
G3 New Work Item Proposal

February 2004

PROPOSAL FOR A NEW WORK ITEM

Date of presentation of proposal:
2006-04-26

Proposer: Jonathan Hodgson WG17

Secretariat:
ANSI

ISO/IEC JTC 1 N
ISO/IEC JTC 1/SC 22 N 4049

A proposal for a new work itemshall be submitted to the secretariat of the ISO/IEC
joint technical committee concerned with a copy to the ISO Central Secretariat.

Presentation of the proposal - to be completed by the proposer.

Title Definite Clause Grammar Rules
Scope(and field of application) Programming Language Prolog
Purpose and justification - To codify existing practice.
Programme of work

If the proposed new work item is approved, which of the following document(s) is (are)
expected to be developed?
____ a single International Standard
___ more than one International Standard (expected number:)
____ a multi-part International Standard consisting of parts
____ an amendment or amendments to the following International
Standard(s)
__X__ a technical report , type ..3.........

And which standard development track is recommended for the approved new work
item?

_X___a. Default Timeframe
____b. Accelerated Timeframe
____c. Extended Timeframe
Relevant documents to be considered A draft report is attached
Co-operation and liaison
Preparatory work offered with target date(s)
Signature: J.P.E. Hodgson
Will the service of a maintenance agency or registration authority be
required?
- If yes, have you identified a potential candidate?Paul Moura has agreed to be the
editor...........

- If yes, indicate name ...

Are there any known requirements for coding? ...NO..................
-If yes, please specify on a separate page

Does the proposed standard concern known patented items?NO...............
- If yes, please provide full information in an annex

Comments and recommendations of the JTC 1 or SC 22 Secretariat - attach a
separate page as an annex, if necessary

Comments with respect to the proposal in general, and recommendations thereon:
It is proposed to assign this new item to JTC 1/SC 22

Voting on the proposal - Each P-member of the ISO/IEC joint technical committee has
an obligation to vote within the time limits laid down (normally three months after the
date of circulation).

Date of circulation:
2006-04-26

Closing date for voting:
2006-07-26

Signature of Secretary:
Lisa Rajchel

NEW WORK ITEM PROPOSAL -
PROJECT ACCEPTANCE
CRITERIA

Criterion Validity Explanation
A. Business Requirement
A.1 Market Requirement Essential ___

Desirable __X_
Supportive ___

Most implementations of
Prolog supply some version
of this

B. Related Work
B.1 Completion/Maintenance of
current standards

Yes _X__

No___

It is desirable that an
accceptable format for DCGs
be

set forth.
B.2 Commitment to other organisation Yes ___

No__X_

B.3 Other Source of standards Yes ___

No_X__

C. Technical Status
C.1 Mature Technology Yes _X__

No___

Most implementations of
Prolog supply some version
of th

C.2 Prospective Technology Yes ___

No___X

C.3 Models/Tools Yes _X__

No___

A reference model will be
supplied.

D. Conformity Assessment and
Interoperability

D.1 Conformity Assessment Yes ___

No__X_

D.2 Interoperability Yes _

No__X

E. Adaptability to Culture,
Language, Human Functioning and
Context of use

E.1 Cultural and Linguistic
Capability

Yes ___

No__X_

E.2 Adaptability to Human
Functioning and Context of Use

Yes _X__

No___

F. Other Justification

Notes to Proforma

A. Business Relevance. That which identifies market place relevance in terms of what
problem is being solved and or need being addressed.

A.1 Market Requirement. When submitting a NP, the proposer shall identify the nature
of the Market Requirement, assessing the extent to which it is essential, desirable or
merely supportive of some other project.

A.2 Technical Regulation. If a Regulatory requirement is deemed to exist - e.g. for an
area of public concern e.g. Information Security, Data protection, potentially leading to
regulatory/public interest action based on the use of this voluntary international standard -
the proposer shall identify this here.

B. Related Work. Aspects of the relationship of this NP to other areas of
standardisation work shall be identified in this section.

B.1 Competition/Maintenance. If this NP is concerned with completing or maintaining

existing standards, those concerned shall be identified here.

B.2 External Commitment. Groups, bodies, or for a external to JTC 1 to which a
commitment has been made by JTC for Co-operation and or collaboration on this NP
shall be identified here.

B.3 External Std/Specification. If other activities creating standards or specifications in
this topic area are known to exist or be planned, and which might be available to JTC 1 as
PAS, they shall be identified here.

C. Technical Status. The proposer shall indicate here an assessment of the extent to
which the proposed standard is supported by current technology.

C.1 Mature Technology. Indicate here the extent to which the technology is reasonably
stable and ripe for standardisation.

C.2 Prospective Technology. If the NP is anticipatory in nature based on expected or
forecasted need, this shall be indicated here.

C.3 Models/Tools. If the NP relates to the creation of supportive reference models or
tools, this shall be indicated here.

D. Conformity Assessment and Interoperability Any other aspects of background
information justifying this NP shall be indicated here.

D.1 Indicate here if Conformity Assessment is relevant to your project. If so, indicate
how it is addressed in your project plan.

D.2 Indicate here if Interoperability is relevant to your project. If so, indicate how it is
addressed in your project plan

E. Adaptability to Culture, Language, Human Functioning and Context of Use
NOTE: The following criteria do not mandate any feature for adaptability to culture,
language, human functioning or context of use. The following criteria require that if any
features are provided for adapting to culture, language, human functioning or context of
use by the new Work Item proposal, then the proposer is required to identify these
features.

E.1 Cultural and Linguistic Adaptability. Indicate here if cultural and natural language
adaptability is applicable to your project. If so, indicate how it is addressed in your
project plan.

ISO/IEC TR 19764 (Guidelines, methodology, and reference criteria for cultural and
linguistic adaptability in information technology products) now defines it in a simplified
way: ability for a product, while keeping its portability and interoperability properties, to:
- be internationalized, that is, be adapted to the special characteristics of natural

languages and the commonly accepted rules for their se, or of cultures in a given
geographical region;
- take into account the usual needs of any category of users, with the exception of specific
needs related to physical constraints
Examples of characteristics of natural languages are: national characters and associated
elements (such as hyphens, dashes, and punctuation marks), writing systems, correct
transformation of characters, dates and measures, sorting and searching rules, coding of
national entities (such as country and currency codes), presentation of telephone numbers
and keyboard layouts. Related terms are localization, jurisdiction and multilingualism.

E.2 Adaptability to Human Functioning and Context of Use. Indicate here whether
the proposed standard takes into account diverse human functioning and diverse contexts
of use. If so, indicate how it is addressed in your project plan.
NOTE:
1. Human functioning is defined by the World Health Organization at
http://www3.who.int/icf/beginners/bg.pdf as: << In ICF (International Classification of
Functioning, Disability and Health), the term functioning refers to all body functions,
activities and participation. >>
2. Content of use is defined in ISO 9241-11:1998 (Ergonomic requirements for office
work with visual display terminals (VDTs) Part 11: Guidance on usability) as: << Users,
tasks, equipment (hardware, software and materials), and the physical and societal
environments in which a product is used.>>
3. Guidance for Standard Developers to address the needs of older persons and persons
with disabilities).

F. Other Justification Any other aspects of background information justifying this NP
shall be indicated here.

ISO/IEC DTR 13211–3:2006

Definite clause grammar rules

Editor: Paulo Moura
pmoura@di.ubi.pt

March 25, 2006

Introduction

This technical recommendation (TR) is an optional part of the International
Standard for Prolog, ISO/IEC 13211. Prolog systems wishing to implement
Definite Clause Grammar rules should do so in compliance with this technical
recommendation.

Grammar rules provide convenient and simple functionality for parsing and
processing text in a variety of languages. They have been implemented in many
Prolog systems. As such, they are deemed an worthy extension to the ISO/IEC
13211 Prolog standard.

This TR is written as an extension to the ISO/IEC 13211–1 Prolog standard,
adopting a similar structure. Specifically, this TR either adds new sections and
clauses to, or modifies the reading of existing clauses on ISO/IEC 13211–1.

This TR provides reference implementations for the specified built-in predi-
cates and for a translator from grammar rules into Prolog clauses. In addition,
it includes a comprehensive set of tests to help users and implementers check
for compliance of Prolog systems. The source code of these reference implemen-
tations may be used without restrictions for any purpose.

This draft may contain in several places informative text, type-set in italics.
Such informative text is used for editorial comments deemed useful during the
development of this draft and may not be included in the final version.

Previous editors and draft documents

• Roger Scowen: N171 — ISO/IEC DTR 13211–3:2004 Grammar rules in
Prolog, ISO, 2004-05

• Tony Dodd: DCGs in ISO Prolog — A Proposal, BSI, 1992

1

1 SCOPE 2

Draft document comments

• Paulo Moura: Portuguese comments on ISO/IEC DTR 13211–3: 2004:
Grammar Rules in Prolog, IPQ CT 167 WG17, 2005

• Klaus Daessler: German comments on ISO/IEC DTR 13211–3: 2004:
Grammar Rules in Prolog, DIN NI22 WG17, 2005

Contributors

This list needs to be completed; so far I’ve only included people present at the
ISO meeting collocated with the ICLP’05, the authors of the two drafts cited
above, and Richard as I have included here some contributions from him that I
found on the net.

• Bart Demoen (Belgium)

• Jan Wielemaker, (Netherlands)

• Joachim Klimpf (UK)

• Jonathan Hodgson (USA)

• Jose Morales (Spain)

• Katsuhiko Nakamura (Japan)

• Klaus Daessler (Germany)

• Manuel Carro (Spain)

• Mats Carlsson (Sweden)

• Paulo Moura (Portugal)

• Richard O’Keefe (NZ)

• Roger Scowen (UK)

• Tony Dodd (UK)

1 Scope

This TR is designed to promote the applicability and portability of Prolog gram-
mar rules in data processing systems that support standard Prolog as defined
in ISO/IEC 13211–1:1995. As such, this TR specifies:

a) The representation, syntax, and constraints of Prolog grammar rules

b) A logical expansion of grammar rules into Prolog clauses

c) A set of built-in predicates for parsing with and expanding grammar rules

2 NORMATIVE REFERENCES 3

d) References implementations and tests for the specified built-in predicates
and for a grammar rule translator

NOTE — This part of ISO/IEC 13211 will supplement ISO/IEC 13211–1:1995.

2 Normative references

NOTE — No changes from the ISO/IEC 13211–1 Prolog standard.

3 Definitions

For the purposes of this TR, the following definitions are added to the ones
specified on ISO/IEC 13211–1:

3.209 body (of a grammar-rule): The second argument of a grammar-
rule. A grammar-body-sequence, or a grammar-body-alternatives, or a grammar-
body-choice, or a grammar-body-element.

3.210 clause-term: A read-term T. in Prolog text where T does not have
principal functor (:-)/1 nor principal functor (-->)/2.

3.211 definite clause grammar: A set of grammar rules.

3.212 grammar-body-alternatives: A compound term with principal func-
tor (;)/2 and each argument is a body (of a grammar-rule).

3.213 grammar-body-choice: A compound term with principal functor
(->)/2, the first argument is a body (of a grammar-rule), and the second argu-
ment is a grammar-body-alternatives.

3.214 grammar-body-cut: The atom !.

3.215 grammar-body-element: A grammar-body-cut, or a grammar-body-
goal, or a grammar-body-nonterminal, or a grammar-body-terminals.

3.216 grammar-body-goal: A compound term with principal functor ({})/1
whose argument is a goal.

3.217 grammar-body-nonterminal: A non-terminal (of a grammar).

3.218 grammar-body-sequence: A compound term with principal func-
tor (,)/2 and each argument is a body (of a grammar-rule).

4 SYMBOLS AND ABBREVIATIONS 4

3.219 grammar-body-terminals: A sequence of terminals.

3.220 grammar-rule: A compound term with principal functor (-->)/2.

3.221 grammar-rule-term: A read-term T. in Prolog text where T is a
grammar-rule.

3.222 head (of a grammar-rule): The first argument of a grammar-rule.
Either a non-terminal (of a grammar), or a compound term whose principal
functor is (,)/2 the first argument is a non-terminal (of a grammar), and the
second argument is a sequence of terminals.

3.223 new variable with respect to a term T: A variable that is not
an element of the variable set of T.

3.224 non-terminal (of a grammar): An atom or compound term that
denotes a non-terminal symbol of the grammar.

3.225 non-terminal-indicator: A compound term A//N where A is an atom
and N is a non-negative integer, denoting one particular gammar-rule non-
terminal.

3.226 sequence of terminals: The Prolog atom [], or a compound term
whose principal functor is (.)/2, the first argument is a terminal (of a grammar),
and the second argument is a sequence of terminals.

3.227 terminal (of a grammar): Any Prolog term that denotes a terminal
symbol of the grammar.

3.228 variable, new with respect to a term T: See new variable with
respect to a term T.

4 Symbols and abbreviations

NOTE — No changes from the ISO/IEC 13211–1 Prolog standard.

5 Compliance

5.1 Prolog processor

A conforming Prolog processor shall:

a) Correctly prepare for execution Prolog text which conforms to:

5 COMPLIANCE 5

1. the requirements of this TR, and

2. the requirements of ISO/IEC 13211–1, and

3. the implementation defined and implementation specific features of
the Prolog processor,

b) Correctly execute Prolog goals which have been prepared for execution
and which conform to:

1. the requirements of this TR, and

2. the requirements of ISO/IEC 13211–1, and

3. the implementation defined and implementation specific features of
the Prolog processor,

c) Reject any Prolog text or read-term whose syntax fails to conform to:

1. the requirements of this TR, and

2. the requirements of ISO/IEC 13211–1, and

3. the implementation defined and implementation specific features of
the Prolog processor,

d) Specify all permitted variations from this TR in the manner prescribed by
this TR and by the ISO/IEC 13211–1, and

e) Offer a strictly conforming mode which shall reject the use of an imple-
mentation specific feature in Prolog text or while executing a goal.

NOTE — This extends corresponding section of ISO/IEC 13211–1.

5.2 Prolog text

NOTE — No changes from the ISO/IEC 13211–1 Prolog standard.

5.3 Prolog goal

NOTE — No changes from the ISO/IEC 13211–1 Prolog standard.

5.4 Documentation

The corresponding section on the ISO/IEC 13211–1 Prolog standard is modified
as follows:

A conforming Prolog processor shall be accompanied by documentation that
completes the definition of every implementation defined and implementation
specific feature specified in this TR and on the ISO/IEC 13211–1 Prolog stan-
dard.

6 SYNTAX 6

5.5 Extensions

The corresponding section on the ISO/IEC 13211–1 Prolog standard is modified
as follows:

A processor may support, as an implementation specific feature, any construct
that is implicitly or explicitly undefined in this TR or on the ISO/IEC 13211–1
Prolog standard.

5.5.2 Predefined operators

Please see section 6.3 for the new predefined operators that this TR adds to the
ISO/IEC 13211–1 Prolog standard.

6 Syntax

6.1 Notation

6.1.1 Backus Naur Form

No changes from the ISO/IEC 13211–1 Prolog standard.

6.1.2 Abstract term syntax

The text near the end of this section on the ISO/IEC 13211–1 Prolog standard
is modified as follows:

Prolog text (6.2) is represented abstractly by an abstract list x where x is:

a) d.t where d is the abstract syntax for a directive, and t is Prolog text, or

b) g.t where g is the abstract syntax for a grammar rule, and t is Prolog
text, or

c) c.t where c is the abstract syntax for a clause, and t is Prolog text, or

d) nil, the empty list.

The following section extends, with the specified number, the corresponding
ISO/IEC 13211–1 section:

6.1.3 Variable names convention for lists of terminals

The source code in this section uses variables named S0, S1, ..., S to represent
the list of terminals used as arguments when parsing grammar rules or when
converting grammar rules into clauses. In this notation, the variables , S1, ..., S
can be regarded as a sequence of states, with S0 represents the initial state and
the variable S representing the final state. Thus, if the variable Si represents
the initial list of terminals, the variable Si+1 will represent the remaining list of
terminals after parsing Si with a grammar rule.

6 SYNTAX 7

6.2 Prolog text and data

The first paragraph of this section on ISO/IEC 13211–1 is modified as follows:

Prolog text is a sequence of read-terms which denote (1) directives, (2) grammar
rules, and (3) clauses of user-defined procedures.

6.2.1 Prolog text

The corresponding section on the ISO/IEC 13211–1 is modified as follows:

Prolog text is a sequence of directive-terms, grammar-rule terms, and clause-
terms.

prolog text = p text
Abstract: pt pt

p text = directive term , p text
Abstract: d.t d t

p text = grammar rule term , p text
Abstract: g.t g t

p text = clause term , p text
Abstract: c.t c t

p text = ;
Abstract: nil

6.1 Directives

No changes from the ISO/IEC 13211–1 Prolog standard.

6.2 Clauses

The corresponding section on the ISO/IEC 13211–1 is modified as follows:

clause term = term, end
Abstract: c c
Priority: 1201
Condition: The principal functor of c is not (:-)/1
Condition: The principal functor of c is not (-->)/2

NOTE — Subclauses 7.5 and 7.6 defines how each clause becomes part of the
database.

The following section extends, with the specified number, the corresponding
ISO/IEC 13211–1 section:

6.3 Grammar rules

7 LANGUAGE CONCEPTS AND SEMANTICS 8

grammar rule term = term, end
Abstract: gt gt
Priority: 1201
Condition: The principal functor of c is (-->)/2

grammar rule = grammar rule term
Abstract: g g

NOTE — Section 11 of this TR defines how a grammar rule in Prolog text is
expanded into an equivalent clause when Prolog text is prepared for execution.

6.3 Terms

NOTE — The operator -->/2, specified in section 6.3.4.4 of the ISO/IEC 13211–
1 Prolog standard, is used as the principal functor of grammar rules.

7 Language concepts and semantics

The following section extends, with the specified number, the corresponding
ISO/IEC 13211–1 section:

7.13 Grammar rules

7.13.1 Terminals and non-terminals

In the context of a grammar rule, terminals represent words of some language
and non-terminals represent categories of words (see, respectively, sections 3.18
and 3.16). Terminals are represented by Prolog terms enclosed in Prolog lists in
order to distinguish them from non-terminals (string notation may be used in
alternative to lists when terminals are characters; see section 6.3.7 of ISO/IEC
13211–1). Non-terminals are represented by Prolog callable terms.

7.13.2 Format of grammar rules

A grammar rule has the format:

GRHead --> GRBody.

A grammar rule is interpreted as stating that its head, GRHead, can be rewritten
by its body, GRBody. The head and the body of grammar rules are constructed
from terminals and non-terminals. The head of a grammar rule is a non-terminal
or the conjunction of a non-terminal and a list of terminals (a push-back list,
see 7.13.3):

NonTerminal --> GRBody.

NonTerminal, PushBackList --> GRBody.

7 LANGUAGE CONCEPTS AND SEMANTICS 9

The control constructs that may be used on a grammar rule body are described
later, in section 7.13.6. An empty grammar rule body is represented by an
empty list of terminals:

GRHead --> [].

The empty list cannot be omitted, i.e. there is no -->/1 form for grammar
rules.

7.13.3 Push-back lists

A push-back list is a proper list of terminals on the left-hand side of a grammar
rule (see 3.222). A push-back list contains terminals that would be asserted in
the input terminal list after the terminals consumed by the successful application
of the grammar rule.

7.13.3.1 Examples

For example, assume that we need rules to look-ahead one or two tokens that
would be consumed next. This could be easily accomplished by the following
two grammar rules:

look_ahead(X), [X] --> [X].
look_ahead(X, Y), [X,Y] --> [X,Y].

Procedurally, these grammar rules can be interpreted as, respectively, consum-
ing, and then restoring, one or two terminals.

7.13.4 Non-terminal indicator

A non-terminal indicator is a compound term with the format ‘//’(A, N)
where A is an atom and N is a non-negative integer.

The non-terminal indicator ‘//’(A, N) indicates the grammar rule non-terminal
whose functor is A and whose arity is N.

NOTES

1 In Prolog text, including ISO/IEC 13211–1 and this TR, a non-terminal
indicator ‘//’(A, N) is normally written as A//N.

2 The concept of non-terminal indicator is similar to the concept of pred-
icate indicator defined in sections 3.131 and 7.1.6.6 of the ISO/IEC 13211–1
Prolog. Non-terminal indicators may be used in exception terms thrown when
processing or using grammar rules. In addition, in the presence of a mechanism
for encapsulating Prolog code, such as a module system or an object-oriented
extension, a non-terminal indicator may be used in predicate directives without
the need to know the details of the expansion of grammar rules into Prolog
clauses.

7 LANGUAGE CONCEPTS AND SEMANTICS 10

7.13.4.1 Examples

For example, given the following grammar rule:

sentence --> noun_phrase, verb_phrase.

The corresponding non-terminal indicator for the grammar rule left-hand side
non-terminal is sentence//0. Assuming a public/1 directive for declaring
predicate scope, we could write:

:- public(sentence//0).

in order to be possible to use grammar rules for the non-terminal sentence//0
outside its encapsulation unit.

7.13.5 Calling Prolog goals from grammar rules

In the body of grammar rules, curly brackets enclose a sequence of Prolog goals
that are called when the grammar rule is used during parsing.

NOTE — The ISO/IEC 13211–1 Prolog standard defines, in section 6.3.6, a
curly bracketed term as a compound term with principal functor ’{}’/1, whose
argument may also be expressed by enclosing its argument in curly brackets.

7.13.5.1 Examples

Consider, for example, the following grammar rule:

digit(D) --> [C], {0’0 =< C, C =< 0’9, D is C - 0’0}.

This rule recognizes a single terminal as the code of a character representing a
digit when the corresponding numeric value can be unified with the non-terminal
argument.

7.13.6 Control constructs supported by grammar rules

The following Prolog control constructs specified on the ISO/IEC 13211–1 Pro-
log standard may be used in the body of grammar rules: ’,’/2, ’;’/2, ->/2,
!/0, and \+/1.

The following Prolog control constructs specified on the ISO/IEC 13211–1 Pro-
log standard must not be recognized as control constructs when used in the
body of grammar rules: true/0, fail/0, repeat/0, call/1, once/1, catch/3,
and throw/1.

A Prolog implementation may support additional control constructs. Examples
include soft-cuts and control constructs that enable the use of grammar rules
stored on a encapsulation unit such as a module or an object. When the Prolog
implementation offers a strictly conforming mode (see 5.1e), this mode shall
reject these additional control constructs.

8 BUILT-IN PREDICATES 11

7.13.7 Parsing with grammar rules

When the database does not contain a grammar rule for a non-terminal required
for the grammar rule body we are trying to parse, it is recommended, but not
mandatory, that the error term specified on clause 7.7.7b of ISO/IEC 13211–1
when the flag unknown is set to error would be:

existence_error(grammar_rule, GRI)

where GRI is the grammar rule non-terminal indicator for which no grammar
rule is available.

NOTES

1 Implementers should consider reporting errors at the same abstraction level
as grammar rules whenever practical.

2 Parsing with grammar rules is defined on sections 8.18.1 and 12.2. In
brief, grammar rules can be expanded into Prolog clauses, which allows us to
map parsing a grammar rule body into proving a goal given a set of predicate
clauses. See section 7.7 of ISO/IEC 13211–1 for details.

8 Built-in predicates

The following section extends, with the specified number, the corresponding
ISO/IEC 13211–1 section:

8.18 Grammar rule built-in predicates

8.18.1 phrase/3, phrase/2

8.18.1.1 Description

phrase(GRBody, Input, Rest) is true iff the grammar rule body GRBody can
successfully parse, accordingly to the currently defined grammar rules, the list
of terminals Input unifying Rest with the list of the remaining terminals.

Procedurally, phrase(GRBody, Input, Rest) is executed by calling the Prolog
goal corresponding to the expansion of the grammar rule body GRBody, given the
terminal lists Input and Rest, accordingly to the logical expansion of grammar
rules described in section 11.

8.18.1.2 Template and modes

phrase(+callable term, ?list, ?list)

8 BUILT-IN PREDICATES 12

8.18.1.3 Errors

a) GRBody is a variable
— instantiation error

b) GRBody is neither a variable nor a callable term
— type error(callable, GRBody)

c) Input is neither a partial list nor a list
— type error(list, Input)

d) Rest is neither a partial list nor a list
— type error(list, Rest)

8.18.1.4 Bootstrapped built-in predicates

The built-in predicate phrase/2 provides similar functionality to phrase/3.
The goal phrase(GRBody, Input) is true when all tokens in the input list are
consumed and recognized:

phrase(GRBody, Input) :-
phrase(GRBody, Input, []).

8.18.1.5 Examples

These examples assume that the following grammar rules have been loaded into
the Prolog interactive session:

determiner --> [the].
determiner --> [a].

noun --> [boy].
noun --> [girl].

verb --> [likes].
verb --> [scares].

sentence --> noun_phrase, verb_phrase.

noun_phrase --> determiner, noun.
noun_phrase --> noun.

verb_phrase --> verb.
verb_phrase --> verb, noun_phrase.

Some example calls of phrase/2 and phrase/3:

8 BUILT-IN PREDICATES 13

| ?- phrase([the], [the]).

yes

| ?- phrase(sentence, [the, girl, likes, the, boy]).

yes

| ?- phrase(noun_phrase, [the, girl, scares, the, boy], Rest).

Rest = [scares, the, boy]
yes

8.18.2 expand term/2

8.18.2.1 Description

expand term(Term, Expansion) is true iff:

— Expansion unifies with the expansion of Term.

Procedurally, expand term(Term, Expansion) is executed as follows:

a) If Term is a variable, unifies Expansion with Term

b) Else if the goal term expansion(Term, Expand) is true then Expansion
is unified with Expand

c) Else if the principal functor of Term is -->/2 then it is assumed that it
represents a grammar rule and Expansion is unified with its expansion
into a Prolog clause

d) Else if the principal functor of Term is not -->/2 then Expansion is unified
with Term

e) Else the goal fails

NOTE — The predicate term expansion/2 is described in section 10.1.1.

8.18.2.2 Template and modes

expand term(?term, ?term)

8.18.2.3 Errors

None.

8 BUILT-IN PREDICATES 14

8.18.2.4 Examples

These examples assume that the following clauses for the term expansion/2
predicate have been loaded into the Prolog interactive session:

term_expansion(succ(A, B), pred(B, A)).
term_expansion(0, zero).
term_expansion(1, one).

Some example calls of expand term/2:

| ?- expand_term(Term, Expansion).

Term = Expansion
yes

| ?- expand_term(succ(1, 2), Expansion).

Expansion = pred(2, 1)
yes

| ?- expand_term(1, one).

yes

| ?- expand_term(odd(1), Expansion).

Expansion = odd(1)
yes

The next query returns an implementation-dependent Prolog clause; as such the
example below illustrates just a possible answer:

| ?- expand_term((noun_phrase --> noun), Expansion)

Expansion = noun_phrase(A, B) :- noun(A, B)
yes

NOTES

1 Despite the fact that expand term/2 may be used to retrieve the transla-
tion of a grammar rule to a Prolog clause, users should not rely on a specific
translation of a grammar rule, which is implementation-dependent.

2 Users may use alternate grammar rule translators by defining suitable
clauses for term expansion/2. Prolog implementers may use this mechanism
to ensure backward compatibility with code written for older translators not
compliant with this TR.

9 EVALUABLE FUNCTORS 15

3. Some Prolog systems provide support for term expansion mechanisms, based
on term expansion/2 and expand term/2 predicates, that may be used when
compiling Prolog source files. The specification of such mechanisms — in partic-
ular how term expansion is performed during the compilation of Prolog source
code — is outside the scope of this technical recommendation.

9 Evaluable functors

NOTE — No changes from the ISO/IEC 13211–1 Prolog standard.

10 User-defined predicates

10.1 Grammar rule user-defined predicates

10.1.1 term expansion/2

10.1.1.1 Description

term expansion(Term, Expansion) is a user-defined, dynamic, and multifile
predicate, which may be used for the rewriting of terms. The predicate is
automatically called by the built-in predicate expand term/2, which is described
below. This predicate exists even if it has no clauses.

10.1.1.2 Template and modes

term expansion(?term, ?term)

10.1.1.3 Errors

None.

10.1.1.4 Examples

Example clause for term expansion/2:

term_expansion(next(Previous, Next), previous(Next, Previous)).

11 Logical expansion of grammar rules

This section extends, with the specified number, the ISO/IEC 13211–1 Prolog
standard:

This section present a logical view for the expansion of grammar rules into
Prolog clauses, starting with a description of the used notation.

11 LOGICAL EXPANSION OF GRAMMAR RULES 16

11.1 Notation

The terms S0 and S represent, respectively, the input list of terminals and the
remaining list of terminals after parsing using a grammar rule. Variables named
Si represents intermediate parsing states, as explained in section 6.1.3.

The term EType(T, Si, Si+1) denotes an expansion of type Type of a term T,
given, respectively, the input and output lists of terminals Si and Si+1

Four types of expansion rules are used, denoted by the terms: Erule (expansion
of grammar rules), Ebody (expansion of grammar rule bodies), Eterminals (ex-
pansion of grammar rule terminals), and Enon terminal (expansion of grammar
rule non-terminals).

The symbol ≡ is used to link a expansion rule with its resulting Prolog term or
with another expansion rule.

11.2 Expanding a grammar rule

Grammar rules with a push-back list:

Erule((NonTerminal, Terminals --> GRBody), S0, S) ≡ Head :- Body

where:

Enon terminal(NonTerminal, S0, S) ≡ Head
Ebody(GRBody, S0, S1), Eterminals(Terminals, S, S1) ≡ Body

Grammar rule with no push-back list:

Erule((NonTerminal --> GRBody), S0, S) ≡ Head :- Body

where:

Enon terminal(NonTerminal, S0, S) ≡ Head
Ebody(GRBody, S0, S) ≡ Body

11.3 Expanding a grammar rule non-terminal

Enon terminal(NonTerminal, S0, S) ≡ Head

where:

NonTerminal =.. NonTerminalUniv,
append(NonTerminalUniv, [S0, S], HeadUniv),
Head =.. HeadUniv

(see section 12.4 for the definition of the auxiliary predicate append/3)

11 LOGICAL EXPANSION OF GRAMMAR RULES 17

11.4 Expanding a terminal list

List of terminals, either a push-back list or a grammar rule body goal:

Eterminals([], S0, S) ≡ S0 = S
Eterminals([T| Ts], S0, S) ≡ S0 = [T| Tail]

where:

Eterminals(Ts, S1, S) ≡ Tail

where S1 is a new variable with respect to the term [T| Ts].

An alternative definition, given a list of terminals Terminals is:

Eterminals(Terminals, S0, S) ≡ S0 = List

where:

append(Terminals, S, List)

(see section 12.4 for the definition of the auxiliary predicate append/3)

11.5 Expanding a grammar rule body

Non-instantiated variable on a grammar rule body:

Ebody(Var, S0, S) ≡ phrase(Var, S0, S)

If-then-else construct on the body of a grammar rule:

Ebody((GRIf -> GRThen; GRElse), S0, S) ≡ If -> Then; Else

where:

Ebody(GRIf, S0, S1) ≡ If
Ebody(GRThen, S1, S) ≡ Then
Ebody(GRElse, S0, S) ≡ Else

If-then construct on the body of a grammar rule:

Ebody((GRIf -> GRThen), S0, S) ≡ If -> Then

where:

Ebody(GRIf, S0, S1) ≡ If
Ebody(GRThen, S1, S) ≡ Then

Disjunction on the body of a grammar rule:

Ebody((GREither; GROr), S0, S) ≡ Either; Or

11 LOGICAL EXPANSION OF GRAMMAR RULES 18

where:

Ebody(GREither, S0, S) ≡ Either
Ebody(GROr, S0, S) ≡ Or

Conjunction on the body of a grammar rule:

Ebody((GRFirst, GRSecond), S0, S) ≡ First, Second

where:

Ebody(GRFirst, S0, S1) ≡ First
Ebody(GRSecond, S1, S) ≡ Second

Cut on the body of a grammar rule:

Ebody(!, S0, S) ≡ !, S0 = S

Curly-bracketed term on the body of a grammar rule:

Ebody({}, S0, S) ≡ S0 = S
Ebody({Goal}, S0, S) ≡ Goal, S0 = S

when Goal is a non-variable term and:

Ebody({Goal}, S0, S) ≡ call(Goal), S0 = S

when Goal is a Prolog variable.

Negation on the body of a grammar rule:

Ebody(\+ Body, S0, S) ≡ \+ Goal, S0 = S

where:

Ebody(Body, S0, S) ≡ Goal

List of terminals on the body of a grammar rule:

Ebody(Terminals, S0, S) ≡ Eterminals(Terminals, S0, S)

Non-terminal on the body of a grammar rule:

Ebody(NonTerminal, S0, S) ≡ Enon terminal(NonTerminal, S0, S)

12 REFERENCE IMPLEMENTATIONS 19

12 Reference implementations

The reference implementations provided is this section do not preclude alterna-
tive or optimized implementations.

12.1 Grammar-rule translator

This section provides a reference implementation for a translator of grammar
rules into plain Prolog clauses. The main idea is to translate grammar rules
into clauses by adding two extra arguments to each grammar rule non-terminal,
following the logical expansion of grammar rules, described in the previous sec-
tion. The first extra argument is used for the input list of terminals. The second
extra argument is used for the list of terminals in the input list not consumed by
the grammar rule. This is a straight-forward solution. Nevertheless, compliance
with this TR does not imply this specific translation solution, only compliance
with the logical expansion, as specified in section 11.

This translator includes error-checking code that ensures that both the input
grammar rule and the resulting clause are valid. In addition, this translator at-
tempts to simplify the resulting clauses by removing redundant calls to true/0
and by folding unifications. In some cases, the resulting clauses could be further
optimized. Other optimizations can be easily plugged in, by modifying or ex-
tending the dcg simplify/4 predicate. However, implementers must be careful
to delay output unifications in the presence of goals with side-effects such as
cuts or input/output operations, ensuring the steadfastness of the generated
clauses.

% converts a grammar rule into a normal clause:

dcg_rule(Rule, Clause) :-
dcg_rule(Rule, S0, S, Expansion),
dcg_simplify(Expansion, S0, S, Clause).

dcg_rule((RHead --> _), _, _, _) :-
var(RHead),
throw(instantiation_error).

dcg_rule((RHead, _ --> _), _, _, _) :-
var(RHead),
throw(instantiation_error).

dcg_rule((_, Terminals --> _), _, _, _) :-
var(Terminals),
throw(instantiation_error).

12 REFERENCE IMPLEMENTATIONS 20

dcg_rule((NonTerminal, Terminals --> GRBody), S0, S, (Head :- Body)) :-
!,
dcg_non_terminal(NonTerminal, S0, S, Head),
dcg_body(GRBody, S0, S1, Goal1),
dcg_terminals(Terminals, S, S1, Goal2),
Body = (Goal1, Goal2).

dcg_rule((NonTerminal --> GRBody), S0, S, (Head :- Body)) :-
!,
dcg_non_terminal(NonTerminal, S0, S, Head),
dcg_body(GRBody, S0, S, Body).

dcg_rule(Term, _, _, _) :-
throw(type_error(grammar_rule, Term)).

% translates a grammar goal non-terminal:

dcg_non_terminal(NonTerminal, _, _, _) :-
\+ callable(NonTerminal),
throw(type_error(callable, NonTerminal)).

dcg_non_terminal(NonTerminal, S0, S, Goal) :-
NonTerminal =.. NonTerminalUniv,
append(NonTerminalUniv, [S0, S], GoalUniv),
Goal =.. GoalUniv.

% translates a list of terminals:

dcg_terminals(Terminals, _, _, _) :-
\+ is_proper_list(Terminals),
throw(type_error(list, Terminals)).

dcg_terminals(Terminals, S0, S, S0 = List) :-
append(Terminals, S, List).

% translates a grammar rule body:

dcg_body(Var, S0, S, phrase(Var, S0, S)) :-
var(Var),
!.

dcg_body((GRIf -> GRThen), S0, S, (If -> Then)) :-
!,

12 REFERENCE IMPLEMENTATIONS 21

dcg_body(GRIf, S0, S1, If),
dcg_body(GRThen, S1, S, Then).

dcg_body((GREither; GROr), S0, S, (Either; Or)) :-
!,
dcg_body(GREither, S0, S, Either),
dcg_body(GROr, S0, S, Or).

dcg_body((GRFirst, GRSecond), S0, S, (First, Second)) :-
!,
dcg_body(GRFirst, S0, S1, First),
dcg_body(GRSecond, S1, S, Second).

dcg_body(!, S0, S, (!, S0 = S)) :-
!.

dcg_body({}, S0, S, (S0 = S)) :-
!.

dcg_body({Goal}, S0, S, (call(Goal), S0 = S)) :-
var(Goal),
!.

dcg_body({Goal}, _, _, _) :-
\+ callable(Goal),
throw(type_error(callable, Goal)).

dcg_body({Goal}, S0, S, (Goal, S0 = S)) :-
!.

dcg_body(\+ GRBody, S0, S, (\+ Goal, S0 = S)) :-
!,
dcg_body(GRBody, S0, S, Goal).

dcg_body([], S0, S, (S0=S)) :-
!.

dcg_body([T| Ts], S0, S, Goal) :-
!,
dcg_terminals([T| Ts], S0, S, Goal).

dcg_body(NonTerminal, S0, S, Goal) :-
dcg_non_terminal(NonTerminal, S0, S, Goal).

% simplifies the resulting clause:

12 REFERENCE IMPLEMENTATIONS 22

dcg_simplify((Head :- Body), _, _, Clause) :-
dcg_conjunctions(Body, Flatted),
dcg_fold_left(Flatted, FoldedLeft),
dcg_fold_pairs(FoldedLeft, FoldedPairs),
(FoldedPairs == true ->

Clause = Head
; Clause = (Head :- FoldedPairs)
).

% removes redundant calls to true/0 and flattens conjunction of goals:

dcg_conjunctions((Goal1 -> Goal2), (SGoal1 -> SGoal2)) :-
!,
dcg_conjunctions(Goal1, SGoal1),
dcg_conjunctions(Goal2, SGoal2).

dcg_conjunctions((Goal1; Goal2), (SGoal1; SGoal2)) :-
!,
dcg_conjunctions(Goal1, SGoal1),
dcg_conjunctions(Goal2, SGoal2).

dcg_conjunctions(((Goal1, Goal2), Goal3), Body) :-
!,
dcg_conjunctions((Goal1, (Goal2, Goal3)), Body).

dcg_conjunctions((true, Goal), Body) :-
!,
dcg_conjunctions(Goal, Body).

dcg_conjunctions((Goal, true), Body) :-
!,
dcg_conjunctions(Goal, Body).

dcg_conjunctions((Goal1, Goal2), (Goal1, Goal3)) :-
!,
dcg_conjunctions(Goal2, Goal3).

dcg_conjunctions(\+ Goal, \+ SGoal) :-
!,
dcg_conjunctions(Goal, SGoal).

dcg_conjunctions(Goal, Goal).

12 REFERENCE IMPLEMENTATIONS 23

% folds left unifications:

dcg_fold_left((Term1 = Term2), true) :-
!,
Term1 = Term2.

dcg_fold_left(((Term1 = Term2), Goal), Folded) :-
!,
Term1 = Term2,
dcg_fold_left(Goal, Folded).

dcg_fold_left(Goal, Goal).

% folds pairs of consecutive unifications (T1 = T2, T2 = T3):

dcg_fold_pairs((Goal1 -> Goal2), (SGoal1 -> SGoal2)) :-
!,
dcg_fold_pairs(Goal1, SGoal1),
dcg_fold_pairs(Goal2, SGoal2).

dcg_fold_pairs((Goal1; Goal2), (SGoal1; SGoal2)) :-
!,
dcg_fold_pairs(Goal1, SGoal1),
dcg_fold_pairs(Goal2, SGoal2).

dcg_fold_pairs(((T1 = T2a), (T2b = T3)), (T1 = T3)) :-
T2a == T2b,
!.

dcg_fold_pairs(((T1 = T2a), (T2b = T3), Goal), ((T1 = T3), Goal2)) :-
T2a == T2b,
!,
dcg_fold_pairs(Goal, Goal2).

dcg_fold_pairs((Goal1, Goal2), (Goal1, Goal3)) :-
!,
dcg_fold_pairs(Goal2, Goal3).

dcg_fold_pairs(\+ Goal, \+ SGoal) :-
!,
dcg_fold_pairs(Goal, SGoal).

dcg_fold_pairs(Goal, Goal).

12 REFERENCE IMPLEMENTATIONS 24

12.1.1 Extended version for Prolog compilers with encapsulation
mechanisms

Assuming that the infix operator :/2 is used for calling predicates inside an
encapsulation unit, the following clause would allow translation of grammar
rule bodies that explicitly use non-terminals from another encapsulation unit:

dcg_body(Unit:GRBody, S0, S, Unit:Goal) :-
!,
dcg_body(GRBody, S0, S, Goal).

One possible problem with this clause is that any existence errors when execut-
ing the goal Unit:Goal will most likely be expressed in terms of the expanded
predicates and not in terms of the original grammar rule non-terminals. In order
to more easily report errors at the same abstraction level as grammar rules, the
following alternative clause may be used:

dcg_body(Unit:GRBody, S0, S, Unit:phrase(GRBody, So, S)) :-
!,
dcg_body(GRBody, S0, S, _). % check that GRBody is valid

12.2 phrase/3

This section provides a reference implementation in plain Prolog of the built-in
predicates phrase/3. It includes the necessary clauses for error handling, as
specified in section 8.18.1.3. For the reference implementation of phrase/2 see
section 8.18.1.4.

% error handling:

phrase(GRBody, Input, Rest) :-
var(GRBody),
throw(error(instantiation_error, phrase(GRBody, Input, Rest))).

phrase(GRBody, Input, Rest) :-
\+ callable(GRBody),
throw(error(type_error(callable, GRBody), phrase(GRBody, Input, Rest))).

phrase(GRBody, Input, Rest) :-
nonvar(Input),
\+ is_list(Input),
throw(error(type_error(list, Input), phrase(GRBody, Input, Rest))).

phrase(GRBody, Input, Rest) :-
nonvar(Rest),
\+ is_list(Rest),
throw(error(type_error(list, Rest), phrase(GRBody, Input, Rest))).

12 REFERENCE IMPLEMENTATIONS 25

phrase(GRBody, Input, Rest) :-
dcg_body(GRBody, S0, S, Goal),
Input = S0, Rest = S,
call(Goal).

The predicate dcg body/4 is part of the grammar rule translator reference im-
plementation, defined in the previous section. An alternative solution is to
define clauses implementing a meta-interpreter for grammar rules. Thus, we
may replace the last clause above with the following ones:

phrase((GRBody1, GRBody2), Input, Rest) :-
!,
phrase(GRBody1, Input, Aux),
phrase(GRBody2, Aux, Rest).

phrase((GRBody1; GRBody2), Input, Rest) :-
!,
(phrase(GRBody1, Input, Rest)
; phrase(GRBody2, Input, Rest)
).

phrase((GRBody1 -> GRBody2), Input, Rest) :-
!,
phrase(GRBody1, Input, Aux),
phrase(GRBody2, Aux, Rest).

phrase(\+ GRBody, Input, Rest) :-
!,
\+ phrase(GRBody, Input, Rest), Input = Rest.

phrase({}, Input, Rest) :-
!,
Input = Rest.

phrase({Goal}, Input, Rest) :-
!,
call(Goal), Input = Rest.

phrase([], Input, Rest) :-
!,
Input = Rest.

phrase([Head| Tail], Input, Rest) :-
!,
append([Head| Tail], Rest, Input).

phrase(GRHead, Input, Rest) :-

12 REFERENCE IMPLEMENTATIONS 26

\+ (GRHead --> _),
current_prolog_flag(unknown, Value),
(Value == fail ->

fail
; Value == warning ->

% implementation-defined warning
; functor(GRHead, NonTerminal, Arity),

throw(error(
existence_error(grammar_rule, NonTerminal//Arity),
phrase(GRHead, Input, Rest)))

).

phrase(GRHead, Input, Rest) :-
(GRHead --> GRBody),
phrase(GRBody, Input, Rest).

Note that, although this alternative does not support cuts in grammar rule
bodies, it makes it simple to report existence errors at the same abstraction
level as grammar rules.

12.3 expand term/2

This section provides a reference implementation in plain Prolog of the built-in
predicate expand term/2. For the sole purpose of clarity, is assumed that the
conversion of a grammar rule into a Prolog clause is performed by a predicate
named dcg rule/2.

expand_term(Term, Expansion) :-
(var(Term) ->

Expansion = Term
; current_predicate(term_expansion/2),

term_expansion(Term, Expand) ->
Expansion = Expand

; Term = (_ --> _) ->
dcg_rule(Term, Clause),
Expansion = Clause

; Expansion = Term
).

Note that the call to term expansion/2 is protected by a call to the built-in
predicate current predicate/1 in order to prevent an exception being gener-
ated if the user abolishes the term expansion/2 predicate.

12.4 Auxiliary predicates used on the reference imple-
mentations

The following auxiliary predicates are used on the reference implementations:

13 TEST-CASES FOR THE REFERENCE IMPLEMENTATIONS 27

append([], List, List).
append([Head| Tail], List, [Head| Tail2]) :-

append(Tail, List, Tail2).

callable(Term) :-
nonvar(Term),
functor(Term, Functor, _),
atom(Functor).

is_list([]) :-
!.

is_list([_| Tail]) :-
is_list(Tail).

is_proper_list(List) :-
List == [], !.

is_proper_list([_| Tail]) :-
nonvar(Tail),
is_proper_list(Tail).

13 Test-cases for the reference implementations

13.1 Built-in predicates and user-defined hook predicates

% user-defined hook predicates:

gr_pred_test(term_expansion(_, _), [(dynamic), multifile]).

% built-in predicates:

gr_pred_test(expand_term(_, _), [built_in, static]).
gr_pred_test(phrase(_, _,_), [built_in, static]).
gr_pred_test(phrase(_, _), [built_in, static]).

% simple test predicate:

test_gr_preds :-
write(’Testing existence of built-in predicates’), nl,
write(’and user-defined hook predicates...’), nl, nl,
gr_pred_test(Pred, ExpectedProps),
functor(Pred, Functor, Arity),
write(’Testing predicate ’), write(Functor/Arity), nl,
write(’ Expected properties: ’), write(ExpectedProps), nl,

13 TEST-CASES FOR THE REFERENCE IMPLEMENTATIONS 28

findall(Prop, predicate_property(Pred, Prop), ActualProps),
write(’ Actual properties: ’), write(ActualProps), nl,
fail.

test_gr_preds.

13.2 phrase/2-3 built-in predicate tests

Tests needed!

13.3 Grammar-rule translator tests

Know any hard to translate grammar rules? Contribute them!

When checking compliance of a particular grammar rule translator, results of the
tests in this section must be compliant with the logical expansion of grammar
rules, as specified in section 11.

% terminal tests with list notation:
gr_tr_test(101, (p --> []), success).
gr_tr_test(102, (p --> [b]), success).
gr_tr_test(103, (p --> [abc, xyz]), success).
gr_tr_test(104, (p --> [abc | xyz]), error).
gr_tr_test(105, (p --> [[], {}, 3, 3.2, a(b)]), success).
gr_tr_test(106, (p --> [_]), success).

% terminal tests with string notation:
gr_tr_test(151, (p --> "b"), success).
gr_tr_test(152, (p --> "abc", "q"), success).
gr_tr_test(153, (p --> "abc" ; "q"), success).

% simple non-terminal tests:
gr_tr_test(201, (p --> b), success).
gr_tr_test(202, (p --> 3), error).
gr_tr_test(203, (p(X) --> b(X)), success).

% conjunction tests:
gr_tr_test(301, (p --> b, c), success).
gr_tr_test(311, (p --> true, c), success).
gr_tr_test(312, (p --> fail, c), success).
gr_tr_test(313, (p(X) --> call(X), c), success).

% disjunction tests:
gr_tr_test(351, (p --> b ; c), success).
gr_tr_test(352, (p --> q ; []), success).
gr_tr_test(353, (p --> [a] ; [b]), success).

13 TEST-CASES FOR THE REFERENCE IMPLEMENTATIONS 29

% if-then-else tests:
gr_tr_test(401, (p --> b -> c), success).
gr_tr_test(411, (p --> b -> c; d), success).
gr_tr_test(421, (p --> b -> c1, c2 ; d), success).
gr_tr_test(422, (p --> b -> c ; d1, d2), success).
gr_tr_test(431, (p --> b1, b2 -> c ; d), success).
gr_tr_test(441, (p --> [x] -> [] ; q), success).

% negation tests:
gr_tr_test(451, (p --> \+ b, c), success).
gr_tr_test(452, (p --> b, \+ c, d), success).

% cut tests:
gr_tr_test(501, (p --> !, [a]), success).
gr_tr_test(502, (p --> b, !, c, d), success).
gr_tr_test(503, (p --> b, !, c ; d), success).
gr_tr_test(504, (p --> [a], !, {fail}), success).
gr_tr_test(505, (p(a), [X] --> !, [X, a], q), success).
gr_tr_test(506, (p --> a, ! ; b), success).

% {}/1 tests:
gr_tr_test(601, (p --> {b}), success).
gr_tr_test(602, (p --> {3}), error).
gr_tr_test(603, (p --> {c,d}), success).
gr_tr_test(604, (p --> ’{}’((c,d))), success).
gr_tr_test(605, (p --> {a}, {b}, {c}), success).
gr_tr_test(606, (p --> {q} -> [a] ; [b]), success).
gr_tr_test(607, (p --> {q} -> [] ; b), success).
gr_tr_test(608, (p --> [foo], {write(x)}, [bar]), success).
gr_tr_test(609, (p --> [foo], {write(hello)},{nl}), success).
gr_tr_test(610, (p --> [foo], {write(hello), nl}), success).

% "metacall" tests:
gr_tr_test(701, (p --> X), success).
gr_tr_test(702, (p --> _), success).

% non-terminals corresponding to "graphic" characters
% or built-in operators/predicates:
gr_tr_test(801, (’[’ --> b, c), success).
gr_tr_test(802, (’=’ --> b, c), success).

% pushback tests:
gr_tr_test(901, (p, [t] --> b, c), success).
gr_tr_test(902, (p, [t] --> b, [t]), success).
gr_tr_test(903, (p, [t] --> b, [s, t]), success).

13 TEST-CASES FOR THE REFERENCE IMPLEMENTATIONS 30

gr_tr_test(904, (p, [t] --> b, [s], [t]), success).
gr_tr_test(905, (p(X), [X] --> [X]), success).
gr_tr_test(906, (p(X, Y), [X, Y] --> [X, Y]), success).
gr_tr_test(907, (p(a), [X] --> !, [X, a], q), success).
gr_tr_test(908, (p, [a,b] --> [foo], {write(hello), nl}), success).
gr_tr_test(909, (p, [t1], [t2] --> b, c), error).
gr_tr_test(910, (p, b --> b), error).
gr_tr_test(911, ([t], p --> b), error).
gr_tr_test(911, ([t1], p, [t2] --> b), error).

% simple expand_term/2 test predicate:

test_gr_tr :-
write(’Testing expand_term/2 predicate...’), nl, nl,
gr_tr_test(N, GR, Result),
write(N), write(’: ’), writeq(GR), write(’ --- ’),
write(Result), write(’ expected’), nl,
(catch(

expand_term(GR, Clause),
Error,
(write(’ error: ’), write(Error), nl, fail)) ->

write(’ ’), writeq(Clause)
; write(’ expansion failed!’)
),
nl, nl,
fail.

test_gr_tr.

% simple predicate for dumping test grammar rules into a file:
% (restricted to rules whose expansion is expected to succeed)

create_gr_file :-
write(’Creating grammar rules file "gr.pl" ...’),
open(’gr.pl’, write, Stream),
(gr_tr_test(N, GR, success),

write(Stream, ’% ’), write(Stream, N),
write(Stream, ’:’), nl(Stream),
write_canonical(Stream, GR), write(Stream, ’.’),
nl(Stream), fail

; close(Stream)
),
write(’ created.’), nl.

	draftMar27.pdf
	Introduction
	Previous editors and draft documents
	Draft document comments
	Contributors

	Scope
	Normative references
	Definitions
	Symbols and abbreviations
	Compliance
	Prolog processor
	Prolog text
	Prolog goal
	Documentation
	Extensions
	Predefined operators

	Syntax
	Notation
	Backus Naur Form
	Abstract term syntax
	Variable names convention for lists of terminals

	Prolog text and data
	Prolog text

	Terms

	Language concepts and semantics
	Grammar rules
	Terminals and non-terminals
	Format of grammar rules
	Push-back lists
	Non-terminal indicator
	Calling Prolog goals from grammar rules
	Control constructs supported by grammar rules
	Parsing with grammar rules

	Built-in predicates
	Grammar rule built-in predicates
	phrase/3, phrase/2
	expand_term/2

	Evaluable functors
	User-defined predicates
	Grammar rule user-defined predicates
	term_expansion/2

	Logical expansion of grammar rules
	Notation
	Expanding a grammar rule
	Expanding a grammar rule non-terminal
	Expanding a terminal list
	Expanding a grammar rule body

	Reference implementations
	Grammar-rule translator
	Extended version for Prolog compilers with encapsulation mechanisms

	phrase/3
	expand_term/2
	Auxiliary predicates used on the reference implementations

	Test-cases for the reference implementations
	Built-in predicates and user-defined hook predicates
	phrase/2-3 built-in predicate tests
	Grammar-rule translator tests

