
P1003.1j Draft 10

STANDARDS PROJECT
Draft Standard for Information Technology —

Portable Operating System Interface (POSIX) —
Part 1:

System Application Program Interface
(API) — Amendment x:

Advanced Realtime Extensions [C Language]

Sponsor
Portable Application Standards Committee

of the
IEEE Computer Society

Work Item Number: JTC1 22.21.04.01.01

Abstract: IEEE Std. P1003.1j-199x is part of the POSIX series of standards for
applications and user interfaces to open systems. It defines the applications inter-
face to system services for synchronization, memory management, time manage-
ment, and thread management. This standard is stated in terms of its C binding.

Keywords: API, application portability, C (programming language) data process-
ing, information interchange, open systems, operating system, portable applica-
tion, POSIX, programming language, realtime, system configuration computer
interface

POSIX is a registered trademark of the Institute of Electrical and Electronics Engineers, Inc.

P1003.1j / D10
September 1999

Copyright  1999 by the Institute of Electrical and Electronics Engineers, Inc.
345 East 47th Street

New York, NY 10017, USA
All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change. Permission
is hereby granted for IEEE Standards Committee participants to reproduce
this document for purposes of IEEE standardization activities. Permission

is also granted for member bodies and technical committees of ISO and IEC
to reproduce this document for purposes of developing a national position.

Other entities seeking permission to reproduce this document for
standardization or other activities, or to reproduce portions of this
document for these or other uses, must contact the IEEE Standards

Department for the appropriate license. Use of information contained in
this unapproved draft is at your own risk.

IEEE Standards Department
Copyright and Permissions
445 Hoes Lane, P.O. Box 1331
Piscataway, NJ 08855-1331, USA
+1 (908) 562-3800
+1 (908) 562-1571 [FAX]
September 1999 SH XXXXX

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

1 Editor’s Notes
2 In addition to your paper ballot, you are also asked to e-mail any bal-

loting3 comments: please read the balloting instructions document.

4 This section will not appear in the final document. It is used for editorial com-
ments5 concerning this draft. Please consult the balloting instructions document
and6 the cover letter for the ballot that accompanied this draft for information on
how7 the balloting process is accomplished.

This8 draft uses small numbers or letters in the right margin in lieu of change
bars.9 ‘‘A’’ denotes changes from Draft 9 to Draft 10. Trivial informative (i.e., non-
normative)10 changes and purely editorial changes such as grammar, spelling, or
cross11 references are not diff-marked. Changes of function names are not diff-
marked12 either. Since this is a recirculation draft, only normative text marked
with13 ‘‘A’’ is open for comments in this ballot. Revision indicators prior to ‘‘8’’ have
been14 removed from this draft.

Since15 1998 there is a new backwards compatibility requirement on the amend-
ments16 to the base POSIX.1 standard, which states that the base standard will not
be17 changed in such a way as to cause implementations or strictly conforming
applications18 to no longer conform. The implications of this requirement are that
no19 new interface specifications can be included that are not under an option; and
that20 names for new interfaces must begin or end with one of the reserved prefixes
or21 suffixes, including those defined in POSIX.1a. This document incorporates the
required22 changes since draft 7.

Until23 draft 7, the rationale text for all the sections had been temporarily moved
from24 Annex B and interspersed with the appropriate sections. This co-location of
rationale25 with its accompanying text was done to encourage the Technical
Reviewers26 to maintain the rationale text, as well as provide explanations to the
reviewers27 and balloters. However, in order to better match the final document, all
rationale28 subclauses have been moved back to Annex B in the last recirculations.

29 Please report typographical errors to:

30 Michael González Harbour
31 Dpto. de Electrónica y Computadores
32 Universidad de Cantabria
33 Avenida de los Castros s/n
34 39005 - Santander
35 SPAIN
36 TEL: +34 942 201483
37 FAX: +34 942 201402
38 Email: mgh@ctr.unican.es

39 (Electronic mail is preferred.)

40 The copying and distribution of IEEE balloting drafts is accomplished by the Stan-
dards41 Office. To report problems with reproduction of your copy, or to request
additional42 copies of this draft, contact:

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

43 Tracy Woods
44 IEEE Computer Society,
45 1730 Massachusetts Avenue, NW,
46 Washington DC 20036-1992.
47 Phone: +1-202-371-1013
48 Fax: +1-202-728-0884
49 E-mail: twoods@computer.org
50 Web page: http://www.computer.org/standard/draftstd.htm

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

51 POSIX.1j Change History
52 This section is provided to track major changes between drafts.

53 Draft 10 [September 1999] Third recirculation of new ballot.

54 — Changed the treatment of typed memory objects by fstat () to
55 make it like the treatment of shared memory objects.

56 — Various editorial changes, including removal of notes marking
57 text that was conditional on the approval of P1003.1d, because
58 this project has already been approved by the IEEE-SA Stan-
59 dards Board.

60 Draft 9 [July 1999] Second recirculation of new ballot.

61 — Because of the Backwards Compatibility requirement, the
62 ‘‘Otherwise’’ clauses in those functions whose names do not
63 start with the ‘‘posix_’’ reserved prefix, were deleted. See
64 ‘‘Stubs and Support for Optional Features’’ in this Editor’s
65 Notes, for further information.

66 — Aligned the text used to describe optional features with the
67 text used in POSIX.1b, POSIX.1c, and POSIX.1d. Option symbols
68 are now used, instead of the associated option names.

69 — Text was added to specify that copies of synchronization
70 objects cannot be used for synchronization. Only the original
71 objects may be used.

72 — The two reader/writer-lock unlock operations were collapsed
73 into a single unlock function, to match existing practice in the
74 Single UNIX Specification.

75 — The clock attribute for condition variables is now under the
76 same option as the clock_nanosleep() function; the option has
77 been renamed to {_POSIX_CLOCK_SELECTION}.

78 Draft 8 [May 1999] First recirculation of new ballot.

79 — Annex I (Thread Management Considerations), Annex J (Syn-
80 chronized Clock), and Annex K (Balloting Instructions) were
81 removed from the draft.

82 — Moved all rationale text into Annex B, where it belongs.

83 — Moved the ‘‘Conventions’’ and ‘‘Normative References’’ sub-
84 clauses into these editor’s notes, because no amendment to the
85 equivalent subclauses in POSIX.1 was intended.

86 — Changed the behavior of reader/writer locks when a signal is
87 received, to align it with the current specification for mutexes.

88 — Changed relative timeouts to absolute, for consistency with the
89 new POSIX.1d timeouts. As a consequence, the amendments to
90 relative timeouts were omitted.

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

91 Draft 7 [October 1998] Reballot with new ballot group.

92 — Added the new backwards compatibility requirement and
93 changed draft accordingly.

94 Draft 6 [November 1997] First recirculation.

95 — Merged the process and thread spin locks, and changed all the
96 names of the barrier and reader/writer lock functions to follow
97 the pthreads model.

98 — Changed the requirements on stubs to resolve balloting objec-
99 tions requesting consistency with POSIX.1c.

100 — Deleted the Typed Memory Access Management option.

101 — Moved the typed memory allocation flags out of mmap(), into
102 posix_typed_mem_open().

103 — Moved the Thread Abortion chapter to an informative annex.

104 — Moved the Synchronized Clock to an informative annex.

105 Draft 5 [May 1995] First balloting round.

106 — Minor editorial changes, and deletion of all diff marks.

107 — Changed the requirements on stubs to follow the new SICC pol-
108 icy.

109 Draft 4 [Apr 1995]

110 — Added the Monotonic Clock, the Synchronized Clock, and the
111 nanosleep_rel () function. Changed relative timeouts to depend
112 on the Monotonic Clock, if present. Added an initialization
113 attribute to condition variables, to specify the clock that shall
114 be used for the timeout service in pthread_cond_timedwait().

115 — Added the Synchronized Clock.

116 — Added initialization attributes objects to barriers and
117 reader/writer locks, and made some changes to the synchroni-
118 zation functions.

119 — Some minor changes to typed memory.

120 Draft 3 [Nov 1994]

121 — Some changes to the Synchronization Chapter.

122 — Added the barrier wait, reader/writer lock and spin lock calls
123 to the list of blocking routines that are not cancellation points.

124 Draft 2 [Sep 1994]

125 — Added the Thread Abortion Chapter.

126 — Specified the effects of changing the time of
127 CLOCK_REALTIME.

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

128 — Minor technical changes to the synchronization chapter.

129 Draft 1 [Jul 1994]

130 — Added new options and definitions to Sections 1 and 2, related
131 to the Synchronization Section.

132 — Added the Synchronization Section.

133 — Deleted the placeholder for the Message Passing Section.

134 Draft 0 [Apr 1994]

135 — Preliminary draft, prior to PAR approval. Not reviewed by the
136 Working Group.

137 Stubs and Support for Optional Features

138 Drafts of POSIX.1j previous to Draft 9 had required that implementations not sup-
porting139 a specific option must either not provide a function named under the
option,140 or provide that function exactly as specified in the standard. This was
stated141 in the ‘‘Otherwise’’ clause that appeared in every optional function; among
other142 things, this requirement prevented the implementation from providing
stubs.143

However,144 Draft 9 has removed the requirement for functions with names which do
not145 begin with the ‘‘posix_’’ reserved prefix. This was done because such names
not146 already specified by POSIX.1 are not reserved for the POSIX standard, and
currently147 conforming implementations may already be providing, as extensions,
functions148 with the same names but different functionality. This is the case, for
example,149 with the reader/writer lock functions defined in the Single UNIX

150 Specification, which are similar, but not identical, to the functions defined in
P151 1003.1j.

If152 we were to retain the requirement from earlier drafts, such implementations
would153 no longer conform to the POSIX standard, once P1003.1j is approved. But
the154 P1003.1j scope prohibits us from breaking conforming implementations, and
thus155 the requirement had to be removed. The requirement was retained only for
those156 functions with the ‘‘posix_’’ prefix because, since this prefix is reserved for
the157 POSIX standard (by P1003.1a), no conforming implementation can provide a
function158 with such a name.

As159 a consequence, any new objection requesting that we restore the ‘‘Otherwise’’
clauses160 for those optional functions not starting with the ‘‘posix_’’ prefix, would be
against161 the scope of the P1003.1j standards project, and would have to be con-
sidered162 as ‘‘unresponsive’’. Please note that the inconsistencies that exist in the

163 POSIX standard with regard to optional functions and stubs will be harmonized
during164 the POSIX revision process currently underway.

165 Normative References

166 NOTE: This standard does not amend subclause 1.2, Normative References, of ISO/IEC 9945-
1:1996.167 However, the Normative References of ISO/IEC 9945-1:1996 are repeated here for informa-
tion.168 In addition, since IEEE P1003.1j modifies ISO/IEC 9945-1:1996 as amended by IEEE

169 1003.1d:1999 (and by IEEE P1003.1a, if approved before this standard), we have included the latter

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

170 two among this informal list of references.

171 The following standards contain provisions which, through references in this text,
constitute172 provisions of this standard. At the time of publication, the editions
indicated173 were valid. All standards are subject to revision, and parties to agree-
ments174 based on this part of this International Standard are encouraged to investi-
gate175 the possibility of applying the most recent editions of the standards listed
below.176 Members of IEC and ISO maintain registers of currently valid Interna-
tional177 Standards.

{1}178 ISO/IEC 9899: 19951), Information processing systems—Programming
179 languages—C.

180 {2} ISO/IEC 9945-1: 1996 (IEEE Std 1003.1-1996), Information technology—
181 Portable operating system interface (POSIX)—Part 1: System application
182 program interface (API) [C Language].

183 {3} IEEE Draft Std. P1003.1a, Draft 14, January 1998, Information Technology
184 — Portable Operating System Interface (POSIX) — Part 1: System Applica-
185 tion Program Interface (API) [C Language] — Amendment

186 {4} IEEE Std 1003.1d:1999, Information Technology — Portable Operating Sys-
187 tem Interface (POSIX) — Part 1: System Application Program Interface
188 (API) [C Language] — Amendment x: Additional Realtime Extensions

189 {5} IEEE Std 610-1990, IEEE Standard Computer Dictionary — A Compilation
190 of IEEE Standard Computer Glossaries

191 Conventions

192 NOTE: This standard does not amend subclause 2.1, Conventions, of ISO/IEC 9945-1:1996. How-
ever,193 we repeat this subclause here for information.

194 This document uses the following typographic conventions:

195 (1) The italic font is used for:

196 — Cross references to defined terms within 1.3, 2.2.1, and 2.2.2; symbolic
197 parameters that are generally substituted with real values by the
198 application

199 — C language data types and function names (except in function
200 Synopsis subclauses)

201 — Global external variable names

202 — Function families; references to groups of closely related functions
203 (such as directory, exec, sigsetops, sigwait, stdio, and wait)

204 ________________

1)205 ISO/IEC documents can be obtained from the ISO office, 1, rue de Varembé, Case Postale 56, CH-
206 1211, Genève 20, Switzerland/Suisse. ISO publications are also available in the United States
207 from the Sales Department, American National Standards Institute, 11 West 42nd Street, 13th
208 Floor, New York, NY 10036, USA.

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

209 (2) The bold font is used with a word in all capital letters, such as

210 PATH

211 to represent an environment variable, as described in 2.6. It is also used
212 for the term ‘‘NULL pointer.’’

213 (3) The constant-width (Courier) font is used:

214 — For C language data types and function names within function
215 Synopsis subclauses

216 — To illustrate examples of system input or output where exact usage is
217 depicted

218 — For references to utility names and C language headers

219 — For names of attributes in attributes objects

220 (4) Symbolic constants returned by many functions as error numbers are
221 represented as:

222 [ERRNO]

223 See 2.4.

224 (5) Symbolic constants or limits defined in certain headers are represented
225 as

226 {LIMIT}

227 See 2.8 and 2.9.

In228 some cases tabular information is presented ‘‘inline’’; in others it is presented in
a229 separately labeled table. This arrangement was employed purely for ease of
typesetting230 and there is no normative difference between these two cases.

The231 conventions listed previously are for ease of reading only. Editorial incon-
sistencies232 in the use of typography are unintentional and have no normative
meaning233 in this standard.

234 NOTEs provided as parts of labeled tables and figures are integral parts of this
standard235 (normative). Footnotes and notes within the body of the text are for
information236 only (informative).

Numerical237 quantities are presented in international style: comma is used as a
decimal238 sign and units are from the International System (SI).

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

239 POSIX.1j Technical Reviewers
240 The individuals denoted in Table i are the Technical Reviewers for this draft. Dur-

ing241 balloting they are the subject matter experts who coordinate the resolution
process242 for specific sections, as shown.

243 Table i — POSIX.1j Technical Reviewers

244 __
245 Section Description Reviewer__

246 Ballot Coordinators Joe Gwinn and Jim Oblinger
247 11.5-7 Synchronization Karen Gordon and Michael González
248 5,6,8,12 Typed Memory Frank Prindle

3249 ,6.7,11.2-4,14,15 Monotonic Clock and Nanosleep Michael González
250 __

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

251 Contents

252 PAGE

253 Introduction . v

Section254 1: General . 1
255 1.3 Conformance 1

Section256 2: Terminology and General Requirements 3
257 2.2 Definitions . 3
258 2.2.2 General Terms 3
259 2.5 Primitive System Data Types 4
260 2.7 C Language Definitions 5
261 2.7.3 Headers and Function Prototypes 5
262 2.8 Numerical Limits 6
263 2.8.7 Maximum Values 6
264 2.9 Symbolic Constants 7
265 2.9.3 Compile-Time Symbolic Constants for Portability
266 Specifications 7

Section267 3: Process Primitives 9
268 3.1 Process Creation and Execution 9
269 3.1.2 Execute a File 9
270 3.2 Process Termination 9
271 3.2.2 Terminate a Process 9
272 3.3 Signals . 9
273 3.3.8 Synchronously Accept a Signal 9

Section274 4: Process Environment 11
275 4.8 Configurable System Variables 11
276 4.8.1 Get Configurable System Variables 11

Section277 5: Files and Directories 13
278 5.6 File Characteristics 13
279 5.6.1 File Characteristics: Header and Data Structure 13
280 5.6.2 Get File Status 13
281 5.6.4 Change File Modes 13

Section282 6: Input and Output Primitives 15
283 6.3 File Descriptor Deassignment 15
284 6.3.1 Close a File 15
285 6.4 Input and Output 15
286 6.4.1 Read from a File 15
287 6.4.2 Write to a File 15
288 6.5 Control Operations on Files 16

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

ii

289 6.5.2 File Control 16
290 6.5.3 Reposition Read/Write File Offset 16
291 6.7 Asynchronous Input and Output 16
292 6.7.8 Wait for an Asynchronous I/O Request 16

Section293 8: Language-Specific Services for the C Language 17
294 8.2 C Language Input/Output Functions 17
295 8.2.2 Open a Stream on a File Descriptor 17

Section296 11: Synchronization 19
297 11.4 Condition Variables 19
298 11.4.1 Condition Variable Initialization Attributes 19
299 11.4.4 Waiting on a Condition 20
300 11.5 Barriers . 21
301 11.5.1 Barrier Initialization Attributes 21
302 11.5.2 Initialize/Destroy a Barrier 23
303 11.5.3 Synchronize at a Barrier 24
304 11.6 Reader/Writer Locks 26
305 11.6.1 Reader/Writer Lock Initialization Attributes 26
306 11.6.2 Initialize/Destroy a Reader/Writer Lock 28
307 11.6.3 Apply a Read Lock 30
308 11.6.4 Apply a Write Lock 33
309 11.6.5 Unlock a Reader/Writer Lock 35
310 11.7 Spin Locks . 36
311 11.7.1 Initialize/Destroy a Spin Lock 36
312 11.7.2 Lock a Spin Lock 38
313 11.7.3 Unlock a Spin Lock 39

Section314 12: Memory Management 41
315 12.2 Memory Mapping Functions 41
316 12.2.1 Map Process Addresses to a Memory Object 42
317 12.2.2 Unmap Previously Mapped Addresses 43
318 12.2.4 Memory Object synchronization 44
319 12.4 Typed Memory Functions 44
320 12.4.1 Data Definitions 44
321 12.4.2 Open a Typed Memory Object 44
322 12.4.3 Find Offset and Length of a Mapped Typed Memory Block . 47
323 12.4.4 Query Typed Memory Information 48

Section324 14: Clocks and Timers 51
325 14.1 Data Definitions for Clocks and Timers 51
326 14.1.4 Manifest Constants 51
327 14.2 Clock and Timer Functions 52
328 14.2.1 Clocks 52
329 14.2.2 Create a Per-Process Timer 53
330 14.2.6 High Resolution Sleep with Specifiable Clock 53

Section331 15: Message Passing 57

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

iii

Section332 18: Thread Cancellation 59
333 18.1 Thread Cancellation Overview 59

Annex334 A (informative) Bibliography 61
335 A.4 Other Sources of Information 61

Annex336 B (informative) Rationale and Notes 63
337 B.11 Synchronization 63
338 B.12 Memory Management 68
339 B.14 Clocks and Timers 76
340 B.18 Thread Cancellation 79

Annex341 F (informative) Portability Considerations 81
342 F.3 Profiling Considerations 81

Identi343 fier Index . 83

Alphabetic344 Topical Index 85

345 FIGURES

346 Figure B-1 −− Example of a system with typed memory 69

347 TABLES

348 Table 2-2 −− Optional Primitive System Data Types 5
T349 able 2-11 −− Versioned Compile-Time Symbolic Constants 8
T350 able 4-3 −− Optional Configurable System Variables 11

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

iv

Introduction

(This introduction is not a normative part of P1003.1j, Draft Standard for Information Technology
— Portable Operating System Interface (POSIX) — Part 1: System Application Program Interface
(API) — Amendment x: Advanced Realtime Extensions [C Language], but is included for informa-
tion only.)

1 Editor’s Note: This Introduction consists of material that will eventually be
integrated2 into the base POSIX.1 standard’s introduction (and the portion of Annex
B3 that contains general rationale about the standard). The Introduction contains
text4 that was previously held in either the Foreword or Scope. As this portion of
the5 standard is for information only (nonnormative), specific details of the integra-
tion6 with POSIX.1 are left as an editorial exercise.

7 The purpose of this document is to supplement the base standard with interfaces
and8 functionality for applications having realtime requirements or special
e9 fficiency requirements in tightly coupled multitasking environments.

This10 standard will not change the base standard which it amends (including any
existing11 amendments) in such a way as to cause implementations or strictly con-
forming12 applications to no longer conform.

This13 standard defines systems interfaces to support the source portability of appli-
cations14 with realtime requirements. The system interfaces are all extensions of or
additions15 to ISO/IEC 9945-1:1996, as amended by IEEE-1003.1d:1999 (and by IEEE 9

16 1003.1a, if approved before this standard). Although rooted in the culture defined 9

17 by ISO/IEC 9945-1: 1990, they are focused upon the realtime application require-
ments,18 and the support of multiple threads of control within a process, which were
beyond19 the scope of ISO/IEC 9945-1: 1990. The interfaces included in this stan-
dard20 were the set required to make ISO/IEC 9945-1: 1990 efficiently usable to real-
time21 applications or applications running in multiprocessor systems with require-
ments22 that were not covered by the realtime or threads extensions specified in

23 IEEE-1003.1b, IEEE-1003.1c, and IEEE-1003.1d. The scope is to take existing real-
time24 or multiprocessor operating system practice and add it to the base standard.

The25 definition of realtime used in defining the scope of this standard is:

26 Realtime in operating systems: the ability of the operating system to provide
27 a required level of service in a bounded response time.

The28 key elements of defining the scope are a) defining a sufficient set of functional-
ity29 to cover the realtime application program domain in the areas not covered by

30 IEEE-1003.1b, IEEE-1003.1c, and IEEE-1003.1d; b) defining a sufficient set of func-
tionality31 to cover efficient synchronization in multiprocessors that allows applica-
tions32 to achieve the performance benefits of such architectures; c) defining
su33 fficient performance constraints and performance-related functions to allow a
realtime34 application to achieve deterministic response from the system; and d)
specifying35 changes or additions to improve or complete the definition of the facili-
ties36 specified in the previous real-time or threads extensions IEEE-1003.1b, IEEE-
1003.1c,37 and IEEE-1003.1d.

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Introduction v

Wherever38 possible, the requirements of other application environments were
included39 in the interface definition. The specific areas are noted in the scope over-
views40 of each of the interface areas given below.

The41 specific functional areas included in this standard and their scope include:

42 • Synchronization: new synchronization primitives that allow multiprocessor
43 applications to achieve the performance benefits of their hardware architec-
44 ture.

45 • Memory management: a facility to allow programs to allocate or access
46 different kinds of physical memory that are present in the system, and
47 allow separate application programs to share portions of this memory.

48 • Clocks and Timers: the addition of the Monotonic Clock, the specification of
49 the effects of setting the time of a clock on other timing services, and the
50 addition of functions to support relative or absolute suspension based upon
51 a clock specified by the application.

This52 standard has been defined exclusively at the source code level, for the C pro-
gramming53 language. Although the interfaces will be portable, some of the parame-
ters54 used by an implementation may have hardware or configuration dependen-
cies.55

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

vi Introduction

56 Related Standards Activities

57 Activities to extend this standard to address additional requirements are in pro-
gress,58 and similar efforts can be anticipated in the future.

The59 following areas are under active consideration at this time, or are expected to
become60 active in the near future:2)

61 (1) Additional System Application Program Interfaces in C Language 8

62 (2) Ada language bindings to this standard

63 (3) Shell and utility facilities

64 (4) Verification testing methods

65 (5) Tracing facilities 8

66 (6) Fault tolerance 8

67 (7) Checkpoint/restart facilities 8

68 (8) Resource limiting facilities 8

69 (9) Network interface facilities

70 (10) System administration

71 (11) Profiles describing application- or user-specific combinations of Open Sys- 8

72 tems standards 8

73 (12) An overall guide to POSIX-based or related Open Systems standards and
74 profiles

Extensions75 are approved as ‘‘amendments’’ or ‘‘revisions’’ to this document, fol-
lowing76 the IEEE and ISO/IEC Procedures.

Approved77 amendments are published separately until the full document is
reprinted78 and such amendments are incorporated in their proper positions.

If79 you have interest in participating in the PASC working groups addressing these
issues,80 please send your name, address, and phone number to the Secretary, IEEE

81 Standards Board, Institute of Electrical and Electronics Engineers, Inc., P.O. Box
1331,82 445 Hoes Lane, Piscataway, NJ 08855-1331, and ask to have this forwarded
to83 the chairperson of the appropriate PASC working group. If you have interest in
participating84 in this work at the international level, contact your ISO/IEC national
body.85

86 ________________

2)87 A Standards Status Report that lists all current IEEE Computer Society standards projects is
88 available from the IEEE Computer Society, 1730 Massachusetts Avenue NW, Washington, DC
89 20036-1903; Telephone: +1 202 371-0101; FAX: +1 202 728-9614. Working drafts of POSIX
90 standards under development are also available from this office.

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Introduction vii

P1003.1j91 was prepared by the System Services Working Group—Realtime, spon-
sored92 by the Portable Application Standards Committee of the IEEE Computer
Society.93 At the time this standard was approved, the membership of the System
Services94 Working Group was as follows:

95 Portable Application Standards Committee
96 (PASC)

97 Chair: Lowell Johnson
98 Vice Chair: Joe Gwinn
99 Functional Chairs: Jay Ashford
100 Andrew Josey
101 Curtis Royster
102 Secretary: Nick Stoughton

103 System Services Working Group—Realtime: Officials

104 Chair: Joe Gwinn
105 Susan Corwin (until 1995)
106 Editor: Michael González
107 Secretary: Karen Gordon
108 Lee Schemerhorn (until 1995)

109 Ballot Coordinators

110 Joe Gwinn Jim Oblinger

111 Technical Reviewers

112 Michael González Karen Gordon Frank Prindle

113 Working Group

114 to be supplied to be supplied to be supplied

115 The following persons were members of the 1003.1j Balloting Group that approved
the116 standard for submission to the IEEE Standards Board:

117 Institutional Representatives <To be filled in>

118 Individual Balloters <To be filled in>

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

viii Introduction

119 When the IEEE Standards Board approved this standard on <date to be pro-
vided>120 , it had the following membership:

121 (to be pasted in by IEEE)

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Introduction ix

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

x Introduction

Information Technology — Portable Operating
System Interface (POSIX) — Part 1: System
Application Program Interface (API) —
Amendment x: Advanced Realtime Extensions [C
Language]

Section 1: General

1 8

2 1.3 Conformance

3 1.3.1 Implementation Conformance

4 ⇒⇒ 1.3.1.3 Conforming Implementation Options Add to the table of imple-
5 mentation options that warrant requirement by applications or in
6 specifications:

7 Barriers option in (2.9.3){_POSIX_BARRIERS}
8 Clock Selection option (in 2.9.3) 9{_POSIX_CLOCK_SELECTION}
9 Monotonic Clock option (in 2.9.3){_POSIX_MONOTONIC_CLOCK}
10 Reader/Writer Locks option in (2.9.3){_POSIX_READER_WRITER_LOCKS}
11 Spin Locks option (in 2.9.3){_POSIX_SPIN_LOCKS}
12 Typed Memory Objects option (in 2.9.3){_POSIX_TYPED_MEMORY_OBJECTS}

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

1.3 Conformance 1

P1003.1j/D10 INFORMATION TECHNOLOGY — POSIX

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

2 1 General

P1003.1j/D10

Section 2: Terminology and General Requirements

1 8

2 2.2 Definitions

3 2.2.2 General Terms

4 ⇒⇒ 2.2.2 General Terms Modify the definition of ‘‘memory object ’’ replacing it
5 with the following text:

6 2.2.2.63 memory object: Either a file, a shared memory object, or a typed
memory7 object.

When8 used in conjunction with mmap(), a memory object will appear in the
address9 space of the calling process.

10 ⇒⇒ 2.2.2 General Terms Modify the contents of subclause 2.2.2, General Terms,
11 to add the following definitions in the correct sorted order [disregarding the
12 subclause numbers shown here].

13 2.2.2.133 barrier: A synchronization object that allows multiple threads to syn-
chronize14 at a particular point in their execution.

15 2.2.2.134 clock jump: The difference between two successive distinct values of a
clock,16 as observed from the application via one of the ‘‘get time’’ operations.

17 2.2.2.135 monotonic clock: A clock whose value cannot be set via
18 clock_settime () and which cannot have negative clock jumps.

19 2.2.2.136 reader/writer lock: A synchronization object that allows a group of
threads,20 called ‘‘readers’’, simultaneous read access to a resource and another
group,21 called ‘‘writers’’, exclusive write access to the resource. All readers exclude
any22 writers and a writer excludes all readers and any other writers.

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

2.2 Definitions 3

P1003.1j/D10 INFORMATION TECHNOLOGY — POSIX

23 2.2.2.137 spin lock: A synchronization object used to allow multiple threads to
serialize24 their access to shared data.

25 2.2.2.138 typed memory namespace: A system-wide namespace that contains
the26 names of the typed memory objects present in the system. It is configurable
for27 a given implementation.

28 2.2.2.139 typed memory object: A combination of a typed memory pool and a
typed29 memory port. The entire contents of the pool shall be accessible from the
port.30 The typed memory object is identified through a name that belongs to the
typed31 memory namespace.

32 2.2.2.140 typed memory pool: An extent of memory with the same operational
c33 haracteristics. Typed memory pools may be contained within each other.

34 2.2.2.141 typed memory port: A hardware access path to one or more typed
memory35 pools.

36 2.5 Primitive System Data Types

37 ⇒⇒ 2.5 Primitive System Data Types Add the following text at the end of the
38 first paragraph, starting "Some data types used by..."

39 Support for some primitive data types is dependent on implementation options
40 (see Table 2-2). Where an implementation option is not supported, the primi-
41 tive data types for that option need not be found in the header
42 <sys/types.h> .

43 ⇒⇒ 2.5 Primitive System Data Types In the second paragraph, replace ‘‘All of
44 the types listed in Table 2-1 ... ’’ by the following:

45 ‘‘All of the types listed in Table 2-1 and Table 2-2 ...’’

46 ⇒⇒ 2.5 Primitive System Data Types Add the following datatypes to the list of
47 types for which there are no defined comparison or assignment operations:

48 pthread_barrier_t, pthread_barrierattr_t, pthread_rwlock_t,
49 pthread_rwlockattr_t, pthread_spinlock_t.

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

4 2 Terminology and General Requirements

PART 1: SYSTEM API—Amd. x:Advanced Realtime Extensions [C Language] P1003.1j/D10

50 ⇒⇒ 2.5 Primitive System Data Types Add the following paragraphs after the
51 paragraph starting ‘‘There are no defined comparison... ’’:

52 An implementation need not provide the types pthread_barrier_t and
53 pthread_barrierattr_t unless the Barriers option is supported (see 2.9.3). 8

54 An implementation need not provide the types pthread_rwlock_t and
55 pthread_rwlockattr_t unless the Reader Writer Locks option is supported (see 8

56 2.9.3). 8

57 An implementation need not provide the type pthread_spinlock_t unless the
58 Spin Locks option is supported (see 2.9.3). 8

59 ⇒⇒ 2.5 Primitive System Data Types Add the following table, and renumber
60 subsequent tables in this Section accordingly:

61 Table 2-2 −− Optional Primitive System Data Types
62 __
63 Defined Implementation
64 Type Description Option__
65 Used to identify a barrier Barriers optionpthread_barrier_t

66 Used to define a barrier attributes
67 object

Barriers optionpthread_barrierattr_t

68 Used to identify a reader/writer
69 lock

Reader Writer
Locks option

pthread_rwlock_t

70 Used to define a reader/writer
71 lock attributes object

Reader Writer
Locks option

pthread_rwlockattr_t

72 Used to identify a spin lock Spin Locks optionpthread_spinlock_t
__LL
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L

73 2.7 C Language Definitions

74 2.7.3 Headers and Function Prototypes

75 ⇒⇒ 2.7.3 Headers and Function Prototypes Add the following text after the
76 sentence ‘‘For other functions in this part of ISO/IEC 9945, the prototypes or
77 declarations shall appear in the headers listed below.’’:

78 Presence of some prototypes or declarations is dependent on implementation
79 options. Where an implementation option is not supported, the prototype or
80 declaration need not be found in the header.

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

2.7 C Language Definitions 5

P1003.1j/D10 INFORMATION TECHNOLOGY — POSIX

81 ⇒⇒ 2.7.3 Headers and Function Prototypes Modify the contents of subclause
82 2.7.3 to add the following optional functions, at the end of the current list of 8

83 headers and functions. 8

84 If the Typed Memory Objects option is supported: 8

85 <sys/mman.h> posix_typed_mem_open(), posix_mem_offset (),
86 posix_typed_mem_get_info()

87 If the Spin Locks option is supported: 8

88 <pthread.h> pthread_spin_init(), pthread_spin_destroy(),
89 pthread_spin_lock(), pthread_spin_trylock(),
90 pthread_spin_unlock()

91 9

92 If the Barriers option is supported: 8

93 <pthread.h> pthread_barrierattr_init(),
94 pthread_barrierattr_destroy(),
95 pthread_barrierattr_getpshared(),
96 pthread_barrierattr_setpshared(),
97 pthread_barrier_init(), pthread_barrier_destroy(),
98 pthread_barrier_wait()

99 If the Reader/Writer Locks option is supported: 8

100 <pthread.h> pthread_rwlockattr_init(), pthread_rwlockattr_destroy(),
101 pthread_rwlockattr_getpshared(),
102 pthread_rwlockattr_setpshared(), pthread_rwlock_init(),
103 pthread_rwlock_destroy(), pthread_rwlock_rdlock(),
104 pthread_rwlock_tryrdlock(),
105 pthread_rwlock_timedrdlock(), pthread_rwlock_wrlock(),
106 pthread_rwlock_trywrlock(),
107 pthread_rwlock_timedwrlock(), pthread_rwlock_unlock() 9

108 If the Clock Selection option is supported: 9

109 <time.h> clock_nanosleep()

110 <pthread.h> pthread_condattr_setclock(), pthread_condattr_getclock() 9

111 2.8 Numerical Limits 8

112 2.8.7 Maximum Values 8

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

6 2 Terminology and General Requirements

PART 1: SYSTEM API—Amd. x:Advanced Realtime Extensions [C Language] P1003.1j/D10

113 ⇒⇒ 2.8.7 Maximum Values In Table 2-7a, replace the description of {_POSIX_- 8

114 CLOCKRES_MIN}, currently reading ‘‘The CLOCK_REALTIME clock resolution, 8

115 in nanoseconds’’, with the following: 8

116 The resolution of the clocks CLOCK_REALTIME and CLOCK_MONOTONIC (if 8

117 supported), in nanoseconds 8

118 2.9 Symbolic Constants

119 2.9.3 Compile-Time Symbolic Constants for Portability Specifications

120 ⇒⇒ 2.9.3 Compile-Time Symbolic Constants for Portability Specifications 8

121 Change the first words in the first paragraph, currently saying ‘‘The constants 8

122 in Table 2-10 may be used... ’’ to the following: 8

123 The constants in Table 2-10 and Table 2-11 may be used... 8

124 ⇒⇒ 2.9.3 Compile-Time Symbolic Constants for Portability Specifications 8

125 Add the following sentence at the end of the first paragraph: 8

126 If any of the constants in Table 2-11 is defined, it shall be defined with the 8

127 value shown in that Table. This value represents the version of the associated 8

128 option that is supported by the implementation. 8

129 ⇒⇒ 2.9.3 Compile-Time Symbolic Constants for Portability Specifications 8

130 Add Table 2-11, shown below, after Table 2-10 renumbering all subsequent 8

131 tables accordingly. 8

132 NOTE: (Editor’s note) The value 199ymmL corresponds to the date of approval of IEEE P1003.1j. 8

133 ⇒⇒ 2.9.3 Compile-Time Symbolic Constants for Portability Specifications
134 Add the following paragraphs:

135 If the symbol {_POSIX_BARRIERS} is defined, then the symbols {_POSIX_-
136 THREADS} and {_POSIX_THREAD_SAFE_FUNCTIONS} shall also be defined. If
137 the symbol {_POSIX_READER_WRITER_LOCKS} is defined, then the symbols
138 {_POSIX_THREADS} and {_POSIX_THREAD_SAFE_FUNCTIONS} shall also be
139 defined. If the symbol {_POSIX_SPIN_LOCKS} is defined, then the symbols
140 {_POSIX_THREADS} and {_POSIX_THREAD_SAFE_FUNCTIONS} shall also be
141 defined.

142 If the symbol {_POSIX_MONOTONIC_CLOCK} is defined, then the symbol
143 {_POSIX_TIMERS} shall also be defined.

144 If the symbol {_POSIX_CLOCK_SELECTION} is defined, then the symbol 9

145 {_POSIX_TIMERS} shall also be defined.

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

2.9 Symbolic Constants 7

P1003.1j/D10 INFORMATION TECHNOLOGY — POSIX

146 Table 2-11 −− Versioned Compile-Time Symbolic Constants
147 __ 9

148 Name Value Description 8__
149 {_POSIX_BARRIERS} 8199ymmL If this symbol is defined with the
150 shown value, the implementation 8
151 supports the Barriers option. 8

152 {_POSIX_READER_WRITER_LOCKS} 8199ymmL If this symbol is defined with the
153 shown value, the implementation 8
154 supports the Reader/Writer Locks 8
155 option. 8

156 {_POSIX_SPIN_LOCKS} 8199ymmL If this symbol is defined with the
157 shown value, the implementation 8
158 supports the Spin Locks option. 8

159 {_POSIX_TYPED_MEMORY_OBJECTS} 8199ymmL If this symbol is defined with the
160 shown value, the implementation 8
161 supports the Typed Memory Objects 8
162 option. 8

163 {_POSIX_MONOTONIC_CLOCK} 8199ymmL If this symbol is defined with the
164 shown value, the implementation 8
165 supports the Monotonic Clock option. 8

166 {_POSIX_CLOCK_SELECTION} 9199ymmL If this symbol is defined with the
167 shown value, the implementation 9
168 supports the Clock Selection option. 9

__LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

8 2 Terminology and General Requirements

P1003.1j/D10

Section 3: Process Primitives

1 3.1 Process Creation and Execution

2 3.1.2 Execute a File

3 ⇒⇒ 3.1.2.2 Execute a File—Description Add the following paragraph after the
4 paragraph starting ‘‘If the Memory Mapped Files or Shared Memory Objects
5 option ... ’’

6 If the Typed Memory Objects option is supported, blocks of typed memory that
7 were mapped in the calling process are unmapped, as if munmap() was impli-
8 citly called to unmap them.

9 3.2 Process Termination

10 3.2.2 Terminate a Process

11 ⇒⇒ 3.2.2.2 Terminate a Process—Description Add the following list item after
12 item number (11), and renumber the subsequent items accordingly:

13 (12) If the Typed Memory Objects option is supported, blocks of typed memory
14 that were mapped in the calling process are unmapped, as if munmap()
15 was implicitly called to unmap them.

16 3.3 Signals

17 3.3.8 Synchronously Accept a Signal

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

3.3 Signals 9

P1003.1j/D10 INFORMATION TECHNOLOGY — POSIX

18 ⇒⇒ 3.3.8.2 Synchronously Accept a Signal—description Add the following
19 text at the end of the paragraph starting ‘‘The function sigtimedwait() behaves
20 the same as ... ’’

21 If the Monotonic Clock option is supported, the CLOCK_MONOTONIC clock
22 shall be used to measure the time interval specified by the timeout argument.

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

10 3 Process Primitives

P1003.1j/D10

Section 4: Process Environment

1 4.8 Configurable System Variables

2 4.8.1 Get Configurable System Variables

3 ⇒⇒ 4.8.1.2 Get Configurable System Variables— Description Add the follow-
4 ing text after the sentence ‘‘The implementation shall support all of the vari-
5 ables listed in Table 4-2 and may support others ’’, in the second paragraph:

6 Support for some configuration variables is dependent on implementation
7 options (see Table 4-3). Where an implementation option is not supported, the
8 variable need not be supported.

9 ⇒⇒ 4.8.1.2 Get Configurable System Variables— Description In the second
10 paragraph, replace the text ‘‘The variables in Table 4-2 come from ... ’’ by the
11 following:

12 ‘‘The variables in Table 4-2 and Table 4-3 come from ...’’

13 ⇒⇒ 4.8.1.2 Get Configurable System Variables— Description Add the follow-
14 ing table:

15 Table 4-3 −− Optional Configurable System Variables
16 __
17 Variable name Value__
18 {_POSIX_BARRIERS} {_SC_BARRIERS}
19 {_POSIX_READER_WRITER_LOCKS} {_SC_READER_WRITER_LOCKS}
20 {_POSIX_SPIN_LOCKS} {_SC_SPIN_LOCKS}
21 {_POSIX_TYPED_MEMORY_OBJECTS} {_SC_TYPED_MEMORY_OBJECTS}
22 {_POSIX_MONOTONIC_CLOCK} {_SC_MONOTONIC_CLOCK}
23 {_POSIX_CLOCK_SELECTION} {_SC_CLOCK_SELECTION} 9__LL

L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

4.8 Configurable System Variables 11

P1003.1j/D10 INFORMATION TECHNOLOGY — POSIX

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

12 4 Process Environment

P1003.1j/D10

Section 5: Files and Directories

1 5.6 File Characteristics

2 5.6.1 File Characteristics: Header and Data Structure

3 8

4 ⇒⇒ 5.6.1.1 <sys/stat.h> File Types Add the following text and macro after 8

5 S_TYPEISSHM: 8

6 If the Typed Memory Objects option is supported, the implementation may 8

7 implement typed memory objects as distinct file types, and the following macro 8

8 shall test whether a file is of the specified type: 8

9 S_TYPEISTMO(buf) Test macro for a typed memory object

10 5.6.2 Get File Status

11 ⇒⇒ 5.6.2.2 Get File Status—Description Replace the text ‘‘If the Shared A

12 Memory Objects option is supported and fildes references a shared memory A

13 object, ’’ by the following: A

14 If the Shared Memory Objects option is supported and fildes references a A

15 shared memory object or the Typed Memory Objects option is supported and A

16 fildes references a typed memory object, A

17 5.6.4 Change File Modes

18 ⇒⇒ 5.6.4.2 Change File Modes—Description Add the following paragraph
19 before the paragraph starting ‘‘If the calling process does not have appropriate
20 privileges... ’’:

21 If {_POSIX_TYPED_MEMORY_OBJECTS} is defined and fildes references a typed 9

22 memory object, the behavior of fchmod() is unspecified.

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

5.6 File Characteristics 13

P1003.1j/D10 INFORMATION TECHNOLOGY — POSIX

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

14 5 Files and Directories

P1003.1j/D10

Section 6: Input and Output Primitives

1 6.3 File Descriptor Deassignment

2 6.3.1 Close a File

3 ⇒⇒ 6.3.1.2 Close a File—Description In the close() function, replace the para-
4 graph starting ‘‘If a memory object remains referenced... ’’ by the following:

5 If a shared memory object or a memory mapped file remains referenced
6 at the last close (i.e., a process has it mapped), then the entire contents
7 of the memory object shall persist until the memory object becomes
8 unreferenced. If this is the last close of a shared memory object or a
9 memory mapped file and the close results in the memory object becom-
10 ing unreferenced, and the memory object has been unlinked, then the
11 memory object shall be removed.

12 6.4 Input and Output

13 6.4.1 Read from a File

14 ⇒⇒ 6.4.1.2 Read from a File—description Add the following text at the end of
15 the description of the read() function:

16 If the Typed Memory Objects option is supported:

17 If fildes refers to a typed memory object, the result of the read() function
18 is unspecified.

19 6.4.2 Write to a File

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

6.4 Input and Output 15

P1003.1j/D10 INFORMATION TECHNOLOGY — POSIX

20 ⇒⇒ 6.4.2.2 Write to a File—Description Add the following text at the end of the
21 description of the write() function:

22 If the Typed Memory Objects option is supported:

23 If fildes refers to a typed memory object, the result of the write() func-
24 tion is unspecified.

25 6.5 Control Operations on Files

26 6.5.2 File Control

27 ⇒⇒ 6.5.2.2 File Control—Description Add the following text at the end of the
28 description of the fcntl() function:

29 If the Typed Memory Objects option is supported and fildes refers to a typed
30 memory object, the result of the fcntl() function is unspecified.

31 6.5.3 Reposition Read/Write File Offset

32 ⇒⇒ 6.5.3.2 Reposition Read/Write File Offset—Description Add the follow-
33 ing text at the end of the description of the lseek() function:

34 If the Typed Memory Objects option is supported and fildes refers to a typed
35 memory object, the result of the lseek() function is unspecified.

36 6.7 Asynchronous Input and Output

37 6.7.8 Wait for an Asynchronous I/O Request

38 ⇒⇒ 6.7.8.2 Wait for an Asynchronous I/O Request—Description In the
39 description of the aio_suspend() function, add the following text at the end of
40 the paragraph starting ‘‘If the time interval indicated in ... ’’:

41 If {_POSIX_MONOTONIC_CLOCK} is defined, the clock that shall be used to 9

42 measure this time interval shall be the CLOCK_MONOTONIC clock.

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

16 6 Input and Output Primitives

P1003.1j/D10

Section 8: Language-Specific Services for the C Language

1 8.2 C Language Input/Output Functions

2 8.2.2 Open a Stream on a File Descriptor

3 ⇒⇒ 8.2.2.2 Open a Stream on a File Descriptor—Description Add the follow-
4 ing text at the end of the description of the fdopen() function:

5 If the Typed Memory Objects option is supported and fildes refers to a typed
6 memory object, the result of the fdopen() function is unspecified.

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

8.2 C Language Input/Output Functions 17

P1003.1j/D10 INFORMATION TECHNOLOGY — POSIX

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

18 8 Language-Specific Services for the C Language

P1003.1j/D10

Section 11: Synchronization

1 8

2 11.4 Condition Variables

3 11.4.1 Condition Variable Initialization Attributes

4 ⇒⇒ 11.4.1.1 Condition Variable Initialization Attributes—Synopsis Add
5 the following function synopses:

6 int pthread_condattr_getclock(const pthread_condattr_t ∗attr,
7 clockid_t ∗clock_id);

8 int pthread_condattr_setclock(pthread_condattr_t ∗attr,
9 clockid_t clock_id);

10 ⇒⇒ 11.4.1.2 Condition Variable Initialization Attributes—Description Add
11 the following text before the ‘‘Otherwise’’ clause:

12 If {_POSIX_CLOCK_SELECTION} is defined, the implementation shall provide 9

13 the clock attribute and the associated functions pthread_condattr_setclock()
14 and pthread_condattr_getclock(). The clock attribute is the clock id of the 8

15 clock that shall be used to measure the timeout service of
16 pthread_cond_timedwait(). The default value of the clock attribute shall
17 refer to the system clock.

18 The pthread_condattr_setclock() function is used to set the clock attribute in
19 an initialized attributes object referenced by attr. If
20 pthread_condattr_setclock() is called with a clock_id argument that refers to a
21 CPU-time clock, the call shall fail. The pthread_condattr_getclock() function
22 obtains the value of the clock attribute from the attributes object referenced
23 by attr.

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

11.4 Condition Variables 19

P1003.1j/D10 INFORMATION TECHNOLOGY — POSIX

24 ⇒⇒ 11.4.1.2 Condition Variable Initialization Attributes—Description Add
25 the pthread_condattr_getclock() and pthread_condattr_setclock() functions to
26 the ‘‘Otherwise’’ list.

27 ⇒⇒ 11.4.1.3 Condition Variable Initialization Attributes—Returns Add the
28 pthread_condattr_setclock() function to the list of functions appearing in the
29 first paragraph. In addition, add the following paragraph:

30 If successful, the pthread_condattr_getclock() function shall return zero and
31 store the value of the clock attribute of attr into the object referenced by the
32 clock_id argument. Otherwise, an error number shall be returned to indicate
33 the error.

34 ⇒⇒ 11.4.1.4 Condition Variable Initialization Attributes—Errors Add the
35 pthread_condattr_setclock() and pthread_condattr_getclock() functions to the
36 list of functions for which the error value [EINVAL] is returned if the implemen-
37 tation detects that the value specified by attr is invalid. In addition, add the
38 following text at the end of this subclause:

39 For each of the following conditions, if the condition is detected, the
40 pthread_condattr_setclock() function shall return the corresponding error
41 number:

42 [EINVAL] The value specified by clock_id does not refer to a known
43 clock, or is a CPU-time clock.

44 ⇒⇒ 11.4.1.5 Condition Variable Initialization Attributes—
45 Cross-References Add the following cross-reference:

46 pthread_cond_timedwait(), 11.4.4.

47 11.4.4 Waiting on a Condition

48 ⇒⇒ 11.4.4.2 Waiting on a Condition—Description add the following text after
49 the sentence starting ‘‘The pthread_cond_timedwait function is the same as
50 ... ’’:

51 If {_POSIX_CLOCK_SELECTION} is defined, the condition variable shall have a 9

52 clock attribute which specifies the clock that shall be used to measure the
53 time specified by the abstime argument.

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

20 11 Synchronization

PART 1: SYSTEM API—Amd. x:Advanced Realtime Extensions [C Language] P1003.1j/D10

54 ⇒⇒ 11 Synchronization Add these subclauses:

55 11.5 Barriers

56 11.5.1 Barrier Initialization Attributes

57 Functions: pthread_barrierattr_init(), pthread_barrierattr_destroy(),
58 pthread_barrierattr_getpshared(), pthread_barrierattr_setpshared().

59 11.5.1.1 Synopsis

60 #include <sys/types.h>
#include61 <pthread.h>

int62 pthread_barrierattr_init(pthread_barrierattr_t ∗attr);

int63 pthread_barrierattr_destroy(pthread_barrierattr_t ∗attr);

int64 pthread_barrierattr_getpshared(const pthread_barrierattr_t ∗attr,
65 int ∗pshared);

int66 pthread_barrierattr_setpshared(pthread_barrierattr_t ∗attr,
67 int pshared);

68 11.5.1.2 Description

69 If {_POSIX_BARRIERS} is defined: 9

70 The function pthread_barrierattr_init() initializes a barrier attributes
71 object attr with the default value for all of the attributes defined by the
72 implementation.

73 The results are undefined if pthread_barrierattr_init() is called specifying
74 an already initialized barrier attributes object.

75 After a barrier attributes object has been used to initialize one or more bar-
76 riers, any function affecting the attributes object (including destruction)
77 does not affect any previously initialized barrier.

78 The pthread_barrierattr_destroy() function destroys a barrier attributes
79 object. The effect of subsequent use of the object is undefined until the
80 object is re-initialized by another call to pthread_barrierattr_init(). An
81 implementation may cause pthread_barrierattr_destroy() to set the object
82 referenced by attr to an invalid value.

83 If {_POSIX_THREAD_PROCESS_SHARED} is defined, the implementation 9

84 shall provide the attribute process-shared and the associated functions
85 pthread_barrierattr_getpshared() and pthread_barrierattr_setpshared(). 8

86 The process-shared attribute is set to PTHREAD_PROCESS_SHARED to
87 permit a barrier to be operated upon by any thread that has access to the
88 memory where the barrier is allocated. If the process-shared attribute is

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

11.5 Barriers 21

P1003.1j/D10 INFORMATION TECHNOLOGY — POSIX

89 PTHREAD_PROCESS_PRIVATE, the barrier shall only be operated upon by
90 threads created within the same process as the thread that initialized the
91 barrier; if threads of different processes attempt to operate on such a bar-
92 rier, the behavior is undefined. The default value of the attribute shall be
93 PTHREAD_PROCESS_PRIVATE. Both constants
94 PTHREAD_PROCESS_SHARED and PTHREAD_PROCESS_PRIVATE are
95 defined in <pthread.h> .

96 The pthread_barrierattr_setpshared() function is used to set the
97 process-shared attribute in an initialized attributes object referenced by
98 attr. The pthread_barrierattr_getpshared() function obtains the value of the
99 process-shared attribute from the attributes object referenced by attr.

 100 9

101 Additional attributes, their default values, and the names of the associated func-
tions102 to get and set those attribute values are implementation defined.

103 11.5.1.3 Returns

104 If successful, the pthread_barrierattr_init(), pthread_barrierattr_destroy(), and
105 pthread_barrierattr_setpshared() functions shall return zero. Otherwise, an error

number106 shall be returned to indicate the error.

If107 successful, the pthread_barrierattr_getpshared() function shall return zero and
store108 the value of the process-shared attribute of attr into the object refer-
enced109 by the pshared parameter. Otherwise, an error number shall be returned to
indicate110 the error.

111 11.5.1.4 Errors

112 If any of the following conditions occur, the pthread_barrierattr_init() function
shall113 return the corresponding error value:

114 [ENOMEM] Insufficient memory exists to initialize the barrier attributes
115 object.

F116 or each of the following conditions, if the condition is detected, the
117 pthread_barrierattr_destroy(), pthread_barrierattr_getpshared(), and
118 pthread_barrierattr_setpshared() functions shall return the corresponding error

value:119

120 [EINVAL] The value specified by attr is invalid.

F121 or each of the following conditions, if the condition is detected, the
122 pthread_barrierattr_setpshared() function shall return the corresponding error

value:123

124 [EINVAL] The new value specified for the process-shared attribute is
125 not one of the legal values PTHREAD_PROCESS_SHARED or
126 PTHREAD_PROCESS_PRIVATE.

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

22 11 Synchronization

PART 1: SYSTEM API—Amd. x:Advanced Realtime Extensions [C Language] P1003.1j/D10

127 11.5.1.5 Cross-References

128 pthread_barrier_init(), 11.5.2.

129 11.5.2 Initialize/Destroy a Barrier

130 Functions: pthread_barrier_init(), pthread_barrier_destroy().

131 11.5.2.1 Synopsis

132 #include <sys/types.h>
#include133 <pthread.h>

int134 pthread_barrier_init(pthread_barrier_t ∗barrier,
135 const pthread_barrierattr_t ∗attr,
136 unsigned int count);

int137 pthread_barrier_destroy(pthread_barrier_t ∗barrier);

138 8

139 11.5.2.2 Description

140 If {_POSIX_BARRIERS} is defined: 9

141 The pthread_barrier_init() function shall allocate any resources required to
142 use the barrier referenced by barrier and initializes the barrier with attri-
143 butes referenced by attr. If attr is NULL, the default barrier attributes are
144 used; the effect is the same as passing the address of a default barrier attri-
145 butes object. The results are undefined if pthread_barrier_init() is called
146 when any thread is blocked on the barrier (that is, has not returned from
147 the pthread_barrier_wait() call). The results are undefined if a barrier is
148 used without first being initialized. The results are undefined if
149 pthread_barrier_init() is called specifying an already initialized barrier.

150 The count argument specifies the number of threads that must call
151 pthread_barrier_wait() before any of them successfully return from the call.
152 The value specified by count must be greater than zero.

153 If the pthread_barrier_init() function fails, the barrier is not initialized and
154 the contents of barrier are undefined.

155 Only the object referenced by barrier may be used for performing synchron- 9

156 ization. The result of referring to copies of that object in calls to 9

157 pthread_barrier_destroy() or pthread_barrier_wait() is undefined. 9

158 The pthread_barrier_destroy() function destroys the barrier referenced by
159 barrier and releases any resources used by the barrier. The effect of subse-
160 quent use of the barrier is undefined until the barrier is re-initialized by
161 another call to pthread_barrier_init(). An implementation may use this
162 function to set barrier to an invalid value. The results are undefined if
163 pthread_barrier_destroy() is called when any thread is blocked on the bar-
164 rier, or if this function is called with an uninitialized barrier.

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

11.5 Barriers 23

P1003.1j/D10 INFORMATION TECHNOLOGY — POSIX

165 8

166 9

167 11.5.2.3 Returns

168 Upon successful completion, the pthread_barrier_init() and
169 pthread_barrier_destroy() functions shall return zero. Otherwise, an error

number170 shall be returned to indicate the error.

171 11.5.2.4 Errors

172 If any of the following conditions occur, the pthread_barrier_init() function shall
return173 the corresponding value:

174 [EAGAIN] The system lacks the necessary resources to initialize another
175 barrier.

176 [EINVAL] The value specified by count is equal to zero.

177 [ENOMEM] Insufficient memory exists to initialize the barrier.

F178 or each of the following conditions, if the condition is detected, the
179 pthread_barrier_init() function shall return the corresponding value:

180 [EBUSY] The implementation has detected an attempt to reinitialize a
181 barrier while it is in use (for example, while being used in a
182 pthread_barrier_wait() call) by another thread.

183 [EINVAL] The value specified by attr is invalid.

F184 or each of the following conditions, if the condition is detected, the
185 pthread_barrier_destroy() function shall return the corresponding value:

186 [EBUSY] The implementation has detected an attempt to destroy a barrier
187 while it is in use (for example, while being used in a
188 pthread_barrier_wait() call) by another thread.

189 [EINVAL] The value specified by barrier is invalid.

190 11.5.2.5 Cross-References

191 pthread_barrier_wait(), 11.5.3.

192 11.5.3 Synchronize at a Barrier

193 Functions: pthread_barrier_wait().

194 11.5.3.1 Synopsis

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

24 11 Synchronization

PART 1: SYSTEM API—Amd. x:Advanced Realtime Extensions [C Language] P1003.1j/D10

195 #include <sys/types.h>
#include196 <pthread.h>

int197 pthread_barrier_wait(pthread_barrier_t ∗barrier);

198 11.5.3.2 Description

199 If {_POSIX_BARRIERS} is defined: 9

200 The pthread_barrier_wait() function synchronizes participating threads at
201 the barrier referenced by barrier. The calling thread blocks (that is, does
202 not return from the pthread_barrier_wait() call) until the required number
203 of threads have called pthread_barrier_wait() specifying the barrier.

204 When the required number of threads have called pthread_barrier_wait()
205 specifying the barrier, the constant PTHREAD_BARRIER_SERIAL_THREAD
206 is returned to one unspecified thread and zero is returned to each of the
207 remaining threads. At this point, the barrier is reset to the state it had as a
208 result of the most recent pthread_barrier_init() function that referenced it.

209 The constant PTHREAD_BARRIER_SERIAL_THREAD is defined in
210 <pthread.h> and its value is distinct from any other value returned by
211 pthread_barrier_wait().

212 The results are undefined if this function is called with an uninitialized bar-
213 rier.

214 If a signal is delivered to a thread blocked on a barrier, upon return from 8

215 the signal handler the thread shall resume waiting at the barrier if the bar- 8

216 rier wait has not completed (that is, if the required number of threads have 8

217 not arrived at the barrier during the execution of the signal handler); other- 8

218 wise, the thread shall continue as normally from the completed barrier 8

219 wait. Until the thread in the signal handler returns from it, it is 8

220 unspecified whether other threads may proceed past the barrier once they 8

221 have all reached it. 8

222 A thread that has blocked on a barrier shall not prevent any unblocked
223 thread that is eligible to use the same processing resources from eventually
224 making forward progress in its execution. Eligibility for processing
225 resources shall be determined by the scheduling policy. See 13.2 for full
226 details.

 227 9

228 11.5.3.3 Returns

229 Upon successful completion, the pthread_barrier_wait() function shall return
230 PTHREAD_BARRIER_SERIAL_THREAD for a single (arbitrary) thread synchronized

at231 the barrier and zero for each of the other threads. Otherwise, an error number
shall232 be returned to indicate the error.

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

11.5 Barriers 25

P1003.1j/D10 INFORMATION TECHNOLOGY — POSIX

233 11.5.3.4 Errors

234 For each of the following conditions, if the condition is detected, the
235 pthread_barrier_wait() function shall return the corresponding value:

236 [EINVAL] The value specified by barrier does not refer to an initialized bar-
237 rier object.

238 11.5.3.5 Cross-References

239 pthread_barrier_init(), 11.5.2; pthread_barrier_destroy(), 11.5.2.

240 11.6 Reader/Writer Locks

241 Some of the synchronization primitives defined in this section provide exclusive
access242 to a resource. An application may also want to allow a group of threads,
called243 readers, simultaneous read access to a resource and another group of
threads,244 called writers, exclusive write access to the resource. To do so, another
s245 ynchronization primitive called a multiple reader/single writer, or reader/writer,
lock246 can be used.

One247 or more readers acquire read access to the resource by performing a read lock
operation248 on the associated reader/writer lock. A writer acquires exclusive write
access249 by performing a write lock operation. Basically, all readers exclude any
writers250 and a writer excludes all readers and any other writers.

A251 thread that has blocked on a reader/writer lock (that is, has not yet returned
from252 a pthread_rwlock_rdlock() or pthread_rwlock_wrlock() call) shall not prevent
any253 unblocked thread that is eligible to use the same processing resources from
eventually254 making forward progress in its execution. Eligibility for processing
resources255 shall be determined by the scheduling policy. See 13.2 for full details.

256 11.6.1 Reader/Writer Lock Initialization Attributes

257 Functions: pthread_rwlockattr_init(), pthread_rwlockattr_destroy(),
258 pthread_rwlockattr_getpshared(), pthread_rwlockattr_setpshared().

259 11.6.1.1 Synopsis

260 #include <sys/types.h>
#include261 <pthread.h>

int262 pthread_rwlockattr_init(pthread_rwlockattr_t ∗attr);

int263 pthread_rwlockattr_destroy(pthread_rwlockattr_t ∗attr);

int264 pthread_rwlockattr_getpshared(const pthread_rwlockattr_t ∗attr,
265 int ∗pshared);

int266 pthread_rwlockattr_setpshared(pthread_rwlockattr_t ∗attr,
267 int pshared);

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

26 11 Synchronization

PART 1: SYSTEM API—Amd. x:Advanced Realtime Extensions [C Language] P1003.1j/D10

268 11.6.1.2 Description

269 If {_POSIX_READER_WRITER_LOCKS} is defined: 9

270 The function pthread_rwlockattr_init() initializes a reader/writer lock attri-
271 butes object attr with the default value for all of the attributes defined by
272 the implementation.

273 The results are undefined if pthread_rwlockattr_init() is called specifying
274 an already initialized reader/writer lock attributes object.

275 After a reader/writer lock attributes object has been used to initialize one or
276 more reader/writer locks, any function affecting the attributes object
277 (including destruction) does not affect any previously initialized
278 reader/writer lock.

279 The pthread_rwlockattr_destroy() function destroys a reader/writer lock
280 attributes object. The effect of subsequent use of the object is undefined
281 until the object is re-initialized by another call to pthread_rwlockattr_init().
282 An implementation may cause pthread_rwlockattr_destroy() to set the
283 object referenced by attr to an invalid value.

284 If {_POSIX_THREAD_PROCESS_SHARED} is defined, the the implementation 9

285 shall provide the attribute process-shared and the associated functions
286 pthread_rwlockattr_getpshared() and pthread_rwlockattr_setpshared(). If
287 this option is not supported, then the process-shared attribute and these
288 functions are not supported. The process-shared attribute is set to
289 PTHREAD_PROCESS_SHARED to permit a reader/writer lock to be operated
290 upon by any thread that has access to the memory where the reader/writer
291 lock is allocated. If the process-shared attribute is
292 PTHREAD_PROCESS_PRIVATE, the reader/writer lock shall only be operated
293 upon by threads created within the same process as the thread that initial-
294 ized the reader/writer lock; if threads of different processes attempt to
295 operate on such a reader/writer lock, the behavior is undefined. The default
296 value of the attribute shall be PTHREAD_PROCESS_PRIVATE.

297 The pthread_rwlockattr_setpshared() function is used to set the process-
298 shared attribute in an initialized attributes object referenced by attr. The
299 pthread_rwlockattr_getpshared() function obtains the value of the
300 process-shared attribute from the attributes object referenced by attr.

 301 9

302 Additional attributes, their default values, and the names of the associated func-
tions303 to get and set those attribute values are implementation defined.

304 11.6.1.3 Returns

305 If successful, the pthread_rwlockattr_init(), pthread_rwlockattr_destroy(), and
306 pthread_rwlockattr_setpshared() functions shall return zero. Otherwise, an error

number307 shall be returned to indicate the error.

If308 successful, the pthread_rwlockattr_getpshared() function shall return zero and
store309 the value of the process-shared attribute of attr into the object

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

11.6 Reader/Writer Locks 27

P1003.1j/D10 INFORMATION TECHNOLOGY — POSIX

310 referenced by the pshared parameter. Otherwise, an error number shall be
returned311 to indicate the error.

312 11.6.1.4 Errors

313 If any of the following conditions occur, the pthread_rwlockattr_init() function
shall314 return the corresponding error number:

315 [ENOMEM] Insufficient memory exists to initialize the reader/writer lock
316 attributes object.

F317 or each of the following conditions, if the condition is detected, the
318 pthread_rwlockattr_destroy(), pthread_rwlockattr_getpshared(), and
319 pthread_rwlockattr_setpshared() functions shall return the corresponding error

n320 umber:

321 [EINVAL] The value specified by attr is invalid.

F322 or each of the following conditions, if the condition is detected, the
323 pthread_rwlockattr_setpshared() function shall return the corresponding error

n324 umber:

325 [EINVAL] The new value specified for the process-shared attribute is
326 not one of the legal values PTHREAD_PROCESS_SHARED or
327 PTHREAD_PROCESS_PRIVATE.

328 11.6.1.5 Cross-References

329 pthread_rwlock_init(), 11.6.2.

330 11.6.2 Initialize/Destroy a Reader/Writer Lock

331 Functions: pthread_rwlock_init(), pthread_rwlock_destroy().

332 11.6.2.1 Synopsis

333 #include <sys/types.h>
#include334 <pthread.h>

int335 pthread_rwlock_init(pthread_rwlock_t ∗lock,
336 const pthread_rwlockattr_t ∗attr);

int337 pthread_rwlock_destroy(pthread_rwlock_t ∗lock);

338 8

339 11.6.2.2 Description

340 If {_POSIX_READER_WRITER_LOCKS} is defined: 9

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

28 11 Synchronization

PART 1: SYSTEM API—Amd. x:Advanced Realtime Extensions [C Language] P1003.1j/D10

341 The pthread_rwlock_init() function shall allocate any resources required to
342 use the reader/writer lock referenced by lock and initializes the lock to an
343 unlocked state with attributes referenced by attr. If attr is NULL, the
344 default reader/writer lock attributes are used; the effect is the same as
345 passing the address of a default reader/writer lock attributes object. The
346 results are undefined if pthread_rwlock_init() is called specifying an
347 already initialized reader/writer lock. The results are undefined if a
348 reader/writer lock is used without first being initialized.

349 If the pthread_rwlock_init() function fails, the lock is not initialized and the
350 contents of lock are undefined.

351 Only the object referenced by lock may be used for performing synchroniza- 9

352 tion. The result of referring to copies of that object in calls to 9

353 pthread_rwlock_destroy(), pthread_rwlock_rdlock(), 9

354 pthread_rwlock_timedrdlock(), pthread_rwlock_tryrdlock(), 9

355 pthread_rwlock_wrlock(), pthread_rwlock_timedwrlock(), 9

356 pthread_rwlock_trywrlock(), or pthread_rwlock_unlock() is undefined. 9

357 The pthread_rwlock_destroy() function destroys the reader/writer lock
358 referenced by lock and releases any resources used by the lock. The effect
359 of subsequent use of the lock is undefined until the lock is re-initialized by
360 another call to pthread_rwlock_init(). An implementation may use this
361 function to set the lock to an invalid value. The results are undefined if
362 pthread_rwlock_destroy() is called when any thread holds the lock, or if this
363 function is called with an uninitialized reader/writer lock.

364 8

365 9

366 11.6.2.3 Returns

367 Upon successful completion, the pthread_rwlock_init() and
368 pthread_rwlock_destroy() functions shall return zero. Otherwise, an error

number369 shall be returned to indicate the error.

370 11.6.2.4 Errors

371 If any of the following conditions occur, the pthread_rwlock_init() function shall
return372 the corresponding value:

373 [EAGAIN] The system lacks the necessary resources to initialize another
374 reader/writer lock.

375 [ENOMEM] Insufficient memory exists to initialize the lock.

F376 or each of the following conditions, if the condition is detected, the
377 pthread_rwlock_init() function shall return the corresponding value:

378 [EBUSY] The implementation has detected an attempt to reinitialize a
379 reader/writer lock while it is in use (for example, while being
380 used in a pthread_rwlock_rdlock() call) by another thread.

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

11.6 Reader/Writer Locks 29

P1003.1j/D10 INFORMATION TECHNOLOGY — POSIX

381 [EINVAL] The value specified by attr is invalid.

F382 or each of the following conditions, if the condition is detected, the
383 pthread_rwlock_destroy() function shall return the corresponding value:

384 [EBUSY] The implementation has detected an attempt to destroy a
385 reader/writer lock while it is in use (for example, while being
386 used in a pthread_rwlock_rdlock() call) by another thread.

387 [EINVAL] The value specified by lock is invalid.

388 11.6.2.5 Cross-References

389 pthread_rwlock_rdlock(), 11.6.3; pthread_rwlock_timedrdlock(), 11.6.3;
390 pthread_rwlock_tryrdlock(), 11.6.3; pthread_rwlock_wrlock(), 11.6.4;
391 pthread_rwlock_timedwrlock(), 11.6.4; pthread_rwlock_trywrlock(), 11.6.4;
392 pthread_rwlock_unlock(), 11.6.5.

393 11.6.3 Apply a Read Lock

394 Functions: pthread_rwlock_rdlock(), pthread_rwlock_timedrdlock(),
395 pthread_rwlock_tryrdlock().

396 11.6.3.1 Synopsis

397 #include <sys/types.h>
#include398 <time.h> 8

399 #include <pthread.h>

int400 pthread_rwlock_rdlock(pthread_rwlock_t ∗lock);

int401 pthread_rwlock_timedrdlock(pthread_rwlock_t ∗lock,
402 const struct timespec ∗abs_timeout); 8

403 int pthread_rwlock_tryrdlock(pthread_rwlock_t ∗lock);

404 11.6.3.2 Description

405 A

406 If {_POSIX_READER_WRITER_LOCKS} is defined: 9

407 The pthread_rwlock_rdlock() function applies a read lock to the
408 reader/writer lock referenced by lock. The calling thread shall acquire the
409 read lock if a writer does not hold the lock, and there are no writers blocked
410 on the lock. If {_POSIX_THREAD_PRIORITY_SCHEDULING} is defined, and 9

411 the threads involved in the lock are executing with the scheduling policies
412 SCHED_FIFO, SCHED_RR, or SCHED_SPORADIC, the calling thread shall
413 not acquire the lock if a writer holds the lock or if writers of higher or equal 8

414 priority are blocked on the lock; otherwise the calling thread shall acquire 8

415 the lock. If {_POSIX_THREAD_PRIORITY_SCHEDULING} is not defined, it is 9

416 implementation-defined whether the calling thread acquires the lock when
417 a writer does not hold the lock and there are writers blocked on the lock. If

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

30 11 Synchronization

PART 1: SYSTEM API—Amd. x:Advanced Realtime Extensions [C Language] P1003.1j/D10

418 a writer holds the lock the calling thread shall not acquire the read lock. If
419 the lock is not acquired, the calling thread blocks (that is, does not return
420 from the pthread_rwlock_rdlock() call) until it can acquire the lock. The
421 calling thread may deadlock if at the time the call is made it holds a write
422 lock on lock.

423 The maximum number of simultaneous read locks that an implementation 8

424 guarantees can be applied to a reader/writer lock shall be implementation- 8

425 defined. The pthread_rwlock_rdlock() function may fail if this maximum 8

426 would be exceeded. 8

427 The pthread_rwlock_tryrdlock() function applies a read lock as in the
428 pthread_rwlock_rdlock() function, with the exception that the function fails
429 if the equivalent pthread_rwlock_rdlock() call would have blocked the cal-
430 ling thread. In no case does the pthread_rwlock_tryrdlock() function ever
431 block; it always either acquires the lock or fails and returns immediately.

432 The results are undefined if any of these functions is called with an unini-
433 tialized reader/writer lock.

434 If a signal that causes a signal handler to be executed is delivered to a
435 thread blocked on a reader/writer lock via a call to
436 pthread_rwlock_rdlock(), upon return from the signal handler the thread 8

437 shall resume waiting for the lock as if it was not interrupted. 8

438 9

439 If {_POSIX_READER_WRITER_LOCKS} and {_POSIX_TIMEOUTS} are both defined: 9

440 The pthread_rwlock_timedrdlock() function applies a read lock to the
441 reader/writer lock referenced by lock as in the pthread_rwlock_rdlock()
442 function. However, if the lock cannot be acquired without waiting for other A

443 threads to unlock the lock, this wait shall be terminated when the specified A

444 timeout expires. The timeout expires when the absolute time specified by A

445 abs_timeout passes, as measured by the clock on which timeouts are based 8

446 (that is, when the value of that clock equals or exceeds abs_timeout), or if 8

447 the absolute time specified by abs_timeout has already been passed at the 8

448 time of the call. If {_POSIX_TIMERS} is defined, the timeout is based on the 9

449 CLOCK_REALTIME clock; if {_POSIX_TIMERS} is not defined, the timeout is 8

450 based on the system clock as returned by the time() function. The resolu- 8

451 tion of the timeout is the resolution of the clock on which it is based. The
452 timespec datatype is defined as a structure in the header <time.h> . Under
453 no circumstances shall the function fail with a timeout if the lock can be
454 acquired immediately. The validity of the abs_timeout parameter need not
455 be checked if the lock can be immediately acquired.

456 If a signal that causes a signal handler to be executed is delivered to a
457 thread blocked on a reader/writer lock via a call to
458 pthread_rwlock_timedrdlock(), upon return from the signal handler the 8

459 thread shall resume waiting for the lock as if it was not interrupted. 8

460 The calling thread may deadlock if at the time the call is made it holds a
461 write lock on lock. The results are undefined if this function is called with
462 an uninitialized reader/writer lock.

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

11.6 Reader/Writer Locks 31

P1003.1j/D10 INFORMATION TECHNOLOGY — POSIX

463 9

464 11.6.3.3 Returns

465 Upon successful completion, the pthread_rwlock_rdlock(),
466 pthread_rwlock_timedrdlock(), and pthread_rwlock_tryrdlock() functions shall

return467 zero. Otherwise, an error number shall be returned to indicate the error.

468 11.6.3.4 Errors

469 If any of the following conditions occur, the pthread_rwlock_tryrdlock() function
shall470 return the corresponding value:

471 [EBUSY] A writer holds the lock, or a writer with appropriate priority is 9

472 blocked on the lock. 9

473 If any of the following conditions occur, the pthread_rwlock_timedrdlock() func-
tion474 shall return the corresponding value:

475 [ETIMEDOUT]
476 The lock could not be acquired before the specified timeout 8

477 expired. 8

478 For each of the following conditions, if the condition is detected, the
479 pthread_rwlock_rdlock(), pthread_rwlock_timedrdlock(), and
480 pthread_rwlock_tryrdlock() functions shall return the corresponding value:

481 [EINVAL] The value specified by lock does not refer to an initialized
482 reader/writer lock object, or the abs_timeout nanosecond value is
483 less than zero or greater than or equal to 1000 million.

F484 or each of the following conditions, if the condition is detected, the
485 pthread_rwlock_rdlock() and pthread_rwlock_timedrdlock() functions shall return

the486 corresponding value:

487 [EDEADLK] The calling thread already holds a write lock on lock.

F488 or each of the following conditions, if the condition is detected, the
489 pthread_rwlock_rdlock(), pthread_rwlock_tryrdlock(), and
490 pthread_rwlock_timedrdlock() functions shall return the corresponding value:

491 [EAGAIN] The read lock could not be acquired because the maximum
492 number of read locks for lock would be exceeded. 8

493 11.6.3.5 Cross-References

494 pthread_rwlock_init(), 11.6.2; pthread_rwlock_destroy(), 11.6.2;
495 pthread_rwlock_wrlock(), 11.6.4; pthread_rwlock_timedwrlock(), 11.6.4;
496 pthread_rwlock_trywrlock(), 11.6.4; pthread_rwlock_unlock(), 11.6.5.

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

32 11 Synchronization

PART 1: SYSTEM API—Amd. x:Advanced Realtime Extensions [C Language] P1003.1j/D10

497 11.6.4 Apply a Write Lock

498 Functions: pthread_rwlock_wrlock(), pthread_rwlock_timedwrlock(),
499 pthread_rwlock_trywrlock().

500 11.6.4.1 Synopsis

501 #include <sys/types.h>
#include502 <time.h>
#include503 <pthread.h>

int504 pthread_rwlock_wrlock(pthread_rwlock_t ∗lock);

int505 pthread_rwlock_timedwrlock(pthread_rwlock_t ∗lock,
506 const struct timespec ∗abs_timeout); 8

507 int pthread_rwlock_trywrlock(pthread_rwlock_t ∗lock);

508 11.6.4.2 Description

509 If {_POSIX_READER_WRITER_LOCKS} is defined: 9

510 The pthread_rwlock_wrlock() function applies a write lock to the
511 reader/writer lock referenced by lock. The calling thread acquires the write
512 lock if no thread (reader or writer) holds the reader/writer lock. Otherwise,
513 the thread blocks (that is, does not return from the
514 pthread_rwlock_wrlock() call) until it can acquire the lock. The calling
515 thread may deadlock if at the time the call is made it holds the
516 reader/writer lock.

517 The pthread_rwlock_trywrlock() function applies a write lock as in the
518 pthread_rwlock_wrlock() function, with the exception that the function fails
519 if the equivalent pthread_rwlock_wrlock() call would have blocked the cal-
520 ling thread. In no case does the pthread_rwlock_trywrlock() function ever
521 block; it always either acquires the lock or fails and returns immediately.

522 The results are undefined if any of these functions is called with an unini-
523 tialized reader/writer lock.

524 If a signal that causes a signal handler to be executed is delivered to a
525 thread blocked on a reader/writer lock via a call to
526 pthread_rwlock_wrlock(), upon return from the signal handler the thread 8

527 shall resume waiting for the lock as if it was not interrupted. 8

528 9

529 If {_POSIX_READER_WRITER_LOCKS} and {_POSIX_TIMEOUTS} are both defined: 9

530 The pthread_rwlock_timedwrlock() function applies a write lock to the
531 reader/writer lock referenced by lock as in the pthread_rwlock_wrlock()
532 function. However, if the lock cannot be acquired without waiting for other A

533 threads to unlock the lock, this wait shall be terminated when the specified A

534 timeout expires. The timeout expires when the absolute time specified by A

535 abs_timeout passes, as measured by the clock on which timeouts are based 8

536 (that is, when the value of that clock equals or exceeds abs_timeout), or if 8

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

11.6 Reader/Writer Locks 33

P1003.1j/D10 INFORMATION TECHNOLOGY — POSIX

537 the absolute time specified by abs_timeout has already been passed at the 8

538 time of the call. If {_POSIX_TIMERS} is defined, the timeout is based on the 9

539 CLOCK_REALTIME clock; if {_POSIX_TIMERS} is not defined, the timeout is 9

540 based on the system clock as returned by the time() function. The resolu- 8

541 tion of the timeout is the resolution of the clock on which it is based. The 8

542 timespec datatype is defined as a structure in the header <time.h> . Under
543 no circumstances shall the function fail with a timeout if the lock can be
544 acquired immediately. The validity of the abs_timeout parameter need not
545 be checked if the lock can be immediately acquired.

546 If a signal that causes a signal handler to be executed is delivered to a
547 thread blocked on a reader/writer lock via a call to
548 pthread_rwlock_timedwrlock(), upon return from the signal handler the 8

549 thread shall resume waiting for the lock as if it was not interrupted. 8

550 The calling thread may deadlock if at the time the call is made it holds the
551 reader/writer lock. The results are undefined if this function is called with
552 an uninitialized reader/writer lock.

 553 9

554 11.6.4.3 Returns

555 Upon successful completion, the pthread_rwlock_wrlock(),
556 pthread_rwlock_timedwrlock(), and pthread_rwlock_trywrlock() functions shall

return557 zero. Otherwise, an error number shall be returned to indicate the error.

558 11.6.4.4 Errors

559 If any of the following conditions occur, the pthread_rwlock_trywrlock() function
shall560 return the corresponding value:

561 [EBUSY] A reader or writer holds the lock.

If562 any of the following conditions occur, the pthread_rwlock_timedwrlock() func-
tion563 shall return the corresponding value:

564 [ETIMEDOUT]
565 The lock could not be acquired before the specified timeout 8

566 expired. 8

567 For each of the following conditions, if the condition is detected, the
568 pthread_rwlock_wrlock(), pthread_rwlock_timedwrlock(), and
569 pthread_rwlock_trywrlock() functions shall return the corresponding value:

570 [EINVAL] The value specified by lock does not refer to an initialized
571 reader/writer lock object, or the abs_timeout nanosecond value is
572 less than zero or greater than or equal to 1000 million.

F573 or each of the following conditions, if the condition is detected, the
574 pthread_rwlock_wrlock() and pthread_rwlock_timedwrlock() functions shall

return575 the corresponding value:

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

34 11 Synchronization

PART 1: SYSTEM API—Amd. x:Advanced Realtime Extensions [C Language] P1003.1j/D10

576 [EDEADLK] The calling thread already holds the reader/writer lock.

577 11.6.4.5 Cross-References

578 pthread_rwlock_init(), 11.6.2; pthread_rwlock_destroy(), 11.6.2;
579 pthread_rwlock_rdlock(), 11.6.3; pthread_rwlock_timedrdlock(), 11.6.3;
580 pthread_rwlock_tryrdlock(), 11.6.3; pthread_rwlock_unlock(), 11.6.5.

581 11.6.5 Unlock a Reader/Writer Lock

582 Function: pthread_rwlock_unlock(). 9

583 11.6.5.1 Synopsis

584 #include <sys/types.h>
#include585 <pthread.h>

int586 pthread_rwlock_unlock(pthread_rwlock_t ∗lock); 9

587 11.6.5.2 Description

588 A

589 If {_POSIX_READER_WRITER_LOCKS} is defined: 9

590 The pthread_rwlock_unlock() function releases the lock on the 9

591 reader/writer lock referenced by lock that was locked by the calling thread 9

592 via one of the pthread_rwlock_rdlock(), pthread_rwlock_timedrdlock(), 9

593 pthread_rwlock_tryrdlock(), pthread_rwlock_wrlock(), 9

594 pthread_rwlock_timedwrlock(), or pthread_rwlock_trywrlock() functions. 9

595 The results are undefined if a lock on lock is not held by the calling thread. 9

596 If a read lock is released by this call, and at the time of the call the released 9

597 lock is the last read lock to be held on lock, the reader/writer lock shall 9

598 become available. If a write lock is released by this call, the reader/writer 9

599 lock shall become available. 9

600 If there are threads blocked on the lock when it becomes available, the
601 scheduling policy is used to determine which thread(s) shall acquire the
602 lock. If {_POSIX_THREAD_PRIORITY_SCHEDULING} is defined, when 9

603 threads executing with the scheduling policies SCHED_FIFO, SCHED_RR, or
604 SCHED_SPORADIC are waiting on the lock, they will acquire the lock in
605 priority order when the lock becomes available. For equal priority threads,
606 write locks take precedence over read locks. If {_POSIX_THREAD_- 9

607 PRIORITY_SCHEDULING} is not defined, it is implementation defined 9

608 whether write locks take precedence over read locks.

609 The results are undefined if any of these functions are called with an unini-
610 tialized reader/writer lock.

 611 9

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

11.6 Reader/Writer Locks 35

P1003.1j/D10 INFORMATION TECHNOLOGY — POSIX

612 11.6.5.3 Returns

613 Upon successful completion, the pthread_rwlock_unlock() function shall return 9

614 zero. Otherwise, an error number shall be returned to indicate the error.

615 11.6.5.4 Errors

616 For each of the following conditions, if the condition is detected, the
617 pthread_rwlock_unlock() function shall return the corresponding value: 9

618 [EINVAL] The value specified by lock does not refer to an initialized
619 reader/writer lock object.

620 [EPERM] The calling thread does not hold a lock on the reader/writer lock. 9

621 11.6.5.5 Cross-References

622 pthread_rwlock_init(), 11.6.2; pthread_rwlock_destroy(), 11.6.2;
623 pthread_rwlock_rdlock(), 11.6.3; pthread_rwlock_timedrdlock(), 11.6.3;
624 pthread_rwlock_tryrdlock(), 11.6.3; pthread_rwlock_wrlock(), 11.6.4;
625 pthread_rwlock_timedwrlock(), 11.6.4; pthread_rwlock_trywrlock(), 11.6.4.

626 11.7 Spin Locks

627 11.7.1 Initialize/Destroy a Spin Lock

628 Functions: pthread_spin_init(), pthread_spin_destroy().

629 11.7.1.1 Synopsis

630 #include <sys/types.h>
#include631 <pthread.h>

int632 pthread_spin_init(pthread_spinlock_t ∗lock, int pshared); 8

633 int pthread_spin_destroy(pthread_spinlock_t ∗lock);

634 8

635 11.7.1.2 Description

636 If {_POSIX_SPIN_LOCKS} is defined: 9

637 The pthread_spin_init() function allocates any resources required to use
638 the spin lock referenced by lock and initializes the lock to an unlocked
639 state.

640 If {_POSIX_THREAD_PROCESS_SHARED} is defined: 9

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

36 11 Synchronization

PART 1: SYSTEM API—Amd. x:Advanced Realtime Extensions [C Language] P1003.1j/D10

641 If the value of pshared is PTHREAD_PROCESS_SHARED the imple-
642 mentation shall permit the spin lock to be operated upon by any
643 thread that has access to the memory where the spin lock is allo-
644 cated, even if it is allocated in memory that is shared by multiple
645 processes. If the value of pshared is PTHREAD_PROCESS_PRIVATE,
646 the spin lock shall only be operated upon by threads created within
647 the same process as the thread that initialized the spin lock; if
648 threads of differing processes attempt to operate on such a spin lock,
649 the behavior is undefined.

650 Otherwise:

651 The lock may only be operated upon by threads contained in the pro-
652 cess containing the thread that initialized the lock, independently of
653 the value of pshared. If threads of different processes attempt to
654 operate on such a lock, the behavior is undefined.

655 The results are undefined if pthread_spin_init() is called specifying an
656 already initialized spin lock. The results are undefined if a spin lock is used
657 without first being initialized.

658 If the pthread_spin_init() function fails, the lock is not initialized and the
659 contents of lock are undefined.

660 Only the object referenced by lock may be used for performing synchroniza- 9

661 tion. The result of referring to copies of that object in calls to 9

662 pthread_spin_destroy(), pthread_spin_lock(), pthread_spin_trylock(), or 9

663 pthread_spin_unlock() is undefined. 9

664 The pthread_spin_destroy() function destroys the spin lock referenced by
665 lock and releases any resources used by the lock. The effect of subsequent
666 use of the lock is undefined until the lock is re-initialized by another call to
667 pthread_spin_init(). The results are undefined if pthread_spin_destroy() is
668 called when a thread holds the lock, or if this function is called with an
669 uninitialized thread spin lock.
670 8

671 9

672 11.7.1.3 Returns

673 Upon successful completion, the pthread_spin_init() and pthread_spin_destroy()
functions674 shall return zero. Otherwise, an error number shall be returned to indi-
cate675 the error.

676 11.7.1.4 Errors

677 If any of the following conditions occur, the pthread_spin_init() function shall
return678 the corresponding value:

679 [EAGAIN] The system lacks the necessary resources to initialize another
680 spin lock.

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

11.7 Spin Locks 37

P1003.1j/D10 INFORMATION TECHNOLOGY — POSIX

681 [ENOMEM] Insufficient memory exists to initialize the lock.

F682 or each of the following conditions, if the condition is detected, the
683 pthread_spin_init() and pthread_spin_destroy() functions shall return the

corresponding684 value:

685 [EBUSY] The implementation has detected an attempt to initialize or des-
686 troy a spin lock while it is in use (for example, while being used
687 in a pthread_spin_lock() call) by another thread.

688 [EINVAL] The value specified by lock is invalid.

689 11.7.1.5 Cross-References

690 pthread_spin_lock(), 11.7.2; pthread_spin_trylock(), 11.7.2;
691 pthread_spin_unlock(), 11.7.3.

692 11.7.2 Lock a Spin Lock

693 Functions: pthread_spin_lock(), pthread_spin_trylock().

694 11.7.2.1 Synopsis

695 #include <sys/types.h>
#include696 <pthread.h>

int697 pthread_spin_lock(pthread_spinlock_t ∗lock);

int698 pthread_spin_trylock(pthread_spinlock_t ∗lock);

699 11.7.2.2 Description

700 If {_POSIX_SPIN_LOCKS} is defined: 9

701 The pthread_spin_lock() function locks the spin lock referenced by lock.
702 The calling thread acquires the lock if it is not held by another thread. Oth-
703 erwise, the thread spins (that is, does not return from the
704 pthread_spin_lock() call) until the lock becomes available. The results are
705 undefined if the calling thread holds the lock at the time the call is made.

706 The pthread_spin_trylock() function locks the spin lock referenced by lock if
707 it is not held by any thread. Otherwise, the function fails.

708 The results are undefined if any of these functions is called with an unini-
709 tialized spin lock.

 710 9

711 11.7.2.3 Returns

712 Upon successful completion, the pthread_spin_lock() and pthread_spin_trylock()
functions713 shall return zero. Otherwise, an error number shall be returned to indi-
cate714 the error.

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

38 11 Synchronization

PART 1: SYSTEM API—Amd. x:Advanced Realtime Extensions [C Language] P1003.1j/D10

715 11.7.2.4 Errors

716 If any of the following conditions occur, the pthread_spin_trylock() function shall
return717 the corresponding value:

718 [EBUSY] A thread currently holds the lock.

F719 or each of the following conditions, if the condition is detected, the
720 pthread_spin_lock() function shall return the corresponding value:

721 [EDEADLK] The calling thread already holds the lock.

F722 or each of the following conditions, if the condition is detected, the
723 pthread_spin_lock() and pthread_spin_trylock() functions shall return the

corresponding724 value:

725 [EINVAL] The value specified by lock does not refer to an initialized spin
726 lock object.

727 11.7.2.5 Cross-References

728 pthread_spin_init(), 11.7.1; pthread_spin_destroy(), 11.7.1;
729 pthread_spin_unlock(), 11.7.3.

730 11.7.3 Unlock a Spin Lock

731 Function: pthread_spin_unlock().

732 11.7.3.1 Synopsis

733 #include <sys/types.h>
#include734 <pthread.h>

int735 pthread_spin_unlock(pthread_spinlock_t ∗lock);

736 11.7.3.2 Description

737 If {_POSIX_SPIN_LOCKS} is defined: 9

738 The pthread_spin_unlock() function releases the spin lock referenced by
739 lock which was locked via the pthread_spin_lock() or
740 pthread_spin_trylock() functions. The results are undefined if the lock is
741 not held by the calling thread. If there are threads spinning on the lock
742 when pthread_spin_unlock() is called, the lock becomes available and an
743 unspecified spinning thread shall acquire the lock.

744 The results are undefined if this function is called with an uninitialized
745 thread spin lock.

 746 9

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

11.7 Spin Locks 39

P1003.1j/D10 INFORMATION TECHNOLOGY — POSIX

747 11.7.3.3 Returns

748 Upon successful completion, the pthread_spin_unlock() function shall return zero.
Otherwise,749 an error number shall be returned to indicate the error.

750 11.7.3.4 Errors

751 For each of the following conditions, if the condition is detected, the
752 pthread_spin_unlock() function shall return the corresponding value:

753 [EINVAL] An invalid argument was specified.

754 [EPERM] The calling thread does not hold the lock.

755 11.7.3.5 Cross-References

756 pthread_spin_init(), 11.7.1; pthread_spin_destroy(), 11.7.1; pthread_spin_lock(),
11.7.2;757 pthread_spin_trylock(), 11.7.2.

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

40 11 Synchronization

P1003.1j/D10

Section 12: Memory Management

1 ⇒⇒ 12 Memory Management Replace the first paragraph with:

2 This section describes the process memory locking, memory mapped files,
3 shared memory facilities, and typed memory facilities available under this part
4 of ISO/IEC 9945-1.

5 ⇒⇒ 12 Memory Management Add the following new paragraphs after the para-
6 graph that begins with ‘‘An unlink() of a file... ’’ and ends with ‘‘ ...of the
7 memory object mapped.’’:

8 Implementations may support the Typed Memory Objects option without sup-
9 porting the Memory Mapped Files option or the Shared Memory Objects
10 option. Typed memory objects are implementation-configurable named storage
11 pools accessible from one or more processors in a system, each via one or more
12 ports such as backplane busses, LANs, I/O channels, etc. Each valid combina-
13 tion of a storage pool and a port is identified through a name that is defined at
14 system configuration time, in an implementation-defined manner; the name
15 may be independent of the file system. Using this name, a typed memory
16 object can be opened and mapped into process address space. For a given
17 storage pool and port, it is necessary to support both dynamic allocation from
18 the pool as well as mapping at an application-supplied offset within the pool;
19 when dynamic allocation has been performed, subsequent deallocation must be
20 supported. Lastly, accessing typed memory objects from different ports
21 requires a method for obtaining the offset and length of contiguous storage of a
22 region of typed memory (dynamically allocated or not); this allows typed
23 memory to be shared among processes and/or processors while being accessed
24 from the desired port.

25 12.2 Memory Mapping Functions

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

12.2 Memory Mapping Functions 41

P1003.1j/D10 INFORMATION TECHNOLOGY — POSIX

26 12.2.1 Map Process Addresses to a Memory Object

27 ⇒⇒ 12.2.1.2 Map Process Addresses to a Memory Object—Description
28 Replace the first paragraph with:

29 If at least one of {_POSIX_MAPPED_FILES}, {_POSIX_SHARED_MEMORY_-
30 OBJECTS}, or {_POSIX_TYPED_MEMORY_OBJECTS} is defined:

31 ⇒⇒ 12.2.1.2 Map Process Addresses to a Memory Object—Description In
32 the paragraph beginning with ‘‘The mmap() function establishes... ’’ and ending
33 ‘‘ ...object represented by fildes. ’’, replace the last sentence (beginning ‘‘The
34 range of bytes starting... ’’) with:

35 The range of bytes starting at off and continuing for len bytes shall be legiti-
36 mate for the possible (not necessarily current) offsets in the file, shared
37 memory object, or typed memory object represented by fildes. If fildes
38 represents a typed memory object opened with either the
39 POSIX_TYPED_MEM_ALLOCATE flag or the
40 POSIX_TYPED_MEM_ALLOCATE_CONTIG flag, the memory object to be mapped
41 shall be that portion of the typed memory object allocated by the implementa-
42 tion as specified below. In this case, if off is non-zero, the behavior of mmap() is
43 undefined. If fildes refers to a valid typed memory object that is not accessible
44 from the calling process, mmap() shall fail.

45 ⇒⇒ 12.2.1.2 Map Process Addresses to a Memory Object—Description Add
46 the following new paragraph after the paragraph that begins with
47 ‘‘MAP_SHARED and MAP_PRIVATE describe... ’’ and ends with ‘‘ ...is retained
48 across fork().’’:

49 When fildes represents a typed memory object opened with either the
50 POSIX_TYPED_MEM_ALLOCATE flag or the
51 POSIX_TYPED_MEM_ALLOCATE_CONTIG flag, mmap() shall, if there are
52 enough resources available, map len bytes allocated from the corresponding
53 typed memory object which were not previously allocated to any process in any
54 processor that may access that typed memory object. If there are not enough
55 resources available, the function shall fail. If fildes represents a typed memory
56 object opened with the POSIX_TYPED_MEM_ALLOCATE_CONTIG flag, these
57 allocated bytes shall be contiguous within the typed memory object. If fildes
58 represents a typed memory object opened with the
59 POSIX_TYPED_MEM_ALLOCATE flag, these allocated bytes may be composed of
60 non-contiguous fragments within the typed memory object. If fildes represents
61 a typed memory object opened with neither the
62 POSIX_TYPED_MEM_ALLOCATE_CONTIG flag nor the
63 POSIX_TYPED_MEM_ALLOCATE flag, len bytes starting at offset off within the
64 typed memory object are mapped, exactly as when mapping a file or shared
65 memory object. In this case, if two processes map an area of typed memory
66 using the same off and len values and using file descriptors that refer to the
67 same memory pool (either from the same port or from a different port), both

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

42 12 Memory Management

PART 1: SYSTEM API—Amd. x:Advanced Realtime Extensions [C Language] P1003.1j/D10

68 processes shall map the same region of storage.

69 ⇒⇒ 12.2.1.4 Map Process Addresses to a Memory Object—Errors Add to the
70 description of [ENOMEM] the following additional paragraph:

71 Not enough unallocated memory resources remain in the typed memory object
72 designated by fildes to allocate len bytes.

73 ⇒⇒ 12.2.1.4 Map Process Addresses to a Memory Object—Errors Add to the
74 description of [ENXIO] the following additional paragraph:

75 The fildes argument refers to a typed memory object that is not accessible from
76 the calling process.

77 ⇒⇒ 12.2.1.5 Map Process Addresses to a Memory Object—
78 Cross-References Add the following cross-reference:

79 posix_typed_mem_open(), 12.4.2.

80 12.2.2 Unmap Previously Mapped Addresses

81 ⇒⇒ 12.2.2.2 Unmap Previously Mapped Addresses—Description Replace
82 the first paragraph with:

83 If at least one of {_POSIX_MAPPED_FILES}, {_POSIX_SHARED_MEMORY_-
84 OBJECTS}, or {_POSIX_TYPED_MEMORY_OBJECTS} is defined:

85 ⇒⇒ 12.2.2.2 Unmap Previously Mapped Addresses—Description Add the
86 following new paragraphs after the paragraph which begins with ‘‘Any memory
87 locks... ’’ and ending with ‘‘ ...an appropriate call to munlock().’’:

88 If a mapping removed from a typed memory object causes the corresponding
89 address range of the memory pool to be inaccessible by any process in the sys-
90 tem except through allocatable mappings (i.e., mappings of typed memory
91 objects opened with the POSIX_TYPED_MEM_MAP_ALLOCATABLE flag), then
92 that range of the memory pool shall become deallocated and may become avail-
93 able to satisfy future typed memory allocation requests.

94 A mapping removed from a typed memory object opened with the
95 POSIX_TYPED_MEM_MAP_ALLOCATABLE flag shall not affect in any way the
96 availability of that typed memory for allocation.

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

12.2 Memory Mapping Functions 43

P1003.1j/D10 INFORMATION TECHNOLOGY — POSIX

97 ⇒⇒ 12.2.2.5 Unmap Previously Mapped Addresses—Cross-References Add
98 the following cross-reference:

99 posix_typed_mem_open(), 12.4.2.

100 12.2.4 Memory Object synchronization

101 ⇒⇒ 12.2.4.2 Memory Object synchronization—Description Change the sen-
102 tence ‘‘The effect of msync() on shared memory objects is unspecified. ’’ to:

103 The effect of msync () on a shared memory object or a typed memory object is
104 unspecified.

105 ⇒⇒ 12 Memory Management Add the following clause:

106 12.4 Typed Memory Functions

107 12.4.1 Data Definitions

108 If {_POSIX_TYPED_MEMORY_OBJECTS} is defined, the header <sys/mman.h> 9

109 shall define the memory information structure posix_typed_mem_info, which shall
include110 at least the following member:

111 Member Member
112 Type Name Description

113 size_t posix_tmi_length Maximum length which may be allocated from a typed memory 8
114 object.

115 12.4.2 Open a Typed Memory Object

116 Function: posix_typed_mem_open()

117 12.4.2.1 Synopsis

118 #include <sys/mman.h>

int119 posix_typed_mem_open(const char ∗name, int oflag, int tflag); 8

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

44 12 Memory Management

PART 1: SYSTEM API—Amd. x:Advanced Realtime Extensions [C Language] P1003.1j/D10

120 12.4.2.2 Description

121 If {_POSIX_TYPED_MEMORY_OBJECTS} is defined: 9

122 The posix_typed_mem_open() function establishes a connection between the
123 typed memory object specified by the string pointed to by name and a file
124 descriptor. It creates an open file description that refers to the typed
125 memory object and a file descriptor that refers to that open file description.
126 The file descriptor is used by other functions to refer to that typed memory
127 object. It is unspecified whether the name appears in the file system and is
128 visible to other functions that take pathnames as arguments. The name
129 argument shall conform to the construction rules for a pathname. If name
130 begins with the slash character, then processes calling
131 posix_typed_mem_open() with the same value of name shall refer to the
132 same typed memory object. If name does not begin with the slash charac-
133 ter, the effect is implementation defined. The interpretation of slash char-
134 acters other than the leading slash character in name is implementation
135 defined.

136 Each typed memory object supported in a system is identified by a name
137 which specifies not only its associated typed memory pool, but also the path
138 or port by which it is accessed. That is, the same typed memory pool
139 accessed via several different ports has several different corresponding
140 names. The binding between names and typed memory objects is esta-
141 blished in an implementation-defined manner. Unlike shared memory 8

142 objects, there is ordinarily no way for a program to create a typed memory
143 object.

144 The value of tflag determines how the typed memory object behaves when
145 subsequently mapped by calls to mmap(). At most one of the following flags
146 defined in <sys/mman.h> may be specified:

147 Symbolic
148 Constant Description

__
149 POSIX_TYPED_MEM_ALLOCATE Allocate on mmap().
150 POSIX_TYPED_MEM_ALLOCATE_CONTIG Allocate contiguously on mmap().
151 POSIX_TYPED_MEM_MAP_ALLOCATABLE Map on mmap(), without affecting allo-
152 catability.

153 If tflag has the flag POSIX_TYPED_MEM_ALLOCATE specified, any subse-
154 quent call to mmap() using the returned file descriptor shall result in allo-
155 cation and mapping of typed memory from the specified typed memory pool.
156 The allocated memory may be a contiguous previously unallocated area of
157 the typed memory pool or several non-contiguous previously unallocated
158 areas (mapped to a contiguous portion of the process address space). If tflag
159 has the flag POSIX_TYPED_MEM_ALLOCATE_CONTIG specified, any subse-
160 quent call to mmap() using the returned file descriptor shall result in allo-
161 cation and mapping of a single contiguous previously unallocated area of
162 the typed memory pool (also mapped to a contiguous portion of the process
163 address space). If tflag has none of the flags
164 POSIX_TYPED_MEM_ALLOCATE or
165 POSIX_TYPED_MEM_ALLOCATE_CONTIG specified, any subsequent call to

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

12.4 Typed Memory Functions 45

P1003.1j/D10 INFORMATION TECHNOLOGY — POSIX

166 mmap() using the returned file descriptor shall map an application-chosen
167 area from the specified typed memory pool such that this mapped area
168 becomes unavailable for allocation until unmapped by all processes. If tflag
169 has the flag POSIX_TYPED_MEM_MAP_ALLOCATABLE specified, any subse-
170 quent call to mmap() using the returned file descriptor shall map an
171 application-chosen area from the specified typed memory pool without an
172 effect on the availability of that area for allocation; that is, mapping such an
173 object leaves each byte of the mapped area unallocated if it was unallocated
174 prior to the mapping or allocated if it was allocated prior to the mapping.
175 The appropriate privilege to specify the
176 POSIX_TYPED_MEM_MAP_ALLOCATABLE flag is implementation defined.

177 If successful, posix_typed_mem_open() returns a file descriptor for the
178 typed memory object that is the lowest numbered file descriptor not
179 currently open for that process. The open file description is new, and there-
180 fore the file descriptor does not share it with any other processes. It is
181 unspecified whether the file offset is set. The FD_CLOEXEC file descriptor
182 flag associated with the new file descriptor shall be cleared.

183 The behavior of msync (), ftruncate (), and all file operations other than
184 mmap(), posix_mem_offset (), posix_typed_mem_get_info(), fstat (), dup(),
185 dup2(), and close (), is unspecified when passed a file descriptor connected
186 to a typed memory object by this function.

187 The file status flags of the open file description shall be set according to the
188 value of oflag. Applications shall specify exactly one of the three access
189 mode values described below and defined in the header <fcntl.h> , as the
190 value of oflag.

191 O_RDONLY Open for read access only.

192 O_WRONLY Open for write access only.

193 O_RDWR Open for read or write access.

O194 therwise:

195 Either the implementation shall support the posix_typed_mem_open() func-
196 tion as described above or this function shall not be provided.

197 12.4.2.3 Returns

198 Upon successful completion, the posix_typed_mem_open() function shall return a
non-negative199 integer representing the lowest numbered unused file descriptor.
Otherwise,200 it shall return -1 and set errno to indicate the error.

201 12.4.2.4 Errors

202 If any of the following conditions occur, the posix_typed_mem_open() function
shall203 return -1 and set errno to the corresponding value:

204 [EACCES] The typed memory object exists and the permissions specified by
205 oflag are denied.

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

46 12 Memory Management

PART 1: SYSTEM API—Amd. x:Advanced Realtime Extensions [C Language] P1003.1j/D10

206 [EINTR] The posix_typed_mem_open() operation was interrupted by a sig-
207 nal.
208 8

209 [EINVAL] The flags specified in tflag are invalid (more than one of
210 POSIX_TYPED_MEM_ALLOCATE,
211 POSIX_TYPED_MEM_ALLOCATE_CONTIG, or
212 POSIX_TYPED_MEM_MAP_ALLOCATABLE is specified).

213 [EMFILE] Too many file descriptors are currently in use by this process.

214 [ENAMETOOLONG]
215 The length of the name string exceeds {PATH_MAX}, or a path-
216 name component is longer than {NAME_MAX} while {_POSIX_-
217 NO_TRUNC} is in effect.

218 [ENFILE] Too many file descriptors are currently open in the system. 8

219 [ENOENT] The named typed memory object does not exist.
220 8

221 [EPERM] The caller lacks the appropriate privilege to specify the flag
222 POSIX_TYPED_MEM_MAP_ALLOCATABLE in argument tflag.

223 12.4.2.5 Cross-References

224 close (), 6.3.1; dup(), 6.2.1; exec, 3.1.2; fcntl(), 6.5.2; <fcntl.h> , 6.5.1; umask(),
5.3.3;225 mmap(), 12.2.1; <sys/mman.h> , 12.1.1.2; posix_mem_offset (), 12.4.3.

226 12.4.3 Find Offset and Length of a Mapped Typed Memory Block

227 Function: posix_mem_offset ()

228 12.4.3.1 Synopsis

229 #include <sys/mman.h>

int230 posix_mem_offset(const void ∗addr, size_t len, off_t ∗off,
231 size_t ∗contig_len, int ∗fildes);

232 12.4.3.2 Description

233 If {_POSIX_TYPED_MEMORY_OBJECTS} is defined: 9

234 The posix_mem_offset () function returns in the variable pointed to by off a
235 value that identifies the offset (or location), within a memory object, of the
236 memory block currently mapped at addr. The function shall return in the
237 variable pointed to by fildes, the descriptor used (via mmap()) to establish
238 the mapping which contains addr. If that descriptor was closed since the
239 mapping was established, the returned value of fildes shall be -1. The len
240 argument specifies the length of the block of the memory object the user
241 wishes the offset for; upon return, the value pointed to by contig_len shall

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

12.4 Typed Memory Functions 47

P1003.1j/D10 INFORMATION TECHNOLOGY — POSIX

242 equal either len, or the length of the largest contiguous block of the memory
243 object that is currently mapped to the calling process starting at addr,
244 whichever is smaller.

245 If the memory object mapped at addr is a typed memory object, then if the
246 off and contig_len values obtained by calling posix_mem_offset () are used in
247 a call to mmap() with a file descriptor that refers to the same memory pool
248 as fildes (either through the same port or through a different port), and that
249 was opened with neither the POSIX_TYPED_MEM_ALLOCATE nor the
250 POSIX_TYPED_MEM_ALLOCATE_CONTIG flag, the typed memory area that
251 is mapped shall be exactly the same area that was mapped at addr in the
252 address space of the process that called posix_mem_offset ().

253 If the memory object specified by fildes is not a typed memory object, then
254 the behavior of this function is implementation defined.

O255 therwise:

256 Either the implementation shall support the posix_mem_offset () function as
257 described above or this function shall not be provided.

258 12.4.3.3 Returns

259 Upon successful completion, the posix_mem_offset () function shall return zero.
Otherwise,260 the corresponding error status value shall be returned.

261 12.4.3.4 Errors

262 If any of the following conditions occur, the posix_mem_offset () function shall
return263 the corresponding error value:

264 [EACCES] The process has not mapped a memory object supported by this
265 function at the given address addr.
266 8

267 12.4.3.5 Cross-References

268 mmap(), 12.2.1; <sys/mman.h> , 12.1.1.2; posix_typed_mem_open(), 12.4.2.

269 12.4.4 Query Typed Memory Information

270 Function: posix_typed_mem_get_info()

271 12.4.4.1 Synopsis

272 #include <sys/mman.h>

int273 posix_typed_mem_get_info(int fildes,
274 struct posix_typed_mem_info ∗info);

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

48 12 Memory Management

PART 1: SYSTEM API—Amd. x:Advanced Realtime Extensions [C Language] P1003.1j/D10

275 12.4.4.2 Description

276 If {_POSIX_TYPED_MEMORY_OBJECTS} is defined: 9

277 The posix_typed_mem_get_info() function returns, in the posix_tmi_length 8

278 field of the posix_typed_mem_info structure pointed to by info, the max-
279 imum length which may be successfully allocated by the typed memory
280 object designated by fildes. This maximum length shall take into account
281 the flag POSIX_TYPED_MEM_ALLOCATE or
282 POSIX_TYPED_MEM_ALLOCATE_CONTIG specified when the typed memory
283 object represented by fildes was opened. The maximum length is dynamic;
284 therefore, the value returned is valid only while the current mapping of the
285 corresponding typed memory pool remains unchanged.

286 If fildes represents a typed memory object opened with neither the
287 POSIX_TYPED_MEM_ALLOCATE flag nor the
288 POSIX_TYPED_MEM_ALLOCATE_CONTIG flag specified, the returned value
289 of info.posix_tmi_length is unspecified. 8

290 The posix_typed_mem_get_info() function may return additional
291 implementation-defined information in other fields of the
292 posix_typed_mem_info structure pointed to by info.

293 If the memory object specified by fildes is not a typed memory object, then
294 the behavior of this function is undefined.

O295 therwise:

296 Either the implementation shall support the posix_typed_mem_get_info()
297 function as described above or this function shall not be provided.

298 12.4.4.3 Returns

299 Upon successful completion, the posix_typed_mem_get_info() function shall return
zero.300 Otherwise, the corresponding error status value shall be returned.

301 12.4.4.4 Errors

302 If any of the following conditions occur, the posix_typed_mem_get_info() function
shall303 return the corresponding error value:

304 [EBADF] The fildes argument is not a valid open file descriptor.

305 [ENODEV] The fildes argument is not connected to a memory object sup-
306 ported by this function.
307 8

308 12.4.4.5 Cross-References

309 mmap(), 12.2,1; posix_typed_mem_open(), 12.4.2; <sys/mman.h> , 12.1.1.2.

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

12.4 Typed Memory Functions 49

P1003.1j/D10 INFORMATION TECHNOLOGY — POSIX

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

50 12 Memory Management

P1003.1j/D10

Section 14: Clocks and Timers

1 14.1 Data Definitions for Clocks and Timers

2 14.1.4 Manifest Constants

3 ⇒⇒ 14.1.4 Manifest Constants Add the following text after the current
4 definitions of constants:

5 If the Monotonic Clock option is supported, the following constant shall be
6 defined in <time.h> :

7 CLOCK_MONOTONIC
8 The identifier for the systemwide monotonic clock, which
9 is defined as a clock whose value cannot be set via
10 clock_settime () and which cannot have backward clock
11 jumps. The maximum possible clock jump shall be imple-
12 mentation defined.

13 ⇒⇒ 14.1.4 Manifest Constants Replace the paragraph starting ‘‘The maximum
14 allowable resolution for ... ’’ and the following paragraph starting ‘‘The
15 minimum allowable maximum value ... ’’ by the following text:

16 The maximum allowable resolution for the CLOCK_REALTIME and the
17 CLOCK_MONOTONIC clocks and all time services based on these clocks is
18 represented by {_POSIX_CLOCKRES_MIN} and is defined as 20 ms (1/50 of a
19 second). Implementations may support smaller values of resolution for these
20 clocks to provide finer granularity time bases. The actual resolution supported
21 by an implementation for a specific clock is obtained using functions defined in
22 this chapter. If the actual resolution supported for a time service based on one
23 of these clocks differs from the resolution supported for that clock, the imple-
24 mentation shall document this difference.

25 The minimum allowable maximum value for the CLOCK_REALTIME and the
26 CLOCK_MONOTONIC clocks and all absolute time services based on them is the
27 same as that defined by the C Standard {2} for the time_t type. If the maximum
28 value supported by a time service based on one of these clocks differs from the
29 maximum value supported by that clock, the implementation shall document
30 this difference.

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

14.1 Data Definitions for Clocks and Timers 51

P1003.1j/D10 INFORMATION TECHNOLOGY — POSIX

31 14.2 Clock and Timer Functions

32 14.2.1 Clocks

33 ⇒⇒ 14.2.1.2 Clocks—Description Add the following text after the paragraph
34 starting ‘‘A clock may be systemwide ... ’’:

35 If {_POSIX_MONOTONIC_CLOCK} is defined: 9

36 All implementations shall support a clock_id of CLOCK_MONOTONIC
37 defined in 14.1.4. This clock represents the monotonic clock for the sys-
38 tem. For this clock, the value returned by clock_gettime() represents
39 the amount of time (in seconds and nanoseconds) since an unspecified
40 point in the past (for example, system start-up time, or the Epoch). This
41 point does not change after system start-up time. The value of the
42 CLOCK_MONOTONIC clock cannot be set via clock_settime(). This func-
43 tion shall fail if it is invoked with a clock_id argument of
44 CLOCK_MONOTONIC.

45 NOTE: Notice that the absolute value of the monotonic clock is meaningless (because
46 its origin is arbitrary) and thus there is no need to set it. Furthermore, realtime appli-
47 cations can rely on the fact that the value of this clock is never set and, therefore, that
48 time intervals measured with this clock will not be affected by calls to clock_settime().

49 ⇒⇒ 14.2.1.2 Clocks—Description In the description of clock_settime(), add the
50 following paragraphs after the text that describes the effects of setting a clock
51 via clock_settime().

52 If {_POSIX_CLOCK_SELECTION} is defined, and the value of the 9

53 CLOCK_REALTIME clock is set via clock_settime(), the new value of the clock
54 shall be used to determine the time at which the system shall awaken a thread
55 blocked on an absolute clock_nanosleep() call based upon the
56 CLOCK_REALTIME clock. If the absolute time requested at the invocation of
57 such a time service is before the new value of the clock, the call shall return
58 immediately as if the clock had reached the requested time normally.

59 If {_POSIX_CLOCK_SELECTION} is defined, setting the value of the 9

60 CLOCK_REALTIME clock via clock_settime() shall have no effect on any thread
61 that is blocked on a relative clock_nanosleep() call. Consequently, the call shall
62 return when the requested relative interval elapses, independently of the new
63 or old value of the clock.

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

52 14 Clocks and Timers

PART 1: SYSTEM API—Amd. x:Advanced Realtime Extensions [C Language] P1003.1j/D10

64 ⇒⇒ 14.2.1.4 Clocks—Errors Add the following condition to the error conditions
65 that shall cause clock_settime() to fail:

66 [EINVAL] The value of the clock_id argument is CLOCK_MONOTONIC. 8

67 ⇒⇒ 14.2.1.5 Clocks—Cross-References Add the following cross-references:

68 timer_create (), 14.2.2; timer_settime(), 14.2.4; nanosleep(), 14.2.5;
69 clock_nanosleep(), 14.2.6; sem_timedwait (), 11.2.6;
70 pthread_mutex_timedlock(), 11.3.3; mq_timedsend (), 15.2.4;
71 mq_timedreceive(), 15.2.5.

72 14.2.2 Create a Per-Process Timer

73 ⇒⇒ 14.2.2.2 Create a Per-Process Timer—Description Add the following text
74 at the end of the paragraph starting ‘‘Each implementation shall define a set of
75 clocks that ... ’’:

76 If {_POSIX_CLOCK_SELECTION} is defined, all implementations shall support a 9

77 clock_id of CLOCK_MONOTONIC.

78 ⇒⇒ 14.2 Clock and Timer Functions Add the following subclause:

79 14.2.6 High Resolution Sleep with Specifiable Clock

80 Function: clock_nanosleep()

81 14.2.6.1 Synopsis

82 #include <time.h>

int83 clock_nanosleep(clockid_t clock_id, int flags,
84 const struct timespec ∗rqtp, struct timespec ∗rmtp);

85 14.2.6.2 Description

86 If {_POSIX_CLOCK_SELECTION} is defined: 9

87 If the flag TIMER_ABSTIME is not set in the argument flags, the
88 clock_nanosleep() function shall cause the current thread to be suspended
89 from execution until either the time interval specified by the rqtp argument
90 has elapsed, or a signal is delivered to the calling thread and its action is to
91 invoke a signal-catching function, or the process is terminated. The clock
92 used to measure the time shall be the clock specified by clock_id.

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

14.2 Clock and Timer Functions 53

P1003.1j/D10 INFORMATION TECHNOLOGY — POSIX

93 NOTE: Calling clock_nanosleep() with the value TIMER_ABSTIME not set in the argument
94 flags and with a clock_id of CLOCK_REALTIME is equivalent to calling nanosleep () with the
95 same rqtp and rmtp arguments.

96 If the flag TIMER_ABSTIME is set in the argument flags, the
97 clock_nanosleep() function shall cause the current thread to be suspended
98 from execution until either the time value of the clock specified by clock_id
99 reaches the absolute time specified by the rqtp argument, or a signal is
100 delivered to the calling thread and its action is to invoke a signal-catching
101 function, or the process is terminated. If at the time of the call the time
102 value specified by rqtp is less than or equal to the time value of the specified
103 clock, then clock_nanosleep() shall return immediately and the calling pro-
104 cess shall not be suspended.

105 The suspension time caused by this function may be longer than requested
106 because the argument value is rounded up to an integer multiple of the
107 sleep resolution, or because of the scheduling of other activity by the sys-
108 tem. But, except for the case of being interrupted by a signal, the suspen-
109 sion time for the relative clock_nanosleep() function (i.e., with the
110 TIMER_ABSTIME flag not set) shall not be less than the time interval
111 specified by rqtp, as measured by the corresponding clock. The suspension
112 for the absolute clock_nanosleep() function (i.e., with the TIMER_ABSTIME
113 flag set) shall be in effect at least until the value of the corresponding clock
114 reaches the absolute time specified by rqtp, except for the case of being
115 interrupted by a signal.

116 The use of the clock_nanosleep() function shall have no effect on the action
117 or blockage of any signal.

118 The clock_nanosleep() function shall fail if the clock_id argument refers to
119 the CPU-time clock of the calling thread. It is unspecified if clock_id values
120 of other CPU-time clocks are allowed.

 121 9

122 14.2.6.3 Returns

123 If the clock_nanosleep() function returns because the requested time has elapsed,
its124 return value shall be zero.

If125 the clock_nanosleep() function returns because it has been interrupted by a sig-
nal126 it shall return the corresponding error value. For the relative

127 clock_nanosleep() function, if the rmtp argument is non-NULL, the timespec struc-
ture128 referenced by it shall be updated to contain the amount of time remaining in
the129 interval (the requested time minus the time actually slept). If the rmtp argu-
ment130 is NULL, the remaining time is not returned. The absolute

131 clock_nanosleep() function has no effect on the structure referenced by rmtp.

If132 clock_nanosleep() fails, it shall return the corresponding error value.

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

54 14 Clocks and Timers

PART 1: SYSTEM API—Amd. x:Advanced Realtime Extensions [C Language] P1003.1j/D10

133 14.2.6.4 Errors

134 If any of the following conditions occur, the clock_nanosleep() function shall
return135 the corresponding error value:

136 [EINTR] The clock_nanosleep() function was interrupted by a signal.

137 [EINVAL] The rqtp argument specified a nanosecond value less than zero
138 or greater than or equal to 1000 million; or the TIMER_ABSTIME
139 flag was specified in flags and the rqtp argument is outside the
140 range for the clock specified by clock_id; or the clock_id argu-
141 ment does not specify a known clock, or specifies the CPU-time
142 clock of the calling thread.
143 8

144 [ENOTSUP] The clock_id argument specifies a clock for which
145 clock_nanosleep() is not supported, such as a CPU-time clock.

146 14.2.6.5 Cross-References

147 sleep(), 3.4.3; nanosleep(), 14.2.5; clock_settime(), 14.2.1.

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

14.2 Clock and Timer Functions 55

P1003.1j/D10 INFORMATION TECHNOLOGY — POSIX

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

56 14 Clocks and Timers

P1003.1j/D10

Section 15: Message Passing

1 NOTE: The amendments to Section 15 have been removed from this draft due to the shift from 8
2 relative to absolute timeouts. The section is kept as a placeholder for the diff marks associated to 8
3 the deletion of this text, and thus will not appear in the final standard. 8

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

15 Message Passing 57

P1003.1j/D10 INFORMATION TECHNOLOGY — POSIX

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

58 15 Message Passing

P1003.1j/D10

Section 18: Thread Cancellation

1 18.1 Thread Cancellation Overview

2 ⇒⇒ 18.1.2 Cancellation Points Add the following functions to the list of func-
3 tions for which a cancellation point shall occur:

4 clock_nanosleep(). 8

5 ⇒⇒ 18.1.2 Cancellation Points Add the following functions to the list of func-
6 tions for which a cancellation point may also occur:

7 pthread_rwlock_rdlock(), pthread_rwlock_timedrdlock(), 8

8 pthread_rwlock_wrlock(), pthread_rwlock_timedwrlock(), 8

9 posix_typed_mem_open(). 8

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

18.1 Thread Cancellation Overview 59

P1003.1j/D10 INFORMATION TECHNOLOGY — POSIX

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

60 18 Thread Cancellation

P1003.1j/D10

Annex A
(informative)

Bibliography

1 A.4 Other Sources of Information

2 ⇒⇒ A.4 Other Sources of Information Add the following bibliographic entries,
3 in the correct sorted order.

4 {B79} George S. Almasi and Allan Gottlieb. Highly Parallel Computing. The
5 Benjamin/Cummings Publishing Company, Inc., 1989, ISBN 0-8053-
6 0177-1.

7 {B80} Steven Brawer. Introduction to Parallel Programming. Academic Press,
8 1989, ISBN 0-12-128470-0.

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

A.4 Other Sources of Information 61

P1003.1j/D10 INFORMATION TECHNOLOGY — POSIX

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

62 A Bibliography

P1003.1j/D10

Annex B
(informative)

Rationale and Notes1

2 B.11 Synchronization

3 ⇒⇒ B.11 Synchronization Add the following subclauses:

4 B.11.5 Barriers

B5 .11.5.1 Background

6 Barriers are typically used in parallel DO/FOR loops to ensure that all threads
have7 reached a particular stage in a parallel computation before allowing any to
proceed8 to the next stage. Highly efficient implementation is possible on machines
which9 support a ‘‘Fetch and Add’’ operation as described in {B79}.

The10 use of return value PTHREAD_BARRIER_SERIAL_THREAD is shown in the fol-
lowing11 example:

12 if ((status=pthread_barrier_wait(&barrier)) ==
13 PTHREAD_BARRIER_SERIAL_THREAD) {
14 ...serial section
15 }
16 else if (status != 0) {
17 ...error processing
18 }
19 status=pthread_barrier_wait(&barrier);
20 ...

21 This behavior allows a serial section of code to be executed by one thread as soon
as22 all threads reach the first barrier. The second barrier prevents the other
threads23 from proceeding until the serial section being executed by the one thread
has24 completed.

Although25 barriers can be implemented with mutexes and condition variables,
reference26 {B79} provides ample illustration that such implementations are
signi27 ficantly less efficient than is possible. While the relative efficiency of barriers
may28 well vary by implementation it is important that they be recognized in the

29 POSIX standard to facilitate application portability while providing the necessary
freedom30 to P1003.1c implementors.

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

B.11 Synchronization 63

P1003.1j/D10 INFORMATION TECHNOLOGY — POSIX

31 B.11.5.2 Lack of Timeout Feature

32 Alternate versions of most blocking routines have been provided to support watch-
dog33 timeouts. No alternate interface of this sort has been provided for barrier
waits34 for the following reasons:

35 1. Multiple threads may use different timeout values, some of which may be
36 indefinite. It is not clear which threads should break through the barrier
37 with a timeout error if and when these timeouts expire.

38 2. The barrier may become unusable once a thread breaks out of a
39 pthread_barrier_wait() with a timeout error. There is, in general, no way to
40 guarantee the consistency of a barrier’s internal data structures once a
41 thread has timed out of a pthread_barrier_wait(). Even the inclusion of a
42 special barrier re-initialization function would not help much since it’s not
43 clear how this function would affect the behavior of threads that reach the
44 barrier between the original timeout and the call to the re-initialization func-
45 tion.

46 B.11.6 Reader/Writer Locks

B47 .11.6.1 Background

48 Reader/writer locks are often used to allow parallel access to data on multiproces-
sors,49 to avoid context switches on uniprocessors when multiple threads access the
same50 data, and to protect data structures that are frequently accessed (that is,
read)51 but rarely updated (that is, written). The in-core representation of a file sys-
tem52 directory is a good example of such a data structure. One would like to
achieve53 as much concurrency as possible when searching directories, but limit
concurrent54 access when adding or deleting files.

Although55 reader/writer locks can be implemented with mutexes and condition
variables,56 such implementations are significantly less efficient than is possible.
Therefore,57 this synchronization primitive is included in this standard for the pur-
pose58 of allowing more efficient implementations in multiprocessor systems.

59 B.11.6.2 Queuing of Waiting Threads

60 The pthread_rwlock_unlock() function description states that one writer or one or 9

61 more readers shall acquire the lock if it is no longer held by any thread as a result
of62 the call. However, the function does not specify which thread(s) acquire the
lock,63 unless the Thread Execution Scheduling option is supported. 9

64 The Realtime System Services Working Group considered the issue of scheduling
with65 respect to the queuing of threads blocked on a reader/writer lock. The ques-
tion66 turned out to be whether this standard should require priority scheduling of
r67 eader/writer locks for threads whose execution scheduling policy is priority-based
(for68 example, SCHED_FIFO or SCHED_RR). There are tradeoffs between priority
scheduling,69 the amount of concurrency achievable among readers, and the preven-
tion70 of writer and/or reader starvation.

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

64 B Rationale and Notes

PART 1: SYSTEM API—Amd. x:Advanced Realtime Extensions [C Language] P1003.1j/D10

71 For example, suppose one or more readers hold a reader/writer lock and the fol-
lowing72 threads request the lock in the listed order:

73 pthread_rwlock_wrlock() - Low priority thread writer_a
74 pthread_rwlock_rdlock() - High priority thread reader_a
75 pthread_rwlock_rdlock() - High priority thread reader_b
76 pthread_rwlock_rdlock() - High priority thread reader_c

77 When the lock becomes available, should writer_a block the high priority readers?
Or,78 suppose a reader/writer lock becomes available and the following are queued:

79 pthread_rwlock_rdlock() - Low priority thread reader_a
80 pthread_rwlock_rdlock() - Low priority thread reader_b
81 pthread_rwlock_rdlock() - Low priority thread reader_c
82 pthread_rwlock_wrlock() - Medium priority thread writer_a
83 pthread_rwlock_rdlock() - High priority thread reader_d

84 If priority scheduling is applied then reader_d would acquire the lock and writer_a
85 would block the remaining readers. But should the remaining readers also

acquire86 the lock to increase concurrency? The solution adopted takes into account
that87 when the Thread Execution Scheduling option is supported, high priority 9

88 threads may in fact starve low priority threads (the application developer is
responsible89 in this case to design the system in such a way that this starvation is
avoided).90 Therefore, the standard specifies that high priority readers take pre-
cedence91 over lower priority writers. However, to prevent writer starvation from
threads92 of the same or lower priority, writers take precedence over readers of the
same93 or lower priority.

P94 riority inheritance mechanisms are non-trivial in the context of reader/writer
locks.95 When a high priority writer is forced to wait for multiple readers, for exam-
ple,96 it is not clear which subset of the readers should inherit the writer’s priority.
F97 urthermore, the internal data structures that record the inheritance must be
accessible98 to all readers, and this implies some sort of serialization that could
negate99 any gain in parallelism achieved through the use of multiple readers in the

100 first place. Finally, existing practice does not support the use of priority inheri-
tance101 for reader/writer locks. Therefore, no specification of priority inheritance or
priority102 ceiling is attempted. If reliable priority-scheduled synchronization is abso-
lutely103 required, it can always be obtained through the use of mutexes.

104 B.11.6.3 Comparison to ISO/IEC 9945-1 fcntl() locks 8

105 The reader/writer locks and the fcntl() locks share a common goal: increasing 8

106 concurrency among readers, thus increasing throughput and decreasing delay. 8

107 However, the reader/writer locks have two features not present in the fcntl() 8

108 locks. First, under priority scheduling, reader/writer locks are granted in priority 8

109 order. Second, also under priority scheduling, writer starvation is prevented by 8

110 giving writers preference over readers of equal or lower priority. 8

111 Also, reader/writer locks can be used in systems lacking a file system, such as 8

112 those conforming to the minimal realtime system profile of the IEEE 1003.13 8

113 profile standard. 8

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

B.11 Synchronization 65

P1003.1j/D10 INFORMATION TECHNOLOGY — POSIX

114 B.11.6.4 History of Resolution Issues 8

115 Based upon some balloting objections, the draft specified the behavior of threads 8

116 waiting on a reader/writer lock during the execution of a signal handler, as if the 8

117 thread had not called the lock operation. However, this specified behavior would 8

118 require implementations to establish internal signal handlers even though this 8

119 situation would be rare, or never happen for many programs. This would intro- 8

120 duce an unacceptable performance hit in comparison to the little additional func- 8

121 tionality gained. Therefore, the behavior of reader/writer locks and signals was 8

122 reverted back to its previous mutex-like specification. 8

123 B.11.7 Spin Locks

B124 .11.7.1 Background

125 Spin locks represent an extremely low-level synchronization mechanism suitable
primarily126 for use on shared memory multiprocessors. It is typically an atomically
modi127 fied boolean value that is set to one when the lock is held and to zero when
the128 lock is freed.

When129 a caller requests a spin lock that is already held, it typically spins in a loop
testing130 whether the lock has become available. Such spinning wastes processor
cycles131 so the lock should only be held for short durations and not across
sleep/block132 operations. Callers should unlock spin locks before calling sleep opera-
tions.133

Spin134 locks are available on a variety of systems. Section 11.7 is an attempt to
standardize135 that existing practice. 8

136 B.11.7.2 Lack of Timeout Feature

137 Alternate versions of most blocking routines have been provided to support watch-
dog138 timeouts. No alternate interface of this sort has been provided for spin locks
for139 the following reasons:

140 1. It is impossible to determine appropriate timeout intervals for spin locks in a
141 portable manner. The amount of time one can expect to spend spin-waiting
142 is inversely proportional to the degree of parallelism provided by the system.
143 It can vary from a few cycles when each competing thread is running on its
144 own processor, to an indefinite amount of time when all threads are multi-
145 plexed on a single processor (which is why spin locking is not advisable on
146 uniprocessors).

147 2. When used properly, the amount of time the calling thread spends waiting
148 on a spin lock should be considerably less than the time required to set up a
149 corresponding watchdog timer. Since the primary purpose of spin locks it to
150 provide a low-overhead synchronization mechanism for multiprocessors, the
151 overhead of a timeout mechanism was deemed unacceptable.

It152 was also suggested that an additional count argument be provided (on the
153 pthread_spin_lock() call) in lieu of a true timeout so that a spin lock call could fail

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

66 B Rationale and Notes

PART 1: SYSTEM API—Amd. x:Advanced Realtime Extensions [C Language] P1003.1j/D10

154 gracefully if it was unable to apply the lock after count attempts. This idea was
rejected155 because it is not existing practice. Furthermore, the same effect can be
obtained156 with pthread_spin_trylock() as illustrated below:

157 int n = MAX_SPIN; 8

158 while (--n >= 0) 8
159 { 8
160 if (!pthread_spin_try_lock(...)) 8
161 break; 8
162 } 8
163 if (n >= 0) 8
164 { 8
165 / ∗ Successfully acquired the lock ∗/ 8
166 } 8
167 else 8
168 { 8
169 / ∗ Unable to acquire the lock ∗/ 8
170 } 8

171 B.11.7.3 process-shared Attribute

172 The initialization functions associated with most POSIX synchronization objects
(e.g.,173 mutexes, barriers, and reader/writer locks) take an attributes object with a

174 process-shared attribute that specifies whether or not the object is to be
shared175 across processes. In the draft corresponding to the first balloting round
two176 separate initialization functions are provided for spin locks, however: One for
spin177 locks that were to be shared across processes (spin_init()), and one for locks
that178 were only used by multiple threads within a single process
(179 pthread_spin_init()). This was done so as to keep the overhead associated with
spin180 waiting to an absolute minimum. However, the balloting group requested
that,181 since the overhead associated to a bit check was small, spin locks should be
consistent182 with the rest of the synchronization primitives, and thus the

183 process-shared attribute was introduced for spin locks.

184 B.11.7.4 Spin Locks vs. Mutexes

185 It has been suggested that mutexes are an adequate synchronization mechanism
and186 spin locks are not necessary. Locking mechanisms typically must trade off the
processor187 resources consumed while setting up to block the thread and the proces-
sor188 resources consumed by the thread while it is blocked. Spin locks require very
little189 resources to set up the blocking of a thread. Existing practice is to simply
loop,190 repeating the atomic locking operation until the lock is available. While the
resources191 consumed to set up blocking of the thread are low, the thread continues
to192 consume processor resources while it is waiting.

On193 the other hand, mutexes may be implemented such that the processor
resources194 consumed to block the thread are large relative to a spin lock. After
detecting195 that the mutex lock is not available, the thread must alter its scheduling
state,196 add itself to a set of waiting threads, and, when the lock becomes available
again,197 undo all of this before taking over ownership of the mutex. However, while

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

B.11 Synchronization 67

P1003.1j/D10 INFORMATION TECHNOLOGY — POSIX

198 a thread is blocked by a mutex, no processor resources are consumed.

Therefore,199 spin locks and mutexes may be implemented to have different charac-
teristics.200 Spin locks may have lower overall overhead for very short term blocking,
and201 mutexes may have lower overall overhead when a thread will be blocked for
longer202 periods of time. The presence of both interfaces allows implementations
with203 these two different characteristics, both of which may be useful to a particu-
lar204 application.

It205 has also been suggested that applications can build their own spin locks from
the206 pthread_mutex_trylock() function:

207 while (pthread_mutex_trylock(&mutex));

208 The apparent simplicity of this construct is somewhat deceiving, however. While
the209 actual wait is quite efficient, various guarantees on the integrity of mutex
objects210 (e.g., priority inheritance rules) may add overhead to the successful path
of211 the trylock operation that is not required of spin locks. One could, of course,
add212 an attribute to the mutex to bypass such overhead but the very act of finding
and213 testing this attribute represents more overhead than is found in the typical
spin214 lock.

The215 need to hold spin lock overhead to an absolute minimum also makes it impos-
sible216 to provide guarantees against starvation similar to those provided for
mutexes217 or reader/writer locks. The overhead required to implement such
guarantees218 (e.g, disabling preemption before spinning) may well exceed the over-
head219 of the spin wait itself by many orders of magnitude. If a "safe" spin wait
seems220 desirable, it can always be provided (albeit at some performance cost) via
appropriate221 mutex attributes.

222 B.12 Memory Management

223 ⇒⇒ B.12 Memory Management Add the following subclause:

224 B.12.4 Typed Memory Functions

225 Implementations may support the Typed Memory Objects option without support-
ing226 either the Shared Memory option or the Memory Mapped Files option. Typed
memory227 objects are pools of specialized storage, different from the main memory
resource228 normally used by a processor to hold code and data, that can be mapped
into229 the address space of one or more processes.

230 B.12.4.1 Model

231 Realtime systems conforming to one of the POSIX.13 realtime profiles are expected
(and232 desired) to be supported on systems with more than one type or pool of
memory233 (e.g., SRAM, DRAM, ROM, EPROM, EEPROM), where each type or pool of
memory234 may be accessible by one or more processors via one or more busses

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

68 B Rationale and Notes

PART 1: SYSTEM API—Amd. x:Advanced Realtime Extensions [C Language] P1003.1j/D10

235 (ports). Memory Mapped Files, Shared Memory Objects, and the language-specific
storage236 allocation operators (malloc() for ANSI C, new for ANSI Ada) fail to provide
application237 program interfaces versatile enough to allow applications to control
their238 utilization of such diverse memory resources. The Typed Memory interfaces

239 posix_typed_mem_open(), posix_mem_offset (), posix_typed_mem_get_info(),
240 mmap(), and munmap() defined herein support the model of typed memory

described241 below.

F242 or purposes of this model, a system comprises several processors (e.g., P1 and
243 P2), several physical memory pools (e.g., M1, M2, M2a, M2b, M3, M4, and M5),

and244 several busses or "ports" (e.g., B1, B2, B3, and B4) interconnecting the various
processors245 and memory pools in some system-specific way. Notice that some
memory246 pools may be contained in others (e.g., M2a and M2b are contained in

247 M2). Figure 12-1 shows an example of such a model. In a system like this, an
application248 should be able to perform the following operations:

249 ___

Processor
Memory

P1 M1

Memory

M3

Memory

M4

Memory

M5

Processor

P2

Memory

B2 B2 B2 B2

B1 B1 B1 B3

B4

*

All addresses in pool M2 (comprising pools M2a and M2b) accessible via port B1.
Addresses in pool M2b are also accessible via port B2
Addresses in pool M2a are NOT accessible via port B2

*

Bus

Bus Bus

Bus

M2a

M2b

M2

250 ___

251 Figure B-1 −− Example of a system with typed memory

252 — Typed memory allocation. An application should be able to allocate memory
253 dynamically from the desired pool using the desired bus, and map it into a
254 process’s address space. For example, processor P1 can allocate some por-
255 tion of memory pool M1 through port B1, treating all unmapped subareas of
256 M1 as a heap-storage resource from which memory may be allocated. This
257 portion of memory is mapped into the process’s address space, and subse-
258 quently deallocated when unmapped from all processes.

259 — Using the same storage region from different busses. An application process
260 with a mapped region of storage that is accessed from one bus should be
261 able to map that same storage area at another address (subject to page size
262 restrictions detailed in 12.2.1.2), to allow it to be accessed from another bus.

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

B.12 Memory Management 69

P1003.1j/D10 INFORMATION TECHNOLOGY — POSIX

263 For example, processor P1 may wish to access the same region of memory
264 pool M2b both through ports B1 and B2.

265 — Sharing typed memory regions. Several application processes running on
266 the same or different processors may wish to share a particular region of a
267 typed memory pool. Each process or processor may wish to access this
268 region through different busses. For example, processor P1 may want to
269 share a region of memory pool M4 with processor P2, and they may be
270 required to use busses B2 and B3, respectively, to minimize bus contention.
271 A problem arises here when a process allocates and maps a portion of frag-
272 mented memory and then wants to share this region of memory with
273 another process, either in the same processor or different processors. The
274 solution adopted is to allow the first process to find out the memory map
275 (offsets and lengths) of all the different fragments of memory that were
276 mapped into its address space, by repeatedly calling posix_mem_offset ().
277 Then, this process can pass the offsets and lengths obtained to the second
278 process, which can then map the same memory fragments into its address
279 space.

280 — Contiguous allocation. The problem of finding the memory map of the
281 different fragments of the memory pool that were mapped into logically con-
282 tiguous addresses of a given process, can be solved by requesting contiguous
283 allocation. For example, a process in P1 can allocate 10 Kbytes of physically
284 contiguous memory from M3-B1, and obtain the offset (within pool M3) of
285 this block of memory. Then, it can pass this offset (and the length) to a pro-
286 cess in P2 using some interprocess communication mechanism. The second
287 process can map the same block of memory by using the offset transferred
288 and specifying M3-B2.

289 — Unallocated mapping. Any subarea of a memory pool that is mapped to a
290 process, either as the result of an allocation request or an explicit mapping,
291 is normally unavailable for allocation. Special processes such as debuggers,
292 however, may need to map large areas of a typed memory pool, yet leave
293 those areas available for allocation.

T294 yped memory allocation and mapping has to coexist with storage allocation
operators295 like malloc(), but systems are free to choose how to implement this
coexistence.296 For example, it may be system configuration dependent if all avail-
able297 system memory is made part of one of the typed memory pools or if some part
will298 be restricted to conventional allocation operators. Equally system
con299 figuration dependent may be the availability of operators like malloc() to allo-
cate300 storage from certain typed memory pools. It is not excluded to configure a
system301 such that a given named pool, P1, is in turn split into non-overlapping
named302 sub-pools. For example, M1-B1, M2-B1, and M3-B1 could also be accessed
as303 one common pool M123-B1. A call to malloc() on P1 could work on such a larger
pool304 whilst full optimization of memory usage by P1 would require typed memory
allocation305 at the sub-pool level.

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

70 B Rationale and Notes

PART 1: SYSTEM API—Amd. x:Advanced Realtime Extensions [C Language] P1003.1j/D10

306 B.12.4.2 Existing Practice

307 OS-9 provides for the naming (numbering) and prioritization of memory types by a
system308 administrator. It then provides APIs to request memory allocation of typed
(colored)309 memory by number, and to generate a bus address from a mapped
memory310 address (translate). When requesting colored memory, the user can
specify311 type 0 to signify allocation from the first available type in priority order.

312 HP-RT presents interfaces to map different kinds of storage regions that are visi-
ble313 through a VME bus, although it does not provide allocation operations. It also
provides314 functions to perform address translation between VME addresses and vir-
tual315 addresses. It represents a VME-bus unique solution to the general problem.

The316 PSOS approach is similar (i.e. based on a pre-established mapping of bus
address317 ranges to specific memories) with a concept of segments and regions
(regions318 dynamically allocated from a heap which is a special segment). Therefore

319 PSOS does not fully address the general allocation problem either. PSOS does not
have320 a ‘‘process’’ based model, but more of a ‘‘thread’’ only based model of multi-
tasking.321 So mapping to a process address space is not an issue.

322 QNX (a Canadian OS vendor specializing in realtime embedded systems on 80x86
based323 processors) uses the System V approach of opening specially named devices
(shared324 memory segments) and using mmap() to then gain access from the pro-
cess.325 They do not address allocation directly, but once typed shared memory can
be326 mapped, an ‘‘allocation manager’’ process could be written to handle requests
for327 allocation.

The328 System V approach also included allocation, implemented by opening yet
other329 special ‘‘devices’’ which allocate, rather than appearing as a whole memory
o330 bject.

The331 Orkid real-time kernel interface definition has operations to manage memory
‘332 ‘regions’’ and ‘‘pools’’, which are areas of memory that may reflect the differing
physical333 nature of the memory. Operations to allocate memory from these regions
and334 pools are also provided.

335 B.12.4.3 Requirements

336 Existing practice in SVID derived UNIX1) systems relies on functionality similar to
337 mmap() and its related interfaces to achieve mapping and allocation of typed

memory.338 However, the issue of sharing typed memory (allocated or mapped) and
the339 complication of multiple ports are not addressed in any consistent way by
existing340 UNIX system practice. Part of this functionality is existing practice in spe- 8

341 cialized realtime operating systems. In order to solidify the capabilities implied by
the342 model above, the following requirements are imposed on the interface:

343 ________________

1)344 UNIX is a registered trademark of The Open Group in the US and other countries. 8

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

B.12 Memory Management 71

P1003.1j/D10 INFORMATION TECHNOLOGY — POSIX

345 — Identification of typed memory pools and ports. All processes (running in all
346 processors) in the system shall be able to identify a particular (system
347 configured) typed memory pool accessed through a particular (system
348 configured) port by a name. That name shall be a member of a namespace
349 common to all these processes, but need not be the same namespace as that
350 containing ordinary file names. The association between memory 8

351 pools/ports and corresponding names is typically established when the sys- 8

352 tem is configured. The ‘‘open’’ operation for typed memory objects should 8

353 be distinct from the open() function, for consistency with other similar ser-
354 vices, but implementable on top of open(). This implies that the handle for
355 a typed memory object will be a file descriptor.

356 — Allocation and mapping of typed memory. Once a typed memory object has
357 been identified by a process, it shall be possible to both map user-selected
358 subareas of that object into process address space and to map system-
359 selected (i.e., dynamically allocated) subareas of that object, with user-
360 specified length, into process address space. It shall also be possible to
361 determine the maximum length of memory allocation that may be
362 requested from a given typed memory object.

363 — Sharing typed memory. Two or more processes shall be able to share por-
364 tions of typed memory, either user-selected or dynamically allocated. This
365 requirement applies also to dynamically allocated regions of memory that
366 are composed of several non-contiguous pieces.

367 — Contiguous allocation. For dynamic allocation, it shall be the user’s option
368 whether the system is required to allocate a contiguous subarea within the
369 typed memory object, or whether it is permitted to allocate discontiguous
370 fragments which appear contiguous in the process mapping. Contiguous
371 allocation simplifies the process of sharing allocated typed memory, while
372 discontiguous allocation allows for potentially better recovery of deallocated
373 typed memory.

374 — Accessing typed memory through different ports. Once a subarea of a typed
375 memory object has been mapped, it shall be possible to determine the loca-
376 tion and length corresponding to a user-selected portion of that object
377 within the memory pool. This location and length can then be used to
378 remap that portion of memory for access from another port. If the refer-
379 enced portion of typed memory was allocated discontiguously, the length
380 thus determined may be shorter than anticipated, and the user code shall
381 adapt to the value returned.

382 — Deallocation. When a previously mapped subarea of typed memory is no
383 longer mapped by any process in the system—as a result of a call or calls to
384 munmap() —, that subarea shall become potentially reusable for dynamic
385 allocation; actual reuse of the subarea is a function of the dynamic typed
386 memory allocation policy.

387 — Unallocated mapping. It shall be possible to map user-selected subareas of
388 a typed memory object without marking that subarea as unavailable for
389 allocation This option is not the default behavior, and shall require
390 appropriate privilege.

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

72 B Rationale and Notes

PART 1: SYSTEM API—Amd. x:Advanced Realtime Extensions [C Language] P1003.1j/D10

391 B.12.4.4 Scenario

392 The following scenario will serve to clarify the use of the typed memory interfaces.
P393 rocess A running on P1 (see Figure 12-1) wants to allocate some memory from
memory394 pool M2, and it wants to share this portion of memory with process B

395 running on P2. Since P2 only has access to the lower part of M2, both processes
will396 use the memory pool named M2b which is the part of M2 that is accessible
both397 from P1 and P2. The operations that both processes need to perform are
shown398 below:

399 — Allocating typed memory. Process A calls posix_typed_mem_open() with the
400 name /typed.m2b-b1 and a tflag of POSIX_TYPED_MEM_ALLOCATE to get
401 a file descriptor usable for allocating from pool M2b accessed through port
402 B1. It then calls mmap() with this file descriptor requesting a length of
403 4096 bytes. The system allocates two discontiguous blocks of sizes 1024 and
404 3072 bytes within M2b. The mmap() function returns a pointer to a 4096
405 byte array in process A’s logical address space, mapping the allocated blocks
406 contiguously. Process A can then utilize the array, and store data in it.

407 — Determining the location of the allocated blocks. Process A can determine
408 the lengths and offsets (relative to M2b) of the two blocks allocated, by using
409 the following procedure: First, process A calls posix_mem_offset () with the
410 address of the first element of the array and length 4096. Upon return, the
411 offset and length (1024 bytes) of the first block are returned. A second call
412 to posix_mem_offset () is then made using the address of the first element of
413 the array plus 1024 (the length of the first block), and a new length of
414 4096-1024. If there were more fragments allocated, this procedure could
415 have been continued within a loop until the offsets and lengths of all the
416 blocks were obtained. Notice that this relatively complex procedure can be
417 avoided if contiguous allocation is requested (by opening the typed memory
418 object with the tflag POSIX_TYPED_MEM_ALLOCATE_CONTIG).

419 — Sharing data across processes . Process A passes the two offset values and
420 lengths obtained from the posix_mem_offset () calls to process B running on
421 P2, via some form of interprocess communication. Process B can gain
422 access to process A’s data by calling posix_typed_mem_open() with the name
423 /typed.m2b-b2 and a tflag of zero, then using two mmap() calls on the
424 resulting file descriptor to map the two subareas of that typed memory
425 object to its own address space.

426 B.12.4.5 Rationale for posix_typed_mem_get_info()

427 An application that needs to allocate a block of typed memory with length depen-
dent428 upon the amount of memory currently available must either query the typed
memory429 object to obtain the amount available, or repeatedly invoke mmap()
attempting430 to guess an appropriate length. While the latter method is existing
practice431 with malloc(), it is awkward and imprecise. The

432 posix_typed_mem_get_info() function allows an application to immediately deter-
mine433 available memory. This is particularly important for typed memory objects
that434 may in some cases be scarce resources. Note that when a typed memory pool

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

B.12 Memory Management 73

P1003.1j/D10 INFORMATION TECHNOLOGY — POSIX

435 is a shared resource, some form of mutual exclusion or synchronization may be
required436 while typed memory is being queried and allocated to prevent race condi-
tions.437

The438 existing fstat () function is not suitable for this purpose. We realize that
i439 mplementations may wish to provide other attributes of typed memory objects
(e.g.,440 alignment requirements, page size, etc.). The fstat () function returns a struc-
ture441 which is not extensible and, furthermore, contains substantial information
that442 is inappropriate for typed memory objects.

443 B.12.4.6 Rationale for no mem_alloc() and mem_free()

444 The working group had originally proposed a pair of new flags to mmap() which,
when445 applied to a Typed Memory object descriptor, would cause mmap() to allo-
cate446 dynamically from an unallocated and unmapped area of the Typed Memory
object.447 Deallocation was similarly accomplished through the use of munmap().
This448 was rejected by the ballot group because it excessively complicated the
(already449 rather complex) mmap() interface and introduced semantics useful only
for450 typed memory, to a function which must also map shared memory and files.
They451 felt that a memory allocator should be built on top of mmap() instead of
being452 incorporated within the same interface, much as the ISO C libraries build

453 malloc() on top of the virtual memory mapping functions brk() and sbrk(). This 8

454 would eliminate the complicated semantics involved with unmapping only part of
an455 allocated block of typed memory.

T456 o attempt to achieve ballot group consensus, typed memory allocation and deallo-
cation457 was first migrated from mmap() and munmap() to a pair of complementary
functions458 modeled on ISO C malloc() and free (). The function mem_alloc()
speci459 fied explicitly the typed memory object (typed memory pool/access port) from
which460 allocation takes place, unlike malloc() where the memory pool and port are
unspeci461 fied. The mem_free () function handled deallocation. These new semantics
still462 met all of the requirements detailed above without modifying the behavior of

463 mmap() except to allow it to map specified areas of typed memory objects. An
i464 mplementation would have been free to implement mem_alloc() and mem_free ()
over465 mmap(), through mmap(), or independently but cooperating with mmap().

The466 ballot group was queried to see if this was an acceptable alternative, and
while467 there was some agreement that it achieved the goal of removing the compli-
cated468 semantics of allocation from the mmap() interface, several balloters realized
that469 it just created two additional functions that behaved, in great part, like

470 mmap(). These balloters proposed an alternative which we have implemented
here471 in place of a separate mem_alloc() and mem_free (). This alternative is based
on472 four specific suggestions:

473 — The function posix_typed_mem_open() should provide a flag which specifies
474 ‘‘allocate on mmap()’’ (otherwise, mmap() just maps the underlying object).
475 This allows things roughly similar to /dev/zero vs. /dev/swap . We have
476 implemented two such flags, one of which forces contiguous allocation.

477 — The function posix_mem_offset () is acceptable because it can be applied use-
478 fully to mapped objects in general. It should return the file descriptor of

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

74 B Rationale and Notes

PART 1: SYSTEM API—Amd. x:Advanced Realtime Extensions [C Language] P1003.1j/D10

479 the underlying object.

480 — The function named mem_get_info () in an earlier draft should be renamed
481 posix_typed_mem_get_info() because it is not generally applicable to
482 memory objects. It should probably return the file descriptor’s allocation
483 attribute. We have implemented the renaming of the function, but reject
484 having it return a piece of information which is readily known by an appli-
485 cation without this function. Its whole purpose is to query the typed
486 memory object for attributes that are not user specified, but determined by
487 the implementation.

488 — There should be no separate mem_alloc() or mem_free () functions. Instead,
489 using mmap() on a typed memory object opened with an ‘‘allocate on
490 mmap()’’ flag should be used to force allocation. These are precisely the
491 semantics defined in the current draft.

492 B.12.4.7 Rationale for no Typed Memory Access Management

493 The working group had originally defined an additional interface (and an addi-
tional494 kind of object: Typed Memory Master) to establish and dissolve mappings to
typed495 memory on behalf of devices or processors which were independent of the
operating496 system and had no inherent capability to directly establish mappings on
their497 own. This was to have provided functionality similar to device driver inter-
faces498 such as physio() and their underlying bus-specific interfaces (e.g., mballoc())
which499 serve to set up and break down DMA pathways, and derive mapped
addresses500 for use by hardware devices and processor cards.

The501 ballot group felt that this was beyond the scope of IEEE 1003.1 and its amend-
ments.502 Furthermore, the removal of interrupt handling interfaces from a preced-
ing503 amendment (IEEE 1003.1d) during its balloting process renders these Typed
Memory504 Access Management interfaces an incomplete solution to portable device
management505 from a user process; it would be possible to initiate a device transfer
to/from506 typed memory, but impossible to handle the transfer-complete interrupt in
a507 portable way.

T508 o achieve ballot group consensus, all references to Typed Memory Access
Management509 capabilities were removed. The concept of portable interfaces from a
device510 driver to both operating system and hardware is being addressed by the
Uniform511 Driver Interface (UDI) industry forum, with formal standardization
deferred512 until proof of concept and industry-wide acceptance and implementation.

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

B.12 Memory Management 75

P1003.1j/D10 INFORMATION TECHNOLOGY — POSIX

513 B.14 Clocks and Timers

514 8

515 ⇒⇒ B.14 Clocks and Timers Add the following subclause after the unnumbered
516 subclause ‘‘clocks ’’:

517 Rationale for the Monotonic Clock

518 For those applications that use time services to achieve realtime behavior,
519 changing the value of the clock on which these services rely may cause errone-
520 ous timing behavior. For these applications, it is necessary to have a monotonic 8

521 clock which cannot run backwards, and which has a maximum clock jump that 8

522 is required to be documented by the implementation. Additionally, it is desir- 8

523 able (but not required by this standard) that the monotonic clock increases its 8

524 value uniformly. This clock should not be affected by changes to the system 8

525 time, for example to synchronize the clock with an external source or to
526 account for leap seconds. Such changes would cause errors in the measure-
527 ment of time intervals for those time services that use the absolute value of the
528 clock.

529 One could argue that by defining the behavior of time services when the value
530 of a clock is changed, deterministic realtime behavior can be achieved. For
531 example, one could specify that relative time services should be unaffected by
532 changes in the value of a clock. However, there are time services that are
533 based upon an absolute time, but that are essentially intended as relative time
534 services. For example, pthread_cond_timedwait() uses an absolute time to
535 allow it to wake up after the required interval despite spurious wakeups.
536 Although sometimes the pthread_cond_timedwait() timeouts are absolute in
537 nature, there are many occasions in which they are relative, and their absolute
538 value is determined from the current time plus a relative time interval. In this
539 latter case, if the clock changes while the thread is waiting, the wait interval
540 will not be the expected length. If a pthread_cond_timedwait() function were
541 created that would take a relative time, it would not solve the problem because
542 to retain the intended ‘‘deadline’’ a thread would need to compensate for
543 latency due to the spurious wakeup, and preemption between wakeup and the
544 next wait.

545 The solution is to create a new monotonic clock, whose value does not change
546 except for the regular ticking of the clock, and use this clock for implementing
547 the various relative timeouts that appear in the different POSIX interfaces, as 8

548 well as allow pthread_cond_timedwait() to choose this new clock for its 8

549 timeout. A new clock_nanosleep() function is created to allow an application to 8

550 take advantage of this newly defined clock. Notice that the monotonic clock
551 may be implemented using the same hardware clock as the system clock.

552 Relative timeouts for sigtimedwait() and aio_suspend() have been redefined to 8

553 use the monotonic clock, if present. The alarm() function has not been
554 redefined, because the same effect but with better resolution can be achieved
555 by creating a timer (for which the appropriate clock may be chosen).

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

76 B Rationale and Notes

PART 1: SYSTEM API—Amd. x:Advanced Realtime Extensions [C Language] P1003.1j/D10

556 The pthread_cond_timedwait() function has been treated in a different way, 8

557 compared to other functions with absolute timeouts, because it is used to wait 8

558 for an event, and thus it may have a deadline, while the other timeouts are 8

559 generally used as an error recovery mechanism, and for them the use of the 8

560 monotonic clock is not so important. Since the desired timeout for the 8

561 pthread_cond_timedwait() function may either be a relative interval, or an
562 absolute time of day deadline, a new initialization attribute has been created
563 for condition variables, to specify the clock that shall be used for measuring the
564 timeout in a call to pthread_cond_timedwait(). In this way, if a relative
565 timeout is desired, the monotonic clock will be used; if an absolute deadline is
566 required instead, the CLOCK_REALTIME or another appropriate clock may be
567 used. This capability has not been added to other functions with absolute 8

568 timeouts because for those functions the expected use of the timeout is mostly 8

569 to prevent errors, and not so often to meet precise deadlines. As a consequence, 8

570 the complexity of adding this capability is not justified by its perceived applica- 8

571 tion usage. 8

572 The nanosleep() function has not been modified with the introduction of the
573 monotonic clock. Instead, a new clock_nanosleep() function has been created,
574 in which the desired clock may be specified in the function call.

575 History of Resolution Issues 8

576 Due to the shift from relative to absolute timeouts in IEEE 1003.1d, the amend- 8

577 ments to the sem_timedwait(), pthread_mutex_timedlock(), mq_timedreceive(), 8

578 and mq_timedsend () functions of that standard have been removed. Those 8

579 amendments specified that CLOCK_MONOTONIC would be used for the (rela- 8

580 tive) timeouts if the Monotonic Clock option was supported. 8

581 Having these functions continue to be tied solely to CLOCK_MONOTONIC 8

582 would not work. Since the absolute value of a time value obtained from 8

583 CLOCK_MONOTONIC is unspecified, under the absolute timeouts interface, 8

584 applications would behave differently depending on whether the Monotonic 8

585 Clock option was supported or not (because the absolute value of the clock 8

586 would have different meanings in either case). 8

587 Two options were considered: 1) leave the current behavior unchanged, which 8

588 specifies the CLOCK_REALTIME clock for these (absolute) timeouts, to allow 8

589 portability of applications between implementations supporting or not the 8

590 Monotonic Clock option, or 2) modify these functions in the way that 8

591 pthread_cond_timedwait() was modified to allow a choice of clock, so that an 8

592 application could use CLOCK_REALTIME when it is trying to achieve an abso- 8

593 lute timeout and CLOCK_MONOTONIC when it is trying to achieve a relative 8

594 timeout. 8

595 It was decided that the features of CLOCK_MONOTONIC are not as critical to 8

596 these functions as they are to pthread_cond_timedwait(). When 8

597 pthread_cond_timedwait() is given a relative timeout, the timeout may 8

598 represent a deadline for an event. When these functions are given relative 8

599 timeouts, the timeouts are typically for error recovery purposes and need not 8

600 be so precise. 8

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

B.14 Clocks and Timers 77

P1003.1j/D10 INFORMATION TECHNOLOGY — POSIX

601 Therefore, it was decided that these functions should be tied to 8

602 CLOCK_REALTIME and not complicated by being given a choice of clock. 8

603 B.14.2 Clock and Timer Functions

604 ⇒⇒ B.14.2 Clock and Timer Functions Add the following subclause:

605 B.14.2.6 High Resolution Sleep with Specifiable Clock

606 Rationale for clock_nanosleep()

607 The nanosleep() function specifies that the systemwide clock CLOCK_REALTIME is
used608 to measure the elapsed time for this time service. However, with the intro-
duction609 of the monotonic clock CLOCK_MONOTONIC a new relative sleep function
is610 needed to allow an application to take advantage of the special characteristics of
this611 clock.

612 Rationale for absolute clock_nanosleep()

613 There are many applications in which a process needs to be suspended and then
activated614 multiple times in a periodic way, for example to poll the status of a non-
interrupting615 device or to refresh a display device. For these cases, it is known
that616 precise periodic activation cannot be achieved with a relative sleep() or

617 nanosleep() function call. Suppose for example, a periodic process that is activated
at618 time T 0, executes for a while, and then wants to suspend itself until time T 0+T,
the619 period being T. If this process wants to use the nanosleep() function, it must

620 first call clock_gettime() to get the current time, then calculate the difference
between621 the current time and T 0+T and, finally, call nanosleep() using the com-
puted622 interval. However, the process could be preempted by a different process
between623 the two function calls, and in this case the interval computed would be
wrong;624 the process would wake up later than desired. This problem would not
occur625 with the absolute clock_nanosleep() function, since only one function call
would626 be necessary to suspend the process until the desired time. In other cases,
however,627 a relative sleep is needed, and that is why both functionalities are
r628 equired.

Although629 it is possible to implement periodic processes using the timers interface,
this630 implementation would require the use of signals, and the reservation of some
signal631 numbers. In this regard, the reasons for including an absolute version of
the632 clock_nanosleep() function in the standard are the same as for the inclusion of
the633 relative nanosleep().

It634 is also possible to implement precise periodic processes using
635 pthread_cond_timedwait(), in which an absolute timeout is specified that takes

e636 ffect if the condition variable involved is never signaled. However, the use of this
interface637 is unnatural, and involves performing other operations on mutexes and
condition638 variables that imply an unnecessary overhead. Furthermore,

639 pthread_cond_timedwait() is not available in implementations that do not support
t640 hreads.

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

78 B Rationale and Notes

PART 1: SYSTEM API—Amd. x:Advanced Realtime Extensions [C Language] P1003.1j/D10

641 Although the interface of the relative and absolute versions of the new high reso-
lution642 sleep service is the same clock_nanosleep() function, the rmtp argument is
only643 used in the relative sleep. This argument is needed in the relative

644 clock_nanosleep() function to re-issue the function call if it is interrupted by a sig-
nal,645 but it is not needed in the absolute clock_nanosleep() function call; if the call
is646 interrupted by a signal, the absolute clock_nanosleep() function can be invoked
again647 with the same rqtp argument used in the interrupted call.

648 B.18 Thread Cancellation

649 B.18.1 Thread Cancellation Overview

B650 .18.1.2 Cancellation Points

651 ⇒⇒ B.18.1.2 Cancellation Points Replace the third and fourth paragraphs,
652 starting with ‘‘There is one important blocking routine... ’’ and ending with ‘‘ ...
653 be protected with condition variables.’’ with the following:

654 Several important blocking routines are not cancellation points.

655 (1) pthread_mutex_lock()

656 If pthread_mutex_lock() were a cancellation point, every routine that
657 called it would also become a cancellation point (that is, any routine that
658 touched shared state would automatically become a cancellation point).
659 For example, malloc(), free (), and rand(), would become cancellation
660 points under this scheme. Having too many cancellation points makes
661 programming very difficult, leading to either much disabling and restor-
662 ing of cancelability or much difficulty in trying to arrange for reliable
663 cleanup at every possible place.

664 Since pthread_mutex_lock() is not a cancellation point, threads could
665 result in being blocked uninterruptibly for long periods of time if mutexes
666 were used as a general synchronization mechanism. As this is normally
667 not acceptable, mutexes should only be used to protect resources that are
668 held for small fixed lengths of time where not being cancelable will not be
669 a problem. Resources that need to be held exclusively for long periods of
670 time should be protected with condition variables.

671 (2) barrier_wait()

672 Canceling a barrier wait will render a barrier unusable. Similar to a bar-
673 rier timeout (which the Working Group rejected), there is no way to
674 guarantee the consistency of a barrier’s internal data structures if a bar-
675 rier wait is canceled.

676 (3) pthread_spin_lock() 8

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

B.18 Thread Cancellation 79

P1003.1j/D10 INFORMATION TECHNOLOGY — POSIX

677 As with mutexes, spin locks should only be used to protect resources that
678 are held for small fixed lengths of time where not being cancelable will
679 not be a problem.

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

80 B Rationale and Notes

P1003.1j/D10

Annex F
(informative)

Portability Considerations

1 F.3 Profiling Considerations

2 ⇒⇒ F.3.1 Configuration Options Add the following options in order: A

3 {_POSIX_BARRIERS}
4 The system supports barrier synchronization.

5 This option was created to allow efficient synchronization of
6 multiple parallel threads in multiprocessor systems in which
7 the operation is supported in part by the hardware architec-
8 ture.

9 {_POSIX_CLOCK_SELECTION} 9

10 The system supports the Clock Selection option. 9

11 This option allows applications to request a high resolution
12 sleep in order to suspend a thread during a relative time
13 interval, or until an absolute time value, using the desired
14 clock. It also allows the application to select the clock used in 9

15 a pthread_cond_timedwait() function call. 9

16 {_POSIX_MONOTONIC_CLOCK}
17 The system supports the Monotonic Clock option.

18 This option allows realtime applications to rely on a monoton-
19 ically increasing clock that does not jump backwards, and
20 whose value does not change except for the regular ticking of
21 the clock.

22 {_POSIX_READER_WRITER_LOCKS}
23 The system supports reader/writer locks.

24 This option was created to support efficient synchronization
25 in shared memory multiprocessors in which multiple

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

F.3 Profiling Considerations 81

P1003.1j/D10 INFORMATION TECHNOLOGY — POSIX

26 simultaneous reads are allowed to a shared resource.

27 {_POSIX_SPIN_LOCKS}
28 The system supports spin locks.

29 This option was created to support a simple and efficient syn-
30 chronization mechanism for threads executing in multipro-
31 cessor systems.

32 {_POSIX_TYPED_MEMORY_OBJECTS}
33 The system supports typed memory objects.

34 This option was created to allow realtime applications to
35 access different kinds of physical memory, and allow
36 processes in these applications to share portions of this
37 memory.

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

82 F Portability Considerations

P1003.1j/D10

Identifier Index

clock_nanosleep()
High Resolution Sleep with Specifiable Clock {14.2.6} 53

posix_mem_offset ()
Find Offset and Length of a Mapped Typed Memory Block
{12.4.3} ... 47

posix_typed_mem_get_info()
Query Typed Memory Information {12.4.4} 48

posix_typed_mem_open()
Open a Typed Memory Object {12.4.2} .. 44

pthread_barrierattr_destroy()
Barrier Initialization Attributes {11.5.1} .. 21

pthread_barrierattr_getpshared()
Barrier Initialization Attributes {11.5.1} .. 21

pthread_barrierattr_init()
Barrier Initialization Attributes {11.5.1} .. 21

pthread_barrierattr_setpshared()
Barrier Initialization Attributes {11.5.1} .. 21

pthread_barrier_destroy()
Initialize/Destroy a Barrier {11.5.2} .. 23

pthread_barrier_init()
Initialize/Destroy a Barrier {11.5.2} .. 23

pthread_barrier_wait()
Synchronize at a Barrier {11.5.3} .. 24

pthread_condattr_getclock()
Condition Variable Initialization Attributes {11.4.1} 19

pthread_condattr_setclock()
Condition Variable Initialization Attributes {11.4.1} 19

pthread_rwlockattr_destroy()
Reader/Writer Lock Initialization Attributes {11.6.1} 26

pthread_rwlockattr_getpshared()
Reader/Writer Lock Initialization Attributes {11.6.1} 26

pthread_rwlockattr_init()
Reader/Writer Lock Initialization Attributes {11.6.1} 26

pthread_rwlockattr_setpshared()
Reader/Writer Lock Initialization Attributes {11.6.1} 26

pthread_rwlock_destroy()
Initialize/Destroy a Reader/Writer Lock {11.6.2} 28

pthread_rwlock_init()
Initialize/Destroy a Reader/Writer Lock {11.6.2} 28

pthread_rwlock_rdlock()
Apply a Read Lock {11.6.3} .. 30

pthread_rwlock_timedrdlock()
Apply a Read Lock {11.6.3} .. 30

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Identifier Index 83

P1003.1j/D10

pthread_rwlock_timedwrlock()
Apply a Write Lock {11.6.4} ... 33

pthread_rwlock_tryrdlock()
Apply a Read Lock {11.6.3} .. 30

pthread_rwlock_trywrlock()
Apply a Write Lock {11.6.4} ... 33

pthread_rwlock_unlock()
Unlock a Reader/Writer Lock {11.6.5}... 35

pthread_rwlock_wrlock()
Apply a Write Lock {11.6.4} ... 33

pthread_spin_destroy()
Initialize/Destroy a Spin Lock {11.7.1} .. 36

pthread_spin_init()
Initialize/Destroy a Spin Lock {11.7.1} .. 36

pthread_spin_lock()
Lock a Spin Lock {11.7.2} .. 38

pthread_spin_trylock()
Lock a Spin Lock {11.7.2} .. 38

pthread_spin_unlock()
Unlock a Spin Lock {11.7.3} .. 39

S_TYPEISTMO
File Characteristics: Header and Data Structure {5.6.1} 13

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

84 Identifier Index

P1003.1j/D10

Alphabetic Topical Index

A

aio_suspend () . . . 16, 76
alarm () . . . 76
ANSI . . . 69
Apply a Read Lock . . . 30
Apply a Write Lock . . . 33
appropriate privileges . . . 13, 46-47, 72
Asynchronous Input and Output . . . 16
attributes

cloc k . . . 19-20
attributes

process-share d . . . 21-22, 27-28, 67

B

background . . . 63-64, 66
Background . . . 63-64, 66
barrier

definition of . . . 3
Barrier Initialization Attributes . . . 21
Barriers . . . 21, 63
Barriers option . . . 5, 21, 23, 25
barrier_wait () . . . 79
Bibliography . . . 61
brk() . . . 74

C

Cancellation Points . . . 59, 79
Change File Modes—Description . . . 13
Change File Modes . . . 13
C Language Input/Output Functions . . . 17
clock

attribute . . . 19-20
Clock and Timer Functions . . . 52-53, 78
clock_gettime () . . . 52, 78
clock jump

definition of . . . 3
CLOCK_MONOTONIC . . . 10, 16, 51-53, 77-78
clock_nanosleep() . . . 52-55, 59, 76-79

function definition . . . 53

CLOCK_REALTIME . . . 31, 34, 51-52, 54,
77-78

Clocks—Cross-References . . . 53
Clocks—Description . . . 52
Clocks—Errors . . . 53
Clocks . . . 52
Clocks and Timers . . . 51, 76
Clock Selection option . . . 19-20, 52-53
clock_settime () . . . 3, 51-53, 55
close () . . . 15, 46-47
Close a File—Description . . . 15
Close a File . . . 15
Comparison to ISO/IEC 9945-1 fcntl() locks

. . . 65
Condition Variable Initialization Attributes—

Cross-References . . . 20
Condition Variable Initialization Attributes—

Description . . . 19-20
Condition Variable Initialization Attributes—

Errors . . . 20
Condition Variable Initialization Attributes—

Returns . . . 20
Condition Variable Initialization Attributes—

Synopsis . . . 19
Condition Variable Initialization Attributes

. . . 19
Condition Variables . . . 19
Configurable System Variables . . . 11
Configuration Options . . . 81
conformance . . . 1
Conformance . . . 1
Conforming Implementation Options . . . 1
Control Operations on Files . . . 16
Create a Per-Process Timer—Description

. . . 53
Create a Per-Process Timer . . . 53
Cross-References . . . 23-24, 26, 28, 30, 32,

35-36, 38-40, 47-49, 55
C Standard . . . 51, 69

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Alphabetic Topical Index 85

P1003.1j/D10

D

Data Definitions . . . 44
Data Definitions for Clocks and Timers

. . . 51
Definitions . . . 3
/dev/swap . . . 74
/dev/zero . . . 74
DMA . . . 75
document . . . 51, 76
DO/FOR . . . 63
DRAM . . . 68
dup() . . . 46-47
dup2 () . . . 46

E

[EACCES] . . . 46, 48
[EAGAIN] . . . 24, 29, 32, 37
[EBADF] . . . 49
[EBUSY] . . . 24, 29-30, 32, 34, 38-39
[EDEADLK] . . . 32, 35, 39
EEPROM . . . 68
[EINTR] . . . 47, 55
[EINVAL] . . . 20, 22, 24, 26, 28, 30, 32, 34, 36,

38-40, 47, 53, 55
[EMFILE] . . . 47
[ENAMETOOLONG] . . . 47
[ENFILE] . . . 47
[ENODEV] . . . 49
[ENOENT] . . . 47
[ENOMEM] . . . 22, 24, 28-29, 38, 43
[ENOTSUP] . . . 55
[ENXIO] . . . 43
[EPERM] . . . 36, 40, 47
EPROM . . . 68
[ETIMEDOUT] . . . 32, 34
Example of a system with typed memory

. . . 69
Execute a File—Description . . . 9
Execute a File . . . 9
Existing Practice . . . 71

F

F.3 . . . 81

fchmod () . . . 13
fcntl () . . . 16, 47, 65
<fcntl.h> . . . 46-47
FD_CLOEXEC . . . 46
fdopen () . . . 17
File Characteristics . . . 13
File Characteristics: Header and Data Struc-

ture . . . 13
File Control—Description . . . 16
File Control . . . 16
file descriptor . . . 15, 17, 42, 45-49, 73, 75
File Descriptor Deassignment . . . 15
Files and Directories . . . 13
file system . . . 41, 45, 64
Find Offset and Length of a Mapped Typed

Memory Block . . . 47
free () . . . 74, 79
fstat () . . . 46, 74
ftruncate () . . . 46
functions

clock_nanosleep() . . . 53
posix_mem_offset () . . . 47
posix_typed_mem_get_info() . . . 48
posix_typed_mem_open() . . . 44
pthread_barrierattr_destroy() . . . 21
pthread_barrierattr_getpshared() . . . 21
pthread_barrierattr_init() . . . 21
pthread_barrierattr_setpshared() . . . 21
pthread_barrier_destroy() . . . 23
pthread_barrier_init() . . . 23
pthread_barrier_wait() . . . 24
pthread_condattr_getclock() . . . 19
pthread_condattr_setclock() . . . 19
pthread_rwlockattr_destroy() . . . 26
pthread_rwlockattr_getpshared() . . . 26
pthread_rwlockattr_init () . . . 26
pthread_rwlockattr_setpshared() . . . 26
pthread_rwlock_destroy() . . . 28
pthread_rwlock_init() . . . 28
pthread_rwlock_rdlock() . . . 30
pthread_rwlock_timedrdlock() . . . 30
pthread_rwlock_timedwrlock() . . . 33
pthread_rwlock_tryrdlock() . . . 30
pthread_rwlock_trywrlock() . . . 33
pthread_rwlock_unlock() . . . 35
pthread_rwlock_wrlock() . . . 33
pthread_spin_destroy() . . . 36
pthread_spin_init() . . . 36
pthread_spin_lock() . . . 38
pthread_spin_trylock() . . . 38
pthread_spin_unlock() . . . 39

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

86 Alphabetic Topical Index

P1003.1j/D10

G

General . . . 1
General Terms . . . 3
Get Configurable System Variables— Descrip-

tion . . . 11
Get Configurable System Variables . . . 11
Get File Status—Description . . . 13
Get File Status . . . 13

H

High Resolution Sleep with Specifiable Clock
. . . 53, 78

History of Resolution Issues . . . 66
HP-RT . . . 71

I

IEEE 1003.13 . . . 65
IEEE 1003.1 . . . 75
IEEE 1003.1d . . . 75, 77
IEEE P1003.1c . . . 63
Implementation Conformance . . . 1
implementation defined . . . 22, 27, 30-31, 35,

41, 45-46, 48-49, 51
Initialize/Destroy a Barrier . . . 23
Initialize/Destroy a Reader/Writer Lock

. . . 28
Initialize/Destroy a Spin Lock . . . 36
Input and Output . . . 15
Input and Output Primitives . . . 15
ISBN . . . 61
ISO/IEC 9899 . . . 51, 69
ISO/IEC 9945-1 . . . 41, 65

L

Lack of Timeout Feature . . . 64, 66
Language-Specific Services for the C Language

. . . 17
Lock a Spin Lock . . . 38
lseek () . . . 16

M

malloc () . . . 69-70, 73-74, 79
Manifest Constants . . . 51
MAP_PRIVATE . . . 42
Map Process Addresses to a Memory Object—

Cross-References . . . 43
Map Process Addresses to a Memory Object—

Description . . . 42
Map Process Addresses to a Memory Object—

Errors . . . 43
Map Process Addresses to a Memory Object

. . . 42
MAP_SHARED . . . 42
MAX_SPIN . . . 67
mballoc () . . . 75
mem_alloc () . . . 74-75
mem_free () . . . 74-75
mem_get_info () . . . 75
Memory Management . . . 41, 44, 68
Memory Mapped Files option . . . 41
Memory Mapping Functions . . . 41
memory object

definition of . . . 3
Memory Object synchronization—Description

. . . 44
Memory Object synchronization . . . 44
Message Passing . . . 57
mmap() . . . 3, 42, 45-49, 69, 71, 73-75
Model . . . 68
monotonic clock

definition of . . . 3
Monotonic Clock option . . . 10, 16, 51-52, 77
mq_timedreceive() . . . 53, 77
mq_timedsend () . . . 53, 77
msync() . . . 44, 46
munmap() . . . 9, 69, 72, 74

N

NAME_MAX . . . 47
nanosleep () . . . 53-55, 77-78
NULL . . . 23, 29

O

open () . . . 72

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Alphabetic Topical Index 87

P1003.1j/D10

Open a Stream on a File Descriptor—
Description . . . 17

Open a Stream on a File Descriptor . . . 17
Open a Typed Memory Object . . . 44
Optional Configurable System Variables

. . . 11
options

Barriers . . . 5, 21, 23, 25
Clock Selection . . . 19-20, 52-53
Memory Mapped Files . . . 41
Monotonic Clock . . . 10, 16, 51-52, 77
Reader Writer Locks . . . 5, 27-28, 30-31,

33, 35
Shared Memory Objects . . . 41
Spin Locks . . . 5, 36, 38-39
Thread Execution Scheduling . . . 30, 35,

64-65
Timeouts . . . 31, 33
Timers . . . 31, 34
Typed Memory Objects . . . 9, 13, 15-17,

41, 44-45, 47, 49
options

Process-Shared Synchronization . . . 21,
27, 36

O_RDONLY . . . 46
O_RDWR . . . 46
OS-9 . . . 71
Other Sources of Information . . . 61
O_WRONLY . . . 46

P

PATH_MAX . . . 47
physio () . . . 75
Portability Considerations . . . 81
POSIX.13 . . . 68
_POSIX_BARRIERS . . . 1, 11, 21, 23, 25, 81
_POSIX_CLOCKRES_MIN . . . 51
_POSIX_CLOCK_SELECTION . . . 1, 11, 19-20,

52-53, 81
_POSIX_MAPPED_FILES . . . 42-43
posix_mem_offset () . . . 46-48, 69-70, 73-74

function definition . . . 47
_POSIX_MONOTONIC_CLOCK . . . 1, 11, 16,

52, 81
_POSIX_NO_TRUNC . . . 47
_POSIX_READER_WRITER_LOCKS . . . 1, 11,

27-28, 30-31, 33, 35, 81
_POSIX_SHARED_MEMORY_OBJECTS . . . 42-

43

_POSIX_SPIN_LOCKS . . . 1, 11, 36, 38-39, 82
_POSIX_THREAD_PRIORITY_SCHEDULING

. . . 30, 35
_POSIX_THREAD_PROCESS_SHARED . . . 21,

27, 36
_POSIX_TIMEOUTS . . . 31, 33
_POSIX_TIMERS . . . 31, 34
POSIX_TYPED_MEM_ALLOCATE . . . 42, 45,

47-49, 73
POSIX_TYPED_MEM_ALLOCATE_CONTIG

. . . 42, 45, 47-49, 73
posix_typed_mem_get_info() . . . 46, 48-49,

69, 73, 75
function definition . . . 48

POSIX_TYPED_MEM_MAP_ALLOCATABLE
. . . 43, 45-47

posix_typed_mem_open() . . . 43-49, 59, 69,
73-74
function definition . . . 44

_POSIX_TYPED_MEMORY_OBJECTS . . . 1, 11,
13, 42-45, 47, 49, 82

Primitive System Data Types . . . 4-5
Process Creation and Execution . . . 9
Process Environment . . . 11
Process Primitives . . . 9
process-shared

attribute . . . 21-22, 27-28
Attribute . . . 67
attribute . . . 67

Process-Shared Synchronization option
. . . 21, 27, 36

Process Termination . . . 9
Profiling Considerations . . . 81
PSOS . . . 71
pthread_barrierattr_destroy() . . . 21-22

function definition . . . 21
pthread_barrierattr_getpshared() . . . 21-22

function definition . . . 21
pthread_barrierattr_init() . . . 21-22

function definition . . . 21
pthread_barrierattr_setpshared() . . . 21-22

function definition . . . 21
pthread_barrier_destroy() . . . 23-24, 26

function definition . . . 23
pthread_barrier_init() . . . 23-26

function definition . . . 23
PTHREAD_BARRIER_SERIAL_THREAD . . . 25,

63
pthread_barrier_wait() . . . 23-26, 64

function definition . . . 24

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

88 Alphabetic Topical Index

P1003.1j/D10

pthread_condattr_getclock() . . . 19-20
function definition . . . 19

pthread_condattr_setclock() . . . 19-20
function definition . . . 19

pthread_cond_timedwait () . . . 19-20, 76-78,
81

<pthread.h> . . . 22, 25
pthread_mutex_lock() . . . 79
pthread_mutex_timedlock() . . . 53, 77
pthread_mutex_trylock() . . . 68
PTHREAD_PROCESS_PRIVATE . . . 22, 27-28,

37
PTHREAD_PROCESS_SHARED . . . 21-22, 27-

28, 37
pthread_rwlockattr_destroy() . . . 26-28

function definition . . . 26
pthread_rwlockattr_getpshared() . . . 26-28

function definition . . . 26
pthread_rwlockattr_init () . . . 26-28

function definition . . . 26
pthread_rwlockattr_setpshared() . . . 26-28

function definition . . . 26
pthread_rwlock_destroy() . . . 28-30, 32,

35-36
function definition . . . 28

pthread_rwlock_init() . . . 28-29, 32, 35-36
function definition . . . 28

pthread_rwlock_rdlock() . . . 26, 29-32, 35-36,
59
function definition . . . 30

pthread_rwlock_timedrdlock() . . . 29-32, 35-
36, 59
function definition . . . 30

pthread_rwlock_timedwrlock() . . . 29-30,
32-36, 59
function definition . . . 33

pthread_rwlock_tryrdlock() . . . 29-32, 35-36
function definition . . . 30

pthread_rwlock_trywrlock() . . . 29-30, 32-36
function definition . . . 33

pthread_rwlock_unlock() . . . 29-30, 32, 35-
36, 64
function definition . . . 35

pthread_rwlock_wrlock() . . . 26, 29-30, 32-
36, 59
function definition . . . 33

pthread_spin_destroy() . . . 36-40
function definition . . . 36

pthread_spin_init() . . . 36-40, 67
function definition . . . 36

pthread_spin_lock() . . . 37-40, 66, 79
function definition . . . 38

pthread_spin_trylock() . . . 37-40, 67
function definition . . . 38

pthread_spin_unlock() . . . 37-40
function definition . . . 39

Q

QNX . . . 71
Query Typed Memory Information . . . 48
Queuing of Waiting Threads . . . 64

R

rand () . . . 79
read () . . . 15
reader/writer lock

definition of . . . 3
Reader/Writer Lock Initialization Attributes

. . . 26
Reader/Writer Locks . . . 26, 64
Reader Writer Locks option . . . 5, 27-28, 30-

31, 33, 35
Read from a File—description . . . 15
Read from a File . . . 15
Reposition Read/Write File Offset—Description

. . . 16
Reposition Read/Write File Offset . . . 16
Requirements . . . 71
ROM . . . 68

S

sbrk () . . . 74
_SC_BARRIERS . . . 11

limit definition . . . 11
_SC_CLOCK_SELECTION . . . 11

limit definition . . . 11
Scenario . . . 73
SCHED_FIFO . . . 30, 35, 64
SCHED_RR . . . 30, 35, 64
SCHED_SPORADIC . . . 30, 35
_SC_MONOTONIC_CLOCK . . . 11

limit definition . . . 11
_SC_READER_WRITER_LOCKS . . . 11

limit definition . . . 11
_SC_SPIN_LOCKS . . . 11

limit definition . . . 11

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Alphabetic Topical Index 89

P1003.1j/D10

_SC_TYPED_MEMORY_OBJECTS . . . 11
limit definition . . . 11

sem_timedwait () . . . 53, 77
Shared Memory Objects option . . . 41
Signals . . . 9
sigtimedwait () . . . 76
sleep () . . . 55, 78
spin_init () . . . 67
spin lock

definition of . . . 4
Spin Locks . . . 36, 66
Spin Locks option . . . 5, 36, 38-39
Spin Locks vs. Mutexes . . . 67
SRAM . . . 68
S_TYPEISSHM . . . 13
S_TYPEISTMO

definition of . . . 13
S_TYPEISTMO . . . 13
SVID . . . 71
Synchronization . . . 19, 21, 63
Synchronize at a Barrier . . . 24
Synchronously Accept a Signal—description

. . . 10
Synchronously Accept a Signal . . . 9
<sys/mman.h> . . . 44-45, 47-49
System V . . . 11, 71
<sys/types.h> . . . 4

T

Terminate a Process—Description . . . 9
Terminate a Process . . . 9
Terminology and General Requirements . . . 3
terms . . . 3
Thread Cancellation . . . 59, 79
Thread Cancellation Overview . . . 59, 79
Thread Execution Scheduling option . . . 30,

35, 64-65
time () . . . 31, 34
<time.h> . . . 31, 34, 51
Timeouts option . . . 31, 33
TIMER_ABSTIME . . . 53-55
timer_create () . . . 53
timer_settime () . . . 53
Timers option . . . 31, 34
TOC . . . 1
/typed.m2b-b1 . . . 73

/typed.m2b-b2 . . . 73
Typed Memory Functions . . . 44, 68
typed memory namespace

definition of . . . 4
typed memory object

definition of . . . 4
Typed Memory Objects option . . . 9, 13, 15-

17, 41, 44-45, 47, 49
typed memory pool

definition of . . . 4
typed memory port

definition of . . . 4

U

UDI . . . 75
umask() . . . 47
undefined . . . 21-23, 25, 27, 29, 31, 33-35,

37-39, 42, 49
UNIX . . . 71
Unlock a Reader/Writer Lock . . . 35
Unlock a Spin Lock . . . 39
Unmap Previously Mapped Addresses—

Cross-References . . . 44
Unmap Previously Mapped Addresses—

Description . . . 43
Unmap Previously Mapped Addresses . . . 43
unspecified . . . 13, 15-17, 25, 39, 44-46, 49,

52, 54, 74, 77

V

VME . . . 71

W

Wait for an Asynchronous I/O Request—
Description . . . 16

Wait for an Asynchronous I/O Request . . . 16
Waiting on a Condition—Description . . . 20
Waiting on a Condition . . . 20
write () . . . 16
Write to a File—Description . . . 16
Write to a File . . . 15

Copyright  1999 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

90 Alphabetic Topical Index

P1003.1j/D10

