IEEE Std 1003.1-200x, Chapter 11, General Terminal
Interface, <termios.h>, <unistd.h>

CHANGE HISTORY
First released in Issue 3. Included for alignment with the POSIX.1-1988 standard.

1574 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

48548

48549

48550

48551

48552

48553

48554

48555

48556

48557

48558

48559

48560

48561

48562

48563

48564

48565

48566

48567

48568

48569

48570

48571

48572

48573

48574

48575

48576

48577

48578

48579

48580

48581

48582

48583

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces tcdrain()

Issue 6
The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• In the DESCRIPTION, the final paragraph is no longer conditional on
_POSIX_JOB_CONTROL. This is a FIPS requirement.

• The [EIO] error is added.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1575

48584

48585

48586

48587

48588

48589

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

tcflow() System Interfaces

NAME
tcflow — suspend or restart the transmission or reception of data

SYNOPSIS
#include <termios.h>

int tcflow(int fildes, i nt action);

DESCRIPTION
The tcflow() function shall suspend or restart transmission or reception of data on the object
referred to by fildes, depending on the value of action. The fildes argument is an open file
descriptor associated with a terminal.

• If action is TCOOFF, output shall be suspended.

• If action is TCOON, suspended output shall be restarted.

• If action is TCIOFF, the system shall transmit a STOP character, which is intended to cause
the terminal device to stop transmitting data to the system.

• If action is TCION, the system shall transmit a START character, which is intended to cause
the terminal device to start transmitting data to the system.

The default on the opening of a terminal file is that neither its input nor its output are
suspended.

Attempts to use tcflow() from a process which is a member of a background process group on a
fildes associated with its controlling terminal, shall cause the process group to be sent a
SIGTTOU signal. If the calling process is blocking or ignoring SIGTTOU signals, the process
shall be allowed to perform the operation, and no signal is sent.

RETURN VALUE
Upon successful completion, 0 shall be returned. Otherwise, −1 shall be returned and errno set to
indicate the error.

ERRORS
The tcflow() function shall fail if:

[EBADF] The fildes argument is not a valid file descriptor.

[EINVAL] The action argument is not a supported value.

[ENOTTY] The file associated with fildes is not a terminal.

The tcflow() function may fail if:

[EIO] The process group of the writing process is orphaned, and the writing process
is not ignoring or blocking SIGTTOU.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

1576 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

48590

48591

48592

48593

48594

48595

48596

48597

48598

48599

48600

48601

48602

48603

48604

48605

48606

48607

48608

48609

48610

48611

48612

48613

48614

48615

48616

48617

48618

48619

48620

48621

48622

48623

48624

48625

48626

48627

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces tcflow()

FUTURE DIRECTIONS
None.

SEE ALSO
tcsendbreak(), the Base Definitions volume of IEEE Std 1003.1-200x, Chapter 11, General Terminal
Interface, <termios.h>, <unistd.h>

CHANGE HISTORY
First released in Issue 3. Included for alignment with the POSIX.1-1988 standard.

Issue 6
The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The [EIO] error is added.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1577

48628

48629

48630

48631

48632

48633

48634

48635

48636

48637

48638

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

tcflush() System Interfaces

NAME
tcflush — flush non-transmitted output data, non-read input data, or both

SYNOPSIS
#include <termios.h>

int tcflush(int fildes, i nt queue_selector);

DESCRIPTION
Upon successful completion, tcflush() shall discard data written to the object referred to by fildes
(an open file descriptor associated with a terminal) but not transmitted, or data received but not
read, depending on the value of queue_selector:

• If queue_selector is TCIFLUSH, it shall flush data received but not read.

• If queue_selector is TCOFLUSH, it shall flush data written but not transmitted.

• If queue_selector is TCIOFLUSH, it shall flush both data received but not read and data
written but not transmitted.

Attempts to use tcflush() from a process which is a member of a background process group on a
fildes associated with its controlling terminal shall cause the process group to be sent a SIGTTOU
signal. If the calling process is blocking or ignoring SIGTTOU signals, the process shall be
allowed to perform the operation, and no signal is sent.

RETURN VALUE
Upon successful completion, 0 shall be returned. Otherwise, −1 shall be returned and errno set to
indicate the error.

ERRORS
The tcflush() function shall fail if:

[EBADF] The fildes argument is not a valid file descriptor.

[EINVAL] The queue_selector argument is not a supported value.

[ENOTTY] The file associated with fildes is not a terminal.

The tcflush() function may fail if:

[EIO] The process group of the writing process is orphaned, and the writing process
is not ignoring or blocking SIGTTOU.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
tcdrain(), the Base Definitions volume of IEEE Std 1003.1-200x, Chapter 11, General Terminal
Interface, <termios.h>, <unistd.h>

1578 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

48639

48640

48641

48642

48643

48644

48645

48646

48647

48648

48649

48650

48651

48652

48653

48654

48655

48656

48657

48658

48659

48660

48661

48662

48663

48664

48665

48666

48667

48668

48669

48670

48671

48672

48673

48674

48675

48676

48677

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces tcflush()

CHANGE HISTORY
First released in Issue 3. Included for alignment with the POSIX.1-1988 standard.

Issue 6
The Open Group Corrigendum U035/1 is applied. In the ERRORS and APPLICATION USAGE
sections, references to tcflow() are replaced with tcflush().

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• In the DESCRIPTION, the final paragraph is no longer conditional on
_POSIX_JOB_CONTROL. This is a FIPS requirement.

• The [EIO] error is added.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1579

48678

48679

48680

48681

48682

48683

48684

48685

48686

48687

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces tcgetattr()

succeeded even if some of the changes were not made. When −1 is returned, it implies
everything failed even though some of the changes were made.

Applications that need all of the requested changes made to work properly should follow
tcsetattr() with a call to tcgetattr() and compare the appropriate field values.

FUTURE DIRECTIONS
None.

SEE ALSO
tcsetattr(), the Base Definitions volume of IEEE Std 1003.1-200x, Chapter 11, General Terminal
Interface, <termios.h>

CHANGE HISTORY
First released in Issue 3. Included for alignment with the POSIX.1-1988 standard.

Issue 6
In the DESCRIPTION, the rate returned as the input baud rate shall be the output rate.
Previously, the number zero was also allowed but was obsolescent.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1581

48732

48733

48734

48735

48736

48737

48738

48739

48740

48741

48742

48743

48744

48745

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

tcgetpgrp() System Interfaces

NAME
tcgetpgrp — get the foreground process group ID

SYNOPSIS
#include <unistd.h>

pid_t tcgetpgrp(int fildes);

DESCRIPTION
The tcgetpgrp() function shall return the value of the process group ID of the foreground process
group associated with the terminal.

If there is no foreground process group, tcgetpgrp() shall return a value greater than 1 that does
not match the process group ID of any existing process group.

The tcgetpgrp() function is allowed from a process that is a member of a background process
group; however, the information may be subsequently changed by a process that is a member of
a foreground process group.

RETURN VALUE
Upon successful completion, tcgetpgrp() shall return the value of the process group ID of the
foreground process associated with the terminal. Otherwise, −1 shall be returned and errno set to
indicate the error.

ERRORS
The tcgetpgrp() function shall fail if:

[EBADF] The fildes argument is not a valid file descriptor.

[ENOTTY] The calling process does not have a controlling terminal, or the file is not the
controlling terminal.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
setsid(), setpgid(), tcsetpgrp(), the Base Definitions volume of IEEE Std 1003.1-200x,
<sys/types.h>, <unistd.h>

CHANGE HISTORY
First released in Issue 3. Included for alignment with the POSIX.1-1988 standard.

Issue 6
In the SYNOPSIS, the optional include of the <sys/types.h> header is removed.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
required for conforming implementations of previous POSIX specifications, it was not
required for UNIX applications.

1582 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

48746

48747

48748

48749

48750

48751

48752

48753

48754

48755

48756

48757

48758

48759

48760

48761

48762

48763

48764

48765

48766

48767

48768

48769

48770

48771

48772

48773

48774

48775

48776

48777

48778

48779

48780

48781

48782

48783

48784

48785

48786

48787

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces tcgetpgrp()

• In the DESCRIPTION, text previously conditional on support for _POSIX_JOB_CONTROL
is now mandatory. This is a FIPS requirement.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1583

48788

48789

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

tcgetsid() System Interfaces

NAME
tcgetsid — get the process group ID for the session leader for the controlling terminal

SYNOPSIS
#include <termios.h>

pid_t tcgetsid(int fildes);

DESCRIPTION
The tcgetsid() function shall obtain the process group ID of the session for which the terminal
specified by fildes is the controlling terminal.

RETURN VALUE
Upon successful completion, tcgetsid() shall return the process group ID associated with the
terminal. Otherwise, a value of (pid_t)−1 shall be returned and errno set to indicate the error.

ERRORS
The tcgetsid() function shall fail if:

[EBADF] The fildes argument is not a valid file descriptor.

[ENOTTY] The calling process does not have a controlling terminal, or the file is not the
controlling terminal.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
The Base Definitions volume of IEEE Std 1003.1-200x, <termios.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

The [EACCES] error has been removed from the list of mandatory errors, and the description of
[ENOTTY] has been reworded.

Issue 7
The tcgetsid() function is moved from the XSI option to the Base.

1584 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

48790

48791

48792

48793

48794

48795

48796

48797

48798

48799

48800

48801

48802

48803

48804

48805

48806

48807

48808

48809

48810

48811

48812

48813

48814

48815

48816

48817

48818

48819

48820

48821

48822

48823

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces tcsendbreak()

NAME
tcsendbreak — send a break for a specific duration

SYNOPSIS
#include <termios.h>

int tcsendbreak(int fildes, i nt duration);

DESCRIPTION
If the terminal is using asynchronous serial data transmission, tcsendbreak() shall cause
transmission of a continuous stream of zero-valued bits for a specific duration. If duration is 0, it
shall cause transmission of zero-valued bits for at least 0.25 seconds, and not more than 0.5
seconds. If duration is not 0, it shall send zero-valued bits for an implementation-defined period
of time.

The fildes argument is an open file descriptor associated with a terminal.

If the terminal is not using asynchronous serial data transmission, it is implementation-defined
whether tcsendbreak() sends data to generate a br

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

tcsendbreak() System Interfaces

CHANGE HISTORY
First released in Issue 3. Included for alignment with the POSIX.1-1988 standard.

Issue 6
The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• In the DESCRIPTION, text previously conditional on _POSIX_JOB_CONTROL is now
mandated. This is a FIPS requirement.

• The [EIO] error is added.

1586 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

48864

48865

48866

48867

48868

48869

48870

48871

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces tcsetattr()

NAME
tcsetattr — set the parameters associated with the terminal

SYNOPSIS
#include <termios.h>

int tcsetattr(int fildes, i nt optional_actions,
const struct termios * termios_p);

DESCRIPTION
The tcsetattr() function shall set the parameters associated with the terminal referred to by the
open file descriptor fildes (an open file descriptor associated with a terminal) from the termios
structure referenced by termios_p as follows:

• If optional_actions is TCSANOW, the change shall occur immediately.

• If optional_actions is TCSADRAIN, the change shall occur after all output written to fildes is
transmitted. This function should be used when changing parameters that affect output.

• If optional_actions is TCSAFLUSH, the change shall occur after all output written to fildes is
transmitted, and all input so far received but not read shall be discarded before the change
is made.

If the output baud rate stored in the termios structure pointed to by termios_p is the zero baud
rate, B0, the modem control lines shall no longer be asserted. Normally, this shall disconnect the
line.

If the input baud rate stored in the termios structure pointed to by termios_p is 0, the input baud
rate given to the hardware is the same as the output baud rate stored in the termios structure.

The tcsetattr() function shall return successfully if it was able to perform any of the requested
actions, even if some of the requested actions could not be performed. It shall set all the
attributes that the implementation supports as requested and leave all the attributes not
supported by the implementation unchanged. If no part of the request can be honored, it shall
return −1 and set errno to [EINVAL]. If the input and output baud rates differ and are a
combination that is not supported, neither baud rate shall be changed. A subsequent call to
tcgetattr() shall return the actual state of the terminal device (reflecting both the changes made
and not made in the previous tcsetattr() call). The tcsetattr() function shall not change the values
found in the termios structure under any circumstances.

The effect of tcsetattr() is undefined if the value of the termios structure pointed to by termios_p
was not derived from the result of a call to tcgetattr() on fildes; an application should modify
only fields and flags defined by this volume of IEEE Std 1003.1-200x between the call to
tcgetattr() and tcsetattr(), leaving all other fields and flags unmodified.

No actions defined by this volume of IEEE Std 1003.1-200x, other than a call to tcsetattr() or a
close of the last file descriptor in the system associated with this terminal device, shall cause any
of the terminal attributes defined by this volume of IEEE Std 1003.1-200x to change.

If tcsetattr() is called from a process which is a member of a background process group on a fildes
associated with its controlling terminal:

• If the calling process is blocking or ignoring SIGTTOU signals, the operation completes
normally and no signal is sent.

• Otherwise, a SIGTTOU signal shall be sent to the process group.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1587

48872

48873

48874

48875

48876

48877

48878

48879

48880

48881

48882

48883

48884

48885

48886

48887

48888

48889

48890

48891

48892

48893

48894

48895

48896

48897

48898

48899

48900

48901

48902

48903

48904

48905

48906

48907

48908

48909

48910

48911

48912

48913

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

tcsetattr() System Interfaces

RETURN VALUE
Upon successful completion, 0 shall be returned. Otherwise, −1 shall be returned and errno set to
indicate the error.

ERRORS
The tcsetattr() function shall fail if:

[EBADF] The fildes argument is not a valid file descriptor.

[EINTR] A signal interrupted tcsetattr().

[EINVAL] The optional_actions argument is not a supported value, or an attempt was
made to change an attribute represented in the termios structure to an
unsupported value.

[ENOTTY] The file associated with fildes is not a terminal.

The tcsetattr() function may fail if:

[EIO] The process group of the writing process is orphaned, and the writing process
is not ignoring or blocking SIGTTOU.

EXAMPLES
None.

APPLICATION USAGE
If trying to change baud rates, applications should call tcsetattr() then call tcgetattr() in order to
determine what baud rates were actually selected.

RATIONALE
The tcsetattr() function can be interrupted in the following situations:

• It is interrupted while waiting for output to drain.

• It is called from a process in a background process group and SIGTTOU is caught.

See also the RATIONALE section in tcgetattr().

FUTURE DIRECTIONS
Using an input baud rate of 0 to set the input rate equal to the output rate may not necessarily be
supported in a future version of this volume of IEEE Std 1003.1-200x.

SEE ALSO
cfgetispeed(), tcgetattr(), the Base Definitions volume of IEEE Std 1003.1-200x, Chapter 11,
General Terminal Interface, <termios.h>, <unistd.h>

CHANGE HISTORY
First released in Issue 3. Included for alignment with the POSIX.1-1988 standard.

Issue 6
The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• In the DESCRIPTION, text previously conditional on _POSIX_JOB_CONTROL is now
mandated. This is a FIPS requirement.

• The [EIO] error is added.

1588 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

48914

48915

48916

48917

48918

48919

48920

48921

48922

48923

48924

48925

48926

48927

48928

48929

48930

48931

48932

48933

48934

48935

48936

48937

48938

48939

48940

48941

48942

48943

48944

48945

48946

48947

48948

48949

48950

48951

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces tcsetattr()

In the DESCRIPTION, the text describing use of tcsetattr() from a process which is a member of
a background process group is clarified.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1589

48952

48953

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

tcsetpgrp() System Interfaces

NAME
tcsetpgrp — set the foreground process group ID

SYNOPSIS
#include <unistd.h>

int tcsetpgrp(int fildes, p id_t pgid_id);

DESCRIPTION
If the process has a controlling terminal, tcsetpgrp() shall set the foreground process group ID
associated with the terminal to pgid_id. The application shall ensure that the file associated with
fildes is the controlling terminal of the calling process and the controlling terminal is currently
associated with the session of the calling process. The application shall ensure that the value of
pgid_id matches a process group ID of a process in the same session as the calling process.

Attempts to use tcsetpgrp() from a process which is a member of a background process group on
a fildes associated with its controlling terminal shall cause the process group to be sent a
SIGTTOU signal. If the calling process is blocking or ignoring SIGTTOU signals, the process
shall be allowed to perform the operation, and no signal is sent.

RETURN VALUE
Upon successful completion, 0 shall be returned. Otherwise, −1 shall be returned and errno set to
indicate the error.

ERRORS
The tcsetpgrp() function shall fail if:

[EBADF] The fildes argument is not a valid file descriptor.

[EINVAL] This implementation does not support the value in the pgid_id argument.

[ENOTTY] The calling process does not have a controlling terminal, or the file is not the
controlling terminal, or the controlling terminal is no longer associated with
the session of the calling process.

[EPERM] The value of pgid_id is a value supported by the implementation, but does not
match the process group ID of a process in the same session as the calling
process.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
tcgetpgrp(), the Base Definitions volume of IEEE Std 1003.1-200x, <sys/types.h>, <unistd.h>

CHANGE HISTORY
First released in Issue 3. Included for alignment with the POSIX.1-1988 standard.

1590 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

48954

48955

48956

48957

48958

48959

48960

48961

48962

48963

48964

48965

48966

48967

48968

48969

48970

48971

48972

48973

48974

48975

48976

48977

48978

48979

48980

48981

48982

48983

48984

48985

48986

48987

48988

48989

48990

48991

48992

48993

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces tcsetpgrp()

Issue 6
In the SYNOPSIS, the inclusion of <sys/types.h> is no longer required.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
required for conforming implementations of previous POSIX specifications, it was not
required for UNIX applications.

• In the DESCRIPTION and ERRORS sections, text previously conditional on
_POSIX_JOB_CONTROL is now mandated. This is a FIPS requirement.

The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

The Open Group Corrigendum U047/4 is applied.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1591

48994

48995

48996

48997

48998

48999

49000

49001

49002

49003

49004

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

tdelete() System Interfaces

NAME
tdelete, tfind, tsearch, twalk — manage a binary search tree

SYNOPSIS
XSI #include <search.h>

void *tdelete(const void *restrict key, v oid **restrict rootp,
int(* compar)(const void *, const void *));

void *tfind(const void * key, v oid *const * rootp,
int(* compar)(const void *, const void *));

void *tsearch(const void * key, v oid ** rootp,
int (* compar)(const void *, const void *));

void twalk(const void * root,
void (* action)(const void *, VISIT, int));

DESCRIPTION
The tdelete(), tfind(), tsearch(), and twalk() functions manipulate binary search trees.
Comparisons are made with a user-supplied routine, the address of which is passed as the
compar argument. This routine is called with two arguments, which are the pointers to the
elements being compared. The application shall ensure that the user-supplied routine returns an
integer less than, equal to, or greater than 0, according to whether the first argument is to be
considered less than, equal to, or greater than the second argument. The comparison function
need not compare every byte, so arbitrary data may be contained in the elements in addition to
the values being compared.

The tsearch() function shall build and access the tree. The key argument is a pointer to an element
to be accessed or stored. If there is a node in the tree whose element is equal to the value pointed
to by key, a pointer to this found node shall be returned. Otherwise, the value pointed to by key
shall be inserted (that is, a new node is created and the value of key is copied to this node), and a
pointer to this node returned. Only pointers are copied, so the application shall ensure that the
calling routine stores the data. The rootp argument points to a variable that points to the root
node of the tree. A null pointer value for the variable pointed to by rootp denotes an empty tree;
in this case, the variable shall be set to point to the node which shall be at the root of the new
tree.

Like tsearch(), tfind() shall search for a node in the tree, returning a pointer to it if found.
However, if it is not found, tfind() shall return a null pointer. The arguments for tfind() are the
same as for tsearch().

The tdelete() function shall delete a node from a binary search tree. The arguments are the same
as for tsearch(). The variable pointed to by rootp shall be changed if the deleted node was the
root of the tree. The tdelete() function shall return a pointer to the parent of the deleted node, or
a null pointer if the node is not found.

The twalk() function shall traverse a binary search tree. The root argument is a pointer to the root
node of the tree to be traversed. (Any node in a tree may be used as the root for a walk below
that node.) The argument action is the name of a routine to be invoked at each node. This routine
is, in turn, called with three arguments. The first argument shall be the address of the node being
visited. The structure pointed to by this argument is unspecified and shall not be modified by
the application, but it shall be possible to cast a pointer-to-node into a pointer-to-pointer-to-
element to access the element stored in the node. The second argument shall be a value from an
enumeration data type:

typedef enum { preorder, postorder, endorder, leaf } VISIT;

1592 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

49005

49006

49007

49008

49009

49010

49011

49012

49013

49014

49015

49016

49017

49018

49019

49020

49021

49022

49023

49024

49025

49026

49027

49028

49029

49030

49031

49032

49033

49034

49035

49036

49037

49038

49039

49040

49041

49042

49043

49044

49045

49046

49047

49048

49049

49050

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces tdelete()

(defined in <search.h>), depending on whether this is the first, second, or third time that the
node is visited (during a depth-first, left-to-right traversal of the tree), or whether the node is a
leaf. The third argument shall be the level of the node in the tree, with the root being level 0.

If the calling function alters the pointer to the root, the result is undefined.

RETURN VALUE
If the node is found, both tsearch() and tfind() shall return a pointer to it. If not, tfind() shall
return a null pointer, and tsearch() shall return a pointer to the inserted item.

A null pointer shall be returned by tsearch() if there is not enough space available to create a new
node.

A null pointer shall be returned by tdelete(), tfind(), and tsearch() if rootp is a null pointer on
entry.

The tdelete() function shall return a pointer to the parent of the deleted node, or a null pointer if
the node is not found.

The twalk() function shall not return a value.

ERRORS
No errors are defined.

EXAMPLES
The following code reads in strings and stores structures containing a pointer to each string and
a count of its length. It then walks the tree, printing out the stored strings and their lengths in
alphabetical order.

#include <search.h>
#include <string.h>
#include <stdio.h>

#define STRSZ 10000
#define NODSZ 500

struct node { /* Pointers to these are stored in the tree. */
char *string;
int length;

};

char string_space[STRSZ]; /* Space to store strings. */
struct node nodes[NODSZ]; /* Nodes to store. */
void *root = NULL; /* This points to the root. */

int main(int argc, char *argv[])
{

char *strptr = s tring_space;
struct node *nodeptr = nodes;
void print_node(const void *, VISIT, int);
int i = 0, n ode_compare(const void *, const void *);

while (gets(strptr) != NULL && i++ < NODSZ) {
/* Set node. */
nodeptr −>string = strptr;
nodeptr −>length = strlen(strptr);
/* Put node into the tree. */
(void) tsearch((void *)nodeptr, (void **)&root,

node_compare);
/* Adjust pointers, so we do not overwrite tree. */
strptr += nodeptr −>length + 1;

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1593

49051

49052

49053

49054

49055

49056

49057

49058

49059

49060

49061

49062

49063

49064

49065

49066

49067

49068

49069

49070

49071

49072

49073

49074

49075

49076

49077

49078

49079

49080

49081

49082

49083

49084

49085

49086

49087

49088

49089

49090

49091

49092

49093

49094

49095

49096

49097

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

tdelete() System Interfaces

nodeptr++;
}
twalk(root, print_node);
return 0;

}

/*
* T his routine compares two nodes, based on an
* a lphabetical ordering of the string field.
*/

int
node_compare(const void *node1, const void *node2)
{

return strcmp(((const struct node *) node1) −>string,
((const struct node *) node2) −>string);

}

/*
* T his routine prints out a node, the second time
* t walk encounters it or if it is a leaf.
*/

void
print_node(const void *ptr, VISIT order, int level)
{

const struct node *p = *(const struct node **) ptr;

if (order == postorder order == leaf) {
(void) printf("string = %s, length = %d\n",

p->string, p->length);
}

}

APPLICATION USAGE
The root argument to twalk() is one level of indirection less than the rootp arguments to tdelete()
and tsearch().

There are two nomenclatures used to refer to the order in which tree nodes are visited. The
tsearch() function uses preorder, postorder, and endorder to refer respectively to visiting a node
before any of its children, after its left child and before its right, and after both its children. The
alternative nomenclature uses preorder, inorder, and postorder to refer to the same visits, which
could result in some confusion over the meaning of postorder.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
hcreate(), lsearch(), the Base Definitions volume of IEEE Std 1003.1-200x, <search.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The last paragraph of the DESCRIPTION was included as an APPLICATION USAGE note in
previous issues.

1594 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

49098

49099

49100

49101

49102

49103

49104

49105

49106

49107

49108

49109

49110

49111

49112

49113

49114

49115

49116

49117

49118

49119

49120

49121

49122

49123

49124

49125

49126

49127

49128

49129

49130

49131

49132

49133

49134

49135

49136

49137

49138

49139

49140

49141

49142

49143

49144

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces tdelete()

Issue 6
The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

The restrict keyword is added to the tdelete() prototype for alignment with the
ISO/IEC 9899: 1999 standard.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1595

49145

49146

49147

49148

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

telldir() System Interfaces

NAME
telldir — current location of a named directory stream

SYNOPSIS
XSI #include <dirent.h>

long telldir(DIR * dirp);

DESCRIPTION
The telldir() function shall obtain the current location associated with the directory stream
specified by dirp.

If the most recent operation on the directory stream was a seekdir(), the directory position
returned from the telldir() shall be the same as that supplied as a loc argument for seekdir().

RETURN VALUE
Upon successful completion, telldir() shall return the current location of the specified directory
stream.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fdopendir(), readdir(), seekdir(), the Base Definitions volume of IEEE Std 1003.1-200x, <dirent.h>

CHANGE HISTORY
First released in Issue 2.

1596 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

49149

49150

49151

49152

49153

49154

49155

49156

49157

49158

49159

49160

49161

49162

49163

49164

49165

49166

49167

49168

49169

49170

49171

49172

49173

49174

49175

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces tempnam()

NAME
tempnam — create a name for a temporary file

SYNOPSIS
OB XSI #include <stdio.h>

char *tempnam(const char * dir, c onst char * pfx);

DESCRIPTION
The tempnam() function shall generate a pathname that may be used for a temporary file.

The tempnam() function allows the user to control the choice of a directory. The dir argument
points to the name of the directory in which the file is to be created. If dir is a null pointer or
points to a string which is not a name for an appropriate directory, the path prefix defined as
P_tmpdir in the <stdio.h> header shall be used. If that directory is not accessible, an
implementation-defined directory may be used.

Many applications prefer their temporary files to have certain initial letter sequences in their
names. The pfx argument should be used for this. This argument may be a null pointer or point
to a string of up to five bytes to be used as the beginning of the filename.

Some implementations of tempnam() may use tmpnam() internally. On such implementations, if
called more than {TMP_MAX} times in a single process, the behavior is implementation-defined.

RETURN VALUE
Upon successful completion, tempnam() shall allocate space for a string, put the generated
pathname in that space, and return a pointer to it. The pointer shall be suitable for use in a
subsequent call to free(). Otherwise, it shall return a null pointer and set errno to indicate the
error.

ERRORS
The tempnam() function shall fail if:

[ENOMEM] Insufficient storage space is available.

EXAMPLES

Generating a Pathname

The following example generates a pathname for a temporary file in directory /tmp, with the
prefix file. After the filename has been created, the call to free() deallocates the space used to
store the filename.

#include <stdio.h>
#include <stdlib.h>
...
char *directory = "/tmp";
char *fileprefix = "file";
char *file;

file = tempnam(directory, fileprefix);
free(file);

APPLICATION USAGE
This function only creates pathnames. It is the application’s responsibility to create and remove
the files. Between the time a pathname is created and the file is opened, it is possible for some
other process to create a file with the same name. Applications may find tmpfile() more useful.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1597

49176

49177

49178

49179

49180

49181

49182

49183

49184

49185

49186

49187

49188

49189

49190

49191

49192

49193

49194

49195

49196

49197

49198

49199

49200

49201

49202

49203

49204

49205

49206

49207

49208

49209

49210

49211

49212

49213

49214

49215

49216

49217

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

tempnam() System Interfaces

Applications should use the tmpfile(), mkdtemp(), or mkstemp() functions instead of the
obsolescent tempnam() function.

RATIONALE
None.

FUTURE DIRECTIONS
The tempnam() function may be removed in a future version.

SEE ALSO
fopen(), free(), open(), tmpfile(), tmpnam(), unlink(), the Base Definitions volume of
IEEE Std 1003.1-200x, <stdio.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The last paragraph of the DESCRIPTION was included as an APPLICATION USAGE note in
previous issues.

Issue 7
The tempnam() function is marked obsolescent.

1598 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

49218

49219

49220

49221

49222

49223

49224

49225

49226

49227

49228

49229

49230

49231

49232

49233

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces tfind()

NAME
tfind — search binary search tree

SYNOPSIS
XSI #include <search.h>

void *tfind(const void * key, v oid *const * rootp,
int (* compar)(const void *, const void *));

DESCRIPTION
Refer to tdelete().

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1599

49234

49235

49236

49237

49238

49239

49240

49241

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

tgamma() System Interfaces

NAME
tgamma, tgammaf, tgammal — compute gamma() function

SYNOPSIS
#include <math.h>

double tgamma(double x);
float tgammaf(float x);
long double tgammal(long double x);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

These functions shall compute the gamma() function of x.

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-
zero, an error has occurred.

RETURN VALUE
Upon successful completion, these functions shall return Gamma(x).

CX If x is a negative integer, a domain error may occur and either a NaN (if supported) or an
MX implementation-defined value shall be returned. On systems that support the IEC 60559

Floating-Point option, a domain error shall occur and a NaN shall be returned.

If x is ±0, tgamma(), tgammaf(), and tgammal() shall return ±HUGE_VAL, ±HUGE_VALF, and
MX ±HUGE_VALL, respectively. On systems that support the IEC 60559 Floating-Point option, a

pole error shall occur;
CX otherwise, a pole error may occur.

If the correct value would cause overflow, a range error shall occur and tgamma(), tgammaf(),
and tgammal() shall return ±HUGE_VAL, ±HUGE_VALF, or ±HUGE_VALL, respectively, with
the same sign as the correct value of the function.

MX If x is NaN, a NaN shall be returned.

If x is +Inf, x shall be returned.

If x is −Inf, a domain error shall occur, and either a NaN (if supported), or an implementation-
defined value shall be returned.

ERRORS
These functions shall fail if:

MX Domain Error The value of x is a negative integer, or x is −Inf.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [EDOM]. If the integer expression (math_errhandling
& MATH_ERREXCEPT) is non-zero, then the invalid floating-point exception
shall be raised.

MX Pole Error The value of x is zero.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the divide-by-zero

1600 System Interfaces, Issue 7— C

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces tgamma()

floating-point exception shall be raised.

Range Error The value overflows.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the overflow
floating-point exception shall be raised.

These functions may fail if:

Domain Error The value of x is a negative integer.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [EDOM]. If the integer expression (math_errhandling
& MATH_ERREXCEPT) is non-zero, then the invalid floating-point exception
shall be raised.

Pole Error The value of x is zero.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the divide-by-zero
floating-point exception shall be raised.

EXAMPLES
None.

APPLICATION USAGE
For IEEE Std 754-1985 double, overflow happens when 0 < x < 1/DBL_MAX, and 171.7 < x.

On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling &
MATH_ERREXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
This function is named tgamma() in order to avoid conflicts with the historical gamma() and
lgamma() functions.

FUTURE DIRECTIONS
It is possible that the error response for a negative integer argument may be changed to a pole
error and a return value of ±Inf.

SEE ALSO
feclearexcept(), fetestexcept(), lgamma(), the Base Definitions volume of IEEE Std 1003.1-200x,
Section 4.18, Treatment of Error Conditions for Mathematical Functions, <math.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/65 is applied, correcting the third
paragraph in the RETURN VALUE section.

Issue 7
ISO/IEC 9899: 1999 standard, Technical Corrigendum 2 #52 (SD5-XSH-ERN-85) is applied.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1601

49285

49286

49287

49288

49289

49290

49291

49292

49293

49294

49295

49296

49297

49298

49299

49300

49301

49302

49303

49304

49305

49306

49307

49308

49309

49310

49311

49312

49313

49314

49315

49316

49317

49318

49319

49320

49321

49322

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

time() System Interfaces

NAME
time — get time

SYNOPSIS
#include <time.h>

time_t time(time_t * tloc);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

CX The time() function shall return the value of time in seconds since the Epoch.

The tloc argument points to an area where the return value is also stored. If tloc is a null pointer,
no value is stored.

RETURN VALUE
Upon successful completion, time() shall return the value of time. Otherwise, (time_t)−1 shall be
returned.

ERRORS
No errors are defined.

EXAMPLES

Getting the Current Time

The following example uses the time() function to calculate the time elapsed, in seconds, since
the Epoch, localtime() to convert that value to a broken-down time, and asctime() to convert the
broken-down time values into a printable string.

#include <stdio.h>
#include <time.h>

int main(void)
{
time_t result;

result = time(NULL);
printf("%s%ju secs since the Epoch\n",

asctime(localtime(&result)),
(uintmax_t)result);

return(0);
}

This example writes the current time to stdout in a form like this:

Wed Jun 26 10:32:15 1996
835810335 secs since the Epoch

1602 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

49323

49324

49325

49326

49327

49328

49329

49330

49331

49332

49333

49334

49335

49336

49337

49338

49339

49340

49341

49342

49343

49344

49345

49346

49347

49348

49349

49350

49351

49352

49353

49354

49355

49356

49357

49358

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces time()

Timing an Event

The following example gets the current time, prints it out in the user’s format, and prints the
number of minutes to an event being timed.

#include <time.h>
#include <stdio.h>
...
time_t now;
int minutes_to_event;
...
time(&now);
minutes_to_event = ...;
printf("The time is ");
puts(asctime(localtime(&now)));
printf("There are %d minutes to the event.\n",

minutes_to_event);
...

APPLICATION USAGE
None.

RATIONALE
The time() function returns a value in seconds (type time_t) while times() returns a set of values
in clock ticks (type clock_t). Some historical implementations, such as 4.3 BSD, have
mechanisms capable of returning more precise times (see below). A generalized timing scheme
to unify these various timing mechanisms has been proposed but not adopted.

Implementations in which time_t is a 32-bit signed integer (many historical implementations)
fail in the year 2038. IEEE Std 1003.1-200x does not address this problem. However, the use of
the time_t type is mandated in order to ease the eventual fix.

The use of the <time.h> header instead of <sys/types.h> allows compatibility with the ISO C
standard.

Many historical implementations (including Version 7) and the 1984 /usr/group standard use
long instead of time_t. This volume of IEEE Std 1003.1-200x uses the latter type in order to
agree with the ISO C standard.

4.3 BSD includes time() only as an alternate function to the more flexible gettimeofday() function.

FUTURE DIRECTIONS
In a future version of this volume of IEEE Std 1003.1-200x, time_t is likely to be required to be
capable of representing times far in the future. Whether this will be mandated as a 64-bit type or
a requirement that a specific date in the future be representable (for example, 10000 AD) is not
yet determined. Systems purchased after the approval of this volume of IEEE Std 1003.1-200x
should be evaluated to determine whether their lifetime will extend past 2038.

SEE ALSO
asctime(), clock(), ctime(), difftime(), gettimeofday(), gmtime(), localtime(), mktime(), strftime(),
strptime(), utime(), the Base Definitions volume of IEEE Std 1003.1-200x, <time.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
Extensions beyond the ISO C standard are marked.

The EXAMPLES, RATIONALE, and FUTURE DIRECTIONS sections are added.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1603

49359

49360

49361

49362

49363

49364

49365

49366

49367

49368

49369

49370

49371

49372

49373

49374

49375

49376

49377

49378

49379

49380

49381

49382

49383

49384

49385

49386

49387

49388

49389

49390

49391

49392

49393

49394

49395

49396

49397

49398

49399

49400

49401

49402

49403

49404

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

timer_create() System Interfaces

NAME
timer_create — create a per-process timer

SYNOPSIS
CX #include <signal.h>

#include <time.h>

int timer_create(clockid_t clockid, s truct sigevent *restrict evp,
timer_t *restrict timerid);

DESCRIPTION
The timer_create() function shall create a per-process timer using the specified clock, clock_id, as
the timing base. The timer_create() function shall return, in the location referenced by timerid, a
timer ID of type timer_t used to identify the timer in timer requests. This timer ID shall be
unique within the calling process until the timer is deleted. The particular clock, clock_id, is
defined in <time.h>. The timer whose ID is returned shall be in a disarmed state upon return
from timer_create().

The evp argument, if non-NULL, points to a sigevent structure. This structure, allocated by the
application, defines the asynchronous notification to occur as specified in Section 2.4.1 when the
timer expires. If the evp argument is NULL, the effect is as if the evp argument pointed to a
sigevent structure with the sigev_notify member having the value SIGEV_SIGNAL, the
sigev_signo having a default signal number, and the sigev_value member having the value of the
timer ID.

Each implementation shall define a set of clocks that can be used as timing bases for per-process
MON timers. All implementations shall support a clock_id of CLOCK_REALTIME. If the Monotonic

Clock option is supported, implementations shall support a clock_id of CLOCK_MONOTONIC.

Per-process timers shall not be inherited by a child process across a fork() and shall be disarmed
and deleted by an exec.

CPT If _POSIX_CPUTIME is defined, implementations shall support clock_id values representing the
CPU-time clock of the calling process.

TCT If _POSIX_THREAD_CPUTIME is defined, implementations shall support clock_id values
representing the CPU-time clock of the calling thread.

CPT|TCT It is implementation-defined whether a timer_create() function will succeed if the value defined
by clock_id corresponds to the CPU-time clock of a process or thread different from the process
or thread invoking the function.

TSA If evp−>sigev_sigev_notify is SIGEV_THREAD and sev−>sigev_notify_attributes is not NULL, if the
attribute pointed to by sev−>sigev_notify_attributes has a thread stack address specified by a call
to pthread_attr_setstack(), the results are unspecified if the signal is generated more than once.

RETURN VALUE
If the call succeeds, timer_create() shall return zero and update the location referenced by timerid
to a timer_t, which can be passed to the per-process timer calls. If an error occurs, the function
shall return a value of −1 and set errno to indicate the error. The value of timerid is undefined if
an error occurs.

ERRORS
The timer_create() function shall fail if:

1604 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

49405

49406

49407

49408

49409

49410

49411

49412

49413

49414

49415

49416

49417

49418

49419

49420

49421

49422

49423

49424

49425

49426

49427

49428

49429

49430

49431

49432

49433

49434

49435

49436

49437

49438

49439

49440

49441

49442

49443

49444

49445

49446

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces timer_create()

[EAGAIN] The system lacks sufficient signal queuing resources to honor the request.

[EAGAIN] The calling process has already created all of the timers it is allowed by this
implementation.

[EINVAL] The specified clock ID is not defined.

CPT|TCT [ENOTSUP] The implementation does not support the creation of a timer attached to the
CPU-time clock that is specified by clock_id and associated with a process or
thread different from the process or thread invoking timer_create().

EXAMPLES
None.

APPLICATION USAGE
If a timer is created which has evp−>sigev_sigev_notify set to SIGEV_THREAD and the attribute
pointed to by evp−>sigev_notify_attributes has a thread stack address specified by a call to
pthread_attr_setstack(), the memory dedicated as a thread stack cannot be recovered. The reason
for this is that the threads created in response to a timer expiration are created detached, or in an
unspecified way if the thread attribute’s detachstate is PTHREAD_CREATE_JOINABLE. In
neither case is it valid to call pthread_join(), which makes it impossible to determine the lifetime
of the created thread which thus means the stack memory cannot be reused.

RATIONALE

Periodic Timer Overrun and Resource Allocation

The specified timer facilities may deliver realtime signals (that is, queued signals) on
implementations that support this option. Since realtime applications cannot afford to lose
notifications of asynchronous events, like timer expirations or asynchronous I/O completions, it
must be possible to ensure that sufficient resources exist to deliver the signal when the event
occurs. In general, this is not a difficulty because there is a one-to-one correspondence between a
request and a subsequent signal generation. If the request cannot allocate the signal delivery
resources, it can fail the call with an [EAGAIN] error.

Periodic timers are a special case. A single request can generate an unspecified number of
signals. This is not a problem if the requesting process can service the signals as fast as they are
generated, thus making the signal delivery resources available for delivery of subsequent
periodic timer expiration signals. But, in general, this cannot be assured—processing of periodic
timer signals may ‘‘overrun’’; that is, subsequent periodic timer expirations may occur before the
currently pending signal has been delivered.

Also, for signals, according to the POSIX.1-1990 standard, if subsequent occurrences of a
pending signal are generated, it is implementation-defined whether a signal is delivered for each
occurrence. This is not adequate for some realtime applications. So a mechanism is required to
allow applications to detect how many timer expirations were delayed without requiring an
indefinite amount of system resources to store the delayed expirations.

The specified facilities provide for an overrun count. The overrun count is defined as the
number of extra timer expirations that occurred between the time a timer expiration signal is
generated and the time the signal is delivered. The signal-catching function, if it is concerned
with overruns, can retrieve this count on entry. With this method, a periodic timer only needs
one ‘‘signal queuing resource’’ that can be allocated at the time of the timer_create() function call.

A function is defined to retrieve the overrun count so that an application need not allocate static
storage to contain the count, and an implementation need not update this storage
asynchronously on timer expirations. But, for some high-frequency periodic applications, the
overhead of an additional system call on each timer expiration may be prohibitive. The
functions, as defined, permit an implementation to maintain the overrun count in user space,
associated with the timerid. The timer_getoverrun() function can then be implemented as a macro

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1605

49447

49448

49449

49450

49451

49452

49453

49454

49455

49456

49457

49458

49459

49460

49461

49462

49463

49464

49465

49466

49467

49468

49469

49470

49471

49472

49473

49474

49475

49476

49477

49478

49479

49480

49481

49482

49483

49484

49485

49486

49487

49488

49489

49490

49491

49492

49493

49494

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

timer_create() System Interfaces

that uses the timerid argument (which may just be a pointer to a user space structure containing
the counter) to locate the overrun count with no system call overhead. Other implementations,
less concerned with this class of applications, can avoid the asynchronous update of user space
by maintaining the count in a system structure at the cost of the extra system call to obtain it.

Timer Expiration Signal Parameters

The Realtime Signals Extension option supports an application-specific datum that is delivered
to the extended signal handler. This value is explicitly specified by the application, along with
the signal number to be delivered, in a sigevent structure. The type of the application-defined
value can be either an integer constant or a pointer. This explicit specification of the value, as
opposed to always sending the timer ID, was selected based on existing practice.

It is common practice for realtime applications (on non-POSIX systems or realtime extended
POSIX systems) to use the parameters of event handlers as the case label of a switch statement or
as a pointer to an application-defined data structure. Since timer_ids are dynamically allocated
by the timer_create() function, they can be used for neither of these functions without additional
application overhead in the signal handler; for example, to search an array of saved timer IDs to
associate the ID with a constant or application data structure.

FUTURE DIRECTIONS
None.

SEE ALSO
clock_getres(), timer_delete(), timer_getoverrun(), the Base Definitions volume of
IEEE Std 1003.1-200x, <time.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

Issue 6
The timer_create() function is marked as part of the Timers option.

The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Timers option.

CPU-time clocks are added for alignment with IEEE Std 1003.1d-1999.

The DESCRIPTION is updated for alignment with IEEE Std 1003.1j-2000 by adding the
requirement for the CLOCK_MONOTONIC clock under the Monotonic Clock option.

The restrict keyword is added to the timer_create() prototype for alignment with the
ISO/IEC 9899: 1999 standard.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/138 is applied, updating the
DESCRIPTION and APPLICATION USAGE sections to describe the case when a timer is created
with the notification method set to SIGEV_THREAD.

Issue 7
The timer_create() function is moved from the Timers option to the Base.

1606 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

49495

49496

49497

49498

49499

49500

49501

49502

49503

49504

49505

49506

49507

49508

49509

49510

49511

49512

49513

49514

49515

49516

49517

49518

49519

49520

49521

49522

49523

49524

49525

49526

49527

49528

49529

49530

49531

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces timer_delete()

NAME
timer_delete — delete a per-process timer

SYNOPSIS
CX #include <time.h>

int timer_delete(timer_t timerid);

DESCRIPTION
The timer_delete() function deletes the specified timer, timerid, previously created by the
timer_create() function. If the timer is armed when timer_delete() is called, the behavior shall be
as if the timer is automatically disarmed before removal. The disposition of pending signals for
the deleted timer is unspecified.

RETURN VALUE
If successful, the timer_delete() function shall return a value of zero. Otherwise, the function shall
return a value of −1 and set errno to indicate the error.

ERRORS
The timer_delete() function may fail if:

[EINVAL] The timer ID specified by timerid is not a valid timer ID.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
timer_create(), the Base Definitions volume of IEEE Std 1003.1-200x, <time.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

Issue 6
The timer_delete() function is marked as part of the Timers option.

The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Timers option.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/139 is applied, updating the ERRORS
section so that the [EINVAL] error becomes optional.

Issue 7
The timer_delete() function is moved from the Timers option to the Base.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1607

49532

49533

49534

49535

49536

49537

49538

49539

49540

49541

49542

49543

49544

49545

49546

49547

49548

49549

49550

49551

49552

49553

49554

49555

49556

49557

49558

49559

49560

49561

49562

49563

49564

49565

49566

49567

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

timer_getoverrun() System Interfaces

NAME
timer_getoverrun, timer_gettime, timer_settime — per-process timers

SYNOPSIS
CX #include <time.h>

int timer_getoverrun(timer_t timerid);
int timer_gettime(timer_t timerid, s truct itimerspec * value);
int timer_settime(timer_t timerid, i nt flags,

const struct itimerspec *restrict value,
struct itimerspec *restrict ovalue);

DESCRIPTION
The timer_gettime() function shall store the amount of time until the specified timer, timerid,
expires and the reload value of the timer into the space pointed to by the value argument. The
it_value member of this structure shall contain the amount of time before the timer expires, or
zero if the timer is disarmed. This value is returned as the interval until timer expiration, even if
the timer was armed with absolute time. The it_interval member of value shall contain the reload
value last set by timer_settime().

The timer_settime() function shall set the time until the next expiration of the timer specified by
timerid from the it_value member of the value argument and arm the timer if the it_value member
of value is non-zero. If the specified timer was already armed when timer_settime() is called, this
call shall reset the time until next expiration to the value specified. If the it_value member of value
is zero, the timer shall be disarmed. The effect of disarming or resetting a timer with pending
expiration notifications is unspecified.

If the flag TIMER_ABSTIME is not set in the argument flags, timer_settime() shall behave as if the
time until next expiration is set to be equal to the interval specified by the it_value member of
value. That is, the timer shall expire in it_value nanoseconds from when the call is made. If the
flag TIMER_ABSTIME is set in the argument flags, timer_settime() shall behave as if the time
until next expiration is set to be equal to the difference between the absolute time specified by
the it_value member of value and the current value of the clock associated with timerid. That is,
the timer shall expire when the clock reaches the value specified by the it_value member of value.
If the specified time has already passed, the function shall succeed and the expiration
notification shall be made.

The reload value of the timer shall be set to the value specified by the it_interval member of
value. When a timer is armed with a non-zero it_interval, a periodic (or repetitive) timer is
specified.

Time values that are between two consecutive non-negative integer multiples of the resolution of
the specified timer shall be rounded up to the larger multiple of the resolution. Quantization
error shall not cause the timer to expire earlier than the rounded time value.

If the argument ovalue is not NULL, the timer_settime() function shall store, in the location
referenced by ovalue, a value representing the previous amount of time before the timer would
have expired, or zero if the timer was disarmed, together with the previous timer reload value.
Timers shall not expire before their scheduled time.

Only a single signal shall be queued to the process for a given timer at any point in time. When a
timer for which a signal is still pending expires, no signal shall be queued, and a timer overrun
shall occur. When a timer expiration signal is delivered to or accepted by a process, the
timer_getoverrun() function shall return the timer expiration overrun count for the specified
timer. The overrun count returned contains the number of extra timer expirations that occurred

1608 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

49568

49569

49570

49571

49572

49573

49574

49575

49576

49577

49578

49579

49580

49581

49582

49583

49584

49585

49586

49587

49588

49589

49590

49591

49592

49593

49594

49595

49596

49597

49598

49599

49600

49601

49602

49603

49604

49605

49606

49607

49608

49609

49610

49611

49612

49613

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces timer_getoverrun()

between the time the signal was generated (queued) and when it was delivered or accepted, up
to but not including an implementation-defined maximum of {DELAYTIMER_MAX}. If the
number of such extra expirations is greater than or equal to {DELAYTIMER_MAX}, then the
overrun count shall be set to {DELAYTIMER_MAX}. The value returned by timer_getoverrun()
shall apply to the most recent expiration signal delivery or acceptance for the timer. If no
expiration signal has been delivered for the timer, the return value of timer_getoverrun() is
unspecified.

RETURN VALUE
If the timer_getoverrun() function succeeds, it shall return the timer expiration overrun count as
explained above.

If the timer_gettime() or timer_settime() functions succeed, a value of 0 shall be returned.

If an error occurs for any of these functions, the value −1 shall be returned, and errno set to
indicate the error.

ERRORS
The timer_settime() function shall fail if:

[EINVAL] A value structure specified a nanosecond value less than zero or greater than
or equal to 1 000 million, and the it_value member of that structure did not
specify zero seconds and nanoseconds.

These functions may fail if:

[EINVAL] The timerid argument does not correspond to an ID returned by timer_create()
but not yet deleted by timer_delete().

The timer_settime() function may fail if:

[EINVAL] The it_interval member of value is not zero and the timer was created with
notification by creation of a new thread (sigev_sigev_notify was
SIGEV_THREAD) and a fixed stack address has been set in the thread
attribute pointed to by sigev_notify_attributes.

EXAMPLES
None.

APPLICATION USAGE
Using fixed stack addresses is problematic when timer expiration is signalled by the creation of a
new thread. Since it cannot be assumed that the thread created for one expiration is finished
before the next expiration of the timer, it could happen that two threads use the same memory as
a stack at the same time. This is invalid and produces undefined results.

RATIONALE
Practical clocks tick at a finite rate, with rates of 100 hertz and 1 000 hertz being common. The
inverse of this tick rate is the clock resolution, also called the clock granularity, which in either
case is expressed as a time duration, being 10 milliseconds and 1 millisecond respectively for
these common rates. The granularity of practical clocks implies that if one reads a given clock
twice in rapid succession, one may get the same time value twice; and that timers must wait for
the next clock tick after the theoretical expiration time, to ensure that a timer never returns too
soon. Note also that the granularity of the clock may be significantly coarser than the resolution
of the data format used to set and get time and interval values. Also note that some
implementations may choose to adjust time and/or interval values to exactly match the ticks of
the underlying clock.

This volume of IEEE Std 1003.1-200x defines functions that allow an application to determine the
implementation-supported resolution for the clocks and requires an implementation to
document the resolution supported for timers and nanosleep() if they differ from the supported
clock resolution. This is more of a procurement issue than a runtime application issue.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1609

49614

49615

49616

49617

49618

49619

49620

49621

49622

49623

49624

49625

49626

49627

49628

49629

49630

49631

49632

49633

49634

49635

49636

49637

49638

49639

49640

49641

49642

49643

49644

49645

49646

49647

49648

49649

49650

49651

49652

49653

49654

49655

49656

49657

49658

49659

49660

49661

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

timer_getoverrun() System Interfaces

FUTURE DIRECTIONS
None.

SEE ALSO
clock_getres(), timer_create(), the Base Definitions volume of IEEE Std 1003.1-200x, <time.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

Issue 6
The timer_getoverrun(), timer_gettime(), and timer_settime() functions are marked as part of the
Timers option.

The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Timers option.

The [EINVAL] error condition is updated to include the following: ‘‘and the it_value member of
that structure did not specify zero seconds and nanoseconds.’’ This change is for IEEE PASC
Interpretation 1003.1 #89.

The DESCRIPTION for timer_getoverrun() is updated to clarify that ‘‘If no expiration signal has
been delivered for the timer, or if the Realtime Signals Extension is not supported, the return
value of timer_getoverrun() is unspecified’’.

The restrict keyword is added to the timer_settime() prototype for alignment with the
ISO/IEC 9899: 1999 standard.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/140 is applied, updating the ERRORS
section so that the mandatory [EINVAL] error (‘‘The timerid argument does not correspond to an
ID returned by timer_create() but not yet deleted by timer_delete()’’) becomes optional.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/141 is applied, updating the ERRORS
section to include an optional [EINVAL] error for the case when a timer is created with the
notification method set to SIGEV_THREAD. APPLICATION USAGE text is also added.

Issue 7
The timer_getoverrun(), timer_gettime(), and timer_settime() functions are moved from the Timers
option to the Base.

Functionality relating to the Realtime Signals Extension option is moved to the Base.

1610 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

49662

49663

49664

49665

49666

49667

49668

49669

49670

49671

49672

49673

49674

49675

49676

49677

49678

49679

49680

49681

49682

49683

49684

49685

49686

49687

49688

49689

49690

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

times() System Interfaces

...
void
start_clock()
{

st_time = times(&st_cpu);
}

/* This example assumes that the result of each subtraction
is within the range of values that can be represented in
an integer type. */

void
end_clock(char *msg)
{

en_time = times(&en_cpu);

fputs(msg,stdout);
printf("Real Time: %jd, User Time %jd, System Time %jd\n",

(intmax_t)(en_time - st_time),
(intmax_t)(en_cpu.tms_utime - st_cpu.tms_utime),
(intmax_t)(en_cpu.tms_stime - st_cpu.tms_stime));

}

APPLICATION USAGE
Applications should use sysconf(_SC_CLK_TCK) to determine the number of clock ticks per
second as it may vary from system to system.

RATIONALE
The accuracy of the times reported is intentionally left unspecified to allow implementations
flexibility in design, from uniprocessor to multi-processor networks.

The inclusion of times of child processes is recursive, so that a parent process may collect the
total times of all of its descendants. But the times of a child are only added to those of its parent
when its parent successfully waits on the child. Thus, it is not guaranteed that a parent process
can always see the total times of all its descendants; see also the discussion of the term
‘‘realtime’’ in alarm().

If the type clock_t is defined to be a signed 32-bit integer, it overflows in somewhat more than a
year if there are 60 clock ticks per second, or less than a year if there are 100. There are individual
systems that run continuously for longer than that. This volume of IEEE Std 1003.1-200x permits
an implementation to make the reference point for the returned value be the start-up time of the
process, rather than system start-up time.

The term ‘‘charge’’ in this context has nothing to do with billing for services. The operating
system accounts for time used in this way. That information must be correct, regardless of how
that information is used.

FUTURE DIRECTIONS
None.

SEE ALSO
alarm(), exec , fork(), sysconf(), time(), wait(), the Base Definitions volume of
IEEE Std 1003.1-200x, <sys/times.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

1612 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

49735

49736

49737

49738

49739

49740

49741

49742

49743

49744

49745

49746

49747

49748

49749

49750

49751

49752

49753

49754

49755

49756

49757

49758

49759

49760

49761

49762

49763

49764

49765

49766

49767

49768

49769

49770

49771

49772

49773

49774

49775

49776

49777

49778

49779

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces timezone()

NAME
timezone — difference from UTC and local standard time

SYNOPSIS
XSI #include <time.h>

extern long timezone;

DESCRIPTION
Refer to tzset().

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1613

49780

49781

49782

49783

49784

49785

49786

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

tmpfile() System Interfaces

NAME
tmpfile — create a temporary file

SYNOPSIS
#include <stdio.h>

FILE *tmpfile(void);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

The tmpfile() function shall create a temporary file and open a corresponding stream. The file
shall be automatically deleted when all references to the file are closed. The file is opened as in
fopen() for update (w+), except that implementations may restrict the permissions, either by
clearing the file mode bits or setting them to the value S_IRUSR | S_IWUSR.

CX In some implementations, a permanent file may be left behind if the process calling tmpfile() is
killed while it is processing a call to tmpfile().

An error message may be written to standard error if the stream cannot be opened.

RETURN VALUE
Upon successful completion, tmpfile() shall return a pointer to the stream of the file that is

CX created. Otherwise, it shall return a null pointer and set errno to indicate the error.

ERRORS
The tmpfile() function shall fail if:

CX [EINTR] A signal was caught during tmpfile().

CX [EMFILE] All file descriptors available to the process are currently open.

CX [ENFILE] The maximum allowable number of files is currently open in the system.

CX [ENOSPC] The directory or file system which would contain the new file cannot be
expanded.

CX [EOVERFLOW] The file is a regular file and the size of the file cannot be represented correctly
in an object of type off_t.

The tmpfile() function may fail if:

CX [EMFILE] {FOPEN_MAX} streams are currently open in the calling process.

CX [ENOMEM] Insufficient storage space is available.

EXAMPLES

Creating a Temporary File

The following example creates a temporary file for update, and returns a pointer to a stream for
the created file in the fp variable.

#include <stdio.h>
...
FILE *fp;

fp = tmpfile ();

1614 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

49787

49788

49789

49790

49791

49792

49793

49794

49795

49796

49797

49798

49799

49800

49801

49802

49803

49804

49805

49806

49807

49808

49809

49810

49811

49812

49813

49814

49815

49816

49817

49818

49819

49820

49821

49822

49823

49824

49825

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces tmpfile()

APPLICATION USAGE
It should be possible to open at least {TMP_MAX} temporary files during the lifetime of the
program (this limit may be shared with tmpnam()) and there should be no limit on the number
simultaneously open other than this limit and any limit on the number of open files
({FOPEN_MAX}).

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fopen(), mkdtemp(), tmpnam(), unlink(), the Base Definitions volume of IEEE Std 1003.1-200x,
<stdio.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
Large File Summit extensions are added.

The last two paragraphs of the DESCRIPTION were included as APPLICATION USAGE notes
in previous issues.

Issue 6
Extensions beyond the ISO C standard are marked.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• In the ERRORS section, the [EOVERFLOW] condition is added. This change is to support
large files.

• The [EMFILE] optional error condition is added.

The APPLICATION USAGE section is added for alignment with the ISO/IEC 9899: 1999
standard.

Issue 7
SD5-XBD-ERN-4 is applied, changing the definition of the [EMFILE] error.

Austin Group Interpretation 1003.1-2001 #025 is applied, clarifying that implementations may
restrict the permissions of the file created.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1615

49826

49827

49828

49829

49830

49831

49832

49833

49834

49835

49836

49837

49838

49839

49840

49841

49842

49843

49844

49845

49846

49847

49848

49849

49850

49851

49852

49853

49854

49855

49856

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

tmpnam() System Interfaces

NAME
tmpnam — create a name for a temporary file

SYNOPSIS
OB #include <stdio.h>

char *tmpnam(char * s);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

The tmpnam() function shall generate a string that is a valid filename and that is not the same as
the name of an existing file. The function is potentially capable of generating {TMP_MAX}
different strings, but any or all of them may already be in use by existing files and thus not be
suitable return values.

The tmpnam() function generates a different string each time it is called from the same process,
up to {TMP_MAX} times. If it is called more than {TMP_MAX} times, the behavior is
implementation-defined.

The implementation shall behave as if no function defined in this volume of
IEEE Std 1003.1-200x, except tempnam(), calls tmpnam().

CX If the application uses any of the POSIX threads functions, the application shall ensure that the
tmpnam() function is called with a non-NULL parameter.

RETURN VALUE
Upon successful completion, tmpnam() shall return a pointer to a string. If no suitable string can
be generated, the tmpnam() function shall return a null pointer.

If the argument s is a null pointer, tmpnam() shall leave its result in an internal static object and
return a pointer to that object. Subsequent calls to tmpnam() may modify the same object. If the
argument s is not a null pointer, it is presumed to point to an array of at least L_tmpnam chars;
tmpnam() shall write its result in that array and shall return the argument as its value.

ERRORS
No errors are defined.

EXAMPLES

Generating a Filename

The following example generates a unique filename and stores it in the array pointed to by ptr.

#include <stdio.h>
...
char filename[L_tmpnam+1];
char *ptr;

ptr = tmpnam(filename);

APPLICATION USAGE
This function only creates filenames. It is the application’s responsibility to create and remove
the files.

Between the time a pathname is created and the file is opened, it is possible for some other
process to create a file with the same name. Applications may find tmpfile() more useful.

1616 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

49857

49858

49859

49860

49861

49862

49863

49864

49865

49866

49867

49868

49869

49870

49871

49872

49873

49874

49875

49876

49877

49878

49879

49880

49881

49882

49883

49884

49885

49886

49887

49888

49889

49890

49891

49892

49893

49894

49895

49896

49897

49898

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces tmpnam()

Applications should use the tmpfile(), mkstemp(), or mkdtemp() functions instead of the
obsolescent tmpnam() function.

RATIONALE
None.

FUTURE DIRECTIONS
The tmpnam() function may be removed in a future version.

SEE ALSO
fopen(), open(), mkdtemp(), tempnam(), tmpfile(), unlink(), the Base Definitions volume of
IEEE Std 1003.1-200x, <stdio.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The DESCRIPTION is updated for alignment with the POSIX Threads Extension.

Issue 6
Extensions beyond the ISO C standard are marked.

The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

The DESCRIPTION is expanded for alignment with the ISO/IEC 9899: 1999 standard.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/142 is applied, updating the
DESCRIPTION to allow implementations of the tempnam() function to call tmpnam().

Issue 7
The tmpnam() function is marked obsolescent.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1617

49899

49900

49901

49902

49903

49904

49905

49906

49907

49908

49909

49910

49911

49912

49913

49914

49915

49916

49917

49918

49919

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

toascii() System Interfaces

NAME
toascii — translate an integer to a 7-bit ASCII character

SYNOPSIS
OB XSI #include <ctype.h>

int toascii(int c);

DESCRIPTION
The toascii() function shall convert its argument into a 7-bit ASCII character.

RETURN VALUE
The toascii() function shall return the value (c &0x7f).

ERRORS
No errors are returned.

EXAMPLES
None.

APPLICATION USAGE
The toascii() function cannot be used portably in a localized application.

RATIONALE
None.

FUTURE DIRECTIONS
The toascii() function may be removed in a future version.

SEE ALSO
isascii(), the Base Definitions volume of IEEE Std 1003.1-200x, <ctype.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7
The toascii() function is marked obsolescent.

1618 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

49920

49921

49922

49923

49924

49925

49926

49927

49928

49929

49930

49931

49932

49933

49934

49935

49936

49937

49938

49939

49940

49941

49942

49943

49944

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces tolower()

NAME
tolower, tolower_l — transliterate uppercase characters to lowercase

SYNOPSIS
#include <ctype.h>

int tolower(int c);
CX int tolower_l(int c, l ocale_t locale);

DESCRIPTION
CX For tolower(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of IEEE Std 1003.1-200x defers to the ISO C standard.

CX The tolower() and tolower_l() functions have as a domain a type int, the value of which is
representable as an unsigned char or the value of EOF. If the argument has any other value, the

CX behavior is undefined. If the argument of tolower() or tolower_l() represents an uppercase letter,
and there exists a corresponding lowercase letter as defined by character type information in the

CX program locale or in the locale represented by locale, respectively (category LC_CTYPE), the
result shall be the corresponding lowercase letter. All other arguments in the domain are
returned unchanged.

RETURN VALUE
CX Upon successful completion, the tolower() and tolower_l() functions shall return the lowercase

letter corresponding to the argument passed; otherwise, they shall return the argument
unchanged.

ERRORS
The tolower_l() function may fail if:

CX [EINVAL] locale is not a valid locale object handle.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
setlocale(), uselocale(), the Base Definitions volume of IEEE Std 1003.1-200x, Chapter 7, Locale,
<ctype.h>, <locale.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
Extensions beyond the ISO C standard are marked.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1619

49945

49946

49947

49948

49949

49950

49951

49952

49953

49954

49955

49956

49957

49958

49959

49960

49961

49962

49963

49964

49965

49966

49967

49968

49969

49970

49971

49972

49973

49974

49975

49976

49977

49978

49979

49980

49981

49982

49983

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

tolower() System Interfaces

Issue 7
The tolower_l() function is added from The Open Group Technical Standard, 2006, Extended API
Set Part 4.

1620 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

49984

49985

49986

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces toupper()

NAME
toupper, toupper_l — transliterate lowercase characters to uppercase

SYNOPSIS
#include <ctype.h>

int toupper(int c);
CX int toupper_l(int c, l ocale_t locale);

DESCRIPTION
CX For toupper(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of IEEE Std 1003.1-200x defers to the ISO C standard.

CX The toupper() and toupper_l() functions have as a domain a type int, the value of which is
representable as an unsigned char or the value of EOF. If the argument has any other value, the

CX behavior is undefined. If the argument of toupper() or toupper_l() represents a lowercase letter,
and there exists a corresponding uppercase letter as defined by character type information in the

CX program locale or in the locale represented by locale, respectively (category LC_CTYPE), the
result shall be the corresponding uppercase letter. All other arguments in the domain are
returned unchanged.

RETURN VALUE
CX Upon successful completion, toupper() and toupper_l() shall return the uppercase letter

corresponding to the argument passed.

ERRORS
The toupper_l() function may fail if:

CX [EINVAL] locale is not a valid locale object handle.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
setlocale(), uselocale(), the Base Definitions volume of IEEE Std 1003.1-200x, Chapter 7, Locale,
<ctype.h>, <locale.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
Extensions beyond the ISO C standard are marked.

Issue 7
The toupper_l() function is added from The Open Group Technical Standard, 2006, Extended API
Set Part 4.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1621

49987

49988

49989

49990

49991

49992

49993

49994

49995

49996

49997

49998

49999

50000

50001

50002

50003

50004

50005

50006

50007

50008

50009

50010

50011

50012

50013

50014

50015

50016

50017

50018

50019

50020

50021

50022

50023

50024

50025

50026

50027

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

towctrans() System Interfaces

NAME
towctrans, towctrans_l — wide-character transliteration

SYNOPSIS
#include <wctype.h>

wint_t towctrans(wint_t wc, w ctrans_t desc);
CX wint_t towctrans_l(wint_t wc, w ctrans_t desc,

locale_t locale);

DESCRIPTION
CX For towctrans(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of IEEE Std 1003.1-200x defers to the ISO C standard.

CX The towctrans() and towctrans_l() functions shall transliterate the wide-character code wc using
the mapping described by desc.

CX The current setting of the LC_CTYPE category in the current locale of the process or in the locale
CX represented by locale, respectively, should be the same as during the call to wctrans() or

wctrans_l() that returned the value desc.

If the value of desc is invalid (that is, not obtained by a call to wctrans() or desc is invalidated by a
subsequent call to setlocale() that has affected category LC_CTYPE), the result is unspecified.

CX If the value of desc is invalid (that is, not obtained by a call to wctrans_l() with the same locale
object locale) the result is unspecified.

CX An application wishing to check for error situations should set errno to 0 before calling
towctrans() or towctrans_l().

If errno is non-zero on return, an error has occurred.

RETURN VALUE
CX If successful, the towctrans() and towctrans_l() functions shall return the mapped value of wc

using the mapping described by desc. Otherwise, they shall return wc unchanged.

ERRORS
These functions may fail if:

CX [EINVAL] desc contains an invalid transliteration descriptor.

The towctrans_l() function may fail if:

CX [EINVAL] locale is not a valid locale object handle.

EXAMPLES
None.

APPLICATION USAGE
The strings "tolower" and "toupper" are reserved for the standard mapping names. In the
table below, the functions in the left column are equivalent to the functions in the right column.

towlower(wc) t owctrans(wc, w ctrans("tolower"))
towlower_l(wc, locale) t owctrans_l(wc, w ctrans("tolower"), locale)
towupper(wc) t owctrans(wc, w ctrans("toupper"))
towupper_l(wc, locale) t owctrans_l(wc, w ctrans("toupper"), locale)

1622 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

50028

50029

50030

50031

50032

50033

50034

50035

50036

50037

50038

50039

50040

50041

50042

50043

50044

50045

50046

50047

50048

50049

50050

50051

50052

50053

50054

50055

50056

50057

50058

50059

50060

50061

50062

50063

50064

50065

50066

50067

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces towctrans()

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
towlower(), towupper(), wctrans(), the Base Definitions volume of IEEE Std 1003.1-200x,
<wctype.h>

CHANGE HISTORY
First released in Issue 5. Derived from ISO/IEC 9899: 1990/Amendment 1: 1995 (E).

Issue 6
Extensions beyond the ISO C standard are marked.

Issue 7
The towctrans_l() function is added from The Open Group Technical Standard, 2006, Extended
API Set Part 4.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1623

50068

50069

50070

50071

50072

50073

50074

50075

50076

50077

50078

50079

50080

50081

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

towlower() System Interfaces

NAME
towlower, towlower_l — transliterate uppercase wide-character code to lowercase

SYNOPSIS
#include <wctype.h>

wint_t towlower(wint_t wc);
CX wint_t towlower_l(wint_t wc, l ocale_t locale);

DESCRIPTION
CX For towlower(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of IEEE Std 1003.1-200x defers to the ISO C standard.

CX The towlower() and towlower_l() functions have as a domain a type wint_t, the value of which
the application shall ensure is a character representable as a wchar_t, and a wide-character code
corresponding to a valid character in the current locale or the value of WEOF. If the argument

CX has any other value, the behavior is undefined. If the argument of towlower() or towlower_l()
represents an uppercase wide-character code, and there exists a corresponding lowercase wide-

CX character code as defined by character type information in the locale of the process or in the
locale represented by locale, respectively (category LC_CTYPE), the result shall be the
corresponding lowercase wide-character code. All other arguments in the domain are returned
unchanged.

RETURN VALUE
CX Upon successful completion, the towlower() and towlower_l() functions shall return the

lowercase letter corresponding to the argument passed; otherwise, they shall return the
argument unchanged.

ERRORS
The towlower_l() function may fail if:

CX [EINVAL] locale is not a valid locale object handle.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
setlocale(), uselocale(), the Base Definitions volume of IEEE Std 1003.1-200x, Chapter 7, Locale,
<locale.h>, <wctype.h>

CHANGE HISTORY
First released in Issue 4.

Issue 5
The following change has been made in this issue for alignment with
ISO/IEC 9899: 1990/Amendment 1: 1995 (E):

1624 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

50082

50083

50084

50085

50086

50087

50088

50089

50090

50091

50092

50093

50094

50095

50096

50097

50098

50099

50100

50101

50102

50103

50104

50105

50106

50107

50108

50109

50110

50111

50112

50113

50114

50115

50116

50117

50118

50119

50120

50121

50122

50123

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces towlower()

• The SYNOPSIS has been changed to indicate that this function and associated data types
are now made visible by inclusion of the <wctype.h> header rather than <wchar.h>.

Issue 6
The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

Issue 7
The towlower_l() function is added from The Open Group Technical Standard, 2006, Extended
API Set Part 4.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1625

50124

50125

50126

50127

50128

50129

50130

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

towupper() System Interfaces

NAME
towupper, towupper_l — transliterate lowercase wide-character code to uppercase

SYNOPSIS
#include <wctype.h>

wint_t towupper(wint_t wc);
CX wint_t towupper_l(wint_t wc, l ocale_t locale);

DESCRIPTION
CX For towupper(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of IEEE Std 1003.1-200x defers to the ISO C standard.

CX The towupper() and towupper_l() functions have as a domain a type wint_t, the value of which
the application shall ensure is a character representable as a wchar_t, and a wide-character code
corresponding to a valid character in the current locale or the value of WEOF. If the argument

CX has any other value, the behavior is undefined. If the argument of towupper() or towupper_l()
represents a lowercase wide-character code, and there exists a corresponding uppercase wide-

CX character code as defined by character type information in the locale of the process or in the
locale represented by locale, respectively (category LC_CTYPE), the result shall be the
corresponding uppercase wide-character code. All other arguments in the domain are returned
unchanged.

RETURN VALUE
CX Upon successful completion, the towupper() and towupper_l() functions shall return the

uppercase letter corresponding to the argument passed. Otherwise, they shall return the
argument unchanged.

ERRORS
The towupper_l() function may fail if:

CX [EINVAL] locale is not a valid locale object handle.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
setlocale(), uselocale(), the Base Definitions volume of IEEE Std 1003.1-200x, Chapter 7, Locale,
<locale.h>, <wctype.h>

CHANGE HISTORY
First released in Issue 4.

Issue 5
The following change has been made in this issue for alignment with
ISO/IEC 9899: 1990/Amendment 1: 1995 (E):

1626 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

50131

50132

50133

50134

50135

50136

50137

50138

50139

50140

50141

50142

50143

50144

50145

50146

50147

50148

50149

50150

50151

50152

50153

50154

50155

50156

50157

50158

50159

50160

50161

50162

50163

50164

50165

50166

50167

50168

50169

50170

50171

50172

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces towupper()

• The SYNOPSIS has been changed to indicate that this function and associated data types
are now made visible by inclusion of the <wctype.h> header rather than <wchar.h>.

Issue 6
The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

Issue 7
The towupper_l() function is added from The Open Group Technical Standard, 2006, Extended
API Set Part 4.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1627

50173

50174

50175

50176

50177

50178

50179

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

trunc() System Interfaces

NAME
trunc, truncf, truncl — round to truncated integer value

SYNOPSIS
#include <math.h>

double trunc(double x);
float truncf(float x);
long double truncl(long double x);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

These functions shall round their argument to the integer value, in floating format, nearest to but
no larger in magnitude than the argument.

RETURN VALUE
Upon successful completion, these functions shall return the truncated integer value.

MX If x is NaN, a NaN shall be returned.

If x is ±0 or ±Inf, x shall be returned.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
The Base Definitions volume of IEEE Std 1003.1-200x, <math.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

1628 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

50180

50181

50182

50183

50184

50185

50186

50187

50188

50189

50190

50191

50192

50193

50194

50195

50196

50197

50198

50199

50200

50201

50202

50203

50204

50205

50206

50207

50208

50209

50210

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces truncate()

NAME
truncate — truncate a file to a specified length

SYNOPSIS
#include <unistd.h>

int truncate(const char * path, o ff_t length);

DESCRIPTION
The truncate() function shall cause the regular file named by path to have a size which shall be
equal to length bytes.

If the file previously was larger than length, the extra data is discarded. If the file was previously
shorter than length, its size is increased, and the extended area appears as if it were zero-filled.

The application shall ensure that the process has write permission for the file.

If the request would cause the file size to exceed the soft file size limit for the process, the
request shall fail and the implementation shall generate the SIGXFSZ signal for the process.

This function shall not modify the file offset for any open file descriptions associated with the
file. Upon successful completion, if the file size is changed, this function shall mark for update
the st_ctime and st_mtime fields of the file, and the S_ISUID and S_ISGID bits of the file mode
may be cleared.

RETURN VALUE
Upon successful completion, truncate() shall return 0. Otherwise, −1 shall be returned, and errno
set to indicate the error.

ERRORS
The truncate() function shall fail if:

[EINTR] A signal was caught during execution.

[EINVAL] The length argument was less than 0.

[EFBIG] or [EINVAL]
The length argument was greater than the maximum file size.

[EIO] An I/O error occurred while reading from or writing to a file system.

[EACCES] A component of the path prefix denies search permission, or write permission
is denied on the file.

[EISDIR] The named file is a directory.

[ELOOP] A loop exists in symbolic links encountered during resolution of the path
argument.

[ENAMETOOLONG]
The length of the path argument exceeds {PATH_MAX} or a pathname
component is longer than {NAME_MAX}.

[ENOENT] A component of path does not name an existing file or path is an empty string.

[ENOTDIR] A component of the path prefix of path is not a directory.

[EROFS] The named file resides on a read-only file system.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1629

50211

50212

50213

50214

50215

50216

50217

50218

50219

50220

50221

50222

50223

50224

50225

50226

50227

50228

50229

50230

50231

50232

50233

50234

50235

50236

50237

50238

50239

50240

50241

50242

50243

50244

50245

50246

50247

50248

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

truncate() System Interfaces

The truncate() function may fail if:

[ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during
resolution of the path argument.

[ENAMETOOLONG]
Pathname resolution of a symbolic link produced an intermediate result
whose length exceeds {PATH_MAX}.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
open(), the Base Definitions volume of IEEE Std 1003.1-200x, <unistd.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Large File Summit extensions are added.

Issue 6
This reference page is split out from the ftruncate() reference page.

The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

The wording of the mandatory [ELOOP] error condition is updated, and a second optional
[ELOOP] error condition is added.

Issue 7
The truncate() function is moved from the XSI option to the Base.

1630 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

50249

50250

50251

50252

50253

50254

50255

50256

50257

50258

50259

50260

50261

50262

50263

50264

50265

50266

50267

50268

50269

50270

50271

50272

50273

50274

50275

50276

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces truncf()

NAME
truncf, truncl — round to truncated integer value

SYNOPSIS
#include <math.h>

float truncf(float x);
long double truncl(long double x);

DESCRIPTION
Refer to trunc().

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1631

50277

50278

50279

50280

50281

50282

50283

50284

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

tsearch() System Interfaces

NAME
tsearch — search a binary search tree

SYNOPSIS
XSI #include <search.h>

void *tsearch(const void * key, v oid ** rootp,
int (* compar)(const void *, const void *));

DESCRIPTION
Refer to tdelete().

1632 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

50285

50286

50287

50288

50289

50290

50291

50292

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces ttyname()

NAME
ttyname, ttyname_r — find the pathname of a terminal

SYNOPSIS
#include <unistd.h>

char *ttyname(int fildes);
int ttyname_r(int fildes, c har * name, s ize_t namesize);

DESCRIPTION
The ttyname() function shall return a pointer to a string containing a null-terminated pathname
of the terminal associated with file descriptor fildes. The return value may point to static data
whose content is overwritten by each call.

The ttyname() function need not be thread-safe. A function that is not required to be thread-safe
is not required to be reentrant.

The ttyname_r() function shall store the null-terminated pathname of the terminal associated
with the file descriptor fildes in the character array referenced by name. The array is namesize
characters long and should have space for the name and the terminating null character. The
maximum length of the terminal name shall be {TTY_NAME_MAX}.

RETURN VALUE
Upon successful completion, ttyname() shall return a pointer to a string. Otherwise, a null
pointer shall be returned and errno set to indicate the error.

If successful, the ttyname_r() function shall return zero. Otherwise, an error number shall be
returned to indicate the error.

ERRORS
The ttyname() function may fail if:

[EBADF] The fildes argument is not a valid file descriptor.

[ENOTTY] The file associated with the fildes argument is not a terminal.

The ttyname_r() function may fail if:

[EBADF] The fildes argument is not a valid file descriptor.

[ENOTTY] The file associated with the fildes argument is not a terminal.

[ERANGE] The value of namesize is smaller than the length of the string to be returned
including the terminating null character.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
The term ‘‘terminal’’ is used instead of the historical term ‘‘terminal device’’ in order to avoid a
reference to an undefined term.

The thread-safe version places the terminal name in a user-supplied buffer and returns a non-
zero value if it fails. The non-thread-safe version may return the name in a static data area that
may be overwritten by each call.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1633

50293

50294

50295

50296

50297

50298

50299

50300

50301

50302

50303

50304

50305

50306

50307

50308

50309

50310

50311

50312

50313

50314

50315

50316

50317

50318

50319

50320

50321

50322

50323

50324

50325

50326

50327

50328

50329

50330

50331

50332

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

ttyname() System Interfaces

FUTURE DIRECTIONS
None.

SEE ALSO
The Base Definitions volume of IEEE Std 1003.1-200x, <unistd.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The ttyname_r() function is included for alignment with the POSIX Threads Extension.

A note indicating that the ttyname() function need not be reentrant is added to the
DESCRIPTION.

Issue 6
The ttyname_r() function is marked as part of the Thread-Safe Functions option.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The statement that errno is set on error is added.

• The [EBADF] and [ENOTTY] optional error conditions are added.

Issue 7
SD5-XSH-ERN-100 is applied, correcting the definition of the [ENOTTY] error condition.

The ttyname_r() function is moved from the Thread-Safe Functions option to the Base.

1634 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

50333

50334

50335

50336

50337

50338

50339

50340

50341

50342

50343

50344

50345

50346

50347

50348

50349

50350

50351

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces twalk()

NAME
twalk — traverse a binary search tree

SYNOPSIS
XSI #include <search.h>

void twalk(const void * root,
void (* action)(const void *, VISIT, int));

DESCRIPTION
Refer to tdelete().

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1635

50352

50353

50354

50355

50356

50357

50358

50359

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

tzset() System Interfaces

NAME
daylight, timezone, tzname, tzset — set timezone conversion information

SYNOPSIS
#include <time.h>

XSI extern int daylight;
extern long timezone;

CX extern char *tzname[2];
void tzset(void);

DESCRIPTION
The tzset() function shall use the value of the environment variable TZ to set time conversion
information used by ctime(), localtime(), mktime(), and strftime(). If TZ is absent from the
environment, implementation-defined default timezone information shall be used.

The tzset() function shall set the external variable tzname as follows:

tzname[0] = " std";
tzname[1] = " dst";

where std and dst are as described in the Base Definitions volume of IEEE Std 1003.1-200x,
Chapter 8, Environment Variables.

XSI The tzset() function also shall set the external variable daylight to 0 if Daylight Savings Time
conversions should never be applied for the timezone in use; otherwise, non-zero. The external
variable timezone shall be set to the difference, in seconds, between Coordinated Universal Time
(UTC) and local standard time.

RETURN VALUE
The tzset() function shall not return a value.

ERRORS
No errors are defined.

EXAMPLES
Example TZ variables and their timezone differences are given in the table below:

TZ timezone

EST5EDT 5*60*60
GMT0 0*60*60
JST-9 −9*60*60
MET-1MEST −1*60*60
MST7MDT 7*60*60
PST8PDT 8*60*60

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

1636 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

50360

50361

50362

50363

50364

50365

50366

50367

50368

50369

50370

50371

50372

50373

50374

50375

50376

50377

50378

50379

50380

50381

50382

50383

50384

50385

50386

50387

50388

50389

50390

50391

50392

50393

50394

50395

50396

50397

50398

50399

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces tzset()

SEE ALSO
ctime(), localtime(), mktime(), strftime(), the Base Definitions volume of IEEE Std 1003.1-200x,
Chapter 8, Environment Variables, <time.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
The example is corrected.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1637

50400

50401

50402

50403

50404

50405

50406

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

ulimit() System Interfaces

NAME
ulimit — get and set process limits

SYNOPSIS
OB XSI #include <ulimit.h>

long ulimit(int cmd, . ..);

DESCRIPTION
The ulimit() function shall control process limits. The process limits that can be controlled by
this function include the maximum size of a single file that can be written (this is equivalent to
using setrlimit() with RLIMIT_FSIZE). The cmd values, defined in <ulimit.h>, include:

UL_GETFSIZE Return the file size limit (RLIMIT_FSIZE) of the process. The limit shall be in
units of 512-byte blocks and shall be inherited by child processes. Files of any
size can be read. The return value shall be the integer part of the soft file size
limit divided by 512. If the result cannot be represented as a long, the result is
unspecified.

UL_SETFSIZE Set the file size limit for output operations of the process to the value of the
second argument, taken as a long, multiplied by 512. If the result would
overflow an rlim_t, the actual value set is unspecified. Any process may
decrease its own limit, but only a process with appropriate privileges may
increase the limit. The return value shall be the integer part of the new file size
limit divided by 512.

The ulimit() function shall not change the setting of errno if successful.

As all return values are permissible in a successful situation, an application wishing to check for
error situations should set errno to 0, then call ulimit(), and, if it returns −1, check to see if errno is
non-zero.

RETURN VALUE
Upon successful completion, ulimit() shall return the value of the requested limit. Otherwise, −1
shall be returned and errno set to indicate the error.

ERRORS
The ulimit() function shall fail and the limit shall be unchanged if:

[EINVAL] The cmd argument is not valid.

[EPERM] A process not having appropriate privileges attempts to increase its file size
limit.

EXAMPLES
None.

APPLICATION USAGE
Since the ulimit() function uses type long rather than rlim_t, this function is not sufficient for file
sizes on many current systems. Applications should use the getrlimit() or setrlimit() functions
instead of the obsolescent ulimit() function.

RATIONALE
None.

1638 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

50407

50408

50409

50410

50411

50412

50413

50414

50415

50416

50417

50418

50419

50420

50421

50422

50423

50424

50425

50426

50427

50428

50429

50430

50431

50432

50433

50434

50435

50436

50437

50438

50439

50440

50441

50442

50443

50444

50445

50446

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces ulimit()

FUTURE DIRECTIONS
The ulimit() function may be removed in a future version.

SEE ALSO
exec , getrlimit(), setrlimit(), write(), the Base Definitions volume of IEEE Std 1003.1-200x,
<ulimit.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
In the description of UL_SETFSIZE, the text is corrected to refer to rlim_t rather than the
spurious rlimit_t.

The DESCRIPTION is updated to indicate that errno is not changed if the function is successful.

Issue 7
The ulimit() function is marked obsolescent.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1639

50447

50448

50449

50450

50451

50452

50453

50454

50455

50456

50457

50458

50459

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

umask() System Interfaces

NAME
umask — set and get the file mode creation mask

SYNOPSIS
#include <sys/stat.h>

mode_t umask(mode_t cmask);

DESCRIPTION
The umask() function shall set the file mode creation mask of the process to cmask and return the
previous value of the mask. Only the file permission bits of cmask (see <sys/stat.h>) are used; the
meaning of the other bits is implementation-defined.

The file mode creation mask of the process is used to turn off permission bits in the mode
argument supplied during calls to the following functions:

• open(), openat(), creat(), mkdir(), mkdirat(), mkfifo(), and mkfifoat()

XSI • mknod(), mknodat()

MSG • mq_open()

• sem_open()

Bit positions that are set in cmask are cleared in the mode of the created file.

RETURN VALUE
The file permission bits in the value returned by umask() shall be the previous value of the file
mode creation mask. The state of any other bits in that value is unspecified, except that a
subsequent call to umask() with the returned value as cmask shall leave the state of the mask the
same as its state before the first call, including any unspecified use of those bits.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
Unsigned argument and return types for umask() were proposed. The return type and the
argument were both changed to mode_t.

Historical implementations have made use of additional bits in cmask for their implementation-
defined purposes. The addition of the text that the meaning of other bits of the field is
implementation-defined permits these implementations to conform to this volume of
IEEE Std 1003.1-200x.

FUTURE DIRECTIONS
None.

SEE ALSO
creat(), exec , mkdir(), mkfifo(), mknod(), mq_open(), open(), sem_open(), the Base Definitions
volume of IEEE Std 1003.1-200x, <sys/stat.h>, <sys/types.h>

1640 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

50460

50461

50462

50463

50464

50465

50466

50467

50468

50469

50470

50471

50472

50473

50474

50475

50476

50477

50478

50479

50480

50481

50482

50483

50484

50485

50486

50487

50488

50489

50490

50491

50492

50493

50494

50495

50496

50497

50498

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces umask()

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
In the SYNOPSIS, the optional include of the <sys/types.h> header is removed.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
required for conforming implementations of previous POSIX specifications, it was not
required for UNIX applications.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/143 is applied, adding the mknod(),
mq_open(), and sem_open() functions to the DESCRIPTION and SEE ALSO sections.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1641

50499

50500

50501

50502

50503

50504

50505

50506

50507

50508

50509

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

uname() System Interfaces

NAME
uname — get the name of the current system

SYNOPSIS
#include <sys/utsname.h>

int uname(struct utsname * name);

DESCRIPTION
The uname() function shall store information identifying the current system in the structure
pointed to by name.

The uname() function uses the utsname structure defined in <sys/utsname.h>.

The uname() function shall return a string naming the current system in the character array
sysname. Similarly, nodename shall contain the name of this node within an implementation-
defined communications network. The arrays release and version shall further identify the
operating system. The array machine shall contain a name that identifies the hardware that the
system is running on.

The format of each member is implementation-defined.

RETURN VALUE
Upon successful completion, a non-negative value shall be returned. Otherwise, −1 shall be
returned and errno set to indicate the error.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
The inclusion of the nodename member in this structure does not imply that it is sufficient
information for interfacing to communications networks.

RATIONALE
The values of the structure members are not constrained to have any relation to the version of
this volume of IEEE Std 1003.1-200x implemented in the operating system. An application
should instead depend on _POSIX_VERSION and related constants defined in <unistd.h>.

This volume of IEEE Std 1003.1-200x does not define the sizes of the members of the structure
and permits them to be of different sizes, although most implementations define them all to be
the same size: eight bytes plus one byte for the string terminator. That size for nodename is not
enough for use with many networks.

The uname() function originated in System III, System V, and related implementations, and it
does not exist in Version 7 or 4.3 BSD. The values it returns are set at system compile time in
those historical implementations.

4.3 BSD has gethostname() and gethostid(), which return a symbolic name and a numeric value,
respectively. There are related sethostname() and sethostid() functions that are used to set the
values the other two functions return. The former functions are included in this specification, the
latter are not.

1642 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

50510

50511

50512

50513

50514

50515

50516

50517

50518

50519

50520

50521

50522

50523

50524

50525

50526

50527

50528

50529

50530

50531

50532

50533

50534

50535

50536

50537

50538

50539

50540

50541

50542

50543

50544

50545

50546

50547

50548

50549

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces uname()

FUTURE DIRECTIONS
None.

SEE ALSO
The Base Definitions volume of IEEE Std 1003.1-200x, <sys/utsname.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1643

50550

50551

50552

50553

50554

50555

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

ungetc() System Interfaces

NAME
ungetc — push byte back into input stream

SYNOPSIS
#include <stdio.h>

int ungetc(int c, F ILE * stream);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

The ungetc() function shall push the byte specified by c (converted to an unsigned char) back
onto the input stream pointed to by stream. The pushed-back bytes shall be returned by
subsequent reads on that stream in the reverse order of their pushing. A successful intervening
call (with the stream pointed to by stream) to a file-positioning function (fseek(), fsetpos(), or
rewind()) shall discard any pushed-back bytes for the stream. The external storage
corresponding to the stream shall be unchanged.

One byte of push-back shall be provided. If ungetc() is called too many times on the same stream
without an intervening read or file-positioning operation on that stream, the operation may fail.

If the value of c equals that of the macro EOF, the operation shall fail and the input stream shall
be left unchanged.

A successful call to ungetc() shall clear the end-of-file indicator for the stream. The value of the
file-position indicator for the stream after reading or discarding all pushed-back bytes shall be
the same as it was before the bytes were pushed back. The file-position indicator is decremented
by each successful call to ungetc(); if its value was 0 before a call, its value is unspecified after
the call.

RETURN VALUE
Upon successful completion, ungetc() shall return the byte pushed back after conversion.
Otherwise, it shall return EOF.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fseek(), getc(), fsetpos(), read(), rewind(), setbuf(), the Base Definitions volume of
IEEE Std 1003.1-200x, <stdio.h>

1644 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

50556

50557

50558

50559

50560

50561

50562

50563

50564

50565

50566

50567

50568

50569

50570

50571

50572

50573

50574

50575

50576

50577

50578

50579

50580

50581

50582

50583

50584

50585

50586

50587

50588

50589

50590

50591

50592

50593

50594

50595

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces ungetc()

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1645

50596

50597

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

ungetwc() System Interfaces

NAME
ungetwc — push wide-character code back into the input stream

SYNOPSIS
#include <stdio.h>
#include <wchar.h>

wint_t ungetwc(wint_t wc, F ILE * stream);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

The ungetwc() function shall push the character corresponding to the wide-character code
specified by wc back onto the input stream pointed to by stream. The pushed-back characters
shall be returned by subsequent reads on that stream in the reverse order of their pushing. A
successful intervening call (with the stream pointed to by stream) to a file-positioning function
(fseek(), fsetpos(), or rewind()) discards any pushed-back characters for the stream. The external
storage corresponding to the stream is unchanged.

At least one character of push-back shall be provided. If ungetwc() is called too many times on
the same stream without an intervening read or file-positioning operation on that stream, the
operation may fail.

If the value of wc equals that of the macro WEOF, the operation shall fail and the input stream
shall be left unchanged.

A successful call to ungetwc() shall clear the end-of-file indicator for the stream. The value of the
file-position indicator for the stream after reading or discarding all pushed-back characters shall
be the same as it was before the characters were pushed back. The file-position indicator is
decremented (by one or more) by each successful call to ungetwc(); if its value was 0 before a
call, its value is unspecified after the call.

RETURN VALUE
Upon successful completion, ungetwc() shall return the wide-character code corresponding to
the pushed-back character. Otherwise, it shall return WEOF.

ERRORS
The ungetwc() function may fail if:

CX [EILSEQ] An invalid character sequence is detected, or a wide-character code does not
correspond to a valid character.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

1646 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

50598

50599

50600

50601

50602

50603

50604

50605

50606

50607

50608

50609

50610

50611

50612

50613

50614

50615

50616

50617

50618

50619

50620

50621

50622

50623

50624

50625

50626

50627

50628

50629

50630

50631

50632

50633

50634

50635

50636

50637

50638

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces ungetwc()

SEE ALSO
fseek(), fsetpos(), read(), rewind(), setbuf(), the Base Definitions volume of IEEE Std 1003.1-200x,
<stdio.h>, <wchar.h>

CHANGE HISTORY
First released in Issue 4. Derived from the MSE working draft.

Issue 5
The Optional Header (OH) marking is removed from <stdio.h>.

Issue 6
The [EILSEQ] optional error condition is marked CX.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1647

50639

50640

50641

50642

50643

50644

50645

50646

50647

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

unlink() System Interfaces

NAME
unlink, unlinkat — remove a directory entry relative to directory file descriptor

SYNOPSIS
#include <unistd.h>

int unlink(const char * path);
int unlinkat(int fd, c onst char * path, i nt flag);

DESCRIPTION
The unlink() function shall remove a link to a file. If path names a symbolic link, unlink() shall
remove the symbolic link named by path and shall not affect any file or directory named by the
contents of the symbolic link. Otherwise, unlink() shall remove the link named by the pathname
pointed to by path and shall decrement the link count of the file referenced by the link.

When the file’s link count becomes 0 and no process has the file open, the space occupied by the
file shall be freed and the file shall no longer be accessible. If one or more processes have the file
open when the last link is removed, the link shall be removed before unlink() returns, but the
removal of the file contents shall be postponed until all references to the file are closed.

The path argument shall not name a directory unless the process has appropriate privileges and
the implementation supports using unlink() on directories.

Upon successful completion, unlink() shall mark for update the st_ctime and st_mtime fields of
the parent directory. Also, if the file’s link count is not 0, the st_ctime field of the file shall be
marked for update.

The unlinkat() function shall be equivalent to the unlink() or rmdir() function except in the case
where path specifies a relative path. In this case the directory entry to be removed is determined
relative to the directory associated with the file descriptor fd instead of the current working
directory. It is unspecified whether directory searches are permitted based on whether the file
was opened with search permission or on the current permissions of the directory underlying
the file descriptor.

Values for flag are constructed by a bitwise-inclusive OR of flags from the following list, defined
in <fcntl.h>:

AT_REMOVEDIR Remove the directory entry specified by fd and path as a directory, not a
normal file.

If unlinkat() is passed the special value AT_FDCWD in the fd parameter, the current working
directory is used and the behavior shall be identical to a call to unlink() or rmdir() respectively,
depending on whether or not the AT_REMOVEDIR bit is set in flag.

RETURN VALUE
Upon successful completion, these functions shall return 0. Otherwise, these functions shall
return −1 and set errno to indicate the error. If −1 is returned, the named file shall not be changed.

ERRORS
These functions shall fail and shall not unlink the file if:

[EACCES] Search permission is denied for a component of the path prefix, or write
permission is denied on the directory containing the directory entry to be
removed.

[EBUSY] The file named by the path argument cannot be unlinked because it is being
used by the system or another process and the implementation considers this
an error.

1648 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

50648

50649

50650

50651

50652

50653

50654

50655

50656

50657

50658

50659

50660

50661

50662

50663

50664

50665

50666

50667

50668

50669

50670

50671

50672

50673

50674

50675

50676

50677

50678

50679

50680

50681

50682

50683

50684

50685

50686

50687

50688

50689

50690

50691

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces unlink()

[ELOOP] A loop exists in symbolic links encountered during resolution of the path
argument.

[ENAMETOOLONG]
The length of the path argument exceeds {PATH_MAX} or a pathname
component is longer than {NAME_MAX}.

[ENOENT] A component of path does not name an existing file or path is an empty string.

[ENOTDIR] A component of the path prefix is not a directory.

[EPERM] The file named by path is a directory, and either the calling process does not
have appropriate privileges, or the implementation prohibits using unlink() on
directories.

XSI [EPERM] or [EACCES]
The S_ISVTX flag is set on the directory containing the file referred to by the
path argument and the caller is not the file owner, nor is the caller the directory
owner, nor does the caller have appropriate privileges.

[EROFS] The directory entry to be unlinked is part of a read-only file system.

The unlinkat() function shall fail if:

[EBADF] The path argument does not specify an absolute path and the fd argument is
neither AT_FDCWD nor a valid file descriptor open for searching.

[EEXIST] or [ENOTEMPTY]
The flag parameter has the AT_REMOVEDIR bit set and the path argument
names a directory that is not an empty directory, or there are hard links to the
directory other than dot or a single entry in dot-dot.

[ENOTDIR] The flag parameter has the AT_REMOVEDIR bit set and path does not name a
directory.

These functions may fail and not unlink the file if:

XSI [EBUSY] The file named by path is a named STREAM.

[ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during
resolution of the path argument.

[ENAMETOOLONG]
As a result of encountering a symbolic link in resolution of the path argument,
the length of the substituted pathname string exceeded {PATH_MAX}.

[ETXTBSY] The entry to be unlinked is the last directory entry to a pure procedure (shared
text) file that is being executed.

The unlinkat() function may fail if:

[EINVAL] The value of the flag argument is not valid.

[ENOTDIR] The path argument is not an absolute path and fd is neither AT_FDCWD nor a
file descriptor associated with a directory.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1649

50692

50693

50694

50695

50696

50697

50698

50699

50700

50701

50702

50703

50704

50705

50706

50707

50708

50709

50710

50711

50712

50713

50714

50715

50716

50717

50718

50719

50720

50721

50722

50723

50724

50725

50726

50727

50728

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

unlink() System Interfaces

EXAMPLES

Removing a Link to a File

The following example shows how to remove a link to a file named /home/cnd/mod1 by
removing the entry named /modules/pass1.

#include <unistd.h>

char *path = "/modules/pass1";
int status;
...
status = unlink(path);

Checking for an Error

The following example fragment creates a temporary password lock file named LOCKFILE,
which is defined as /etc/ptmp, and gets a file descriptor for it. If the file cannot be opened for
writing, unlink() is used to remove the link between the file descriptor and LOCKFILE.

#include <sys/types.h>
#include <stdio.h>
#include <fcntl.h>
#include <errno.h>
#include <unistd.h>
#include <sys/stat.h>

#define LOCKFILE "/etc/ptmp"

int pfd; /* Integer for file descriptor returned by open call. */
FILE *fpfd; /* File pointer for use in putpwent(). */
...
/* Open password Lock file. If it exists, this is an error. */
if ((pfd = open(LOCKFILE, O_WRONLY| O_CREAT | O_EXCL, S_IRUSR

| S _IWUSR | S_IRGRP | S_IROTH)) == -1) {
fprintf(stderr, "Cannot open /etc/ptmp. Try again later.\n");
exit(1);

}

/* Lock file created; proceed with fdopen of lock file so that
putpwent() can be used.

*/
if ((fpfd = fdopen(pfd, "w")) == NULL) {

close(pfd);
unlink(LOCKFILE);
exit(1);

}

Replacing Files

The following example fragment uses unlink() to discard links to files, so that they can be
replaced with new versions of the files. The first call removes the link to LOCKFILE if an error
occurs. Successive calls remove the links to SAVEFILE and PASSWDFILE so that new links can
be created, then removes the link to LOCKFILE when it is no longer needed.

#include <sys/types.h>
#include <stdio.h>
#include <fcntl.h>

1650 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

50729

50730

50731

50732

50733

50734

50735

50736

50737

50738

50739

50740

50741

50742

50743

50744

50745

50746

50747

50748

50749

50750

50751

50752

50753

50754

50755

50756

50757

50758

50759

50760

50761

50762

50763

50764

50765

50766

50767

50768

50769

50770

50771

50772

50773

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces unlink()

#include <errno.h>
#include <unistd.h>
#include <sys/stat.h>

#define LOCKFILE "/etc/ptmp"
#define PASSWDFILE "/etc/passwd"
#define SAVEFILE "/etc/opasswd"
...
/* If no change was made, assume error and leave passwd unchanged. */
if (!valid_change) {

fprintf(stderr, "Could not change password for user %s\n", user);
unlink(LOCKFILE);
exit(1);

}

/* Change permissions on new password file. */
chmod(LOCKFILE, S_IRUSR | S_IRGRP | S_IROTH);

/* Remove saved password file. */
unlink(SAVEFILE);

/* Save current password file. */
link(PASSWDFILE, SAVEFILE);

/* Remove current password file. */
unlink(PASSWDFILE);

/* Save new password file as current password file. */
link(LOCKFILE,PASSWDFILE);

/* Remove lock file. */
unlink(LOCKFILE);

exit(0);

APPLICATION USAGE
Applications should use rmdir() to remove a directory.

RATIONALE
Unlinking a directory is restricted to the superuser in many historical implementations for
reasons given in link() (see also rename()).

The meaning of [EBUSY] in historical implementations is ‘‘mount point busy’’. Since this volume
of IEEE Std 1003.1-200x does not cover the system administration concepts of mounting and
unmounting, the description of the error was changed to ‘‘resource busy’’. (This meaning is used
by some device drivers when a second process tries to open an exclusive use device.) The
wording is also intended to allow implementations to refuse to remove a directory if it is the root
or current working directory of any process.

The standard developers reviewed TR 24715-2006 and noted that LSB-conforming
implementations may return [EISDIR] instead of [EPERM] when unlinking a directory. A change
to permit this behavior by changing the requirement for [EPERM] to [EPERM] or [EISDIR] was
considered, but decided against since it would break existing strictly conforming and
conforming applications. Applications written for portability to both this standard and the LSB
should be prepared to handle either error code.

The purpose of the unlinkat() function is to remove directory entries in directories other than the
current working directory without exposure to race conditions. Any part of the path of a file
could be changed in parallel to a call to unlink(), resulting in unspecified behavior. By opening a
file descriptor for the target directory and using the unlinkat() function it can be guaranteed that
the removed directory entry is located relative to the desired directory.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1651

50774

50775

50776

50777

50778

50779

50780

50781

50782

50783

50784

50785

50786

50787

50788

50789

50790

50791

50792

50793

50794

50795

50796

50797

50798

50799

50800

50801

50802

50803

50804

50805

50806

50807

50808

50809

50810

50811

50812

50813

50814

50815

50816

50817

50818

50819

50820

50821

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

unlink() System Interfaces

FUTURE DIRECTIONS
None.

SEE ALSO
close(), link(), remove(), rename(), rmdir(), symlink(), the Base Definitions volume of
IEEE Std 1003.1-200x, <fcntl.h>, <unistd.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The [EBUSY] error is added to the optional part of the ERRORS section.

Issue 6
The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• In the DESCRIPTION, the effect is specified if path specifies a symbolic link.

• The [ELOOP] mandatory error condition is added.

• A second [ENAMETOOLONG] is added as an optional error condition.

• The [ETXTBSY] optional error condition is added.

The following changes were made to align with the IEEE P1003.1a draft standard:

• The [ELOOP] optional error condition is added.

The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

Issue 7
Text arising from the LSB Conflicts TR is added to the RATIONALE about the use of [EPERM]
and [EISDIR].

The unlinkat() function is added from The Open Group Technical Standard, 2006, Extended API
Set Part 2.

1652 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

50822

50823

50824

50825

50826

50827

50828

50829

50830

50831

50832

50833

50834

50835

50836

50837

50838

50839

50840

50841

50842

50843

50844

50845

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces unlinkat()

NAME
unlinkat — remove a directory entry relative to directory file descriptor

SYNOPSIS
#include <unistd.h>

int unlinkat(int fd, c onst char * path, i nt flag);

DESCRIPTION
Refer to unlink().

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1653

50846

50847

50848

50849

50850

50851

50852

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

unlockpt() System Interfaces

NAME
unlockpt — unlock a pseudo-terminal master/slave pair

SYNOPSIS
XSI #include <stdlib.h>

int unlockpt(int fildes);

DESCRIPTION
The unlockpt() function shall unlock the slave pseudo-terminal device associated with the master
to which fildes refers.

Conforming applications shall ensure that they call unlockpt() before opening the slave side of a
pseudo-terminal device.

RETURN VALUE
Upon successful completion, unlockpt() shall return 0. Otherwise, it shall return −1 and set errno
to indicate the error.

ERRORS
The unlockpt() function may fail if:

[EBADF] The fildes argument is not a file descriptor open for writing.

[EINVAL] The fildes argument is not associated with a master pseudo-terminal device.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
grantpt(), open(), ptsname(), the Base Definitions volume of IEEE Std 1003.1-200x, <stdlib.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Issue 6
The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

1654 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

50853

50854

50855

50856

50857

50858

50859

50860

50861

50862

50863

50864

50865

50866

50867

50868

50869

50870

50871

50872

50873

50874

50875

50876

50877

50878

50879

50880

50881

50882

50883

50884

50885

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces unsetenv()

NAME
unsetenv — remove an environment variable

SYNOPSIS
CX #include <stdlib.h>

int unsetenv(const char * name);

DESCRIPTION
The unsetenv() function shall remove an environment variable from the environment of the
calling process. The name argument points to a string, which is the name of the variable to be
removed. The named argument shall not contain an ’=’ character. If the named variable does
not exist in the current environment, the environment shall be unchanged and the function is
considered to have completed successfully.

If the application modifies environ or the pointers to which it points, the behavior of unsetenv() is
undefined. The unsetenv() function shall update the list of pointers to which environ points.

The unsetenv() function need not be thread-safe. A function that is not required to be thread-safe
is not required to be reentrant.

RETURN VALUE
Upon successful completion, zero shall be returned. Otherwise, −1 shall be returned, errno set to
indicate the error, and the environment shall be unchanged.

ERRORS
The unsetenv() function shall fail if:

[EINVAL] The name argument is a null pointer, points to an empty string, or points to a
string containing an ’=’ character.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
Refer to the RATIONALE section in setenv().

FUTURE DIRECTIONS
None.

SEE ALSO
getenv(), setenv(), the Base Definitions volume of IEEE Std 1003.1-200x, <stdlib.h>,
<sys/types.h>, <unistd.h>

CHANGE HISTORY
First released in Issue 6. Derived from the IEEE P1003.1a draft standard.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1655

50886

50887

50888

50889

50890

50891

50892

50893

50894

50895

50896

50897

50898

50899

50900

50901

50902

50903

50904

50905

50906

50907

50908

50909

50910

50911

50912

50913

50914

50915

50916

50917

50918

50919

50920

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

uselocale() System Interfaces

NAME
uselocale — use locale in current thread

SYNOPSIS
CX #include <locale.h>

locale_t uselocale(locale_t newloc);

DESCRIPTION
The uselocale() function shall set the current locale for the current thread to the locale
represented by newloc.

The value for the newloc argument shall be one of the following:

1. A value returned by the newlocale() or duplocale() functions

2. The special locale object descriptor LC_GLOBAL_LOCALE

3. (locale_t)0

Once the uselocale() function has been called to install a thread-local locale, the behavior of every
interface using data from the current locale shall be affected for the calling thread. The current
locale for other threads shall remain unchanged.

If the newloc argument is a null pointer, the object returned is the current locale or
LC_GLOBAL_LOCALE if there has been no previous call to uselocale() for the current thread.

If the newloc argument is LC_GLOBAL_LOCALE, the thread shall use the global locale
determined by the setlocale() function.

RETURN VALUE
The uselocale() function returns the locale handle from the previous call for the current thread. If
there was no such previous call, the function shall return the value LC_GLOBAL_LOCALE.

ERRORS
The uselocale() function may fail if:

[EINVAL] locale is not a valid locale object.

EXAMPLES
None.

APPLICATION USAGE
Unlike the setlocale() function, the uselocale() function does not allow replacing some locale
categories only. Applications that need to install a locale which differs only in a few categories
must use newlocale() to change a locale object equivalent to the currently used locale and install
it.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
duplocale(), freelocale(), newlocale(), setlocale(), the Base Definitions volume of
IEEE Std 1003.1-200x, <locale.h>

1656 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

50921

50922

50923

50924

50925

50926

50927

50928

50929

50930

50931

50932

50933

50934

50935

50936

50937

50938

50939

50940

50941

50942

50943

50944

50945

50946

50947

50948

50949

50950

50951

50952

50953

50954

50955

50956

50957

50958

50959

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces uselocale()

CHANGE HISTORY
First released in Issue 7.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1657

50960

50961

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

utime() System Interfaces

NAME
utime — set file access and modification times

SYNOPSIS
#include <utime.h>

int utime(const char * path, c onst struct utimbuf * times);

DESCRIPTION
The utime() function shall set the access and modification times of the file named by the path
argument.

If times is a null pointer, the access and modification times of the file shall be set to the current
time. The effective user ID of the process shall match the owner of the file, or the process has
write permission to the file or has appropriate privileges, to use utime() in this manner.

If times is not a null pointer, times shall be interpreted as a pointer to a utimbuf structure and the
access and modification times shall be set to the values contained in the designated structure.
Only a process with the effective user ID equal to the user ID of the file or a process with
appropriate privileges may use utime() this way.

The utimbuf structure is defined in the <utime.h> header. The times in the structure utimbuf
are measured in seconds since the Epoch.

Upon successful completion, utime() shall mark the time of the last file status change, st_ctime, to
be updated; see <sys/stat.h>.

RETURN VALUE
Upon successful completion, 0 shall be returned. Otherwise, −1 shall be returned and errno shall
be set to indicate the error, and the file times shall not be affected.

ERRORS
The utime() function shall fail if:

[EACCES] Search permission is denied by a component of the path prefix; or the times
argument is a null pointer and the effective user ID of the process does not
match the owner of the file, the process does not have write permission for the
file, and the process does not have appropriate privileges.

[ELOOP] A loop exists in symbolic links encountered during resolution of the path
argument.

[ENAMETOOLONG]
The length of the path argument exceeds {PATH_MAX} or a pathname
component is longer than {NAME_MAX}.

[ENOENT] A component of path does not name an existing file or path is an empty string.

[ENOTDIR] A component of the path prefix is not a directory.

[EPERM] The times argument is not a null pointer and the effective user ID of the calling
process does not match the owner of the file and the calling process does not
have the appropriate privileges.

[EROFS] The file system containing the file is read-only.

The utime() function may fail if:

[ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during
resolution of the path argument.

1658 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

50962

50963

50964

50965

50966

50967

50968

50969

50970

50971

50972

50973

50974

50975

50976

50977

50978

50979

50980

50981

50982

50983

50984

50985

50986

50987

50988

50989

50990

50991

50992

50993

50994

50995

50996

50997

50998

50999

51000

51001

51002

51003

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces utime()

[ENAMETOOLONG]
As a result of encountering a symbolic link in resolution of the path argument,
the length of the substituted pathname string exceeded {PATH_MAX}.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
The actime structure member must be present so that an application may set it, even though an
implementation may ignore it and not change the access time on the file. If an application
intends to leave one of the times of a file unchanged while changing the other, it should use
stat() to retrieve the file’s st_atime and st_mtime parameters, set actime and modtime in the buffer,
and change one of them before making the utime() call.

FUTURE DIRECTIONS
None.

SEE ALSO
utimes(), the Base Definitions volume of IEEE Std 1003.1-200x, <sys/stat.h>, <utime.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
required for conforming implementations of previous POSIX specifications, it was not
required for UNIX applications.

• The [ELOOP] mandatory error condition is added.

• A second [ENAMETOOLONG] is added as an optional error condition.

The following changes were made to align with the IEEE P1003.1a draft standard:

• The [ELOOP] optional error condition is added.

The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1659

51004

51005

51006

51007

51008

51009

51010

51011

51012

51013

51014

51015

51016

51017

51018

51019

51020

51021

51022

51023

51024

51025

51026

51027

51028

51029

51030

51031

51032

51033

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

utimes() System Interfaces

NAME
futimesat, utimes — set file access and modification times relative to directory file descriptor

SYNOPSIS
XSI #include <sys/time.h>

int futimesat(int fd, c onst char * path, c onst struct timeval times[2]);
int utimes(const char * path, c onst struct timeval times[2]);

DESCRIPTION
The utimes() function shall set the access and modification times of the file pointed to by the path
argument to the value of the times argument. The utimes() function allows time specifications
accurate to the microsecond.

For utimes(), the times argument is an array of timeval structures. The first array member
represents the date and time of last access, and the second member represents the date and time
of last modification. The times in the timeval structure are measured in seconds and
microseconds since the Epoch, although rounding toward the nearest second may occur.

If the times argument is a null pointer, the access and modification times of the file shall be set to
the current time. The effective user ID of the process shall match the owner of the file, or has
write access to the file or appropriate privileges to use this call in this manner. Upon completion,
utimes() shall mark the time of the last file status change, st_ctime, for update.

The futimesat() function shall be equivalent to the utimes() function except in the case where path
specifies a relative path. In this case the access and modification time is set to that of a file
relative to the directory associated with the file descriptor fd instead of the current working
directory. It is unspecified whether directory searches are permitted based on whether the file
was opened with search permission or on the current permissions of the directory underlying
the file descriptor.

If futimesat() is passed the special value AT_FDCWD in the fd parameter, the current working
directory is used and the behavior shall be identical to a call to utimes().

RETURN VALUE
Upon successful completion, these functions shall return 0. Otherwise, these functions shall
return −1 and set errno to indicate the error. If −1 is returned, the file times shall not be affected.

ERRORS
These functions shall fail if:

[EACCES] Search permission is denied by a component of the path prefix; or the times
argument is a null pointer and the effective user ID of the process does not
match the owner of the file and write access is denied.

[ELOOP] A loop exists in symbolic links encountered during resolution of the path
argument.

[ENAMETOOLONG]
The length of the path argument exceeds {PATH_MAX} or a pathname
component is longer than {NAME_MAX}.

[ENOENT] A component of path does not name an existing file or path is an empty string.

[ENOTDIR] A component of the path prefix is not a directory.

1660 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

51034

51035

51036

51037

51038

51039

51040

51041

51042

51043

51044

51045

51046

51047

51048

51049

51050

51051

51052

51053

51054

51055

51056

51057

51058

51059

51060

51061

51062

51063

51064

51065

51066

51067

51068

51069

51070

51071

51072

51073

51074

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces utimes()

[EPERM] The times argument is not a null pointer and the calling process’ effective user
ID has write access to the file but does not match the owner of the file and the
calling process does not have the appropriate privileges.

[EROFS] The file system containing the file is read-only.

The futimesat() function shall fail if:

[EBADF] The path argument does not specify an absolute path and the fd argument is
neither AT_FDCWD nor a valid file descriptor open for searching.

These functions may fail if:

[ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during
resolution of the path argument.

[ENAMETOOLONG]
Pathname resolution of a symbolic link produced an intermediate result
whose length exceeds {PATH_MAX}.

The futimesat() function may fail if:

[ENOTDIR] The path argument is not an absolute path and fd is neither AT_FDCWD nor a
file descriptor associated with a directory.

EXAMPLES
None.

APPLICATION USAGE
For applications portability, the utime() function should be used to set file access and
modification times instead of utimes().

RATIONALE
The purpose of the futimesat() function is to set the access and modification time of files in
directories other than the current working directory without exposure to race conditions. Any
part of the path of a file could be changed in parallel to a call to utimes(), resulting in unspecified
behavior. By opening a file descriptor for the target directory and using the futimesat() function
it can be guaranteed that the changed file is located relative to the desired directory.

FUTURE DIRECTIONS
None.

SEE ALSO
utime(), the Base Definitions volume of IEEE Std 1003.1-200x, <sys/time.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Issue 6
This function is marked LEGACY.

The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

The wording of the mandatory [ELOOP] error condition is updated, and a second optional
[ELOOP] error condition is added.

Issue 7
The LEGACY marking is removed.

The futimesat() function is added from The Open Group Technical Standard, 2006, Extended API
Set Part 2.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1661

51075

51076

51077

51078

51079

51080

51081

51082

51083

51084

51085

51086

51087

51088

51089

51090

51091

51092

51093

51094

51095

51096

51097

51098

51099

51100

51101

51102

51103

51104

51105

51106

51107

51108

51109

51110

51111

51112

51113

51114

51115

51116

51117

51118

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

utimes() System Interfaces

1662 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces va_arg()

NAME
va_arg, va_copy, va_end, va_start — handle variable argument list

SYNOPSIS
#include <stdarg.h>

type va_arg(va_list ap, type);
void va_copy(va_list dest, v a_list src);
void va_end(va_list ap);
void va_start(va_list ap, argN);

DESCRIPTION
Refer to the Base Definitions volume of IEEE Std 1003.1-200x, <stdarg.h>.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1663

51119

51120

51121

51122

51123

51124

51125

51126

51127

51128

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

vfprintf() System Interfaces

NAME
vfprintf, vprintf, vsnprintf, vsprintf — format output of a stdarg argument list

SYNOPSIS
#include <stdarg.h>
#include <stdio.h>

int vfprintf(FILE *restrict stream, c onst char *restrict format,
va_list ap);

int vprintf(const char *restrict format, v a_list ap);
int vsnprintf(char *restrict s, s ize_t n, c onst char *restrict format,

va_list ap);
int vsprintf(char *restrict s, c onst char *restrict format, v a_list ap);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

The vprintf(), vfprintf(), vsnprintf(), and vsprintf() functions shall be equivalent to printf(),
fprintf(), snprintf(), and sprintf() respectively, except that instead of being called with a variable
number of arguments, they are called with an argument list as defined by <stdarg.h>.

These functions shall not invoke the va_end macro. As these functions invoke the va_arg macro,
the value of ap after the return is unspecified.

RETURN VALUE
Refer to fprintf().

ERRORS
Refer to fprintf().

EXAMPLES
None.

APPLICATION USAGE
Applications using these functions should call va_end(ap) afterwards to clean up.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fprintf(), the Base Definitions volume of IEEE Std 1003.1-200x, <stdarg.h>, <stdio.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The vsnprintf() function is added.

Issue 6
The vfprintf(), vprintf(), vsnprintf(), and vsprintf() functions are updated for alignment with the
ISO/IEC 9899: 1999 standard.

1664 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

51129

51130

51131

51132

51133

51134

51135

51136

51137

51138

51139

51140

51141

51142

51143

51144

51145

51146

51147

51148

51149

51150

51151

51152

51153

51154

51155

51156

51157

51158

51159

51160

51161

51162

51163

51164

51165

51166

51167

51168

51169

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces vfscanf()

NAME
vfscanf, vscanf, vsscanf — format input of a stdarg argument list

SYNOPSIS
#include <stdarg.h>
#include <stdio.h>

int vfscanf(FILE *restrict stream, c onst char *restrict format,
va_list arg);

int vscanf(const char *restrict format, v a_list arg);
int vsscanf(const char *restrict s, c onst char *restrict format,

va_list arg);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

The vscanf(), vfscanf(), and vsscanf() functions shall be equivalent to the scanf(), fscanf(), and
sscanf() functions, respectively, except that instead of being called with a variable number of
arguments, they are called with an argument list as defined in the <stdarg.h> header. These
functions shall not invoke the va_end macro. As these functions invoke the va_arg macro, the
value of ap after the return is unspecified.

RETURN VALUE
Refer to fscanf().

ERRORS
Refer to fscanf().

EXAMPLES
None.

APPLICATION USAGE
Applications using these functions should call va_end(ap) afterwards to clean up.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fscanf(), the Base Definitions volume of IEEE Std 1003.1-200x, <stdarg.h>, <stdio.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1665

51170

51171

51172

51173

51174

51175

51176

51177

51178

51179

51180

51181

51182

51183

51184

51185

51186

51187

51188

51189

51190

51191

51192

51193

51194

51195

51196

51197

51198

51199

51200

51201

51202

51203

51204

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

vfwprintf() System Interfaces

NAME
vfwprintf, vswprintf, vwprintf — wide-character formatted output of a stdarg argument list

SYNOPSIS
#include <stdarg.h>
#include <stdio.h>
#include <wchar.h>

int vfwprintf(FILE *restrict stream, c onst wchar_t *restrict format,
va_list arg);

int vswprintf(wchar_t *restrict ws, s ize_t n,
const wchar_t *restrict format, v a_list arg);

int vwprintf(const wchar_t *restrict format, v a_list arg);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

The vfwprintf(), vswprintf(), and vwprintf() functions shall be equivalent to fwprintf(), swprintf(),
and wprintf() respectively, except that instead of being called with a variable number of
arguments, they are called with an argument list as defined by <stdarg.h>.

These functions shall not invoke the va_end macro. However, as these functions do invoke the
va_arg macro, the value of ap after the return is unspecified.

RETURN VALUE
Refer to fwprintf().

ERRORS
Refer to fwprintf().

EXAMPLES
None.

APPLICATION USAGE
Applications using these functions should call va_end(ap) afterwards to clean up.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fwprintf(), the Base Definitions volume of IEEE Std 1003.1-200x, <stdarg.h>, <stdio.h>,
<wchar.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with ISO/IEC 9899: 1990/Amendment 1: 1995
(E).

Issue 6
The vfwprintf(), vswprintf(), and vwprintf() prototypes are updated for alignment with the
ISO/IEC 9899: 1999 standard. ()

1666 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

51205

51206

51207

51208

51209

51210

51211

51212

51213

51214

51215

51216

51217

51218

51219

51220

51221

51222

51223

51224

51225

51226

51227

51228

51229

51230

51231

51232

51233

51234

51235

51236

51237

51238

51239

51240

51241

51242

51243

51244

51245

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces vfwscanf()

NAME
vfwscanf, vswscanf, vwscanf — wide-character formatted input of a stdarg argument list

SYNOPSIS
#include <stdarg.h>
#include <stdio.h>
#include <wchar.h>

int vfwscanf(FILE *restrict stream, c onst wchar_t *restrict format,
va_list arg);

int vswscanf(const wchar_t *restrict ws, c onst wchar_t *restrict format,
va_list arg);

int vwscanf(const wchar_t *restrict format, v a_list arg);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

The vfwscanf(), vswscanf(), and vwscanf() functions shall be equivalent to the fwscanf(),
swscanf(), and wscanf() functions, respectively, except that instead of being called with a variable
number of arguments, they are called with an argument list as defined in the <stdarg.h> header.
These functions shall not invoke the va_end macro. As these functions invoke the va_arg macro,
the value of ap after the return is unspecified.

RETURN VALUE
Refer to fwscanf().

ERRORS
Refer to fwscanf().

EXAMPLES
None.

APPLICATION USAGE
Applications using these functions should call va_end(ap) afterwards to clean up.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fwscanf(), the Base Definitions volume of IEEE Std 1003.1-200x, <stdarg.h>, <stdio.h>,
<wchar.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1667

51246

51247

51248

51249

51250

51251

51252

51253

51254

51255

51256

51257

51258

51259

51260

51261

51262

51263

51264

51265

51266

51267

51268

51269

51270

51271

51272

51273

51274

51275

51276

51277

51278

51279

51280

51281

51282

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

vprintf() System Interfaces

NAME
vprintf — format the output of a stdarg argument list

SYNOPSIS
#include <stdarg.h>
#include <stdio.h>

int vprintf(const char *restrict format, v a_list ap);

DESCRIPTION
Refer to vfprintf().

1668 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

51283

51284

51285

51286

51287

51288

51289

51290

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces vscanf()

NAME
vscanf — format input of a stdarg argument list

SYNOPSIS
#include <stdarg.h>
#include <stdio.h>

int vscanf(const char *restrict format, v a_list arg);

DESCRIPTION
Refer to vfscanf().

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1669

51291

51292

51293

51294

51295

51296

51297

51298

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

vsnprintf() System Interfaces

NAME
vsnprintf, vsprintf — format output of a stdarg argument list

SYNOPSIS
#include <stdarg.h>
#include <stdio.h>

int vsnprintf(char *restrict s, s ize_t n,
const char *restrict format, v a_list ap);

int vsprintf(char *restrict s, c onst char *restrict format,
va_list ap);

DESCRIPTION
Refer to vfprintf().

1670 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

51299

51300

51301

51302

51303

51304

51305

51306

51307

51308

51309

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces vsscanf()

NAME
vsscanf — format input of a stdarg argument list

SYNOPSIS
#include <stdarg.h>
#include <stdio.h>

int vsscanf(const char *restrict s, c onst char *restrict format,
va_list arg);

DESCRIPTION
Refer to vfscanf().

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1671

51310

51311

51312

51313

51314

51315

51316

51317

51318

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

vswprintf() System Interfaces

NAME
vswprintf — wide-character formatted output of a stdarg argument list

SYNOPSIS
#include <stdarg.h>
#include <stdio.h>
#include <wchar.h>

int vswprintf(wchar_t *restrict ws, s ize_t n,
const wchar_t *restrict format, v a_list arg);

DESCRIPTION
Refer to vfwprintf().

1672 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

51319

51320

51321

51322

51323

51324

51325

51326

51327

51328

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces vswscanf()

NAME
vswscanf — wide-character formatted input of a stdarg argument list

SYNOPSIS
#include <stdarg.h>
#include <stdio.h>
#include <wchar.h>

int vswscanf(const wchar_t *restrict ws, c onst wchar_t *restrict format,
va_list arg);

DESCRIPTION
Refer to vwscanf().

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1673

51329

51330

51331

51332

51333

51334

51335

51336

51337

51338

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

vwprintf() System Interfaces

NAME
vwprintf — wide-character formatted output of a stdarg argument list

SYNOPSIS
#include <stdarg.h>
#include <stdio.h>
#include <wchar.h>

int vwprintf(const wchar_t *restrict format, v a_list arg);

DESCRIPTION
Refer to vfwprintf().

1674 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

51339

51340

51341

51342

51343

51344

51345

51346

51347

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces vwscanf()

NAME
vwscanf — wide-character formatted input of a stdarg argument list

SYNOPSIS
#include <stdarg.h>
#include <stdio.h>
#include <wchar.h>

int vwscanf(const wchar_t *restrict format, v a_list arg);

DESCRIPTION
Refer to vwscanf().

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1675

51348

51349

51350

51351

51352

51353

51354

51355

51356

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

wait() System Interfaces

NAME
wait, waitpid — wait for a child process to stop or terminate

SYNOPSIS
#include <sys/wait.h>

pid_t wait(int * stat_loc);
pid_t waitpid(pid_t pid, i nt * stat_loc, i nt options);

DESCRIPTION
The wait() and waitpid() functions shall obtain status information pertaining to one of the
caller ’s child processes. Various options permit status information to be obtained for child
processes that have terminated or stopped. If status information is available for two or more
child processes, the order in which their status is reported is unspecified.

The wait() function shall suspend execution of the calling thread until status information for one
of the terminated child processes of the calling process is available, or until delivery of a signal
whose action is either to execute a signal-catching function or to terminate the process. If more
than one thread is suspended in wait() or waitpid() awaiting termination of the same process,
exactly one thread shall return the process status at the time of the target process termination. If
status information is available prior to the call to wait(), return shall be immediate.

The waitpid() function shall be equivalent to wait() if the pid argument is (pid_t)−1 and the
options argument is 0. Otherwise, its behavior shall be modified by the values of the pid and
options arguments.

The pid argument specifies a set of child processes for which status is requested. The waitpid()
function shall only return the status of a child process from this set:

• If pid is equal to (pid_t)−1, status is requested for any child process. In this respect,
waitpid() is then equivalent to wait().

• If pid is greater than 0, it specifies the process ID of a single child process for which status is
requested.

• If pid is 0, status is requested for any child process whose process group ID is equal to that
of the calling process.

• If pid is less than (pid_t)−1, status is requested for any child process whose process group
ID is equal to the absolute value of pid.

The options argument is constructed from the bitwise-inclusive OR of zero or more of the
following flags, defined in the <sys/wait.h> header:

XSI WCONTINUED The waitpid() function shall report the status of any continued child process
specified by pid whose status has not been reported since it continued from a
job control stop.

WNOHANG The waitpid() function shall not suspend execution of the calling thread if
status is not immediately available for one of the child processes specified by
pid.

WUNTRACED The status of any child processes specified by pid that are stopped, and whose
status has not yet been reported since they stopped, shall also be reported to
the requesting process.

XSI If the calling process has SA_NOCLDWAIT set or has SIGCHLD set to SIG_IGN, and the process
has no unwaited-for children that were transformed into zombie processes, the calling thread
shall block until all of the children of the process containing the calling thread terminate, and

1676 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

51357

51358

51359

51360

51361

51362

51363

51364

51365

51366

51367

51368

51369

51370

51371

51372

51373

51374

51375

51376

51377

51378

51379

51380

51381

51382

51383

51384

51385

51386

51387

51388

51389

51390

51391

51392

51393

51394

51395

51396

51397

51398

51399

51400

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces wait()

wait() and waitpid() shall fail and set errno to [ECHILD].

If wait() or waitpid() return because the status of a child process is available, these functions
shall return a value equal to the process ID of the child process. In this case, if the value of the
argument stat_loc is not a null pointer, information shall be stored in the location pointed to by
stat_loc. The value stored at the location pointed to by stat_loc shall be 0 if and only if the status
returned is from a terminated child process that terminated by one of the following means:

1. The process returned 0 from main().

2. The process called _exit() or exit() with a status argument of 0.

3. The process was terminated because the last thread in the process terminated.

Regardless of its value, this information may be interpreted using the following macros, which
are defined in <sys/wait.h> and evaluate to integral expressions; the stat_val argument is the
integer value pointed to by stat_loc.

WIFEXITED(stat_val)
Evaluates to a non-zero value if status was returned for a child process that terminated
normally.

WEXITSTATUS(stat_val)
If the value of WIFEXITED(stat_val) is non-zero, this macro evaluates to the low-order 8 bits
of the status argument that the child process passed to _exit() or exit(), or the value the child
process returned from main().

WIFSIGNALED(stat_val)
Evaluates to a non-zero value if status was returned for a child process that terminated due
to the receipt of a signal that was not caught (see <signal.h>).

WTERMSIG(stat_val)
If the value of WIFSIGNALED(stat_val) is non-zero, this macro evaluates to the number of
the signal that caused the termination of the child process.

WIFSTOPPED(stat_val)
Evaluates to a non-zero value if status was returned for a child process that is currently
stopped.

WSTOPSIG(stat_val)
If the value of WIFSTOPPED(stat_val) is non-zero, this macro evaluates to the number of the
signal that caused the child process to stop.

XSI WIFCONTINUED(stat_val)
Evaluates to a non-zero value if status was returned for a child process that has continued
from a job control stop.

SPN It is unspecified whether the status value returned by calls to wait() or waitpid() for processes
created by posix_spawn() or posix_spawnp() can indicate a WIFSTOPPED(stat_val) before
subsequent calls to wait() or waitpid() indicate WIFEXITED(stat_val) as the result of an error
detected before the new process image starts executing.

It is unspecified whether the status value returned by calls to wait() or waitpid() for processes
created by posix_spawn() or posix_spawnp() can indicate a WIFSIGNALED(stat_val) if a signal is
sent to the parent’s process group after posix_spawn() or posix_spawnp() is called.

If the information pointed to by stat_loc was stored by a call to waitpid() that specified the
XSI WUNTRACED flag and did not specify the WCONTINUED flag, exactly one of the macros

WIFEXITED(*stat_loc), WIFSIGNALED(*stat_loc), and WIFSTOPPED(*stat_loc) shall evaluate to a
non-zero value.

If the information pointed to by stat_loc was stored by a call to waitpid() that specified the

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1677

51401

51402

51403

51404

51405

51406

51407

51408

51409

51410

51411

51412

51413

51414

51415

51416

51417

51418

51419

51420

51421

51422

51423

51424

51425

51426

51427

51428

51429

51430

51431

51432

51433

51434

51435

51436

51437

51438

51439

51440

51441

51442

51443

51444

51445

51446

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

wait() System Interfaces

XSI WUNTRACED and WCONTINUED flags, exactly one of the macros WIFEXITED(*stat_loc),
XSI WIFSIGNALED(*stat_loc), WIFSTOPPED(*stat_loc), and WIFCONTINUED(*stat_loc) shall

evaluate to a non-zero value.

If the information pointed to by stat_loc was stored by a call to waitpid() that did not specify the
XSI WUNTRACED or WCONTINUED flags, or by a call to the wait() function, exactly one of the

macros WIFEXITED(*stat_loc) and WIFSIGNALED(*stat_loc) shall evaluate to a non-zero value.

If the information pointed to by stat_loc was stored by a call to waitpid() that did not specify the
XSI WUNTRACED flag and specified the WCONTINUED flag, or by a call to the wait() function,
XSI exactly one of the macros WIFEXITED(*stat_loc), WIFSIGNALED(*stat_loc), and

WIFCONTINUED(*stat_loc) shall evaluate to a non-zero value.

If _POSIX_REALTIME_SIGNALS is defined, and the implementation queues the SIGCHLD
signal, then if wait() or waitpid() returns because the status of a child process is available, any
pending SIGCHLD signal associated with the process ID of the child process shall be discarded.
Any other pending SIGCHLD signals shall remain pending.

Otherwise, if SIGCHLD is blocked, if wait() or waitpid() return because the status of a child
process is available, any pending SIGCHLD signal shall be cleared unless the status of another
child process is available.

For all other conditions, it is unspecified whether child status will be available when a SIGCHLD
signal is delivered.

There may be additional implementation-defined circumstances under which wait() or waitpid()
report status. This shall not occur unless the calling process or one of its child processes
explicitly makes use of a non-standard extension. In these cases the interpretation of the
reported status is implementation-defined.

XSI If a parent process terminates without waiting for all of its child processes to terminate, the
remaining child processes shall be assigned a new parent process ID corresponding to an
implementation-defined system process.

RETURN VALUE
If wait() or waitpid() returns because the status of a child process is available, these functions
shall return a value equal to the process ID of the child process for which status is reported. If
wait() or waitpid() returns due to the delivery of a signal to the calling process, −1 shall be
returned and errno set to [EINTR]. If waitpid() was invoked with WNOHANG set in options, it
has at least one child process specified by pid for which status is not available, and status is not
available for any process specified by pid, 0 is returned. Otherwise, (pid_t)−1 shall be returned,
and errno set to indicate the error.

ERRORS
The wait() function shall fail if:

[ECHILD] The calling process has no existing unwaited-for child processes.

[EINTR] The function was interrupted by a signal. The value of the location pointed to
by stat_loc is undefined.

The waitpid() function shall fail if:

[ECHILD] The process specified by pid does not exist or is not a child of the calling
process, or the process group specified by pid does not exist or does not have
any member process that is a child of the calling process.

[EINTR] The function was interrupted by a signal. The value of the location pointed to
by stat_loc is undefined.

1678 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

51447

51448

51449

51450

51451

51452

51453

51454

51455

51456

51457

51458

51459

51460

51461

51462

51463

51464

51465

51466

51467

51468

51469

51470

51471

51472

51473

51474

51475

51476

51477

51478

51479

51480

51481

51482

51483

51484

51485

51486

51487

51488

51489

51490

51491

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces wait()

[EINVAL] The options argument is not valid.

EXAMPLES

Waiting for a Child Process and then Checking its Status

The following example demonstrates the use of waitpid(), fork(), and the macros used to
interpret the status value returned by waitpid() (and wait()). The code segment creates a child
process which does some unspecified work. Meanwhile the parent loops performing calls to
waitpid() to monitor the status of the child. The loop terminates when child termination is
detected.

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/wait.h>
...

pid_t child_pid, wpid;
int status;

child_pid = fork();
if (child_pid == −1) { /* fork() failed */

perror("fork");
exit(EXIT_FAILURE);

}

if (child_pid == 0) { /* This is the child */
/* Child does some work and then terminates */
...

} e lse { /* This is the parent */
do {

wpid = waitpid(child_pid, &status, WUNTRACED
#ifdef WCONTINUED /* Not all implementations support this */

| WCONTINUED
#endif

);
if (wpid == −1) {

perror("waitpid");
exit(EXIT_FAILURE);

}

if (WIFEXITED(status)) {
printf("child exited, status=%d\n", WEXITSTATUS(status));

} e lse if (WIFSIGNALED(status)) {
printf("child killed (signal %d)\n", WTERMSIG(status));

} e lse if (WIFSTOPPED(status)) {
printf("child stopped (signal %d)\n", WSTOPSIG(status));

#ifdef WIFCONTINUED /* Not all implementations support this */
} e lse if (WIFCONTINUED(status)) {

printf("child continued\n");
#endif

} e lse { /* Non-standard case -- may never happen */
printf("Unexpected status (0x%x)\n", status);

}
} w hile (!WIFEXITED(status) && !WIFSIGNALED(status));

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1679

51492

51493

51494

51495

51496

51497

51498

51499

51500

51501

51502

51503

51504

51505

51506

51507

51508

51509

51510

51511

51512

51513

51514

51515

51516

51517

51518

51519

51520

51521

51522

51523

51524

51525

51526

51527

51528

51529

51530

51531

51532

51533

51534

51535

51536

51537

51538

51539

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

wait() System Interfaces

}

APPLICATION USAGE
None.

RATIONALE
A call to the wait() or waitpid() function only returns status on an immediate child process of the
calling process; that is, a child that was produced by a single fork() call (perhaps followed by an
exec or other function calls) from the parent. If a child produces grandchildren by further use of
fork(), none of those grandchildren nor any of their descendants affect the behavior of a wait()
from the original parent process. Nothing in this volume of IEEE Std 1003.1-200x prevents an
implementation from providing extensions that permit a process to get status from a grandchild
or any other process, but a process that does not use such extensions must be guaranteed to see
status from only its direct children.

The waitpid() function is provided for three reasons:

1. To support job control

2. To permit a non-blocking version of the wait() function

3. To permit a library routine, such as system() or pclose(), to wait for its children without
interfering with other terminated children for which the process has not waited

The first two of these facilities are based on the wait3() function provided by 4.3 BSD. The
function uses the options argument, which is equivalent to an argument to wait3(). The
WUNTRACED flag is used only in conjunction with job control on systems supporting job
control. Its name comes from 4.3 BSD and refers to the fact that there are two types of stopped
processes in that implementation: processes being traced via the ptrace() debugging facility and
(untraced) processes stopped by job control signals. Since ptrace() is not part of this volume of
IEEE Std 1003.1-200x, only the second type is relevant. The name WUNTRACED was retained
because its usage is the same, even though the name is not intuitively meaningful in this context.

The third reason for the waitpid() function is to permit independent sections of a process to
spawn and wait for children without interfering with each other. For example, the following
problem occurs in developing a portable shell, or command interpreter:

stream = popen("/bin/true");
(void) system("sleep 100");
(void) pclose(stream);

On all historical implementations, the final pclose() fails to reap the wait() status of the popen().

The status values are retrieved by macros, rather than given as specific bit encodings as they are
in most historical implementations (and thus expected by existing programs). This was
necessary to eliminate a limitation on the number of signals an implementation can support that
was inherent in the traditional encodings. This volume of IEEE Std 1003.1-200x does require that
a status value of zero corresponds to a process calling _exit(0), as this is the most common
encoding expected by existing programs. Some of the macro names were adopted from 4.3 BSD.

These macros syntactically operate on an arbitrary integer value. The behavior is undefined
unless that value is one stored by a successful call to wait() or waitpid() in the location pointed to
by the stat_loc argument. An early proposal attempted to make this clearer by specifying each
argument as *stat_loc rather than stat_val. However, that did not follow the conventions of other
specifications in this volume of IEEE Std 1003.1-200x or traditional usage. It also could have
implied that the argument to the macro must literally be *stat_loc; in fact, that value can be
stored or passed as an argument to other functions before being interpreted by these macros.

The extension that affects wait() and waitpid() and is common in historical implementations is
the ptrace() function. It is called by a child process and causes that child to stop and return a
status that appears identical to the status indicated by WIFSTOPPED. The status of ptrace()

1680 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

51540

51541

51542

51543

51544

51545

51546

51547

51548

51549

51550

51551

51552

51553

51554

51555

51556

51557

51558

51559

51560

51561

51562

51563

51564

51565

51566

51567

51568

51569

51570

51571

51572

51573

51574

51575

51576

51577

51578

51579

51580

51581

51582

51583

51584

51585

51586

51587

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces wait()

children is traditionally returned regardless of the WUNTRACED flag (or by the wait()
function). Most applications do not need to concern themselves with such extensions because
they have control over what extensions they or their children use. However, applications, such
as command interpreters, that invoke arbitrary processes may see this behavior when those
arbitrary processes misuse such extensions.

Implementations that support core file creation or other implementation-defined actions on
termination of some processes traditionally provide a bit in the status returned by wait() to
indicate that such actions have occurred.

Allowing the wait() family of functions to discard a pending SIGCHLD signal that is associated
with a successfully waited-for child process puts them into the sigwait() and sigwaitinfo()
category with respect to SIGCHLD.

This definition allows implementations to treat a pending SIGCHLD signal as accepted by the
process in wait(), with the same meaning of ‘‘accepted’’ as when that word is applied to the
sigwait() family of functions.

Allowing the wait() family of functions to behave this way permits an implementation to be able
to deal precisely with SIGCHLD signals.

In particular, an implementation that does accept (discard) the SIGCHLD signal can make the
following guarantees regardless of the queuing depth of signals in general (the list of waitable
children can hold the SIGCHLD queue):

1. If a SIGCHLD signal handler is established via sigaction() without the SA_RESETHAND
flag, SIGCHLD signals can be accurately counted; that is, exactly one SIGCHLD signal
will be delivered to or accepted by the process for every child process that terminates.

2. A single wait() issued from a SIGCHLD signal handler can be guaranteed to return
immediately with status information for a child process.

3. When SA_SIGINFO is requested, the SIGCHLD signal handler can be guaranteed to
receive a non-NULL pointer to a siginfo_t structure that describes a child process for
which a wait via waitpid() or waitid() will not block or fail.

4. The system() function will not cause the SIGCHLD handler of a process to be called as a
result of the fork()/exec executed within system() because system() will accept the
SIGCHLD signal when it performs a waitpid() for its child process. This is a desirable
behavior of system() so that it can be used in a library without causing side effects to the
application linked with the library.

An implementation that does not permit the wait() family of functions to accept (discard) a
pending SIGCHLD signal associated with a successfully waited-for child, cannot make the
guarantees described above for the following reasons:

Guarantee #1
Although it might be assumed that reliable queuing of all SIGCHLD signals generated by
the system can make this guarantee, the counter-example is the case of a process that blocks
SIGCHLD and performs an indefinite loop of fork()/wait() operations. If the
implementation supports queued signals, then eventually the system will run out of
memory for the queue. The guarantee cannot be made because there must be some limit to
the depth of queuing.

Guarantees #2 and #3
These cannot be guaranteed unless the wait() family of functions accepts the SIGCHLD
signal. Otherwise, a fork()/wait() executed while SIGCHLD is blocked (as in the system()
function) will result in an invocation of the handler when SIGCHLD is unblocked, after the
process has disappeared.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1681

51588

51589

51590

51591

51592

51593

51594

51595

51596

51597

51598

51599

51600

51601

51602

51603

51604

51605

51606

51607

51608

51609

51610

51611

51612

51613

51614

51615

51616

51617

51618

51619

51620

51621

51622

51623

51624

51625

51626

51627

51628

51629

51630

51631

51632

51633

51634

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

wait() System Interfaces

Guarantee #4
Although possible to make this guarantee, system() would have to set the SIGCHLD
handler to SIG_DFL so that the SIGCHLD signal generated by its fork() would be discarded
(the SIGCHLD default action is to be ignored), then restore it to its previous setting. This
would have the undesirable side effect of discarding all SIGCHLD signals pending to the
process.

FUTURE DIRECTIONS
None.

SEE ALSO
exec , exit(), fork(), waitid(), the Base Definitions volume of IEEE Std 1003.1-200x, Section 4.10,
Memory Synchronization, <signal.h>, <sys/wait.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The DESCRIPTION is updated for alignment with the POSIX Threads Extension.

Issue 6
The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
required for conforming implementations of previous POSIX specifications, it was not
required for UNIX applications.

The following changes were made to align with the IEEE P1003.1a draft standard:

• The processing of the SIGCHLD signal and the [ECHILD] error is clarified.

The semantics of WIFSTOPPED(stat_val), WIFEXITED(stat_val), and WIFSIGNALED(stat_val)
are defined with respect to posix_spawn() or posix_spawnp() for alignment with IEEE Std
1003.1d-1999.

The DESCRIPTION is updated for alignment with the ISO/IEC 9899: 1999 standard.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/145 is applied, adding the example to the
EXAMPLES section.

1682 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

51635

51636

51637

51638

51639

51640

51641

51642

51643

51644

51645

51646

51647

51648

51649

51650

51651

51652

51653

51654

51655

51656

51657

51658

51659

51660

51661

51662

51663

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces waitid()

NAME
waitid — wait for a child process to change state

SYNOPSIS
#include <sys/wait.h>

int waitid(idtype_t idtype, i d_t id, s iginfo_t * infop, i nt options);

DESCRIPTION
The waitid() function shall suspend the calling thread until one child of the process containing
the calling thread changes state. It records the current state of a child in the structure pointed to
by infop. The fields of the structure pointed to by infop are filled in as described for the
SIGCHLD signal in <signal.h>. If a child process changed state prior to the call to waitid(),
waitid() shall return immediately. If more than one thread is suspended in wait() or waitpid()
waiting for termination of the same process, exactly one thread shall return the process status at
the time of the target process termination.

The idtype and id arguments are used to specify which children waitid() waits for.

If idtype is P_PID, waitid() shall wait for the child with a process ID equal to (pid_t)id.

If idtype is P_PGID, waitid() shall wait for any child with a process group ID equal to (pid_t)id.

If idtype is P_ALL, waitid() shall wait for any children and id is ignored.

The options argument is used to specify which state changes waitid() shall wait for. It is formed
by OR’ing together the following flags:

WEXITED Wait for processes that have exited.

WSTOPPED Status shall be returned for any child that has stopped upon receipt of a signal.

WCONTINUED Status shall be returned for any child that was stopped and has been
continued.

WNOHANG Return immediately if there are no children to wait for.

WNOWAIT Keep the process whose status is returned in infop in a waitable state. This
shall not affect the state of the process; the process may be waited for again
after this call completes.

Applications shall specify at least one of the flags WEXITED, WSTOPPED, or WCONTINUED to
be OR’d in with the options argument.

The application shall ensure that the infop argument points to a siginfo_t structure. If waitid()
returns because a child process was found that satisfied the conditions indicated by the
arguments idtype and options, then the structure pointed to by infop shall be filled in by the
system with the status of the process. The si_signo member shall always be equal to SIGCHLD.

RETURN VALUE
If WNOHANG was specified and there are no children to wait for, 0 shall be returned. If waitid()
returns due to the change of state of one of its children, 0 shall be returned. Otherwise, −1 shall
be returned and errno set to indicate the error.

ERRORS
The waitid() function shall fail if:

[ECHILD] The calling process has no existing unwaited-for child processes.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1683

51664

51665

51666

51667

51668

51669

51670

51671

51672

51673

51674

51675

51676

51677

51678

51679

51680

51681

51682

51683

51684

51685

51686

51687

51688

51689

51690

51691

51692

51693

51694

51695

51696

51697

51698

51699

51700

51701

51702

51703

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

waitid() System Interfaces

[EINTR] The waitid() function was interrupted by a signal.

[EINVAL] An invalid value was specified for options, or idtype and id specify an invalid
set of processes.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
exec , exit(), wait(), the Base Definitions volume of IEEE Std 1003.1-200x, <signal.h>,
<sys/wait.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

The DESCRIPTION is updated for alignment with the POSIX Threads Extension.

Issue 6
The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

Issue 7
Austin Group Interpretation 1003.1-2001 #060 is applied, updating the DESCRIPTION.

The waitid() function is moved from the XSI option to the Base.

1684 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

51704

51705

51706

51707

51708

51709

51710

51711

51712

51713

51714

51715

51716

51717

51718

51719

51720

51721

51722

51723

51724

51725

51726

51727

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces waitpid()

NAME
waitpid — wait for a child process to stop or terminate

SYNOPSIS
#include <sys/wait.h>

pid_t waitpid(pid_t pid, i nt * stat_loc, i nt options);

DESCRIPTION
Refer to wait().

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1685

51728

51729

51730

51731

51732

51733

51734

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

wcpcpy() System Interfaces

NAME
wcpcpy — copy a wide-character string, returning a pointer to its end

SYNOPSIS
CX #include <wchar.h>

wchar_t *wcpcpy(wchar_t *restrict ws1, c onst wchar_t *restrict ws2);

DESCRIPTION
Refer to wcscpy().

1686 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

51735

51736

51737

51738

51739

51740

51741

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces wcpncpy()

NAME
wcpncpy — copy a fixed-size wide-character string, returning a pointer to its end

SYNOPSIS
CX #include <wchar.h>

wchar_t *wcpncpy(wchar_t restrict * ws1, c onst wchar_t *restrict ws2,
size_t n);

DESCRIPTION
Refer to wcsncpy().

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1687

51742

51743

51744

51745

51746

51747

51748

51749

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

wcrtomb() System Interfaces

NAME
wcrtomb — convert a wide-character code to a character (restartable)

SYNOPSIS
#include <stdio.h>

size_t wcrtomb(char *restrict s, w char_t wc, mbstate_t *restrict ps);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

If s is a null pointer, the wcrtomb() function shall be equivalent to the call:

wcrtomb(buf, L ’\0’, ps)

where buf is an internal buffer.

If s is not a null pointer, the wcrtomb() function shall determine the number of bytes needed to
represent the character that corresponds to the wide character given by wc (including any shift
sequences), and store the resulting bytes in the array whose first element is pointed to by s. At
most {MB_CUR_MAX} bytes are stored. If wc is a null wide character, a null byte shall be stored,
preceded by any shift sequence needed to restore the initial shift state. The resulting state
described shall be the initial conversion state.

If ps is a null pointer, the wcrtomb() function shall use its own internal mbstate_t object, which is
initialized at program start-up to the initial conversion state. Otherwise, the mbstate_t object
pointed to by ps shall be used to completely describe the current conversion state of the
associated character sequence. The implementation shall behave as if no function defined in this
volume of IEEE Std 1003.1-200x calls wcrtomb().

CX If the application uses any of the _POSIX_THREAD_SAFE_FUNCTIONS or _POSIX_THREADS
functions, the application shall ensure that the wcrtomb() function is called with a non-NULL ps
argument.

The behavior of this function shall be affected by the LC_CTYPE category of the current locale.

RETURN VALUE
The wcrtomb() function shall return the number of bytes stored in the array object (including any
shift sequences). When wc is not a valid wide character, an encoding error shall occur. In this
case, the function shall store the value of the macro [EILSEQ] in errno and shall return (size_t)−1;
the conversion state shall be undefined.

ERRORS
The wcrtomb() function may fail if:

CX [EINVAL] ps points to an object that contains an invalid conversion state.

[EILSEQ] Invalid wide-character code is detected.

1688 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

51750

51751

51752

51753

51754

51755

51756

51757

51758

51759

51760

51761

51762

51763

51764

51765

51766

51767

51768

51769

51770

51771

51772

51773

51774

51775

51776

51777

51778

51779

51780

51781

51782

51783

51784

51785

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces wcrtomb()

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
mbsinit(), wcsrtombs(), the Base Definitions volume of IEEE Std 1003.1-200x, <wchar.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with ISO/IEC 9899: 1990/Amendment 1: 1995
(E).

Issue 6
In the DESCRIPTION, a note on using this function in a threaded application is added.

Extensions beyond the ISO C standard are marked.

The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

The wcrtomb() prototype is updated for alignment with the ISO/IEC 9899: 1999 standard.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1689

51786

51787

51788

51789

51790

51791

51792

51793

51794

51795

51796

51797

51798

51799

51800

51801

51802

51803

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

wcscasecmp() System Interfaces

NAME
wcscasecmp, wcscasecmp_l, wcsncasecmp, wcsncasecmp_l — case-insensitive wide-character
string comparison

SYNOPSIS
CX #include <wchar.h>

int wcscasecmp(const wchar_t * ws1, c onst wchar_t * ws2);
int wcscasecmp_l(const char * ws1, c onst char * ws2,

locale_t locale);
int wcsncasecmp(const wchar_t * ws1, c onst wchar_t * ws2, s ize_t n);
int wcsncasecmp_l(const char * ws1, c onst char * ws2,

size_t n, l ocale_t locale);

DESCRIPTION
The wcscasecmp() and wcsncasecmp() functions are the wide-character equivalent of the
strcasecmp() and strncasecmp() functions, respectively.

The wcscasecmp() and wcscasecmp_l() functions shall compare, while ignoring differences in case,
the wide-character string pointed to by ws1 to the wide-character string pointed to by ws2.

The wcsncasecmp() and wcsncasecmp_l() functions shall compare, while ignoring differences in
case, not more than n wide-characters from the wide-character string pointed to by ws1 to the
wide-character string pointed to by ws2.

When the LC_CTIME category of the current locale is from the POSIX locale, these functions
shall behave as if the strings had been converted to lowercase and then a byte comparison
performed. Otherwise, the results are unspecified.

The information for wcscasecmp_l() and wcsncasecmp_l() about the case of the characters comes
from the locale represented by locale.

RETURN VALUE
Upon completion, the wcscasecmp() and wcscasecmp_l() functions shall return an integer greater
than, equal to, or less than 0 if the wide-character string pointed to by ws1 is, ignoring case,
greater than, equal to, or less than the wide-character string pointed to by ws2, respectively.

Upon completion, the wcsncasecmp() and wcsncasecmp_l() functions shall return an integer
greater than, equal to, or less than 0 if the possibly null wide-character terminated string pointed
to by ws1 is, ignoring case, greater than, equal to, or less than the possibly null wide-character
terminated string pointed to by ws2, respectively.

No return values are reserved to indicate an error.

ERRORS
The wcscasecmp_l() and wcsncasecmp_l() functions may fail if:

[EINVAL] locale is not a valid locale object handle.

1690 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

51804

51805

51806

51807

51808

51809

51810

51811

51812

51813

51814

51815

51816

51817

51818

51819

51820

51821

51822

51823

51824

51825

51826

51827

51828

51829

51830

51831

51832

51833

51834

51835

51836

51837

51838

51839

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces wcscasecmp()

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
strcasecmp(), wcscmp(), wcsncmp(), the Base Definitions volume of IEEE Std 1003.1-200x,
<wchar.h>

CHANGE HISTORY
First released in Issue 7.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1691

51840

51841

51842

51843

51844

51845

51846

51847

51848

51849

51850

51851

51852

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

wcscat() System Interfaces

NAME
wcscat — concatenate two wide-character strings

SYNOPSIS
#include <wchar.h>

wchar_t *wcscat(wchar_t *restrict ws1, c onst wchar_t *restrict ws2);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

The wcscat() function shall append a copy of the wide-character string pointed to by ws2
(including the terminating null wide-character code) to the end of the wide-character string
pointed to by ws1. The initial wide-character code of ws2 shall overwrite the null wide-character
code at the end of ws1. If copying takes place between objects that overlap, the behavior is
undefined.

RETURN VALUE
The wcscat() function shall return ws1; no return value is reserved to indicate an error.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
wcsncat(), the Base Definitions volume of IEEE Std 1003.1-200x, <wchar.h>

CHANGE HISTORY
First released in Issue 4. Derived from the MSE working draft.

Issue 6
The Open Group Corrigendum U040/2 is applied. In the RETURN VALUE section, s1 is
changed to ws1.

The wcscat() prototype is updated for alignment with the ISO/IEC 9899: 1999 standard.

1692 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

51853

51854

51855

51856

51857

51858

51859

51860

51861

51862

51863

51864

51865

51866

51867

51868

51869

51870

51871

51872

51873

51874

51875

51876

51877

51878

51879

51880

51881

51882

51883

51884

51885

51886

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces wcschr()

NAME
wcschr — wide-character string scanning operation

SYNOPSIS
#include <wchar.h>

wchar_t *wcschr(const wchar_t * ws, w char_t wc);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

The wcschr() function shall locate the first occurrence of wc in the wide-character string pointed
to by ws. The application shall ensure that the value of wc is a character representable as a type
wchar_t and a wide-character code corresponding to a valid character in the current locale. The
terminating null wide-character code is considered to be part of the wide-character string.

RETURN VALUE
Upon completion, wcschr() shall return a pointer to the wide-character code, or a null pointer if
the wide-character code is not found.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
wcsrchr(), the Base Definitions volume of IEEE Std 1003.1-200x, <wchar.h>

CHANGE HISTORY
First released in Issue 4. Derived from the MSE working draft.

Issue 6
The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1693

51887

51888

51889

51890

51891

51892

51893

51894

51895

51896

51897

51898

51899

51900

51901

51902

51903

51904

51905

51906

51907

51908

51909

51910

51911

51912

51913

51914

51915

51916

51917

51918

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

wcscmp() System Interfaces

NAME
wcscmp — compare two wide-character strings

SYNOPSIS
#include <wchar.h>

int wcscmp(const wchar_t * ws1, c onst wchar_t * ws2);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

The wcscmp() function shall compare the wide-character string pointed to by ws1 to the wide-
character string pointed to by ws2.

The sign of a non-zero return value shall be determined by the sign of the difference between the
values of the first pair of wide-character codes that differ in the objects being compared.

RETURN VALUE
Upon completion, wcscmp() shall return an integer greater than, equal to, or less than 0, if the
wide-character string pointed to by ws1 is greater than, equal to, or less than the wide-character
string pointed to by ws2, respectively.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
wcscasecmp(), wcsncmp(), the Base Definitions volume of IEEE Std 1003.1-200x, <wchar.h>

CHANGE HISTORY
First released in Issue 4. Derived from the MSE working draft.

1694 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

51919

51920

51921

51922

51923

51924

51925

51926

51927

51928

51929

51930

51931

51932

51933

51934

51935

51936

51937

51938

51939

51940

51941

51942

51943

51944

51945

51946

51947

51948

51949

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces wcscoll()

NAME
wcscoll, wcscoll_l — wide-character string comparison using collating information

SYNOPSIS
#include <wchar.h>

int wcscoll(const wchar_t * ws1, c onst wchar_t * ws2);
CX int wcscoll_l(const wchar_t * ws1, c onst wchar_t * ws2,

locale_t locale);

DESCRIPTION
CX For wcscoll(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of IEEE Std 1003.1-200x defers to the ISO C standard.

CX The wcscoll() and wcscoll_l() functions shall compare the wide-character string pointed to by
ws1 to the wide-character string pointed to by ws2, both interpreted as appropriate to the

CX LC_COLLATE category of the current locale of the process, or the locale represented by locale,
respectively.

CX The wcscoll() and wcscoll_l() functions shall not change the setting of errno if successful.

CX An application wishing to check for error situations should set errno to 0 before calling wcscoll()
or wcscoll_l(). If errno is non-zero on return, an error has occurred.

RETURN VALUE
CX Upon successful completion, wcscoll() and wcscoll_l() shall return an integer greater than, equal

to, or less than 0, according to whether the wide-character string pointed to by ws1 is greater
than, equal to, or less than the wide-character string pointed to by ws2, when both are

CX interpreted as appropriate to the current locale, or to the locale represented by locale,
CX respectively. On error, wcscoll() and wcscoll_l() shall set errno, but no return value is reserved

to indicate an error.

ERRORS
These functions may fail if:

CX [EINVAL] The ws1 or ws2 arguments contain wide-character codes outside the domain of
the collating sequence.

The wcscoll_l() function may fail if:

CX [EINVAL] locale is not a valid locale object handle.

EXAMPLES
None.

APPLICATION USAGE
The wcsxfrm() and wcscmp() functions should be used for sorting large lists.

RATIONALE
None.

FUTURE DIRECTIONS
None.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1695

51950

51951

51952

51953

51954

51955

51956

51957

51958

51959

51960

51961

51962

51963

51964

51965

51966

51967

51968

51969

51970

51971

51972

51973

51974

51975

51976

51977

51978

51979

51980

51981

51982

51983

51984

51985

51986

51987

51988

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

wcscoll() System Interfaces

SEE ALSO
wcscmp(), wcsxfrm(), the Base Definitions volume of IEEE Std 1003.1-200x, <wchar.h>

CHANGE HISTORY
First released in Issue 4. Derived from the MSE working draft.

Issue 5
Moved from ENHANCED I18N to BASE and the [ENOSYS] error is removed.

The DESCRIPTION is updated to indicate that errno is not changed if the function is successful.

Issue 7
The wcscoll_l() function is added from The Open Group Technical Standard, 2006, Extended API
Set Part 4.

1696 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

51989

51990

51991

51992

51993

51994

51995

51996

51997

51998

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces wcscpy()

NAME
wcpcpy, wcscpy — copy a wide-character string, returning a pointer to its end

SYNOPSIS
#include <wchar.h>

CX wchar_t *wcpcpy(wchar_t *restrict ws1, c onst wchar_t *restrict ws2);
wchar_t *wcscpy(wchar_t *restrict ws1, c onst wchar_t *restrict ws2);

DESCRIPTION
CX For wcscpy(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of IEEE Std 1003.1-200x defers to the ISO C standard.

CX The wcpcpy() and wcscpy() functions shall copy the wide-character string pointed to by ws2
(including the terminating null wide-character code) into the array pointed to by ws1.

The application shall ensure that there is room for at least wcslen(ws2)+1 wide characters in the
ws1 array, and that the ws2 and ws1 arrays do not overlap.

If copying takes place between objects that overlap, the behavior is undefined.

RETURN VALUE
CX The wcpcpy() function shall return a pointer to the terminating null wide-character code copied

into the ws1 buffer.

The wcscpy() function shall return ws1.

No return values are reserved to indicate an error.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
strcpy(), wcsdup(), wcsncpy(), the Base Definitions volume of IEEE Std 1003.1-200x, <wchar.h>

CHANGE HISTORY
First released in Issue 4. Derived from the MSE working draft.

Issue 6
The wcscpy() prototype is updated for alignment with the ISO/IEC 9899: 1999 standard.

Issue 7
The wcpcpy() function is added from The Open Group Technical Standard, 2006, Extended API
Set Part 1.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1697

51999

52000

52001

52002

52003

52004

52005

52006

52007

52008

52009

52010

52011

52012

52013

52014

52015

52016

52017

52018

52019

52020

52021

52022

52023

52024

52025

52026

52027

52028

52029

52030

52031

52032

52033

52034

52035

52036

52037

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

wcscspn() System Interfaces

NAME
wcscspn — get the length of a complementary wide substring

SYNOPSIS
#include <wchar.h>

size_t wcscspn(const wchar_t * ws1, c onst wchar_t * ws2);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

The wcscspn() function shall compute the length (in wide characters) of the maximum initial
segment of the wide-character string pointed to by ws1 which consists entirely of wide-character
codes not from the wide-character string pointed to by ws2.

RETURN VALUE
The wcscspn() function shall return the length of the initial substring of ws1; no return value is
reserved to indicate an error.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
wcsspn(), the Base Definitions volume of IEEE Std 1003.1-200x, <wchar.h>

CHANGE HISTORY
First released in Issue 4. Derived from the MSE working draft.

Issue 5
The RETURN VALUE section is updated to indicate that wcscspn() returns the length of ws1,
rather than ws1 itself.

1698 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

52038

52039

52040

52041

52042

52043

52044

52045

52046

52047

52048

52049

52050

52051

52052

52053

52054

52055

52056

52057

52058

52059

52060

52061

52062

52063

52064

52065

52066

52067

52068

52069

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces wcsdup()

NAME
wcsdup — duplicate a wide-character string

SYNOPSIS
CX #include <wchar.h>

wchar_t *wcsdup(const wchar_t * string);

DESCRIPTION
The wcsdup() function is the wide-character equivalent of the strdup() function.

The wcsdup() function shall return a pointer to a new wide-character string, which is the
duplicate of the wide-character string string. The returned pointer can be passed to free(). A
null pointer is returned if the new wide-character string cannot be created.

RETURN VALUE
Upon successful completion, the wcsdup() function shall return a pointer to the newly allocated
wide-character string. Otherwise, it shall return a null pointer and set errno to indicate the error.

ERRORS
The wcsdup() function shall fail if:

[ENOMEM] Memory large enough for the duplicate string could not be allocated.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
free(), strdup(), wcscpy(), the Base Definitions volume of IEEE Std 1003.1-200x, <wchar.h>

CHANGE HISTORY
First released in Issue 7.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1699

52070

52071

52072

52073

52074

52075

52076

52077

52078

52079

52080

52081

52082

52083

52084

52085

52086

52087

52088

52089

52090

52091

52092

52093

52094

52095

52096

52097

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

wcsftime() System Interfaces

NAME
wcsftime — convert date and time to a wide-character string

SYNOPSIS
#include <wchar.h>

size_t wcsftime(wchar_t *restrict wcs, s ize_t maxsize,
const wchar_t *restrict format, c onst struct tm *restrict timeptr);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

The wcsftime() function shall be equivalent to the strftime() function, except that:

• The argument wcs points to the initial element of an array of wide characters into which
the generated output is to be placed.

• The argument maxsize indicates the maximum number of wide characters to be placed in
the output array.

• The argument format is a wide-character string and the conversion specifications are
replaced by corresponding sequences of wide characters.

• The return value indicates the number of wide characters placed in the output array.

If copying takes place between objects that overlap, the behavior is undefined.

RETURN VALUE
If the total number of resulting wide-character codes including the terminating null wide-
character code is no more than maxsize, wcsftime() shall return the number of wide-character
codes placed into the array pointed to by wcs, not including the terminating null wide-character
code. Otherwise, zero is returned and the contents of the array are unspecified.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
strftime(), the Base Definitions volume of IEEE Std 1003.1-200x, <wchar.h>

CHANGE HISTORY
First released in Issue 4.

Issue 5
Moved from ENHANCED I18N to BASE and the [ENOSYS] error is removed.

Aligned with ISO/IEC 9899: 1990/Amendment 1: 1995 (E). Specifically, the type of the format
argument is changed from const char * to const wchar_t *.

1700 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

52098

52099

52100

52101

52102

52103

52104

52105

52106

52107

52108

52109

52110

52111

52112

52113

52114

52115

52116

52117

52118

52119

52120

52121

52122

52123

52124

52125

52126

52127

52128

52129

52130

52131

52132

52133

52134

52135

52136

52137

52138

52139

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces wcsftime()

Issue 6
The wcsftime() prototype is updated for alignment with the ISO/IEC 9899: 1999 standard.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1701

52140

52141

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

wcslen() System Interfaces

NAME
wcslen, wcsnlen — get length of a fixed-sized wide-character string

SYNOPSIS
#include <wchar.h>

size_t wcslen(const wchar_t * ws);
CX size_t wcsnlen(const wchar_t * ws, s ize_t maxlen);

DESCRIPTION
CX For wcslen(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of IEEE Std 1003.1-200x defers to the ISO C standard.

The wcslen() function shall compute the number of wide-character codes in the wide-character
string to which ws points, not including the terminating null wide-character code.

CX The wcsnlen() function shall compute the smaller of the number of wide characters in the string
to which ws points, not including the terminating null wide-character code, and the value of
maxlen. The wcsnlen() function shall never examine more than the first maxlen characters of the
wide-character string pointed to by ws.

RETURN VALUE
The wcslen() function shall return the length of ws.

CX The wcsnlen() function shall return an integer containing the smaller of either the length of the
wide-character string pointed to by ws or maxlen.

No return values are reserved to indicate an error.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
strlen(), the Base Definitions volume of IEEE Std 1003.1-200x, <wchar.h>

CHANGE HISTORY
First released in Issue 4. Derived from the MSE working draft.

Issue 7
The wcsnlen() function is added from The Open Group Technical Standard, 2006, Extended API
Set Part 1.

1702 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

52142

52143

52144

52145

52146

52147

52148

52149

52150

52151

52152

52153

52154

52155

52156

52157

52158

52159

52160

52161

52162

52163

52164

52165

52166

52167

52168

52169

52170

52171

52172

52173

52174

52175

52176

52177

52178

52179

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces wcsncasecmp()

NAME
wcsncasecmp, wcsncasecmp_l — case-insensitive wide-character string comparison

SYNOPSIS
CX #include <wchar.h>

int wcsncasecmp(const wchar_t * ws1, c onst wchar_t * ws2, s ize_t n);
int wcsncasecmp_l(const char * ws1, c onst char * ws2,

size_t n, l ocale_t locale);

DESCRIPTION
Refer to wcscasecmp().

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1703

52180

52181

52182

52183

52184

52185

52186

52187

52188

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

wcsncat() System Interfaces

NAME
wcsncat — concatenate a wide-character string with part of another

SYNOPSIS
#include <wchar.h>

wchar_t *wcsncat(wchar_t *restrict ws1, c onst wchar_t *restrict ws2,
size_t n);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

The wcsncat() function shall append not more than n wide-character codes (a null wide-
character code and wide-character codes that follow it are not appended) from the array pointed
to by ws2 to the end of the wide-character string pointed to by ws1. The initial wide-character
code of ws2 shall overwrite the null wide-character code at the end of ws1. A terminating null
wide-character code shall always be appended to the result. If copying takes place between
objects that overlap, the behavior is undefined.

RETURN VALUE
The wcsncat() function shall return ws1; no return value is reserved to indicate an error.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
wcscat(), the Base Definitions volume of IEEE Std 1003.1-200x, <wchar.h>

CHANGE HISTORY
First released in Issue 4. Derived from the MSE working draft.

Issue 6
The wcsncat() prototype is updated for alignment with the ISO/IEC 9899: 1999 standard.

1704 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

52189

52190

52191

52192

52193

52194

52195

52196

52197

52198

52199

52200

52201

52202

52203

52204

52205

52206

52207

52208

52209

52210

52211

52212

52213

52214

52215

52216

52217

52218

52219

52220

52221

52222

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces wcsncmp()

NAME
wcsncmp — compare part of two wide-character strings

SYNOPSIS
#include <wchar.h>

int wcsncmp(const wchar_t * ws1, c onst wchar_t * ws2, s ize_t n);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

The wcsncmp() function shall compare not more than n wide-character codes (wide-character
codes that follow a null wide-character code are not compared) from the array pointed to by ws1
to the array pointed to by ws2.

The sign of a non-zero return value shall be determined by the sign of the difference between the
values of the first pair of wide-character codes that differ in the objects being compared.

RETURN VALUE
Upon successful completion, wcsncmp() shall return an integer greater than, equal to, or less
than 0, if the possibly null-terminated array pointed to by ws1 is greater than, equal to, or less
than the possibly null-terminated array pointed to by ws2, respectively.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
wcscasecmp(), wcscmp(), the Base Definitions volume of IEEE Std 1003.1-200x, <wchar.h>

CHANGE HISTORY
First released in Issue 4. Derived from the MSE working draft.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1705

52223

52224

52225

52226

52227

52228

52229

52230

52231

52232

52233

52234

52235

52236

52237

52238

52239

52240

52241

52242

52243

52244

52245

52246

52247

52248

52249

52250

52251

52252

52253

52254

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

wcsncpy() System Interfaces

NAME
wcpncpy, wcsncpy — copy a fixed-size wide-character string, returning a pointer to its end

SYNOPSIS
#include <wchar.h>

CX wchar_t *wcpncpy(wchar_t restrict * ws1, c onst wchar_t *restrict ws2,
size_t n);

wchar_t *wcsncpy(wchar_t *restrict ws1, c onst wchar_t *restrict ws2,
size_t n);

DESCRIPTION
CX For wcsncpy(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of IEEE Std 1003.1-200x defers to the ISO C standard.

CX The wcpncpy() and wcsncpy() functions shall copy not more than n wide-character codes (wide-
character codes that follow a null wide-character code are not copied) from the array pointed to
by ws2 to the array pointed to by ws1. If copying takes place between objects that overlap, the
behavior is undefined.

If the array pointed to by ws2 is a wide-character string that is shorter than n wide-character
codes, null wide-character codes shall be appended to the copy in the array pointed to by ws1,
until n wide-character codes in all are written.

RETURN VALUE
CX If any null wide-character codes were written into the destination, the wcpncpy() function shall

return the address of the first such null wide-character code. Otherwise, it shall return &ws1[n].

The wcsncpy() function shall return ws1.

No return values are reserved to indicate an error.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
If there is no null wide-character code in the first n wide-character codes of the array pointed to
by ws2, the result is not null-terminated.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
strncpy(), wcscpy(), the Base Definitions volume of IEEE Std 1003.1-200x, <wchar.h>

CHANGE HISTORY
First released in Issue 4. Derived from the MSE working draft.

Issue 6
The wcsncpy() prototype is updated for alignment with the ISO/IEC 9899: 1999 standard.

1706 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

52255

52256

52257

52258

52259

52260

52261

52262

52263

52264

52265

52266

52267

52268

52269

52270

52271

52272

52273

52274

52275

52276

52277

52278

52279

52280

52281

52282

52283

52284

52285

52286

52287

52288

52289

52290

52291

52292

52293

52294

52295

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces wcsncpy()

Issue 7
The wcpncpy() function is added from The Open Group Technical Standard, 2006, Extended API
Set Part 1.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1707

52296

52297

52298

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

wcsnlen() System Interfaces

NAME
wcsnlen — get length of a fixed-sized wide-character string

SYNOPSIS
CX #include <wchar.h>

size_t wcsnlen(const wchar_t * ws, s ize_t maxlen);

DESCRIPTION
Refer to wcslen().

1708 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

52299

52300

52301

52302

52303

52304

52305

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces wcsnrtombs()

NAME
wcsnrtombs — convert wide-character string to multi-byte string

SYNOPSIS
CX #include <wchar.h>

size_t wcsnrtombs(char * dst, c onst wchar_t ** src, s ize_t nwc,
size_t len, mbstate_t * ps);

DESCRIPTION
Refer to wcsrtombs().

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1709

52306

52307

52308

52309

52310

52311

52312

52313

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

wcspbrk() System Interfaces

NAME
wcspbrk — scan a wide-character string for a wide-character code

SYNOPSIS
#include <wchar.h>

wchar_t *wcspbrk(const wchar_t * ws1, c onst wchar_t * ws2);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

The wcspbrk() function shall locate the first occurrence in the wide-character string pointed to by
ws1 of any wide-character code from the wide-character string pointed to by ws2.

RETURN VALUE
Upon successful completion, wcspbrk() shall return a pointer to the wide-character code or a null
pointer if no wide-character code from ws2 occurs in ws1.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
wcschr(), wcsrchr(), the Base Definitions volume of IEEE Std 1003.1-200x, <wchar.h>

CHANGE HISTORY
First released in Issue 4. Derived from the MSE working draft.

1710 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

52314

52315

52316

52317

52318

52319

52320

52321

52322

52323

52324

52325

52326

52327

52328

52329

52330

52331

52332

52333

52334

52335

52336

52337

52338

52339

52340

52341

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces wcsrchr()

NAME
wcsrchr — wide-character string scanning operation

SYNOPSIS
#include <wchar.h>

wchar_t *wcsrchr(const wchar_t * ws, w char_t wc);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

The wcsrchr() function shall locate the last occurrence of wc in the wide-character string pointed
to by ws. The application shall ensure that the value of wc is a character representable as a type
wchar_t and a wide-character code corresponding to a valid character in the current locale. The
terminating null wide-character code shall be considered to be part of the wide-character string.

RETURN VALUE
Upon successful completion, wcsrchr() shall return a pointer to the wide-character code or a null
pointer if wc does not occur in the wide-character string.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
wcschr(), the Base Definitions volume of IEEE Std 1003.1-200x, <wchar.h>

CHANGE HISTORY
First released in Issue 4. Derived from the MSE working draft.

Issue 6
The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1711

52342

52343

52344

52345

52346

52347

52348

52349

52350

52351

52352

52353

52354

52355

52356

52357

52358

52359

52360

52361

52362

52363

52364

52365

52366

52367

52368

52369

52370

52371

52372

52373

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

wcsrtombs() System Interfaces

NAME
wcsnrtombs, wcsrtombs — convert a wide-character string to a character string (restartable)

SYNOPSIS
#include <wchar.h>

CX size_t wcsnrtombs(char * dst, c onst wchar_t ** src, s ize_t nwc,
size_t len, mbstate_t * ps);

size_t wcsrtombs(char *restrict dst, c onst wchar_t **restrict src,
size_t len, mbstate_t *restrict ps);

DESCRIPTION
CX For wcsrtombs(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of IEEE Std 1003.1-200x defers to the ISO C standard.

The wcsrtombs() function shall convert a sequence of wide characters from the array indirectly
pointed to by src into a sequence of corresponding characters, beginning in the conversion state
described by the object pointed to by ps. If dst is not a null pointer, the converted characters
shall then be stored into the array pointed to by dst. Conversion continues up to and including a
terminating null wide character, which shall also be stored. Conversion shall stop earlier in the
following cases:

• When a code is reached that does not correspond to a valid character

• When the next character would exceed the limit of len total bytes to be stored in the array
pointed to by dst (and dst is not a null pointer)

Each conversion shall take place as if by a call to the wcrtomb() function.

If dst is not a null pointer, the pointer object pointed to by src shall be assigned either a null
pointer (if conversion stopped due to reaching a terminating null wide character) or the address
just past the last wide character converted (if any). If conversion stopped due to reaching a
terminating null wide character, the resulting state described shall be the initial conversion state.

If ps is a null pointer, the wcsrtombs() function shall use its own internal mbstate_t object, which
is initialized at program start-up to the initial conversion state. Otherwise, the mbstate_t object
pointed to by ps shall be used to completely describe the current conversion state of the
associated character sequence.

CX If the application uses any of the _POSIX_THREAD_SAFE_FUNCTIONS or _POSIX_THREADS
functions, the application shall ensure that the wcsrtombs() function is called with a non-NULL
ps argument.

The wcsnrtombs() function shall be equivalent to the wcsrtombs() function, except that the
conversion is limited to the first nwc wide characters.

The behavior of these functions shall be affected by the LC_CTYPE category of the current locale.

The implementation shall behave as if no function defined in System Interfaces volume of
IEEE Std 1003.1-200x calls these functions.

RETURN VALUE
If conversion stops because a code is reached that does not correspond to a valid character, an
encoding error occurs. In this case, these functions shall store the value of the macro [EILSEQ] in
errno and return (size_t)−1; the conversion state is undefined. Otherwise, these functions shall
return the number of bytes in the resulting character sequence, not including the terminating
null (if any).

1712 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

52374

52375

52376

52377

52378

52379

52380

52381

52382

52383

52384

52385

52386

52387

52388

52389

52390

52391

52392

52393

52394

52395

52396

52397

52398

52399

52400

52401

52402

52403

52404

52405

52406

52407

52408

52409

52410

52411

52412

52413

52414

52415

52416

52417

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces wcsrtombs()

ERRORS
These functions may fail if:

CX [EINVAL] ps points to an object that contains an invalid conversion state.

[EILSEQ] A wide-character code does not correspond to a valid character.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
mbsinit(), wcrtomb(), the Base Definitions volume of IEEE Std 1003.1-200x, <wchar.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with ISO/IEC 9899: 1990/Amendment 1: 1995
(E).

Issue 6
In the DESCRIPTION, a note on using this function in a threaded application is added.

Extensions beyond the ISO C standard are marked.

The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

The wcsrtombs() prototype is updated for alignment with the ISO/IEC 9899: 1999 standard.

Issue 7
The wcnsrtombs() function is added from The Open Group Technical Standard, 2006, Extended
API Set Part 1.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1713

52418

52419

52420

52421

52422

52423

52424

52425

52426

52427

52428

52429

52430

52431

52432

52433

52434

52435

52436

52437

52438

52439

52440

52441

52442

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

wcsspn() System Interfaces

NAME
wcsspn — get the length of a wide substring

SYNOPSIS
#include <wchar.h>

size_t wcsspn(const wchar_t * ws1, c onst wchar_t * ws2);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

The wcsspn() function shall compute the length (in wide characters) of the maximum initial
segment of the wide-character string pointed to by ws1 which consists entirely of wide-character
codes from the wide-character string pointed to by ws2.

RETURN VALUE
The wcsspn() function shall return the length of the initial substring of ws1; no return value is
reserved to indicate an error.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
wcscspn(), the Base Definitions volume of IEEE Std 1003.1-200x, <wchar.h>

CHANGE HISTORY
First released in Issue 4. Derived from the MSE working draft.

Issue 5
The RETURN VALUE section is updated to indicate that wcsspn() returns the length of ws1
rather that ws1 itself.

1714 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

52443

52444

52445

52446

52447

52448

52449

52450

52451

52452

52453

52454

52455

52456

52457

52458

52459

52460

52461

52462

52463

52464

52465

52466

52467

52468

52469

52470

52471

52472

52473

52474

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces wcsstr()

NAME
wcsstr — find a wide-character substring

SYNOPSIS
#include <wchar.h>

wchar_t *wcsstr(const wchar_t *restrict ws1,
const wchar_t *restrict ws2);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

The wcsstr() function shall locate the first occurrence in the wide-character string pointed to by
ws1 of the sequence of wide characters (excluding the terminating null wide character) in the
wide-character string pointed to by ws2.

RETURN VALUE
Upon successful completion, wcsstr() shall return a pointer to the located wide-character string,
or a null pointer if the wide-character string is not found.

If ws2 points to a wide-character string with zero length, the function shall return ws1.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
wcschr(), the Base Definitions volume of IEEE Std 1003.1-200x, <wchar.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with ISO/IEC 9899: 1990/Amendment 1: 1995
(E).

Issue 6
The wcsstr() prototype is updated for alignment with the ISO/IEC 9899: 1999 standard.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1715

52475

52476

52477

52478

52479

52480

52481

52482

52483

52484

52485

52486

52487

52488

52489

52490

52491

52492

52493

52494

52495

52496

52497

52498

52499

52500

52501

52502

52503

52504

52505

52506

52507

52508

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

wcstod() System Interfaces

NAME
wcstod, wcstof, wcstold — convert a wide-character string to a double-precision number

SYNOPSIS
#include <wchar.h>

double wcstod(const wchar_t *restrict nptr, w char_t **restrict endptr);
float wcstof(const wchar_t *restrict nptr, w char_t **restrict endptr);
long double wcstold(const wchar_t *restrict nptr,

wchar_t **restrict endptr);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

These functions shall convert the initial portion of the wide-character string pointed to by nptr to
double, float, and long double representation, respectively. First, they shall decompose the
input wide-character string into three parts:

1. An initial, possibly empty, sequence of white-space wide-character codes (as specified by
iswspace())

2. A subject sequence interpreted as a floating-point constant or representing infinity or
NaN

3. A final wide-character string of one or more unrecognized wide-character codes,
including the terminating null wide-character code of the input wide-character string

Then they shall attempt to convert the subject sequence to a floating-point number, and return
the result.

The expected form of the subject sequence is an optional plus or minus sign, then one of the
following:

• A non-empty sequence of decimal digits optionally containing a radix character; then an
optional exponent part consisting of the wide character ’e’ or the wide character ’E’ ,
optionally followed by a ’+’ or ’ −’ wide character, and then followed by one or more
decimal digits

• A 0x or 0X, then a non-empty sequence of hexadecimal digits optionally containing a radix
character; then an optional binary exponent part consisting of the wide character ’p’ or
the wide character ’P’ , optionally folowed by a ’+’ or ’ −’ wide character, and then
followed by one or more decimal digits

• One of INF or INFINITY, or any other wide string equivalent except for case

• One of NAN or NAN(n-wchar-sequenceopt), or any other wide string ignoring case in the
NAN part, where:

n-wchar-sequence:
digit
nondigit
n-wchar-sequence digit
n-wchar-sequence nondigit

The subject sequence is defined as the longest initial subsequence of the input wide string,
starting with the first non-white-space wide character, that is of the expected form. The subject
sequence contains no wide characters if the input wide string is not of the expected form.

1716 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

52509

52510

52511

52512

52513

52514

52515

52516

52517

52518

52519

52520

52521

52522

52523

52524

52525

52526

52527

52528

52529

52530

52531

52532

52533

52534

52535

52536

52537

52538

52539

52540

52541

52542

52543

52544

52545

52546

52547

52548

52549

52550

52551

52552

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces wcstod()

If the subject sequence has the expected form for a floating-point number, the sequence of wide
characters starting with the first digit or the radix character (whichever occurs first) shall be
interpreted as a floating constant according to the rules of the C language, except that the radix
character shall be used in place of a period, and that if neither an exponent part nor a radix
character appears in a decimal floating-point number, or if a binary exponent part does not
appear in a hexadecimal floating-point number, an exponent part of the appropriate type with
value zero shall be assumed to follow the last digit in the string. If the subject sequence begins
with a minus sign, the sequence shall be interpreted as negated. A wide-character sequence INF
or INFINITY shall be interpreted as an infinity, if representable in the return type, else as if it
were a floating constant that is too large for the range of the return type. A wide-character
sequence NAN or NAN(n-wchar-sequenceopt) shall be interpreted as a quiet NaN, if supported in
the return type, else as if it were a subject sequence part that does not have the expected form;
the meaning of the n-wchar sequences is implementation-defined. A pointer to the final wide
string shall be stored in the object pointed to by endptr, provided that endptr is not a null pointer.

If the subject sequence has the hexadecimal form and FLT_RADIX is a power of 2, the
conversion shall be rounded in an implementation-defined manner.

CX The radix character shall be as defined in the locale of the process (category LC_NUMERIC). In
the POSIX locale, or in a locale where the radix character is not defined, the radix character shall
default to a period (’.’).

CX In other than the C or POSIX locales, other implementation-defined subject sequences may be
accepted.

If the subject sequence is empty or does not have the expected form, no conversion shall be
performed; the value of nptr shall be stored in the object pointed to by endptr, provided that
endptr is not a null pointer.

CX The wcstod() function shall not change the setting of errno if successful.

Since 0 is returned on error and is also a valid return on success, an application wishing to check
for error situations should set errno to 0, then call wcstod(), wcstof(), or wcstold(), then check
errno.

RETURN VALUE
Upon successful completion, these functions shall return the converted value. If no conversion

CX could be performed, 0 shall be returned and errno may be set to [EINVAL].

If the correct value is outside the range of representable values, ±HUGE_VAL, ±HUGE_VALF, or
±HUGE_VALL shall be returned (according to the sign of the value), and errno shall be set to
[ERANGE].

If the correct value would cause underflow, a value whose magnitude is no greater than the
smallest normalized positive number in the return type shall be returned and errno set to
[ERANGE].

ERRORS
The wcstod() function shall fail if:

[ERANGE] The value to be returned would cause overflow or underflow.

The wcstod() function may fail if:

CX [EINVAL] No conversion could be performed.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1717

52553

52554

52555

52556

52557

52558

52559

52560

52561

52562

52563

52564

52565

52566

52567

52568

52569

52570

52571

52572

52573

52574

52575

52576

52577

52578

52579

52580

52581

52582

52583

52584

52585

52586

52587

52588

52589

52590

52591

52592

52593

52594

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

wcstod() System Interfaces

EXAMPLES
None.

APPLICATION USAGE
If the subject sequence has the hexadecimal form and FLT_RADIX is not a power of 2, and the
result is not exactly representable, the result should be one of the two numbers in the
appropriate internal format that are adjacent to the hexadecimal floating source value, with the
extra stipulation that the error should have a correct sign for the current rounding direction.

If the subject sequence has the decimal form and at most DECIMAL_DIG (defined in <float.h>)
significant digits, the result should be correctly rounded. If the subject sequence D has the
decimal form and more than DECIMAL_DIG significant digits, consider the two bounding,
adjacent decimal strings L and U, both having DECIMAL_DIG significant digits, such that the
values of L, D, and U satisfy "L <= D <= U" . The result should be one of the (equal or
adjacent) values that would be obtained by correctly rounding L and U according to the current
rounding direction, with the extra stipulation that the error with respect to D should have a
correct sign for the current rounding direction.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
iswspace(), localeconv(), scanf(), setlocale(), wcstol(), the Base Definitions volume of
IEEE Std 1003.1-200x, Chapter 7, Locale, <float.h>, <wchar.h>

CHANGE HISTORY
First released in Issue 4. Derived from the MSE working draft.

Issue 5
The DESCRIPTION is updated to indicate that errno is not changed if the function is successful.

Issue 6
Extensions beyond the ISO C standard are marked.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• In the RETURN VALUE and ERRORS sections, the [EINVAL] optional error condition is
added if no conversion could be performed.

The following changes are made for alignment with the ISO/IEC 9899: 1999 standard:

• The wcstod() prototype is updated.

• The wcstof() and wcstold() functions are added.

• If the correct value for wcstod() would cause underflow, the return value changed from 0
(as specified in Issue 5) to the smallest normalized positive number.

• The DESCRIPTION, RETURN VALUE, and APPLICATION USAGE sections are
extensively updated.

ISO/IEC 9899: 1999 standard, Technical Corrigendum 1 is incorporated.

IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/66 is applied, correcting the second
paragraph in the RETURN VALUE section.

1718 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

52595

52596

52597

52598

52599

52600

52601

52602

52603

52604

52605

52606

52607

52608

52609

52610

52611

52612

52613

52614

52615

52616

52617

52618

52619

52620

52621

52622

52623

52624

52625

52626

52627

52628

52629

52630

52631

52632

52633

52634

52635

52636

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces wcstod()

Issue 7
Austin Group Interpretation 1003.1-2001 #015 is applied.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1719

52637

52638

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

wcstoimax() System Interfaces

NAME
wcstoimax, wcstoumax — convert a wide-character string to an integer type

SYNOPSIS
#include <stddef.h>
#include <inttypes.h>

intmax_t wcstoimax(const wchar_t *restrict nptr,
wchar_t **restrict endptr, i nt base);

uintmax_t wcstoumax(const wchar_t *restrict nptr,
wchar_t **restrict endptr, i nt base);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

These functions shall be equivalent to the wcstol(), wcstoll(), wcstoul(), and wcstoull() functions,
respectively, except that the initial portion of the wide string shall be converted to intmax_t and
uintmax_t representation, respectively.

RETURN VALUE
These functions shall return the converted value, if any.

If no conversion could be performed, zero shall be returned. If the correct value is outside the
range of representable values, {INTMAX_MAX}, {INTMAX_MIN}, or {UINTMAX_MAX} shall
be returned (according to the return type and sign of the value, if any), and errno shall be set to
[ERANGE].

ERRORS
These functions shall fail if:

[EINVAL] The value of base is not supported.

[ERANGE] The value to be returned is not representable.

These functions may fail if:

[EINVAL] No conversion could be performed.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
wcstol(), wcstoul(), the Base Definitions volume of IEEE Std 1003.1-200x, <inttypes.h>,
<stddef.h>

1720 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

52639

52640

52641

52642

52643

52644

52645

52646

52647

52648

52649

52650

52651

52652

52653

52654

52655

52656

52657

52658

52659

52660

52661

52662

52663

52664

52665

52666

52667

52668

52669

52670

52671

52672

52673

52674

52675

52676

52677

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces wcstoimax()

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1721

52678

52679

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

wcstok() System Interfaces

NAME
wcstok — split a wide-character string into tokens

SYNOPSIS
#include <wchar.h>

wchar_t *wcstok(wchar_t *restrict ws1, c onst wchar_t *restrict ws2,
wchar_t **restrict ptr);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

A sequence of calls to wcstok() shall break the wide-character string pointed to by ws1 into a
sequence of tokens, each of which shall be delimited by a wide-character code from the wide-
character string pointed to by ws2. The ptr argument points to a caller-provided wchar_t pointer
into which the wcstok() function shall store information necessary for it to continue scanning the
same wide-character string.

The first call in the sequence has ws1 as its first argument, and is followed by calls with a null
pointer as their first argument. The separator string pointed to by ws2 may be different from call
to call.

The first call in the sequence shall search the wide-character string pointed to by ws1 for the first
wide-character code that is not contained in the current separator string pointed to by ws2. If no
such wide-character code is found, then there are no tokens in the wide-character string pointed
to by ws1 and wcstok() shall return a null pointer. If such a wide-character code is found, it shall
be the start of the first token.

The wcstok() function shall then search from there for a wide-character code that is contained in
the current separator string. If no such wide-character code is found, the current token extends
to the end of the wide-character string pointed to by ws1, and subsequent searches for a token
shall return a null pointer. If such a wide-character code is found, it shall be overwritten by a
null wide character, which terminates the current token. The wcstok() function shall save a
pointer to the following wide-character code, from which the next search for a token shall start.

Each subsequent call, with a null pointer as the value of the first argument, shall start searching
from the saved pointer and behave as described above.

The implementation shall behave as if no function calls wcstok().

RETURN VALUE
Upon successful completion, the wcstok() function shall return a pointer to the first wide-
character code of a token. Otherwise, if there is no token, wcstok() shall return a null pointer.

ERRORS
No errors are defined.

1722 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

52680

52681

52682

52683

52684

52685

52686

52687

52688

52689

52690

52691

52692

52693

52694

52695

52696

52697

52698

52699

52700

52701

52702

52703

52704

52705

52706

52707

52708

52709

52710

52711

52712

52713

52714

52715

52716

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces wcstok()

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
The Base Definitions volume of IEEE Std 1003.1-200x, <wchar.h>

CHANGE HISTORY
First released in Issue 4.

Issue 5
Aligned with ISO/IEC 9899: 1990/Amendment 1: 1995 (E). Specifically, a third argument is
added to the definition of wcstok() in the SYNOPSIS.

Issue 6
The wcstok() prototype is updated for alignment with the ISO/IEC 9899: 1999 standard.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1723

52717

52718

52719

52720

52721

52722

52723

52724

52725

52726

52727

52728

52729

52730

52731

52732

52733

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

wcstol() System Interfaces

NAME
wcstol, wcstoll — convert a wide-character string to a long integer

SYNOPSIS
#include <wchar.h>

long wcstol(const wchar_t *restrict nptr, w char_t **restrict endptr,
int base);

long long wcstoll(const wchar_t *restrict nptr,
wchar_t **restrict endptr, i nt base);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

These functions shall convert the initial portion of the wide-character string pointed to by nptr to
long and long long, respectively. First, they shall decompose the input string into three parts:

1. An initial, possibly empty, sequence of white-space wide-character codes (as specified by
iswspace())

2. A subject sequence interpreted as an integer represented in some radix determined by the
value of base

3. A final wide-character string of one or more unrecognized wide-character codes,
including the terminating null wide-character code of the input wide-character string

Then they shall attempt to convert the subject sequence to an integer, and return the result.

If base is 0, the expected form of the subject sequence is that of a decimal constant, octal constant,
or hexadecimal constant, any of which may be preceded by a ’+’ or ’ −’ sign. A decimal
constant begins with a non-zero digit, and consists of a sequence of decimal digits. An octal
constant consists of the prefix ’0’ optionally followed by a sequence of the digits ’0’ to ’7’
only. A hexadecimal constant consists of the prefix 0x or 0X followed by a sequence of the
decimal digits and letters ’a’ (or ’A’) to ’f’ (or ’F’) with values 10 to 15 respectively.

If the value of base is between 2 and 36, the expected form of the subject sequence is a sequence
of letters and digits representing an integer with the radix specified by base, optionally preceded
by a ’+’ or ’ −’ sign, but not including an integer suffix. The letters from ’a’ (or ’A’) to ’z’
(or ’Z’) inclusive are ascribed the values 10 to 35; only letters whose ascribed values are less
than that of base shall be permitted. If the value of base is 16, the wide-character code
representations of 0x or 0X may optionally precede the sequence of letters and digits, following
the sign if present.

The subject sequence is defined as the longest initial subsequence of the input wide-character
string, starting with the first non-white-space wide-character code that is of the expected form.
The subject sequence contains no wide-character codes if the input wide-character string is
empty or consists entirely of white-space wide-character code, or if the first non-white-space
wide-character code is other than a sign or a permissible letter or digit.

If the subject sequence has the expected form and base is 0, the sequence of wide-character codes
starting with the first digit shall be interpreted as an integer constant. If the subject sequence has
the expected form and the value of base is between 2 and 36, it shall be used as the base for
conversion, ascribing to each letter its value as given above. If the subject sequence begins with a
minus sign, the value resulting from the conversion shall be negated. A pointer to the final wide-
character string shall be stored in the object pointed to by endptr, provided that endptr is not a
null pointer.

1724 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

52734

52735

52736

52737

52738

52739

52740

52741

52742

52743

52744

52745

52746

52747

52748

52749

52750

52751

52752

52753

52754

52755

52756

52757

52758

52759

52760

52761

52762

52763

52764

52765

52766

52767

52768

52769

52770

52771

52772

52773

52774

52775

52776

52777

52778

52779

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces wcstol()

CX In other than the C or POSIX locales, other implementation-defined subject sequences may be
accepted.

If the subject sequence is empty or does not have the expected form, no conversion shall be
performed; the value of nptr shall be stored in the object pointed to by endptr, provided that
endptr is not a null pointer.

CX These functions shall not change the setting of errno if successful.

Since 0, {LONG_MIN} or {LLONG_MIN} and {LONG_MAX} or {LLONG_MAX} are returned on
error and are also valid returns on success, an application wishing to check for error situations
should set errno to 0, then call wcstol() or wcstoll(), then check errno.

RETURN VALUE
Upon successful completion, these functions shall return the converted value, if any. If no

CX conversion could be performed, 0 shall be returned and errno may be set to indicate the error. If
the correct value is outside the range of representable values, {LONG_MIN}, {LONG_MAX},
{LLONG_MIN}, or {LLONG_MAX} shall be returned (according to the sign of the value), and
errno set to [ERANGE].

ERRORS
These functions shall fail if:

CX [EINVAL] The value of base is not supported.

[ERANGE] The value to be returned is not representable.

These functions may fail if:

CX [EINVAL] No conversion could be performed.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
iswalpha(), scanf(), wcstod(), the Base Definitions volume of IEEE Std 1003.1-200x, <wchar.h>

CHANGE HISTORY
First released in Issue 4. Derived from the MSE working draft.

Issue 5
The DESCRIPTION is updated to indicate that errno is not changed if the function is successful.

Issue 6
Extensions beyond the ISO C standard are marked.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• In the RETURN VALUE and ERRORS sections, the [EINVAL] optional error condition is
added if no conversion could be performed.

The following changes are made for alignment with the ISO/IEC 9899: 1999 standard:

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1725

52780

52781

52782

52783

52784

52785

52786

52787

52788

52789

52790

52791

52792

52793

52794

52795

52796

52797

52798

52799

52800

52801

52802

52803

52804

52805

52806

52807

52808

52809

52810

52811

52812

52813

52814

52815

52816

52817

52818

52819

52820

52821

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

wcstol() System Interfaces

• The wcstol() prototype is updated.

• The wcstoll() function is added.

Issue 7
SD5-XSH-ERN-56 is applied, removing the reference to unsigned long and unsigned long long
from the DESCRIPTION.

1726 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

52822

52823

52824

52825

52826

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces wcstold()

NAME
wcstold — convert a wide-character string to a double-precision number

SYNOPSIS
#include <wchar.h>

long double wcstold(const wchar_t *restrict nptr,
wchar_t **restrict endptr);

DESCRIPTION
Refer to wcstod().

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1727

52827

52828

52829

52830

52831

52832

52833

52834

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

wcstoll() System Interfaces

NAME
wcstoll — convert a wide-character string to a long integer

SYNOPSIS
#include <wchar.h>

long long wcstoll(const wchar_t *restrict nptr,
wchar_t **restrict endptr, i nt base);

DESCRIPTION
Refer to wcstol().

1728 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

52835

52836

52837

52838

52839

52840

52841

52842

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces wcstombs()

NAME
wcstombs — convert a wide-character string to a character string

SYNOPSIS
#include <stdlib.h>

size_t wcstombs(char *restrict s, c onst wchar_t *restrict pwcs,
size_t n);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

The wcstombs() function shall convert the sequence of wide-character codes that are in the array
pointed to by pwcs into a sequence of characters that begins in the initial shift state and store
these characters into the array pointed to by s, stopping if a character would exceed the limit of n
total bytes or if a null byte is stored. Each wide-character code shall be converted as if by a call to
wctomb(), except that the shift state of wctomb() shall not be affected.

The behavior of this function shall be affected by the LC_CTYPE category of the current locale.

No more than n bytes shall be modified in the array pointed to by s. If copying takes place
CX between objects that overlap, the behavior is undefined. If s is a null pointer, wcstombs() shall

return the length required to convert the entire array regardless of the value of n, but no values
are stored.

The wcstombs() function need not be thread-safe. A function that is not required to be thread-
safe is not required to be reentrant.

RETURN VALUE
If a wide-character code is encountered that does not correspond to a valid character (of one or
more bytes each), wcstombs() shall return (size_t)−1. Otherwise, wcstombs() shall return the
number of bytes stored in the character array, not including any terminating null byte. The array
shall not be null-terminated if the value returned is n.

ERRORS
The wcstombs() function may fail if:

CX [EILSEQ] A wide-character code does not correspond to a valid character.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
mblen(), mbtowc(), mbstowcs(), wctomb(), the Base Definitions volume of IEEE Std 1003.1-200x,
<stdlib.h>

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1729

52843

52844

52845

52846

52847

52848

52849

52850

52851

52852

52853

52854

52855

52856

52857

52858

52859

52860

52861

52862

52863

52864

52865

52866

52867

52868

52869

52870

52871

52872

52873

52874

52875

52876

52877

52878

52879

52880

52881

52882

52883

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

wcstombs() System Interfaces

CHANGE HISTORY
First released in Issue 4. Derived from the ISO C standard.

Issue 6
The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The DESCRIPTION states the effect of when s is a null pointer.

• The [EILSEQ] error condition is added.

The wcstombs() prototype is updated for alignment with the ISO/IEC 9899: 1999 standard.

1730 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

52884

52885

52886

52887

52888

52889

52890

52891

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces wcstoul()

NAME
wcstoul, wcstoull — convert a wide-character string to an unsigned long

SYNOPSIS
#include <wchar.h>

unsigned long wcstoul(const wchar_t *restrict nptr,
wchar_t **restrict endptr, i nt base);

unsigned long long wcstoull(const wchar_t *restrict nptr,
wchar_t **restrict endptr, i nt base);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

The wcstoul() and wcstoull() functions shall convert the initial portion of the wide-character
string pointed to by nptr to unsigned long and unsigned long long representation, respectively.
First, they shall decompose the input wide-character string into three parts:

1. An initial, possibly empty, sequence of white-space wide-character codes (as specified by
iswspace())

2. A subject sequence interpreted as an integer represented in some radix determined by the
value of base

3. A final wide-character string of one or more unrecognized wide-character codes,
including the terminating null wide-character code of the input wide-character string

Then they shall attempt to convert the subject sequence to an unsigned integer, and return the
result.

If base is 0, the expected form of the subject sequence is that of a decimal constant, octal constant,
or hexadecimal constant, any of which may be preceded by a ’+’ or ’ −’ sign. A decimal
constant begins with a non-zero digit, and consists of a sequence of decimal digits. An octal
constant consists of the prefix ’0’ optionally followed by a sequence of the digits ’0’ to ’7’
only. A hexadecimal constant consists of the prefix 0x or 0X followed by a sequence of the
decimal digits and letters ’a’ (or ’A’) to ’f’ (or ’F’) with values 10 to 15 respectively.

If the value of base is between 2 and 36, the expected form of the subject sequence is a sequence
of letters and digits representing an integer with the radix specified by base, optionally preceded
by a ’+’ or ’ −’ sign, but not including an integer suffix. The letters from ’a’ (or ’A’) to ’z’
(or ’Z’) inclusive are ascribed the values 10 to 35; only letters whose ascribed values are less
than that of base shall be permitted. If the value of base is 16, the wide-character codes 0x or 0X
may optionally precede the sequence of letters and digits, following the sign if present.

The subject sequence is defined as the longest initial subsequence of the input wide-character
string, starting with the first wide-character code that is not white space and is of the expected
form. The subject sequence contains no wide-character codes if the input wide-character string is
empty or consists entirely of white-space wide-character codes, or if the first wide-character
code that is not white space is other than a sign or a permissible letter or digit.

If the subject sequence has the expected form and base is 0, the sequence of wide-character codes
starting with the first digit shall be interpreted as an integer constant. If the subject sequence has
the expected form and the value of base is between 2 and 36, it shall be used as the base for
conversion, ascribing to each letter its value as given above. If the subject sequence begins with a
minus sign, the value resulting from the conversion shall be negated. A pointer to the final wide-
character string shall be stored in the object pointed to by endptr, provided that endptr is not a

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1731

52892

52893

52894

52895

52896

52897

52898

52899

52900

52901

52902

52903

52904

52905

52906

52907

52908

52909

52910

52911

52912

52913

52914

52915

52916

52917

52918

52919

52920

52921

52922

52923

52924

52925

52926

52927

52928

52929

52930

52931

52932

52933

52934

52935

52936

52937

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

wcstoul() System Interfaces

null pointer.

CX In other than the C or POSIX locales, other implementation-defined subject sequences may be
accepted.

If the subject sequence is empty or does not have the expected form, no conversion shall be
performed; the value of nptr shall be stored in the object pointed to by endptr, provided that
endptr is not a null pointer.

CX The wcstoul() function shall not change the setting of errno if successful.

Since 0, {ULONG_MAX}, and {ULLONG_MAX} are returned on error and 0 is also a valid return
on success, an application wishing to check for error situations should set errno to 0, then call
wcstoul() or wcstoull(), then check errno.

RETURN VALUE
Upon successful completion, the wcstoul() and wcstoull() functions shall return the converted

CX value, if any. If no conversion could be performed, 0 shall be returned and errno may be set to
indicate the error. If the correct value is outside the range of representable values,
{ULONG_MAX} or {ULLONG_MAX} respectively shall be returned and errno set to [ERANGE].

ERRORS
These functions shall fail if:

CX [EINVAL] The value of base is not supported.

[ERANGE] The value to be returned is not representable.

These functions may fail if:

CX [EINVAL] No conversion could be performed.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
iswalpha(), scanf(), wcstod(), wcstol(), the Base Definitions volume of IEEE Std 1003.1-200x,
<wchar.h>

CHANGE HISTORY
First released in Issue 4. Derived from the MSE working draft.

Issue 5
The DESCRIPTION is updated to indicate that errno is not changed if the function is successful.

Issue 6
Extensions beyond the ISO C standard are marked.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The [EINVAL] error condition is added for when the value of base is not supported.

In the RETURN VALUE and ERRORS sections, the [EINVAL] optional error condition is
added if no conversion could be performed.

1732 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

52938

52939

52940

52941

52942

52943

52944

52945

52946

52947

52948

52949

52950

52951

52952

52953

52954

52955

52956

52957

52958

52959

52960

52961

52962

52963

52964

52965

52966

52967

52968

52969

52970

52971

52972

52973

52974

52975

52976

52977

52978

52979

52980

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces wcstoul()

The following changes are made for alignment with the ISO/IEC 9899: 1999 standard:

• The wcstoul() prototype is updated.

• The wcstoull() function is added.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1733

52981

52982

52983

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

wcstoumax() System Interfaces

NAME
wcstoumax — convert a wide-character string to an integer type

SYNOPSIS
#include <stddef.h>
#include <inttypes.h>

uintmax_t wcstoumax(const wchar_t *restrict nptr,
wchar_t **restrict endptr, i nt base);

DESCRIPTION
Refer to wcstoimax().

1734 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

52984

52985

52986

52987

52988

52989

52990

52991

52992

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces wcswidth()

NAME
wcswidth — number of column positions of a wide-character string

SYNOPSIS
XSI #include <wchar.h>

int wcswidth(const wchar_t * pwcs, s ize_t n);

DESCRIPTION
The wcswidth() function shall determine the number of column positions required for n wide-
character codes (or fewer than n wide-character codes if a null wide-character code is
encountered before n wide-character codes are exhausted) in the string pointed to by pwcs.

RETURN VALUE
The wcswidth() function either shall return 0 (if pwcs points to a null wide-character code), or
return the number of column positions to be occupied by the wide-character string pointed to by
pwcs, or return −1 (if any of the first n wide-character codes in the wide-character string pointed
to by pwcs is not a printable wide-character code).

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
This function was removed from the final ISO/IEC 9899: 1990/Amendment 1: 1995 (E), and the
return value for a non-printable wide character is not specified.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
wcwidth(), the Base Definitions volume of IEEE Std 1003.1-200x, Section 3.103, Column Position,
<wchar.h>

CHANGE HISTORY
First released in Issue 4. Derived from the MSE working draft.

Issue 6
The Open Group Corrigendum U021/11 is applied. The function is marked as an extension.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1735

52993

52994

52995

52996

52997

52998

52999

53000

53001

53002

53003

53004

53005

53006

53007

53008

53009

53010

53011

53012

53013

53014

53015

53016

53017

53018

53019

53020

53021

53022

53023

53024

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

wcsxfrm() System Interfaces

NAME
wcsxfrm, wcsxfrm_l — wide-character string transformation

SYNOPSIS
#include <wchar.h>

size_t wcsxfrm(wchar_t *restrict ws1, c onst wchar_t *restrict ws2,
size_t n);

CX size_t wcsxfrm_l(wchar_t *restrict ws1, c onst wchar_t *restrict ws2,
size_t n, l ocale_t locale);

DESCRIPTION
CX For wcsxfrm(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of IEEE Std 1003.1-200x defers to the ISO C standard.

CX The wcsxfrm() and wcsxfrm_l() functions shall transform the wide-character string pointed to
by ws2 and place the resulting wide-character string into the array pointed to by ws1. The
transformation shall be such that if wcscmp() is applied to two transformed wide strings, it shall

CX return a value greater than, equal to, or less than 0, corresponding to the result of wcscoll() and
wcscoll_l() applied to the same two original wide-character strings, and the same LC_COLLATE

CX category of the locale of the process or the locale object locale, respectively. No more than n
wide-character codes shall be placed into the resulting array pointed to by ws1, including the
terminating null wide-character code. If n is 0, ws1 is permitted to be a null pointer. If copying
takes place between objects that overlap, the behavior is undefined.

CX The wcsxfrm() and wcsxfrm_l() functions shall not change the setting of errno if successful.

Since no return value is reserved to indicate an error, an application wishing to check for error
situations should set errno to 0, then call wcsxfrm() or wcsxfrm_l(), then check errno.

RETURN VALUE
CX The wcsxfrm() and wcsxfrm_l() functions shall return the length of the transformed wide-

character string (not including the terminating null wide-character code). If the value returned is
n or more, the contents of the array pointed to by ws1 are unspecified.

CX On error, the wcsxfrm() and wcsxfrm_l() functions may set errno, but no return value is reserved
to indicate an error.

ERRORS
These functions may fail if:

CX [EINVAL] The wide-character string pointed to by ws2 contains wide-character codes
outside the domain of the collating sequence.

The wcsxfrm_l() function may fail if:

CX [EINVAL] locale is not a valid locale object handle.

1736 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

53025

53026

53027

53028

53029

53030

53031

53032

53033

53034

53035

53036

53037

53038

53039

53040

53041

53042

53043

53044

53045

53046

53047

53048

53049

53050

53051

53052

53053

53054

53055

53056

53057

53058

53059

53060

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces wcsxfrm()

EXAMPLES
None.

APPLICATION USAGE
The transformation function is such that two transformed wide-character strings can be ordered
by wcscmp() as appropriate to collating sequence information in the locale of the process
(category LC_COLLATE).

The fact that when n is 0 ws1 is permitted to be a null pointer is useful to determine the size of
the ws1 array prior to making the transformation.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
wcscmp(), wcscoll(), the Base Definitions volume of IEEE Std 1003.1-200x, <wchar.h>

CHANGE HISTORY
First released in Issue 4. Derived from the MSE working draft.

Issue 5
Moved from ENHANCED I18N to BASE and the [ENOSYS] error is removed.

The DESCRIPTION is updated to indicate that errno is not changed if the function is successful.

Issue 6
In previous versions, this function was required to return −1 on error.

Extensions beyond the ISO C standard are marked.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• In the RETURN VALUE and ERRORS sections, the [EINVAL] optional error condition is
added if no conversion could be performed.

The wcsxfrm() prototype is updated for alignment with the ISO/IEC 9899: 1999 standard.

Issue 7
The wcsxfrm_l() function is added from The Open Group Technical Standard, 2006, Extended
API Set Part 4.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1737

53061

53062

53063

53064

53065

53066

53067

53068

53069

53070

53071

53072

53073

53074

53075

53076

53077

53078

53079

53080

53081

53082

53083

53084

53085

53086

53087

53088

53089

53090

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

wctob() System Interfaces

NAME
wctob — wide-character to single-byte conversion

SYNOPSIS
#include <stdio.h>
#include <wchar.h>

int wctob(wint_t c);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

The wctob() function shall determine whether c corresponds to a member of the extended
character set whose character representation is a single byte when in the initial shift state.

The behavior of this function shall be affected by the LC_CTYPE category of the current locale.

RETURN VALUE
The wctob() function shall return EOF if c does not correspond to a character with length one in
the initial shift state. Otherwise, it shall return the single-byte representation of that character as
an unsigned char converted to int.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
btowc(), the Base Definitions volume of IEEE Std 1003.1-200x, <wchar.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with ISO/IEC 9899: 1990/Amendment 1: 1995
(E).

1738 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

53091

53092

53093

53094

53095

53096

53097

53098

53099

53100

53101

53102

53103

53104

53105

53106

53107

53108

53109

53110

53111

53112

53113

53114

53115

53116

53117

53118

53119

53120

53121

53122

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces wctomb()

NAME
wctomb — convert a wide-character code to a character

SYNOPSIS
#include <stdlib.h>

int wctomb(char * s, w char_t wchar);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

The wctomb() function shall determine the number of bytes needed to represent the character
corresponding to the wide-character code whose value is wchar (including any change in the
shift state). It shall store the character representation (possibly multiple bytes and any special
bytes to change shift state) in the array object pointed to by s (if s is not a null pointer). At most
{MB_CUR_MAX} bytes shall be stored. If wchar is 0, a null byte shall be stored, preceded by any
shift sequence needed to restore the initial shift state, and wctomb() shall be left in the initial shift
state.

CX The behavior of this function is affected by the LC_CTYPE category of the current locale. For a
state-dependent encoding, this function shall be placed into its initial state by a call for which its
character pointer argument, s, is a null pointer. Subsequent calls with s as other than a null
pointer shall cause the internal state of the function to be altered as necessary. A call with s as a
null pointer shall cause this function to return a non-zero value if encodings have state
dependency, and 0 otherwise. Changing the LC_CTYPE category causes the shift state of this
function to be unspecified.

The wctomb() function need not be thread-safe. A function that is not required to be thread-safe
is not required to be reentrant.

The implementation shall behave as if no function defined in this volume of
IEEE Std 1003.1-200x calls wctomb().

RETURN VALUE
If s is a null pointer, wctomb() shall return a non-zero or 0 value, if character encodings,
respectively, do or do not have state-dependent encodings. If s is not a null pointer, wctomb()
shall return −1 if the value of wchar does not correspond to a valid character, or return the
number of bytes that constitute the character corresponding to the value of wchar.

In no case shall the value returned be greater than the value of the {MB_CUR_MAX} macro.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1739

53123

53124

53125

53126

53127

53128

53129

53130

53131

53132

53133

53134

53135

53136

53137

53138

53139

53140

53141

53142

53143

53144

53145

53146

53147

53148

53149

53150

53151

53152

53153

53154

53155

53156

53157

53158

53159

53160

53161

53162

53163

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

wctomb() System Interfaces

FUTURE DIRECTIONS
None.

SEE ALSO
mblen(), mbtowc(), mbstowcs(), wcstombs(), the Base Definitions volume of IEEE Std 1003.1-200x,
<stdlib.h>

CHANGE HISTORY
First released in Issue 4. Derived from the ANSI C standard.

Issue 6
Extensions beyond the ISO C standard are marked.

In the DESCRIPTION, a note about reentrancy and thread-safety is added.

1740 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

53164

53165

53166

53167

53168

53169

53170

53171

53172

53173

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces wctrans()

NAME
wctrans, wctrans_l — define character mapping

SYNOPSIS
#include <wctype.h>

wctrans_t wctrans(const char * charclass);
CX wctrans_t wctrans_l(const char * charclass, l ocale_t locale);

DESCRIPTION
CX For wctrans(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of IEEE Std 1003.1-200x defers to the ISO C standard.

CX The wctrans() and wctrans_l() functions are defined for valid character mapping names
identified in the current locale. The charclass is a string identifying a generic character mapping
name for which codeset-specific information is required. The following character mapping
names are defined in all locales: tolower and toupper.

These functions shall return a value of type wctrans_t, which can be used as the second
CX argument to subsequent calls of towctrans() and towctrans_l().

CX The wctrans() and wctrans_l() functions shall determine values of wctrans_t according to the
rules of the coded character set defined by character mapping information in the locale of the

CX process or in the locale represented by locale, respectively (category LC_CTYPE).

The values returned by wctrans() shall be valid until a call to setlocale() that modifies the
category LC_CTYPE.

CX The values returned by wctrans_l() shall be valid only in calls to wctrans_l() with a locale
represented by locale with the same LC_CTYPE category value.

RETURN VALUE
CX The wctrans() and wctrans_l() functions shall return 0 and may set errno to indicate the error if

the given character mapping name is not valid for the current locale (category LC_CTYPE);
otherwise, they shall return a non-zero object of type wctrans_t that can be used in calls to

CX towctrans() and towctrans_l().

ERRORS
These functions may fail if:

CX [EINVAL] The character mapping name pointed to by charclass is not valid in the current
locale.

The wctrans_l() function may fail if:

CX [EINVAL] locale is not a valid locale object handle.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1741

53174

53175

53176

53177

53178

53179

53180

53181

53182

53183

53184

53185

53186

53187

53188

53189

53190

53191

53192

53193

53194

53195

53196

53197

53198

53199

53200

53201

53202

53203

53204

53205

53206

53207

53208

53209

53210

53211

53212

53213

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

wctrans() System Interfaces

FUTURE DIRECTIONS
None.

SEE ALSO
towctrans(), the Base Definitions volume of IEEE Std 1003.1-200x, <wctype.h>

CHANGE HISTORY
First released in Issue 5. Derived from ISO/IEC 9899: 1990/Amendment 1: 1995 (E).

Issue 7
The wctrans_l() function is added from The Open Group Technical Standard, 2006, Extended
API Set Part 4.

1742 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

53214

53215

53216

53217

53218

53219

53220

53221

53222

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces wctype()

NAME
wctype, wctype_l — define character class

SYNOPSIS
#include <wctype.h>

wctype_t wctype(const char * property);
CX wctype_t wctype_l(const char * property, l ocale_t locale);

DESCRIPTION
CX For wctype(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of IEEE Std 1003.1-200x defers to the ISO C standard.

CX The wctype() and wctype_l() functions are defined for valid character class names as defined in
CX the current locale or in the locale represented by locale, respectively.

The property argument is a string identifying a generic character class for which codeset-specific
type information is required. The following character class names shall be defined in all locales:

alnum
alpha
blank
cntrl

digit
graph
lower
print

punct
space
upper
xdigit

Additional character class names defined in the locale definition file (category LC_CTYPE) can
also be specified.

These functions shall return a value of type wctype_t, which can be used as the second
CX argument to subsequent calls of iswctype() and iswctype_l().

CX The wctype() and wctype_l() functions shall determine values of wctype_t according to the
rules of the coded character set defined by character type information in the locale of the process

CX or in the locale represented by locale, respectively (category LC_CTYPE).

The values returned by wctype() shall be valid until a call to setlocale() that modifies the category
LC_CTYPE.

CX The values returned by wctype_l() shall be valid only in calls to iswctype_l() with a locale
represented by locale with the same LC_CTYPE category value.

RETURN VALUE
CX The wctype() and wctype_l() functions shall return 0 if the given character class name is not

valid for the current locale (category LC_CTYPE); otherwise, they shall return an object of type
CX wctype_t that can be used in calls to iswctype() and iswctype_l().

ERRORS
The wctype_l() function may fail if:

CX [EINVAL] locale is not a valid locale object handle.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1743

53223

53224

53225

53226

53227

53228

53229

53230

53231

53232

53233

53234

53235

53236

53237

53238

53239

53240

53241

53242

53243

53244

53245

53246

53247

53248

53249

53250

53251

53252

53253

53254

53255

53256

53257

53258

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

wctype() System Interfaces

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
iswctype(), the Base Definitions volume of IEEE Std 1003.1-200x, <wctype.h>

CHANGE HISTORY
First released in Issue 4.

Issue 5
The following change has been made in this issue for alignment with
ISO/IEC 9899: 1990/Amendment 1: 1995 (E):

• The SYNOPSIS has been changed to indicate that this function and associated data types
are now made visible by inclusion of the <wctype.h> header rather than <wchar.h>.

Issue 7
The wctype_l() function is added from The Open Group Technical Standard, 2006, Extended API
Set Part 4.

1744 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

53259

53260

53261

53262

53263

53264

53265

53266

53267

53268

53269

53270

53271

53272

53273

53274

53275

53276

53277

53278

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces wcwidth()

NAME
wcwidth — number of column positions of a wide-character code

SYNOPSIS
XSI #include <wchar.h>

int wcwidth(wchar_t wc);

DESCRIPTION
The wcwidth() function shall determine the number of column positions required for the wide
character wc. The application shall ensure that the value of wc is a character representable as a
wchar_t, and is a wide-character code corresponding to a valid character in the current locale.

RETURN VALUE
The wcwidth() function shall either return 0 (if wc is a null wide-character code), or return the
number of column positions to be occupied by the wide-character code wc, or return −1 (if wc
does not correspond to a printable wide-character code).

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
This function was removed from the final ISO/IEC 9899: 1990/Amendment 1: 1995 (E), and the
return value for a non-printable wide character is not specified.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
wcswidth(), the Base Definitions volume of IEEE Std 1003.1-200x, <wchar.h>

CHANGE HISTORY
First released as a World-wide Portability Interface in Issue 4. Derived from the MSE working
draft.

Issue 6
The Open Group Corrigendum U021/12 is applied. This function is marked as an extension.

The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1745

53279

53280

53281

53282

53283

53284

53285

53286

53287

53288

53289

53290

53291

53292

53293

53294

53295

53296

53297

53298

53299

53300

53301

53302

53303

53304

53305

53306

53307

53308

53309

53310

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

wmemchr() System Interfaces

NAME
wmemchr — find a wide character in memory

SYNOPSIS
#include <wchar.h>

wchar_t *wmemchr(const wchar_t * ws, w char_t wc, s ize_t n);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

The wmemchr() function shall locate the first occurrence of wc in the initial n wide characters of
the object pointed to by ws. This function shall not be affected by locale and all wchar_t values
shall be treated identically. The null wide character and wchar_t values not corresponding to
valid characters shall not be treated specially.

If n is zero, the application shall ensure that ws is a valid pointer and the function behaves as if
no valid occurrence of wc is found.

RETURN VALUE
The wmemchr() function shall return a pointer to the located wide character, or a null pointer if
the wide character does not occur in the object.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
wmemcmp(), wmemcpy(), wmemmove(), wmemset(), the Base Definitions volume of
IEEE Std 1003.1-200x, <wchar.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with ISO/IEC 9899: 1990/Amendment 1: 1995
(E).

Issue 6
The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

1746 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

53311

53312

53313

53314

53315

53316

53317

53318

53319

53320

53321

53322

53323

53324

53325

53326

53327

53328

53329

53330

53331

53332

53333

53334

53335

53336

53337

53338

53339

53340

53341

53342

53343

53344

53345

53346

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces wmemcmp()

NAME
wmemcmp — compare wide characters in memory

SYNOPSIS
#include <wchar.h>

int wmemcmp(const wchar_t * ws1, c onst wchar_t * ws2, s ize_t n);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

The wmemcmp() function shall compare the first n wide characters of the object pointed to by
ws1 to the first n wide characters of the object pointed to by ws2. This function shall not be
affected by locale and all wchar_t values shall be treated identically. The null wide character and
wchar_t values not corresponding to valid characters shall not be treated specially.

If n is zero, the application shall ensure that ws1 and ws2 are valid pointers, and the function
shall behave as if the two objects compare equal.

RETURN VALUE
The wmemcmp() function shall return an integer greater than, equal to, or less than zero,
respectively, as the object pointed to by ws1 is greater than, equal to, or less than the object
pointed to by ws2.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
wmemchr(), wmemcpy(), wmemmove(), wmemset(), the Base Definitions volume of
IEEE Std 1003.1-200x, <wchar.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with ISO/IEC 9899: 1990/Amendment 1: 1995
(E).

Issue 6
The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1747

53347

53348

53349

53350

53351

53352

53353

53354

53355

53356

53357

53358

53359

53360

53361

53362

53363

53364

53365

53366

53367

53368

53369

53370

53371

53372

53373

53374

53375

53376

53377

53378

53379

53380

53381

53382

53383

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

wmemcpy() System Interfaces

NAME
wmemcpy — copy wide characters in memory

SYNOPSIS
#include <wchar.h>

wchar_t *wmemcpy(wchar_t *restrict ws1, c onst wchar_t *restrict ws2,
size_t n);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

The wmemcpy() function shall copy n wide characters from the object pointed to by ws2 to the
object pointed to by ws1. This function shall not be affected by locale and all wchar_t values
shall be treated identically. The null wide character and wchar_t values not corresponding to
valid characters shall not be treated specially.

If n is zero, the application shall ensure that ws1 and ws2 are valid pointers, and the function
shall copy zero wide characters.

RETURN VALUE
The wmemcpy() function shall return the value of ws1.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
wmemchr(), wmemcmp(), wmemmove(), wmemset(), the Base Definitions volume of
IEEE Std 1003.1-200x, <wchar.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with ISO/IEC 9899: 1990/Amendment 1: 1995
(E).

Issue 6
The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

The wmemcpy() prototype is updated for alignment with the ISO/IEC 9899: 1999 standard.

1748 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

53384

53385

53386

53387

53388

53389

53390

53391

53392

53393

53394

53395

53396

53397

53398

53399

53400

53401

53402

53403

53404

53405

53406

53407

53408

53409

53410

53411

53412

53413

53414

53415

53416

53417

53418

53419

53420

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

wmemset() System Interfaces

NAME
wmemset — set wide characters in memory

SYNOPSIS
#include <wchar.h>

wchar_t *wmemset(wchar_t * ws, w char_t wc, s ize_t n);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std 1003.1-200x defers to the ISO C standard.

The wmemset() function shall copy the value of wc into each of the first n wide characters of the
object pointed to by ws. This function shall not be affected by locale and all wchar_t values shall
be treated identically. The null wide character and wchar_t values not corresponding to valid
characters shall not be treated specially.

If n is zero, the application shall ensure that ws is a valid pointer, and the function shall copy
zero wide characters.

RETURN VALUE
The wmemset() functions shall return the value of ws.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
wmemchr(), wmemcmp(), wmemcpy(), wmemmove(), the Base Definitions volume of
IEEE Std 1003.1-200x, <wchar.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with ISO/IEC 9899: 1990/Amendment 1: 1995
(E).

Issue 6
The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

1750 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

53460

53461

53462

53463

53464

53465

53466

53467

53468

53469

53470

53471

53472

53473

53474

53475

53476

53477

53478

53479

53480

53481

53482

53483

53484

53485

53486

53487

53488

53489

53490

53491

53492

53493

53494

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces wordexp()

NAME
wordexp, wordfree — perform word expansions

SYNOPSIS
#include <wordexp.h>

int wordexp(const char *restrict words, w ordexp_t *restrict pwordexp,
int flags);

void wordfree(wordexp_t * pwordexp);

DESCRIPTION
The wordexp() function shall perform word expansions as described in the Shell and Utilities
volume of IEEE Std 1003.1-200x, Section 2.6, Word Expansions, subject to quoting as in the Shell
and Utilities volume of IEEE Std 1003.1-200x, Section 2.2, Quoting, and place the list of
expanded words into the structure pointed to by pwordexp.

The words argument is a pointer to a string containing one or more words to be expanded. The
expansions shall be the same as would be performed by the command line interpreter if words
were the part of a command line representing the arguments to a utility. Therefore, the
application shall ensure that words does not contain an unquoted <newline> or any of the
unquoted shell special characters ’|’ , ’&’ , ’;’ , ’<’ , ’>’ except in the context of command
substitution as specified in the Shell and Utilities volume of IEEE Std 1003.1-200x, Section 2.6.3,
Command Substitution. It also shall not contain unquoted parentheses or braces, except in the
context of command or variable substitution. The application shall ensure that every member of
words which it expects to have expanded by wordexp() does not contain an unquoted initial
comment character. The application shall also ensure that any words which it intends to be
ignored (because they begin or continue a comment) are deleted from words. If the argument
words contains an unquoted comment character (number sign) that is the beginning of a token,
wordexp() shall either treat the comment character as a regular character, or interpret it as a
comment indicator and ignore the remainder of words.

The structure type wordexp_t is defined in the <wordexp.h> header and includes at least the
following members:

Member Type Member Name Description

size_t we_wordc Count of words matched by words.
char ** we_wordv Pointer to list of expanded words.
size_t we_offs Slots to reserve at the beginning of pwordexp−>we_wordv.

The wordexp() function shall store the number of generated words into pwordexp−>we_wordc and
a pointer to a list of pointers to words in pwordexp−>we_wordv. Each individual field created
during field splitting (see the Shell and Utilities volume of IEEE Std 1003.1-200x, Section 2.6.5,
Field Splitting) or pathname expansion (see the Shell and Utilities volume of
IEEE Std 1003.1-200x, Section 2.6.6, Pathname Expansion) shall be a separate word in the
pwordexp−>we_wordv list. The words shall be in order as described in the Shell and Utilities
volume of IEEE Std 1003.1-200x, Section 2.6, Word Expansions. The first pointer after the last
word pointer shall be a null pointer. The expansion of special parameters described in the Shell
and Utilities volume of IEEE Std 1003.1-200x, Section 2.5.2, Special Parameters is unspecified.

It is the caller’s responsibility to allocate the storage pointed to by pwordexp. The wordexp()
function shall allocate other space as needed, including memory pointed to by
pwordexp−>we_wordv. The wordfree() function frees any memory associated with pwordexp from a
previous call to wordexp().

The flags argument is used to control the behavior of wordexp(). The value of flags is the bitwise-
inclusive OR of zero or more of the following constants, which are defined in <wordexp.h>:

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1751

53495

53496

53497

53498

53499

53500

53501

53502

53503

53504

53505

53506

53507

53508

53509

53510

53511

53512

53513

53514

53515

53516

53517

53518

53519

53520

53521

53522

53523

53524

53525

53526

53527

53528

53529

53530

53531

53532

53533

53534

53535

53536

53537

53538

53539

53540

53541

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

wordexp() System Interfaces

WRDE_APPEND Append words generated to the ones from a previous call to wordexp().

WRDE_DOOFFS Make use of pwordexp−>we_offs. If this flag is set, pwordexp−>we_offs is
used to specify how many null pointers to add to the beginning of
pwordexp−>we_wordv. In other words, pwordexp−>we_wordv shall point to
pwordexp−>we_offs null pointers, followed by pwordexp−>we_wordc word
pointers, followed by a null pointer.

WRDE_NOCMD If the implementation supports the utilities defined in the Shell and
Utilities volume of IEEE Std 1003.1-200x, fail if command substitution, as
specified in the Shell and Utilities volume of IEEE Std 1003.1-200x, Section
2.6.3, Command Substitution, is requested.

WRDE_REUSE The pwordexp argument was passed to a previous successful call to
wordexp(), and has not been passed to wordfree(). The result shall be the
same as if the application had called wordfree() and then called wordexp()
without WRDE_REUSE.

WRDE_SHOWERR Do not redirect stderr to /dev/null.

WRDE_UNDEF Report error on an attempt to expand an undefined shell variable.

The WRDE_APPEND flag can be used to append a new set of words to those generated by a
previous call to wordexp(). The following rules apply to applications when two or more calls to
wordexp() are made with the same value of pwordexp and without intervening calls to wordfree():

1. The first such call shall not set WRDE_APPEND. All subsequent calls shall set it.

2. All of the calls shall set WRDE_DOOFFS, or all shall not set it.

3. After the second and each subsequent call, pwordexp−>we_wordv shall point to a list
containing the following:

a. Zero or more null pointers, as specified by WRDE_DOOFFS and
pwordexp−>we_offs

b. Pointers to the words that were in the pwordexp−>we_wordv list before the call, in
the same order as before

c. Pointers to the new words generated by the latest call, in the specified order

4. The count returned in pwordexp−>we_wordc shall be the total number of words from all of
the calls.

5. The application can change any of the fields after a call to wordexp(), but if it does it shall
reset them to the original value before a subsequent call, using the same pwordexp value,
to wordfree() or wordexp() with the WRDE_APPEND or WRDE_REUSE flag.

If the implementation supports the utilities defined in the Shell and Utilities volume of
IEEE Std 1003.1-200x, and words contains an unquoted character—<newline>, ’|’ , ’&’ , ’;’ ,
’<’ , ’>’ , ’(’ , ’)’ , ’{’ , ’}’ —in an inappropriate context, wordexp() shall fail, and the number
of expanded words shall be 0.

Unless WRDE_SHOWERR is set in flags, wordexp() shall redirect stderr to /dev/null for any
utilities executed as a result of command substitution while expanding words. If
WRDE_SHOWERR is set, wordexp() may write messages to stderr if syntax errors are detected
while expanding words.

The application shall ensure that if WRDE_DOOFFS is set, then pwordexp−>we_offs has the same
value for each wordexp() call and wordfree() call using a given pwordexp.

The following constants are defined as error return values:

1752 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

53542

53543

53544

53545

53546

53547

53548

53549

53550

53551

53552

53553

53554

53555

53556

53557

53558

53559

53560

53561

53562

53563

53564

53565

53566

53567

53568

53569

53570

53571

53572

53573

53574

53575

53576

53577

53578

53579

53580

53581

53582

53583

53584

53585

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces wordexp()

WRDE_BADCHAR One of the unquoted characters—<newline>, ’|’ , ’&’ , ’;’ , ’<’ , ’>’ ,
’(’ , ’)’ , ’{’ , ’}’ —appears in words in an inappropriate context.

WRDE_BADVAL Reference to undefined shell variable when WRDE_UNDEF is set in flags.

WRDE_CMDSUB Command substitution requested when WRDE_NOCMD was set in flags.

WRDE_NOSPACE Attempt to allocate memory failed.

WRDE_SYNTAX Shell syntax error, such as unbalanced parentheses or unterminated
string.

RETURN VALUE
Upon successful completion, wordexp() shall return 0. Otherwise, a non-zero value, as described
in <wordexp.h>, shall be returned to indicate an error. If wordexp() returns the value
WRDE_NOSPACE, then pwordexp−>we_wordc and pwordexp−>we_wordv shall be updated to
reflect any words that were successfully expanded. In other cases, they shall not be modified.

The wordfree() function shall not return a value.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
The wordexp() function is intended to be used by an application that wants to do all of the shell’s
expansions on a word or words obtained from a user. For example, if the application prompts
for a filename (or list of filenames) and then uses wordexp() to process the input, the user could
respond with anything that would be valid as input to the shell.

The WRDE_NOCMD flag is provided for applications that, for security or other reasons, want to
prevent a user from executing shell commands. Disallowing unquoted shell special characters
also prevents unwanted side effects, such as executing a command or writing a file.

RATIONALE
This function was included as an alternative to glob(). There had been continuing controversy
over exactly what features should be included in glob(). It is hoped that by providing wordexp()
(which provides all of the shell word expansions, but which may be slow to execute) and glob()
(which is faster, but which only performs pathname expansion, without tilde or parameter
expansion) this will satisfy the majority of applications.

While wordexp() could be implemented entirely as a library routine, it is expected that most
implementations run a shell in a subprocess to do the expansion.

Two different approaches have been proposed for how the required information might be
presented to the shell and the results returned. They are presented here as examples.

One proposal is to extend the echo utility by adding a −q option. This option would cause echo to
add a backslash before each backslash and <blank> that occurs within an argument. The
wordexp() function could then invoke the shell as follows:

(void) strcpy(buffer, "echo -q");
(void) strcat(buffer, words);
if ((flags & WRDE_SHOWERR) == 0)

(void) strcat(buffer, "2>/dev/null");
f = p open(buffer, "r");

The wordexp() function would read the resulting output, remove unquoted backslashes, and
break into words at unquoted <blank>s. If the WRDE_NOCMD flag was set, wordexp() would
have to scan words before starting the subshell to make sure that there would be no command

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1753

53586

53587

53588

53589

53590

53591

53592

53593

53594

53595

53596

53597

53598

53599

53600

53601

53602

53603

53604

53605

53606

53607

53608

53609

53610

53611

53612

53613

53614

53615

53616

53617

53618

53619

53620

53621

53622

53623

53624

53625

53626

53627

53628

53629

53630

53631

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

wordexp() System Interfaces

substitution. In any case, it would have to scan words for unquoted special characters.

Another proposal is to add the following options to sh:

−w wordlist
This option provides a wordlist expansion service to applications. The words in wordlist
shall be expanded and the following written to standard output:

1. The count of the number of words after expansion, in decimal, followed by a null
byte

2. The number of bytes needed to represent the expanded words (not including null
separators), in decimal, followed by a null byte

3. The expanded words, each terminated by a null byte

If an error is encountered during word expansion, sh exits with a non-zero status after
writing the former to report any words successfully expanded

−P Run in ‘‘protected’’ mode. If specified with the −w option, no command substitution shall
be performed.

With these options, wordexp() could be implemented fairly simply by creating a subprocess
using fork() and executing sh using the line:

execl(< shell path>, "sh", "-P", "-w", words, (char *)0);

after directing standard error to /dev/null.

It seemed objectionable for a library routine to write messages to standard error, unless explicitly
requested, so wordexp() is required to redirect standard error to /dev/null to ensure that no
messages are generated, even for commands executed for command substitution. The
WRDE_SHOWERR flag can be specified to request that error messages be written.

The WRDE_REUSE flag allows the implementation to avoid the expense of freeing and
reallocating memory, if that is possible. A minimal implementation can call wordfree() when
WRDE_REUSE is set.

FUTURE DIRECTIONS
None.

SEE ALSO
fnmatch(), glob(), the Base Definitions volume of IEEE Std 1003.1-200x, <wordexp.h>, the Shell
and Utilities volume of IEEE Std 1003.1-200x, Chapter 2, Shell Command Language

CHANGE HISTORY
First released in Issue 4. Derived from the ISO POSIX-2 standard.

Issue 5
Moved from POSIX2 C-language Binding to BASE.

Issue 6
The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

The restrict keyword is added to the wordexp() prototype for alignment with the
ISO/IEC 9899: 1999 standard.

1754 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

53632

53633

53634

53635

53636

53637

53638

53639

53640

53641

53642

53643

53644

53645

53646

53647

53648

53649

53650

53651

53652

53653

53654

53655

53656

53657

53658

53659

53660

53661

53662

53663

53664

53665

53666

53667

53668

53669

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces wprintf()

NAME
wprintf — print formatted wide-character output

SYNOPSIS
#include <stdio.h>
#include <wchar.h>

int wprintf(const wchar_t *restrict format, . ..);

DESCRIPTION
Refer to fwprintf().

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1755

53670

53671

53672

53673

53674

53675

53676

53677

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

write() System Interfaces

NAME
pwrite, write — write on a file

SYNOPSIS
#include <unistd.h>

ssize_t pwrite(int fildes, c onst void * buf, s ize_t nbyte,
off_t offset);

ssize_t write(int fildes, c onst void * buf, s ize_t nbyte);

DESCRIPTION
The write() function shall attempt to write nbyte bytes from the buffer pointed to by buf to the
file associated with the open file descriptor, fildes.

Before any action described below is taken, and if nbyte is zero and the file is a regular file, the
write() function may detect and return errors as described below. In the absence of errors, or if
error detection is not performed, the write() function shall return zero and have no other results.
If nbyte is zero and the file is not a regular file, the results are unspecified.

On a regular file or other file capable of seeking, the actual writing of data shall proceed from
the position in the file indicated by the file offset associated with fildes. Before successful return
from write(), the file offset shall be incremented by the number of bytes actually written. On a
regular file, if the position of the last byte written is greater than or equal to the length of the file,
the length of the file shall be set to this position plus one.

On a file not capable of seeking, writing shall always take place starting at the current position.
The value of a file offset associated with such a device is undefined.

If the O_APPEND flag of the file status flags is set, the file offset shall be set to the end of the file
prior to each write and no intervening file modification operation shall occur between changing
the file offset and the write operation.

XSI If a write() requests that more bytes be written than there is room for (for example, the file size
limit of the process or the physical end of a medium), only as many bytes as there is room for
shall be written. For example, suppose there is space for 20 bytes more in a file before reaching a
limit. A write of 512 bytes will return 20. The next write of a non-zero number of bytes would
give a failure return (except as noted below).

XSI If the request would cause the file size to exceed the soft file size limit for the process and there
is no room for any bytes to be written, the request shall fail and the implementation shall
generate the SIGXFSZ signal for the thread.

If write() is interrupted by a signal before it writes any data, it shall return −1 with errno set to
[EINTR].

If write() is interrupted by a signal after it successfully writes some data, it shall return the
number of bytes written.

If the value of nbyte is greater than {SSIZE_MAX}, the result is implementation-defined.

After a write() to a regular file has successfully returned:

• Any successful read() from each byte position in the file that was modified by that write
shall return the data specified by the write() for that position until such byte positions are
again modified.

• Any subsequent successful write() to the same byte position in the file shall overwrite that
file data.

Write requests to a pipe or FIFO shall be handled in the same way as a regular file with the

1756 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

53678

53679

53680

53681

53682

53683

53684

53685

53686

53687

53688

53689

53690

53691

53692

53693

53694

53695

53696

53697

53698

53699

53700

53701

53702

53703

53704

53705

53706

53707

53708

53709

53710

53711

53712

53713

53714

53715

53716

53717

53718

53719

53720

53721

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces write()

following exceptions:

• There is no file offset associated with a pipe, hence each write request shall append to the
end of the pipe.

• Write requests of {PIPE_BUF} bytes or less shall not be interleaved with data from other
processes doing writes on the same pipe. Writes of greater than {PIPE_BUF} bytes may
have data interleaved, on arbitrary boundaries, with writes by other processes, whether or
not the O_NONBLOCK flag of the file status flags is set.

• If the O_NONBLOCK flag is clear, a write request may cause the thread to block, but on
normal completion it shall return nbyte.

• If the O_NONBLOCK flag is set, write() requests shall be handled differently, in the
following ways:

— The write() function shall not block the thread.

— A write request for {PIPE_BUF} or fewer bytes shall have the following effect: if there
is sufficient space available in the pipe, write() shall transfer all the data and return
the number of bytes requested. Otherwise, write() shall transfer no data and return
−1 with errno set to [EAGAIN].

— A write request for more than {PIPE_BUF} bytes shall cause one of the following:

— When at least one byte can be written, transfer what it can and return the
number of bytes written. When all data previously written to the pipe is read, it
shall transfer at least {PIPE_BUF} bytes.

— When no data can be written, transfer no data, and return −1 with errno set to
[EAGAIN].

When attempting to write to a file descriptor (other than a pipe or FIFO) that supports non-
blocking writes and cannot accept the data immediately:

• If the O_NONBLOCK flag is clear, write() shall block the calling thread until the data can
be accepted.

• If the O_NONBLOCK flag is set, write() shall not block the thread. If some data can be
written without blocking the thread, write() shall write what it can and return the number
of bytes written. Otherwise, it shall return −1 and set errno to [EAGAIN].

Upon successful completion, where nbyte is greater than 0, write() shall mark for update the
st_ctime and st_mtime fields of the file, and if the file is a regular file, the S_ISUID and S_ISGID
bits of the file mode may be cleared.

For regular files, no data transfer shall occur past the offset maximum established in the open
file description associated with fildes.

If fildes refers to a socket, write() shall be equivalent to send() with no flags set.

SIO If the O_DSYNC bit has been set, write I/O operations on the file descriptor shall complete as
defined by synchronized I/O data integrity completion.

If the O_SYNC bit has been set, write I/O operations on the file descriptor shall complete as
defined by synchronized I/O file integrity completion.

SHM If fildes refers to a shared memory object, the result of the write() function is unspecified.

TYM If fildes refers to a typed memory object, the result of the write() function is unspecified.

OB XSR If fildes refers to a STREAM, the operation of write() shall be determined by the values of the
minimum and maximum nbyte range (packet size) accepted by the STREAM. These values are
determined by the topmost STREAM module. If nbyte falls within the packet size range, nbyte

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1757

53722

53723

53724

53725

53726

53727

53728

53729

53730

53731

53732

53733

53734

53735

53736

53737

53738

53739

53740

53741

53742

53743

53744

53745

53746

53747

53748

53749

53750

53751

53752

53753

53754

53755

53756

53757

53758

53759

53760

53761

53762

53763

53764

53765

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

write() System Interfaces

bytes shall be written. If nbyte does not fall within the range and the minimum packet size value
is 0, write() shall break the buffer into maximum packet size segments prior to sending the data
downstream (the last segment may contain less than the maximum packet size). If nbyte does not
fall within the range and the minimum value is non-zero, write() shall fail with errno set to
[ERANGE]. Writing a zero-length buffer (nbyte is 0) to a STREAMS device sends 0 bytes with 0
returned. However, writing a zero-length buffer to a STREAMS-based pipe or FIFO sends no
message and 0 is returned. The process may issue I_SWROPT ioctl() to enable zero-length
messages to be sent across the pipe or FIFO.

When writing to a STREAM, data messages are created with a priority band of 0. When writing
to a STREAM that is not a pipe or FIFO:

• If O_NONBLOCK is clear, and the STREAM cannot accept data (the STREAM write queue
is full due to internal flow control conditions), write() shall block until data can be
accepted.

• If O_NONBLOCK is set and the STREAM cannot accept data, write() shall return −1 and
set errno to [EAGAIN].

• If O_NONBLOCK is set and part of the buffer has been written while a condition in which
the STREAM cannot accept additional data occurs, write() shall terminate and return the
number of bytes written.

In addition, write() shall fail if the STREAM head has processed an asynchronous error before
the call. In this case, the value of errno does not reflect the result of write(), but reflects the prior
error.

The pwrite() function shall be equivalent to write(), except that it writes into a given position
and does not change the file offset (regardless of whether O_APPEND is set). The first three
arguments to pwrite() are the same as write() with the addition of a fourth argument offset for
the desired position inside the file.

RETURN VALUE
Upon successful completion, these functions shall return the number of bytes actually written to
the file associated with fildes. This number shall never be greater than nbyte. Otherwise, −1 shall
be returned and errno set to indicate the error.

ERRORS
These functions shall fail if:

[EAGAIN] The O_NONBLOCK flag is set for the file descriptor and the thread would be
delayed in the write() operation.

[EBADF] The fildes argument is not a valid file descriptor open for writing.

[EFBIG] An attempt was made to write a file that exceeds the implementation-defined
XSI maximum file size or the file size limit of the process, and there was no room

for any bytes to be written.

[EFBIG] The file is a regular file, nbyte is greater than 0, and the starting position is
greater than or equal to the offset maximum established in the open file
description associated with fildes.

[EINTR] The write operation was terminated due to the receipt of a signal, and no data
was transferred.

[EIO] The process is a member of a background process group attempting to write to
its controlling terminal, TOSTOP is set, the process is neither ignoring nor
blocking SIGTTOU, and the process group of the process is orphaned. This
error may also be returned under implementation-defined conditions.

1758 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

53766

53767

53768

53769

53770

53771

53772

53773

53774

53775

53776

53777

53778

53779

53780

53781

53782

53783

53784

53785

53786

53787

53788

53789

53790

53791

53792

53793

53794

53795

53796

53797

53798

53799

53800

53801

53802

53803

53804

53805

53806

53807

53808

53809

53810

53811

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces write()

[ENOSPC] There was no free space remaining on the device containing the file.

[EPIPE] An attempt is made to write to a pipe or FIFO that is not open for reading by
any process, or that only has one end open. A SIGPIPE signal shall also be sent
to the thread.

OB XSR [ERANGE] The transfer request size was outside the range supported by the STREAMS
file associated with fildes.

The write() function shall fail if:

[EAGAIN] or [EWOULDBLOCK]
The file descriptor is for a socket, is marked O_NONBLOCK, and write would
block.

[ECONNRESET] A write was attempted on a socket that is not connected.

[EPIPE] A write was attempted on a socket that is shut down for writing, or is no
longer connected. In the latter case, if the socket is of type SOCK_STREAM, a
SIGPIPE signal shall also be sent to the thread.

These functions may fail if:

OB XSR [EINVAL] The STREAM or multiplexer referenced by fildes is linked (directly or
indirectly) downstream from a multiplexer.

[EIO] A physical I/O error has occurred.

[ENOBUFS] Insufficient resources were available in the system to perform the operation.

[ENXIO] A request was made of a nonexistent device, or the request was outside the
capabilities of the device.

OB XSR [ENXIO] A hangup occurred on the STREAM being written to.

OB XSR A write to a STREAMS file may fail if an error message has been received at the STREAM head.
In this case, errno is set to the value included in the error message.

The write() function may fail if:

[EACCES] A write was attempted on a socket and the calling process does not have
appropriate privileges.

[ENETDOWN] A write was attempted on a socket and the local network interface used to
reach the destination is down.

[ENETUNREACH]
A write was attempted on a socket and no route to the network is present.

The pwrite() function shall fail and the file pointer remain unchanged if:

XSI [EINVAL] The offset argument is invalid. The value is negative.

XSI [ESPIPE] fildes is associated with a pipe or FIFO.

EXAMPLES

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1759

53812

53813

53814

53815

53816

53817

53818

53819

53820

53821

53822

53823

53824

53825

53826

53827

53828

53829

53830

53831

53832

53833

53834

53835

53836

53837

53838

53839

53840

53841

53842

53843

53844

53845

53846

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

write() System Interfaces

Writing from a Buffer

The following example writes data from the buffer pointed to by buf to the file associated with
the file descriptor fd.

#include <sys/types.h>
#include <string.h>
...
char buf[20];
size_t nbytes;
ssize_t bytes_written;
int fd;
...
strcpy(buf, "This is a test\n");
nbytes = strlen(buf);

bytes_written = write(fd, buf, nbytes);
...

APPLICATION USAGE
None.

RATIONALE
See also the RATIONALE section in read().

An attempt to write to a pipe or FIFO has several major characteristics:

• Atomic/non-atomic: A write is atomic if the whole amount written in one operation is not
interleaved with data from any other process. This is useful when there are multiple
writers sending data to a single reader. Applications need to know how large a write
request can be expected to be performed atomically. This maximum is called {PIPE_BUF}.
This volume of IEEE Std 1003.1-200x does not say whether write requests for more than
{PIPE_BUF} bytes are atomic, but requires that writes of {PIPE_BUF} or fewer bytes shall
be atomic.

• Blocking/immediate: Blocking is only possible with O_NONBLOCK clear. If there is enough
space for all the data requested to be written immediately, the implementation should do
so. Otherwise, the calling thread may block; that is, pause until enough space is available
for writing. The effective size of a pipe or FIFO (the maximum amount that can be written
in one operation without blocking) may vary dynamically, depending on the
implementation, so it is not possible to specify a fixed value for it.

• Complete/partial/deferred: A write request:

int fildes;
size_t nbyte;
ssize_t ret;
char *buf;

ret = write(fildes, buf, nbyte);

may return:

Complete ret=nbyte

Partial ret<nbyte

This shall never happen if nbyte≤{PIPE_BUF}. If it does happen (with
nbyte>{PIPE_BUF}), this volume of IEEE Std 1003.1-200x does not guarantee
atomicity, even if ret≤{PIPE_BUF}, because atomicity is guaranteed according
to the amount requested, not the amount written.

1760 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

53847

53848

53849

53850

53851

53852

53853

53854

53855

53856

53857

53858

53859

53860

53861

53862

53863

53864

53865

53866

53867

53868

53869

53870

53871

53872

53873

53874

53875

53876

53877

53878

53879

53880

53881

53882

53883

53884

53885

53886

53887

53888

53889

53890

53891

53892

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces write()

Deferred: ret=−1, errno=[EAGAIN]

This error indicates that a later request may succeed. It does not indicate that
it shall succeed, even if nbyte≤{PIPE_BUF}, because if no process reads from
the pipe or FIFO, the write never succeeds. An application could usefully
count the number of times [EAGAIN] is caused by a particular value of
nbyte>{PIPE_BUF} and perhaps do later writes with a smaller value, on the
assumption that the effective size of the pipe may have decreased.

Partial and deferred writes are only possible with O_NONBLOCK set.

The relations of these properties are shown in the following tables:

Write to a Pipe or FIFO with O_NONBLOCK clear

Immediately Writable: None Some nbyte

nbyte≤{PIPE_BUF} Atomic blocking Atomic blocking Atomic immediate
nbyte nbyte nbyte

nbyte>{PIPE_BUF} Blocking nbyte Blocking nbyte Blocking nbyte

If the O_NONBLOCK flag is clear, a write request shall block if the amount writable
immediately is less than that requested. If the flag is set (by fcntl()), a write request shall never
block.

Write to a Pipe or FIFO with O_NONBLOCK set

Immediately Writable: None Some nbyte

nbyte≤{PIPE_BUF} −1, [EAGAIN] −1, [EAGAIN] Atomic nbyte

nbyte>{PIPE_BUF} −1, [EAGAIN] <nbyte or −1, ≤nbyte or −1,
[EAGAIN] [EAGAIN]

There is no exception regarding partial writes when O_NONBLOCK is set. With the exception
of writing to an empty pipe, this volume of IEEE Std 1003.1-200x does not specify exactly when a
partial write is performed since that would require specifying internal details of the
implementation. Every application should be prepared to handle partial writes when
O_NONBLOCK is set and the requested amount is greater than {PIPE_BUF}, just as every
application should be prepared to handle partial writes on other kinds of file descriptors.

The intent of forcing writing at least one byte if any can be written is to assure that each write
makes progress if there is any room in the pipe. If the pipe is empty, {PIPE_BUF} bytes must be
written; if not, at least some progress must have been made.

Where this volume of IEEE Std 1003.1-200x requires −1 to be returned and errno set to
[EAGAIN], most historical implementations return zero (with the O_NDELAY flag set, which is
the historical predecessor of O_NONBLOCK, but is not itself in this volume of
IEEE Std 1003.1-200x). The error indications in this volume of IEEE Std 1003.1-200x were chosen
so that an application can distinguish these cases from end-of-file. While write() cannot receive
an indication of end-of-file, read() can, and the two functions have similar return values. Also,
some existing systems (for example, Eighth Edition) permit a write of zero bytes to mean that
the reader should get an end-of-file indication; for those systems, a return value of zero from
write() indicates a successful write of an end-of-file indication.

Implementations are allowed, but not required, to perform error checking for write() requests of
zero bytes.

The concept of a {PIPE_MAX} limit (indicating the maximum number of bytes that can be
written to a pipe in a single operation) was considered, but rejected, because this concept would
unnecessarily limit application writing.

See also the discussion of O_NONBLOCK in read().

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1761

53893

53894

53895

53896

53897

53898

53899

53900

53901

53902

53903

53904

53905

53906

53907

53908

53909

53910

53911

53912

53913

53914

53915

53916

53917

53918

53919

53920

53921

53922

53923

53924

53925

53926

53927

53928

53929

53930

53931

53932

53933

53934

53935

53936

53937

53938

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

write() System Interfaces

Writes can be serialized with respect to other reads and writes. If a read() of file data can be
proven (by any means) to occur after a write() of the data, it must reflect that write(), even if the
calls are made by different processes. A similar requirement applies to multiple write operations
to the same file position. This is needed to guarantee the propagation of data from write() calls
to subsequent read() calls. This requirement is particularly significant for networked file
systems, where some caching schemes violate these semantics.

Note that this is specified in terms of read() and write(). The XSI extensions readv() and writev()
also obey these semantics. A new ‘‘high-performance’’ write analog that did not follow these
serialization requirements would also be permitted by this wording. This volume of
IEEE Std 1003.1-200x is also silent about any effects of application-level caching (such as that
done by stdio).

This volume of IEEE Std 1003.1-200x does not specify the value of the file offset after an error is
returned; there are too many cases. For programming errors, such as [EBADF], the concept is
meaningless since no file is involved. For errors that are detected immediately, such as
[EAGAIN], clearly the pointer should not change. After an interrupt or hardware error, however,
an updated value would be very useful and is the behavior of many implementations.

This volume of IEEE Std 1003.1-200x does not specify behavior of concurrent writes to a file from
multiple processes. Applications should use some form of concurrency control.

FUTURE DIRECTIONS
None.

SEE ALSO
chmod(), creat(), dup(), fcntl(), getrlimit(), lseek(), open(), pipe(), ulimit(), writev(), the Base
Definitions volume of IEEE Std 1003.1-200x, <limits.h>, <stropts.h>, <sys/uio.h>, <unistd.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The DESCRIPTION is updated for alignment with the POSIX Realtime Extension and the POSIX
Threads Extension.

Large File Summit extensions are added.

The pwrite() function is added.

Issue 6
The DESCRIPTION states that the write() function does not block the thread. Previously this
said ‘‘process’’ rather than ‘‘thread’’.

The DESCRIPTION and ERRORS sections are updated so that references to STREAMS are
marked as part of the XSI STREAMS Option Group.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The DESCRIPTION now states that if write() is interrupted by a signal after it has
successfully written some data, it returns the number of bytes written. In the POSIX.1-1988
standard, it was optional whether write() returned the number of bytes written, or whether
it returned −1 with errno set to [EINTR]. This is a FIPS requirement.

• The following changes are made to support large files:

— For regular files, no data transfer occurs past the offset maximum established in the
open file description associated with the fildes.

1762 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

53939

53940

53941

53942

53943

53944

53945

53946

53947

53948

53949

53950

53951

53952

53953

53954

53955

53956

53957

53958

53959

53960

53961

53962

53963

53964

53965

53966

53967

53968

53969

53970

53971

53972

53973

53974

53975

53976

53977

53978

53979

53980

53981

53982

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces write()

— A second [EFBIG] error condition is added.

• The [EIO] error condition is added.

• The [EPIPE] error condition is added for when a pipe has only one end open.

• The [ENXIO] optional error condition is added.

Text referring to sockets is added to the DESCRIPTION.

The following changes were made to align with the IEEE P1003.1a draft standard:

• The effect of reading zero bytes is clarified.

The DESCRIPTION is updated for alignment with IEEE Std 1003.1j-2000 by specifying that
write() results are unspecified for typed memory objects.

The following error conditions are added for operations on sockets: [EAGAIN],
[EWOULDBLOCK], [ECONNRESET], [ENOTCONN], and [EPIPE].

The [EIO] error is made optional.

The [ENOBUFS] error is added for sockets.

The following error conditions are added for operations on sockets: [EACCES], [ENETDOWN],
and [ENETUNREACH].

The writev() function is split out into a separate reference page.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/146 is applied, updating text in the
ERRORS section from ‘‘a SIGPIPE signal is generated to the calling process’’ to ‘‘a SIGPIPE
signal shall also be sent to the thread’’.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/147 is applied, making a correction to the
RATIONALE.

Issue 7
The pwrite() function is moved from the XSI option to the Base.

Functionality relating to the XSI STREAMS option is marked obsolescent.

SD5-XSH-ERN-160 is applied, updating the DESCRIPTION to clarify the requirements for the
pwrite() function, and to change the use of the phrase ‘‘file pointer’’ to ‘‘file offset’’.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1763

53983

53984

53985

53986

53987

53988

53989

53990

53991

53992

53993

53994

53995

53996

53997

53998

53999

54000

54001

54002

54003

54004

54005

54006

54007

54008

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

writev() System Interfaces

NAME
writev — write a vector

SYNOPSIS
XSI #include <sys/uio.h>

ssize_t writev(int fildes, c onst struct iovec * iov, i nt iovcnt);

DESCRIPTION
The writev() function shall be equivalent to write(), except as described below. The writev()
function shall gather output data from the iovcnt buffers specified by the members of the iov
array: iov[0], iov[1], . . ., iov[iovcnt−1]. The iovcnt argument is valid if greater than 0 and less than
or equal to {IOV_MAX}, as defined in <limits.h>.

Each iovec entry specifies the base address and length of an area in memory from which data
should be written. The writev() function shall always write a complete area before proceeding to
the next.

If fildes refers to a regular file and all of the iov_len members in the array pointed to by iov are 0,
writev() shall return 0 and have no other effect. For other file types, the behavior is unspecified.

If the sum of the iov_len values is greater than {SSIZE_MAX}, the operation shall fail and no data
shall be transferred.

RETURN VALUE
Upon successful completion, writev() shall return the number of bytes actually written.
Otherwise, it shall return a value of −1, the file-pointer shall remain unchanged, and errno shall
be set to indicate an error.

ERRORS
Refer to write().

In addition, the writev() function shall fail if:

[EINVAL] The sum of the iov_len values in the iov array would overflow an ssize_t.

The writev() function may fail and set errno to:

[EINVAL] The iovcnt argument was less than or equal to 0, or greater than {IOV_MAX}.

EXAMPLES

Writing Data from an Array

The following example writes data from the buffers specified by members of the iov array to the
file associated with the file descriptor fd.

#include <sys/types.h>
#include <sys/uio.h>
#include <unistd.h>
...
ssize_t bytes_written;
int fd;
char *buf0 = "short string\n";
char *buf1 = "This is a longer string\n";
char *buf2 = "This is the longest string in this example\n";
int iovcnt;
struct iovec iov[3];

1764 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

54009

54010

54011

54012

54013

54014

54015

54016

54017

54018

54019

54020

54021

54022

54023

54024

54025

54026

54027

54028

54029

54030

54031

54032

54033

54034

54035

54036

54037

54038

54039

54040

54041

54042

54043

54044

54045

54046

54047

54048

54049

54050

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces writev()

iov[0].iov_base = buf0;
iov[0].iov_len = strlen(buf0);
iov[1].iov_base = buf1;
iov[1].iov_len = strlen(buf1);
iov[2].iov_base = buf2;
iov[2].iov_len = strlen(buf2);
...
iovcnt = sizeof(iov) / sizeof(struct iovec);

bytes_written = writev(fd, iov, iovcnt);
...

APPLICATION USAGE
None.

RATIONALE
Refer to write().

FUTURE DIRECTIONS
None.

SEE ALSO
readv(), write(), the Base Definitions volume of IEEE Std 1003.1-200x, <limits.h>, <sys/uio.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 6
Split out from the write() reference page.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1765

54051

54052

54053

54054

54055

54056

54057

54058

54059

54060

54061

54062

54063

54064

54065

54066

54067

54068

54069

54070

54071

54072

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

wscanf() System Interfaces

NAME
wscanf — convert formatted wide-character input

SYNOPSIS
#include <stdio.h>
#include <wchar.h>

int wscanf(const wchar_t *restrict format, . ..);

DESCRIPTION
Refer to fwscanf().

1766 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

54073

54074

54075

54076

54077

54078

54079

54080

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

System Interfaces y0()

NAME
y0, y1, yn — Bessel functions of the second kind

SYNOPSIS
XSI #include <math.h>

double y0(double x);
double y1(double x);
double yn(int n, d ouble x);

DESCRIPTION
The y0(), y1(), and yn() functions shall compute Bessel functions of x of the second kind of
orders 0, 1, and n, respectively.

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-
zero, an error has occurred.

RETURN VALUE
Upon successful completion, these functions shall return the relevant Bessel value of x of the
second kind.

If x is NaN, NaN shall be returned.

If the x argument to these functions is negative, −HUGE_VAL or NaN shall be returned, and a
domain error may occur.

If x is 0.0, −HUGE_VAL shall be returned and a pole error may occur.

If the correct result would cause underflow, 0.0 shall be returned and a range error may occur.

If the correct result would cause overflow, −HUGE_VAL or 0.0 shall be returned and a range
error may occur.

ERRORS
These functions may fail if:

Domain Error The value of x is negative.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [EDOM]. If the integer expression (math_errhandling
& MATH_ERREXCEPT) is non-zero, then the invalid floating-point exception
shall be raised.

Pole Error The value of x is zero.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the divide-by-zero
floating-point exception shall be raised.

Range Error The correct result would cause overflow.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the overflow
floating-point exception shall be raised.

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1767

54081

54082

54083

54084

54085

54086

54087

54088

54089

54090

54091

54092

54093

54094

54095

54096

54097

54098

54099

54100

54101

54102

54103

54104

54105

54106

54107

54108

54109

54110

54111

54112

54113

54114

54115

54116

54117

54118

54119

54120

54121

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

y0() System Interfaces

Range Error The value of x is too large in magnitude, or the correct result would cause
underflow.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the underflow
floating-point exception shall be raised.

EXAMPLES
None.

APPLICATION USAGE
On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling &
MATH_ERREXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
feclearexcept(), fetestexcept(), isnan(), j0(), the Base Definitions volume of IEEE Std 1003.1-200x,
Section 4.18, Treatment of Error Conditions for Mathematical Functions, <math.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The DESCRIPTION is updated to indicate how an application should check for an error. This
text was previously published in the APPLICATION USAGE section.

Issue 6
The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

The RETURN VALUE and ERRORS sections are reworked for alignment of the error handling
with the ISO/IEC 9899: 1999 standard.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/148 is applied, updating the RETURN
VALUE and ERRORS sections. The changes are made for consistency with the general rules
stated in ‘‘Treatment of Error Conditions for Mathematical Functions’’ in the Base Definitions
volume of IEEE Std 1003.1-200x.

1768 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

54122

54123

54124

54125

54126

54127

54128

54129

54130

54131

54132

54133

54134

54135

54136

54137

54138

54139

54140

54141

54142

54143

54144

54145

54146

54147

54148

54149

54150

54151

54152

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

Index

_exit ..87, 1680
_Exit()...87
FILE ..138
_IOFBF ...1359, 1400
_IOLBF ...392, 1400
_IONBF ..1359, 1400
LINE ...138
_longjmp()...92
_LVL ...17
_MAX ...16
_MIN ..16
_PC constants

used in pathconf ...418
_PC_2_SYMLINKS ...418
_PC_ALLOC_SIZE_MIN418
_PC_ASYNC_IO ...418
_PC_CHOWN_RESTRICTED418
_PC_FILESIZEBITS ..418
_PC_LINK_MAX ..418
_PC_MAX_CANON ..418
_PC_MAX_INPUT ...418
_PC_NAME_MAX ...418
_PC_NO_TRUNC ...418
_PC_PATH_MAX ...418
_PC_PIPE_BUF ...418
_PC_PRIO_IO ...418
_PC_REC_INCR_XFER_SIZE418
_PC_REC_MAX_XFER_SIZE418
_PC_REC_MIN_XFER_SIZE418
_PC_REC_XFER_ALIGN418
_PC_SYMLINK_MAX ...418
_PC_SYNC_IO ..418
_PC_VDISABLE ..418
_POSIX2 constants

in sysconf ...1556
_POSIX2_CHAR_TERM1558
_POSIX2_C_BIND ..1558
_POSIX2_C_DEV ..1558
_POSIX2_FORT_DEV ..1558
_POSIX2_FORT_RUN ..1558
_POSIX2_LOCALEDEF1558
_POSIX2_PBS ..1558
_POSIX2_PBS_ACCOUNTING1558
_POSIX2_PBS_CHECKPOINT1558
_POSIX2_PBS_LOCATE1558
_POSIX2_PBS_MESSAGE1558

_POSIX2_PBS_TRACK1558
_POSIX2_SW_DEV ...1558
_POSIX2_UPE ...1558
_POSIX2_VERSION ...1558
POSIX ...15, 17
_POSIX_ADVISORY_INFO420, 1556
_POSIX_ASYNCHRONOUS_IO1556
_POSIX_ASYNC_IO ...418
_POSIX_BARRIERS ..1556
_POSIX_CHOWN_RESTRICTED197, 418, 420
_POSIX_CLOCK_SELECTION1556
_POSIX_CPUTIME ...1556
_POSIX_C_SOURCE ..14
_POSIX_FSYNC ..1556
_POSIX_IPV6 ..1556
_POSIX_JOB_CONTROL1556
_POSIX_MAPPED_FILES1557
_POSIX_MEMLOCK ..1557
_POSIX_MEMLOCK_RANGE1557
_POSIX_MEMORY_PROTECTION1557
_POSIX_MESSAGE_PASSING1557
_POSIX_MONOTONIC_CLOCK1557
_POSIX_NAME_MAX ...844, 854, 1329, 1337, 1406
_POSIX_NO_TRUNC ..418
_POSIX_OPEN_MAX ..583
_POSIX_PATH_MAX844, 854, 1329, 1337, 1406
_POSIX_PRIORITIZED_IO41-42, 1557
_POSIX_PRIORITY_SCHEDULING41, 1557
_POSIX_PRIO_IO ...418
_POSIX_RAW_SOCKETS1557
_POSIX_READER_WRITER_LOCKS1557
_POSIX_REALTIME_SIGNALS1557
_POSIX_REGEXP ...1557
_POSIX_SAVED_IDS ...1557
_POSIX_SEMAPHORES1557
_POSIX_SHARED_MEMORY_OBJECTS1557
_POSIX_SHELL ..1557
_POSIX_SOURCE ...14
_POSIX_SPAWN...1557
_POSIX_SPIN_LOCKS1557
_POSIX_SPORADIC_SERVER1557
_POSIX_SS_REPL_MAX1557
_POSIX_SYNCHRONIZED_IO1557
_POSIX_SYNC_IO ..418
_POSIX_THREADS249, 1557
_POSIX_THREAD_ATTR_STACKADDR1557
_POSIX_THREAD_ATTR_STACKSIZE1557

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1769

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

Index

_POSIX_THREAD_CPUTIME1557
_POSIX_THREAD_PRIORITY_SCHEDULING1557
_POSIX_THREAD_PRIO_INHERIT1557
_POSIX_THREAD_PRIO_PROTECT1557
_POSIX_THREAD_PROCESS_SHARED1157, 1557
_POSIX_THREAD_ROBUST_PRIO_INHERIT1557
_POSIX_THREAD_ROBUST_PRIO_PROTECT1557
_POSIX_THREAD_SAFE_FUNCTIONS.249, 1557
_POSIX_THREAD_SPORADIC_SERVER1557
_POSIX_TIMEOUTS ..1557
_POSIX_TIMERS ..1557
_POSIX_TRACE ..1557
_POSIX_TRACE_EVENT_FILTER1557
_POSIX_TRACE_EVENT_NAME_MAX999, 1001, 1557
_POSIX_TRACE_INHERIT1557
_POSIX_TRACE_LOG1557
_POSIX_TRACE_NAME_MAX1557
_POSIX_TRACE_SYS_MAX996, 1557
_POSIX_TRACE_USER_EVENT_MAX.1001, 1557
_POSIX_TYPED_MEMORY_OBJECTS1557
_POSIX_V6_ILP32_OFF321558
_POSIX_V6_ILP32_OFFBIG1558
_POSIX_V6_LP64_OFF641558
_POSIX_V6_LPBIG_OFFBIG1558
_POSIX_V7_ILP32_OFF321557
_POSIX_V7_ILP32_OFFBIG1557
_POSIX_V7_LP64_OFF641557
_POSIX_V7_LPBIG_OFFBIG1557
_POSIX_VDISABLE ...418
_POSIX_VERSION1557, 1642
_PROCESS ...17
_PTHREAD_THREADS_MAX1128
_SC constants

in sysconf ...1556
_SC_2_CHAR_TERM ...1558
_SC_2_C_BIND ...1558
_SC_2_C_DEV ...1558
_SC_2_FORT_DEV ...1558
_SC_2_FORT_RUN ..1558
_SC_2_LOCALEDEF ..1558
_SC_2_PBS_ACCOUNTING1558
_SC_2_PBS_CHECKPOINT1558
_SC_2_PBS_LOCATE ...1558
_SC_2_PBS_MESSAGE1558
_SC_2_PBS_TRACK ...1558
_SC_2_SW_DEV ...1558
_SC_2_UPE ..1558
_SC_2_VERSION ..922, 1558
_SC_ADVISORY_INFO1556
_SC_AIO_LISTIO_MAX1556
_SC_AIO_MAX ...1556
_SC_AIO_PRIO_DELTA_MAX1556

_SC_ARG_MAX ...1556
_SC_ASYNCHRONOUS_IO1556
_SC_ATEXIT_MAX ..1556
_SC_BARRIERS ..1556
_SC_BC_BASE_MAX ...1556
_SC_BC_DIM_MAX ...1556
_SC_BC_SCALE_MAX1556
_SC_BC_STRING_MAX1556
_SC_CHILD_MAX ...1556
_SC_CLK_TCK ...1556, 1612
_SC_CLOCK_SELECTION1556
_SC_COLL_WEIGHTS_MAX1556
_SC_CPUTIME ...1556
_SC_DELAYTIMER_MAX1556
_SC_EXPR_NEST_MAX1556
_SC_FSYNC ...1556
_SC_GETGR_R_SIZE_MAX534, 537, 1556
_SC_GETPW_R_SIZE_MAX575, 578, 1556
_SC_IOV_MAX ...1556
_SC_IPV6 ...1556
_SC_JOB_CONTROL ...1556
_SC_LINE_MAX ...1556
_SC_LOGIN_NAME_MAX1556
_SC_MEMLOCK ...1557
_SC_MEMLOCK_RANGE1557
_SC_MEMORY_PROTECTION1557
_SC_MESSAGE_PASSING1557
_SC_MONOTONIC_CLOCK1557
_SC_MQ_OPEN_MAX1556
_SC_MQ_PRIO_MAX ..1556
_SC_NGROUPS_MAX1556
_SC_OPEN_MAX ...1556
_SC_PAGESIZE ...928, 1558
_SC_PAGE_SIZE ...1558
_SC_PRIORITIZED_IO1557
_SC_PRIORITY_SCHEDULING1557
_SC_RAW_SOCKETS ..1557
_SC_READER_WRITER_LOCKS1557
_SC_REALTIME_SIGNALS1557
_SC_REGEXP ..1557
_SC_RE_DUP_MAX ...1558
_SC_RTSIG_MAX ...1558
_SC_SAVED_IDS ..1557
_SC_SEMAPHORES ..1557
_SC_SEM_NSEMS_MAX1558
_SC_SEM_VALUE_MAX1558
_SC_SHARED_MEMORY_OBJECTS1557
_SC_SHELL ...1557
_SC_SIGQUEUE_MAX1558
_SC_SPAWN..1557
_SC_SPIN_LOCKS ...1557
_SC_SPORADIC_SERVER1557
_SC_SS_REPL_MAX ..1557

1770 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

Index

_SC_STREAM_MAX ..1558
_SC_SYMLOOP_MAX1558
_SC_SYNCHRONIZED_IO1557
_SC_THREADS ...1557
_SC_THREAD_ATTR_STACKADDR1557
_SC_THREAD_ATTR_STACKSIZE1557
_SC_THREAD_CPUTIME1557
_SC_THREAD_DESTRUCTOR_ITERATIONS1558
_SC_THREAD_KEYS_MAX1558
_SC_THREAD_PRIORITY_SCHEDULING ...1557
_SC_THREAD_PRIO_INHERIT1557
_SC_THREAD_PRIO_PROTECT1557
_SC_THREAD_PROCESS_SHARED1557
_SC_THREAD_ROBUST_PRIO_INHERIT1557
_SC_THREAD_ROBUST_PRIO_PROTECT ...1557
_SC_THREAD_SAFE_FUNCTIONS1557
_SC_THREAD_SPORADIC_SERVER1557
_SC_THREAD_STACK_MIN1558
_SC_THREAD_THREADS_MAX1558
_SC_TIMEOUTS ...1557
_SC_TIMERS ...1557
_SC_TIMER_MAX ..1558
_SC_TRACE ..1557
_SC_TRACE_EVENT_FILTER1557
_SC_TRACE_EVENT_NAME_MAX1557
_SC_TRACE_INHERIT1557
_SC_TRACE_LOG ..1557
_SC_TRACE_NAME_MAX1557
_SC_TRACE_SYS_MAX1557
_SC_TRACE_USER_EVENT_MAX1557
_SC_TTY_NAME_MAX1558
_SC_TYPED_MEMORY_OBJECTS1557
_SC_TZNAME_MAX ...1558
_SC_V6_ILP32_OFF321558
_SC_V6_ILP32_OFFBIG1558
_SC_V6_LP64_OFF64 ...1558
_SC_V6_LPBIG_OFFBIG1558
_SC_V7_ILP32_OFF321557
_SC_V7_ILP32_OFFBIG1557
_SC_V7_LP64_OFF64 ...1557
_SC_V7_LPBIG_OFFBIG1557
_SC_VERSION ..1557
_SC_XOPEN_CRYPT ...1558
_SC_XOPEN_ENH_I18N1558
_SC_XOPEN_REALTIME1558
_SC_XOPEN_REALTIME_THREADS1558
_SC_XOPEN_SHM ...1558
_SC_XOPEN_STREAMS1558
_SC_XOPEN_UNIX ...1558
_SC_XOPEN_VERSION1558
_setjmp ...92
_t..17

_TIME ...17
_tolower()..94
_toupper() ...95
_XOPEN_CRYPT ..1558
_XOPEN_ENH_I18N ...1558
_XOPEN_NAME_MAX .844, 854, 1329, 1337, 1406
_XOPEN_PATH_MAX ...844, 854, 1329, 1337, 1406
_XOPEN_REALTIME349, 1558
_XOPEN_REALTIME_THREADS1558
_XOPEN_SHM ..1558
_XOPEN_SOURCE ...14-15
_XOPEN_STREAMS ..1558
_XOPEN_UNIX ..1558
_XOPEN_VERSION ...1558
a64l() ..96
ABDAY_1 ...890
abort() ..98
abs()..100
accept() ..101
access()...103
acos()..106
acosf ..106
acosh() ...108
acoshf ...108
acoshl ..108
acosl ..106
acosl()...110
ACTION ...610
address information ...446
address string..446
addrinfo structure ..446
ADV ..3
ADVANCED REALTIME204, 852-853, 924, 926, 928, 930, 932, 935, 943, 946, 948-950, 952, 954, 956, 958, 960, 962, 964-971, 1025, 1027
ADVANCED REALTIME THREADS..............1122
AF_ ...17
AIO_ ...16
aio_ ...16
AIO_ALLDONE ..111
aio_cancel() ...111
AIO_CANCELED ...111
aio_error()..113
aio_fsync() ...114
AIO_LISTIO_MAX737, 1556
AIO_MAX ..737, 1556
AIO_NOTCANCELED ..111
AIO_PRIO_DELTA_MAX41, 1556
aio_read() ..116
aio_return() ...119
aio_suspend() ...121
aio_write()...123
ai_ ..16
AI_ADDRCONFIG ..447
AI_ALL ..447

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1771

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

Index

AI_CANONNAME ..447
AI_INET6 ...447
AI_NUMERICHOST ..447
AI_NUMERICSERV...447
AI_PASSIVE ..447
AI_V4MAPPED ..447
alarm() ...126
alphasort()...128
anycast ...68
ANYMARK ...646
application-managed thread stack.......................59
appropriate privileges105, 419
argc ...314
ARG_MAX22, 308, 311, 316, 1556
asctime() ..130
asctime_r ..130
asin() ..133
asinf ..133
asinh() ..135
asinhf ..135
asinhl ..135
asinl ..133
asinl() ...137
assert() ...138
async-signal-safe ...1042
atan()..139
atan2()..141
atan2f ..141
atan2l ..141
atanf ..139
atanf()...143
atanh()..144
atanhf ..144
atanhl ..144
atanl ..139
atanl()...146
atexit()..147
ATEXIT_MAX ...147, 1556
atof()...149
atoi()...150
atol()...152
atoll ...152
attributes, clock-resolution77, 974
attributes, creation-time77, 974
attributes, generation-version.......................77, 974
attributes, inheritance77, 976
attributes, log-full-policy.................75, 77, 976, 979
attributes, log-max-size77, 977, 979
attributes, max-data-size........................77, 979-980
attributes, stream-full-policy74-75, 77, 977
attributes, stream-min-size77, 980
attributes, trace-name77, 974

attributes, truncation-status999
AT_SYMLINK_FOLLOW731
AT_SYMLINK_NOFOLLOW193, 197, 474
background ...1378
background process ...1588
basename() ..153
baud rate functions ..186
BC_ constants

in sysconf ...1556
BC_BASE_MAX ..1556
BC_DIM_MAX ..1556
BC_SCALE_MAX ...1556
BC_STRING_MAX ...1556
BE ..3
bind() ...155
bi_ ...16
BOOT_TIME ..295-296
broadcasting a condition1091
BSD90, 126, 199, 347, 420, 566, 716, 804, 875, 1249, 1291, 1299, 1378, 1422, 1447, 1580, 1603, 1642, 1680
bsearch() ..157
btowc()...160
buffer cache ...481
BUFSIZ ...1359
BUS_ ...17
byte-oriented stream ..36
byte-stream mode...1246
cabs()..161
cabsf ..161
cabsl ..161
cacos() ..162
cacosf ..162
cacosh()..163
cacoshf ..163
cacoshl ..163
cacosl ..162
cacosl() ...164
calloc() ...165
can ...1
cancel-safe ..1204
cancelability state................................54, 1129, 1204
cancelability type1129, 1204
canceling execution of a thread1083
cancellation cleanup handler1088, 1100, 1118, 1132
cancellation points..55
canonical name ...447
carg() ..167
cargf ..167
cargl ..167
casin()...168
casinf ...168
casinh() ..169
casinhf ..169
casinhl ..169

1772 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

Index

casinl ...168
casinl() ...170
catan() ..171
catanf ..171
catanh()..172
catanhf ..172
catanhl ..172
catanl ..171
catanl() ...173
catclose()..174
catgets() ...175
catopen()..177
CBAUD ..19
cbrt()...179
cbrtf ...179
cbrtl ...179
ccos() ..180
ccosf ..180
ccosh()..181
ccoshf ..181
ccoshl ..181
ccosl ..180
ccosl() ...182
CD ...3
ceil() ...183
ceilf ...183
ceill ..183
cexp() ...185
cexpf ...185
cexpl ...185
cfgetispeed() ...186
cfgetospeed() ..188
cfsetispeed() ..189
cfsetospeed() ...190
change current working directory192
change file modes...195
change owner and group of file199
char ...83
CHAR_MAX ...748, 750
chdir() ..191
CHILD_MAX ..414, 1556
chmod() ...193
chown()..197
cimag()...201
cimagf ...201
cimagl ...201
CLD_ ..17
clearerr() ..202
clock tick ..126, 1559, 1612
clock ticks/second..1556
clock() ..203
clock-resolution attribute77, 974

CLOCKS_PER_SEC ..203
CLOCK_ ...17
clock_ ..17
clock_getcpuclockid()..204
clock_getres()..205
clock_gettime ..205
CLOCK_MONOTONIC49, 209
clock_nanosleep() ..208
CLOCK_PROCESS_CPUTIME_ID49
CLOCK_REALTIME ..49, 205, 209, 875, 1152, 1604
clock_settime ...205
clock_settime()..211
CLOCK_THREAD_CPUTIME_ID50
clog() ..212
clogf ..212
clogl ..212
close a file ..215
close()...213
closedir()..216
closelog() ...218
cmsg_ ..16
CMSG_ ...17
COLL_WEIGHTS_MAX1556
command interpreter

portable ..1680
compare thread IDs ..1117
compilation environment14
condition variable initialization attributes......1103
conforming application1464
conforming application, strictly126, 314
confstr() ...222
conj() ..225
conjf ..225
conjl ..225
connect() ..226
control data..38
control-normal ..1246
conversion descriptor....308, 313, 616-617, 619-620
conversion specification424, 458, 496, 505, 1501, 1505, 1521

modified ...1507
conversion specifier

modified ...1522
copysign() ...229
copysignf ...229
copysignl ..229
core ...1681
core file ...89
cos()..230
cosf ..230
cosh() ...232
coshf ...232
coshl ..232
cosl ..230

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1773

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

Index

cosl()...234
covert channel ...716
cpow()..235
cpowf ..235
cpowl ..235
cproj()...236
cprojf ...236
cprojl ...236
CPT ...4
creal() ...237
crealf ...237
creall ...237
creat() ...238
create a per-process timer..................................1605
create an interprocess channel............................916
create session and set process group ID..........1390
creation-time attribute77, 974
CRYPT ..240, 281, 1371
crypt() ..240
csin()...242
csinf ...242
csinh() ..243
csinhf ..243
csinhl ..243
csinl ...242
csinl() ...244
csqrt() ...245
csqrtf ...245
csqrtl ...245
ctan() ..246
ctanf ..246
ctanh()..247
ctanhf ..247
ctanhl ..247
ctanl ..246
ctanl() ...248
ctermid()..249
ctime()..251
ctime_r ..251
CX ...4
c_..17
data key creation ...1133
data messages ...38
data type ..82
DATEMSK ...520
daylight ..253, 1636
DBL_MANT_DIG ...183, 393
DBL_MAX_EXP ..183, 393
DBM ..254-255
dbm_ ...16
DBM_ ...17
dbm_clearerr() ..254

dbm_close ..254
dbm_delete ..254
dbm_error ..254
dbm_fetch ..254
dbm_firstkey ...254
DBM_INSERT ...255
dbm_nextkey ...254
dbm_open ..254
DBM_REPLACE ...255
dbm_store ..254
DEAD_PROCESS ..295-296
DEFECHO ...19
deferred cancelability...1129
defined types...82
delay process execution.....................................1463
DELAYTIMER_MAX1556, 1609
dependency ordering ...269
descriptive name ..446
destroying a mutex...1140
destroying condition variables1095
destructor functions ...1132
detaching a thread ..1115
difftime() ...258
DIR82, 216, 1252, 1254, 1295, 1317, 1596
directive424, 458, 496, 505, 1521
directory operations ...357
dirent structure ...358
dirfd()...259
dirname()...261
div()..263
dlclose() ...264
dlerror() ...266
dlopen() ...268
dlsym() ..271
dot ...357, 1291
dot-dot ..357, 1291
dprintf ..424
dprintf() ...273
drand48()...274
dup() ..277
dup2 ..277
duplocale() ..279
dynamic package initialization.........................1178
d_ ..16
E2BIG ..22
EACCES ...22
EADDRINUSE ..22
EADDRNOTAVAIL ..22
EAFNOSUPPORT ..22
EAGAIN ..22, 28
EAI_AGAIN ..511
EAI_BADFLAGS ...511
EAI_FAIL ...511

1774 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

Index

EAI_FAMILY ...511
EAI_MEMORY..511
EAI_NONAME ...511
EAI_OVERFLOW ...511
EAI_SERVICE ..511
EAI_SOCKTYPE ...511
EAI_SYSTEM ...511
EALREADY ...22
EBADF ...22
EBADMSG ...22
EBUSY ..23
ECANCELED ..23
ECHILD ...23
ECHOCTL ...19
ECHOKE ..19
ECHOPRT..19
ECONNABORTED ...23
ECONNREFUSED ..23
ECONNRESET ..23
EDEADLK ...23
EDESTADDRREQ ..23
EDOM ..23
EDQUOT ...23
EEXIST ...23
EFAULT..23
EFBIG ...24
effective group ID.................................199, 315, 540
effective user ID....................................104, 315, 716
EHOSTUNREACH ...24
EIDRM ...24
Eighth Edition UNIX..1761
EILSEQ ...24, 37
EINPROGRESS ...24, 42
EINTR ...24, 57, 993
EINVAL24, 980, 993, 1137, 1140, 1168
EIO ..24
EISCONN ..24
EISDIR ..24
ELOOP ...24
ELSIZE ...776
EMFILE ..24
EMLINK ...24
EMPTY ...296
EMSGSIZE ...25
EMULTIHOP ...25
ENAMETOOLONG ...25
encrypt() ..281
endgrent()..283
endhostent()..285
endnetent()..287
endprotoent()..289
endpwent()..291

endservent()..293
endutxent() ...295
ENETDOWN ...25
ENETRESET ..25
ENETUNREACH ...25
ENFILE ...25
ENOBUFS ..25
ENODATA ...25
ENODEV ...25
ENOENT ..25
ENOEXEC ..25
ENOLCK ..25
ENOLINK ..25
ENOMEM ..25
ENOMSG ...26
ENOPROTOOPT ..26
ENOSPC ...26
ENOSR ...26
ENOSTR ...26
ENOSYS ...26
ENOTCONN ...26
ENOTDIR ..26
ENOTEMPTY ..26
ENOTRECOVERABLE1098, 1148
ENOTSOCK ..26
ENOTSUP ..26
ENOTTY ..26
ENTRY ...610
environ ...298, 315
envp ..315
ENXIO ..26
EOPNOTSUPP ..26
EOVERFLOW ...26
EOWNERDEAD1098, 1148
EPERM ...27, 1148
EPIPE ..27
EPROTO...27
EPROTONOSUPPORT..27
EPROTOTYPE ...27
erand48 ...274
erand48() ...299
ERANGE ..27
erf()...300
erfc() ...302
erfcf ...302
erfcl ...302
erff...300
erff() ...304
erfl ...300, 304
EROFS ..27
errno ...305
error descriptions..511
error numbers ...21

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1775

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

Index

additional ...28
ESPIPE ..27
ESRCH ...27
EST5EDT ..1636
establishing cancellation handlers1088
ESTALE ..27
ETIME ..27
ETIMEDOUT ...27
ETXTBSY ..27
EWOULDBLOCK ...28
examine and change blocked signals1212
examine and change signal action1421
EXDEV ...28
exec ...307

of shell scripts ...314
exec family104, 215, 346, 390, 416, 1042, 1379, 1680
execl ..307
execle ..307
execlp ..307
execute a file ..314
execution time monitoring....................................49
execv ...307
execve ...307
execvp ..307
exit() ...319
EXIT_FAILURE ...87, 319
EXIT_SUCCESS ..87, 90, 319
exp() ...320
exp2() ...322
exp2f ...322
exp2l ...322
expf ...320
expl ...320
expm1()..324
expm1f ..324
expm1l ..324
EXPR_NEST_MAX ...1556
EXTA ..19
EXTB ...19
extension

CX ...4
OH ..6
XSI ...9

extensions to setlocale..1373
fabs() ..326
fabsf ..326
fabsl ..326
faccessat ...103
faccessat() ..328
fattach() ...329
fchdir() ...332
fchmod() ..333

fchmodat ..193
fchmodat()...335
fchown() ..336
fchownat ..197
fchownat() ...338
fclose() ...339
fcntl()..341
FD ...4
fdatasync() ..349
fdetach() ..350
fdim() ...352
fdimf ...352
fdiml ...352
fdopen() ...354
fdopendir()..356
fds_ ...16
FD_ ...16
fd_ ...16
FD_ ...17
FD_CLOEXEC35, 177, 308, 341, 357, 620, 894, 915, 936, 943, 1402
FD_CLR ..1035
FD_CLR() ..86
FD_ISSET ...86, 1035
FD_SET ..86, 1035
FD_ZERO ...86, 1035
feature test macro ...14, 515

_POSIX_C_SOURCE ..14
_XOPEN_SOURCE ...14

feclearexcept() ..359
fegetenv() ..360
fegetexceptflag()...361
fegetround() ..362
feholdexcept()...364
feof()...365
feraiseexcept() ..366
ferror() ...367
fesetenv ..360
fesetenv()...368
fesetexceptflag ...361
fesetexceptflag() ...369
fesetround ..362
fesetround() ..370
fetestexcept()...371
feupdateenv() ...373
fexecve ..307, 375
FE_ ..16
fflush() ...376
ffs() ...379
fgetc() ...380
fgetpos() ..382
fgets() ...384
fgetwc()..386
fgetws()..388

1776 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

Index

FIFO809-810, 812, 899, 1760
FILE1, 921, 1221-1222, 1234, 1294, 1359, 1400, 1481, 1614, 1644, 1646, 1664, 1666, 1668, 1670, 1672, 1674
file

locking ..346
file accessibility ...104
file control ..346
FILE object ...34
file permission bits ...105
file permissions.....................................104, 420, 476
file position indicator...34
fileno() ...390
FILESIZEBITS ...418
FIND ...610
find string token ...1536
flockfile() ...391
floor() ...393
floorf ...393
floorl ...393
FLT_RADIX ...766
FLT_ROUNDS ...395
FLUSH ..17
FLUSHO ..19
FLUSHR ...640
FLUSHRW ...640
FLUSHW ..640
fma()...395
fmaf ...395
fmal ...395
fmax()...397
fmaxf ...397
fmaxl ...397
fmemopen() ..398
fmin() ...401
fminf ...401
fminl ...401
FMNAMESZ ...639
fmod() ..402
fmodf ..402
fmodl ..402
fmtmsg() ..404
fnmatch() ...407
FNM_ ...17
FNM_NOESCAPE ..407
FNM_NOMATCH ..407
FNM_PATHNAME ..407
FNM_PERIOD ..407
fopen() ...409
FOPEN_MAX354, 399, 410, 1614
foreground ...1378
fork handler...1043
fork() ..413
forkall ...416

format of entries ...10
fpathconf() ..418
fpclassify()...423
FPE_ ..17
fprintf() ..424
fputc() ..436
fputs() ..438
fputwc() ...440
fputws() ...442
FP_ILOGB0 ..626
FP_ILOGBNAN ..626
FQDN ...554
FR ..4
fread() ..443
free()...445
freeaddrinfo() ...446
freelocale()...450
freopen() ..452
frexp() ..456
frexpf ..456
frexpl ..456
FSC ..4
fscanf() ...458
fseek() ..465
fseeko ..465
fsetpos() ...468
fstat()..470
fstatat()...473
fstatvfs()...478
fsync() ..481
ftell()...483
ftello ..483
ftok() ..485
ftruncate()..487
ftrylockfile ...391
ftrylockfile() ..489
FTW ...17, 884-885
ftw()..490
FTW_CHDIR ...884
FTW_D ...490, 884
FTW_DEPTH ..884
FTW_DNR ..490, 884-885
FTW_DP ...884
FTW_F ..490, 884
FTW_MOUNT ..884
FTW_NS ...490, 885
FTW_PHYS ..884
FTW_SL ..490, 884
FTW_SLN ..884
fully-qualified domain name..............................554
functions ..13

implementation ...13
use ...13

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1777

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

Index

funlockfile ..391
funlockfile() ..493
futimesat ..1660
futimesat()...494
fwide() ...495
fwprintf()...496
fwrite() ...503
fwscanf()..505
f_..16
F_ ...17
F_DUPFD277, 341, 343-344
F_GETFD ...341, 343, 346
F_GETFL ..341, 343, 346
F_GETLK ..342-344
F_GETOWN ..341, 343
F_LOCK ...755
F_RDLCK ...344
F_SETFD ..341, 343, 346
F_SETFL ...341, 343, 346
F_SETLK ...342-344
F_SETLKW ...55, 342-344
F_SETOWN ...341, 343
F_TEST ...755
F_TLOCK ...755
F_ULOCK ..755
F_UNLCK ...342-343
F_WRLCK ..344
gai_strerror() ...511
generation-version attribute77, 974
get configurable pathname variables420
get configurable system variables....................1559
get file status ...476
get process times...1612
get supplementary group IDs.............................540
get system time ...1603
get thread ID ...1202
get user name..548
getaddrinfo ..446
getaddrinfo()...512
GETALL ...1340
getc() ..513
getchar() ..516
getchar_unlocked ...514
getchar_unlocked() ..517
getcwd() ..518
getc_unlocked()..514
getdate() ..520
getdate_err ...520
getdelim()..525
getegid() ..527
getenv ...315
getenv()..528

geteuid() ..531
getgid() ..532
getgrent ..283
getgrent()...533
getgrgid() ..534
getgrgid_r ..534
getgrnam() ..537
getgrnam_r ..537
getgroups()..539
gethostent ..285
gethostent() ...541
gethostid() ...542
gethostname()...543
getitimer() ...544
getline ...525
getline() ...546
getlogin() ...547
getlogin_r ...547
getmsg()...550
getnameinfo() ...554
GETNCNT ..1340-1341
getnetbyaddr ...287
getnetbyaddr()..557
getnetbyname ..287, 557
getnetent ..287, 557
getopt() ..558
getpeername() ..563
getpgid()..565
getpgrp() ...566
GETPID ...1340-1341
getpid() ..567
getpmsg ..550
getpmsg() ..568
getppid()..569
getpriority() ..570
getprotent ..573
getprotobyname ..289
getprotobyname() ..573
getprotobynumber289, 573
getprotoent ..289
getpwent ..291
getpwent()...574
getpwnam() ..575
getpwnam_r ..575
getpwuid() ..578
getpwuid_r ..578
getrlimit() ..581
getrusage() ..584
gets() ..586
getservbyname ..293
getservbyname() ..588
getservbyport ..293, 588
getservent ..293, 588

1778 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

Index

getsid()...589
getsockname() ..590
getsockopt() ..591
getsubopt()..594
gettimeofday() ..598
getuid() ..599
getutxent ..295
getutxent()...600
getutxid ..295, 600
getutxline ...295, 600
GETVAL ..1340-1341
getwc() ...601
getwchar() ...602
GETZCNT ..1340-1341
glob()..603
globfree ..603
GLOB_ ..17
GLOB_ constants

error returns of glob ...605
used in glob ...603

GLOB_ABORTED ...605
GLOB_APPEND ..603-604
GLOB_DOOFFS ..603-604
GLOB_ERR ..603, 605
GLOB_MARK ...604
GLOB_NOCHECK ..604-605
GLOB_NOESCAPE ..604
GLOB_NOMATCH ..605
GLOB_NOSORT ...604
GLOB_NOSPACE ...605
gl_ ...16
GMT0 ..1636
gmtime()..607
gmtime_r ..607
grantpt() ..609
HALT..405
hcreate()...610
hdestroy ...610
high resolution sleep..875
host name...446
hsearch ...610
htonl() ..613
htons ...613
HUGE_VAL144, 183, 232, 320, 322, 324, 352, 393, 614, 725, 729, 758, 762, 764, 877, 882, 1030, 1296, 1301, 1303, 1460, 1531, 1569, 1600, 1717
HUGE_VALF393, 1030, 1296, 1531, 1600
HUGE_VALL393, 1030, 1296, 1531, 1600
hypot() ...614
hypotf ...614
hypotl ...614
h_ ..16
iconv()..616
iconv_close() ...619

iconv_open() ...620
ic_ ..16
IEEE Std 754-1985 ...3
IEEE Std 854-1987 ...3
ifc_ ...16
ifra_ ...16
ifru_ ..16
if_ ..16
IF_ ...17
if_freenameindex()...622
if_indextoname()..623
if_nameindex() ...624
if_nametoindex()..625
ILL_ ...17
ilogb()...626
ilogbf ...626
ilogbl ...626
imaxabs()...628
imaxdiv()...629
implementation-defined ..1
IMPLINK_ ...17
in6_ ...16
IN6_ ..17
INADDR_ ..17
inet_ ..16
inet_addr() ..630
inet_ntoa ..630
inet_ntop()...632
inet_pton ..632
Inf ..133
INF ..427, 499
INFINITY ...427, 499
INFO ...405
infu_ ..16
inheritance attribute.......................................77, 976
init ...90, 716
initialize a named semaphore...........................1329
initialize an unnamed semaphore....................1326
initializing a mutex...1140
initializing condition variables.........................1095
initstate() ...634
INIT_PROCESS ...295-296
input and output rationale................................1248
insque()..636
INT ..18
international environment1373
Internet Protocols ...67
INT_MAX ..626
INT_MIN ...100
in_ ...16
IN_ ..17
ioctl() ..639
IOV_ ...17

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1779

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

Index

iov_ ...17
IOV_MAX ..1260, 1556, 1764
IP6 ...4
IPC39, 858, 860, 863, 865, 1345, 1349, 1412, 1414
ipc_ ...16
IPC_ ..17
IPC_ constants

used in semctl ...1340
used in shmctl ...1410

IPC_CREAT.......................................859, 1343, 1413
IPC_EXCL ..859, 1343
IPC_NOWAIT861-862, 864-865, 1346
IPC_PRIVATE....................................859, 1343, 1413
IPC_RMID ...857, 1341, 1410
IPC_SET ...857, 1341, 1410
IPC_STAT ...857, 1340, 1410
IPPORT_ ...17
IPPROTO_ ...17
IPv4 ...68
IPv4-compatible address69
IPv4-mapped address ..69
IPv6 ...68

compatibility with IPv469
interface identification.......................................70
options ..70

IPv6 address
anycast ...68
loopback ...69
multicast ..68
unicast ..68
unspecified ..69

IPV6_ ..17
IPV6_JOIN_GROUP ...70
IPV6_LEAVE_GROUP ...70
IPV6_MULTICAST_HOPS70
IPV6_MULTICAST_IF ...70
IPV6_MULTICAST_LOOP70
IPV6_UNICAST_HOPS ...70
IPV6_V6ONLY ..71
ip_ ...16
IP_ ...17
isalnum() ...650
isalnum_l ...650
isalpha()...652
isalpha_l ...652
isascii()...654
isastream()...655
isatty()..656
isblank()...657
isblank_l ...657
iscntrl() ..658
iscntrl_l ...658

isdigit() ..660
isdigit_l ..660
isfinite() ...662
isgraph() ..663
isgraph_l ..663
isgreater() ..665
isgreaterequal()...666
isinf()..667
isless() ..668
islessequal() ..669
islessgreater()..670
islower() ..671
islower_l ...671
isnan() ..673
isnormal()..674
ISO C standard3, 126, 314, 346, 515, 778, 1242, 1291, 1373, 1422, 1447, 1603
isprint()..675
isprint_l ..675
ispunct() ..677
ispunct_l ...677
isspace()...679
isspace_l ...679
isunordered() ..681
isupper() ..682
isupper_l ..682
iswalnum()..684
iswalnum_l ..684
iswalpha() ...686
iswalpha_l ..686
iswblank() ...688
iswblank_l ..688
iswcntrl() ...690
iswcntrl_l ...690
iswctype()..692
iswctype_l ..692
iswdigit() ...694
iswdigit_l ...694
iswgraph()...696
iswgraph_l ...696
iswlower() ...698
iswlower_l ...698
iswprint()...700
iswprint_l ...700
iswpunct() ...702
iswpunct_l ...702
iswspace() ...704
iswspace_l ..704
iswupper()...706
iswupper_l ...706
iswxdigit() ...708
iswxdigit_l ...708
isxdigit() ..710
isxdigit_l ..710

1780 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

Index

ITIMER_PROF ..544
ITIMER_REAL ..544
ITIMER_VIRTUAL ...544
it_ ...16-17
I_..17
I_ATMARK ..645-646
I_CANPUT ..646
I_CKBAND ..646
I_FDINSERT..642
I_FIND ...641
I_FLUSH ..640
I_FLUSHBAND ..640
I_GETBAND ..646
I_GETCLTIME ..646
I_GETSIG ...641
I_GRDOPT ...642, 1246
I_GWROPT ..644
I_LINK ...646
I_LIST ...645
I_LOOK ..639
I_NREAD ...642
I_PEEK ...641
I_PLINK ...647
I_POP ...639
I_PUNLINK ...648
I_PUSH ...639
I_RECVFD ...22, 645
I_SENDFD ..644-645
I_SETCLTIME ...213, 646
I_SETSIG ...640-641
I_SRDOPT ..642, 1246
I_STR ..643
I_SWROPT ...644, 1758
I_UNLINK ...647
j0()...712
j1 ..712
jn..712
job control90, 566, 716, 1378, 1390, 1559, 1680
jrand48 ..274
jrand48() ..714
JST-9 ..1636
kill()..715
killpg() ...718
l64a ..96
l64a() ..720
labs() ..721
LANG ...177
last close...1406
LASTMARK ..646
lchown() ..722
lcong48 ...274
lcong48()..724

LC_ALL308, 750, 890, 1372, 1374
LC_COLLATE603-604, 1372, 1374, 1491, 1546, 1695, 1737
LC_CTYPE160, 692, 783, 785, 787, 789, 791, 793, 795, 1372, 1374, 1619, 1621-1622, 1624, 1626, 1688, 1712, 1729, 1738-1739, 1741, 1743
LC_MESSAGES177, 1372-1374, 1499
LC_MONETARY750, 1372, 1374, 1503
LC_NUMERIC425, 458, 496, 505, 750, 1372, 1374, 1503, 1531, 1717
LC_TIME521, 890, 1372, 1374
ldexp() ...725
ldexpf ...725
ldexpl ..725
ldiv() ..727
legacy ..2
lfind ..776
lfind() ...728
lgamma() ...729
lgammaf ...729
lgammal ...729
LINE_MAX ..1556
link to a file..733
link()...731
linkat ...731
linkat() ...735
LINK_MAX24, 418, 732, 1289
LIO_ ..16
lio_ ..16
lio_listio() ..736
LIO_NOP ...736
LIO_NOWAIT ...736
LIO_READ ...736
LIO_WAIT ...736
LIO_WRITE ...736
list directed I/O ..738
listen() ..740
llabs ...721
llabs() ...742
lldiv ...727
lldiv() ...743
LLONG_MAX ...1539, 1725
LLONG_MIN ..1539, 1725
llrint()...744
llrintf ...744
llrintl ...744
llround() ..746
llroundf ..746
llroundl ..746
load ordering ...269
LOBLK ...19
localeconv()...748
localtime() ...752
localtime_r ...752
lockf()...755
locking ..346

advisory ...346

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1781

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

Index

mandatory ...346
locking and unlocking a mutex1149
log() ..758
log-full-policy attribute75, 77, 976, 979, 996
log-max-size attribute77, 977, 979
log10() ..760
log10f ..760
log10l ..760
log1p()..762
log1pf ...762
log1pl ..762
log2() ..764
log2f ..764
log2l ..764
logb()..766
logbf ..766
logbl ..766
logf ..758
logf()...768
login shell ..314
LOGIN_NAME_MAX547, 1556
LOGIN_PROCESS ..295-296
logl ..758, 768
LOG_ ..17
LOG_ constants in syslog....................................218
LOG_ALERT ...218
LOG_CONS ...219
LOG_CRIT ...218
LOG_DEBUG ..218
LOG_EMERG ..218
LOG_ERR ..218
LOG_INFO ..218
LOG_LOCAL ..219
LOG_NDELAY..219
LOG_NOTICE ...218
LOG_NOWAIT ...219
LOG_ODELAY..219
LOG_PID ...219
LOG_USER ...218-219
LOG_WARNING ..218
longjmp()...769
LONG_MAX ...1539, 1725
LONG_MIN ..1539, 1725
lrand48 ...274
lrand48() ..771
lrint() ..772
lrintf ..772
lrintl ..772
lround() ...774
lroundf ...774
lroundl ..774
lsearch() ...776

lseek()...778
lstat ...473
lstat() ..780
l_..16
L_ctermid ...249
l_sysid ..346
malloc()..781
manipulate signal sets1428
mappings ...830
MAP_ ..16-17
MAP_FAILED ...830
MAP_FIXED ..826, 829
MAP_PRIVATE.....................413, 826, 830, 835, 867
MAP_SHARED416, 826-827
max-data-size attribute77, 979-980
MAX_CANON ..418
MAX_INPUT ...418
may ...2
mblen() ..783
mbrlen()...785
mbrtowc()..787
mbsinit() ..789
mbsnrtowcs ...791
mbsnrtowcs()..790
mbsrtowcs() ..791
mbstowcs()..793
mbtowc() ...795
MB_CUR_MAX783, 785, 787, 795, 1688, 1739
MC1 ..4
MCL_ ..16
MCL_CURRENT ..823
MCL_FUTURE ..823
memccpy() ..797
memchr()...798
memcmp()...799
memcpy() ..800
MEMLOCK_FUTURE ...830
memmove()...801
memory management..42
memset()..802
message catalog descriptor87, 308, 313
message parts..39
message priority ...38

high-priority ..38
normal ..38
priority ...38

message-discard mode1246
message-nondiscard mode1246
MET-1MEST ..1636
MINSIGSTKSZ ..1425
mkdir()...803
mkdirat ...803
mkdirat() ...806

1782 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

Index

mkdtemp() ..807
mkfifo()..809
mkfifoat ..809
mkfifoat() ..812
mknod()...813
mknodat ...813
mknodat() ...817
mkstemp ..807
mkstemp() ...818
mktime()..819
ML ...5
mlock()...821
mlockall() ..823
MLR ..5
mmap() ..825
MM_ ...17
MM_APPL ...404
MM_CONSOLE ..404
MM_ERROR ..405-406
mm_FIRM ..404
MM_HALT ..405
MM_HARD ...404
MM_INFO ...405
MM_NOCON ...405
MM_NOMSG ..405
MM_NOSEV ...405
MM_NOTOK ..405
MM_NRECOV ..404
MM_NULLMC ...404
MM_OK ...405
MM_OPSYS ...404
MM_PRINT ...404, 406
MM_RECOVER ..404
MM_SOFT ...404
MM_UTIL ..404
MM_WARNING ...405
modf() ..833
modff ..833
modfl ..833
MON ...5
MORECTL ...551
MOREDATA ..551
mprotect()..835
MQ_ ..16
mq_ ...16
mq_close() ...837
mq_getattr() ..838
mq_notify() ...840
mq_open() ...842
MQ_OPEN_MAX ...1556
MQ_PRIO_MAX848-849, 1556
mq_receive() ...845

mq_send() ...848
mq_setattr()...850
mq_timedreceive ..845
mq_timedreceive() ...852
mq_timedsend ..848
mq_timedsend() ...853
mq_unlink() ..854
mrand48 ...274
mrand48()..856
MSG ..5, 17
msgctl()..857
msgget()...859
msgrcv() ..861
msgsnd()..864
MSGVERB ..405-406
msg_ ...16
MSG_ ..17
MSG_ANY ...550
MSG_BAND ..550, 1227
MSG_EOR1351, 1353, 1356, 1468, 1470
MSG_HIPRI ...550, 1227
MSG_NOERROR ..861-862
MSG_NOSIGNAL1351, 1353, 1356
MSG_OOB1351, 1353, 1356
msg_perm ..40
msqid ..39
MST7MDT ...1636
msync() ..867
MS_ ..16-17
MS_ASYNC ...827, 867
MS_INVALIDATE ...867-868
MS_SYNC ..827, 867
multicast ..68
munlock ...821
munlock() ..870
munlockall ...823
munlockall()..871
munmap() ...872
mutex attributes..1157
mutex initialization attributes1156
mutex performance ..1157
MUXID_ALL ...647-648
MUXID_R ..17
MX ..5
M_ ...17
name information...554
name space ..15
NAME_MAX25, 103, 128, 177, 191, 193, 198, 312, 329, 350, 356, 410, 418, 453, 474, 478, 485, 722, 732, 804, 809, 814, 885, 897, 1028, 1252, 1256, 1264, 1289, 1298, 1551, 1629, 1649, 1658, 1660
NaN ..133
NAN ...427
NaN ..427
NAN ...499
NaN ..499

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1783

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

Index

nan()...874
nanf ...874
nanl ...874
nanosleep()..875
NDEBUG ...21, 138
nearbyint() ..877
nearbyintf ..877
nearbyintl ...877
network interfaces ..60
newlocale()..879
NEW_TIME ..295-296
nextafter()..882
nextafterf ..882
nextafterl ..882
nexttoward ..882
nexttowardf ...882
nexttowardl ...882
nftw() ...884
NGROUPS_MAX540, 1556
nice() ..888
NLSPATH ..177
NL_ ...17
NL_ARGMAX424, 458, 496, 505
NL_CAT_LOCALE ...177
nl_langinfo() ...890
nl_langinfo_l ...890
nohup utility ...315
non-local jumps ..1447
non-volatile storage..481
nrand48 ..274
nrand48()...892
ntohl ...613
ntohl() ..893
ntohs ...613, 893
NULL223, 249, 256, 266, 271, 830, 1254
NUM_EMPL ..611
NZERO ...570, 888
n_ ..16
OB ...5
OF ...5
OH ..6
OLD_TIME ...295-296
open a file ..899
open a named semaphore1329
open a shared memory object...........................1404
open()...894
openat ...894
openat() ...905
opendir ...356
opendir() ...906
openlog ..218
openlog() ...907

OPEN_MAX129, 277, 291, 344, 356, 490, 842, 943, 946, 1556
open_memstream()..902
open_wmemstream ..902
open_wmemstream() ..904
optarg ...558, 908
opterr ..558, 908
optind ...558, 908
option

ADV ..3
BE ..3
CD ...3
CPT ...4
FD ...4
FR ..4
FSC ..4
IP6 ...4
MC1 ..4
ML ...5
MLR ..5
MON ...5
MSG ..5
MX ..5
PIO ..6
PS ..6
RPI ..6
RPP ...6
RS ..6
SD ..6
SHM ..7
SIO ..7
SPN ...7
SS ...7
TCT ...7
TEF ..7
TPI ...7
TPP ..7
TPS ..8
TRC ...8
TRI ..8
TRL ...8
TSA ...8
TSH ...8
TSP ..8
TSS ..9
TYM ..9
UP ...9
UU ...9
XSR ...9

optopt ...558, 561, 908
optstring ...561
orphaned process group ..90
O_ ..17

1784 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

Index

O_ constants
used in open()...894
used in posix_openpt()933

O_ACCMODE ..341
O_APPEND41, 123, 254, 355, 894, 1756
O_CREAT238, 842-843, 854, 894, 1320, 1328, 1402-1403, 1405
O_DIRECTORY...895
O_DSYNC114, 895, 1246, 1757
O_EXCL843, 895, 1328, 1402-1403
O_EXEC ...894
O_NDELAY ...1761
O_NOCTTY ...895, 933
O_NOFOLLOW ..895
O_NONBLOCK24, 213, 339, 376, 380, 386, 436, 440, 466, 468, 551, 643, 645, 843, 845, 848, 850, 895, 915, 918, 1228, 1245, 1757, 1760
O_RDONLY.......................261, 842, 894, 1402, 1405
O_RDWR332, 755, 842, 894, 933, 1402, 1405
O_RSYNC ..895, 1246
O_SYNC114, 895, 1246, 1757
O_TRUNC238, 895, 1403, 1405
O_WRONLY..........................238, 332, 755, 842, 894
PAGESIZE42-43, 821, 1049, 1558
PAGE_SIZE ..1558
PA TH ..223
PA TH environment variable316
pathconf ...418
pathconf()..909
PA TH_MAX25, 103, 128, 177, 191, 193, 198, 261, 312, 329, 350, 356, 410, 418, 453, 474, 478, 485, 519, 722, 732, 804, 809, 814, 885, 897, 1028, 1256, 1264, 1289, 1298, 1551, 1560, 1629, 1649, 1658, 1660
pause() ...910
pclose() ..911
pd_ ..16
PENDIN ...19
perror() ..913
persistent connection (I_PLINK)........................647
PF_ ..17
physical write..481
ph_ ..16
PIO ..6
pipe ...415, 899, 1760
pipe()..915
PIPE_BUF ..418, 1757, 1760
PIPE_MAX ...1761
plain characters...1501
pointer to a function...32
pointer types ...83
POLL ..17
poll()...917
POLLERR ...917
POLLHUP ..917
POLLIN ..917
POLLNVAL ...918
POLLOUT ..917
POLLPRI ..917

POLLRDBAND ...917
POLLRDNORM ..917
POLLWRBAND ..917
POLLWRNORM ...917
POLL_ ..17
popen() ..921
portability ..3
POSIX.1 symbols ..14
POSIX2_SYMLINKS ..418
POSIX_ ...15
posix_ ...15
POSIX_ ...17
posix_ ...17
POSIX_ALLOC_SIZE_MIN418
posix_fadvise() ...924
POSIX_FADV_DONTNEED924
POSIX_FADV_NOREUSE924
POSIX_FADV_NORMAL924
POSIX_FADV_RANDOM924
POSIX_FADV_SEQUENTIAL924
POSIX_FADV_WILLNEED924
posix_fallocate() ...926
posix_madvise() ...928
POSIX_MADV_DONTNEED928
POSIX_MADV_NORMAL928
POSIX_MADV_RANDOM928
POSIX_MADV_SEQUENTIAL928
POSIX_MADV_WILLNEED928
posix_memalign() ..932
posix_mem_offset() ...930
posix_openpt() ...933
POSIX_REC_INCR_XFER_SIZE418
POSIX_REC_MAX_XFER_SIZE418
POSIX_REC_MIN_XFER_SIZE418
POSIX_REC_XFER_ALIGN418
posix_spawn() ..935
posix_spawnattr_destroy().................................950
posix_spawnattr_getflags()952
posix_spawnattr_getpgroup()954
posix_spawnattr_getschedparam()956
posix_spawnattr_getschedpolicy()958
posix_spawnattr_getsigdefault()960
posix_spawnattr_getsigmask()962
posix_spawnattr_init ...950
posix_spawnattr_init() ..964
posix_spawnattr_setflags952
posix_spawnattr_setflags().................................965
posix_spawnattr_setpgroup954
posix_spawnattr_setpgroup()966
posix_spawnattr_setschedparam956
posix_spawnattr_setschedparam()967
posix_spawnattr_setschedpolicy958
posix_spawnattr_setschedpolicy()968

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1785

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

Index

posix_spawnattr_setsigdefault960
posix_spawnattr_setsigdefault()969
posix_spawnattr_setsigmask962
posix_spawnattr_setsigmask()...........................970
posix_spawnp ...935
posix_spawnp()..971
posix_spawn_file_actions_addclose()...............943
posix_spawn_file_actions_adddup2()946
posix_spawn_file_actions_addopen943
posix_spawn_file_actions_addopen()948
posix_spawn_file_actions_destroy()949
posix_spawn_file_actions_init949
POSIX_SPAWN_RESETIDS936, 952
POSIX_SPAWN_SETPGROUP936, 952, 954
POSIX_SPAWN_SETSCHEDPARAM952, 956
POSIX_SPAWN_SETSCHEDULER936, 952, 956, 958
POSIX_SPAWN_SETSIGDEF937, 952, 960
POSIX_SPAWN_SETSIGMASK952, 962
POSIX_TRACE_ADD_EVENTSET1011
POSIX_TRACE_ALL_EVENTS1004
POSIX_TRACE_APPEND977, 997
posix_trace_attr_destroy()972
posix_trace_attr_getclockres()............................974
posix_trace_attr_getcreatetime974
posix_trace_attr_getgenversion974
posix_trace_attr_getinherited()..........................976
posix_trace_attr_getlogfullpolicy976
posix_trace_attr_getlogsize()979
posix_trace_attr_getmaxdatasize979
posix_trace_attr_getmaxsystemeventsize979
posix_trace_attr_getmaxusereventsize979
posix_trace_attr_getname974
posix_trace_attr_getname()982
posix_trace_attr_getstreamfullpolicy976
posix_trace_attr_getstreamfullpolicy().............983
posix_trace_attr_getstreamsize979
posix_trace_attr_getstreamsize()984
posix_trace_attr_init ...972
posix_trace_attr_init() ...985
posix_trace_attr_setinherited976
posix_trace_attr_setinherited()986
posix_trace_attr_setlogfullpolicy976, 986
posix_trace_attr_setlogsize979
posix_trace_attr_setlogsize()987
posix_trace_attr_setmaxdatasize979, 987
posix_trace_attr_setname974
posix_trace_attr_setname().................................988
posix_trace_attr_setstreamfullpolicy976
posix_trace_attr_setstreamfullpolicy()989
posix_trace_attr_setstreamsize979
posix_trace_attr_setstreamsize()........................990
posix_trace_clear() ...991

posix_trace_close()...993
POSIX_TRACE_CLOSE_FOR_CHILD976
posix_trace_create() ...995
posix_trace_create_withlog995
POSIX_TRACE_ERROR trace event....................78
posix_trace_event()..999
posix_trace_eventid_equal()1001
posix_trace_eventid_get_name1001
posix_trace_eventid_open999
posix_trace_eventid_open()1003
posix_trace_eventset_add()1004
posix_trace_eventset_del1004
posix_trace_eventset_empty1004
posix_trace_eventset_fill1004
posix_trace_eventset_ismember1004
posix_trace_eventtypelist_getnext_id()..........1006
posix_trace_eventtypelist_rewind1006
posix_trace_event_info structure75
POSIX_TRACE_FILTER trace event78, 1011
POSIX_TRACE_FLUSH977
posix_trace_flush ..995
posix_trace_flush() ..1008
POSIX_TRACE_FLUSHING74
POSIX_TRACE_FULL73-75
posix_trace_getnext_event().............................1014
posix_trace_get_attr()..1009
posix_trace_get_filter()......................................1011
posix_trace_get_status1009
posix_trace_get_status()....................................1013
POSIX_TRACE_INHERITED976
POSIX_TRACE_LOOP74, 976-977, 996
POSIX_TRACE_NOT_FLUSHING75
POSIX_TRACE_NOT_FULL73-75
POSIX_TRACE_NOT_FULL.991
POSIX_TRACE_NOT_TRUNCATED76, 1015
POSIX_TRACE_NO_OVERRUN74-75, 1009
posix_trace_open ..993
posix_trace_open()...1017
POSIX_TRACE_OVERFLOW trace event78
POSIX_TRACE_OVERRUN74-75
POSIX_TRACE_RESUME trace event.................78
posix_trace_rewind993, 1017
POSIX_TRACE_RUNNING73-74, 1020
POSIX_TRACE_SET_EVENTSET1011
posix_trace_set_filter ..1011
posix_trace_set_filter()1018
posix_trace_shutdown ...995
posix_trace_shutdown()1019
POSIX_TRACE_START trace event78, 1020
posix_trace_start()..1020
posix_trace_status_info structure73
posix_trace_stop ...1020
POSIX_TRACE_STOP trace event78, 1020

1786 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

Index

POSIX_TRACE_SUB_EVENTSET1011
POSIX_TRACE_SUSPENDED73-74, 1020
POSIX_TRACE_SYSTEM_EVENTS1004
posix_trace_timedgetnext_event1014
posix_trace_timedgetnext_event()1022
posix_trace_trid_eventid_open1001
posix_trace_trid_eventid_open().....................1023
POSIX_TRACE_TRUNCATED_READ76, 1015
POSIX_TRACE_TRUNCATED_RECORD.76, 1015
posix_trace_trygetnext_event1014
posix_trace_trygetnext_event()........................1024
POSIX_TRACE_UNTIL_FULL74, 976-977, 996
POSIX_TRACE_USER_EVENT_MAX999
POSIX_TRACE_WOPID_EVENTS1004
POSIX_TYPED_MEM_ALLOCATE825-826, 930, 1025, 1027
POSIX_TYPED_MEM_ALLOCATE_CONTIG825-826, 930, 1025, 1027
posix_typed_mem_get_info()1025
POSIX_TYPED_MEM_MAP_ALLOCATABLE872, 1027
posix_typed_mem_open()1027
pow()..1030
powf ..1030
powl ..1030
pread ...1245
pread() ...1033
predefined stream

standard error ...36
standard input ..36
standard output ..36

preempted thread ...1099
PRI ..17
printf ...424
printf() ...1034
priority ...38
PRIO_ ...17
PRIO_INHERIT ...1152
PRIO_PGRP ...570
PRIO_PROCESS ..570
PRIO_USER ...570
process

concurrent execution..415
setting real and effective user IDs................1386
single-threaded ...415

process creation ..415
process group

orphaned ..90
process group ID566, 1378, 1390
process ID, 1 ..90
process lifetime ...717
process scheduling ...44
process shared memory1157
process synchronization1157
process termination..89

PROT_ ...16-17
PROT_EXEC ..826, 835
PROT_NONE43, 825-826, 835
PROT_READ ...826, 835
PROT_WRITE826-827, 830, 835
PS ..6
pselect() ...1035
pseudo-random sequence generation functions1242
psiginfo() ...1040
psignal ..1040
psignal() ..1041
PST8PDT ..1636
ps_ ...16
PTHREAD_ ...16
pthread_ ...16
pthread_atfork() ...1042
pthread_attr_destroy()1044
pthread_attr_getdetachstate()1047
pthread_attr_getguardsize().............................1049
pthread_attr_getinheritsched()1052
pthread_attr_getschedparam()1054
pthread_attr_getschedpolicy()1056
pthread_attr_getscope()1058
pthread_attr_getstack()1060
pthread_attr_getstacksize()1062
pthread_attr_init ...1044
pthread_attr_init() ...1064
pthread_attr_setdetachstate1047
pthread_attr_setdetachstate()1065
pthread_attr_setguardsize1049
pthread_attr_setguardsize()1066
pthread_attr_setinheritsched1052
pthread_attr_setinheritsched().........................1067
pthread_attr_setschedparam1054
pthread_attr_setschedparam().........................1068
pthread_attr_setschedpolicy1056
pthread_attr_setschedpolicy()1069
pthread_attr_setscope ..1058
pthread_attr_setscope()1070
pthread_attr_setstack ...1060
pthread_attr_setstack()1071
pthread_attr_setstacksize1062
pthread_attr_setstacksize()...............................1072
pthread_barrierattr_destroy()1077
pthread_barrierattr_getpshared()....................1079
pthread_barrierattr_init1077
pthread_barrierattr_init()1081
pthread_barrierattr_setpshared1079
pthread_barrierattr_setpshared()1082
pthread_barrier_destroy()1073
pthread_barrier_init ...1073
PTHREAD_BARRIER_SERIAL_THREAD1075
pthread_barrier_wait()......................................1075

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1787

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

Index

pthread_cancel()...1083
PTHREAD_CANCELED58, 1119
PTHREAD_CANCEL_ASYNCHRONOUS54, 1203
PTHREAD_CANCEL_DEFERRED54, 57, 310, 1097, 1203
PTHREAD_CANCEL_DISABLE54, 57, 1203
PTHREAD_CANCEL_ENABLE54, 58, 1203
PTHREAD_CANCEL_ENABLED310
pthread_cleanup_pop().....................................1085
pthread_cleanup_push1085
pthread_condattr_destroy()..............................1103
pthread_condattr_getclock()1105
pthread_condattr_getpshared()1107
pthread_condattr_init ..1103
pthread_condattr_init()1109
pthread_condattr_setclock1105
pthread_condattr_setclock()1110
pthread_condattr_setpshared1107
pthread_condattr_setpshared()1111
pthread_cond_broadcast()................................1090
pthread_cond_destroy()....................................1093
pthread_cond_init ..1093
PTHREAD_COND_INITIALIZER1093
pthread_cond_signal ..1090
pthread_cond_signal()1096
pthread_cond_timedwait()...............................1097
pthread_cond_wait ..1097
pthread_create() ...1112
PTHREAD_CREATE_DETACHED30, 1047
PTHREAD_CREATE_JOINABLE30, 310, 1047, 1129
PTHREAD_DESTRUCTOR_ITERATIONS1126, 1131, 1558
pthread_detach() ..1115
pthread_equal() ..1117
pthread_exit() ...1118
PTHREAD_EXPLICIT_SCHED1052
pthread_getconcurrency()1120
pthread_getcpuclockid()1122
pthread_getschedparam().................................1123
pthread_getspecific() ...1126
PTHREAD_INHERIT_SCHED1052
pthread_join() ...1128
PTHREAD_KEYS_MAX1131, 1558
pthread_key_create() ...1131
pthread_key_delete()...1134
pthread_kill() ..1136
pthread_mutexattr_destroy()1156
pthread_mutexattr_getprioceiling()................1161
pthread_mutexattr_getprotocol()1163
pthread_mutexattr_getpshared().....................1166
pthread_mutexattr_getrobust()........................1168
pthread_mutexattr_gettype()1170
pthread_mutexattr_init1156
pthread_mutexattr_init()1172

pthread_mutexattr_setprioceiling1161
pthread_mutexattr_setprioceiling()1173
pthread_mutexattr_setprotocol1163
pthread_mutexattr_setprotocol().....................1174
pthread_mutexattr_setpshared1166
pthread_mutexattr_setpshared()1175
pthread_mutexattr_setrobust1168
pthread_mutexattr_setrobust()1176
pthread_mutexattr_settype1170
pthread_mutexattr_settype()............................1177
pthread_mutex_consistent().............................1137
PTHREAD_MUTEX_DEFAULT.............1147, 1170
pthread_mutex_destroy()1139
PTHREAD_MUTEX_ERRORCHECK ...1147, 1170
pthread_mutex_getprioceiling()1144
pthread_mutex_init ..1139
pthread_mutex_init()...1146
PTHREAD_MUTEX_INITIALIZER1139
pthread_mutex_lock()1147
PTHREAD_MUTEX_NORMAL1147, 1170
PTHREAD_MUTEX_RECURSIVE1144, 1147, 1170-1171
PTHREAD_MUTEX_ROBUST1168
pthread_mutex_setprioceiling1144
pthread_mutex_setprioceiling().......................1151
PTHREAD_MUTEX_STALLED1168
pthread_mutex_timedlock().............................1152
pthread_mutex_trylock1147
pthread_mutex_trylock()1155
pthread_mutex_unlock1147, 1155
pthread_once()..1178
PTHREAD_ONCE_INIT1178
PTHREAD_PRIO_INHERIT1163
PTHREAD_PRIO_NONE1144, 1163
PTHREAD_PRIO_PROTECT1148, 1163
PTHREAD_PROCESS_PRIVATE1079, 1107, 1157, 1166, 1198, 1214
PTHREAD_PROCESS_SHARED1079, 1107, 1157, 1166, 1198, 1214
pthread_rwlockattr_destroy()1196
pthread_rwlockattr_getpshared()....................1198
pthread_rwlockattr_init1196
pthread_rwlockattr_init()1200
pthread_rwlockattr_setpshared1198
pthread_rwlockattr_setpshared()1201
pthread_rwlock_destroy()1180
pthread_rwlock_init ...1180
pthread_rwlock_rdlock()1183
pthread_rwlock_timedrdlock()........................1186
pthread_rwlock_timedwrlock().......................1188
pthread_rwlock_tryrdlock1183
pthread_rwlock_tryrdlock()1190
pthread_rwlock_trywrlock()1191
pthread_rwlock_unlock()1193
pthread_rwlock_wrlock1191
pthread_rwlock_wrlock()1195

1788 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

Index

PTHREAD_SCOPE_PROCESS52-53, 1058
PTHREAD_SCOPE_SYSTEM52, 1058
pthread_self() ...1202
pthread_setcancelstate()1203
pthread_setcanceltype1203
pthread_setconcurrency1120
pthread_setconcurrency().................................1205
pthread_setschedparam1123
pthread_setschedparam()1206
pthread_setschedprio()1207
pthread_setspecific ...1126
pthread_setspecific() ...1209
pthread_sigmask() ...1210
pthread_spin_destroy().....................................1214
pthread_spin_init ...1214
pthread_spin_lock()...1216
pthread_spin_trylock ...1216
pthread_spin_unlock()1218
PTHREAD_STACK_MIN1060, 1062, 1558
pthread_testcancel ..1203
pthread_testcancel() ..1219
PTHREAD_THREADS_MAX1112, 1558
ptsname() ..1220
putc()..1221
putchar()..1223
putchar_unlocked ...514
putchar_unlocked() ...1224
putc_unlocked ..514
putc_unlocked() ...1222
putenv()...1225
putmsg() ..1227
putpmsg ...1227
puts()..1231
pututxline ..295
pututxline() ...1233
putwc() ..1234
putwchar() ..1235
pwrite ...1756
pwrite()..1236
pw_ ...16
p_ ..16
P_ ..17
P_ALL ..1683
P_PGID ..1683
P_PID ..1683
qsort() ..1237
queue a signal to a process1445
raise() ...1239
rand() ...1241
random ...634
random() ...1244
RAND_MAX ...1241

rand_r ...1241
read from a file..1248
read()..1245
readdir() ..1252
readdir_r ..1252
readlink()...1256
readlinkat ...1256
readlinkat() ...1259
readv() ...1260
real user ID ..104, 716
realloc()..1262
realpath() ...1264
REALTIME349, 821, 823, 837-838, 840, 842, 845, 848, 850, 854, 1307-1311, 1313, 1402, 1406
REALTIME THREADS1052, 1056, 1058, 1067, 1069-1070, 1123, 1144, 1151, 1161, 1163, 1173-1174, 1206-1207
recv() ..1266
recvfrom() ...1268
recvmsg()...1271
regcomp() ..1274
regerror ..1274
regexec ...1274
regfree ..1274
register fork handlers...1042
REG_ ...17
REG_ constants

error return values of regcomp1276
used in regcomp ...1274

REG_BADBR ...1276
REG_BADPAT ...1276
REG_BADRPT ..1276
REG_EBRACE ...1276
REG_EBRACK ..1276
REG_ECOLLATE ..1276
REG_ECTYPE ...1276
REG_EESCAPE ...1276
REG_EPAREN ...1276
REG_ERANGE ..1276
REG_ESPACE ..1276
REG_ESUBREG ..1276
REG_EXTENDED ...1274
REG_ICASE ...1274
REG_NEWLINE ...1274
REG_NOMATCH ...1276
REG_NOSUB ...1274
REG_NOTBOL ..1275
REG_NOTEOL ..1275
remainder() ...1281
remainderf ...1281
remainderl ...1281
remove a directory ...1299
remove directory entries1651
remove() ..1283
remque ...636
remque() ..1285

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1789

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

Index

remquo()..1286
remquof ..1286
remquol ..1286
rename a file ..1291
rename() ..1288
renameat ..1288
renameat() ...1293
rewind()...1294
rewinddir()..1295
re_ ...16
RE_DUP_MAX ..1558
rint() ...1296
rintf ...1296
rintl ...1296
RLIMIT_ ...17
RLIMIT_AS ..582
RLIMIT_CORE ..581
RLIMIT_CPU ..581
RLIMIT_DATA ..581
RLIMIT_FSIZE ..581
RLIMIT_NOFILE ..581, 583
RLIMIT_STACK ..582
rlim_ ...16
RLIM_ ...17
RLIM_INFINITY ...581-582
RLIM_SAVED_CUR ...582
RLIM_SAVED_MAX ..582
rmdir() ...1298
RMSGD ..642
RMSGN ..642
RNORM ...642
robust mutexes..51, 1143
round robin ..46
round()...1301
roundf ...1301
roundl ...1301
routing ..60
RPI ..6
RPP ...6
RPROTDAT ...642
RPROTDIS ...642
RPROTNORM ...642
RS ..6
RS_HIPRI ...550, 641, 1227
RTLD_ ..17
RTLD_DEFAULT..271
RTLD_GLOBAL264, 268-269, 272
RTLD_LAZY ...268, 271
RTLD_LOCAL ..269
RTLD_NEXT ..271-272
RTLD_NOW ..268-269
RTSIG_MAX ..1558

RUSAGE_ ..17
RUSAGE_CHILDREN ...584
RUSAGE_SELF ...584
ru_...16
s6_ ...16
sa_ ...16
SA_ ..17
SA_NOCLDSTOP31, 1417, 1421
SA_NOCLDWAIT87-88, 584, 1419, 1676
SA_NODEFER ..1419
SA_ONSTACK ..309, 1418
SA_RESETHAND1418-1419
SA_RESTART1038, 1418, 1434
SA_SIGINFO1417-1418, 1421, 1444
scalbln() ...1303
scalblnf ...1303
scalblnl ...1303
scalbn ..1303
scalbnf ..1303
scalbnl ..1303
scandir ..128
scandir() ..1305
scanf ..458
scanf() ..1306
schedule alarm..126
scheduling documentation54
scheduling policy

round robin ..46
SCHED_ ...16
sched_ ...16
SCHED_FIFO42, 45, 53, 309, 413, 570, 888, 1054, 1056, 1123, 1161, 1183, 1331
sched_getparam() ..1308
sched_getscheduler()...1309
sched_get_priority_max().................................1307
sched_get_priority_min1307
SCHED_OTHER45, 48, 570, 1056, 1123
SCHED_RR42, 45-46, 53, 309, 413, 570, 888, 1054, 1056, 1123, 1183, 1331
sched_rr_get_interval()1310
sched_setparam() ...1311
sched_setscheduler() ...1313
SCHED_SPORADIC42, 45-46, 309, 1183, 1331
sched_yield() ..1315
SCM_ ..17
SCN ...17
SD ..6
security considerations89, 199, 476, 716, 1378
seed48 ...274
seed48()..1316
seekdir()...1317
SEEK_ ...17
SEEK_CUR ..342, 465, 778
SEEK_END ..342, 465, 778
SEEK_GET ...1294

1790 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

Index

SEEK_SET41, 116, 123, 342, 465, 778
SEGV_ ..17
select ...1035
select()..1319
semctl() ..1340
semget() ...1343
semid ..39
semop()..1346
SEM_ ..16
sem_ ..16
SEM_ ..17
sem_close()..1320
sem_destroy() ...1322
SEM_FAILED ..1329
sem_getvalue() ...1324
sem_init() ..1326
SEM_NSEMS_MAX1326, 1558
sem_open()..1328
sem_perm ..40
sem_post()...1331
sem_timedwait() ..1333
sem_trywait() ...1335
SEM_UNDO ..1346
sem_unlink()...1337
SEM_VALUE_MAX1326, 1328, 1558
sem_wait ..1335
sem_wait()...1339
send() ...1351
sendmsg()..1353
sendto()..1356
service name..446
session ..90, 716, 1378, 1390
set cancelability state ...1203
set file creation mask..1640
set process group ID for job control1378
set-group-ID89, 195, 315, 347
set-user-ID89, 315, 519, 716
SETALL ..1340, 1343
setbuf()...1359
setegid()...1360
setenv() ..1361
seteuid()...1363
setgid()...1364
setgrent ...283
setgrent() ...1366
sethostent ...285
sethostent()..1367
setitimer ...544
setitimer() ..1368
setjmp()..1369
setkey() ..1371
setlocale() ..1372

setlogmask ...218
setlogmask()..1376
setnetent ...287
setnetent() ...1377
setpgid() ..1378
setpgrp() ..1380
setpriority ..570
setpriority() ...1381
setprotoent ...289
setprotoent() ...1382
setpwent ...291
setpwent() ...1383
setregid() ...1384
setreuid() ...1386
setrlimit ..581
setrlimit()...1388
setservent ...293
setservent()..1389
setsid() ...1390
setsockopt()...1392
setstate ..634
setstate() ..1395
setuid()...1396
setutxent ...295
setutxent() ...1399
SETVAL ..1340, 1343
setvbuf() ..1400
shall ..2
shell90, 314, 548, 566, 716, 1379, 1680

job ...716
login ..548

shell scripts
exec ...314

shell, login ...314
SHM ..7, 17
shmat()...1408
shmctl()..1410
shmdt() ..1412
shmget() ..1413
shmid ..39
SHMLBA ..1408
shm_ ...16
SHM_ ..17
shm_open() ...1402
shm_perm ..40
SHM_RDONLY...1408
SHM_RND ...1408
shm_unlink() ..1406
should ...2
shutdown() ...1415
SHUT_ ..17
SIGABRT..98
sigaction()..1417

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1791

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

Index

sigaddset()...1424
SIGALRM ..126, 544, 1463
sigaltstack() ...1425
SIGBUS ...43, 827, 830, 1210
SIGCANCEL ...1083
SIGCHLD87-88, 219, 584, 609, 1417, 1421, 1431, 1564, 1676, 1683
SIGCLD ..1421
SIGCONT33, 88, 90, 715-716
sigdelset() ..1427
sigemptyset() ..1428
SIGEV_ ...16
sigev_ ..16
SIGEV_NONE ...29, 42
SIGEV_SIGNAL ..29, 1604
SIGEV_THREAD ..30, 737
sigfillset()...1430
SIGFPE ...1210, 1438
sighold() ..1431
SIGHUP ..87-88, 90, 213
sigignore ..1431
SIGILL ..1210, 1438
SIGINT ...415, 1564
siginterrupt() ..1434
sigismember()...1436
SIGKILL716, 1417, 1421-1422, 1431
siglongjmp()..1437
signal generation and delivery.............................28

realtime ..29
signal handler ...1438
signal() ...1438
signaling a condition..1091
signals ...28
signbit() ...1440
sigpause ...1431
sigpause() ..1441
sigpending()..1442
SIGPIPE340, 376, 436, 441, 466, 469, 1228, 1759
SIGPOLL ...213, 640-641
sigprocmask ..1210
sigprocmask() ...1443
SIGPROF ..544
sigqueue() ...1444
SIGQUEUE_MAX1444, 1558
SIGQUIT ..1564
sigrelse ..1431
sigrelse() ..1446
SIGRTMAX29-30, 1420, 1444, 1451, 1455
SIGRTMIN29-30, 1420, 1444, 1451, 1455
SIGSEGV43, 582, 872, 1049, 1210, 1438
sigset ...1431, 1446
sigsetjmp()...1447
SIGSTKSZ ..1425

SIGSTOP29, 1417, 1422, 1431
sigsuspend() ...1449
sigtimedwait() ..1451
SIGTSTP ...29
SIGTTIN ...29, 380, 386, 1247
SIGTTOU29, 339, 376, 436, 440, 466, 468, 1574, 1576, 1578, 1585, 1588, 1758
SIGURG ...641
SIGVTALRM ...544
sigwait()...1455
sigwaitinfo ...1451
sigwaitinfo()..1457
SIGXCPU ...581
SIGXFSZ ...581, 1629
SIG_ ...16-17
SIG_BLOCK ...1210
SIG_DFL31, 308, 582, 1417, 1419, 1438
SIG_ERR ...1439
SIG_HOLD ..1431
SIG_IGN .31, 87-88, 308, 315, 584, 1417, 1438, 1676
SIG_SETMASK ...1210
SIG_UNBLOCK ..1210
sin() ..1458
sin6_ ..16
sinf ..1458
sinh() ..1460
sinhf ..1460
sinhl ..1460
sinl ..1458
sinl() ...1462
sin_ ..16
SIO ..7
SIOCATMARK ..1466
sival_ ...16
SI_ ...16
si_ ..16
SI_ ...17
si_ ..17
SI_ASYNCIO ...32
SI_MESGQ ...32
SI_QUEUE ...32
SI_TIMER ...32
SI_USER ...32
sleep() ..1463
sl_ ..16
SND ..17
SNDZERO ...644
snprintf ...424
snprintf() ...1465
SO ..17
sockatmark() ...1466
socket I/O mode...62
socket out-of-band data...63
socket owner ...62

1792 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

Index

socket queue limits...62
socket receive queue ..62
socket types ...61
socket() ..1468
socketpair() ...1470
sockets ..60

address families ..60
addressing ...60
asynchronous errors ...64
connection indication queue.............................63
Internet Protocols ...67
IPv4 ...68
IPv6 ...68
local UNIX connections67
options ..64
pending error ..62
protocols ..60
signals ...63

SOCK_ ..17
SOCK_DGRAM67, 1468, 1470
SOCK_RAW ..67
SOCK_SEQPACKET68, 1468, 1470
SOCK_STREAM67, 1468, 1470
SPN ...7
sporadic server policy

execution capacity ..46
replenishment period...46

sprintf ...424
sprintf()..1472
spurious wakeup..1091
sqrt()...1473
sqrtf ...1473
sqrtl ...1473
srand ...1241
srand() ...1475
srand48 ...274
srand48() ...1476
srandom ...634
srandom()..1477
SS ...7
sscanf ..458
sscanf()...1478
SSIZE_MAX845, 861, 1245, 1256, 1503, 1756
ss_ ...16
SS_ ...17
SS_DISABLE ..1425-1426
SS_ONSTACK ...1425
stack size ..1044
stat ...473
stat() ...1479
statvfs ...478
statvfs() ..1480

stderr ..1481
STDERR_FILENO ..1481
stdin ..1481
STDIN_FILENO ..921, 1481
stdio locking functions ..391
stdio with explicit client locking514
stdout ...1481
STDOUT_FILENO921, 1481
stpcpy ...1493
stpcpy()..1483
stpncpy ...1516
stpncpy() ...1484
STR ..17
strcasecmp() ..1485
strcasecmp_l ..1485
strcat() ..1487
strchr() ...1488
strcmp() ...1489
strcoll()...1491
strcoll_l ...1491
strcpy()...1493
strcspn()...1496
strdup()..1497
STREAM643, 645, 1227, 1246, 1757
stream

byte-oriented ...36
wide-oriented ..36

STREAM head/tail ..38
stream-full-policy attribute................74-75, 77, 977
stream-min-size attribute77, 980
STREAMS ..22
streams ...34
STREAMS213, 329, 350, 550, 639, 655, 896, 917, 1035

access ..39
streams

interaction with file descriptors35
STREAMS

multiplexed ...646
overview ..38

streams
stream orientation ..36

STREAM_MAX354, 410, 1558
strerror() ..1499
strerror_l ..1499
strerror_r ..1499
strfmon()..1501
strfmon_l ..1501
strftime()..1505
strftime_l ..1505
strlen()..1511
strncasecmp ...1485
strncasecmp() ...1513
strncasecmp_l ..1485, 1513

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1793

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

Index

strncat() ...1514
strncmp()...1515
strncpy() ..1516
strndup ...1497
strndup() ...1518
strnlen() ...1519
strpbrk() ..1520
strptime()...1521
strrchr()..1526
strsignal() ..1527
strspn() ..1528
strstr() ..1529
strtod() ...1530
strtof ...1530
strtoimax()...1534
strtok() ...1535
strtok_r ...1535
strtol() ..1538
strtold ...1530
strtold()..1540
strtoll ..1538
strtoll() ...1541
strtoul()..1542
strtoull ..1542
strtoumax ...1534
strtoumax() ...1545
strxfrm() ..1546
strxfrm_l ...1546
str_ ..16
st_ ..16
ST_ ..17
ST_NOSUID ..309, 478
ST_RDONLY ...478
sun_ ..17
superuser104, 199, 733, 1651
supplementary groups199, 540
SVID ...1447
SVR4 ...829, 875
sv_ ...16
SV_ ..17
swab() ..1548
swprintf ..496
swprintf() ..1549
swscanf ...505
swscanf() ...1550
SWTCH ..19
symbols

POSIX.1 ..14
symlink() ...1551
symlinkat ...1551
symlinkat()..1554
SYMLINK_MAX ...418, 1551

SYMLOOP_MAX156, 228, 330, 350, 410, 453, 479, 485, 491, 722, 815, 885, 1264, 1355, 1358, 1558, 1630, 1661
sync() ...1555
synchronously accept a signal1452
sysconf() ..1556
syslog ..218
syslog() ..1563
system crash ..481
System III ...199, 1642
system interfaces ..85
system name..1642
system trace event type definitions77
System V90, 126, 199, 316, 346, 420, 566, 716, 804, 1299, 1390, 1421-1422, 1447, 1580, 1642
system() ...1564
s_..16
S_ ...17
S_BANDURG ..641
S_ERROR ...641
S_HANGUP ..641
S_HIPRI ..640
S_IFBLK ...813
S_IFCHR ..813
S_IFDIR ..813
S_IFIFO ..813
S_IFREG ...813
S_INPUT ..640
S_IRGRP ...333, 470, 473, 813
S_IROTH ..333, 470, 473, 813
S_IRUSR ...333, 470, 473, 813
S_IRWXG ...813
S_IRWXO ...813
S_IRWXU ...813
S_ISGID193, 195, 813, 1629, 1757
S_ISUID193, 195, 813, 1629, 1757
S_ISVTX193, 813, 1290, 1299, 1649
S_IWGRP333, 470, 473, 813
S_IWOTH333, 470, 473, 813
S_IWUSR333, 470, 473, 813
S_IXGRP ...813
S_IXOTH ..813
S_IXUSR ...813
S_MSG ..640
S_OUTPUT ..640
S_RDBAND ..640-641
S_RDNORM ..640
S_WRBAND ..640
S_WRNORM ...640
TABSIZE ...157, 776
tan()..1569
tanf ..1569
tanh()..1571
tanhf ..1571
tanhl ..1571
tanl ..1569

1794 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

Index

tanl()...1573
tcdrain() ...1574
tcflow() ..1576
tcflush() ...1578
tcgetattr()...1580
tcgetpgrp() ..1582
tcgetsid()..1584
TCIFLUSH ...1578
TCIOFF ...1576
TCIOFLUSH ..1578
TCION ..1576
TCOFLUSH ...1578
TCOOFF ...1576
TCOON ..1576
TCP_ ...17
TCSADRAIN ...1587
TCSAFLUSH ...1587
TCSANOW ..1587
tcsendbreak() ..1585
tcsetattr() ...1587
tcsetpgrp() ...1590
TCT ...7
tdelete()..1592
TEF ..7
telldir()...1596
tempnam() ..1597
terminal access control1580, 1588
terminal device name...1633
terminate a process ...89
terminology ...1
termios structure...1580
tfind ..1592
tfind() ...1599
tgamma() ...1600
tgammaf ...1600
tgammal ...1600
thread cancellation

cleanup handlers ..57
thread creation ...1113
thread creation attributes1044
thread ID ..51, 1117
thread mutexes ...51
thread scheduling...52
thread termination..1118
thread-safety ..50, 391
thread-specific data key creation1132
thread-specific data key deletion1134
thread-specific data management1127
threads ..50

regular file operations..59
time()..1602
timer ID..1606

TIMER_ ..17
timer_ ...17
TIMER_ABSTIME49, 208, 1608
timer_create()..1604
timer_delete() ...1607
timer_getoverrun() ..1608
timer_gettime ..1608
TIMER_MAX ...1558
timer_settime ..1608
times() ..1611
timezone() ...1613
tmpfile()...1614
tmpnam() ..1616
TMP_MAX1597, 1615-1616
tms_ ..16
tm_ ..17
toascii() ..1618
tolower()..1619
tolower_l ..1619
TOSTOP339, 376, 436, 440, 466, 468, 1758
toupper() ...1621
toupper_l ...1621
towctrans() ..1622
towctrans_l ..1622
towlower() ..1624
towlower_l ...1624
towupper() ..1626
towupper_l ..1626
TPI ...7
TPP ..7
TPS ..8
trace event, POSIX_TRACE_ERROR...................78
trace event, POSIX_TRACE_FILTER78, 1011
trace event, POSIX_TRACE_OVERFLOW78
trace event, POSIX_TRACE_RESUME................78
trace event, POSIX_TRACE_START..........78, 1020
trace event, POSIX_TRACE_STOP78, 1020
trace functions...81
trace-name attribute77, 974
TRACE_EVENT_NAME_MAX999, 1001
TRACE_SYS_MAX ...996
TRACE_USER_EVENT_MAX999, 1001
TRACING972, 974, 976, 979, 982-991, 993, 995, 999, 1001, 1003-1004, 1006, 1008-1009, 1011, 1013-1014, 1017-1020, 1022-1024
TRAP_ ..17
TRC ...8
TRI ..8
TRL ...8
trunc() ..1628
truncate() ...1629
truncation-status attribute...................................999
truncf ..1628
truncf()...1631
truncl ..1628, 1631

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1795

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

Index

TSA ...8
tsearch ..1592
tsearch() ...1632
TSH ...8
TSP ..8
TSS ..9
ttyname() ...1633
ttyname_r ...1633
TTY_NAME_MAX1558, 1633
tv_ ..16-17
twalk ...1592
twalk() ...1635
TYM ..9
tzname ..1636
TZNAME_MAX ...1558
tzset ...1636
tzset() ...1636
t_uscalar_t ..642
uc_ ...16
UINT ...18
UINT_MAX ...126, 1464
UIO_MAXIOV ..17
ulimit()...1638
ULLONG_MAX ..1543
ULONG_MAX ..1543, 1732
UL_ ...17
UL_GETFSIZE ...1638
UL_SETFSIZE ...1638
umask()..1640
uname() ...1642
undefined ...2
underlying function ...36
ungetc()..1644
ungetwc() ..1646
unicast ..68
unlink() ..1648
unlinkat ..1648
unlinkat()...1653
unlockpt()..1654
unsetenv() ...1655
unspecified ..2
UP ...9
US-ASCII ..654
uselocale() ...1656
user ID

real and effective ...1386
setting real and effective1386

user trace event type definitions80
USER_PROCESS ...295-296
UTC ..1636
utime() ...1658
utimes() ...1660

utim_ ..17
uts_ ...17
ut_ ...17
UU ...9
va_arg() ...1663
va_copy ..1663
va_end ..1663
va_start ...1663
VDISCARD ..19
VDSUSP ...19
Version 7126, 199, 716, 1642
vfprintf()..1664
vfscanf()...1665
vfwprintf() ..1666
vfwscanf() ...1667
VISIT ...1592, 1635
VLNEXT ...19
vprintf ..1664
vprintf() ...1668
VREPRINT ...19
vscanf ...1665
vscanf() ..1669
vsnprintf ..1664
vsnprintf() ...1670
vsprintf ...1664, 1670
vsscanf ..1665
vsscanf() ..1671
VSTATUS ...19
vswprintf ...1666
vswprintf() ..1672
vswscanf ..1667
vswscanf() ...1673
VWERASE ...19
vwprintf ...1666
vwprintf()..1674
vwscanf ..1667
vwscanf()...1675
wait for process termination.............................1680
wait for thread termination...............................1129
wait()..1676
waitid() ..1683
waiting on a condition.......................................1099
waitpid ...1676
waitpid()..1685
WARNING ..405
warning

OB ...5
OF ...5

WCONTINUED ..1676, 1683
wcpcpy ...1697
wcpcpy()..1686
wcpncpy ...1706
wcpncpy() ...1687

1796 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

Index

wcrtomb()..1688
wcscasecmp()..1690
wcscasecmp_l ..1690
wcscat()..1692
wcschr() ...1693
wcscmp() ...1694
wcscoll() ..1695
wcscoll_l ...1695
wcscpy() ..1697
wcscspn() ..1698
wcsdup() ...1699
wcsftime() ...1700
wcslen() ...1702
wcsncasecmp ...1690
wcsncasecmp() ...1703
wcsncasecmp_l ...1690, 1703
wcsncat() ...1704
wcsncmp()...1705
wcsncpy() ..1706
wcsnlen ..1702
wcsnlen() ...1708
wcsnrtombs ...1712
wcsnrtombs()..1709
wcspbrk() ..1710
wcsrchr()..1711
wcsrtombs() ..1712
wcsspn() ..1714
wcsstr() ..1715
wcstod()...1716
wcstof ...1716
wcstoimax() ..1720
wcstok() ...1722
wcstol() ..1724
wcstold ...1716
wcstold()..1727
wcstoll ..1724
wcstoll() ...1728
wcstombs()..1729
wcstoul()..1731
wcstoull ..1731
wcstoumax ...1720
wcstoumax() ...1734
wcswidth() ..1735
wcsxfrm() ..1736
wcsxfrm_l ..1736
wctob()...1738
wctomb() ...1739
wctrans() ...1741
wctrans_l ..1741
wctype()...1743
wctype_l ...1743
wcwidth()..1745

WEOF83, 684, 686, 690, 692, 694, 696, 698, 700, 702, 704, 706, 708, 1624, 1626, 1646
WEXITED ..1683
WEXITSTATUS ...1677
we_ ..17
wide-oriented stream ...36
WIFCONTINUED ..1677
WIFEXITED ...1677
WIFSIGNALED ..1677
WIFSTOPPED ...1677, 1680
wmemchr() ...1746
wmemcmp() ...1747
wmemcpy()...1748
wmemmove() ...1749
wmemset() ..1750
WNOHANG1421, 1676, 1683
WNOWAIT ..1683
wordexp()..1751
wordfree ...1751
wprintf ...496
wprintf() ..1755
WRDE_ ...17
WRDE_APPEND ..1752
WRDE_BADCHAR ..1753
WRDE_BADVAL ..1753
WRDE_CMDSUB ...1753
WRDE_DOOFFS ...1752
WRDE_NOCMD ..1752
WRDE_NOSPACE ..1753
WRDE_REUSE ..1752
WRDE_SHOWERR ..1752
WRDE_SYNTAX ...1753
WRDE_UNDEF ..1752
write to a file ...1760
write() ..1756
writev() ..1764
wscanf ..505
wscanf() ...1766
WSTOPPED ...1683
WSTOPSIG ..1677
WTERMSIG ...1677
WUNTRACED ..1676, 1680
XSI ...9
XSI interprocess communication..........................39
XSR ...9
X_OK ..105
y0() ...1767
y1 ...1767
yn ..1767
zombie process ..87

System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved. 1797

IEEE P1003.1 Draft 2, 31 October 2006/The Open Group Technical Standard, Issue 7

Copyright 2006 IEEE and The Open Group, All Rights Reserved
This is an Unapproved Standards Draft, Subject to Change

Index

1798 System Interfaces, Issue 7— Copyright © 2001-200x, IEEE and The Open Group. All rights reserved.

	Contents
	1 Introduction
	1.1 Scope
	1.2 Conformance
	1.3 Normative References
	1.4 Change History
	1.5 Terminology
	1.6 Definitions
	1.7 Relationship to Other Formal Standards
	1.8 Portability
	1.8.1 Codes

	1.9 Format of Entries

	2 General Information
	2.1 Use and Implementation of Functions
	2.2 The Compilation Environment
	2.2.1 POSIX.1 Symbols
	2.2.1.1 The _POSIX_C_SOURCE Feature Test Macro
	2.2.1.2 The _XOPEN_SOURCE Feature Test Macro

	2.2.2 The Name Space

	2.3 Error Numbers
	2.3.1 Additional Error Numbers

	2.4 Signal Concepts
	2.4.1 Signal Generation and Delivery
	2.4.2 Realtime Signal Generation and Delivery
	2.4.3 Signal Actions
	2.4.4 Signal Effects on Other Functions

	2.5 Standard I/O Streams
	2.5.1 Interaction of File Descriptors and Standard I/O Streams
	2.5.2 Stream Orientation and Encoding Rules

	2.6 STREAMS
	2.6.1 Accessing STREAMS

	2.7 XSI Interprocess Communication
	2.7.1 IPC General Description

	2.8 Realtime
	2.8.1 Realtime Signals
	2.8.2 Asynchronous I/O
	2.8.3 Memory Management
	2.8.3.1 Memory Locking
	2.8.3.2 Memory Mapped Files
	2.8.3.3 Memory Protection
	2.8.3.4 Typed Memory Objects

	2.8.4 Process Scheduling
	2.8.5 Clocks and Timers

	2.9 Threads
	2.9.1 Thread-Safety
	2.9.2 Thread IDs
	2.9.3 Thread Mutexes
	2.9.4 Thread Scheduling
	2.9.5 Thread Cancellation
	2.9.5.1 Cancelability States
	2.9.5.2 Cancellation Points
	2.9.5.3 Thread Cancellation Cleanup Handlers
	2.9.5.4 Async-Cancel Safety

	2.9.6 Thread Read-Write Locks
	2.9.7 Thread Interactions with Regular File Operations
	2.9.8 Use of Application-Managed Thread Stacks

	2.10 Sockets
	2.10.1 Address Families
	2.10.2 Addressing
	2.10.3 Protocols
	2.10.4 Routing
	2.10.5 Interfaces
	2.10.6 Socket Types
	2.10.7 Socket I/O Mode
	2.10.8 Socket Owner
	2.10.9 Socket Queue Limits
	2.10.10 Pending Error
	2.10.11 Socket Receive Queue
	2.10.12 Socket Out-of-Band Data State
	2.10.13 Connection Indication Queue
	2.10.14 Signals
	2.10.15 Asynchronous Errors
	2.10.16 Use of Options
	2.10.17 Use of Sockets for Local UNIX Connections
	2.10.17.1 Headers

	2.10.18 Use of Sockets over Internet Protocols
	2.10.19 Use of Sockets over Internet Protocols Based on IPv4
	2.10.19.1 Headers

	2.10.20 Use of Sockets over Internet Protocols Based on IPv6
	2.10.20.1 Addressing
	2.10.20.2 Compatibility with IPv4
	2.10.20.3 Interface Identification
	2.10.20.4 Options
	2.10.20.5 Headers

	2.11 Tracing
	2.11.1 Tracing Data Definitions
	2.11.1.1 Structures
	2.11.1.2 Trace Stream Attributes

	2.11.2 Trace Event Type Definitions
	2.11.2.1 System Trace Event Type Definitions
	2.11.2.2 User Trace Event Type Definitions

	2.11.3 Trace Functions

	2.12 Data Types
	2.12.1 Defined Types
	2.12.2 The char Type
	2.12.3 Pointer Types

	3 System Interfaces
	FD_CLR
	_Exit
	_longjmp
	_tolower
	_toupper
	a64l
	abort
	abs
	accept
	access
	acos
	acosh
	acosl
	aio_cancel
	aio_error
	aio_fsync
	aio_read
	aio_return
	aio_suspend
	aio_write
	alarm
	alphasort
	asctime
	asin
	asinh
	asinl
	assert
	atan
	atan2
	atanf
	atanh
	atanl
	atexit
	atof
	atoi
	atol
	basename
	bind
	bsearch
	btowc
	cabs
	cacos
	cacosh
	cacosl
	calloc
	carg
	casin
	casinh
	casinl
	catan
	catanh
	catanl
	catclose
	catgets
	catopen
	cbrt
	ccos
	ccosh
	ccosl
	ceil
	cexp
	cfgetispeed
	cfgetospeed
	cfsetispeed
	cfsetospeed
	chdir
	chmod
	chown
	cimag
	clearerr
	clock
	clock_getcpuclockid
	clock_getres
	clock_nanosleep
	clock_settime
	clog
	close
	closedir
	closelog
	confstr
	conj
	connect
	copysign
	cos
	cosh
	cosl
	cpow
	cproj
	creal
	creat
	crypt
	csin
	csinh
	csinl
	csqrt
	ctan
	ctanh
	ctanl
	ctermid
	ctime
	daylight
	dbm_clearerr
	difftime
	dirfd
	dirname
	div
	dlclose
	dlerror
	dlopen
	dlsym
	dprintf
	drand48
	dup
	duplocale
	encrypt
	endgrent
	endhostent
	endnetent
	endprotoent
	endpwent
	endservent
	endutxent
	environ
	erand48
	erf
	erfc
	erff
	errno
	exec
	exit
	exp
	exp2
	expm1
	fabs
	faccessat
	fattach
	fchdir
	fchmod
	fchmodat
	fchown
	fchownat
	fclose
	fcntl
	fdatasync
	fdetach
	fdim
	fdopen
	fdopendir
	feclearexcept
	fegetenv
	fegetexceptflag
	fegetround
	feholdexcept
	feof
	feraiseexcept
	ferror
	fesetenv
	fesetexceptflag
	fesetround
	fetestexcept
	feupdateenv
	fexecve
	fflush
	ffs
	fgetc
	fgetpos
	fgets
	fgetwc
	fgetws
	fileno
	flockfile
	floor
	fma
	fmax
	fmemopen
	fmin
	fmod
	fmtmsg
	fnmatch
	fopen
	fork
	fpathconf
	fpclassify
	fprintf
	fputc
	fputs
	fputwc
	fputws
	fread
	free
	freeaddrinfo
	freelocale
	freopen
	frexp
	fscanf
	fseek
	fsetpos
	fstat
	fstatat
	fstatvfs
	fsync
	ftell
	ftok
	ftruncate
	ftrylockfile
	ftw
	funlockfile
	futimesat
	fwide
	fwprintf
	fwrite
	fwscanf
	gai_strerror
	getaddrinfo
	getc
	getc_unlocked
	getchar
	getchar_unlocked
	getcwd
	getdate
	getdelim
	getegid
	getenv
	geteuid
	getgid
	getgrent
	getgrgid
	getgrnam
	getgroups
	gethostent
	gethostid
	gethostname
	getitimer
	getline
	getlogin
	getmsg
	getnameinfo
	getnetbyaddr
	getopt
	getpeername
	getpgid
	getpgrp
	getpid
	getpmsg
	getppid
	getpriority
	getprotobyname
	getpwent
	getpwnam
	getpwuid
	getrlimit
	getrusage
	gets
	getservbyname
	getsid
	getsockname
	getsockopt
	getsubopt
	gettimeofday
	getuid
	getutxent
	getwc
	getwchar
	glob
	gmtime
	grantpt
	hcreate
	htonl
	hypot
	iconv
	iconv_close
	iconv_open
	if_freenameindex
	if_indextoname
	if_nameindex
	if_nametoindex
	ilogb
	imaxabs
	imaxdiv
	inet_addr
	inet_ntop
	initstate
	insque
	ioctl
	isalnum
	isalpha
	isascii
	isastream
	isatty
	isblank
	iscntrl
	isdigit
	isfinite
	isgraph
	isgreater
	isgreaterequal
	isinf
	isless
	islessequal
	islessgreater
	islower
	isnan
	isnormal
	isprint
	ispunct
	isspace
	isunordered
	isupper
	iswalnum
	iswalpha
	iswblank
	iswcntrl
	iswctype
	iswdigit
	iswgraph
	iswlower
	iswprint
	iswpunct
	iswspace
	iswupper
	iswxdigit
	isxdigit
	j0
	jrand48
	kill
	killpg
	l64a
	labs
	lchown
	lcong48
	ldexp
	ldiv
	lfind
	lgamma
	link
	linkat
	lio_listio
	listen
	llabs
	lldiv
	llrint
	llround
	localeconv
	localtime
	lockf
	log
	log10
	log1p
	log2
	logb
	logf
	longjmp
	lrand48
	lrint
	lround
	lsearch
	lseek
	lstat
	malloc
	mblen
	mbrlen
	mbrtowc
	mbsinit
	mbsnrtowcs
	mbsrtowcs
	mbstowcs
	mbtowc
	memccpy
	memchr
	memcmp
	memcpy
	memmove
	memset
	mkdir
	mkdirat
	mkdtemp
	mkfifo
	mkfifoat
	mknod
	mknodat
	mkstemp
	mktime
	mlock
	mlockall
	mmap
	modf
	mprotect
	mq_close
	mq_getattr
	mq_notify
	mq_open
	mq_receive
	mq_send
	mq_setattr
	mq_timedreceive
	mq_timedsend
	mq_unlink
	mrand48
	msgctl
	msgget
	msgrcv
	msgsnd
	msync
	munlock
	munlockall
	munmap
	nan
	nanosleep
	nearbyint
	newlocale
	nextafter
	nftw
	nice
	nl_langinfo
	nrand48
	ntohl
	open
	open_memstream
	open_wmemstream
	openat
	opendir
	openlog
	optarg
	pathconf
	pause
	pclose
	perror
	pipe
	poll
	popen
	posix_fadvise
	posix_fallocate
	posix_madvise
	posix_mem_offset
	posix_memalign
	posix_openpt
	posix_spawn
	posix_spawn_file_actions_addclose
	posix_spawn_file_actions_adddup2
	posix_spawn_file_actions_addopen
	posix_spawn_file_actions_destroy
	posix_spawnattr_destroy
	posix_spawnattr_getflags
	posix_spawnattr_getpgroup
	posix_spawnattr_getschedparam
	posix_spawnattr_getschedpolicy
	posix_spawnattr_getsigdefault
	posix_spawnattr_getsigmask
	posix_spawnattr_init
	posix_spawnattr_setflags
	posix_spawnattr_setpgroup
	posix_spawnattr_setschedparam
	posix_spawnattr_setschedpolicy
	posix_spawnattr_setsigdefault
	posix_spawnattr_setsigmask
	posix_spawnp
	posix_trace_attr_destroy
	posix_trace_attr_getclockres
	posix_trace_attr_getinherited
	posix_trace_attr_getlogsize
	posix_trace_attr_getname
	posix_trace_attr_getstreamfullpolicy
	posix_trace_attr_getstreamsize
	posix_trace_attr_init
	posix_trace_attr_setinherited
	posix_trace_attr_setlogsize
	posix_trace_attr_setname
	posix_trace_attr_setstreamfullpolicy
	posix_trace_attr_setstreamsize
	posix_trace_clear
	posix_trace_close
	posix_trace_create
	posix_trace_event
	posix_trace_eventid_equal
	posix_trace_eventid_open
	posix_trace_eventset_add
	posix_trace_eventtypelist_getnext_id
	posix_trace_flush
	posix_trace_get_attr
	posix_trace_get_filter
	posix_trace_get_status
	posix_trace_getnext_event
	posix_trace_open
	posix_trace_set_filter
	posix_trace_shutdown
	posix_trace_start
	posix_trace_timedgetnext_event
	posix_trace_trid_eventid_open
	posix_trace_trygetnext_event
	posix_typed_mem_get_info
	posix_typed_mem_open
	pow
	pread
	printf
	pselect
	psiginfo
	psignal
	pthread_atfork
	pthread_attr_destroy
	pthread_attr_getdetachstate
	pthread_attr_getguardsize
	pthread_attr_getinheritsched
	pthread_attr_getschedparam
	pthread_attr_getschedpolicy
	pthread_attr_getscope
	pthread_attr_getstack
	pthread_attr_getstacksize
	pthread_attr_init
	pthread_attr_setdetachstate
	pthread_attr_setguardsize
	pthread_attr_setinheritsched
	pthread_attr_setschedparam
	pthread_attr_setschedpolicy
	pthread_attr_setscope
	pthread_attr_setstack
	pthread_attr_setstacksize
	pthread_barrier_destroy
	pthread_barrier_wait
	pthread_barrierattr_destroy
	pthread_barrierattr_getpshared
	pthread_barrierattr_init
	pthread_barrierattr_setpshared
	pthread_cancel
	pthread_cleanup_pop
	pthread_cond_broadcast
	pthread_cond_destroy
	pthread_cond_signal
	pthread_cond_timedwait
	pthread_condattr_destroy
	pthread_condattr_getclock
	pthread_condattr_getpshared
	pthread_condattr_init
	pthread_condattr_setclock
	pthread_condattr_setpshared
	pthread_create
	pthread_detach
	pthread_equal
	pthread_exit
	pthread_getconcurrency
	pthread_getcpuclockid
	pthread_getschedparam
	pthread_getspecific
	pthread_join
	pthread_key_create
	pthread_key_delete
	pthread_kill
	pthread_mutex_consistent
	pthread_mutex_destroy
	pthread_mutex_getprioceiling
	pthread_mutex_init
	pthread_mutex_lock
	pthread_mutex_setprioceiling
	pthread_mutex_timedlock
	pthread_mutex_trylock
	pthread_mutexattr_destroy
	pthread_mutexattr_getprioceiling
	pthread_mutexattr_getprotocol
	pthread_mutexattr_getpshared
	pthread_mutexattr_getrobust
	pthread_mutexattr_gettype
	pthread_mutexattr_init
	pthread_mutexattr_setprioceiling
	pthread_mutexattr_setprotocol
	pthread_mutexattr_setpshared
	pthread_mutexattr_setrobust
	pthread_mutexattr_settype
	pthread_once
	pthread_rwlock_destroy
	pthread_rwlock_rdlock
	pthread_rwlock_timedrdlock
	pthread_rwlock_timedwrlock
	pthread_rwlock_tryrdlock
	pthread_rwlock_trywrlock
	pthread_rwlock_unlock
	pthread_rwlock_wrlock
	pthread_rwlockattr_destroy
	pthread_rwlockattr_getpshared
	pthread_rwlockattr_init
	pthread_rwlockattr_setpshared
	pthread_self
	pthread_setcancelstate
	pthread_setconcurrency
	pthread_setschedparam
	pthread_setschedprio
	pthread_setspecific
	pthread_sigmask
	pthread_spin_destroy
	pthread_spin_lock
	pthread_spin_unlock
	pthread_testcancel
	ptsname
	putc
	putc_unlocked
	putchar
	putchar_unlocked
	putenv
	putmsg
	puts
	pututxline
	putwc
	putwchar
	pwrite
	qsort
	raise
	rand
	random
	read
	readdir
	readlink
	readlinkat
	readv
	realloc
	realpath
	recv
	recvfrom
	recvmsg
	regcomp
	remainder
	remove
	remque
	remquo
	rename
	renameat
	rewind
	rewinddir
	rint
	rmdir
	round
	scalbln
	scandir
	scanf
	sched_get_priority_max
	sched_getparam
	sched_getscheduler
	sched_rr_get_interval
	sched_setparam
	sched_setscheduler
	sched_yield
	seed48
	seekdir
	select
	sem_close
	sem_destroy
	sem_getvalue
	sem_init
	sem_open
	sem_post
	sem_timedwait
	sem_trywait
	sem_unlink
	sem_wait
	semctl
	semget
	semop
	send
	sendmsg
	sendto
	setbuf
	setegid
	setenv
	seteuid
	setgid
	setgrent
	sethostent
	setitimer
	setjmp
	setkey
	setlocale
	setlogmask
	setnetent
	setpgid
	setpgrp
	setpriority
	setprotoent
	setpwent
	setregid
	setreuid
	setrlimit
	setservent
	setsid
	setsockopt
	setstate
	setuid
	setutxent
	setvbuf
	shm_open
	shm_unlink
	shmat
	shmctl
	shmdt
	shmget
	shutdown
	sigaction
	sigaddset
	sigaltstack
	sigdelset
	sigemptyset
	sigfillset
	sighold
	siginterrupt
	sigismember
	siglongjmp
	signal
	signbit
	sigpause
	sigpending
	sigprocmask
	sigqueue
	sigrelse
	sigsetjmp
	sigsuspend
	sigtimedwait
	sigwait
	sigwaitinfo
	sin
	sinh
	sinl
	sleep
	snprintf
	sockatmark
	socket
	socketpair
	sprintf
	sqrt
	srand
	srand48
	srandom
	sscanf
	stat
	statvfs
	stdin
	stpcpy
	stpncpy
	strcasecmp
	strcat
	strchr
	strcmp
	strcoll
	strcpy
	strcspn
	strdup
	strerror
	strfmon
	strftime
	strlen
	strncasecmp
	strncat
	strncmp
	strncpy
	strndup
	strnlen
	strpbrk
	strptime
	strrchr
	strsignal
	strspn
	strstr
	strtod
	strtoimax
	strtok
	strtol
	strtold
	strtoll
	strtoul
	strtoumax
	strxfrm
	swab
	swprintf
	swscanf
	symlink
	symlinkat
	sync
	sysconf
	syslog
	system
	tan
	tanh
	tanl
	tcdrain
	tcflow
	tcflush
	tcgetattr
	tcgetpgrp
	tcgetsid
	tcsendbreak
	tcsetattr
	tcsetpgrp
	tdelete
	telldir
	tempnam
	tfind
	tgamma
	time
	timer_create
	timer_delete
	timer_getoverrun
	times
	timezone
	tmpfile
	tmpnam
	toascii
	tolower
	toupper
	towctrans
	towlower
	towupper
	trunc
	truncate
	truncf
	tsearch
	ttyname
	twalk
	tzset
	ulimit
	umask
	uname
	ungetc
	ungetwc
	unlink
	unlinkat
	unlockpt
	unsetenv
	uselocale
	utime
	utimes
	va_arg
	vfprintf
	vfscanf
	vfwprintf
	vfwscanf
	vprintf
	vscanf
	vsnprintf
	vsscanf
	vswprintf
	vswscanf
	vwprintf
	vwscanf
	wait
	waitid
	waitpid
	wcpcpy
	wcpncpy
	wcrtomb
	wcscasecmp
	wcscat
	wcschr
	wcscmp
	wcscoll
	wcscpy
	wcscspn
	wcsdup
	wcsftime
	wcslen
	wcsncasecmp
	wcsncat
	wcsncmp
	wcsncpy
	wcsnlen
	wcsnrtombs
	wcspbrk
	wcsrchr
	wcsrtombs
	wcsspn
	wcsstr
	wcstod
	wcstoimax
	wcstok
	wcstol
	wcstold
	wcstoll
	wcstombs
	wcstoul
	wcstoumax
	wcswidth
	wcsxfrm
	wctob
	wctomb
	wctrans
	wctype
	wcwidth
	wmemchr
	wmemcmp
	wmemcpy
	wmemmove
	wmemset
	wordexp
	wprintf
	write
	writev
	wscanf
	y0

	copyr: Copyright (C) 2006 IEEE and The Open Group, All Rights Reserved This is an Unapproved Standards Draft, Subject to Change

