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Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotech-
nical Commission) form the specialised system for world-wide standardization. National bodies
that are members of ISO or IEC participate in the development of International Standards through
technical committees established by the respective organization to deal with particular fields of
technical activity. ISO and IEC technical committees collaborate in fields of mutual interest.
Other international organisations, governmental and non-governmental, in liaison with ISO and
IEC, also take part in the work.

In the field of information technology, ISO and IEC have established a joint technical commit-
tee, ISO/TEC JTC 1, Implementation of information technology. Draft International Standards
adopted by the joint technical committee are circulated to national bodies for voting. Publication
as an International Standard requires approval by at least 75 % of the national bodies casting a
vote.

International Standard ISO/TEC 10967-2 was prepared by Joint Technical Committee ISO/TEC
JTC 1, Sub-Committee SC 22, Programming languages, their environments and system software
interfaces.

ISO/IEC 10967 consists of the following parts, under the general title Information technology
— Language independent arithmetic:

— Part 1: Integer and floating point arithmetic
— Part 2: Elementary numerical functions

— Part 3: Complex floating point arithmetic and complezx elementary numerical functions

Additional parts will specify other arithmetic datatypes or arithmetic operations.

vi
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Introduction

Portability is a key issue for scientific and numerical software in today’s heterogeneous computing
environment. Such software may be required to run on systems ranging from personal computers
to high performance pipelined vector processors and massively parallel systems, and the source
code may be ported between several programming languages.

Part 1 of ISO/IEC 10967 specifies the basic properties of integer and floating point types that
can be relied upon in writing portable software.

The aims for this Part, Part 2 of ISO/TEC 10967, are extensions of the aims for Part 1: to en-
sure adequate accuracy for numerical computation, predictability, notification on the production
of exceptional results, and compatibility with language standards.

The content of this Part is based on Part 1, and extends Part 1’s specifications to specifica-
tions for operations approximating real elementary functions, operations often required (usually
without a detailed specification) by the standards for programming languages widely used for
scientific software. This Part also provides specifications for conversions between the “internal”
values of an arithmetic datatype, and a very close approximation in, e.g., the decimal radix. It
does not cover the further transformation to decimal string format, which is usually provided by
language standards. This Part also includes specifications for a number of other functions deemed
useful, even though they may not be stipulated by language standards.

The numerical functions covered by this Part are computer approximations to mathematical
functions of one or more real arguments. Accuracy versus performance requirements often vary
with the application at hand. This is recognised by recommending that implementors support
more than one library of these numerical functions. Various documentation and (program avail-
able) parameters requirements are specified to assist programmers in the selection of the library
best suited to the application at hand.

vii
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Annex B is intended to be read in parallel with the standard.

Notes and annexes B to D are for information only.

viii
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Information technology —
Language independent arithmetic —

Part 2: Elementary numerical functions

1 Scope

This Part of ISO/IEC 10967 defines the properties of numerical approximations for many of the
real elementary numerical functions available in standard libraries for a variety of programming
languages in common use for mathematical and numerical applications.

An implementor may choose any combination of hardware and software support to meet the
specifications of this Part. It is the computing environment, as seen by the programmer/user,
that does or does not conform to the specifications.

The term implementation of this Part denotes the total computing environment pertinent
to this Part, including hardware, language processors, subroutine libraries, exception handling
facilities, other software, and documentation.

1.1 Inclusions

The specifications of Part 1 of are included by reference in this Part.

This Part provides specifications for numerical functions for which all operand values are
of integer or floating point datatypes satisfying the requirements of Part 1. Boundaries for
the occurrence of exceptions and the maximum error allowed are prescribed for each specified
operation. Also the result produced by giving a special value operand, such as an infinity, or a
NaN, is prescribed for each specified floating point operation.

This Part covers most numerical functions required by the ISO/IEC standards for Ada [11],
Basic [17], C [18], C++ [19], Fortran [23], ISLisp [25], Pascal [28], and PL/I [30]. In particular,
specifications are provided for

a) some additional integer operations,

b) some additional non-transcendental floating point operations, including maximum and min-
imum operations,

c) exponentiations, logarithms, hyperbolics, and

d) trigonometrics, both in radians and for argument-given angular unit with degrees as a
special case.

This Part also provides specifications for

e) conversions between integer and floating point datatypes (possibly with different radices)
conforming to the requirements of Part 1, and

1. Scope 1
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h)

1.2

the conversion operations used, for example, in text input and output of integer and floating
point numbers,

the results produced by an included floating point operation when one or more operand
values are IEC 60559 special values, and

program-visible parameters that characterise certain aspects of the operations.

Exclusions

This Part provides no specifications for:

a)

Numerical functions whose operands are of more than one datatype (with one exception).
This standard neither requires nor excludes the presence of such “mixed operand” opera-
tions.

An interval datatype, or the operations on such data. This standard neither requires nor
excludes such data or operations.

A fixed point datatype, or the operations on such data. This standard neither requires nor
excludes such data or operations.

A rational datatype, or the operations on such data. This standard neither requires nor
excludes such data or operations.

Complex, matrix, statistical, or symbolic operations. This standard neither requires nor
excludes such data or operations.

The properties of arithmetic datatypes that are not related to the numerical process, such
as the representation of values on physical media.

The properties of integer and floating point datatypes that properly belong in language
standards or other spcification. Examples include

1) the syntax of numerals and expressions in the programming language,

2) the syntax used for parsed (input) or generated (output) character string forms for
numerals by any specific programming language or library,

3) the precedence of operators,

4) the consequences of applying an operation to values of improper datatype, or to unini-
tialised data,

5) the rules for assignment, parameter passing, and returning value,

6) the presence or absence of automatic datatype coercions.

Furthermore, this Part does not provide specifications for:

h)
i)

how numerical functions should be implemented,

which algorithms are to be used for the various operations.

2 Conformity

It is expected that the provisions of this Part of ISO/IEC 10967 will be incorporated by reference
and further defined in other International Standards; specifically in language standards and in
language binding standards.

Conformity
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A binding standard specifies the correspondence between one or more operations and param-
eters specified in this Part and the concrete language syntax of some programming language.
More generally, a binding standard specifies the correspondence between certain operations and
the elements of some arbitrary computing entity. A language standard that explicitly provides
such binding information can serve as a binding standard.

Conformity to this Part is always with respect to a specified set of operations. Conformity to
this Part implies conformity to Part 1 for the integer and floating point datatypes used.

When a binding standard for a language exists, an implementation shall be said to conform
to this Part if and only if it conforms to the binding standard. In the case of conflict between a
binding standard and this Part, the specifications of the binding standard takes precedence.

When a binding standard covers only a subset of the operations defined in this Part, an im-
plementation remains free to conform to this Part with respect to other operations independently
of that binding standard.

When no binding standard for a language and some operations specified in this Part exists,
an implementation conforms to this Part if and only if it provides one or more operations that
together satisfy all the requirements of clauses 5 through 8 that are relevant to those operations.
The implementation shall then document the binding.

An implementation is free to provide operations that do not conform to this Part, or that are
beyond the scope of this Part. The implementation shall not claim or imply conformity to this
Part with respect to such operations.

An implementation is permitted to have modes of operation that do not conform to this Part.
A conforming implementation shall specify how to select the modes of operation that ensure
conformity.

NOTES

1 Language bindings are essential. Clause 8 requires an implementation to supply a binding
if no binding standard exists. See annex C for suggested language bindings.

2 A complete binding for this Part will include (explicitly or by reference) a binding for Part 1
as well, which in turn may include (explicitly or by reference) a binding for IEC 60559 as
well.

3 It is not possible to conform to this Part without specifying to which set of operations
conformity is claimed.

3 Normative references

The following standards contain provisions which, through reference in this text, constitute provi-
sions of this Part. At the time of publication, the editions indicated were valid. All standards are
subject to revision, and parties to agreements based on this Part are encouraged to investigate
the possibility of applying the most recent edition of the standards indicated below. Members of
IEC and ISO maintain registers of currently valid International Standards.

TEC 60559:1989, Binary floating-point arithmetic for microprocessor systems.

ISO/TEC 10967-1:1994, Information technology — Language independent arithmetic
— Part 1: Integer and floating point arithmetic.

3. Normative references 3
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4 Symbols and definitions

4.1 Symbols
4.1.1 Sets and intervals

In this Part, Z denotes the set of mathematical integers, R denotes the set of classical real
numbers, and C denotes the set of complex numbers over R. Note that Z C R C C.

[z, z] designates the interval {y € R | z <y < z},

|z, z] designates the interval {y € R | z <y < z},

[z, 2| designates the interval {y € R | z < y < z}, and

|z, z[ designates the interval {y € R | z <y < z}.

NOTE - The notation using a round bracket for an open end of an interval is not used, for
the risk of confusion with the notation for pairs.

4.1.2 Operators and relations

All prefix and infix operators have their conventional (exact) mathematical meaning. The con-
ventional notation for set definition and manipulation is also used. In particular this Part uses

= and < for logical implication and equivalence
+, —, /, |z|, |z], [z], and round(z) on reals

- for multiplication on reals

<, &, =, #, >, and > between reals

max on non-empty upwardly closed sets of reals
min on non-empty downwardly closed sets of reals
U,n, x, €, ¢ C, C, £, # and = with sets

x for the Cartesian product of sets

— for a mapping between sets

| for the divides relation between integers

For z € R, the notation |z| designates the largest integer not greater than z:
lz]€Z and z-1<|z| <z
the notation [z] designates the smallest integer not less than x:
[z]€Z and z<[z]<z+1
and the notation round(z) designates the integer closest to x:
round(z) € Z2 and z — 0.5 <round(z) <z+0.5
where in case z is exactly half-way between two integers, the even integer is the result.
The divides relation (]) on integers tests whether an integer ¢ divides an integer j exactly:
ilf & (1#0and i-n=j for some n € 2)
NOTE - i|j is true exactly when j/i is defined and j/i € Z).

4.1.3 Mathematical functions

This Part specifies properties for a number of operations numerically approximating some of the
elementary functions. The following ideal mathematical functions are defined in Chapter 4 of the
Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables [48] (e is
the Napierian base):

4 Symbols and definitions
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€T

e, xya \/Ea lna logba
sinh, cosh, tanh, coth, sech, csch, arcsinh, arccosh, arctanh, arccoth, arcsech, arccsch,
sin, cos, tan, cot, sec, csc, arcsin, arccos, arctan, arccot, arcsec, arccsc.

Many of the inverses above are multi-valued. The selection of which value to return, the
principal value, so as to make the inverses into functions, is done in the conventional way. The only
one over which there is some difference of conventions is the arccot function. Conventions there
vary for negative arguments; either a positive return value (giving a function that is continuous
over zero), or a negative value (giving a sign symmetric function). In this Part arccot refers to
the continuous inverse function, and arcctg refers to the sign symmetric inverse function.

arccosh(z) > 0, arcsech(z) > 0,
arcsin(x) € [—n/2,7/2], arccos(z) € [0, 7], arctan(z) € |—n/2,7/2],
arccot(z) € 10, n[, arcctg(z) € |—n/2,7/2], arcsec(z) € [0, 7], arccsc(z) € [—7/2,7/2].

NOTES

1 Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables [48]
uses the notation arccot for what is called arcctg in this Part.

2 e=2.71828.... eisnot in F.

4.1.4 Datatypes and exceptional values

For pairs, define:

fst((z,y)) ==

snd((z,y)) =y
Square brackets are used to write finite sequences of values. [] is the sequence containing no
values. [s], is the sequence of one value, s. [s1, s3], is the sequence of two values, s; and then sg,
etc. The colon operator is used to prepend a value to a sequence: z : [z1, ..., Zn] = [z, 21, ..., Tp].

[S], where S is a set, denotes the set of finite sequences, where each value in each sequence is
in S.
NOTE 1 — Tt is always clear from context, in the text of this Part, if [X] is a sequence of one

element, or the set of sequences with values from X. It is also clear from context if [z1, 23] is
a sequence of two values or an interval.

The datatype Boolean consists of the two values true and false.
Integer datatypes and floating point datatypes are defined in Part 1.
The following symbols are defined in Part 1, and used in this Part.

Exceptional values:
underflow.
Integer parameters:
boundedy, mazint;, and mininty.
Integer helper function:
wrapry.
Integer operations:
negr, addy, suby, and mul;y.
Floating point parameters:
rF, Pr, eming, emazrr, denormg, and iec_559p.
Derived floating point constants:
fmaz p, fming, fminNg, fminDg, and epsilon ;.
Floating point rounding constants:
rnd_error p.

4.1.4 Datatypes and exceptional values )
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Floating point value sets related to F':
F*, FD, and FN.
Floating point helper functions:
er, resultp, and rndr.
Floating point operations:
negr, addr, subp, mulp, divp, and ulpp.

Floating point datatypes that conform to Part 1 shall, for use with this Part, have a value
for the parameter pz such that pr > 2 - max{1,log, .(2-7)}, and have a value for the parameter
eming such that eming < —pp — 1.

NOTES

2 This implies that fminNp < 0.5 - epsilonp/rp in this Part, rather than just fminNp <
epsilong.

3 These extra requirements, which do not limit the use of any existing floating point datatype,
are made 1) so that angles in radians are not too degenerate within the first two cycles, plus

and minus, when represented in F', and 2) in order to justly allow avoiding the underflow
notification in specifications for the expmIy and Inlpp operations.

4 F should also be such that pr > 2 + log,_(1000), to allow for a not too coarse angle
resolution anywhere in the interval [—big_angle_rp,big_.anglerg]. See clause 5.3.9.

Three new exceptional values, overflow, invalid, and pole, are introduced in this Part re-
placing tree other exceptional values used in Part 1. One new exceptional value, absolute_
precision_underflow, is introduced in this Part with no correspondence in Part 1. invalid and
pole are in this Part used instead of the undefined of Part 1. overflow is used instead of the
integer_overflow and floating overflow of Part 1. Bindings may still distinguish between in-
teger_overflow and floating_overflow. The exceptional value absolute_precision_underflow
is used when the given floating point angle value argument is so big that even a highly accurate
result from a trigonometric operation is questionable, due to the fact that the density of floating
point values has decreased significantly at these big angle values. For the exceptional values, a
continuation value may be given in parenthesis after the exceptional value.

The following symbols represent floating point values defined in TEC 60559 and used in this
Part:

—0, 400, —00, qNaN, and sNaN.
These floating point values are not part of the set F', but if iec_559r has the value true, these
values are included in the floating point datatype corresponding to F'.

NOTE 5 — This Part uses the above five special values for compatibility with TEC 60559. In
particular, the symbol —0 (in bold) is not the application of (mathematical) unary — to the
value 0, and is a value logically distinct from 0.

The specifications cover the results to be returned by an operation if given one or more of the
IEC 60559 special values —0, +00, —00, or NalNs as input values. These specifications apply only
to systems which provide and support these special values. If an implementation is not capable
of representing a —0 result or continuation value, the actual result or continuation value shall be
0. If an implementation is not capable of representing a prescribed result or continuation value
of the IEC 60559 special values +00, —oo, or qNaN, the actual result or continuation value is
binding or implementation defined.

4.2 Definitions of terms

For the purposes of this Part, the following definitions apply:

accuracy: The closeness between the true mathematical result and a computed result.

arithmetic datatype: A datatype whose non-special values are members of Z, R, or C.

6 Symbols and definitions
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NOTE 1 — This standard specifies requirements for integer and floating point datatypes.
Complex numbers are not covered here, but will be included in a subsequent Part of
ISO/IEC 10967 [5].

continuation value: A computational value used as the result of an arithmetic operation when
an exception occurs. Continuation values are intended to be used in subsequent arithmetic
processing. A continuation value can be a value in F or an IEC 60559 special value.
(Contrast with ezceptional value. See 6.1.2 of Part 1.)

denormalisation loss: A larger than normal rounding error caused by the fact that subnormal
values have less than full precision. (See 5.2.5 of Part 1 for a full definition.)

denormalised, denormal: The non-zero values of a floating point type F' that provide less than
the full precision allowed by that type. (See Fp in 5.2 of Part 1 for a full definition.)

error: (1) The difference between a computed value and the correct value. (Used in phrases like
“rounding error” or “error bound”.)

(2) A synonym for ezception in phrases like “error message” or “error output”. Error and
exception are not synonyms in any other context.

exception: The inability of an operation to return a suitable finite numeric result from finite
arguments. This might arise because no such finite result exists mathematically, or because
the mathematical result cannot be represented with sufficient accuracy.

exceptional value: A non-numeric value produced by an arithmetic operation to indicate the
occurrence of an exception. Exceptional values are not used in subsequent arithmetic pro-
cessing. (See clause 5 of Part 1.)

NOTES

2 Exceptional values are used as part of the defining formalism only. With respect to
this Part, they do not represent values of any of the datatypes described. There is no
requirement that they be represented or stored in the computing system.

3 Exceptional values are not to be confused with the NaNs and infinities defined in
TEC 60559. Contrast this definition with that of continuation value above.

helper function: A function used solely to aid in the expression of a requirement. Helper
functions are not visible to the programmer, and are not required to be part of an imple-
mentation.

implementation (of this Part): The total arithmetic environment presented to a programmer,
including hardware, language processors, exception handling facilities, subroutine libraries,
other software, and all pertinent documentation.

literal: A syntactic entity denoting a constant value without having proper sub-entities that are
expressions.

monotonic approximation: An operation opr : ... Xx F' X ... = F, where the other arguments
are kept constant, is a monotonic approximation of a predetermined mathematical function
h:R — R if, for every a € F and b € F,

a) h is monotonic non-decreasing on [a, b] implies opp(...,a,...) < opp(...,b,...),
b) h is monotonic non-increasing on [a, b] implies opp(...,a,...) = opr(..., b, ...).

monotonic non-decreasing: A function A : R — R is monotonic non-decreasing on a real
interval [a, b] if for every x and y such that a« < z < y < b, h(z) and h(y) are well-defined
and h(z) < h(y).

4.2 Definitions of terms 7
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monotonic non-increasing: A function A : R — R is monotonic non-increasing on a real
interval [a,b] if for every x and y such that a < x < y < b, h(z) and h(y) are well-defined
and h(z) > h(y).

normalised: The non-zero values of a floating point type F' that provide the full precision allowed
by that type. (See Fy in 5.2 of Part 1 for a full definition.)

notification: The process by which a program (or that program’s end user) is informed that an
arithmetic exception has occurred. For example, dividing 2 by 0 results in a notification.
(See clause 6 of Part 1 for details.)

numeral: A numeric literal. It may denote a value in Z or R, —0, an infinity, or a NaN.

numerical function: A computer routine or other mechanism for the approximate evaluation
of a mathematical function.

operation: A function directly available to the user/programmer, as opposed to helper functions
or theoretical mathematical functions.

pole: A mathematical function f has a pole at xg if x( is finite, f is defined, finite, monotone,
and continuous in at least one side of the neighbourhood of xy, and lim f(z) is infinite.
T—T0

precision: The number of digits in the fraction of a floating point number. (See 5.2 of Part 1.)

rounding: The act of computing a representable final result for an operation that is close to the
exact (but unrepresentable) result for that operation. Note that a suitable representable
result may not exist (see 5.2.6 of Part 1). (See also A.5.2.6 of Part 1 for some examples.)

rounding function: Any function rnd : R — X (where X is a given discrete and unlimited
subset of R) that maps each element of X to itself, and is monotonic non-decreasing.
Formally, if x and y are in R,

ze€X =rndz)=x
z <y = rnd(z) < rnd(y)

Note that if u € R is between two adjacent values in X, rnd(u) selects one of those adjacent
values.

round to nearest: The property of a rounding function rnd that when u € R is between two
adjacent values in X, rnd(u) selects the one nearest u. If the adjacent values are equidistant
from wu, either may be chosen deterministically.

round toward minus infinity: The property of a rounding function rnd that when v € R is
between two adjacent values in X, rnd(u) selects the one less than w.

round toward plus infinity: The property of a rounding function rnd that when u € R is
between two adjacent values in X, rnd(u) selects the one greater than u.

shall: A verbal form used to indicate requirements strictly to be followed in order to conform to
the standard and from which no deviation is permitted. (Quoted from the directives [1].)

should: A verbal form used to indicate that among several possibilities one is recommended as
particularly suitable, without mentioning or excluding others; or that (in the negative form)
a certain possibility is deprecated but not prohibited. (Quoted from the directives [1].)

signature (of a function or operation): A summary of information about an operation or func-
tion. A signature includes the function or operation name; a subset of allowed argument
values to the operation; and a superset of results from the function or operation (including
exceptional values if any), if the argument is in the subset of argument values given in the
signature.

8 Symbols and definitions
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The signature
addr : I x I — I U {overflow}

states that the operation named add; shall accept any pair of I values as input, and (when
given such input) shall return either a single I value as its output or the exceptional value
overflow.

A signature for an operation or function does not forbid the operation from accepting a
wider range of arguments, nor does it guarantee that every value in the result range will
actually be returned for some input. An operation given an argument outside the stipulated
argument domain may produce a result outside the stipulated result range.

subnormal: A denormal value, the value 0, or the value —0.

ulp: The value of one “unit in the last place” of a floating point number. This value depends on
the exponent, the radix, and the precision used in representing the number. Thus, the ulp
of a normalised value z (in F), with exponent ¢, precision p, and radix r, is 7*=?, and the
ulp of a subnormal value is fminDpg. (See 5.2 of Part 1.)

5 Specifications for the numerical functions

This clause specifies a number of helper functions and operations for integer and floating point
datatypes. Fach operation is given a signature and is further specified by a number of cases.
These cases may refer to other operations (specified in this Part or in Part 1), to mathematical
functions, and to helper functions (specified in this Part or in Part 1). They also use special
abstract values (—oo,4+00,—0,qNalN,sNaN). For each datatype, two of these abstract values
may represent several actual values each: qINalN and sNalN. Finally, the specifications may refer
to exceptional values.

The signatures in the specifications in this clause specify only all non-special values as input
values, and indicate as output values the superset of all non-special, special, and exceptional
values that may result from these (non-special) input values. Therefore, exceptional and special
values that can never result from non-special input values are not included in the signatures
given. Also, signatures that, for example, include IEC 60559 special values as arguments are not
given in the specifications below. This does not exclude such signatures from being valid for these
operations.

5.1 Basic integer operations

Clause 5.1 of Part 1 specifies integer datatypes and a number of operations on values of an integer
datatype. In this clause some additional operations on values of an integer datatype are specified.

1 is the set of non-special values, I C Z, for an integer datatype conforming to Part 1. Integer
datatypes conforming to Part 1 often do not contain any NalN or infinity values, even though
they may do so. Therefore this clause has no specifications for such values as arguments or results.

5.1.1 The integer result and wrap helper functions

The result; helper function:
resulty : Z — I U {overflow}

resultr(x) =z ifrel
= overflow ifreZandx &l

5. Specifications for the numerical functions 9
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The wrap; helper function:
wrapr: Z2 — 1

wrapr(z) =z ifrel
=z — (n- (mazxint; — minint; + 1))
ifreZandx gl
where n € Z is chosen such that the result is in I.
NOTES

1 n=|(z —minint;)/(mazint; — minint; + 1)| if x € Z and bounded; = true; or equivalently
n = [(z — mazintr)/(mazint; — minintr + 1)] if € Z and bounded; = true.

2 For some wrapping basic arithmetic operations this n is computed by the ‘_ov’ operations
in clause 5.1.9.

3 The wrapy helper function is also used in Part 1.

5.1.2 Integer maximum and minimum

maxy: I xIT—1T

mazy(z,y) = max{z,y} ifz,yel

minyg: I XTI —1

ming(x,y) = min{z,y} ife,yel

mazx_seqr : [I] = I U {pole}

mazx_seqr([z1, ..., Tn))
= pole(—o00) iftn=0
= max{zi,...,Tn} ifn>1and {z1,...,2,} C I

min_seqr : [I] = I U {pole}

min—SGQI([xla 7$n])
= pole(+00) ifn=0
= min{z1,...,z,} ifn>1and {z1,....,2,} C T

5.1.3 Integer diminish

dimy: I x I — I U {overflow}
dimy(z,y) = result;(max{0,z —y}) if z,y € I

NOTE - dimy cannot be implemented as max;(0, subr(z,y)) for bounded integer types,
since this latter expression has other overflow properties.

5.1.4 Integer power and arithmetic shift

powery : I x I — I U {overflow, pole, invalid}

powery(z,y) = result;(z¥) ifz,y€Iand (y>0or|z|]=1)
=1 ifrelandx#0and y=0
= invalid(1) ifr=0andy=0
= pole(+00) ifr=0andyelandy<0
= invalid(0) ifz,ye€land z ¢ {-1,0,1} and y <0

10 Specifications for the numerical functions
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shift2; - I x I — I U {overflow}
shift2;(z,y) = resultr(|z - 2Y])

shift10; - I x I — I U {overflow}
shift10;(z,y) = resulty(|z - 10Y])

5.1.5 Integer square root

sqrtr : I — I U {invalid}

sqrir(z) = |vz]
= invalid(qNaNN)

5.1.6 Divisibility tests

dividesy : I x I — Boolean

dividesy(z,y) = true
= false

NOTES

ISO/IEC FCD 10967-2.4:1999(E)

ifx,yel

ifrx,yel

fxzelandz >0
ifzreland oz <0

if z,y € I and zly
if z,y € I and not x|y

1 divides;(0,0) = false, since 0 does not divide anything, not even 0.

2 dividesy cannot be implemented as, e.g., eq; (0, moday(y, x)), since the remainder functions
give notifications for a zero second argument.

eveny : I — Boolean

eveny(z) = true
= false

oddy : I — Boolean

oddy(x) = true
= false

5.1.7 Integer division and remainder

if x € I and 2|z
if x € I and not 2|z

if x € I and not 2|z
if x € I and 2|z

divfy : I x I — I U {overflow, pole, invalid}

divfr(z,y) = resultr(|z/y])
= pole(+o00)
= invalid(qNaN)
= pole(—o00)

modar : I x I — I U {invalid}

modar(z,y) =z—(lz/y] -y)
= invalid(qNaNN)

5.1.5 Integer square root

ifz,yelandy#0
ifrelandx>0andy =0
ifr=0and y=0
ifrelandx<0andy =0

ifz,yeland y#0
ifrelandy=0

11
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groupr : I x I — I U {overflow, pole, invalid}

groupr(z,y) = resultr([z/y]) ifr,yeIandy #0
= pole(+00) ifrelandz>0andy=0
= invalid(qNalN) ifr=0andy=0
= pole(—o00) ifrelandz<0andy=0

pady : I x I — I'U{invalid}

pad;(z,y) = ([z/yl -y) —= ifz,y € Tand y # 0
= invalid(qNalN) ifrelandy=0

quotr : I x I — I U {overflow, pole, invalid}

quotr(x,y) = result;(round(z/y)) ifz,y€landy#0
= pole(+00) ifrelTandz>0andy=0
= invalid(qNaN) ifr=0andy=0
= pole(—00) ifrelTandz<0andy=0

remry : I x I — I U{overflow,invalid}

remr(x,y) = result;(z — (round(z/y) - y))
ifz,yelandy #0
= invalid(gNaNN) ifrelandy=0

5.1.8 Greatest common divisor and least common positive multiple

gedr 2 I x I — I U{overflow, pole}

gedr(z,y) = result;(max{v € Z | v|z and v|y})
ifz,y eI and (z #0 or y # 0)
= pole(+00) ifr=0andy=0

lemp: I x I — IU{overflow}

lemp(z,y) = result;(min{v € Z | z|v and y|v and v > 0})
ifz,yelandz#0and y #0
=0 ifz,ye I and (x =0 or y =0)

gcd_seqr : [I] — I U {overflow, pole}
ged_seqr([z1, ..., Ty))
= result;(max{v € Z | v|z; foralli € {1,...,n}})

if {z1,...,zn} CTI and {z1,...,2,} € {0}
= pole(+00) if {z1,...,z,} C {0}

lem_seqr : [I] — I U {overflow}

lem_seqr([z1, ..., xy)])
= result;(min{v € Z | z;|v for all i € {1,...,n} and v > 0})
if{z1,..,z,} CTand 0 & {z1,..., 2, }
=0 if {z1,...,2,} CTand 0 € {z1,...,2,}

NOTE - This specification implies that lem_seqr([]) = 1.
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5.1.9 Support operations for extended integer range

These operations can be used to implement extended range integer datatypes, including un-
bounded integer datatypes.

add_wrapyr : I x T — 1T
add_wrapr(z,y) = wrapr(z +y) ifz,yel

add_ovy : I x I — {—1,0,1}

add_ovi(z,y) = ((z +vy) —add_wrapr(x,y))/(mazint; — minint; + 1)
if z,y € I and bounded; = true
=0 if xz,y € I and bounded; = false

sub_wrapy : I x I — 1T

sub_wrapr(z,y) = wrapr(z — y) ifx,yel

subovr : I x I — {—1,0,1}

sub_ovr(z,y) = ((z —y) — sub_wrapr(z,y))/(mazinty — mininty + 1)
if xz,y € I and bounded; = true
=0 if z,y € I and bounded; = false

mul_wrapy : I X I — 1

mul_wrapr(z,y) = wrapr(x - y) ifr,yel

mul_ovy : I x I — 1T

mul_ovr(z,y) = ((z-y) —mul-wrapr(z,y))/(mazint; — minint; + 1)
if xz,y € I and bounded; = true
=0 if z,y € I and bounded; = false

NOTE - The add_ovr and sub_ovy will only return —1 (for negative overflow), 0 (no overflow),
and 1 (for positive overflow).

5.2 Basic floating point operations

Clause 5.2 of Part 1 specifies floating point datatypes and a number of operations on values of
a floating point datatype. In this clause some additional operations on values of a floating point
datatype are specified.

NOTE - Further operations on values of a floating point datatype, for elementary floating
point numerical functions, are specified in clause 5.3.

F' is the non-special value set, F' C R, for a floating point datatype conforming to Part 1.
Floating point datatypes conforming to Part 1 often do contain —O0, infinity, and NalN values.
Therefore, in this clause there are specifications for such values as arguments.

5.1.9 Support operations for extended integer range 13
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5.2.1 The rounding and floating point result helper functions

Floating point rounding helper functions: The floating point helper function
downp : R — F*

is the rounding function that rounds towards negative infinity. The floating point helper function
upp : R — F*

is the rounding function that rounds towards positive infinity. The floating point helper function
nearestp : R — F*

is the rounding function that rounds to nearest. nearestp is partially implementation defined:
the handling of ties is implementation defined, but must be sign symmetric. If iec_559r = true,
the semantics of nearestr is completely defined by IEC 60559: in this case ties are rounded to
even last digit.

resultg is a helper function that is partially implementation defined.

resultp : R X (R — F*) — F U {underflow, overflow }

resultp(x, nearestyp) = overflow (+00) if z € R and nearestp(z) > fmazp
resultp(x,nearesty) = overflow(—oo) if z € R and nearestp(z) < —fmazp
resultp(x, upp) = overflow(+00) if x € R and upp(z) > fmazp
resultp(x, upr) = overflow(—fmazy) if z € R and upp(z) < —fmazp
resultp(xz,downp) = overflow(fmazy) if x € R and downp(z) > fmazp
resultp(xz,downp) = overflow(—oo0) if z € R and downp(z) < —fmazp
otherwise:
resultp(z,rnd) =x iftr=0
= rnd(z) if z € R and fminNp < |z| and |rnd(z)| < fmazp
= rnd(z) or underflow(c)
if z € R and |z| < fminNp and |rnd(z)| = fminNp
and rnd has no denormalisation loss at
= rnd(z) or underflow(c)
if x € R and denormpg = true and
|rnd(z)| < fminNp and x # 0
and rnd has no denormalisation loss at
= underflow(c) otherwise
where
¢ = rnd(z) when denormp = true and (rnd(z) # 0 or = > 0),
c=-0 when denormp = true and rnd(z) =0 and z < 0,
c=0 when denormp = false and = > 0,
c=-—0 when denormp = false and z < 0

An implementation is allowed to choose between rnd(z) and underflow(rnd(z)) in the region
between 0 and fminNgr. However, a subnormal value without underflow notification can be chosen
only if denormpg is true and no denormalisation loss occurs at x.

NOTES

1 This differs from the specification of resultr as given in Part 1 in the following respects:
1) the continuation values on overflow and underflow are given directly here, and 2) all
instances of denormalisation loss must be accompanied with an underflow notification.

2 denormp = false implies iec_559r = false, and iec_559r = true implies denormp =
true.
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3 If iec_559r = true, then subnormal results that have no denormalisation loss, e.g. are
exact, do not result in an underflow notification, if the notification is by recording of

indicators.

Define the result_NaNp, result_NaN2p, and result_NaN3r helper functions:

result_NaNp : F — {invalid}

result_NaNp(z) = gNaN
= invalid(qNaN)

result_NaN2p : F x F' — {invalid}

result_NaN2p(x,y)
= qNaN
= qNaN
= invalid(qNaN)

result_NaN3p : F x F' x F — {invalid}

result_NaN3p(z,vy, z)
= qNaN

= qNaN
= qNaN

= invalid(qNaN)

if = is a quiet NaN
otherwise

if x is a quiet NaN and y is not a signalling NaN
if y is a quiet NaN and z is not a signalling NaN
otherwise

if z is a quiet NaN and

not y nor z is a signalling NaN
if y is a quiet NaN and

not z nor z is a signalling NaN
if z is a quiet NaN and

not z nor y is a signalling NaN
otherwise

These helper functions are used to specify both NaN argument handling and to handle non-NaN-
argument cases where invalid(qNaN) is the appropriate result.

5.2.2 Floating point maximum and minimum

The appropriate return value of the maximum and minimum operations given a quiet NalN
(gNaN) as one of the input values depends on the circumstances for each point of use. Sometimes
qNaN is the appropriate result, sometimes the non-NalN argument is the appropriate result.
Therefore, two variants each of the floating point maximum and minimum operations are specified
here, and the programmer can decide which one is appropriate to use at each particular place of
usage, assuming both variants are included in the binding.

maxrp : F X F — F

= max{z,y}
= +m

=Y

=0

=Y

= +m

=z

=—0

mazp(z,y)

5.2.2 Floating point mazimum and minimum

ifx,ye F

if x =400 and y € F U {—00,—0}
ifr=—-0andye Fandy >0
ifr=—0and ((y € F and y < 0) or y = —0)
if z=—00 and y € F U {+00,—0}

if y=+o00 and z € F U {+00,—0}
ify=—0and x € Fand x >0
ify=—0and z € Fand z <0
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=z
= result_NaN2p(z,y)

ming : F X F — F

= min{z,y}
=y

7ninF($,y)

[l
| 8
=)

I
8

= —00
= result_NaN2p(z,y)

mmaxp : F x F — F

:ZTUGxF(xay)

=z

=Yy

= result_NaN2p(z,y)

mmazp(x,y)

mming : Fx F — F

Fourth committee draft

if y=—o00 and z € F U {—00,—0}
otherwise

ife,ye F

if z =400 and y € F U {—00,—0}
ifr=—0andye Fandy >0
if
if x =—00 and y € F U {+00,—0}
if y =400 and z € F U {+00,—0}
ify=—0andze Fandz >0
ify=—0and x € Fand x <0

if y=—o00 and z € F U {—00,—0}
otherwise

if z,y € F U {400,—0,—00}

if x € FU{4+00,—0,—00} and y is a quiet NaN
ify e FU{+00,—0,—00} and z is a quiet NaN

otherwise

mming(z,y) = ming(z,y) if z,y € FU{4+00,—0,—00}
=z if z € FU{4+00,—0,—00} and y is a quiet NaN
=y ify e FU{+00,—0,—00} and z is a quiet NaN
= result_NaN2p(z,y) otherwise

NOTE - If one of the arguments to mmazr or mming is a quiet NaN, that argument is

ignored.

maz_seqp : [F] - F U {—o0, pole}
max_seqr([z1, ..., Tn])
= —00

= maxp(maz_seqp([x1, ...

= 1‘1
= result_NaNp (1)

min_seqr : [F] = F U {400, pole}
min_seqp([x1, ..., Tp))

= +m

= pole(fmaz )

= minp(min_seqp([z1, ...

= 1‘1
= result_NaNp(z1)

if n = 0 and —oo is available

if n = 0 and —oo is not available
7$n71Daxn)

ifn>2

if n =1 and z; is not a NaN
otherwise

if n =0 and 400 is available

if n = 0 and 400 is not available
7$n71Daxn)

ifn>2

if n =1 and z; is not a NaN
otherwise
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mmazx_seqr : [F|] - F U {—o00,pole}
mmazx_seqr([z1, ..., Tn))

= —00

= pole(—fmaz )
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if n =0 and —oo is available
if n =0 and —oo is not available

= mmaxp(mmaz_seqp([T1, ..., Tn-1]), Tn)

= jl
= result_NaNp(z1)

mmin_seqr : [F] - F U {400, pole}
mmin_seqp([x1, ..., Tn])

= +m

= pole(fmaz )

ifn>2
if n =1 and z; is not a NaN
otherwise

if n = 0 and 400 is available
if n = 0 and 400 is not available

= mming(mmin_seqp([x1, ..., Tn_1]), Tn)

= jl
= result_NaNp(z1)

5.2.3 Floating point diminish

ifn>2
if n =1 and z; is not a NaN
otherwise

dimp : F x F — F U {overflow, underflow}

= dimp(z,0)

= +o00

=0

=0

=400

= result_NaN2p(z,y)

= resultp(max{0,z — y)},rndr)

ifx,yeF

ifx=—0and y € FU{—00,—0,+00}
ify=—0and z € FU{—00,+00}

if =400 andy € FU{—o0}

if z=—00and y € FU{+o00}
ify=+4o0o0and x € F
ify=—ooandz € F

otherwise

NOTE - dimp cannot be implemented by maxzr (0, subp(z,y)), since this latter expression

has other overflow properties.

5.2.4 Round, floor, and ceiling

roundingr : F — F U {-0}

roundingp(zr) = round(x)
= -0
=z

= result_NaNp(z)

floorp : F — F
floor () = l=]

=z
= result_NaNp(z)

5.2.3 Floating point diminish

if z € F and (2 > 0 or round(z) # 0)
if z € F and z < 0 and round(z) =0
if z € {—00,—0,+00, }

otherwise

fxeF
if x € {—00,—0,+00, }
otherwise
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ceilingr : F — F U {-0}

ceilingr (x) = [z] ifz € Fand (z>0or [z] #0)
=—0 ifze Fand z <0 and [z] =0
=z if z € {—00,—0,+00, }
= result_NaNp(z) otherwise

NOTE 1 — Truncate to integer is specified in Part 1, by the name intpartr.

rounding_restp : F — F

rounding_restp ()

= z — round(z) ifreF
= result_NaNp(z) otherwise

floor_resty, : F — F

floor _restp(z) = resultp(z — |z],rndp) ifz € F
= result_NaNp(z) otherwise

cetling_restp : F — F

ceiling_restp(z)
=resultp(z — [z],rndp) ifz € F
=0 ifx =-0
= result_NaNp(z) otherwise

NOTE 2 — The rest after truncation is specified in Part 1, by the name fractpart 5.

5.2.5 Remainder after division with round to integer

remrp: F x F — F U{-0,underflow, invalid}

remrp(z,y) = resultp(z — (round(z/y) - y), nearestp)
if z,y € F and y # 0 and
(x 2 0 or x — (round(z/y) - y) # 0)

=-0 if z,y € F and y # 0 and

z <0 and z — (round(z/y) -y) =0
=-0 ifr=—0andy € FU{—o0,+00} and y # 0
=z if z € F and y € {—00,+00}

= result _NaN2p(x,y) otherwise

5.2.6 Square root and reciprocal square root

sqrtp : F — F U {invalid}

sqrtp(x) = nearestr(\/T) ifreFandz >0
=z if z € {—0,4+00}
= result_NaNp(z) otherwise
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rec_sqrtp : F'— F U {invalid, pole}

rec_sqrip(z)  =rndrp(l/\/x) ifz€ Fandz >0
= pole(+00) if z € {—0,0}
=0 if z =400
= result_NaNp(z) otherwise

5.2.7 Support operations for extended floating point precision

These operations are useful when keeping guard digits or implementing extra precision floating
point datatypes. The resulting datatypes, e.g. so-called doubled precision, do not necessarily
conform to Part 1.

add_lop : F x F — F U {underflow}

add_lop(z,y) =resultp((z +y) —rndp(z +vy),rndr)
ifx,ye F
=-0 ifr=-—0andy € FU{—o00,—0,+00}
=-0 if x € FU{—00,400} and y = —0
=y if z =400 and y € F U {+00}
=y ifr=—00and y € FU{—o0}
=z if z € F and y € {—00,+00}

= result_NaN2p(z,y) otherwise

sublop : F x F' — F U {underflow}
sublop(z,y) = addlop(xz,negr(y))

NOTE 1 - If rnd_styler = nearest, then, in the absence of notifications, add-lor and sub_lop
returns exact results.

mul_lop : F x F — F U {overflow, underflow}

mul lop(z,y) =resultp((z-y)—rndp(x-y),rndp)
ifx,yeF
= mul_lor(0,y) ifx=—0and y € FU{—00,—0,+00}
= mul_lop(z,0) if € FU{—00,400} and y = —0
= mulp(z,y) if x € {—o00,400} and y € F U {—o00,+00}
= mulp(z,y) if v € F and y € {—00,+00}

= result_NaN2p(z,y) otherwise

NOTE 2 - In the absence of notifications, mul_lor returns an exact result.

div_restp : F x F — F U {underflow, invalid }
div_restp(z,y) = resultp(z — (y-rndp(xz/y)),rndr)

ifx,ye F
= div_restp(0,y) ifx=—0and y € FU{—00,—0,+00}
=z if v € F and y € {—00,+00}
=z if z € {—00,4+00} and y € F'

= result_NaN2p(z,y) otherwise

5.2.7 Support operations for extended floating point precision 19



ISO/IEC FCD 10967-2.4:1999(E) Fourth committee draft

sqrt_restp : F — F U {underflow, invalid}

sqrirestp(z) = resultp(z — (sqrip(z) - sqrip(z)), rndr)
fzeFandz >0
=-0 ifz=-0
= 400 if z =400
= result_NaNp(z) otherwise

NOTE 3 - sgrt_restp(x) is exact when there is no underflow.

For the following operation F’ is a floating point type conforming to Part 1.

NOTE 4 - It is expected that pp > pp, i.e. F' has higher precision than F', but that is not
required.

mulp_pr 2 F x F — F'U{-0,overflow, underflow}

mulp_ g (z,y) =resultp(xz-y,rndp) ifz,y € Fand z # 0 and y #0
= convertp_,pr(mulp(z,y))
if z € {—00,—0,0,400} and
y € FU{—00,—0,400}
= convertp_,pr(mulp(z,y))
if y € {—00,—0,0,4+00} and x € F and z # 0
= result _NaN2p: (z,y) otherwise
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5.3 Elementary transcendental floating point operations
5.3.1 Maximum error requirements

The specifications for each of the transcendental and floating point conversion operations use an
approximation helper function. The approximation helper functions are ideally identical to the
true mathematical functions. However, that would imply a maximum error for the corresponding
operation of 0.5 ulp (i.e., the minimum value for operations that are not always exact). This Part
does not require that the maximum error is only 0.5 ulp for the operations specified in clauses 5.3,
5.4, and 5.5, but allows the maximum error to be a bit bigger. To express this, the approximation
helper functions need not be identical to the mathematical elementary transcendental functions,
but are allowed to be approximate.

The approximation helper functions for the individual operations in these subclauses have
maximum error parameters that describe the maximum relative error of the helper function
composed with nearestr, for non-subnormal results. The maximum error parameters also de-
scribe the maximum absolute error for subnormal results and underflow continuation values if
denormp = true. The relevant maximum error parameters shall be available to programs.

When the maximum error for an approximation helper function hp, approximating f, is
maz_error_opr, then for all arguments x,... € F* x ... the following equation shall hold:

|f(z,...) — nearestp(hp(z,...))| < maz_error_opp - r;F(f(x""))_pF

NOTES

1 Partially conforming implementations may have greater values for maximum error param-
eters than stipulated below. See annex A.

2 For most positive (and not too small) return values ¢, the true result is thus claimed to be
in the interval [t — (maz_error_opp - ulpr(t)),t + (max_error_opr - ulpr(t))]. But if the
return value is exactly 7% for some not too small n € Z, then the true result is claimed
to be in the interval [t — (max_error_opp - ulpp(t)/rF),t + (maz_error_opp - ulpp(t))].
Similarly for negative return values.

The results of the approximating helper functions in this clause must be exact for certain
arguments as detailed below, and may be exact for all arguments. If the approximating helper
function is exact for all arguments, then the corresponding maximum error parameter should be
0.5, the minimum value.

5.3.2 Sign requirements

The approximation helper functions are shall be zero exactly at the points where the approximated
mathematical function is exactly zero. At points where the approximation helper functions are
not zero, they are shall have the same sign as the approximated mathematical function at that
point.

For the radian trigonometric helper functions, these zero and sign requirements are imposed
only for arguments, z, such that |z| < big_angle_rp (see clause 5.3.9).

NOTE - For the operations, the continuation value after an underflow may be zero (or
negative zero) as given by trans_resultr, even though the approximation helper function is
not zero at that point. Such zero results are required to be accompanied by an underflow
notification. When appropriate, zero may also be returned for IEC 60559 infinities arguments.
See the individual specifications.
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5.3.3 Monotonicity requirements

Each approximation helper function in this clause shall be a monotonic approximation to the
mathematical function it is approximating, except:

a) For the radian trigonometric approximation helper functions, the monotonic approximation
requirement is imposed only for arguments, z, such that |z| < big_angle_rp (see clause
5.3.9).

b) The argument angular unit trigonometric and argument angular unit inverse trigonometric
approximating helper functions are excepted from the monotonic approximation require-
ment for the angular unit argument.

5.3.4 The trans_result helper function

The trans_resulty helper function is similar to the resulty helper function (see 5.2.1), but is
simplified compared to resultr concerning underflow: trans_resultp always underflows for non-
zero arguments that have an absolute value less than fminNp—(fminDp /rF), whereas resultp does
not necessarily underflow in that case. This difference from resultr is made since the argument to
trans_resultp might not be exact. To return underflow or not, for a tiny result, based upon an
inexact result would be misleading. For the operations specified using trans_resultr where the
specification implies that there will be no denormalisation loss for certain tiny results, underflow
is instead explicitly avoided.

trans_resultp : R X (R — F*) — F U {underflow, overflow }

trans_resultp(z,rnd)

= underflow(c) if z € R and denormp = true and
|rnd(z)| < fminNp and x # 0
= resultp(z,rnd) otherwise
where
¢ = rnd(z) when rnd(z) # 0 or x > 0,
c=-0 when rnd(z) =0 and z < 0

5.3.5 Hypotenuse

There shall be a maximum error parameter for the hypotr operation:
max_error_hypotgp € F
The maz_error_hypotr parameter shall have a value in the interval [0.5, 1].
The hypot}, approximation helper function:
hypoty, : F x F — R
hypot}.(x, y) returns a close approximation to \/$27—i—y2 in R, with maximum error max_error_hypotp.

Further requirements on the hypot}, approximation helper function are:

hypoty,(z,y) = hypot},(y, x)

hypot (=, y) = hypot}(z,y)

hypoty;(z,y) > max{|z|, [y|}

hypot;(z,y) < III + |yl

hypoti(z,y) > if 2 +y?2>1
hypoti(z,y) < if /22 +y?2 <1
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The hypotr operation:
hypotr : F x F — F U {underflow, overflow}

hypotp(z,y) = trans_resultp(hypot}.(x,y), nearestr)
ifx,ye F
= hypotr(0,y) ifr=-0andy € FU{—o00,—0,+00}
= hypotp(z,0) ify=—-0and z € FU{—00,+00}
= +00 if v € {—o00,4+00} and y € F' U {—o00,+00}
= 400 if y € {—o00,+00} and z € F

=result_ NaN2p(z,y) otherwise

5.3.6 Operations for exponentiations and logarithms

There shall be two maximum error parameters for approximate exponentiations and logarithms:

mazx_error_exrpr € F
maz_error_powerp € F

The maz_error_expr parameter shall have a value in the interval [0.5,1.5 - rnd_errorp]. The
maz_error_powerrp parameter shall have a value in the interval [max_error_expp,2-rnd_errorg].

NOTE - The “exp” operations are thus required to be at least as accurate as the “power”
operations.

5.3.6.1 Integer power of argument base

The powery; approximation helper function:
powerp; : F x I =R
powery;(x,y) returns a close approximation to 2¥ in R, with maximum error max_error_powery.

Further requirements on the powers; approximation helper function are:

powery:;(1,y) = 1 ifyel

powery(z,0) = ifz € Fandx #0

powerFI(x, 1) = ifreF

powerp(z,y) < mmDp/2 ifx € Fandx >0andy €I and z¥ < fminDr/3
powery.(z,y) = powery,;(—z,y) ifre€ Fandz<0andye€l and 2y
powery(x,y) = —powery(—z,y) ifx € Fand x <0 and y € I and not 2|y

The powerg; operation:
powerpr : F' x I — F U {underflow, overflow, pole}

powerpr(z,y) = trans_resultp(powers;(z,y), nearesty)
ifre Fandz#0andy el

= +00 ifr =—o0oandy €I and y > 0 and 2|y

= —00 if x =—o00 and y € I and y > 0 and not 2|y
= ifr=—0andye€land y >0 and 2|y
=-0 if x=—0and y € I and y > 0 and not 2|y
= ifr=0andyelandy>0

=400 ifr=400candye€l andy >0

=1 if z € {—00—0,0,400} and y =0

=0 ifr =—o00oandy €I and y < 0 and 2|y
=-0 if x =—o00 and y € I and y < 0 and not 2|y
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= pole(+00)
= pole(—o00)
= pole(+00)
=0

= result_NaNp(z)

NOTES

Fourth committee draft

ifz=—-0andy €I and y <0 and 2|y
ifz =—0and y € I and y < 0 and not 2|y
ifr=0andyelandy<0
ifr=4occandy el andy <0

otherwise

1 powerpr(z,y) will overflow approximately when z¥ > fmazp, i.e., if © > 1, approximately
when y > log, (fmaz ), and if 0 < z < 1, approximately when y < log, (fmaz ) (which is
then negative). It will not overflow when z = 0 or when = = 1.

2 powery (in clause 5.1.4) does not allow negative exponents since the exact result then is
not in Z. powerrp (in clause 5.3.6.6) does not allow any negative bases since the (exact)
result is not in R unless the exponent is integer. powerpr takes care of this latter case,
where all exponents are ensured to be integers that have not arisen from implicit floating

point rounding.

5.3.6.2 Natural exponentiation

The exp}. approximation helper function:

expp: F— R

expy,(z) returns a close approximation to €” in R, with maximum error maz_error_ezpp.

Further requirements on the exp}, approximation helper function are:

expy(l) =e
expp(z) =1

expp(x) < fminDp /2
The exppr operation:

expr : F — F U {underflow, overflow}

if z € F and exp},(z) # €” and
In(1 — (epsilonp/(2-rr))) < z and
z < In(1 + (epsilonp/2))

if z € F and z < In(fminDp) — 3

expr(x) = trans_resultp(exp.(x), nearesty)
ifreF
=1 ifz=-0
= 400 if z =400
=0 if z = —o00
= result_NaNp(z) otherwise
NOTES

1 exprp(l) = nearestp(e).

2 expp(z) will overflow approximately when z > In(fmaz ).

5.3.6.3 Natural exponentiation, minus one

The ezpml}, approximation helper function:

expmly : F — R

ezpml - (x) returns a close approximation to €* — 1 in R, with maximum error maxz_error_expp.

Further requirements on the expm1;. approximation helper function are:
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expmlif(l) =e—1

expmlp(z) =« if z € F and ezxpmlij(z) # e — 1 and
—epsilonp/rp < x < 0.5 - epsilonp/TF
expmlp(z) = —1 if z € F and ezpml}(x) # e” — 1 and

z < In(epsilonp /(3 - TF))
Relationship to the exp} approximation helper function:
expml}.(z) < expi.(x) ifreF
The ezpm1y operation:

ezpmly : F — F U {overflow}

expmlp(x) = trans_resultp(expmli;.(x), nearesty)
if x € F and |z| > fminNp
=z if x € F and |z| < fminNp
=-0 ifr=-0
= 400 if z = +o00
=-1 if r =—o00
= result_NaNp(z) otherwise
NOTES

1 underflow is explicitly avoided. Part 1 requires that fminNgp < epsilong. This Part
requires that fminNp < 0.5 - epsilonp/rp, so that underflow can be avoided here.

expmip(1) = nearestp(e — 1).

3 expmlp(z) will overflow approximately when x > In(fmaz ).

5.3.6.4 Exponentiation of 2

The exp2;. approximation helper function:
explp: F =R
ezp2p(x) returns a close approximation to 2% in R, with maximum error maz_error_ezpp.
Further requirements on the ezp2; approximation helper function are:
exp2p(z) =1 if £ € F' and exp2j:(x) # 2* and
logy (1 — (epsilonp/(2 - rF))) < z and
z < logy(1 + (epsilong/2))
exp2p(z) = 27 ifreFNZand 2 € F
exp2p(z) < fminDp /2 if x € F and z < logy(fminDp) — 3

The ezp2r operation:

exp2p : F — F U {underflow, overflow}

exp2p () = trans_resultp(ezp2y(x), nearestr)
ifxelF
=1 ifx =-0
= +o00 if z = +o00
=0 if x = —o00
= result_NaNp(z) otherwise

NOTE - exp2p(x) will overflow approximately when z > log, (fmaz ).
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5.3.6.5 Exponentiation of 10

The exp10;, approximation helper function:
expllp : F — R
ezpl07(x) returns a close approximation to 10” in R, with maximum error maz_error_expp.
Further requirements on the expl0;. approximation helper function are:
explOp(z) =1 if z € F and exp105(x) # 10* and
log,o(1 = (epsilonp /(2 -rp))) < z and
z < logo(1 + (epsilong/2))
expl0F(z) = 107 ifre FNZ and 10° € F
expl0;(x) < fminDy /2 if z € F and z < log;y(fminDp) — 3

The ezpl0 operation:
expl0p : F — F U {underflow, overflow}

expl0p(x) = trans_resultp(ezpl0}(x), nearesty)
ifxeF
=1 ifx =-0
= +00 if z =400
=0 if x = —00
= result_NaNp(z) otherwise

NOTE - expl0p(z)will overflow approximately when = > log,o(fmaz ).

5.3.6.6 Exponentiation of argument base

The powery. approximation helper function:
powerp : F x F — R

powery (x,y) returns a close approximation to z¥ in R, with maximum error maxz_error_powerr.
The powery, helper function need be defined only for first arguments that are greater than 0.

Further requirements on the powery approximation helper function are:

powerp(1,y) =1 ifyeF

powery(z,0) =1 ifre Fandz>0

powerp(z,1) = x ifre Fandz >0

powerp F*(z,y) < fminDg /2 ifre Fand z>0andy € F and ¥ < fminDg/3

Relationship to the powers; approximation helper function:
powery(z,y) = power; (z,y) ifreFandz>0andyelInNF
The powerr operation:

powerp : F x F' — F U {invalid, underflow, overflow, pole}

powerp (x,y) = trans_resultp(powery(z,y), nearesty)
ifreFandx>0andy € F
= powerr(0,y) ifzr=—0andy € FU{—o00,—0,400}
= powerp(z,0) ify=—0and z € FU{—00,+00}
=400 if - =400 and ((y € F and y > 0) or y = +00)
= 400 ifre Fand x> 1 and y =+400
=0 ifre Fand0<z<1andy=4o0
=0 ifr=0andye Fandy>0
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= pole(+o00) ifr=0andy e Fandy<0

=400 ifre Fand0 <z <1andy=—00

=0 ifre Fand z>1and y=—00

=0 if z =400 and ((y € F and y < 0) or y = —00)

= result_NaN2p(z,y) otherwise

NOTE - powerg(z,y) will overflow approximately when z¥ > fmazp, ie., if ¢ > 1, ap-
proximately when y > log, (fmaz ), and if 0 < z < 1, approximately when y < log, (fmaz )
(which is a negative number). It will not overflow when = 0 or when = = 1.

5.3.6.7 Exponentiation of one plus the argument base, minus one

The powerlpml . approximation helper function:
powerlpmly : F X F =R

powerlpmlj:(z,y) returns a close approximation to (1 + z)¥ — 1 in R, with maximum error
maz_error_powerr. The powerlpmly. helper function need be defined only for first arguments
that are greater than —1.

Further requirements on the poweripmI;, approximation helper function are:
powerlpmlj,(—1,y) = —1 ifye Fandy >0
powerlpmlj.(z,y) = —1 ifxe Fand x> —1and y € F and
powerlpmlji(z,y) # (1 + )Y — 1 and
(1+2)Y < epsilonp/(3-rFp)
powerlpmlj(z,1) =1+ x ifz,1+x € Fand x> —1
Relationship to the powers approximation helper function:
powerlpmlji(z,y) < poweri(1 + z,y) ifz,1+xr€Fandxz>—-1landy€F

NOTE 1 - powerlpmlp(z,y) ~ y-In(l+2) if z € F and 2 > —1 and y € F and
ly -In(1 + z)| < epsilong/rF.

The powerlpmly operation:
powerlpmly : F x F — F U {—0,invalid, underflow, overflow, pole}

powerlpmlp(x,y)
= trans_resultp(powerlpmlj.(x,y), nearestr)
ifreFandax>—-landz#0andy € F and y # 0

= mulp(x,y) ifr €{-0,0} andy € F and y # 0

= mulp(z,y) ifye {—0,0} and x € F and z > —1

= +00 if x =400 and ((y € F and y > 0) or y = +00)
=400 ifx € Fand z >0 and y =400

=-1 ifre Fand -1 <z <0 and y =400

=-1 ifr=—landy € Fandy >0

= pole(+o00) ifr=—-landy € Fand y <0

=400 ifre Fand -1 <z <0and y =—00

=-1 ifxe Fandz>0andy=—o00

=-1 if x =400 and ((y € F and y < 0) or y = —00)

= result_NaN2p(z,y) otherwise

NOTE 2 — powerlpmlp(x,y) will overflow approximately when (1 + z)¥ > fmazp, i.e., if
r > 0, approximately when y > log,,,(fmazr), and if —1 < x < 0, approximately when
y <log, . (fmazp). It will not overflow when = € {-1,0}.
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5.3.6.8 Natural logarithm

The In% approximation helper function:
Inp,:R—R
In}.(x) returns a close approximation to In(z) in R, with maximum error maz_error_ezpr.
A further requirement on the In}, approximation helper function is:
Inp(e) =1
The Ingp operation:

Inp : F — F U {invalid, pole}

Inp(x) = trans_resultp(Inj.(z), nearesty)
ifre Fandz >0
= pole(—o00) if z € {—0,0}
= +o00 if z =400
= result_NaNp(z) otherwise

5.3.6.9 Natural logarithm of one plus the argument

The Inlp} approximation helper function:
Inlpy : R —-R
In1pF(x) returns a close approximation to In(1+z) in R, with maximum error maz_error_erpr.
Further requirements on the InIp} approximation helper function are:
Inlpp(e—1) =1
Inlpp(z) =z if z € F and Inlpy(z) # In(1 + z) and
—0.5 - epsilonp/rr < z < epsilonp/TF

Relationship to the In}, approximation helper function:
Inlpp(z) > Inf(x) ifre Fandz>0
The Inlpp operation:
Inlpp : F — F U {invalid, pole}

Inlpp(z) = trans_resultp(InlpT.(z), nearestr)
if x € Fand x > —1 and |z| > fminNp
=z if z € F and |z| < fminNp
=-0 ifx=-0
= pole(—o00) ifz=-1
= +o00 if z = 400
= result_NaNp(z) otherwise

NOTE - underflow is explicitly avoided. Part 1 requires that fminNp < epsilonp. This
Part requires that fminNp < 0.5 - epsilonp/rr, so that underflow can be avoided here.

5.3.6.10 2-logarithm

The log2; approximation helper function:
log2 : F - R
log2r(x) returns a close approximation to logy(z) in R, with maximum error maz_error_erpp.

A further requirement on the log2y approximation helper function is:
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The log2; operation:
log2p : F — F U {invalid, pole}
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if z € F and logy(z) € Z

log2p () = trans_resultp(log2r(z), nearestr)
ifre Fand x >0
= pole(—o00) if x € {-0,0}
= +o00 if z = +o00
= result_NaNp(z) otherwise
5.3.6.11 10-logarithm

The log10y approximation helper function:
logl0p : F - R

log10r(x) returns a close approximation to log;o(z) in R, with maximum error maz_error_expr.

A further requirement on the log!0p approximation helper function is:

log10p(z) = logyo(z)
The log10r operation:
log10y : F — F U {invalid, pole}
log10p(x)
= pole(—o00)

= +m
= result_NaNp(z)

5.3.6.12 Argument base logarithm

The logbase}, approximation helper function:
logbaser, : F x FF —+ R

if x € F and log(z) € Z

= trans_resultp(log105(z), nearestr)

ifre Fandz >0
if x € {-0,0}

if z =400
otherwise

logbasey; (z,y) returns a close approximation to log, (y) in R, with maximum error maz_error_powerr.

A further requirement on the logbase}, approximation helper function is:

logbasey,(z,xz) =1
The logbaser operation:

logbaser : F x F — F U {invalid, pole}
logbase (z,y)

= logbaser(0,y)
= logbaser(x,0)

I
|
8

ifre Fandz >0and z #1

= trans_resultp(logbaseT.(z,y), nearestr)

ifreFandax>0andx#1andy € Fandy >0
ifr=-0andy € FU{—o00,—0,+00}
ify=—0and z € FU{—00,+00}

ifr=1landy€ Fandy>1
ifr=1landye Fand0<y<1

ifr=4ocandy € Fandy >1
ifre Fand 1<z andy=+400
ifre Fand0 <z <1andy=+400
ifr=0andye Fandy>1
ifr=0andye FandO0<y<1
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= pole(+00) ifreFand0<z<landy=0
= pole(—o00) ifreFandl<zandy=0
=—0 ifr=4ocandye Fand 0 <y <1

= result _NaN2p(x,y) otherwise

5.3.6.13 Argument base logarithm of one plus each argument

The logbaselplp} approximation helper function:
logbaselplpy : F X F - R

logbaselplpF(x,y) returns a close approximation to log(H_x)(l + y) in R, with maximum error
MaT_error_powerr.

A further requirements on logbaselpIp} approximation helper function is:
logbaselplpy(xz,z) = 1 ifre Fandz > —1and z #0
The logbaselplp  operation:
logbaselplpp : F x F — F U {—0,invalid, underflow, pole}

logbaselplp p(x,y)
= trans_resultp(logbaselplpt(z,y), nearestr)
ifx € Fand x > —1 and = # 0 and
yEFandy>—-1landy#0

= divp(y,x) if z € {—0,0} and
(y € Fand y > —1 and y # 0) or y = +00)
= divp(y, x) if y € {—0,0} and

((z € Fand z > —1) or z = 400)

=0 ifr=4o0candy € Fandy >0
ifx € Fand 0 <z and y = 400

I
+
8

= —00 ifre Fand -1 <z <0 and y =400
=-0 ifr=—landy€e Fandy >0
=0 ifr=—landye Fand -1 <y <0
= pole(+00) ifre Fand 1<z <0andy=-1
= pole(—o00) ifre Fand0<zandy= -1
=-0 ifr=4oc0candy € Fand —-1<y <0

= result _NaN2p(x,y) otherwise

5.3.7 Operations for hyperbolic elementary functions

There shall be two maximum error parameters for operations corresponding to the hyperbolic
and inverse hyperbolic functions:

max_error_sinhp € F
mazx_error_tanhp € F

The maz_error_sinhp parameter shall have a value in the interval [0.5,2 - rnd_errorp]. The
maz_error_tanhp parameter shall have a value in the interval [max_error_sinhp,2-rnd_errorp].
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5.3.7.1 Hyperbolic sine

The sinh?, approximation helper function:
sinhp : F — R
sinh},(z) returns a close approximation to sinh(z) in R, with maximum error maz_error_sinhp.

Further requirements on the sinh}, approximation helper function are:

sinhp(z) =z if z € F and sinh};(z) # sinh(z) and
|z| < \/2 - epsilonp /T
sinhp(—z) = —sinhj(x) ifreF

The sinhp operation:

sinhp : F — F U {overflow }

sinhp(x) = trans_resultp(sinh}(z), nearesty)
if x € F and |z| > fminNp
=z if x € F and |z| < fminNp
=z if v € {—00,—0,+00}
= result_NaNp(z) otherwise
NOTES

1 underflow is explicitly avoided.

2 sinhp(x) will overflow approximately when |z| > In(2 - fmaz ).

5.3.7.2 Hyperbolic cosine

The cosh}, approximation helper function:
coshyp, : FF =R
cosh},(x) returns a close approximation to cosh(z) in R, with maximum error maz_error_sinhp.

Further requirements on the cosh}. approximation helper function are:

coshy,(z) =1 if x € F and cosh};(z) # cosh(z) and
|z| < Vepsilong
cosh},(—x) = cosh¥;(z) ifreF

Relationship to the sinh} approximation helper function:
coshiy(z) > sinhj(z) ifreF
The coshp operation:

coshp : F — F U {overflow}

coshp(z) = trans_resultp(cosh}.(x), nearestr)
ifreF
=1 itz=-0
= 400 if z € {—00,4+00}
= result_NaNp(z) otherwise

NOTE - coshp(z) overflows approximately when |z| > In(2 - fmax ).
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5.3.7.3 Hyperbolic tangent

The tanh?, approximation helper function:
tanhy : F — R
tanh};(z) returns a close approximation to tanh(z) in R, with maximum error max_error_tanhp.

Further requirements on the tanh?, approximation helper function are:

tanhj(z) =z if z € F and tanh},(x) # tanh(z) and
|z| < /1.5 - epsilonp /T
tanhj(z) =1 if z € F and tanh},(x) # tanh(z) and
x > arctanh(1 — (epsilong/(3 - rr)))
tanhj(—z) = —tanh}(z) ifreF
The tanhg operation:
tanhp : F — F
tanhp () = trans_resultp(tanh},(x), nearestr)
if z € F and |z| > fminNp
=z if z € F and |z| < fminNp
= result_NaNp(z) otherwise

NOTE - underflow is explicitly avoided.

5.3.7.4 Hyperbolic cotangent

The coth}, approximation helper function:
cothy, : FF =+ R
coth’,(z) returns a close approximation to coth(z) in R, with maximum error max_error_tanhp.

Further requirements on the coth} approximation helper function are:

coth},(z) =1 if z € F and coth},(z) # coth(x) and
x > arccoth(1 + (epsilong/4))
cothy,(—z) = —coth};(z) ifreF

The cothr operation:

cothp : F — F U {pole, overflow}

cothp(z) = trans_resultp(coth}.(x), nearesty)
ifreFandz#0
= pole(+00) ifr=0
= pole(—00) ifz =-0
=-1 if z = —o00
=1 if z =400
= result_NaNp(z) otherwise

NOTE - cothp(z) overflows approximately when |1/z| > fmaz .

32 Specifications for the numerical functions



Fourth committee draft ISO/IEC FCD 10967-2.4:1999(E)

5.3.7.5 Hyperbolic secant

The sech}, approximation helper function:
sechp, : F — R
sech}.(x) returns a close approximation to sech(z) in R, with maximum error maz_error_tanhp.

Further requirements on the sech?, approximation helper function are:

sechy(z) =1 if z € F and sech},(x) # sech(z) and
|z| < \/epsilong/rF

sechy,(—x) = sech};(z) ifreF

sechy,(xz) < fminDp /2 if v € F and x > 2 — In(fminDr/4)

The sechr operation:

sechp : F'— F U {underflow}

sechp () = trans_resultp(sech},(x), nearesty)
ifreF
=1 itrz=-0
=0 if z € {—00,4+00}
= result_NaNp(z) otherwise

5.3.7.6 Hyperbolic cosecant

The csch}, approximation helper function:
cschy, : F - R
cschiy(z) returns a close approximation to csch(z) in R, with maximum error maxz_error_tanhp.

Further requirements on the csch}, approximation helper function are:

cschi(—x) = —cschi.(x) ifreF

eschiy(z) < fminDyg /2 if x € F and = > 2 — In(fminDr/4)
Relationship to the sech}, approximation helper function:

eschiy(z) > sech () ifz € Fandz >0

The cschr operation:

cschp : F — F U {underflow, overflow, pole}

cschp(z) = trans_resultp(csch};(z), nearestp)
ifre Fandx #0
= divp(l, ) if x € {—00,—0,0,4+00}
= result_NaNp(z) otherwise

NOTE - cschp(x) overflows approximately when |1/z| > fmaz .

5.3.7.7 Inverse hyperbolic sine

The arcsinh}, approximation helper function:
arcsinhy : F — R
arcsinh},(x) returns a close approximation to arcsinh(z) in R, with maximum error maxz_error_sinhp.

Further requirements on the arcsinh}, approximation helper function are:
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arcsinhy(z) = if z € F and arcsinh};(z) # arcsinh(z) and
|z| < \/3 - epsilong/rF
arcsinhj,(—z) = —arcsinhi;(z) ifreF

The arcsinhp operation:

arcsinhp : F — F

arcsinhp () = trans_resultp(arcsinhy,(z), nearesty)
if z € F and |z| > fminNp
=z if z € F and |z| < fminNp
=z if z € {—00,—0,+00}
= result_NaNp(z) otherwise

NOTE - underflow is explicitly avoided.

5.3.7.8 Inverse hyperbolic cosine

The arccosh}. approximation helper function:
arccoshy, : F — R
arccosh,(x) returns a close approximation to arccosh(z) in R, with maximum error maz_error_sinhp.
Relationship to the arcsinh}, approximation helper function:
arccoshi:(z) < arcsinh’:(x)
The arccoshr operation:

arccoshp : F — F U {invalid }

arccoshp () = trans_resultp(arccosh},(x), nearestr)
ifzreFandxz>1
=400 if £ =400
= result_NaNp(z) otherwise

5.3.7.9 Inverse hyperbolic tangent

The arctanh}, approximation helper function:
arctanhy : F — R
arctanh},(x) returns a close approximation to arctanh(z) in R, with maximum error maz_error_tanhp.

Further requirements on the arctanh} approximation helper function are:

arctanhj(z) = x if z € F and arctanh},(z) # arctanh(z) and
|z| < /epsilongp/rF
arctanhy,(—z) = —arctanh,(z) ifreF

The arctanhg operation:

arctanhp : F — F U {invalid, pole}

arctanhp(z) = trans_resultp(arctanhy(z), nearestr)
if z € F and fminNp < |z| < 1
=z if z € F and |z| < fminNp
=-0 ifx=-0
= pole(+00) ifz=1
= pole(—o00) ifz=-1
= result_NaNp(z) otherwise
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NOTE - underflow is explicitly avoided.

5.3.7.10 Inverse hyperbolic cotangent

The arccoth}, approximation helper function:
arccothy, : FF =R
arccothy;(z) returns a close approximation to arccoth(z) in R, with maximum error maz_error_tanhp.
A further requirements on the arccoth}, approximation helper function is:
arccothy,(—z) = —arccoth},(z) ifreF
The arccothr operation:

arccothp : F — F U {invalid, underflow, pole}

arccothp(z) = trans_resultp(arccoth}.(z), nearestr)
ifx e Fand |z|] >1
= pole(+00) ifrx=1
= pole(—o0) ifr=-1
=-0 if r = —o00
=0 if £ = +o00
= result_NaNp(z) otherwise

NOTE - There is no underflow for this operation for most kinds of floating point types,
e.g. IEC 60559 ones.

5.3.7.11 Inverse hyperbolic secant

The arcsech}, approximation helper function:
arcsechyp, : FF =R
arcsech’;(z) returns a close approximation to arcsech(z) in R, with maximum error maz_error_tanhp.
The arcsechpr operation:

arcsechp : F — F U {invalid, pole}

arcsechp(z) = trans_resultp(arcsech},(z), nearestr)
fzeFand <z <1
= pole(+00) if z € {—0,0}
= result_NaNp(z) otherwise

5.3.7.12 Inverse hyperbolic cosecant

The arccsch}, approximation helper function:
arccschy : F — R
arccschi.(x) returns a close approximation to arcesch(z) in R, with maximum error maz_error_tanhp.
A further requirements on the arccsch}, approximation helper function is:
arccschy,(—x) = —arceschi,(x) ifreF
Relationship to the arcsinh}, approximation helper function:
arceschi; (1) = aresinhi; (1)
The arccschp operation:

arccschp : F — F U {underflow, pole}
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arceschp(x) = trans_resultp(arccschy,(z), nearesty)
ifxe Fand z #0
= divp(1, z) if z € {—00,-0,0,4+00}
= result_NaNp(z) otherwise

NOTE - There is no underflow for this operation for most kinds of floating point types,
e.g. IEC 60559 ones.

5.3.8 Introduction to operations for trigonometric elementary functions

Two different operations for each of sin, cos, tan, cot, sec, csc, arcsin, arccos, arctan, arccot,
arcctg, arcsec, and arccsc are specified. One version for radians and one version where the
angular unit is given as a parameter.

For use in the specifications below, define the following mathematical functions:

rad : R — R
azis_rad : R — {(1,0),(0,1),(=1,0), (0,—-1)} xR
arc: RxXR—=R

The rad, angular value normalisation, function is defined by
rad(x) =z —round(z/(2-7))-2 -
The azis_rad function is defined by

((1,0),arcsin(sin(z))) if cos(

((0,1), arcsin(cos(z))) if sin(z) > 1/v2
((—1,0), arcsin(sin(z))) if cos(z) < —1/v/2
= ((0,— 1),arcsin(cos(x)))1f sin(z) < —1/v2

The arc, angle, function is defined by

arc(z,y) = —arccos(z/\/2? +y?) ify <0
= arccos(z//z? +y?) ify>0

azis_rad (x)

5.3.9 Operations for radian trigonometric elementary functions

There shall be one radian big-angle parameter:
big_angle_rp € F

It should have the following default value:

big_angle_rp = r|7"/?!

A binding or implementation can include a method to change the value the radian big-angle
parameter. This method should only allow the value of this parameter to be set to a value
greater than 2 - m and such that ulp p(big-angle_rp) < 7/1000.

NOTES

1 Part 1 requires that pp > 2, but see also A.5.2.0.2 in Part 1.

2 This Part requires that pr > 2 - max{1, [log,,(2-m)]}, in order to allow at least the first
two cycles to be in the interval [—big_angle_rp, big_-angle_rp].

3 In order to allow ulp(big_anglerr) < w/1000, pr > 2 + log, . (1000) should hold.
There shall be two maximum error parameters for radian trigonometric operations:

mazx_error_sing € F
max_error_tang € F
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The maz_error_sinp parameter shall have a value in the interval [0.5,1.5 - rnd_errorp]. The
maz_error_tanp parameter shall have a value in the interval [maz_error_sing,2 - rnd_errorp].

5.3.9.1 Radian angle normalisation

The rad}. approximation helper function:
rady, : R =R
rad},(z) returns a close approximation to rad(z) in R, if |z| < big_angle_rp, with maximum error
Max_error_sing.
The azis_rad}, approximation helper function:
azis_rady : R — {(1,0),(0,1),(-1,0),(0,-1)} xR

axis_rady,(z) returns a close approximation to azis_rad(x), if z < big_angle_rp. The approx-
imation consists of that the second part of the result (the offset from the indicated axis) is
approximate.

Further requirements on the rad}, and axis_rady, approximation helper functions are:

radp(z) =z if |[z| <7
snd(azis_rady.(z)) = radj.(z) if fst(axis_rady.(x)) = (1,0)

The radr operation:

radp : F' — F U {underflow, absolute_precision_underflow}

radp(x) = trans_resultp(rady.(x), nearesty)
if x € F and |z| > fminNp and |z| < big_angle_rp
=z if (z € F and |z| < fminNp) or z = —0

= absolute_precision_underflow(qNaN)
if z € F and |z| > big_angle_rp
= result_NaNp(z) otherwise

The axis_radr operation:

azis_radp : F — ((F x F) x F') U {absolute_precision_underflow}

aziscradp(xz) = (fst(azis_rady(z)), trans_resultp(snd(azis_rady(x)), nearesty))
if x € F and |z| > fminNp and |z| < big_angle_rp
= ((1,0),z) if (x € F and |z| < fminNp) or z = —0

= absolute_precision_underflow((qNaN, gNaN), gNaN)
if x € F and |z| > big_angle_rp
= ((qNaN, gNaN), gNaN)
if = is a quiet NaN
= invalid((qNaN, gNaN), gNaN)
otherwise
NOTE - radp is simpler, easier to use, but less accurate than axis_radp. The latter may

still not be sufficient for implementing the radian trigonometric operations to less than the
maximum error stated by the parameters.

5.3.9 Operations for radian trigonometric elementary functions 37



ISO/IEC FCD 10967-2.4:1999(E) Fourth committee draft

5.3.9.2 Radian sine

The sin}, approximation helper function:

sinp: R —+R
sin’.(z) returns a close approximation to sin(z) in R if |z| < big_angle_rp, with maximum error
Maxr_error_sing.

Further requirements on the sin}, approximation helper function are:

sinf(n-2-m4+m/6) =1/2 ifne Zand |n-2 -7+ 7/6| < big.angle_rp

sinp(n-2-m+m/2) =1 ifne Zand |n-2-7+7/2| <big.angle_rp

sinf(n-2-m+5-7/6) =1/2 ifneZand|n-2-7+5-7/6| < big_angle_rp
siny(z) = if sint(z) # sin(z) and |z| < \/3 - epsilong /Ty
sin.(— x) = —sinj.(x)

The sing operation:

sing : F — F U {underflow, absolute_precision_underflow }

sinp(z) = trans_resultp(siny,(z), nearesty)
if z € F and fminNp < |z| and |z| < big-angle_rp
= radp(z) otherwise
NOTE - underflow is here explicitly avoided for denormal arguments, but the operation

may underflow for other arguments.

5.3.9.3 Radian cosine

The cos}, approximation helper function:

cosp: R — R
cos,(z) returns a close approximation to cos(z) in R if |z| < big-angle_rp, with maximum error
Max_error_sing.

Further requirements on the cos}. approximation helper function are:

cosp(n-2-m) =1 ifne€ Z and |n-2- x| < big-angle_rp
cosy(n-2-m+m/3) =1/2 ifne Zand |n-2 -7+ 7/3| < big.angle_rp
cosp(n-2-m+2-7/3) =—1/2 ifne Zand n-2-7+2 7/3| < big-anglerg
cosp(n-2-m4+m) = -1 ifne Zand |n-2- 7+ 7| < big_angle_rp
cos}}(m) =1 if cosy,(x) # cos(z) and |z| < \/epsilonp/rE

The cosp operation:

cosp : F'— F U {underflow, absolute_precision_underflow }

cosp(r) = trans_resultp(cosy.(z), nearestr)
if z € F and |z| < big_angle_rp

=1 ifx=-0

= radp(z) otherwise
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5.3.9.4 Radian tangent

The tan}, approximation helper function:

tanyp : R =+ R
tanj.(x) returns a close approximation to tan(z) in R if |z| < big_angle_rp, with maximum error
max_error_tang.

Further requirements on the tan}, approximation helper function are:

tany(n-2-m+w/4) =1 ifne Zand |n-2 -7+ /4] < big_angle_rp
tanp(n-2-m+3-7/4) = —1 ifne Zand |n-2 -7+ 3-7/4| < big.angle_-rp
tan’,(z) = if tan7.(z) # tan(z) and |z| < \/epsilonp/rF
tany(—z) = —tany(z)

The tang operation:

tanp : F — F U {underflow, overflow, absolute_precision_underflow}

tanp(x) = trans_resultp(tany,(z), nearesty)
if x € F and fminNp < |z| and |z| < big_angle_rp
= radp(z) otherwise
NOTE - wunderflow is explicitly avoided for denormal arguments, but the operation may

underflow for other arguments.

5.3.9.5 Radian cotangent

The cot}, approximation helper function:

cotp, : R —+ R
cot’;(z) returns a close approximation to cot(z) in R if |z| < big_angle_rp, with maximum error
max_error_tang.

Further requirements on the cot}, approximation helper function are:

cotp(n-2-m+n/4) =1 ifne€ Zand n-2 -7+ /4] < big_angle_rp
cotp(n-2-m+3-7/4) = -1 ifne Zand n-2-7+3-7/4] < bigangle_rp
coty,(—z) = —cot}(z)

The cotr operation:

cotp : F'— F U {underflow, overflow, pole, absolute_precision_underflow }

cotp(x) = trans_resultp(coty(z), nearesty)
if z € F and = # 0 and |z| < big_angle_rp
= pole(+o00) ifz=0
= pole(—o00) ifz =-0
= radp(z) otherwise

5.3.9.6 Radian secant

The sec}, approximation helper function:

secp : R — R
secy(x) returns a close approximation to sec(z) in R if |z| < big_angle_ry, with maximum error
max_error_tang.

Further requirements on the sec}. approximation helper function are:
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secp(n-2-m) =1 ifne€ Z and |n-2- x| < big-angle_rp
secp(n-2-m+7/3) =2 ifne Zand |n-2 -7+ 7/3| < big.angle_rp
secp(n-2-m+2-7/3) = -2 ifne Zand |n-2-7+2 7/3| < big-angle_rp
secp(n-2-m+m) =—1 ifne€ Zand |n-2- -7+ 7| < big.angle_rp
sech(z) =1 if secy,(z) # sec(z) and |z| < v/epsilonp

The secr operation:

secp : F'— F U {overflow, absolute_precision_underflow}

secp(x) = trans_resultp(secy(x), nearestr)
if z € F and |z| < big_angle_rp

=1 ifx =-0

= radp(z) otherwise

5.3.9.7 Radian cosecant

The cscy, approximation helper function:
cscp : R — R

csci(x) returns a close approximation to csc(z) in R if |z| < big_angle_ry, with maximum error
max_error_tang.

Further requirements on the cscy approximation helper function are:

escp(n-2-m+7/6) =2 ifne Zand |n-2 -7+ 7/6| < big.angle_rp
escp(n-2-m+m7/2) =1 ifne€ Zand |n-2 -7+ 7/2| < big.angle_rp
cscp(n-2-m+5-7/6) =2 ifneZand|n-2-7+5-7/6| < big_angle_rp
cscp(—x) = —csci(x)

The cscr operation:

cscp : F — F U {overflow, pole, absolute_precision_underflow }

cscp(x) = trans_resultp(cscy(x), nearestr)
ifz € F and = # 0 and |z| < big_angle_rp
= pole(+00) ifz=0
= pole(—o00) ifz =-0
= radp(z) otherwise

5.3.9.8 Radian cosine with sine

cossing : F' — (F x F') U {underflow, absolute_precision_underflow}
cossing(x) = (cosp(z), sinp(x))

5.3.9.9 Radian arc sine
The arcsiny, approximation helper function:
arcsing : F' = R
arcsin’y,(z) returns a close approximation to arcsin(z) in R, with maximum error maxz_error_sing.

Further requirements on the arcsin}, approximation helper function are:
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arcsiny,(1/2) = /6

arcsinp(l) = m/2

arcsiny,(r) =z if arcsiny,(z) # arcsin(z) and
|z| < \/2 - epsilonp /T

arcsiny,(—x) = —arcsinj(x)
Range limitation:

arcsin}%(w) = max{upp(—n/2), min{arcsin}.(z), downp(n/2)}}
The arcsing operation:

arcsing : F — F U {invalid}

arcsing(x) = trans_resultp(arcsmﬁ(:E), nearesty)
if z € F and fminNp < |z| < 1
=z if (x € F and |z| < fminNp) or z = —0
= result_NaNp(z) otherwise

NOTE - underflow is explicitly avoided.

5.3.9.10 Radian arc cosine

The arccos}, approximation helper function:
arccosy : F' =+ R
arccosy,(x) returns a close approximation to arccos(z) in R, with maximum error maz_error_sing.
Further requirements on the arccos}, approximation helper function are:
arccosy(1/2) = /3
arccosy(0) = m/2
arccosy(—1/2) =2-7/3
arccosj.(—1) ==
Range limitation:
arccosﬁ(m) = min{arccos},(z), downp(m)}
The arccosp operation:

arccosp : F'— F U {invalid }

arccosp () = trans_resultp(arccosﬁ(m), nearestr)
fre Fand -1<z<1
= arccosp(0) ifz=-0
= result_NaNp(z) otherwise

5.3.9.11 Radian arc tangent

The arctan}, approximation helper function:
arctany, : F' — R
arctan’(x) returns a close approximation to arctan(z) in R, with maximum error maz_error_tang.

Further requirements on the arctany, approximation helper function are:
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arctany;(1) = w/4

arctanyp(zr) = x if arctan},(z) # arctan(z) and

lz| < /1.5 - epsilong/rF
arctany,(z) = /2 if arctany;(z) # arctan(z) and « > 3 - rp/epsilony
arctany,(—x) = —arctan’,(z)

Range limitation:
arctanﬁ(w) = max{upp(—n/2), min{arctani.(z), downp(r/2)}}
The arctang operation:

arctang : F — F

arctanp(x) = trans_resultF(arctan}%(x), nearesty)
if z € F and fminNp < |z|
=z if (x € F and |z| < fminNp) or z = —0
= upp(—m/2) if £ =—o00
= downp(m/2) if £ =400
= result_NaNp(z) otherwise
NOTES

1 arctanp(z) = arcr(1, )

2 underflow is explicitly avoided.

5.3.9.12 Radian arc cotangent

This clause specifies two inverse cotangent operations. One approximating the continuous (but
not sign symmetric) arccot, the other approximating the sign symmetric (but discontinuous at
0) arcctg.

The arccot}, approximation helper function:
arccotp : F — R
arccot},(x) returns a close approximation to arccot(z) in R, with maximum error maz_error_tanp.
The arcctgy. approximation helper function:
arcctgy, : FF =R
arcctgy.(x) returns a close approximation to arcctg(z) in R, with maximum error max_error_tang.
Further requirements on the arccoty and arcctgy approximation helper functions are:

arccoty,(1) = m/4

arccoty,(0) = m/2

arccot,(—1) =3 -m/4
(

arccoty(xz) =7 if arccot},(x) # arccot(z) and z < =3 - rp/epsilony
arcctgy(x) = arccoty(x) ifz>0
arcctgp(—z) = —arcctgp(z)

Range limitation:

arccotﬁ(m) = min{arccoty,(z), downp(m)}

arcctg#(m) = max{upp(—n/2), min{arcctgy(x), downr(m/2)}}
The arccotp operation:

arccotp : F — F U {underflow}
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arccotp () = t?"cms_7"esultp(arccotl,?ile (x))
ifxelF
= nearestp(n/2) ifz=-0
= downp(m) if 2 =—o00
=0 it z =400
= result_NaNp(z) otherwise
NOTES

1 arccotp(z) = arcp(z,1).
2 There is no “jump” at zero for arccotrp.
The arcctgr operation:

arcctgr : F — F U {underflow}

arcctgp () = trcms_T‘esultF(arcctg}fie (x),nearestr)
ifreF
= upp(—m/2) ifz=-0
=-0 if r = —o00
=0 if z = +o00
= result_NaNp(z) otherwise

NOTE 3 - arcctgr(negr(z)) = negr(arcctgr (z)).

5.3.9.13 Radian arc secant

The arcsecy, approximation helper function:
arcsecp : F— R
arcsecy;(z) returns a close approximation to arcsec(z) in R, with maximum error max_error_tanp.
Further requirements on the arcsecy approximation helper function are:

arcsecy(2) =m/3
arcsecy(—2) =2-7/3
arcsecy(—1) =

arcsecy(x) < 7r/2 ifz>0
arcsecy(x) > m/2 ifz<0
arcsech(zr) = m/2 if arcsecy,(z) # arcsec(z) and |z| > 3 - rp/epsilonp

Range limitation:

arcsecﬁ (x) = min{arcsecy,(z), downp(m/2)}
ifz>1
= max{upp(7/2), min{arcsecy.(z), downp(m)}}
ifz < -1

The arcsecr operation:

arcsecp : F — F U {invalid}

arcsecp(x) = trans_resultp(arcsecﬁf (x),nearestr)
ifze Fand |z] >1
= upp(m/2) if £ =—o00
= downp(n/2) if z =400
= result_NaNp(z) otherwise
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5.3.9.14 Radian arc cosecant

The arcescy, approximation helper function:
arcescp : F =R
arccscy () returns a close approximation to arccsc(z) in R, with maximum error max_error_tanp.
Further requirements on the arccscy, approximation helper function are:
arcescy(2) = /6
arcescy(l) = /2
arcescp(—z) = —arcescy(x)
Range limitation:

arccsc}?f(x) = max{upp(—n/2), min{arcescy(z), downp(r/2)}}
The arccscr operation:

arccscp : F' — F U {underflow, invalid }

arcescp(x) = trans_resultp(arccscﬁ (x),nearestr)
ifz € Fand|z|>1
=-0 if £ =—o00
=0 if = 400
= result_NaNp(z) otherwise

5.3.9.15 Radian angle from Cartesian co-ordinates

The arcy approximation helper function:
arc, : F x F =R

arcy(x,y) returns a close approximation to arc(z,y) in R, with maximum error maz_error _tang.

NOTE - The arc operations are often called arctan2 (with the co-ordinate arguments
swapped), or arccot?.

Further requirements on the arcy approximation helper function are:

arcy(z,0) =0 itz >0
arcp(z,z) = w/4 ifz>0
arcy(0,y) = m/2 ify >0
arcy(r,—x) =3 -m/4 itz <0
arcp(z,0) =7 ifz <0
arcy(z, —y) = —arcy(z,y) ify#0orz >0

Range limitation:
arcﬁ(w, y) = max{upp(—m), min{arcy(z,y), downp(m)}}
The arcr operation:

arcp : F x F — F U {underflow}

arcp(z,y) = tmms_7"esultp(cm"c}?ﬂE (x,y),nearesty)
ifz,y € F and (z # 0 or y # 0)
=0 ifr=0andy=0
= downp(m) ifr=—-0andy=0
= arcr(0,y) ifz=—0andy € FU{—o00,+00} and y # 0
= negr(arcp(z,0)) ify=—0and z € FU{—00,—0,+00}
=0 ifr=4o0candy € Fandy >0
=-0 ifr=4occand y € Fand y <0
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= nearestp(n/4) if z =400 and y = 400

= nearestp(n/2) ifr e Fand y =400

= nearestp(3 - m/4) if £ = —o0 and y = 400

= downp(m) ifr=—occandy € Fandy >0
= upp(—m) ifzr=—o00andy € F and y <0
= nearestp(—3 - w/4) if z = —o00 and y = —00

= nearestp(—m/2) ifre Fandy=—o00

= nearestp(—m/4) if z =400 and y = —00

= result_NaN2p(z,y) otherwise

5.3.10 Operations for trigonometrics with given angular unit

There shall be one big-angle parameter for argument angular-unit trigonometric operations:
big_angle.up € F

It should have the following default value:
big_angle_up = [’I"LI.)F/2]/6—|

A binding or implementation can include a method to change the value for this parameter. This
method should only allow the value of this parameter to be set to a value greater than or equal
to 1 and such that ulpp(big_angler) < 1/2000.

NOTE 1 - In order to allow ulpp(big-angler) < 1/2000, pr > 2 +log,. (1000) should hold.
There shall be a derived parameter signifying the minimum allowed angular unit:
min_angular_unitp = rp - fminNg /epsilong
NOTE 2 — That is,min_angular_unityp = r%minF71+pF)
To make the specifications below a bit easier to express, let
Gp={zx€F | min.angular_unitp < |z|}.

Let T = {1,2,360,400,6400}. T consists of angle values for exactly one revolution for some
common non-radian angular units: cycles, half-cycles, arc degrees, grades, and mils.

There shall be two parameterised maximum error parameters for argument angular-unit
trigonometric operations:

max_error_sinup : F — F U {invalid}
mazx_error_tanup : F — F U {invalid}

For u € G, the maz_error_sinup(u) parameter shall have a value in the interval [maz_error_sing, 2].
The maz_error_sinup(u) parameter shall have the value of maz_error_sing if |u| € T. For u €
Gr, the maz_error_tanup(u) parameter shall have a value in the interval [maz_error_tang,4].
The maz_error_tanup(u) parameter shall have the value of maz_error_tang if |u| € T. The
maz_error_sinup(u) and maz_error_tanup(u) parameters return invalid if u & Gp.

5.3.10.1 Argument angular-unit angle normalisation

The argument angular-unit normalisation computes exactly rad(2 -7 - x/u) - u/(2 - m), where z is
the angular value, and u is the angular unit.

The cycler operation:

cyclep : F x F — F U{—0, absolute_precision_underflow, invalid }
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cyclep(u, ) =remrp(z,u) ifu € Gp and (x =—0 or
(z € F and |z/u| < big-angle_ur))

= absolute_precision_underflow(qNaNN)
ifue Gp and z € F and |z/u| > big_angle_up
= result _NaN2p(u,x) otherwise

The azxis_cycler operation:
azis_cyclep : F x F — ((F x F) x (FU{—=0})) U {absolute_precision_underflow, invalid }

azis_cyclep(u, )
= (axis(u, z),resultp(x — (round(z - 4/u) - u/4),rndp))
ifu€e Gp and z € F and |z/u| < big-angle_ur and
(z/u =0 or z — (round(z - 4/u) - u/4) # 0)

= (awis(u,z),—0) ifu€e Gp and z € F and |z/u| < big-angle_ur and
z/u <0 and z — (round(z - 4/u) - u/4) = 0 and
= ((1,0),—0) ifue Gpand x =—-0

= absolute_precision_underflow((qNaN, gNaN), gNaN)

ifue Gp and z € F and |z/u| > big_angle_up
= ((qNaN, gNaN),qNaN)

if z is a quiet NaN and « is not a signalling NaN
= ((qNaN, gNaN),qNaN)

if u is a quiet NaN and z is not a signalling NaN
= invalid((qNaN, gNaN), gNaN)

otherwise
where
azis(u, 7) = (1,0) if round(z - 4/u) =4-n
=(0,1) if round(z -4/u) =4-n+1
= (=1,0) if round(z - 4/u) =4 -n+2
= (0,-1) if round(z -4/u) =4-n+3

for some n € Z.
NOTES
1 azis_cycler(u,z) is exact when divp(u,4) = u/4.
cycler is an exact operation.
cyclep(u,z) is —0 or has a result in the interval [—|u/2|, |u/2|] if there is no notification.

A zero resulting angle is negative if the original angle value is negative.

U = W N

The cycler operation is used also in the specifications of the unit argument trigonometric
operations. This does not imply that the implementation has to use the cycle operation,
when implementing the operations. Just that the results (including notifications) must be
as if it did.

5.3.10.2 Argument angular-unit sine

The sinu}y, approximation helper function:
sinup : FXR =R

sinuj(u,z) returns a close approximation to sin(z - 2 - w/u) in R if v # 0, with maximum error
maz_error_sinup(u).

Further requirements on the sinu} approximation helper function:
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sinup(u,n - u+ ) = sinuj(u, z) ifne Zandu € Fand u#0
stnup(u, u/12) =1/2 ifue Fandu#0
stnuy,(u,u/4) = ifue Fandu#0
sinup(u,5 - u/12) =1/2 ifue Fandu#0
sinuy,(u, —z) = —sinuj(u, x) ifue Fandu#0
sinug(—u, ) = —sinuj(u, ) ifue Fandu#0

NOTE - sinuj(u,z) =z -2 -7/uif |v-2-7/u| < fminNg.
The sinup operation:

sinup : F' x F — F U {—0,underflow, invalid, absolute_precision_underflow}

sinup(u, ) = trans_resultp(sinuy(u, ), nearesty)
if cyclep(u,z) € F and cyclep(u,z) € {—u/2,0,u/2}
= divp(0,u) if cycler (u,z) € {0,u/2}
= divp(—0,u) if cyclep(u,z) € {—u/2,—0}
= cyclep(u, x) otherwise

5.3.10.3 Argument angular-unit cosine

The cosu}, approximation helper function:
cosup : FXR —+R

cosuy,(u, z) returns a close approximation to cos(z -2 - 7/u) in R if u # 0, with maximum error
maz_error_sinup(u).

Further requirements on the cosu}. approximation helper function:

cosuy;(u,n - u -i—x) = cosu¥;(u, ) ifne Zandu e Fand u#0
cosup(u,0) = ifue Fandu#0
cosuy; (u, u/6)—1/2 ifue Fandu#0
cosuj(u,u/3) = —1/2 ifue Fandu#0
cosuy,(u,u/2) = —1 ifue Fandu#0
cosuj, (u, —z) = cosuj(u, ) ifuée Fandu#0
cosuy,(—u, x) = cosuy,(u, ) ifue Fandu#0

NOTE - cosuj(u,z) = 1 should hold if |z - 2- 7/u| < /epsilong/rF
The cosup operation:

cosup : F x F — F U {underflow, invalid, absolute_precision_underflow}

cosup(u,x) = trans_resultp(cosuj.(u, ), nearesty)
if cyclep(u,z) € F
=1 if cyclep(u,z) = —0
= cyclep(u, x) otherwise

5.3.10.4 Argument angular-unit tangent

The tanu}, approximation helper function:
tanup : F xR =R

tanuj.(u, z) returns a close approximation to tan(z - 2 - w/u) in R if u # 0, with maximum error
maz_error_tanup(u).

Further requirements on the tanu} approximation helper function:
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tanuy(u,n - v+ x) = tanuj(u, ) ifneZandue Fandu#0
tanuy (u, u/8) = ifue Fandu#0
tanuy,(u,3 - u/8) = —1 ifue Fandu#0
tanuy(u, —z) = —tanu},(u, ) ifuée F and u # 0
tanuy,(—u, z) = —tanuy,(u, ) ifue Fandu#0

NOTE 1 - tanuf(u,z) =z -2 -7/uif |z -2 7/u| < fminNp.
The tanupr operation:

tanup : F x F — F U {—0, pole, overflow, underflow, invalid,
absolute_precision_underflow}

tanup (u, ) = trans_resultp(tanuj.(u, x), nearesty
if cyclep(u, x
cyclep (u,

)

) € F and
)€ {—u/2,—u/4,0,u/4,u/2}
) € {—u/2,0}
)
) =
) =

= divg (0, u) if cyclep(u, x

= divp(—0,u) if cyclep(u,z) € {—0,u/2}
= pole(+o00 if cyclep(u,xz) = u/4

= pole(—00) if eyclep(u,z) = —u/4

= cyclep(u, ) otherwise

NOTE 2 — The pole notification can arise for tanup(u,x) only when u/4 is in F.

5.3.10.5 Argument angular-unit cotangent

The cotu}, approximation helper function:
cotup, : F xR =R

cotuf, (u, z) returns a close approximation to cot(z - 2- 7/u) in R if u # 0, with maximum error
maz_error_tanup(u).

Further requirements on the cotu}, approximation helper function:

cotul,(u,n - u + x) = cotu, (u, ) ifneZandu e Fandu#0
cotuy(u,u/8) =1 ifue Fandu#0
cotul(u,3 - u/8) = —1 ifuée F and u#0
cotuy,(u, —x) = —cotuj,(u, ) ifue Fandu#0
cotuf,(—u, x) = —cotu}(u, x) ifuée F and u #0

The cotur operation:

cotup : F x F — F U{—0, pole,overflow, underflow, invalid,
absolute_precision_underflow}

cotup(u, x) = trans_resultp(cotu}.(u, x), nearesty)
if cyclep(u,z) € F and
cyclep(u,z) € {—u/2,—u/4,0,u/2}
=—-0 if eyclep(u,z) = —u/4
= divp(u, tanup(u,x))  if cyclep(u,z) € {—u/2,—0,0,u/2}
= cyclep(u, ) otherwise

5.3.10.6 Argument angular-unit secant

The secu}, approximation helper function:

secup : F xR =R
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secu¥;(u, z) returns a close approximation to sec(z - 2 - 7/u) in R if v # 0, with maximum error
maz_error_tanup(u).

Further requirements on the secu approximation helper function:

secuy;(u,n - u + x) = secut(u, x) ifne Zandu € Fand u#0
secuj,(u,0) =1 ifue Fandu#0

secu (u, u/6) =2 ifue Fandu#0
secuf(u,u/3) = =2 ifue Fandu#0

secuyy (u,u/2) = —1 ifuée Fandu#0
secuf,(u, —z) = secuj(u, x) ifue Fandu#0

secuf,(—u, ) = secuf(u,x) ifuée Fandu#0

secu’ (u, :E) 1 if |2 m/u| < 0.5 epsilonp

The secur operation:
secup : F x F'— F U {pole, overflow, invalid, absolute_precision_underflow}

secup(u, ) = trans_resultp(secu},(u, ), nearesty)
if cyclep(u,z) € F and cycler(u,z) & {—u/4,u/4}
= divp (1, cosup(u,z))  if cyclep(u,z) € {—u/4,—0,u/4}
= cyclep(u, x) otherwise

5.3.10.7 Argument angular-unit cosecant

The cscu¥, approximation helper function:
cscup : F xR =R

cscut,(u, ) returns a close approximation to csc(z -2 - w/u) in R if u # 0, with maximum error
maz_error_tanup(u).

Further requirements on the cscu} approximation helper function:

cscufa(u,n - u+ x) = escu(u, x) ifneZandue Fandue0
escupy(u, u/12) =2 ifue Fandu#0
escufa(u,u/d) =1 ifue Fandu#0
escupy(u, 5 - u/12) =2 ifue Fandu#0
cseufa(u, —z) = —cscuy(u, ) ifue Fandu#0
cscuyy(—u, ) = —escuy(u, ) ifue Fandu#0

The cscur operation:
cscup : F x F'— F U {pole, overflow, invalid, absolute_precision_underflow }

cscup (u, ) = trans_resultp(cscuf(u, z), nearesty)
if cyclep(u,z) € F and cyclep(u,z) € {—u/2,0,u/2}
= divp(1, sinup(u,z))  if cyclep(u,z) € {—u/2,—0,0,u/2}
= cyclep(u, x) otherwise

5.3.10.8 Argument angular-unit cosine with sine

cossinup : F x F — (F x (F U{-0})) U {underflow, invalid, absolute_precision_underflow}

cossinup(u,z) = (cosup(u,x),sinup(u,x))
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5.3.10.9 Argument angular-unit arc sine

The arcsinuy, approximation helper function:
arcsinup : F X F — R
arcsinuj,(u, z) returns a close approximation to arcsin(z) - «/(2 - 7) in R, with maximum error
max_error_sinup(u).
Further requirements on the arcsinu}, approximation helper function:
arcsinuj.(u,1/2) = u/12
arcsinup(u,1) = u/4
arcsinuj,(u, —z) = —arcsinuy,(u, )
arcsinuy(—u, ) = —arcsinuj,(u, )
NOTE - arcsinui(u,z) ~u/(2-7) if |z| < fminNp.
Range limitation:

arcsinu}ff(u,x) = max{upr(—|u/4]), min{arcsinuj.(u, z), downp(|u/4|)}}
The arcsinur operation:

arcsinup : F x F — F U {—0,underflow, invalid }
#

arcsinup(u,x) = trans_resultp(arcsinuf,(u,x), nearestr)
ifueGrpandz € F and |z|] <1and z #0
= mulr(u, z) ifu € Gp and z € {-0,0}
= result _NaN2p(u,x) otherwise

5.3.10.10 Argument angular-unit arc cosine

The arccosuj, approximation helper function:
arccosuy : F x F' — R

arccosuj,(u, z) returns a close approximation to arccos(z) - u/(2 - 7) in R, with maximum error
maz_error_sinup(u).

Further requirements on the arccosu} approximation helper function:
arccosui;(u,1/2) = u/6
arccosuj(u,0) = u/4
arccosu,(u, —1/2) =u/3
arccosuj(u, —1) = u/2
arccosuy(—u, r) = —arccosuy, (u, )
Range limitation:

arccosuﬁ(u,x) = max{upr(—|u/2|), min{arccosuj. (u, ), downp(ju/2|)}}
The arccosup operation:

arccosup : F x F — F U {underflow, invalid }

arccosup(u,r) = trans_resultF(arccosu}% (u, ), nearestr)
ifueGrpand z € F and |z| <1
= nearestp(u/4) ifue Gpand x =—-0
= result_NaN2p(u,x) otherwise
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5.3.10.11 Argument angular-unit arc tangent

The arctanu}, approximation helper function:
arctanuy 1 F X FF = R
arctanu},(u, ) returns a close approximation to arctan(z) - u/(2 - 7) in R, with maximum error
mazx_error_tanup(u).
Further requirements on the arctanu}, approximation helper function:
arctanuj,(u,1) = u/8
arctanuy(u, z) = u/4 if arctanuj,(u, z) # arctan(z) - u/(2 - 7) and
x> 3-rp/epsilong
arctanuy,(u, —r) = —arctanuy,(u, )
arctanui,(—u, ) = —arctanuy,(u, )
NOTE 1 - arctanu}(u,z) = u/(2-7) if |z| < fminNg
Range limitation:
arctanuﬁ(u,m) = max{upr(—|u/4|), min{arctanu}.(u, ), downp(Ju/4])}}
The arctanup operation:

arctanup : F x F' — F U {-0,invalid, underflow }

arctanup(u,x) = trans_resultp(arctanu}% (u, ), nearesty)
ifueGrpandz € Fand z #0

= mulp(z,u) if u € Gp and z € {—0,0}

= upp(—u/4) ifu€e Gp and x = —o00 and u > 0
= downp(u/4) ifue G and x =400 and u > 0
= downp(—u/4) ifu€e Gp and x = —00 and u < 0
= upp(u/4) ifue Gr and x =400 and u < 0
= result_NaN2p(u, x) otherwise

NOTE 2 - arctanup(u,z) =~ arcur(u,1,z).

5.3.10.12 Argument angular-unit arc cotangent

This clause specifies two inverse cotangent operations. One approximating the continuous (but
not sign symmetric) arccot, the other approximating the sign symmetric (but discontinuous at
0) arcctg.

The arccotu}, approximation helper function:
arccotuy, : F X F — R

arccotu, (u, z) returns a close approximation to arccot(z) - u/(2 - w) in R, with maximum error
maz_error_tanup(u).

The arcctguy, approximation helper function:
arcctguyp : F X F =+ R

arcctgu},(u, x) returns a close approximation to arcctg(z) - u/(2 - 7) in R, with maximum error
maz_error_tanup(u).

Further requirements on the arccotuy, and arcctguy, approximation helper functions:

5.3.10 Operations for trigonometrics with given angular unit o1



ISO/IEC FCD 10967-2.4:1999(E) Fourth committee draft

arccotuy,(u, 1) = u/8

arccotuy(u,0) = u/4

arccotuy;(u, —1) =3 -u/8

arccotuy, (u, ) < u/2 ifu>0

arccotuy,(u, ) > u/2 ifu<0

arccotuy, (u, ) = u/2 if arccotu;(u, z) # arccot(z) - u/(2 - 7) and
x < =3 -rp/epsilonp

arccotuy,(—u, x) = —arccotu},(u, x)

arcctgui,(u, x) = arccotuy,(u, ) itz >0

arcctguy.(u, —z) = —arcctguy (u, )

Range limitation:
arccotuﬁf(u,x) = max{upp(—|u/2|), min{arccotu},(u, ), downp(ju/2|)}}
arcctguﬁf(u,m) = max{upp(—|u/4|), min{arcctguy. (v, z), downr(|u/4])}}
The arccotur operation:

arccotup : F x F — F U {invalid, underflow}

arccotup(u, ) = trcms_resultF(arccotu}'ﬁiE (u, ), nearestp)
fueGrand x € F
= nearestp(u/4) ifue Gpand x =-0
= downp(u/2) ifue Gpand x =—o00 and u > 0
= upp(u/2) ifue Gpand x =—o00 and u < 0
= divg(u, x) ifu € Gp and x = 400
= result _NaN2p(u,x) otherwise

NOTE - arccotup(u,z) =~ arcup(u,z,1).
The arcctgur operation:
arcctqup : F x F' — F U {invalid, underflow }

arcctgup(u, x) = trans_resultF(arcctgu? (u, z),nearestp)
fueGrand x € F
= negr(arcctgup(u,0)) ifu € Gp and z =—0
= divp(u, ) ifu e Gp and z € {—o00,+00}
= result _NaN2p(u,x) otherwise

5.3.10.13 Argument angular-unit arc secant

The arcsecuy, approximation helper function:
arcsecuy, : ' x FF = R

arcsecu’;(u, ) returns a close approximation to arcsec(z) - u/(2 - 7) in R, with maximum error
max_error_tanup(u).

Further requirements on the arcsecu}, approximation helper function:

arcsecuf,(u,2) = u/6

arcsecu’;(u, —2) = u/3

arcsecuy,(u, —1) = u/2

arcsecuy,(u, ) < u/4 ifz>0andu>0

arcsecuf,(u, ) > u/4 ifr<0andu >0

arcsecuf,(u, ) = u/4 if arcsecu}, (u, z) # arcsec(x) - u/(2 - 7) and
|z| > 3 - rp/epsilonp

arcsecuy,(—u,x) = —arcsecuy, (u, x)
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Range limitation:

arcsecuﬁ (u,z) = max{upp(—|u/4]), min{arcsecu};(u,z),downr(|u/4|)}}

ifxz>1
= max{upp(u/4), min{arcsecuy, (u, z), downp(u/2)}}
fz<—-landu>0
= max{upr(u/2), min{arcsecuy, (u, z), downp(u/4)}}
fz<—-landu<0
The arcsecup operation:

arcsecur : F' x F — F U {underflow, invalid }

arcsecup(u,x) = trcms_resultp(arcsecu}‘fﬂE (u, ), nearestr)
ifueGrandx € Fand (x < —lorz >1)

= downp(u/4) ifu€e Gp and x = —o00 and u > 0
= upp(u/4) ifue G and x =400 and u > 0
= upp(u/4) ifu€e Gp and x = —00 and u < 0
= downp(u/4) ifue Gr and x =400 and u < 0
= result_NaN2p(u, x) otherwise

5.3.10.14 Argument angular-unit arc cosecant

The arcescu}, approximation helper function:
arccscup : F X F — R

arccscuj.(u, x) returns a close approximation to arccsc(z) - u/(2 - 7) in R, with maximum error
maz_error_tanup(u).

Further requirements on the arccscu}, approximation helper function:
arcescuy(u,2) = u/12
arcescuyy(u, 1) = u/4
arccscuy,(u, —x) = —arcescu,(u, x)
arcescuyy(—u, x) = —arcescu(u, )
Range limitation:
arccscuﬁ(u,m) = max{upr(—|u/4|), min{arcescu}, (u, z), downp(|u/4|)}}
The arccscup operation:

arccscup : F' x F — F U {underflow, invalid }

arcescup (u, ) = trans_resultp(arccscu}f (u, ), nearesty)
ifueGrandx € Fand (x > 1or z < —1)
= mulp(—u,0) ifue Gp and £ = —o0
= mulp(u,0) if u € Gp and z = 400
= result_NaN2p(u, ) otherwise

5.3.10.15 Argument angular-unit angle from Cartesian co-ordinates

The arcu}, approximation helper function:
arcup : F X FxF =R

arcuy,(u,x,y) returns a close approximation to arc(z,y) - u/(2 - m) in R, with maximum error
maz_error_tanup(u).

Further requirements on the arcuy approximation helper function:
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arcuy(u,z,x) = u/8
arcuy(u,0,y) = u/4
arcuj(u,z,—z) =3 -u/8
arcuy(u,z,0) = u/2

arcuj.(u, z, —y) = —arcuj(u, z,y)
arcuy(—u, z,y) = —arcuj(u, z,y)

Range limitation:

ifz >0
ify >0
ifz <0
ifz <0

Fourth committee draft

ify#0orz>0

arcu}%(u, z,y) = max{upp(—|u/2|), min{arcuy(u, z,y), downp (ju/2|)}}

The arcur operation:

arcup : F x F x F — F U {-0,underflow, invalid }

arcup(u, z,y)

= mulp(u,0)
=0

= downp(u/2)
= upr(u/2)

= arcup(u,0,y)

= negr(arcur(u,z,0))

= mulp (0, u)

= mulp (0, —u)

= nearestp(u/8)

= nearestp(u/4)

= nearestr(3 - u/8)
= downp(u/2)

= upr(—u/2)
= upp(u/2)

= downp(—u/2)

= nearestp(—3 - u/8)

= nearestp(—u/4)
= nearestp(—u/8)

= result_NaN3p(u,x,y)

5.3.11
5.3.11.1

Define the mathematical function:
rad_to_cycle : R X R -+ R

rad_to_cycle(x,v)

ifueGp
ifueGg
ifueGp
ifueGg
ifueGp
ifueGg

y#0
ifueGg

ifueGp
ifueGg
ifueGp
ifueGg
ifueGp
ifueGg

= trans_resultp (arcu}% (u,z,y), nearestr)

and z,y € F and (z < 0 or y # 0)

andz € Fand z >0and y =0

and x =0and y =0

and z=—0and y =0 and u >0

and x =—0and y =0 and u <0
and z = —0 and y € F'U {—00,4+00} and

and y = —0 and z € F U {—00,—0,+00}

and x =4ococandy € Fandy > 0
and x =400 and y € F and y <0
and ¢ = 400 and y = +00

and z € F and y = 400

and £ = —oo and y = 400

and £ = —o0 and y € F and

y>0and u>0

ifueGg

and £ = —o0 and y € F and

y<0andu>0

ifueGg

and £ = —o0 and y € F and

y>0and u<0

ifu € Gp and £ = —o0 and y € F and
y<0and u<0

ifu € Gp and £ = —o0 and y = —o0

ifue Gpand z € F and y = —o00

ifu € Gp and £ = 400 and y = —o0

otherwise

Operations for angular-unit conversions

= arccos(cos(z)) - v/(2 - )

if sin(z) >

= —arccos(cos(z)) - v/(2 - )
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if sin(z) < 0 and v # 0
The rad_to_cycle}, approximation helper function:
rad_to_cyclel, : R x F — R

rad_to_cycle},(z,v) returns a close approximation to rad_to_cycle(z,v) in R, with maximum error
maz_error_sing, if |x| < big_angle_rp.

Further requirements on the rad_to_cycle}, approximation helper function are:
rad_to_cyclep(n-2 -7+ n/6,v) =v/12 ifn€ Zand |n-2- -7+ /6| < big-angle_rp
rad_to_cycle}.( -+ m/4,v) =v/8 ifne Zand |n-2 -7+ /4] < big_angle_rp
rad_to_cyclef( -+ 7/3,v) =v/6 ifne Zand |n-2 -7+ 7/3| < big.angle_rp
rad_to_cycle}.( T+ T/2,v) =v/4 ifne Zand |n-2 -7+ 7/2| < big_angle_rp
rad_to_cyclep(n-2-m+2-7/3,v) =v/3

ifne Zand n-2-7+2-7/3| < big.angle_rp
rad_to_cycle,(n-2-m+3-7/4,v) =3-0v/8

ifne Zand |n-2-7+3 7/4| < big_angle_rp
rad_to_cycle,(n-2-m+5-7/6,v) =5-v/12

ifne Zand n-2-7+5 7/6] < big_angle_rp

n
n -
n -

NN N DN

rad_to_cyclej.(n-2 -7+ m,v) = v/2 ifne€ Zand |n-2- 7+ 7| < bigangle_rp
rad_to_cycley,(—z,v) = —rad_to_cycley(z, v)

if rad_to_cycle(z,v) # v /2
rad_to_cycley.(x, —v) = —rad_to_cycle},(z, v)

if rad_to_cycle(z,v) # v /2
The rad_to_cycler operation:
rad_to_cyclep : F' x F — F U {underflow, absolute_precision_underflow, invalid}

rad_to_cyclep(x,v)
= trans_resultp(rad-to_cycley,(z,v), nearesty)
if v e Gp and z € F and |z| < big_angle_rr and

z#0
= mulp (v, x) if v e Gp and z € {—0,0}
= absolute_precision_underflow(qNalN)
if ve Gp and z € F and |z| > big_angle_rp
= result_NaN2p(z,v) otherwise

5.3.11.2 Converting argument angular-unit angle to radian angle

Define the mathematical function:
cyclectorad : R X R - R

cycle_to_rad(u, )
= arccos(cos(z -2 - w/u)) ifsin(z-2-7/u) >0
= —arccos(cos(z - 2 - w/u))
if sin(z-2-7/u) <0

The cycle_to_rady. approximation helper function:
cycletorady, : F X R — R

cycle_to_rady,(u,z) returns a close approximation to cycle_torad(u,z) in R, if u # 0, with
maximuin error macx _error_sing.

Further requirements on the cycle_to_rad} approximation helper function are:
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cycle_to_rady(u,n - v+ ) = cycle_to_rady(u, x)
iftne Z
cycle_to_rady,(u,u/12) = w/6
cycle_to_rady(u,u/8) = m/4
cycle_to_rady,(u,u/6) = m/3
cycle_to_rady,(u,u/4) = m/2
cycle_to_rady,(u,u/3) =2-7/3
cycle_to_rady(u,3 - u/8) =3 - n/4
cycle_to_rady,(u,5 - u/12) =5-7/6
cycle_to_rady(u,u/2) =m
cycle_to_rady,(u, —x) = —cycle_to_rady,(u, x)
if cycle_to_rad(u,x) # 7

The cycle_to_radr operation:
cycle_to_radp : F x F — F U {—0,underflow, absolute_precision_underflow, invalid }

cycle_to_radp(u,x)
= trans_resultp(cycle_to_rady.(u, ), nearesty)
if cyclep(u,z) € F and eyclep(u,z) # 0
= mulp(cyclep(u, z),u) if cyclep(u,z) € {—0,0}
= cyclep(u, ) otherwise

5.3.11.3 Converting argument angular-unit angle to (another) argument angular-
unit angle

Define the mathematical function:
cycle_tocycle : RXR XR —R

cycle_to_cycle(u, x,v)
= arccos(cos(z -2 - /u)) - v/(2 - 7)
ifuz#0andv#0andsin(z-2-7/u) >0
= —arccos(cos(z - 2 - 7/u)) -v/(2 - m)
ifu+#0andv#0andsin(z-2-7/u) <0

The cycle_to_cycle}, approximation helper function:
cycle_to_cyclel, : F X R X F —+ R

cycle_to_cycley; (u, z,v) returns a close approximation to cycle_to_cycle(u,z,v) in R if u # 0 and
|z/u| < big-angle_up, with maximum error max_error_sing.

Further requirements on the cycle_to_cycle}, approximation helper function are:

cycle_to_cycley,(u,n - u + z,v) = cycle_to_cycley(u, z,v)

iftne Z
cycle_to_cycley,(u,u/12,v) = v/12
cycle_to_cycley,(u,u/8,v) = v/8
cycle_to_cycley,(u,u/6,v) = v/6
cycle_to_cycley,(u,u/4,v) = v/4
cycle_to_cycley,(u,u/3,v) =v/3
cycle_to_cycley,(u,3 - u/8,v) =3 -v/8
cycle_to_cycley,(u,5 - u/12,v) =5-v/12
cycle_to_cycley, (u, u/2 v) =v/2
cycle_to_cycley,(u, —z,v) = —cycle_to_cycley,(u, z,v)

if cycle_to_cycle(u, z,v) # v/2
cycle_to_cycley,(—u, z,v) = —cycle_to_cycley,(u, z,v)
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if cycle_to_cycle(u, z,v) # v/2
cycle_to_cycley (u, z, —v) = —cycle_to_cycley(u, z,v)
if cycle_to_cycle(u, z,v) # v /2

The cycle_to_cycler operation:
cycle_to_cyclep : F x F x F'— F U {—0,underflow, absolute_precision_underflow, invalid}

cycle_to_cyclep (u, x,v)
= trans_resultp(cycle_to_cycley,(u, z,v), nearesty)
if v € Gp and cyclep(u,x) € F and cyclep(u,x) # 0
mulp (v, cyclep (u,z)) if v € Gp and cyclep(u,z) € {—0,0}
= absolute_precision_underflow(qNaN)
if v € Gr and
cycler (u,z) = absolute_precision_underflow
= result_NaN3p(u,x,v) otherwise

5.4 Conversion operations

Numeric conversion between different representation forms for integer and fractional values can
take place under a number of different circumstances. E.g.:

a) explicit or implicit conversion between different numeric datatypes conforming to Part 1;

b) explicit or implicit conversion between different numeric datatypes only one of which con-
forms to Part 1;

c) explicit or implicit conversion between a character string and a numeric datatype.

The latter includes outputting a numeric value as a character string, inputting a numeric value
from a character string source, and converting a numeral in the source program to a value in a
numeric datatype (see 5.5). This Part covers only the cases where at least one of the source and
target is a numeric datatype conforming to Part 1.

When a character string is involved as either source or target of a conversion, this Part does not
specify the lexical syntax for the numerals parsed or formed. A binding standard should specify
the lexical syntax or syntaxes for these numerals, and, when appropriate, how the lexical syntax
for the numerals can be altered. With the exception of the radix used in numerals expressing
fractional values, differences in lexical syntactic details that do not affect the value in R denoted
by the numerals should not affect the result of the conversion.

Character string representations for integer values can include representations for —0, 400,
—o0o, and quiet NaNs. Character string representations for floating point and fixed point values
should have formats for —0, +00, —00, and quiet NaNs. For both integer and floating point
values, character strings that are not numerals nor special values according to the lexical syntax
used, shall be regarded as signalling NaNs when used as source of a numerical conversion.

For the cases where one of the datatypes involved in the conversion does not conform to Part 1,
the values of some numeric datatype parameters need to be inferred. For integers, one need to
infer the value for bounded, and if that is true then also values for mazint and minint. For
floating point values, one need to infer the values for r, p, and emazx or emin. In case a precise
determination is not possible, values that are ‘safe’ for that instance should be used. ‘Safe’ values
for otherwise undetermined inferred parameters are such that

a) monotonicity of the conversion function is not affected,

b) the error in the conversion does not exceed that specified by the maximum error parameter
(see below),
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c) if the value resulting from the conversion is converted back to the source datatype by a
conversion conforming to this Part, the original value should be regenerated if possible, and

d) overflow and underflow are avoided if possible.

If, and only if, a specified infinite special value result cannot be represented in the target
datatype, the infinity result shall be interpreted as pole. If, and only if, a specified NaN special
value result cannot be represented in the target datatype, the NaN result shall be interpreted as
invalid.

5.4.1 Integer to integer conversions

Let I and I' be non-special value sets for integer datatypes. At least one of the datatypes
corresponding to I and I’ conforms to Part 1.

converty_p : I — I' U {overflow}

convertr_,p(x) = resultp(x) itrel
=z if z € {—00,—0,+00}
= qNaN if z is a quiet NaN
= invalid(qNaN) if 2 is a signalling NaN
NOTE - If both are I and I' are conforming to Part 1, then this conversion is covered

by Part 1. This operation generalises the cvt;_,; of Part 1, since only one of the integer
datatypes in the conversion need be conforming to Part 1.

5.4.2 Floating point to integer conversions

Let I be the non-special value set for an integer datatype conforming to Part 1. Let F' be the
non-special value set for a floating point datatype conforming to Part 1.

NOTE - The operations in this clause are more specific than the floating point to integer
conversion in Part 1 which allows any rounding.

roundingp_y : F — I U {—0, overflow}

roundingp_(x)
= result;(round(z)) if z € F and (z > 0 or round(z) # 0)
=—-0 if z € F and z < 0 and round(z) =0
=z if z € {—00,—0,+00}
= qNaN if z is a quiet NaN
= invalid(qNaN) if 2 is a signalling NaN

floorp_,; : F — I'U{overflow}

floor p_, () = result;(|z]) ifreF
=z if z € {—00,—0,+00}
= qNaN if z is a quiet NaN
= invalid(qNaN) if £ is a signalling NaN

ceilingp—; : F — I U{—0,overflow}

ceilingp_(x) = result;([z]) ifz € Fand (z>0or [z] #0)
=—0 ifze Fand z <0 and [z] =0
=z if z € {—00,—0,+00}
= qNaN if z is a quiet NaN
= invalid(qNaN) if 2 is a signalling NaN
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5.4.3 Integer to floating point conversions

Let I be the non-special value set for an integer datatype. Let F' be the non-special value set
for a floating point datatype. At least one of the source and target datatypes is conforming to
Part 1.

convert;,p : I — F U {overflow}

convert;p(x) = resultp(z,nearesty) ifx el
=z if v € {—00,—0,+00}
= qNaN if z is a quiet NaN
= invalid(qNaN) if = is a signalling NaN

NOTE — When both I and F' conform to Part 1, integer to nearest floating point conversions
are covered by Part 1. In this case the operations cvt;_,r and convert;_,r are identical.

5.4.4 Floating point to floating point conversions

Define the least radix function, [b, defined for arguments that are greater than 0:
b:Z2—- =
Ib(r)=min{n € Z |n>1land Ime Z:r =n"}

Let F, F', and F” be non-special value sets for floating point datatypes. At least one of the
source and target datatypes in the conversion conforms to Part 1.

There shall be a max_error_convertp parameter that gives the maximum error when convert-
ing from F to F' and lb(rg) # lb(rgr). The maz_error_convertp parameter shall have a value in
the interval [0.5,0.75]. If [b(rp) = Ib(rpr), the maximum error shall be 0.5 ulp when converting
from F to F’, but this is not reflected in any parameter.

The converty,_, . approximation helper functions:
convertp, . pm: R =R
converty,_, - (x) returns a close approximation to & in R, with maximum error maz_error_convertp:.

Further requirements on the converty,_, , approximation helper functions:

converty, . (z) =z ifreZ
converty,_ g (x) > 0 ifz>0
converty_, m(—x) = —converty_, p/(x)

converty,_, i (x) < converty,_, m(y) ifz<y

Relationship to other floating point to floating point conversion approximation helper func-
tions:

converty,_, m(x) = converty,_, g () if Ib(rpn) = 1b(rp) and x € FNF"
The convertp_, g operation:
convertp_ g : F — F' U {overflow, underflow}

convertp_, ()
= resultp(x,nearestp) if x € F and Ib(rp) = Ib(rp)
= trans_resultp (converty, , p(x), nearestp:)

if z € F and lb(rg) # 1b(rp)

=z if v € {—00,—0,+00}
= qNaN if z is a quiet NaN
= invalid(qNaN) if  is a signalling NaN
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NOTE — When both datatypes conform to Part 1, and the radices for both of these floating
point datatypes are the same, floating point to nearest floating point conversions are covered
by Part 1. In this case the operations cvtp_, ' and convertp_, g/ are identical.

5.4.5 Floating point to fixed point conversions

Let F be the non-special value set for a floating point datatype conforming to Part 1. Let D be
the non-special value set for a fixed point datatype.

A fixed point datatype D is a subset of R, characterised by a radix, rp € Z (> 2), a density,
dp € Z (> 0), and if it is bounded, a maximum positive value, dmarp € D* (> 1). Given these
values, the following sets are defined:

D* = {n/(ry?) | ne 2}

D = D* if D is not bounded
D = D* N [-dmazp,dmazp] if D is bounded

NOTE 1 - D corresponds to scaled(rp, dp) in ISO/IEC 11404 Language independent
datatypes (LID) [10]. LID has no parameter corresponding to dmazp even when the datatype
is bounded.

The fixed point rounding helper function:
nearestp : R — D*
is the rounding function that rounds to nearest, ties round to even last digit.

The fixed point result helper function, resultp, is like resultr, but for a fixed point datatype.
It will return overflow if the rounded result is not representable:

resultp : R x (R = D*) — D U {overflow}

resultp(z,rnd) = rnd(x) if rnd(xz) € D and (rnd(xz) # 0 or x > 0)
=-0 if rnd(z) =0 and z <0
= overflow if £ € R and rnd(z) ¢ D

There shall be a maz_error_convertp parameter that gives the maximum error when convert-
ing from F to D and Ib(rp) # Ib(rp). The maz_error_convertp parameter shall have a value in
the interval [0.5,0.75]. If Ib(rp) = Ib(rp), the maximum error shall be 0.5 ulp when converting
from F' to D, but this is not reflected in any parameter.

The converty_, , approximation helper function:
convert, .,p: R =R
converty,_, p(x) returns a close approximation to = in R, with maximum error max_error_convertp.

Further requirements on the converty._, , approximation helper functions:

converty , p(r) =z iftreZz
converty_, p(z) >0 ifz>0
converty_, p(—x) = —converty,_, ,(x)

converty_, p(z) < converty,_, p(y) ifz<y

Relationship to other floating point to fixed point conversion approximation helper functions:
converty,_, () = converty,_, p(x) if Ib(rgr) = Ib(rp) and x € F N EF"
The convertpr_,p operation:

convertp_,p : F'— D U{—0,overflow}
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convertp_,p(x) = resultp(z,nearestp) if x € F and lb(rp) = Ib(rp)
= resultp(converty_, (x), nearestp)

if z € F and Ib(rg) # Ib(rp)

=z if x € {—00,—0,+00}
= qNalN if x is a quiet NaN
= invalid(qNaN) if  is a signalling NaN

NOTES

2 The datatype D need not be visible in the programming language. D may be a subtype
of strings, according to some format. Even so, no datatype for strings need be present in
the programming language.

3 This covers, among other things, “output” of floating point datatype values, to fixed point
string formats. E.g. a binding may say that float_to_fixed string(z, m, n) is bound
to convertr_,s,, ,(x) where S, , is strings of length m, representing fixed point values in
radix 10 with n decimals. The binding should also detail how NaNs, signed zeroes and
infinities are represented in S, ,, as well as the precise format of the strings representing
ordinary values. (Note that if the length of the target string is limited, the conversion may
overflow.)

5.4.6 Fixed point to floating point conversions

Let F' be the non-special value set for a floating point datatype conforming to Part 1. Let D and
D’ be the non-special value set for fixed point datatypes.

The converty,_,  approximation helper function:
convertp R —+ R
convert}, , p(x) returns a close approximation to = in R, with maximum error maz_error_convertp.

Further requirements on the converty,_, » approximation helper functions:

convert}, , p(r) = ifreZ
converty, , p(z) >0 ifz>0
convert, , p(—x) = —convert},_, p(z)

converty, , p(z) < converty, , p(y) ifz<y

Relationship to other floating point and fixed point to floating point conversion approximation
helper functions:

converty,_, p(x) = converty, , p(x) if Ib(rp/) =1b(rp) and z € DN D’
convert, , p(x) = convertyy _, p(x) if Ib(rgr) =1b(rp) and z € DN F'

The convertp_,p operation:
convertp_,p : D — F U {overflow, underflow}

convertp_,p(z) = resultp(z,nearestrp) if x € D and Ib(rp) = lb(rF)
= trans_resultp(convert},_, p(z), nearesty)
if x € D and Ib(rp) # Ib(rF)

=z if x € {—00,—0,+00}
= qNalN if x is a quiet NaN
= invalid(qNaN) if  is a signalling NaN
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5.5 Numerals as operations in the programming language

NOTE - Numerals as input, or in strings, is covered by the conversion operations above.

Each numeral is a parameterless operation. Thus, this clause introduces a very large number
of operations, since the number of numerals is in principle infinite.

5.5.1 Numerals for integer datatypes

Let I' be a non-special value set for integer numerals for the datatype corresponding to I.

An integer numeral, denoting an abstract value n in I' U {—0, 400, —00,qNaN, sNaN}, for
an integer datatype, I, shall result in

convertp _,r(n)

For each integer datatype conforming to Part 1 and made directly available, with non-special
value set I, there shall be integer numerals with radix 10.

For each radix for numerals made available for a bounded integer datatype I, there shall be
integer numerals for all non-negative values of I.

For each radix for numerals made available for an unbounded integer datatype I, there shall
be integer numerals for all non-negative values of I smaller than 102°.

For each integer datatype made directly available and that has special values:

a) There should be a numeral for positive infinity.

b) There should be numerals for quiet and signalling NaNs.

5.5.2 Numerals for floating point datatypes

Let D' be a non-special value set for fixed point numerals for the datatype corresponding to F'.
Let F' be a non-special value set for floating point numerals for the datatype corresponding to
F.

A fixed point numeral, denoting an abstract value z in D" U {—0,+00,—00,qNaN,sNaN},
for a floating point datatype, F', shall result in
convertp ,p(x)
A floating point numeral, denoting an abstract value z in F'U{—0,+00,—00,qNaN,sNaN},
for a floating point datatype, F', shall result in

convertp g ()

For each floating point datatype conforming to Part 1 and made directly available, with non-
special value set F', there should be radix 10 floating point numerals, and there shall be radix 10
fixed point numerals.

For each radix for fixed point numerals made available for a floating point datatype F', there
shall be numerals for all bounded precision and bounded range expressible non-negative values of
R. At least a precision (dpr) of 20 should be available. At least a range (dmazp) of 102° should
be available.

For each radix for floating point numerals made available for a floating point datatype F,
there shall be numerals for all bounded precision and bounded range expressible non-negative
values of R. The precision and range bounds for the numerals shall be large enough to allow all
non-negative values of F' to be reachable.

For each floating point datatype made directly available:

a) There shall be a numeral for positive infinity.

62 Specifications for the numerical functions



Fourth committee draft ISO/IEC FCD 10967-2.4:1999(E)

b) There shall be numerals for quiet and signalling NaNs.

The conversion operations used for numerals as operations should be the same as those used
by default for converting strings to values in conforming integer or floating point datatypes.

6 Notification

Notification is the process by which a user or program is informed that an arithmetic operation
cannot return a suitable numeric result. Specifically, a notification shall occur when any arith-
metic operation returns an exceptional value. Notification shall be performed according to the
requirements of clause 6 of Part 1.

An implementation shall not give notifications for operations conforming to this Part, unless
the specification requires that an exceptional value results for the given arguments.

The default method of notification should be recording of indicators.

6.1 Continuation values

If notifications are handled by a recording of indicators, in the event of notification the imple-
mentation shall provide a continuation value to be used in subsequent arithmetic operations.
Continuation values may be in I or F' (as appropriate), or be special values (—0, —oo0, 400, or a
gNaN).

Floating point datatypes that satisfy the requirements of TEC 60559 have special values in
addition to the values in F'. These are: —0, +00, —0o, signaling NaNs (sNalN), and quiet
NaNs (gNalN). Such values may be passed as arguments to operations, and used as results or
continuation values. Floating point types that do not fully conform to IEC 60559 can also have
values corresponding to —0, +00, —00, or NaNN.

Continuation values of —0, 400, —oo, and NaN are required only if the parameter iec_559r
has the value true. If the implementation can represent such special values in the result datatype,
they should be used according to the specifications in this Part.

7 Relationship with language standards

A computing system often provides some of the operations specified in this Part within the context
of a programming language. The requirements of the present standard shall be in addition to
those imposed by the relevant programming language standards.

This Part does not define the syntax of arithmetic expressions. However, programmers need
to know how to reliably access the operations specified in this Part.

NOTE 1 - Providing the information required in this clause is properly the responsibility of
programming language standards. An individual implementation would only need to provide
details if it could not cite an appropriate clause of the language or binding standard.

An implementation shall document the notation that should be used to invoke an operation
specified in this Part and made available. An implementation should document the notation that
should be used to invoke an operation specified in this Part and that could be made available.

NOTE 2 — For example, the radian arc sine operation for an argument x (arcsing(z)) might
be invoked as
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arcsin(z) in Pascal [28] and Ada [11]

asin(z) in C [18] and Fortran [23]

(asin z) in Common Lisp [43] and ISLisp [25]
function asin(x) in COBOL [20]

with suitable expression of the argument (z).

An implementation shall document the semantics of arithmetic expressions in terms of com-
positions of the operations specified in clause 5 of this Part and in clause 5 of Part 1.

Compilers often “optimize” code as part of compilation. Thus, an arithmetic expression might
not be executed as written. An implementation shall document the possible transformations of
arithmetic expressions (or groups of expressions) that it permits. Typical transformations include

a) Insertion of operations, such as datatype conversions or changes in precision.

b) Replacing operations (or entire subexpressions) with others, such as “cos(-x)” — “cos(x)”
(exactly the same result) or “pi - arccos(x)” — “arccos(-x)” (more accurate result) or
“exp(x)-1” — “expml(x)” (more accurate result if x > —1, less accurate result if z < —1,
different notification behaviour).

c¢) Evaluating constant subexpressions.

d) Eliminating unneeded subexpressions.

Only transformations which alter the semantics of an expression (the values produced, and the
notifications generated) need be documented. Only the range of permitted transformations need
be documented. It is not necessary to describe the specific choice of transformations that will be
applied to a particular expression.

The textual scope of such transformations shall be documented, and any mechanisms that
provide programmer control over this process should be documented as well.

NOTE 3 - It is highly desirable that programming languages intended for numerical use
provide means for limiting the transformations applied to particular arithmetic expressions.
Control over changes of precision is particularly useful.

8 Documentation requirements

In order to conform to this Part, an implementation shall include documentation providing the
following information to programmers.

NOTE 1 — Much of the documentation required in this clause is properly the responsibility

of programming language or binding standards. An individual implementation would only

need to provide details if it could not cite an appropriate clause of the language or binding
standard.

a) A list of the provided operations that conform to this Part.

b) For each maximum error parameter, the value of that parameter or definition of that param-
eter function. Only maximum error parameters that are relevant to the provided operations
need be given.

c) The value of the parameters big_angle_rp and big_angle_up. Only big angle parameters
that are relevant to the provided operations need be given.

d) For the nearestr function, the rule used for rounding halfway cases, unless iec_559 5 is fixed
to true.
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e)

For each conforming operation, the continuation value provided for each notification condi-
tion. Specific continuation values that are required by this Part need not be documented.
If the notification mechanism does not make use of continuation values (see clause 6), con-
tinuation values need not be documented.

NOTE 2 — Implementations that do not provide infinities or NalNs will have to document
any continuation values used in place of such values.

For each conforming operation, how the results depend on the rounding mode, if rounding
modes are provided. Operations may be insensitive to the rounding mode, or sensitive to
it, but even then need not heed the rounding mode.

For each conforming operation, the notation to be used for invoking that operation.
For each maximum error parameter, the notation to be used to access that parameter.

The notation to be used to access the parameters big_angle_rrp and big_angle_up.

Since the integer and floating point datatypes used in conforming operations shall satisfy
the requirements of Part 1, the following information shall also be provided by any conforming
implementation.

i)

The translation of arithmetic expressions into combinations of the operations provided by
any part of ISO/TEC 10967, including any use made of higher precision. (See clause 7 of
Part 1.)

The methods used for notification, and the information made available about the notifica-
tion. (See clause 6 of Part 1.)

The means for selecting among the notification methods, and the notification method used
in the absence of a user selection. (See 6.3 of Part 1.)

The means for selecting the modes of operation that ensure conformity.

When “recording of indicators” is the method of notification, the datatype used to represent
Ind, the method for denoting the values of Ind (the association of these values with the sub-
sets of E must be clear), and the notation for invoking each of the “indicator” operations.
(See 6.1.2 of Part 1.) In interpreting 6.1.2 of Part 1, the set of indicators E shall be inter-
preted as including all exceptional values listed in the signatures of conforming operations.
In particular, £ may need to contain pole and absolute_precision_underflow.

For each of the provided operations where this Part specifies a relation to another operation
specified in this Part, the binding for that other operation.

For numerals conforming to this Part, which available string conversion operations, includ-
ing reading from input, give exactly the same conversion results, even if the string syntaxes
for ‘internal’ and ‘external’ numerals are different.
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Annex A

(normative)

Partial conformity

If an implementation of an operation fulfills all relevant requirements according to the norma-
tive text in this Part, except the ones relaxed in this Annex, the implementation of that operation
is said to partially conform to this Part.

Conformity to this Part shall not be claimed for operations that only fulfill Partial conformity.

Partial conformity shall not be claimed for operations that relax other requirements than those
relaxed in this Annex.

A.1 Maximum error relaxation

This Part has the following maximum error requirements for conformity.
maz_error_hypoty € [0.5,1]

max_error_expr € [0.5,1.5 x rnd_errorg]
maz_error_powerp € [mazr_error_expr,2 * rnd_errory)

max_error_sinhp € [0.5,2 % rnd_errorp]
max_error_tanhp € [max_error_sinhg,2 x rnd_errorp]

maz_error_sing € [0.5, 1.5 x rnd_errory]
maz_error_tanp € [maz_error_sing,2 x rnd_errorp]

max_error_sinup : F — F U {invalid}
mazx_error_tanup : F — F U {invalid}

maz_error_convertr € [0.5,0.75]

For u € GF, the maz_error_sinup(u) parameter shall be in the interval [maz_error_sing, 2|, and
the maz_error_tanup(u) parameter shall be in the interval [maz_error_tang,4]. For u € T, the
maz_error_sinup(u) parameter shall be equal to max_error_sing, and the mazx_error_tanup(u)
parameter shall be equal to maz_error_tang.

In a Partially conforming implementation the maximum error parameters may be greater than
what is specified by this Part. The maximum error parameter values given by an implementation
shall still adequately reflect the accuracy of the relevant operations, if a claim of Partial conformity
is made.

A Partially conforming implementation shall document which maximum error parameters have
greater values than specified by this Part, and their values.

A.2 Extra accuracy requirements relaxation

This Part has a number of extra accuracy requirements. These are detailed in the paragraphs
beginning “Further requirements on the op} approximation helper function are:”.

In a Partially conforming implementation these further requirements need not be fulfilled. The
values returned must still be within the maximum error bounds that are given by the maximum
error parameters, if a claim of Partial conformity is made.

A Partially conforming implementation shall document which extra accuracy requirements are
not fulfilled by the implementation.
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A.3 Relationships to other operations relaxation

This Part has a number of requirements giving relations to other operations. These are detailed
in the paragraphs beginning “Relationship to the op}. approximation helper function:”.

In a Partially conforming implementation these relationships need not be fulfilled. The values
returned must still be within the maximum error bounds that are given by the maximum error
parameters, if a claim of Partial conformity is made.

A Partially conforming implementation shall document which operation relationships are not
fulfilled by the implementation.
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Annex B

(informative)

Rationale

This annex explains and clarifies some of the ideas behind Information technology — Language
independent arithmetic — Part 2: Elementary numerical functions (LIA-2).

B.1 Scope
B.1.1 Inclusions

LIA-2 is intended to define the meaning of some operations on Integer and floating point types
as specified in LIA-1 (ISO/IEC 10967-1), in addition to the operations specified in LTA-1. LIA-2
does not specify operations for any additional arithmetic datatypes, though fixed point datatypes
are used in some of the specifications for conversion operations.

The specifications for the operations covered by LIA-2 are given in sufficient detail to

a) support detailed and accurate numerical analysis of arithmetic algorithms,
b) enable a precise determination of conformity or non-conformity, and

c) prevent exceptions (like overflow) from going undetected.

LIA-2 does in no way prevent language standards or implementations including further arith-
metic operations, other variations of included arithmetic operations, or the inclusion of further
arithmetic datatypes, like rational number or fixed point datatypes. Some of these may become
the topic of standardisation in other parts of LIA.

B.1.2 Exclusions

LIA-2 is not concerned with techniques for the implementation of numerical functions. Even
when an LIA-2 specification is made in terms of other LIA-1 or LIA-2 operations, that does not
imply a requirement that an implementation implements the operation in terms of those other
operations. It is sufficient that the result (returned value or returned continuation value, and
exception behaviour) is as if it was implemented in terms of those other operations.

LIA-2 does not provide specifications for operations which involve no arithmetic processing, like
assignment and parameter passing, though any implicit conversions done in association with such
operations are in scope. The implicit conversions should be made available to the programmer
as explicit conversions.

LIA-2 does not cover operations for the support of domains such as linear algebra, statistics,
and symbolic processing. Such domains deserve separate standardisation, if standardised.

LIA-2 only covers operations that involve integer or floating point datatypes, as specified in
LIA-1, and in some cases also a Boolean datatype, but then only as result. The operations
covered by LIA-2 are often to some extent covered by programming language standards, like the
operations sin, cos, tan, arctan, and so on.
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B.2 Conformity

Conformity to this standard is dependent on the existence of language binding standards. Each
programming language committee (or other organisation responsible for a programming language
or other specification to which LIA-1 and LIA-2 may apply) is encouraged to produce a binding
standard covering at least those operations already required by the programming language (or
similar) and also specified in LIA-2.

The term “programming language” is here used in a generalised sense to include other comput-
ing entities such as calculators, spread sheets, page description languages, web-script languages,
and database query languages to the extent that they provide the operations covered by LIA-2.

Suggestions for bindings are provided in Annex C. Annex C has partial binding examples
for a number of existing programming languages and LIA-2. In addition to the bindings for the
operations in LITA-2, it is also necessary to provide bindings for the maximum error parameters
and big angle parameters specified by LIA-2. Annex C contains suggestions for these bindings.
To conform to this standard, in the absence of a binding standard, an implementation should
create a binding, following the suggestions in Annex C.

B.3 Normative references

The referenced IEC 60559 standard is identical to the former IEC 559 and IEEE 754 standards.

B.4 Symbols and definitions
B.4.1 Symbols
B.4.1.1 Sets and intervals

The interval notation is in common use. It has been chosen over the other commonly used interval
notation because the chosen notation has no risk of confusion with the pair notation.

B.4.1.2 Operators and relations

Note that all operators, relations, and other mathematical notation used in LIA-2 is used in their
conventional exact mathematical sense. They are not used to stand for operations specified by
IEC 60559, LIA-1, LTA-2, or, with the exception of programme excerpts which are clearly marked,
any programming language. E.g. z/u stands for the mathematically exact result of dividing = by
u, whether that value is representable in any floating point datatype or not, and z/u # divp(x,u)
is often the case. Likewise, = is the mathematical equality, not the eqr operation: 0 # —0, while
eqr(0,—0) = true.

B.4.1.3 Mathematical functions

The elementary functions named sin, cos, etc. used in LIA-2 are the exact mathematical functions,
not any approximation. The approximations to these mathematical functions are introduced in
clauses 5.3 and 5.4 and are written in a way clearly distinct from the mathematical functions.
E.g., sin}, cos},, etc., which are unspecified mathematical functions approximating the targeted
exact mathematical functions to a specified degree; sing, cosg, etc., which are the operations
specified by LIA-2 based on the respecitive approximating function; sin, cos, etc., which are
programming language names bound to LIA-2 operations. sin is thus very different from sin.
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B.4.1.4 Datatypes and exceptional values

The sequence types [I] and [F]| appear as input datatypes to a few operations: maz_seqr,
min_seq, ged_seqr, lem_seqy, max_seqp, min_seqr, mmax_seqr, and mmin_seqp.

In effect, a sequence is a finite linearly ordered collection of elements which can be indexed
from 1 to the length of the sequence. Equality of two or more elements with different indices
is possible. Sequences are used in LIA-2 as an abstraction of arrays, lists, other kinds of one-
dimensional sequenced collections, and even variable length argument lists. As used in LTA-2 the
order of the elements and number of occurrences of each element, as long as it is more than one,
does not matter, so multi-sets (bags) and sets also qualify.

LIA-2 uses a modified set of exceptional values compared to LIA-1. Instead of LIA-1’s
undefined, LIA-2 uses invalid and pole. TEC 60559 distinguishes between invalid and di-
vide_by_zero (the latter is called pole by LIA-2). The distinction is valid and should be recog-
nised, since pole indicates that an infinite but ezact result is (or can be, if it were available)
returned, while invalid indicates that a result in the target datatype (extended with infinities)
cannot, or should not, be returned with adequate accuracy.

LIA-1 distinguished between integer_overflow and floating overflow. This distinction is
moot, since no distinction was made between integer_undefined and floating_undefined. In
addition, continuing this distinction would force LIA to start distinguishing not only integer_
overflow and floating_overflow, but also fixed_overflow, complex_floating_overflow, com-
plex_integer_overflow, etc. Further, there is no general consensus that maintaining this dis-
tinction is useful, and many programming languages do not require a distinction. A binding
standard can still maintain this distinction, if desired.

LIA allows for three methods for handing notifications: recording of indicators, change of
control flow (returnable or not), and termination of program. The preferred method is recording
of indicators. This allows the computation to continue using the continuation values. For under-
flow and pole notifications this course of action is strongly preferred, provided that a suitable
continuation value can be represented in the result datatype.

Not all occurrences of the same exceptional value need be handled the same. There may be
explicit mode changes in how notifications are handled, and there may be implicit changes. E.g.,
invalid without a specified (by LIA-2 or binding) continuation value to cause change of control
flow (like an Ada [11] exception), while invalid with a specified continuation value use recording
of indicators. This should be specified by bindings or by implementations.

The operations may return any of the exceptional values overflow, underflow, invalid, pole,
or absolute_precision_underflow. This does not imply that the implemented operations are
to actually return any of these values. When these values are returned according to the LIA
specification, that means that the implementation is to perform a notification handling for that
exceptional value. If the notification handling is by recording of indicators, then what is actually
returned by the implemented operation is the continuation value.

B.4.2 Definitions of terms
Note the LIA distinction between exceptional values, exceptions, and exception handling (han-

dling of notification by non-returnable change of control flow; as in e.g. Ada). LIA exceptional
values are not the same as Ada exceptions, nor are they the same as IEC 60559 special values.
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B.5 Specifications for the numerical functions

The abstract values used in the specifications are independent of datatype, just like the mathe-
matical numbers are. That they are represented differently in, say, single precision and in double
precision is out of scope for LIA-2.

The specifications in LIA-2 for floating point operations give details about certain special values
(they are ‘special’ in that they are not in R). These special values are commonly represented in
floating point datatypes, in particular all floating point datatypes conforming to TEC 60559.

B.5.1 Basic integer operations

Integer datatypes can have infinity values as well as NaN values, and also may have a —0. A
corresponding I must, however, be a subset of Z. —0 is commonly available when the integer
datatype is represented using radix-minus-1-complement, e.g. 1’s complement. When using, e.g.,
2’s complement, the representation that would otherwise represent the most negative value can
be used as a NaN. Especially for unbounded integer types, the inclusion of infinities is advisable,
not for overflow, since these do not occur, but in order to have a smallest and a largest value in
the type.

B.5.1.1 The integer result and wrap helper functions

The result; helper function notifies overflow when the result cannot be represented in I. When
an overflow occurs, and recording of indicators is the method for handling (integer) overflows, a
continuation value must be given. For bounded integer datatypes, marintr and minintr can
be suitable continuation values. In some instances a wrapped result, see below, may be used
as continuation value on overflow. Few integer datatypes offer representations for positive and
negative infinity. In case such representations are offered, they can be used as continuation
values on overflow, similar to their use in floating point datatypes. LIA does not specify the
continuation value in this case, that is left to bindings or implementations, but LIA does require
that the continuation value(s) be documented.

The wrapr helper function wraps the result into a value that can be represented in I. The
result is wrapped in such a way that the value returned can be used to implement extended range
integer arithmetic.

B.5.1.2 Integer maximum and minimum

The operations for integer maximum and minimum are trivial, except taking the maximum or
minimum of an empty sequence (empty array, empty list, zero number of parameters, or similar).
The case for zero number of parameters is often syntactically excluded (as in Fortran, Common
Lisp, and ISLisp), while an empty array or empty list given as a single argument must usually
be possible handle at ‘runtime’. LIA specifies a pole notification for this case. Since no (implied
mathematical) division is involved here, pole is here to be interpreted as “exact infinite result
from finite operands”, in this case an empty list of numbers.

If infinity values are required to be available for a particular integer datatype, a binding may
require the continuation values specified to be returned without any pole notification. When the
specified continuation value, 4+00 or —00, is not available, other suitable continuation values may
be used, and if so they must be documented. If the integer datatype is bounded, but without
infinities, mazrintr may be used in place of 400 and minintr may be used instead of —oo.
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Infinities as arguments are not specified for these operations, since infinities are rarely available
in integer datatypes. However, compare the specification for max and min operations for floating
point datatypes (clause 5.2.2).

B.5.1.3 Integer diminish

Integer diminish is sometimes called ‘monus’. This operation computes the ’positive difference’
between two numbers.

B.5.1.4 Integer power and arithmetic shift

The integer arithmetic shift operations can be used to implement integer multiplication and
integer division more quickly in special cases.

The shift operations shift either ‘right’ or ‘left’ depending on the sign of the second argument.

Any continuation value used on overflow here must be documented, either by the binding
standard or by the implementation.

B.5.1.5 Integer square root
B.5.1.6 Divisibility tests

Even and odd are simple special cases offered as separately named operations in several program-
ming languages.

B.5.1.7 Integer division and remainder

When the result of a division between integers47 is not an integer, but the final result is required
to be an integer, the quotient must be rounded. There are several ways of doing this; floor,
ceiling, and unbiased round to nearest being the most important.

pady returns the negative of the remainder after division and ceiling. The reason for this is
twofold: 1) for unsigned integer datatypes the remainder is < 0, and would thus often not be
representable unless negated, and 2) it is intuitively easier to think of the “places left in the last
unfilled group of equi-sized and packed groups” as a positive entity, a padding.

remry can overflow only for unsigned integer datatypes (minint; = 0), and does so for too
many arguments, and negating it does not change this. remry should therefore not be provided
for unsigned integer datatypes. remrr rounds in the same way as remrg, IEEE remainder.

When there is no exception, these operations fulfill divf; (z+n-y,y) = divf;(z,y)+n, group;(x+
ny,y) = group(z,y)+n, quot;(z+2-n-y,y) = quot;(z,y)+2-n, modar(z+n-y,y) = modar(z,y),
padr(x +n-y,y) = padr(z,y), remrr(x +2-n-y,y) = remrr(z,y), where n € Z.

Note that the divt and rem! from LIA-1 do not fulfill similar useful equalities, due to the
disruption around 0 for this pair of operations.

When there is no exception, divf;(z,y) = —groupr(—=z,y), divf;(z

quOtI(ma y) = —q’U,Ot[(—ZU, y)v QUOtI(ma y) = —q’U,Ot[(fL', _y)a modaj(x, y)
remri(x,y) = remrr(z, —y).

y) = _QTOUPI($a _y)a
= _pa'df(xa _y)a and
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B.5.1.8 Greatest common divisor and least common positive multiple

The greatest common divisor is useful in reducing a a rational number to its lowest terms. The
least common multiple is useful in converting two rational numbers to have the same denominator.

Returning 0 for ged;(0,0), as is sometimes suggested, would be incorrect, since the greatest
common divisor for 0 and 0 should be the supremum (upper limit) of Z, since these all divide
0, which is infinity.

gedy will overflow only if bounded; = true, minint; = —mazint; — 1, and both arguments
are minint;. The greatest common divisor is then —mininty, which then is not in I.

Least common positive multiple, lem(z,y), overflows for many “large” arguments. E.g., if
and y are relative primes, then the least common multiple is |z - y|, which may be greater than
maxinty.

B.5.1.9 Support operations for extended integer range

These operations would typically be used to extend the range of the highest level integer datatype
supported by the underlying hardware of an implementation.

The two parts of an integer product, mul_ov;(z,y) and mul_wrap;(z,y) together provide the
complete integer product. Similarly for addition and subtraction.

The use of wrapr guarantees that overflow will not occur.

B.5.2 Basic floating point operations

F must be a subset of R. Floating point datatypes can have infinity values as well as NaN values,
and also may have a —0. These values are not in F'. The special values are, however, commonly
available in floating point datatypes today, thanks to the wide adoption of IEC 60599.

Note that for some operations the exceptional value invalid is produced only for argument
values involving —0, 400, —0o, or sSNalN. For these operations the signature given in LIA-2 does
not contain invalid.

A report ([57]) issued by the ANSI X3J11 committee discusses possible ways of exploiting the
IEC 60559 special values. The report identifies some of its suggestions as controversial and cites
[53] as justification.

In the following paragraphs summarise the specifications of IEC 60559 on the creation and
propagation of signed zeros, infinities, and NalNs. There is also some discussion of the material
in [53, 54, 51].

TEC 60559 regards 0 and —0 as almost indistinguishable. The sign is supposed to indicate
the direction of approach to zero. The sign is reliable for a zero generated by underflow in a
multiplication or division operation, and should be reliable also for operations that approximate
elementary transcendental functions (see the LIA-2 specifications in clause 5.3). It is not reliable
for a zero generated by an implied subtraction of two floating point numbers with the same value,
for which case the zero is arbitrarily given a + sign. The phrase “implied subtraction” indicates
either the addition of two oppositely signed numbers or the subtraction of two like signed numbers.

On occurrence of floating overflow or division of a non-zero number by zero, an implementation
conforming to IEC 60559 sets the appropriate status flag (if trapping is not enabled) and then
continues execution with a result of 400 or —oo if rounding is to nearest. Infinities as such do
not indicate that an overflow or division by zero has occurred; infinities can be exact values.
TEC 60559 states that the arithmetic of infinities is that associated with mathematical infinities.
Thus, an infinity times, plus, minus, or divided by a non-zero finite floating point number yields an
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infinity for the result; no status flag is set and execution continues. These rules are not necessarily
valid for infinities generated by overflow, thought they are valid if the infinitary arguments are
exact.

NaNs are generated by invalid operations on infinities, 0/0, and the square root of a negative
number (other than —0). Thus NaNs can represent unknown real or complex values, as well as
totally undefined values. TEC 60559 requires that the result of any of its basic operations with
one or more NalN arguments shall be a NalN. This principle is not extended to the numerical
functions by [53, 57]. The controversial specifications in [57] are based on an assumption that all
of these special operands represent finite non-zero real-valued numbers; see [53, 54].

The LIA-2 policy (for clauses 5.2 and 5.3) for dealing with signed zeros, infinities, and NaNs
is as follows:

a) The output is a quiet NalN for any operation for which one (or more) arguments is a quiet
NaN, and none of the other arguments is a signalling NaN. There is then no notification.

b) If a mathematical function h(z) is such that i(0) = 0, the corresponding operation opr(z)
returns z if z € {0,—0} and h has a positive derivative at 0, and opr(z) returns negp(z) if
z € {0,—0} and h has a negative derivative at 0.

c¢) For an argument vector, @', where that argument vector involves 0, —0, 400, or —00, the
result of the operation opr(7) is
lim h(7Z)
7T

where an approach to zero is from the positive side if @ = (...,0,...), and the approach is
from the negative side if @ = (...,—0,...). There is no notification if the limit exists, is
finite, and is path independent. The returned value is 400 or —oo if the limiting value is
unbounded, and the approach is towards a point infinitely far from the origin. The returned
value is pole(4+00) or pole(—oo) if the limiting value is unbounded, and the approach is
towards a finite point. The result is —O0 if the limit is zero and the approaching values
are path independently negative. The result is 0 if the limit is zero and the approaching
values are not path independently negative. If a path independent limit does not exist the
value returned is invalid, and a notification occurs, with a continuation value of gNaN if
appropriate.

An exception is made for the arcrp and arcup operations, where it is found significantly
more useful to return certain non-exceptional values for the origin and for the four double in-
finity argument cases, than to return an exceptional value, even with non-NaN continuation
values.

B.5.2.1 The rounding and floating point result helper functions

The resultr helper function notifies overflow when the result is too large to be approximated by a
value in F'. The resultp helper function notifies underflow when there is (risk for) denormalisation
loss for a tiny result. The resultr helper function also ensures that a properly signed zero
is the continuation value when a zero is appropriate. When an overflow or underflow occurs,
and recording of indicators is the method for handling (floating point) overflow or undeflow, a
continuation value must be provided. LIA-2 specifies a continuation value, and if that can be
represented in the target datatype, that value should be used as continuation value.
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B.5.2.2 Floating point maximum and minimum

As for the integer case, the maximum and minimum of empty sequences need be handled, but
for floating point datatypes, infinities are usually available.

For floating point one also usually have negative zero available, and returning the correct sign
on a zero result for the maximum and minimum operations requires more than simple comparisons
to implement. The sign of zeroes may need to be inspected using copysign or isnegativezero.

B.5.2.3 Floating point diminish

As for the integer case, this operation computes the positive difference.

B.5.2.4 Round, floor, and ceiling

Since fmax always has an integral value according to LIA-1, no overflow can occur for these
operations.

Note that the sign of a zero result is maintained in accordance with IEC 60559:

floor p(x) = negp(ceilingr (negp(x)))
ceilingr () = negr(floor p(negr(x)))
roundingp(z) = negp(roundingr(negp(x)))

Negative zeroes, if available, are handled in such a way as to maintain these identities.

B.5.2.5 Remainder after division and round to integer

The remainder after division and unbiased round to integer (IEC 60559 remainder, or IEEE
remainder) is an exact operation, even if the floating point datatype only conforms to LIA-1, but
not to the more specific IEC 60559.

Remainder after floating point division and floor to integer cannot be exact. For a small
negative nominator and a positive denominator, the resulting value looses much absolute accuracy
in relation to the original value. Such an operation is therefore not included in LTA-2. Similarly
for floating point division and ceiling.

See also the radian normalisation and the argument angular-unit normalisation operations

(5.3.9.1, 5.3.10.1).

B.5.2.6 Square root and reciprocal square root

vz cannot be exactly halfway between two values in F if z € F. For \/z to be exactly halfway
between two values in F' would require that it had exactly (p + 1) digits (last digit non-zero) for
its exact representation. The square of such a number would require at least (2-p+ 1) digits with
last p + 1 digits not all zero, which could not equal the p-digit number z.

The extensions sqrtp(+00) = +00 and sqrtp(—0) = —0 are mandated by IEC 60559. LIA-
2 also requires that these hold for implementations which support infinities and signed zeros.
However, it should be noted that while the second is harmless, the first may lead to erroneous
results for a +00 generated by an addition or subtraction with result just barely outside of
[—fmaz i, fmaz ;] after rounding. Hence its square root would be well within the representable
range. The possibility that LIA-2 should require that sqrip(+00) = invalid(4+00) was consid-
ered, but rejected because of the principle of regarding arguments as exact, even if they are not
exact, when there is a non-degenerate neighbourhood around the argument point, for which the
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mathematical function on R is defined. In addition sqrtp(+00) = 400 is already required by
IEC 60559.

Note that the requirement that sqrtp(z) = invalid(qNaN) for z strictly less than zero is
mandated by TEC 60559. Tt follows that NalNs generated in this way represent imaginary values,
which would become complex through addition and subtraction, and even imaginary infinities on
multiplication by ordinary infinities.

The rsqrip operation will increase performance for scaling a vector into a unit vector. Such
an operation involves division of each component of the vector by the magnitude of the vector
or, equivalently and with higher performance, multiplication by the reciprocal of the magnitude.

B.5.2.7 Support operations for extended floating point precision

These operations would typically be used to extend the precision of the highest level floating
point datatype supported by the underlying hardware of an implementation. There is, however,
no intent to provide a set of operations suitable for the implementation of a complete package for
the support of calculations at an arbitrarily high level of precision.

The major motivation for including them in LIA-2 is to provide a capability for accurately
evaluating residuals in an iterative algorithm. The residuals give a measure of the error in the
current solution. More importantly they can be used to estimate a correction to the current
solution. The accuracy of the correction depends on the accuracy of the residuals. The residuals
are calculated as a difference in which the number of leading digits cancelled increases as the
accuracy of the solution increases. A doubled precision calculation of the residuals is usually
adequate to produce a reasonably efficient iteration.

For the basic floating point arithmetic doubled precision operations, the high parts may be
calculated by the corresponding floating point operations as specified in LIA-1. Note, however,
that in order to implement exact floating point addition and subtraction, rndr must round to
nearest. If addp(z,y) rounds to nearest then the high and low parts represent x + y exactly.

When the high parts of an addition or subtraction overflows, the low parts, as specified by
LIA-2, return their results as if there was no overflow.

The product of two numbers, each with p digits of precision, is always exactly representable in
at most 2-p digits. The high and low parts of the product will always represent the true product.

The remainder for division is more useful than a 2 - p-digit approximation. The remainder will
be exactly representable if the high part differs from the true quotient by less than one ulp. The
true quotient can be constructed p digits at a time by division of the successive remainders by
the divisor.

The remainder for square root is more useful than a low part for the same reason that the
remainder is more useful for division. The remainder for the square root operation will be
exactly representable only if the high part is correctly rounded to nearest, as is required by the
specification for sqrip.

See Semantics for Ezact Floating Point Operations [63] for more information on exact floating
point operations.

See Proposal for Accurate Floating-Point Vector Arithmetic [64] for more information on exact,
or high accuracy, floating point summation and dot product. These operations may be the subject
of an amendment to LIA-2.
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B.5.3 Elementary transcendental floating point operations
B.5.3.1 Maximum error requirements

maz_error_opp measures the discrepancy between the computed value opp(z) and the true math-
ematical value f(z) in ulps of the true value. The magnitude of the error bound is thus available
to a program from the computed value opr(x). Note that for results at an exponent boundary
for F, y, the error away from zero is in terms of ulpr(y), whereas the error toward zero is in
terms of ulpr(y)/rr, which is the ulp of values slightly smaller in magnitude than y.

Within limits, accuracy and performance may be varied to best meet customer needs. Note
also that LIA-2 does not prevent a vendor from offering two or more implementations of the
various operations.

The operation specifications define the domain and range for the operations. The computa-
tional domain and range are more limited for the operations than for the corresponding mathe-
matical functions because the arithmetic datatypes are subsets of R. Thus the actual domain of
expr(x) is approximately given by xz < In(fmaz ). For larger values of x, expp(z) will overflow,
though for © = 400 the exact result +00 will be returned. The actual range extends over F,
although there are non-negative values, v € F, for which there is no z € F satisfying expp(z) = v.

The thresholds for the overflow and underflow notifications are determined by the parame-
ters defining the arithmetic datatypes. The threshold for an invalid notification is determined by
the domain of arguments for which the mathematical function being approximated is defined. The
pole notification is the operation’s counterpart of a mathematical pole of the mathematical func-
tion being approximated by the operation. The threshold for absolute_precision_underflow is
determined by the parameters big_angle_rg and big_angle_up.

LTIA-2 imposes a fairly tight bound on the maximum error allowed in the implementation of
each operation. The tightest possible bound is given by requiring rounding to nearest, for which
the accompanying performance penalty is often unacceptably high for the operations approxi-
mating elementary transcendental functions. LIA-2 does not require round to nearest for such
operations, but allows for a slightly wider error bound characterised via the maz_error_opr pa-
rameters. The parameters maz_error_opr must be documented by the implementation for each
such parameter required by LIA-2. A comparison of the values of these parameters with the
values of the specified maximum value for each such parameter will give some indication of the
“quality” of the routines provided. Further, a comparison of the values of this parameter for two
versions of a frequently used operation will give some indication of the accuracy sacrifice made
in order to gain performance.

Language bindings are free to modify the error limits provided in the specifications for the
operations to meet the expected requirements of their users.

Material on the implementation of high accuracy operations is provided in for example [51,
53, 60].

B.5.3.2 Sign requirements

The requirements imply that the sign of the result or continuation value is to be reliable, except
for the sign of an infinite result or continuation value, where except for a signed zero argument,
it is often the case that one cannot determine the sign of the infinity. Still for sign symmetric
mathematical functions, the approximating operation is also sign symmetric, including infinitary
results.
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B.5.3.3 Monotonicity requirements

A maximum error of 0.5 ulp implies that an approximation helper function must be a monotonic
approximation to the mathematical function. When the maximum error is greater than 0.5 ulp,
and the rounding is not directed, this is not automatically the case.

There is no general requirement that the approximation helper functions are strictly monotone
on the same intervals on which the corresponding exact function is strictly monotone, however,
since such a requirement cannot be made due to the fact that all floating point types are discrete,
not continuous.

B.5.3.4 The trans_result helper function
B.5.3.5 Hypotenuse

The hypotr operation can produce an overflow only if both arguments have magnitudes very close
to the overflow threshold. Care must be taken in its implementation to either avoid or properly
handle overflows and underflows which might occur in squaring the arguments. The function
approximated by this operation is mathematically equivalent to complex absolute value, which
is needed in the calculation of the modulus and argument of a complex number. It is important
for this application that an implementation satisfy the constraint on the magnitude of the result
returned.

LTA-2 does not follow the recommendations in [53] and in [54] that
hypot (+00,qNaN) = +o0
hypotp(—oo0,qNalN) = +00
hypotr(qNaN, +00) = 400
hypotrp(gNaN, —o0) = +00
which are based on the claim that a gNaN represents an (unknown) real valued number. This
claim is not always valid, though it may sometimes be.

B.5.3.6 Operations for exponentiations and logarithms

For all of the exponentiation operations, overflow occurs for sufficiently large values of the argu-
ment(s).

There is a problem for powerg(z,y) if both x and y are zero:

— Ada raises an ‘exception’ for the operation that is close in semantics to powerr when both
arguments are zero, in accordance with the fact that 0° is mathematically undefined.

— The X/OPEN Portability Guide, as well as C9x, specifies for pow(0,0) a return value of 1,
and no notification. This specification agrees with the recommendations in [51, 53, 54, 57].

The specification in LIA-2 follows Ada, and returns invalid for powerr(0,0), because of the
risks inherent in returning a result which might be inappropriate for the application at hand. Note
however, that powerp;(0,0) is 1, without any notification. The reason is that the limiting value
for the corresponding mathematical function, when following either of the only two continuous
paths, is 1. This also agrees with the Ada specification for a floating point value raised to a power
in an integer datatype, as well as that for other programming languages which distinguish these
operations.

Along any path defined by y = k/In(z) the mathematical function z¥ has the value e*. Tt
follows that some of the limiting values for z¥ depend on the choice of k£, and hence are undefined,
as indicated in the specification.
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The result of the powerr operation is invalid for negative values of the base z. The reason
is that the floating point exponent y might imply an implicit extraction of an even root of x,
which would have a complex value for negative z. This constraint is explicit in Ada, and is widely
imposed in existing numerical packages provided by vendors, as well as several other programming
languages.

The arguments of powerp are floating point numbers. No special treatment is provided for
integer floating point values, which may be approximate. The cases for integer values of the
arguments are covered by the operations powerpr and powerr. In the example binding for C a
specification for powp is suppied. powr combines powerr and powerrpz in a way suitable for C’s
pow operation.

For implementations of the powerr operation there is an accuracy problem with an algorithm
based on the following, mathematically valid, identity:

y-log, . (=)
Yy _ F
I’ = 7"F

The integer part of the product y -log, (z) defines the exponent of the result and the fractional
part defines the reduced argument. If the exponent is large, and one calculates pr digits of
this intermediate result, there will be fewer than pp digits for the fraction. Thus, in order to
obtain a reduced argument accurately rounded to pr digits, it may be necessary to calculate an
approximation to y - log, (z) to a few more than log, (emazr) + pr base ry digits.

In Ada95 the operation most close to powerpy is specified to be computed by successive mul-
tiplications, for which the error in the evaluation increases linearly with the size of the exponent.
In a strict Ada implementation there is no way that a prescribed error limit of a few ulps can be
met for large exponents.

The special exponentiation operations, corresponding to 2% and 10%, have specifications which
are minor variations on those for expp(z). Accuracy and performance can be increased if they are
specially coded, rather than evaluated as, e.g., expp(mulp(z,Inp(2))) or powerp(2,z). Similar
comments hold for the base 2 and base 10 logarithmic operations.

The ezpm1y operation has two advantages: Firstly, ezpmIy(z) is much more accurate than
subp(expr(x),1) when the exponent argument is close to zero. Secondly, the expm1  operation
does not underflow for “very” negative exponent arguments, something which may be advan-
tageous if underflow handling is slow, and high accuracy for “very” negative arguments is not
needed. Note in addition that underflow is avoided for this operation. This can be done only
since LIA-2 adds requirements beyond those of LIA-1 regarding minimum precision (see clause
4). If those extra requirements were not done, underflow would not be justifiably removable for
this operation. Similar argumentation applies to Inipp.

Similarly, there are two advantages with the powerIpmIy operation: Firstly, poweripm1p (b, x)
is much more accurate than subp(powerp (addp(1,b),x),1) when the exponent argument is close
to zero. Secondly, the powerIpmlp operation does not underflow for “very” negative exponent
arguments (when the base is greater than 1), something which may be advantageous if underflow
handling is slow, and high accuracy for “very” negative arguments is not needed.

The handling of infinites and negative zero as arguments to the exponentiation and logarithm
operations, like for all other LIA operations, follow the principles for dealing with these values as
explained in section B.5.2.

B.5.3.7 Operations for hyperbolic elementary functions

The hyperbolic sine operation, sinhp(z), will overflow if |z| is in the immediate neighbourhood
of In(2 * fmaz), or greater.
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The hyperbolic cosine operation, coshr(z), will overflow if |z| is in the immediate neighbour-
hood of In(2 * fmaz), or greater.

The hyperbolic cotangent operation, cothp(z), has a pole at x = 0.

The inverse of cosh is double valued, the two possible results having the same magnitude with
opposite signs. The value returned by arccoshp is always greater than or equal to 1.

The inverse hyperbolic tangent operation arctanhpg(x) has poles at x = +1 and at x = —1.

The inverse hyperbolic cotangent operation arccothp(x) has poles at x = +1 and at x = —1.

B.5.3.8 Introduction to operations for trigonometric elementary functions

The real trigonometric functions sin, cos, tan, cot, sec, and csc are all periodic. The period for
sin, cos, sec, and csc is 2 - 7 radians (360 degrees). The period for tan and cot is 7 radians
(180 degrees). The mathematical trigonometric functions are perfectly periodic. Their numerical
counterparts are not that perfect, for two reasons.

Firstly, the radian normalisation cannot be exact, even though it can be made very good given
very many digits for the approximation(s) of w used in the angle normalisation, returning an offset
from the nearest axis, and including guard digits. The unit argument normalisation, however,
can be made exact regardless of the (non-zero and, in case denormp = false, not too small) unit
and the original angle, returning only a plain angle in F. LIA-2 requires unit argument angle
normalisation to be exact.

Secondly, the length of one revolution is of course constant, but the density of floating point
values gets sparser (in absolute spacing rather than relative) the larger the magnitude of the values
are. This means that the number of floating point values gets sparser per revolution the larger the
magnitude of the angle value is. For this reason the notification absolute_precision_underflow
is introduced, together with two parameters (one for radians and one for other angular units).
This notification is given when the magnitude of the angle value is “too big”. Exactly when the
representable angle values get too sparse depends upon the application at hand, but LIA-2 gives
a default value for the parameters that define the cut-off. LIA-2 also includes specifications for
high accuracy angle normalisation operations. The angle normalisation operations give a result
within minus half a cycle to plus half a cycle, unless the argument angular value is too big (or
there is some other error).

Note that the absolute_precision_underflow notification is unrelated to any argument re-
duction problems. Argument reduction is (implicitly for radians, explicitly for other angular
units) required by LIA-2 to be very accurate. But no matter how accurate the argument reduc-
tion is, floating point values are still sparser in absolute terms the larger the values are. Note
also that any use of trigonometric operations for non-trigonometric purposes is out of scope for
LIA-2.

LIA-2 includes angle normalisation operations, both for radians and for other angular units.
The angle normalisation operations return a value within minus half a cycle and plus half a cycle.
These operations should be used to keep the representation of angles at a high accuracy. The
trigonometric operations return a result within about an ulp, and that high accuracy is wasted if
the angular argument is not kept at a high accuracy too. LIA-2 also includes angle normalisation
operations that can be used to maintain an even higher degree of accuracy, giving the offset from
the nearest axis (though without any extra guard digits). To use these one needs to keep track
of the nearest axis, which unfortunately complicates programs that use this latter method.

Note that rad(z) = arccos(cos(z)) if sin(z) > 0 and rad(z) = — arccos(cos(z)) if sin(z) < 0.
The first part of azis_rad(z) indicates which axis is nearest to the angle z. The second part of
azis_rad(z) is an angle offset from the axis that is nearest to the angle x. The second part of
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azis_rad(z) is equal to rad(z) if cos(z) > 1/v/2 (i.e. if the first part of awis_rad(zx) is (1,0)).
More generally, the second part of azis_rad(z) is equal to rad(4 - x)/4.

rad(z) returns the same angle as the angle value z, but the returned angle value is between —
and 7. The rad function is defined to be used as the basis for the angle normalisation operations.
The axis_rad function is defined to be used as the basis for a numerically more accurate radian
angle normalisation operation. The arc function is defined to be used as the basis for the arcus
(angle) operations, which are used for conversion from Cartesian to polar co-ordinates.

B.5.3.9 Operations for radian trigonometric elementary functions

The radian trigonometric approximation helper functions (including those for normalisation and
conversion from radians) are required to have the same zero points as the approximated mathe-
matical function only if the absolute value of the argument is less than or equal to big_angle_rp.
Likewise, the radian trigonometric approximation helper functions are required to have the same
sign as the approximated mathematical function only if the absolute value of the argument is less
than or equal to big_angle_rp.

The big_angle_rrp parameter may be adjusted by bindings, or even by some compiler flag,
or mode setting within a program. However, this method should only allow the value of this
parameter to be set to a value greater than 2 -, so that at least arguments within the first two
(plus and minus) cycles are allowed, and such that ulp(big-angle_rr) < w/1000, so that at least
2000 evenly distributed points within the ‘last’ cycle (farthest away from 0) are distinguishable.
The latter gives a rather low accuracy at the far ends of the range, especially if pr is comparatively
large, so values this large for big_angle_rp are not recommendable unless the application is such
that high accuracy trigonometric operations are not needed.

For reduction of an argument given in radians, implementations use one or several approximate
value(s) of m (or of a multiple of ), valid to, say, n digits. The division implied in the argument
reduction cannot be valid to more than n digits, which implies a maximum absolute angle value
for which the reduction yields an accurate reduced angle value.

Regarding argument reduction for radians, there is a particular problem when the result of the
trigonometric operation is very small (or very big), but the angular argument is not very small. In
such cases the argument reduction must be very accurate, using an extra-precise approximation
to m, relative to what is normally used for arguments of similar magnitude, so that significant
digits in the result are not lost. Such loss would imply non-conformance to LIA-2 by the error in
the final result being greater than that specified by LIA-2. In general, extra care has to be taken
when the second part of azis_rad(z) is close to 0.

Note that if big_angle_rp is allowed to be increased, then, for conformity with LIA-2, the
radian angle reduction may need to be more precise.

— tan and sec have poles at odd multiples of /2 radians (90 degrees).

— cot and csc have poles at multiples of 7 radians (180 degrees).

All four of the corresponding operations with poles may produce overflow for arguments suf-
ficiently close to the poles of the functions. The tang operation produces no pole notification.
The reason is that the poles of tan(x) are at odd multiples of 7/2, which are not representable in
F. The mathematical cotangent function has a pole at the origin. For a system which supports
signed zeros and infinities, the continuation values are +00 and —oo for arguments of 0 and —0
respectively. Although the mathematical function sec has poles at odd multiples of 7/2, the secp
operation will not generate any pole notification because such arguments are not representable
in F.
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The pole notification cannot occur for any non-zero argument in radians because 7 is not
representable in F', nor is m/2. For the angular unit argument trigonometric operations a the
sign of the infinitary continuation value has been chosen arbitrarily for a pole which occurs for
a non-zero argument. However, sign symmetry, when appropriate, is maintained.

The operations may produce underflow for arguments sufficiently close to their zeros. For
a denormalised argument z, the sing, tang, arcsing, and arctang return z for the result, with
very high accuracy. Similarly, for a denormalised argument, cosp and secp can return a result of
1.0 with very high accuracy.

The trigonometric inverses are multiple valued. They are rendered single valued by defining a
principal value range. This range is closely related to a branch cut in the complex plane for the
corresponding complex function. Among the floating point numerical functions this branch cut
is “visible” only for the arcp operation. The arc function has a branch cut along the negative
real axis. For z < 0 the function has a discontinuity from —7 to +7 as y passes through zero

from negative to positive values. Thus for x < 0, systems supporting signed zeros can handle the
discontinuity as follows:

arcp(z,—0) = upp(—m)

arcp(z,0) = downp(m)
There is a problem for zero argument values for this operation. The values given for the
operation arcr(z,y) for the four combinations of signed zeros for z and y are those given in [53].

The following table of values is given in [53] for the value of arcp(z,y) with both of the arguments
7Z€eT0:

Zero arguments

z | y | arcp(z,y)
0 0 0
-0 0 T
-0 | -0 -7
0 -0 -0

Note that the mathematical arc function is indeterminate (undefined) for (0,0), but these result are
numerically more useful than giving an invalid notification for such arguments. LIA-2 therefore
specifies results as above.

There is also a problem for argument values of 400 or —oo for this operation. The following

table of values is given in [53] for the value of arcp(x,y) with at least one of the arguments
infinite:

Infinite arguments
x y | arcp(z,y)
400 | >0 0
+o00 | +00 /4
finite | 400 /2
—00 | 400 | 3-7/4

—o00 | =20 T
—oo | —0 -7
—00 | <0 —T
—o00 | —oo | —3-w/4
finite | —oo —7/2
+o00 | —00 —m/4
400 | <0 -0
400 | =0 -0
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If one of z and y is infinite and the other is finite, the result tabulated is consistent with that
obtained by a conventional limiting process. However, the results of n/4, —x/4, 3 - /4, and
—3 - /4 corresponding to infinite values for both x and y, are of questionable validity, since
only the quadrant is known, not the angle within the quadrant. However, these results are
numerically more useful than giving an invalid notification for such arguments. LIA-2 therefore
specifies results as above.

B.5.3.10 Operations for trigonometrics given angular unit

At present only Ada specifies trigonometric operations with angular unit argument. LIA-2 has
adopted angular unit argument operations in order to encourage uniformity among languages
which might include such operations in the future. The angular units in T appear to be particu-
larly important and have therefore been given a tighter error bound requirement. An implemen-
tation can of course have the same (tighter) error bound for all angular units.

The big_angle_urp parameter may be adjusted by bindings, or even by some compiler flag,
or mode setting within a program. However, this method should only allow the value of this
parameter to be set to a value greater than or equal to 1, so that at least arguments within
the first two (plus and minus) cycles are allowed, and such that ulpp(big_angle_ur) < 1/2000,
so that at least 2000 evenly distributed points within the ‘last’ cycle (farthest away from 0) are
distinguishable. The latter gives a rather low accuracy at the far ends of the range, especially
if pr is comparatively large, so values this large for big_angle_up are not recommendable unless
the application is such that high accuracy trigonometric operations are not needed.

The min_angular_unityr parameter is specified for two reasons. Firstly, if the type F' has
no denormal values (demormp = false), some angle values in F' are not representable after
normalisation if the angular unit has too small magnitude (this gives the firm limit above).
Secondly, even if F' has denormal values (denormp = true), angular units with very small
magnitude do not allow the representable angles to be particularly dense, not even if the angular
value is within the first cycle. This does in itself not give rise to a particular limit value, but the
limit value defined here is reasonable.

All of the argument angular unit trigonometric, and argument angular unit inverse trigonomet-
ric, approximation helper functions, including those for normalisation, angular unit conversion,
and arc, are exempted from the monotonicity requirement for the angular unit argument.

If the angular unit argument, u, is such that u/4 € F, the tanupr operation has poles at
odd multiples of u/4. This is the case for degrees (u = 360). As for tanup, if the angular unit
argument, u, is such that u/4 € F' the secur operation has poles at odd multiples of u/4.

The same comments hold for the arcur operation as for arcy operation, except that the
discontinuity in the mathematical function is from —u/2 to +u/2.

B.5.3.11 Operations for angular-unit conversions

Conversion of an angular value z from angular unit a to angular unit b appears simple: compute z-
b/a. Basing a numerical conversion of angular values directly on the above mathematical equality
(e.g. divp(mulp(z,b),a)) looses much absolute angular accuracy, however, especially for large
angular values. Instead computing arcup (b, cosur(a, ), sinup(a,x)) gives a more accurate result.
This might still not be within the accuracy required by LIA-2 for the angular unit conversion
operations specified by LIA-2.

Note that all of the angular conversion operations return an angularly normalised result. This
is in order to maintain high accuracy of the angle value being represented.
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Angular conversion operations are commonly found on ‘scientific’ calculators and also in Java,
though then only between degrees and radians.

B.5.4 Conversion operations

Clause 5.2 of LIA-1 covers conversions from an integer type to another integer type and to a
floating point type, as well as between (LIA-1 conforming) floating point types of the same radix.

LIA-2 extends these conversions to cover conversions to and from non-LIA conforming datatypes,
such as conversion to and from strings, and also extends the floating point conversion specifica-
tions to also handle conversions where the radices are different.

In ordinary string formats for numerals, the string “Hello world!” is an example of a signalling
NaN.

LIA-2 does not specify any string formats, not even for the special values —0, 400, —o0,
and quiet NaN, but possibilities for the special values include the strings used in the text of
LIA-2, as well as strings like “+infinity” or “positiva odndligheten”, etc, and the strings used
may depend on preference settings, as they may also for non-special values. E.g. one may use
different notation for the decimal separator character (e.g., period, comma, Arabic comma, ...),
use superscript digits for exponents, or use Arabic or traditional Thai digits. String formats for
numerical values, and if and how they may depend on preference settings, is also an issue for
bindings or programming language specifications, not for this part of LIA.

If the value converted is greater that those representable in the target, or less than those
representable in the target, even after rounding, then an overflow will result. E.g., if the target is
a character string of at most 3 digits, and the target radix is 10, then an integer source value of
1000 will result in an overflow. As for other operations, if the notification handling is by recording
of indicators, a suitable continuation value must be used.

Most language standards contain (partial) format specifications for conversion to and from
strings, usually for a decimal representation.

B.5.5 Numerals as operations in the programming language
B.5.5.1 Numerals for integer datatypes

Negative values (except minint; if minint; = —mazint; — 1) can be obtained by using the
negation operation (negy).

Integer numerals in radix 10 are normally available in programming languages. Other radices
may also be available for integer numerals, and the radix used may be part of determining the
target integer datatype. E.g., radix 10 may be for signed integer datatypes, and radix 8 or 16
may be for unsigned integer datatypes.

Syntaxes for numerals for different integer datatypes need not be different, nor need they be
the same. This Part does not further specify the format for integer numerals. That is an issue
for bindings.

Overflow for integer numerals can be detected at “compile time”, and warned about.
B.5.5.2 Numerals for floating point datatypes

If the numerals used as operations in a program, and numerals read from other sources use the
same radix, then “internal” numerals and “external” numerals (strings) denoting the same value
in R and converted to the same target datatype should be converted to the same value.
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Negative values (including negative 0, —0) can be obtained by using the negation operation
(negr).
Radices other than 10 may also be available for floating point numerals.

Integer numerals may also be floating point numerals, i.e. their syntaxes need not be different.
Nor need syntaxes for numerals for different floating point datatypes be different, nor need they
be the same. This Part does not specify the syntax for numerals. That is an issue for bindings
or programming language specifications.

Overflow /underflow for floating point numerals can be detected at “compile time”, and warned
about.

B.6 Notification

An intermediate overflow on computing approximations to z? or y? during the calculation of
hypotr(z,y) ~ /22 + y?) must not result in an overflow notification, unless the end result
overflows. This is clear from the specification of the hypotr operation in this Part.

If a single argument operation opg, for the corresponding mathematical function f, is such that
f(z) very closely approximates x, when |z| < fminNp, then opp(z) returns z for |z| < fminNp,
and does not give a notification if there cannot be any denormalisation loss relative to f(z). For
details, see the individual operation specifications for expm1 r, Inlpp, sinhp, arcsinhp, tanhp,
arctanhp, sing, arcsing, tang, and arctang.

Operations specified in LTA-2 return invalid(qINaN) when passed a signaling NaN (sNaN)
as an argument. Most operations specified in LIA-2 return gINaN, without any notification when
passed a quiet NaN (qNalN) as an argument.

The different kinds of notifications occur under the following circumstances:

a) invalid: when an argument is not valid for the operation, and no value in F* or any special
value result makes mathematical sense.

b) pole: when the input operand corresponds to a pole of the mathematical function approx-
imated by the operation.

¢) overflow: when the (rounded) result is outside of the range of the result datatype.

d) underflow: when a sufficiently closely approximating result of the operation has a magni-
tude that is so small that it might not be sufficiently accurately represented in the result
datatype.

e) absolute_precision_underflow: when the magnitude of the angle argument to a floating
point trigonometric operation exceeds the maximum value of the argument for which the
density of floating point values is deemed sufficient for the operation to make sense. See
clause 5.3.8 and the associated discussion in this rationale (section B.5.3.8).

In order to avoid absolute_precision_underflow notifications, and to maintain a high
accuracy, implementors are encouraged to provide, and programmers encouraged to use,
the angle normalisation operations specified in 5.3.9.1 and 5.3.10.1.

The difference between the pole and overflow notifications is that the first corresponds to a
true mathematical singularity, and the second corresponds to a well-defined mathematical result
that happens to lie outside the range of F'.
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B.6.1 Continuation values

For handling of notifications, the method that does recording of indicators (LIA-1, clause 6.1.2)
is preferred.

An implementation which supports recording of indicators must supply continuation values to
be used when execution is continued following the occurrence of a notification. For systems which
support signed zeros, infinities and NaNs, LIA-2 specifies how these values, as well as ordinary
values, are used as continuation values. Other implementations which use recording of indicators
must supply other suitable continuation values and document the values selected.

B.7 Relationship with language standards

An arithmetic expression might not be executed as written.

For example, if z is declared to be single precision (SP) floating point, and calculation is done
in single precision, then the expression

arcsin(x)
might translate to
arcsingp(x)

If the language in question did all computations in double precision (DP) floating point, the above
expression might translate to

arcsinpp(cvtsp_,pp(x))
Alternatively, if x was declared to be an integer, and the expected result datatype is single
precision float, the above expression might translate to

cvtpp_sp(arcsinpp(cvtpp(x)))

The datatypes involved in implicit conversions need not be accessible to the programmer. For
example, trigonometric operations may be evaluated in extended double precision, even though
that datatype is not made available to programmers using a particular programming language.
These extra datatypes should be made available, however, and the implicit conversions should be
expressible as explicit conversions. At least in order to be able to show exactly which expression
is going to be evaluated without having to look at the machine code.

B.8 Documentation requirements
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Annex C

(informative)

Example bindings for specific languages

This annex describes how a computing system can simultaneously conform to a language
standard (or publicly available specification) and to LIA-2. It contains suggestions for binding
the “abstract” operations specified in LIA-2 to concrete language syntax. The format used for
these example bindings in this annex is a short form version, suitable for the purposes of this
annex. An actual binding is under no obligation to follow this format. An actual binding should,
however, as in the bindings examples, give the LIA-2 operation name, or parameter name, bound
to an identifier by the binding.

Portability of programs can be improved if two conforming LIA-2 systems using the same
language agree in the manner with which they adhere to LIA-2. For instance, LTA-2 requires that
the parameter big_angle_rp be provided (if any conforming radian trigonometric operations are
provided), but if one system provides it by means of the identifier BigAngle and another by the
identifier MaxAngle, portability is impaired. Clearly, it would be best if such names were defined
in the relevant language standards or binding standards, but in the meantime, suggestions are
given here to aid portability.

The following clauses are suggestions rather than requirements because the areas covered are
the responsibility of the various language standards committees. Until binding standards are in
place, implementors can promote “de facto” portability by following these suggestions on their
own.

The languages covered in this annex are

Ada

Basic

C

C++

Fortran
Haskell

Java,
Common Lisp
ISLisp
Modula-2
Pascal and Extended Pascal
PL/I

SML

This list is not exhaustive. Other languages and other computing devices (like ‘scientific’
calculators, ‘web script’ languages, and database ‘query languages’) are suitable for conformity
to LIA-2.

In this annex, the parameters, operations, and exception behaviour of each language are
examined to see how closely they fit the requirements of LIA-2. Where parameters, constants, or
operations are not provided by the language, names and syntax are suggested. (Already provided
syntax is marked with a *.)

This annex describes only the language-level support for LIA-2. An implementation that
wishes to conform must ensure that the underlying hardware and software is also configured to
conform to LIA-2 requirements.
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A complete binding for LIA-2 will include, or refer to, a binding for LIA-1. In turn, a complete
binding for the LIA-1 may include, or refer to, a binding for IEC 60559. Such a joint LIA-2/LIA-
1/TIEC 60559 binding should be developed as a single binding standard. To avoid conflict with
ongoing development, only the LTA-2 specific portions of such a binding are examplified in this
annex.

C.1 General comments

Most language standards permit an implementation to provide, by some means, the parameters
and operations required by LIA-2 that are not already part of the language. The method for ac-
cessing these additional parameters and operations depends on the implementation and language,
and is not specified in LIA-2 nor examplified in this annex. It could include external subroutine
libraries; new intrinsic functions supported by the compiler; constants and functions provided as
global “macros”; and so on. The actual method of access through libraries, macros, etc. should
of course be given in a real binding.

Most language standards do not constrain the accuracy of elementary numerical functions, or
specify the subsequent behaviour after an arithmetic notification occurs.
In the event that there is a conflict between the requirements of the language standard and

the requirements of LIA-2, the language binding standard should clearly identify the conflict and
state its resolution of the conflict.

C.2 Ada

The programming language Ada is defined by ISO/IEC 8652:1995, Information Technology —
Programming Languages — Ada [11], where the specifications for the operations for elementary
functions are based on ISO/IEC 11430:1994 Information technology — Programming languages —
Generic package of elementary functions for Ada [12].

An implementation should follow all the requirements of LIA-2 unless otherwise specified by
this language binding.

The operations or parameters marked “}” are not part of the language and should be provided
by an implementation that wishes to conform to LIA-2 for that operation or parameter. For each
of the marked items a suggested identifier is provided.

The Ada datatype Boolean corresponds to the LIA datatype Boolean.

Every implementation of Ada has at least one integer datatype, and at least one floating point
datatype. The notations INT and FLT are used to stand for the names of one of these datatypes
in what follows.

The LIA-2 integer operations are listed below, along with the syntax used to invoke them:

mazy(z,y) INT’Max(z, y) *
ming(x,y) INT’Min(z, y) *
maz_seqr(rs) Max (zs) T
min_seqr(xs) Min(zs) T
dimy(z,y) Dim(z, y) T
powery(z,y) T Rk Yy *
shift2;(z,y) Shift2(z, y) T
shift10;(z,y) Shift10(z, y) T
sqrtr(z) Sqrt (z) T
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dividesy(z,y)
eveny(z)
oddr(x)
divfr(z,y)
modar(z,y)
groupr(x,y)
padl (377 y)
quOtI (ZE, y)
remrr(z,y)
ngI (fL‘, y)
lemp (33, y)
gcd_seqp(zs)
lem_seqr(xs)

add_wrapr(z,y)
add_ovy(z,y)
subwrapy(z,y)
sub_ovr(x,y)
mul _wrapr(z,y)
mul_ovr(z,y)

mazp(x,y)
ming(z,y)
mmazp(x,y)
mming(z,y)
maz_seqp(xs)
min_seqp(xs)
mmaz_seqp(xs)
mmin_seqp(zs)

dimp(z,y)
roundingp(z)
floorp ()

ceilingrp ()
rounding_restp(x)
floor _rest p(x)
ceiling_restp(z)
remrp(x,y)
sqrip(x)

rsqrip(z)

add_lop(z,y)
sub_lop(z,y)
mul_lop(z,y)
div_restp(z,y)
sqrt_restp(z)
mulp g (T, y)

C.2 Ada
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Divides(z, )
z mod 2 =0
zmod 2 /=0
Div(z, y)

z mod y
Group(z, y)
Pad(z, y)
Quot(z, ¥)
Rem(z, y)
Ged(z, y)
Lem(z, y)
Ged(zs)
Lem(zs)

Add Wrap(z, y)
Add_Over(z, y)
Sub_Wrap(x, y)
Sub_Over(z, y)
Mul Wrap(z, y)
Mul_Over(z, y)

The LIA-2 basic floating point operations are listed below, along with the
invoke them:

FLTMax(z, 1)
FLT Min(z, y)
MMax (z, y)
MMin(z, y)
Max(zs)
Min(zs)

MMax (zs)
MMin(zs)

Dim(x, y)

FLT’Unbiased Rounding(x)
FLT’Floor(x)
FLT’Ceiling(x)

x - FLT’Unbiased Rounding(x)
x - FLT’Floor(x)

x - FLT’Ceiling(x)
FLT’Remainder(x, y)

Sqrt (z)

RSqrt (x)

Add Low(z, y)
Sub_Low(x, y)
Mul Low(x, y)
Div_Rest(z, y)
Sqrt Rest (z)
Prod(z, y)

—_ e e = = = — X —= o ¥ —

—_ — — — — —

where x and y are expressions of type INT and where zs is an expression of type array of INT.

syntax used to

i S S S D S S T — —k — — — — X

—_ — — — — —

where z, y, and z are expressions of type FLT, and where zs is an expression of type array of
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FLT.

The parameters for LIA-2 operations approximating real valued transcendental functions can
be accessed by the following syntax:

max_err_hypotr Err Hypotenuse () T
MAT_err_expr Err Exp(x) 1
MazT_err_powerrp Err Power () 1
maz_err_sinhp Err Sinh(x) 1
max_err_tanhp Err_Tanh(z) 1
big_angle_rp Big Radian_Angle(z) T
MaAx_err_sing Err Sin(x) 1
maz_err_tanp Err _Tan(z) 1
min_angular_unitp Smallest_Angular Unit(x) T
big_angle_up Big_Angle(x) 1
maz_err_sinup(u) Err_Sin Cycle(u) T
maz_err_tanup(u) Err_Tan Cycle(u) T
max_err_convertp Err_Convert (x) 1
max_err_convert g Err_Convert_To_String T
mazx_err_convert pr Err_Convert_To_String T

where x and u are expressions of type FLT. Several of the parameter functions are constant for
each type (and library), the argument is then used only to differentiate among the floating point
types.

The LIA-2 elementary floating point operations are listed below, along with the syntax used
to invoke them:

hypotr(z,y) Hypotenuse(z, y) T
powerpr(b, z) b *x z *
expr(r) Exp(z) *
expm1 p(x) ExpM1(x) T
exp2p () Exp2(x) T
expl0p(x) Exp10(x) T
powerp (b, y) b *x y *
powerlpmlp(b,y) Power1PM1 (b, y) T
Inp(z) Log(x) *
Inlp p(x) LoglP(x) T
log2p(z) Log2(x) T
log10p(z) Log10(x) T
logbaser (b, ) Log(z, b) (note parameter order) *
logbaselplp (b, x) Log1P1P(z, b) T
sinhp(x) SinH(z) *
coshp(x) CosH(x) *
tanhp () TanH () *
cothp(x) CotH(z) *
sechp(z) SecH(x) T
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cschp(x)

arcsinhp(z)
arccoshp ()
arctanhp(z)
arccothp ()
arcsechp(z)
arceschp(x)

radp(z)
azis_radp(z)

sing(x)
cosp(x)
tanp(x)
cotp(z)
secp ()
cscp(x)
cossing(x)

arcsing(x)
arccosp(z)
arctanp ()
arccotp(z
arcctgp(zx
arcsecr(x
arcescp(x

arcp(z,y)

)
)
)
)

cyclep (u, )
azis_cyclep(u, )

sinup (u, )
cosup(u,x)
tanup (u, )
cotup(u,x)
secup (u,x)
cscup(u, )
cossinup(u, )

arcsinup (u, )
(u

arccosup(u, x)
arctanup(u, x)
arccotup(u, x)
arcctgup (u, x)
arcsecup(u, )
arcescup (u, )

arcup(u,x,y)

rad_to_cyclep (x,u)
cycle_to_radp(u,x)

C.2 Ada

CscH(x)

ArcSinH(z)
ArcCosH(x)
ArcTanH(z)
ArcCotH(x)
ArcSecH(xz)
ArcCscH(x)

Rad(z)
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Rad(z, h, v) (note out parameters)

Sin(z)
Cos(x)
Tan(zx)
Cot (x)
Sec(x)
Csc(x)
CosSin(x, ¢, s)

ArcSin(x)
ArcCos(xz)
ArcTan(x)
ArcCot (x)
ArcCtg(z)
ArcSec(z)
ArcCsc(x)

(note out parameters)

ArcTan(y, z) or ArcCot(z, ¥)

Cycle(z, u) (note parameter order)
Cycle(x, u, h, v)

Sin(z, u) (note parameter order)

Cos(x, u)
Tan(z, u)
Cot(x, u)
Sec(x, u)
Csc(x, u)

CosSin(x, u, c, s)

ArcSin(z, )
ArcCos(x, wu)

ArcTan(z, Cycle=>u)
ArcCot (z, Cycle=>u)

ArcCtg(z, w)
ArcSec(z, wu)
ArcCsc(z, wu)

ArcTan(y, =, u) or ArcCot(z, y, u)

Rad_to_Cycle(z, u)
Cycle_to Rad(u, x)

— —i — == >t X X X

—= —k — X % Ot X

— —i X — —= — X Xt Xt Ot

—= —k —= X X% Ok X
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cycle_to_cyclep(u, x,v) Cycle_toCycle(u, =, v) T
where b, x, y, u, and v are expressions of type FLT, and z is an expressions of type INT.

Arithmetic value conversions in Ada are always explicit and usually use the destination
datatype name as the name of the conversion function, except when converting to/from strings.

convertr_,p(x) INT2(z) *
convert_,(s) Get(s,n,w) *
convertr_(x) Put (s, x,base?) *
convertp r(f) Get(f?,n,w?) *
convertr_(x) Put (h?,z,w?,base?) *
roundingpg_1(y) INT(FLT’Unbiased Rounding(y)) *
floorp_, 1 (y) INT(FLT’Floor(y)) *
ceilingp_1(y) INT(FLT’Ceiling(y)) *
convert;_p(x) FLT(x) *
convertp_, g (y) FLT2(y) *
convertpn_,p(s) Get(s,n,w?) *
convertpn g (f) Get(f?,n,w?) *
convertp_, g (y) Put (s,y,Aft=>a?,Exp=>e?) *
convertp_, g (y) Put (h?,y,Fore=>i?,Aft=>a?,Exp=>e?) *
convertp_,p(z) FLT(z) *
convertpr_p(s) Get(s,n,w?) *
convertprp(f) Get(f?,n,w?) *
convertp_,p(y) FXD(y) *
convertp_,pr(y) Put (s,y,Aft=>a?,Exp=>0) *
convertp_,pr(y) Put (h?,y,Fore=>i?,Aft=>a7 ,Exp=>0) *

where z is an expression of type INT, y is an expression of type FLT, and z is an expression of
type FXD, where FXD is a fixed point type. INT2 is the integer datatype that corresponds to
I'. A 7 above indicates that the parameter is optional. e is greater than 0.

Ada provides non-negative numerals for all its integer and floating point types. The default
base is 10, but all bases from 2 to 16 can be used. There is no differentiation between the numerals
for different floating point types, nor between numerals for different integer types, but integer
numerals (without a point) cannot be used for floating point types, and ‘real’ numerals (with a
point) cannot be used for integer types. Integer numerals can have an exponent part though.
The details are not repeated in this example binding, see ISO/IEC 8652:1995, clause 2.4 Numeric
Literals, clause 3.5.4 Integer Types, and clause 3.5.6 Real Types.

The Ada standard does not specify any numerals for infinities and NaNs. Suggestion:

+00 FLT’Infinity 1
qNaN FLT’NaN 1
sNalN FLT SigNaN T

as well as string formats for reading and writing these values as character strings.

Ada has a notion of ‘exception’ that implies a non-returnable, but catchable, change of con-
trol flow. Ada uses its exception mechanism as its default means of notification. Ada ignores
underflow notifications since an Ada exception is inappropriate for an underflow notification.
On underflow the continuation value (specified in LIA-2) is used directly without recording the
underflow itself. Ada uses the exception Constraint_Error for pole and overflow notifications,
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and the exception Numerics.Argument Error for invalid notifications. Since Ada exceptions are
non-returnable changes of control flow, no continuation value is provided for these notifications.

An implementation that wishes to follow LIA-2 should provide recording of indicators as an
alternative means of handling numeric notifications. Recording of indicators is the LTA-2 preferred
means of handling numeric notifications.

C.3 BASIC

The programming language BASIC is defined by ANSI X3.113-1987 (R1998) [41], endorsed by
ISO/IEC 10279:1991, Information technology — Programming languages — Full BASIC [17].

An implementation should follow all the requirements of LIA-2 unless otherwise specified by
this language binding.

The operations or parameters marked “}” are not part of the language and should be provided
by an implementation that wishes to conform to the LIA-2 for that operation. For each of the
marked items a suggested identifier is provided.

BASIC has no user accessible datatype corresponding to the LIA datatype Boolean.

BASIC has one primitive computational data type, numeric. The model presented by the
BASIC language is that of a real number with decimal radix and a specified (minimum) number
of significant decimal digits. Numeric data is not declared directly, but any special characteristics
are inferred from how they are used and from any OPTIONS that are in force.

The BASIC statement OPTION ARITHMETIC NATIVE ties the numeric type more closely to the
underlying implementation. The precision and type of NATIVE numeric data is implementation
dependent.

Since the BASIC numeric data type does not match the integer type required by the LIA-1,
this binding example does not include any of the LTA-2 operations for integer data types.

The LTA-2 non-transcendental floating point operations are listed below, along with the syntax
used to invoke them:

mazp(x,y) MAX(z, ¥) T
ming(z,y) MIN(z, y) T
mmazp(x,y) MMAX (z, y) T
mming(z,y) MMIN(z, y) T
maz_seqp(xs) MAXS (z:8) T
min_seqp(xs) MINS (zs) T
mmaz_seqp(xs) MMAXS (zs) T
mmin_seqp(zs) MMINS(zs) T
dimp(x,y) MONUS(z, y) T
roundingp(z) ROUNDING (x) T
floorp(x) FLOOR(z) *
ceilingrp () CEILING(x) T
rounding_restp(x) x - ROUNDING (x) T
floor _rest p () x - FLOOR(z) *
ceiling_restp(z) x - CEILING(z) T
remrp(x,y) REMAINDER(z, ) T
sqrtp(x) SQRT () *
rsqrip(z) RSQRT () T
add_lop(z,y) ADD_LOW(z, y) T

C.3 BASIC
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sublop(z,y)
mul_lop(z,y)
div_restp(z,y)
sqrt_restp(x)

SUB_LOW(z, y)
MUL_LOW(z, y)
DIV REST(z, )
SQRT_REST ()

Fourth committee draft

—_ — — =

where z, y, and z are expressions of type numeric, and where zs is an expression of type array
of numeric.

be accessed by the following syntax:

max_err_hypotr

maxr-err_-exrpg
maxr_err_powerg

max_err_sinhpg
max_err_tanhg

big_-angle_rp
Max_err_sing
mazr_err_tang

min_angular_unitp
big_angle_up
maz_err_sinugp(u)
maz_err_tanup(u)
max_err_convertp
mazx_err_convertsy
max_err_convertp

ERR_HYPOTENUSE

ERR_EXP
ERR_POWER

ERR_SINH
ERR_TANH

BIG_RADIAN_ANGLE
ERR_SIN
ERR_TAN

MIN_ANGLE_UNIT
BIG_ANGLE
ERR_SIN_CYCLE ()
ERR_TAN_CYCLE ()
ERR_CONVERT

ERR_CONVERT_TO_STRING
ERR_CONVERT_TO_STRING

where u is an expression of type numeric.

The LIA-2 parameters for operations approximating real valued transcendental functions can

—_ =

B e e e

The LIA-2 floating point operations are listed below, along with the syntax used to invoke

them. BASIC has a degree mode and a radian mode for the trigonometric operations.
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hypotr (z,y)

expp(z)

expml ()

exp2p (x)
expl0p(x)
powerp (b, y)
powerlpmlp(b,y)

Inp(x)

Inlpp(z)

log2p (z)
log10p(z)
logbaser (b, )
logbaselplp (b, x)

sinhp(z)
coshp(x)
tanhp(z)
cothp(z)

HYPOT (z, y)

EXP (x)
EXPM1(x)
EXP2(2)
EXP10(x)

POWER (b, 1)
POWER1PM1 (b, y)

LOG(x)

LOG1P(x)

LOG2(x)

LOG10(x)
LOGBASE(b, x)
LOGBASE1P1P (b, x)

SINH(z)
COSH(z)
TANH(z)
COTH(x)

I

— = ok — —_ = — — —

—= % O X
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sechp(x)
cschp(z)

arcsinhp(x)
arccoshp(z)
arctanhp ()
arccothp(z)
arcsechp ()
arceschp(x)

radp(x)

sing(x)
cosp(x)
tang(x)
cotp(z)
secp ()
cscp(x)

arcsing(x)
arccosp ()
arctanp(z)
arccotp ()
arcctgp ()
arcsecp(x)
arcescr(x)
arcp(z,y)

cyclerp (u, z)

sinup (u, )
cosup(u,x)
tanup (u, )
cotup(u,x)
7$)

)

, L

secup(u
cscup(u

arcescup (
arcup(u,x,y)

cycler (360, x)
sinup (360, z)

cosup (360, )
tanup (360, z)

C.3 BASIC
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SECH(z)
CSCH(x)

ARCSINH(z)
ARCCOSH(z)
ARCTANH (z)
ARCCOTH(z)
ARCSECH(z)
ARCCSCH(z)

NORMANGLE () (when in radian mode)

SIN(x) (when in radian mode
C0S(x)
TAN(z)
COT (x)
SEC(z)

CSC(x)

when in radian mode
when in radian mode
when in radian mode
when in radian mode
when in radian mode

NN AN N N

)
)
)
)
)
)

when in radian mode
when in radian mode

ARCSIN(z) ( )
ARCCOS () ( )
ARCTAN(z) (when in radian mode)
ARCCOT(z) (when in radian mode)
ARCCTG(z) (when in radian mode)
ARCSEC(z) ( )
ARCCSC(x) (when in radian mode)

ANGLE(z,y) (when in radian mode)

when in radian mode

NORMANGLEU (u,z)

SINU(u,z)
COSU(u,x)
TANU(u,z)
COTU(u,z)
SECU(u,z)
CSCU(u,z)

ARCSINU(u,z)
ARCCOSU(u,z)
ARCTANU(u,z)
ARCCOTU(u,x)
ARCCTGU (u,z)
ARCSECU(u,x)
ARCCSCU(u,x)
ANGLEU(u,z,y)

NORMANGLE () (when in degree mode)

SIN(z) (when in degree mode)
C0S(x) (when in degree mode)
TAN(z) (when in degree mode)

—- —_ — — — — — —_
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cotu (360, z) COT(z) (when in degree mode) *
secur (360, x) SEC(z) (when in degree mode) T
cscup (360, z) CSC(z) (when in degree mode) T
arcsinur (360, x) ARCSIN(z) (when in degree mode) *
arccosup (360, z) ARCCOS(z) (when in degree mode) *
arctanup (360, x) ARCTAN(z) (when in degree mode) *
arccotur (360, x) ARCCOT(x) (when in degree mode) *
arcctgur (360, x) ARCCTG(z) (when in degree mode) T
arcsecur (360, x) ARCSEC(x) (when in degree mode) T
arcescur (360, ) ARCCSC(z) (when in degree mode) T
arcur(360,x,y) ANGLE(z,y) (when in degree mode) *
rad_to_cyclep(z,u) RAD_TO_CYCLE(z, u) T
cycle_to_radp(u,x) CYCLE_TORAD(u, x) T
cycle_to_cyclep(u, x,v) CYCLE_TO_CYCLE(u, z, v) T

where b, x, y, u, and v are expressions of type numeric.

Arithmetic value conversions in BASIC are always tied to reading and writing text.

convertpn_, p(stdin) READ z *
convertp_,pr (y) PRINT y *
convertpr_,p(stdin) READ z *

where z is a variable of type numeric, y is an expression of type numeric.
BASIC provides non-negative numerals for numeric in base 10.

BASIC does not specify any numerals for infinities and NaNs. Suggestion:

+00 INFINITY 1
qNaN NAN 1
sNalN SIGNAN 1

as well as string formats for reading and writing these values as character strings.

BASIC has a notion of ‘exception’ that implies a non-returnable change of control flow. BASIC
uses its exception mechanism as its default means of notification. BASIC ignores underflow noti-
fications since a BASIC exception is inappropriate for an underflow notification. On underflow
the continuation value (specified in LIA-2) is used directly without recording the underflow it-
self. BASIC uses the exception number 1003 (Numeric supplied function overflow) for overflow,
the exception number 3001 (Division by zero) for pole, and the exception numbers 301x(?) for
invalid. Since BASIC exceptions are non-returnable changes of control flow, no continuation
value is provided for these notifications.

An implementation that wishes to follow LIA-2 should provide recording of indicators as an
alternative means of handling numeric notifications. Recording of indicators is the LIA-2 preferred
means of handling numeric notifications.

C4a4 C

The programming language C is defined by ISO/IEC 9899:1990, Information technology — Pro-
gramming languages — C [18], currently under revision (C9x FDIS).

An implementation should follow all the requirements of LIA-2 unless otherwise specified by
this language binding.
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The operations or parameters marked “” are not part of the language and should be provided
by an implementation that wishes to conform to the LIA-2 for that operation. For each of the
marked items a suggested identifier is provided.

The LIA-1 datatype Boolean is implemented by the C datatype int (1 = true and 0 =
false). (Revised C will provide a _Bool datatype.)

Every implementation of C has integral datatypes int, long int,unsigned int, and unsigned
long int. INT is used below to designate one of the integer datatypes.

C has three floating point datatypes: float, double, and long double. F'LT is used below
to designate one of the floating point datatypes.

The LIA-2 integer operations are listed below, along with the syntax used to invoke them:

mazy(z,y) imax(z, y) T
ming(z,y) imin(z, y) T
max_seqr(zs) imax_arr(zs, nr_of _items) T*
min_seqr(xs) imin_arr(zs,nr_of _items) ¥
dimy(z,y) idim(z, y) T
power;(z,y) ipower (z, y) T
shift2;(z,y) shift2(z, y) T
shift10;(x,y) shift10(z, y) T
sqrtr(z) isqrt(z) T
dividesy(z,y) does_divide(z, %) T
dividesr(z,y) T '=08&& y % T == *
eveny(z) z%h2==0 *
oddy(z) x%h?2!'=0 *
divf(z,y) div(z, y) T
modar(z,y) mod(z, y) T
groupi(z,y) group(z, y) t
pady(z,y) pad(z, y) T
quotr(x,y) quot(z, ) T
remrr(z,y) iremainder(z, ¥) T
gedr(,y) ged(z, y) t
lemp(z,y) lem(z, y) T
ged_seqr(zs) gcd_arr (zs,nr_of _items) ¥
lem_seqr(zs) lcm_arr(zs,nr_of _items) T*
add_wrapr(z,y) add_wrap(z, y) T
add_ovr(z,y) add_over(z, y) T
sub_wrapy(z,y) sub_wrap(z, ¥) T
sub_ovr(x,y) sub_over(z, ¥) T
mul _wrapr(z,y) mul wrap(z, y) T
mul_ovr(z,y) mul_over(z, y) T

where z and y are expressions of the same integer type and where xs is an expression of type
array of an integer type. (The operations marked with * needs one name per integer datatype.)

The LIA-2 non-transcendental floating point operations are listed below, along with the syntax
(type generic macros) used to invoke them:

ming(z,y) nmin(z,y) T
mazp(x,y) nmax (z,y) T
mming(z,y) fmin(z,y) *(C9x)
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mmazp(x,y) fmax(x,y) *(C9x)
min_seqp(xs) nmin_arr (zs,nr_of _items) ¥
maz_seqr(xs) nmax_arr (zs,nr_of _items) ¥
mmin_seqp(xs) fmin_arr(xs,nr_of _items) T*
mmaz_seqr(xs) fmax_arr (xs,nr_of _items) ¥

dimp(z,y) fdim(z,y) *(C9x)
roundingp(z) nearbyint (z) (when in round to nearest mode) *(C9x)
floor p(x) floor(z) *

ceilingrp (x) ceil(x) *

rounding_restp(z)

z - nearbyint (z) (when in round to nearest mode)

floor _rest p () x - floor(z) *
ceiling_restp(x) xz - ceil(x) *
remrp(x,y) remainder (z,y) *(C9x)
sqrtp(x) sqrt (z) *
rsqrip(z) rsqrt(z) T
add_lop(z,y) add_low(z, y) T
sublop(z,y) sub_low(z, y) T
mul_lop(z,y) mul_low(zx, y) T
div_restp(z,y) div_rest(z, y) T
sqrt_restp(z) sqrt_rest (z) T
mulp_spr (2,7y) dprod(z, y) T

where z, y and z are expressions of the same floating point type, and where zs is an expression
of type array of a floating point type.

The LIA-2 parameters for operations approximating real valued transcendental functions can
be accessed by the following syntax (type generic macros):

max_err_hypotr err_hypot (z) 1
MAT_ErT_eTPr err_exp (x) 1
MazT_err_powery err_power () 1
max_err_sinhg err_sinh(x) 1
maz_err_tanhp err_tanh(z) 1
big_angle_rp big radian_angle(x) T
MaAx_err_sing err_sin(x) 1
maz_err_tanp err_tan(x) 1
min_angular_unitp smallest_angle unit (x) T
big_angle_ up big_angle(x) 1
maz_err_sinugp(u) err_sin_cycle(u) T
maz_err_tanup(u) err_tan _cycle(u) T
maz_err_convertp err_convert (x) 1
max_err_convert g err_convert_to_string T
max_err_convertp err_convert_to_string T

*(C9x)

where z and u are expressions of a floating point type. Several of the parameter functions are
constant for each type (and library), the argument is then used only to differentiate among the
floating point types.
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C has a pow operation that does not conform to LTA-2, but may be specified in LTA-2 terms

as:
powp(z,y) =1 if z is a quiet NaN and y =0
= powp(z,0) ify=-0
= powerpz(z,y) ifye FNZ
= powerp(z,y) otherwise
C has a hypot operation that does not conform to LIA-2, but may be specified in LIA-2 terms
as:
hhypotp(z,y) =400 if z is a quiet NaN and y € {—o00,+00}
=400 if z € {—00,400} and y is a quiet NaN
= hypotp(z,y) otherwise

The LIA-2 elementary floating point operations are listed below, together with the non-LIA-2
powr and hhypotr, along with the syntax (type generic macros) used to invoke them:

hypotp(z,y) hypotenuse(z, y) T
hhypotp(z,y) hypot (z, y) * Not LTA-2!
powergy (b, 2) poweri(b, z) T
expr(z) exp(z) *
expmip(x) expml (z) *(C9x)
exp2p(x) exp2(x) *
expl0p(x) expl10(x) T
powerg (b, y) power (b, y) T
powp (b, y) pow (b, y) * Not LIA-2!
powerlpmlp(b,y) powerlpmil (b, y) T
Inp(z) log(x) *
Inlpp(x) logip(z) *(C9x)
log2p () log2(x) *
log105(x) log10(x) *
logbaser (b, ) logbase (b, ) T
logbaselplp (b, ) logbaselpip(b, ) T
sinhp(x) sinh(z) *
coshp(x) cosh(z) *
tanhp(x) tanh () *
cothp(z) coth(z) T
sechp () sech(z) T
cschp(z) csch(z) T
arcsinhp(x) asinh(x) *
arccoshp(zx) acosh(x) *
arctanhp () atanh () *
arccothp(z) acoth(x) T
arcsechp () asech(x) T
arceschp(x) acsch(x) T
radp(z) radian(z) T
azris_radp(zx) axis_rad(x, &h, &v) (note out parameters) f
sing(x) sin(x) *
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cosp(r)
tanp(x)
cotp(z)
secp(x)
cscp(x)
cossing(x)

arcsing(x)
arccosp(z)
arctanp(x)
arccotp(z)
arcctgrp ()
arcsecp(z)
arcescp(x)
arcp(z,y)

cyclep (u, x)
azis_cyclep(u, )

arcescup
arcup(u,z,y

rad_to_cyclep(z,u)
cycle_to_radp(u,x)
cycle_to_cyclep(u, x,v)

cos(x)
tan(z)
cot(x)
sec(x)
csc(x)

cossin(x, &c, &s)

asin(x)
acos(x)
atan(x)
acot (x)
actg(x)
asec(x)
acsc(x)
atan2(y, x)

cycle(u, z)

axis_cycle(u, x, &h, &v)

sinu(u, z)
cosu(u, x)
tanu(u, z)
cotu(u, )
secu(u, x)
csculu, x)

cossinu(u, z, &c, &s)

asinu(u, )
acosu(u, )
atanu(u, )
acotu(u, )
actgu(u, )
asecu(u, )
acscu(u, x)
atan2u(u, y, )

radian to_cycle(z, wu)
cycle toradian(u, x)
cycle_to_cycle(u, x, v)

Fourth committee draft
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where b, x, y, u, and v are expressions of the same floating point type.

Arithmetic value conversions in C can be explicit or implicit. The explicit arithmetic value
conversions are usually expressed as ‘casts’, except when converting to/from strings. The rules
for when implicit conversions are applied is not repeated here, but work as if a cast had been
applied.
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convertr_,p(z
convertpr (s
convertn (s
convertpn (s
convertp _r(f)

(f)

)
)
)
)

convertyr g

(INT2) x

sscanf (s, "%hno",&r)
sscanf (s, "%hnd",&r)
sscanf (s, "hnx",&r)
fscanf (f,"%no",&r)
fscanf (f,"%nd",&r)

L S S S s
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convertpr 1(f)
converty_(z)
converty_ i (z)
convertr_ (x)
converty_ i (z)
converty_ (x)
converty_ (z)

roundingr_1(y) (INT)nearbyint(y) (when in round to nearest mode)
floorg_ 1 (y) (INT)floor (y) *
ceilingr—1(y) (INT)ceil(y) *
convertr_,p(x) (FLT)x *
convertp_, i (y) (FLT2)y *
convertpn_,p(s) sscanf (s,"%e" ,&r) *
convertpn _p(f) fscanf (f,"%e",&r) *
convertp_,pr (y) sprintf(s,"%.de",x) *
convertp_, g (y) fprintf(h,"%.de",z) *
convertpr s p(s) sscanf (s,"%hf",&r) *
convertpr g (f) fscanf (f,"%f",&r) *
convertp_, pr(y) sprintf(s,"%.df",x) *
convertp_,pr(y) fprintf(h,"%.df",z) *

ISO/IEC FCD 10967-2.4:1999(E)

fscanf (f,"Ynx",&r)
sprintf (s,"%no",x)
sprintf (s,"%nd",x)
sprintf (s,"%nx",x)
fprintf (h,"%no",z)
fprintf (h,"%nd",z)
fprintf (h,"%hnx",z)

XX % o X X ot

where x is an expression of type INT, y is an expression of type FLT, and z is an expression of
type FXD, where FXD is a fixed point type. INT2 is the integer datatype that corresponds to
I'. A 7 above indicates that the parameter is optional. e is greater than 0.

C9x provides non-negative numerals for all its integer and floating point types. The default
base is 10, but base 8 (for integers) and 16 (both integer and float) can be used too. Numerals for
different integer types are distinguished by suffixes. Numerals for different floating point types
are distinguished by suffix: £ for float, no suffix for double, 1 for long double. Numerals for

(3

floating point types must have a ‘.” in them. The details are not repeated in this example binding,
see ISO/IEC FDIS 9899, clause 6.4.4.1 Integer constants, and clause 6.4.4.2 Floating constants.

C9x specifies numerals (as macros) for infinities and NaNs for float:

+o00 INFINITY *
qNaN NAN *
sNalN SIGNAN 1

as well as string formats for reading and writing these values as character strings.

C9x has two ways of handling arithmetic errors. One, for backwards compatibility, is by
assigning to errno. The other is by recording of indicators, the method preferred by LIA-2, which
can be used for floating point errors. For C9x, the absolute_precision_underflow notification
is ignored. The behaviour for notification upon integer operations initiating a notification is,
however, not defined by C9x.

C.5 C++

The programming language C++ is defined by ISO/IEC 14882:1998, Programming languages —
C++ [19].
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An implementation should follow all the requirements of LIA-2 unless otherwise specified by
this language binding.

The operations or parameters marked “}” are not part of the language and should be provided
by an implementation that wishes to conform to the LIA-2 for that operation. For each of the
marked items a suggested identifier is provided.

This example binding recommends that all identifiers suggested here be defined in the names-
pace std: :math.

The LIA-1 datatype Boolean is implemented by the C++ datatype bool.

Every implementation of C++ has integral datatypes int, long int, unsigned int, and
unsigned long int. INT is used below to designate one of the integer datatypes.

C++ has three floating point datatypes: float, double, and long double. FLT is used
below to designate one of the floating point datatypes.

The LIA-2 integer operations are listed below, along with the syntax used to invoke them:

mazy(z,y) max(z, y) *
ming(x,y) min(z, y) *
maz_seqr(zs) xs.max () *
min_seqr(xs) zs.min() *
dimy(z,y) dim(z, y) T
power(z,y) power (z, ¥) T
sqrtr(z) sqrt (z) T
shift2;(z,y) shift2(z, y) T
shift10;(z,y) shift10(z, y) T
dividesr(z,y) does_divide(z, y) T
dividesr(x,y) y !=08&& y %z == *
eveny(z) x h 2 == *
oddr () x h2'=0 *
divf(x,y) div(z, y) T
modar(x,y) mod(z, y) T
groupi(z,y) group(z, y) t
pad(z,y) pad(z, y) t
quotr(x,y) quot(z, 1) T
remrr(z,y) iremainder(z, y) T
gedr(z,y) ged(z, y) t
lemyp(z,y) lem(z, y) T
ged_seqr(zs) zs.ged() T
lem_seqr(xs) zs.lem() T
add_wrapy(z,y) add_wrap(z, ) T
add_ovr(z,y) add_over(z, y) T
subwrapr(x,y) sub_wrap(z, 1) T
sub_ovr(x,y) sub_over(z, vy) T
mul wrapy(z,y) mul wrap(z, ¥) T
mul_ovr(x,y) mul _over(z, y) T

where z and y are expressions of the same integer type and where zs is an expression of type
valarray of an integer type.

The LTA-2 non-transcendental floating point operations are listed below, along with the syntax
used to invoke them:
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mazp(x,y) nmax(z, y) T
ming(z,y) nmin(z, y) T
mmazp(x,y) max(z, y) *(unclear)
mming (z,y) min(z, y) *(unclear)
maz_seqp(zs) zs.nmax () T
min_seqp(xs) zs.nmin() T
mmazx_seqr(zs) zs.max () *(unclear)
mmin_seqp(s) zs.min() *(unclear)
dimp(z,y) dim(z, y) T
roundingp(z) round (z) T
floorp(x) floor(z) *
ceilingr () ceil(z) *
rounding_restp(zx) xz - round(z) T
floor _rest () x - floor(x) *
ceiling_restp(r) z - ceil(x) *
mulp_ g (2, ) dprod(z, y) T
remrp(x,y) remainder (z, ¥) T
sqrtp(x) sqrt (z) *
rsqrtp(z) reciprocal_sqrt(z) T
add_lop(z,y) add_low(z, y) T
sub_lop(z,y) sub_low(z, y) T
mul_lop(z,y) mul_low(z, y) T
div_restp(z,y) div_rest(z, y) T
sqrt_restp(z) sqrt_rest (x) T

where z, y and z are expressions of the same floating point type, and where zs is an expression
of type valarray of a floating point type.

The parameters for operations approximating real valued transcendental functions can be
accessed by the following syntax:

maz_err_hypotp err_hypotenuse<FLT>() 1
max_err_erpr err_exp<FLT>() 1
maxr_err_power g err_power<FLT>() 1
maz_err_sinhp err_sinh<FLT>() T
maz_err_tanhp err_tanh<FLT>() T
big_angle_rp big radian_angle<FLT>() T
Max_err_sing err_sin<FLT>() T
maz_err_tanp err_tan<FLT>() 1
min_angular_unitp smallest_angle unit<FLT>() T
big_angle_up big_angle<FLT>() T
maz_err_sinup(u) err_sin_cycle(u) T
maz_err_tanup(u) err_tan_cycle(u) T
mazx_err_convertp err_convert<FLT>() 1
maz_err_converty err_convert_to_string() T

C.5 C++
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max_err_convertpr

err_convert_to_string()
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I

where u is an expression of a floating point type. Several of the parameter functions are constant

for each type (and library).

The LIA-2 elementary floating point operations are listed below, along with the syntax (type
generic macros) used to invoke them:
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hypotr(z,y)

powerpr(b, z)

expr(x)
expmlp(z)
exp2p (x)
expl0p(x)

powerg (b, y)

powp(b,y)

powerlpmlp(b,y)

Inp(x)
Inlpp(z)
log2p(z)
log10p(z)

logbaser(b, )
logbaselplp (b, x)

sinhp(x)
coshp(z)
tanhp ()
cothp(z)
sechp(z)
cschp(x)

arcsinhp(z)
arccoshp(z)
arctanhp(x)

)
)
)

arccothp(z
arcsechp(x
arceschp(x

radp(x)

azis_radp(zr)

sing(x)
cosp(r)
tanp(x)
cotp(x)
secp(x)
cscp(x)
cossing(z)

arcsing(x)
arccosp ()

hypotenuse(x, y)

poweri(b, 2z)
exp(x)

expml (z)
exp2(x)
expl0(z)

power (b, y)

pow (b, 1)
powerlpmi(b, y)

log(z)

loglp(x)

log2(z)

logl0(x)
logbase(b, x)
logbaselplp(b, =)

sinh(z)
cosh(x)
tanh(x)
coth(x)
sech(x)
csch(x)

asinh(x)
acosh(x)
atanh(zx)
acoth(x)
asech(x)
acsch(x)

rad(z)

—i-

Not LIA-2! (See C.)

— = = ok —_ o — — % — O — — — — % —-

— ===t X X

—-

axis_rad(z, &h, &v) (note out parameters) T

sin(x)
cos(x)
tan(z)
cot (x)
sec(x)
csc(x)
cossin(z, &c, &s)

asin(z)
acos(x)

—_ = = — ok %

*
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arctang(zx) atan(z) *
arccotp(z) acot () T
arcctgp () actg(x) T
arcsecp () asec(x) T
arcescp(x) acsc(x) T
arcr(z,y) atan2(y, x) *
cyclep (u, x) cycle(u, x) T
azis_cyclep(u, ) axis_cycle(u, z, &h, &v) T
sinup (u, ) sinu(u, ) T
cosup(u,x) cosu(u, x) 1
tanup (u, ) tanu(u, ) T
cotup(u,x) cotu(u, x) T
secup (u,x) secu(u, x) 1
cscup(u, ) cscu(u, ) T
cossinup(x) cossinu(u, =, &c, &s) T
arcsinup (u, ) asinu(u, ) T
arccosup(u, x) acosu(u, ) T
arctanup(u, x) atanu(u, ) T
arccotup(u, x) acotu(u, ) T
arcctgup (u, x) actgu(u, ) T
arcsecup(u, ) asecu(u, ) T
arcescup (u, ) acscu(u, ) T
arcup(u,x,y) atan2u(u, y, z) T
rad_to_cyclep (x,u) radian to_cycle(z, u) T
cycle_to_radp(u,x) cycle_to_radian(u, ) T
cycle_to_cyclep (u, x,v) cycle_to_cycle(u, z, v) T

where b, z, y, u, and v are expressions of type FLT, and z is an expressions of type INT

Arithmetic value conversions in C++ are can be explicit or implicit. The rules for when
implicit conversions are applied is not repeated here. The explicit arithmetic value conversions
are usually expressed as ‘casts’, except when converting to/from strings.

convertr_p (x)
convertrn_y(s)
convertrn _(s)
convertyn_y(s)
convertpr 1(f)
convertpr _r(f)
convertpr 1(f)
converty_ (z)
converty_ i (z)
convertr_ (x)
converty i (x)
converty_ (x)
converty_(z)
roundingr_1(y)
floorp_, 1 (y)

C.5 C++

(INT2)x

sscanf (s, "%no",&r)
sscanf (s, "%hnd",&r)
sscanf (s, "hnx",&r)
fscanf (f,"%no",&r)
fscanf (f,"%nd",&r)
fscanf (f,"Y%nx",&r)
sprintf (s,"%no",x)
sprintf (s,"%nd",x)
sprintf (s,"%nx",x)
fprintf (h,"%no",z)
fprintf (h,"%nd",z)
fprintf (h,"%hnx",z)

(INT)nearbyint (y)
(INT)floor (y)

b D S D P S T SR P S S S o

(when in round to nearest mode) *
*
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ceilingp_1(y) (INT)ceil(y) *
convertr_,p(x) (FLT)x *
convertp_, g (y) (FLT2)y *
convertpn g (s) sscanf (s,"%e" ,&r) *
convertpr _p(f) fscanf (f,"%he",&r) *
convertp_, g (y) sprintf(s,"%.de",x) *
convertp_,pr (y) fprintf (h,"%.de",z) *
convertpr_p(S) sscanf (s,"%f",&r) *
convertp p(f) fscanf (f,"%f",&r) *
convertp_,pr(y) sprintf(s,"%.df",x) *
convertp_,pr(y) fprintf(h,"%.df",z) *

where z is an expression of type INT, y is an expression of type FLT, and z is an expression of
type FXD, where FXD is a fixed point type. INT2 is the integer datatype that corresponds to
I'. A 7 above indicates that the parameter is optional. e is greater than 0.

C++ provides non-negative numerals for all its integer and floating point types in base 10.
Numerals for different integer types are distinguished by suffixes. Numerals for different floating
point types are distinguished by suffix: f for float, no suffix for double, 1 for long double.
Numerals for floating point types must have a ‘.’ in them. The details are not repeated in
this example binding, see ISO/IEC 14882, clause 2.9.1 Integer literals, and clause 2.9.4 Floating
literals.

C++ does not specify numerals for infinities and NaNs. Suggestion:

+o00 INFINITY 1
qNaN NAN 1
sNaN SIGNAN t

as well as string formats for reading and writing these values as character strings.

C++ has completely undefined behaviour on arithmetic notification. An implementation
wishing to conform to LTA-2 should provide a means for recording of indicators, similar to C9x.

C.6 Fortran

The programming language Fortran is defined by ISO/IEC 1539-1:1997, Information technology
— Programming languages — Fortran — Part 1: Base language [23].

An implementation should follow all the requirements of LIA-2 unless otherwise specified by
this language binding.

The operations or parameters marked “}” are not part of the language and should be provided
by an implementation that wishes to conform to the LIA-2 for that operation. For each of the
marked items a suggested identifier is provided.

The Fortran datatype LOGICAL corresponds to the LIA datatype Boolean.

Every implementation of Fortran has one integer datatype, denoted as INTEGER, and two
floating point data type denoted as REAL (single precision) and DOUBLE PRECISION.

An implementation is permitted to offer additional INTEGER types with a different range and
additional REAL types with different precision or range, parameterised with the KIND parameter.

The LIA-2 integer operations are listed below, along with the syntax used to invoke them:
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mazr(z,y)
minl (33, y)
maz_seqr(zs)
min_seqr(xs)

MAX(z, y)
MIN(z, y)
MAX (zs[l], zs[2],
MIN(zs[l], zs[2],

ISO/IEC FCD 10967-2.4:1999(E)

*
*

., zs[n]) or MAXVAL(zs) *
., xs[n]) or MINVAL(zs) *

dimy(z,y) DIM(z, ¥y) *
powery(z,y) T k% g *
shift2;(z,y) SHIFT2(x, y) T
shift10;(z,y) SHIFT10(x, y) T
sqrtr(z) ISQRT (x) T
dividesy(z,y) DIVIDES(z, 1) T
eveny(x) MODULO(z,2) == 0 *
oddr(z) MODULO(z,2) !'= 0 *
divfr(z,y) DIV(z, y) T
modar(z,y) MODULO(z, y) *
groupr(z,y) GROUP(z, y) T
padr(z,y) PAD(z, y) T
quotr(x,y) QUOTIENT(z, %) T
remrr(z,y) REMAINDER(z, v) T
gedr(z,y) GCD(z, y) T
lemp(z,y) LCM(z, ¥) T
ged_seqr(zs) GCDVAL (zs) T
lem_seqr(xs) LCMVAL (zs) T
add_wrapr(z,y) ADD_WRAP(z, y) T
add_ovr(z,y) ADD_OVER(z, y) T
sub_wrapr(z,y) SUB_WRAP(z, y) T
sub_ovr(x,y) SUB_OVER(z, ) T
mul _wrapr(z,y) MUL_WRAP(z, y) T
mul_ovy(x,y) MUL_OVER(z, y) T

where x and y are expressions of type INTEGER and where s is an expression of type array of
INTEGER.

The additional non-transcendental floating point operations are listed below, along with the
syntax used to invoke them:

mazp(x,y) MAX(z, ¥y) *
ming(z,y) MIN(z, y) *
mmazp(x,y) MMAX (z, y) T
mming(z,y) MMIN(z, y) T

maz_seqp(xs)
min_seqp(xs)
mmaz_seqp(zs)
mmin_seqp(s)

MAX(zs[1], xs[2], ..., zs[n]) or MAXVAL(zs) x
MIN(zs[l], xs[2], ..., zs[n]) or MINVAL(zs) *
MMAX (zs[1], zs[2], ..., xs[n]) or MMAXVAL(zs) ft
MMIN(zs[l], zs[2], ..., zs[n]) or MMINVAL(zs) f

dimp(z,y) DIM(z, y) *
roundingp () IEEE RINT(z) (if in round to nearest mode) (%)
floory(z) IEEERINT(z) (if in round towards —oo mode) (x)
ceilingrp () IEEERINT(z) (if in round towards 400 mode) (x)
rounding_restp(z) z - IEEERINT(z) (if in round to nearest mode) (%)

C.6 Fortran 109



ISO/IEC FCD 10967-2.4:1999(E)

floor _rest p ()
ceiling_restp(z)
remrp(z,y)
sqrip(z)
rsqrip(z)
mulp_pr(2,y)

add_lop(z,y)
sublop(z,y)
mul_lop(x,y)
div_restp(z,y)
sqrt_restp(x)

Fourth committee draft

z - IEEERINT(z) (if in round towards —oo mode) (x)
z - IEEERINT(z) (if in round towards +00 mode) (x)

IEEE REM(z, y)
SQRT (z)

RSQRT ()
DPROD(z, y)

ADD_LOW(z, y)
SUB_LOW(z, y)
MUL_LOW(z, y)
DIVREST(z, ¥)
SQRT_REST (z)

)

(%
*
T
*

—_ — — — —

where z, y and z are expressions of type FLT, and where zs is an expression of type array of

FLT.

The LIA-2 parameters for operations approximating real valued transcendental functions can
be accessed by the following syntax:

max_err_hypotr

maxr-err_-exrpg
maxr_err_powerg

mazx_err_sinhg
max_err_tanhp

big_angle_rp
Mar_err_sing
max_err_tang

min_angular_unitp
big_angle_up
maz_err_sinup(u)
maz_err_tanup(u)

max_err_convertp
max_err_convert g
max_err_convertp

ERR_HYPOTENUSE ()

ERR_EXP (z)
ERR_POWER (z)

ERR_SINH(x)
ERR_TANH(x)

BIG_RADIAN_ANGLE(z)
ERR_SIN(z)
ERR_TAN (z)

MIN_ANGLE_UNIT(z)
BIG_ANGLE(z)

ERR_SIN_CYCLE ()
ERR_TAN_CYCLE ()

ERR_CONVERT (z)

ERR_CONVERT_TO_STRING
ERR_CONVERT_TO_STRING

—_ = —-

—_ — — =

1
1
l

where b,  and u are expressions of type FLT. Several of the parameter functions are constant for
each type (and library), the argument is then used only to differentiate among the floating point
types.

The LIA-2 elementary floating point operations are listed below, along with the syntax used
to invoke them:
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hypotr(z,y)

powerpr(b, z)
expr(x)
expmlp(x)

exp2p ()
expl0p(x)
powerp (b, y)
powerlpmlp(b,y)

HYPOT(x, y)

b *xx z
EXP(z)
EXPM1 (x)
EXP2(z)
EXP10(x)
b x*x y
POWER1PM1 (b, y)

— o — — — %
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Inp(z) LOG(z) *
Inlp p(z) LOG1P (x) T
log2 1o (z) LOG2(z) T
log10 g (z) LOG10(z) *
logbaser (b, x) LOGBASE(b, ) T
logbaselplp (b, x) LOGBASE1P1P (b, x) T
sinhp(x) SINH(z) *
coshp(x) COSH(x) *
tanhp(x) TANH () *
cothp () COTH(x) T
sechp(x) SECH(z) T
cschp(z) CSCH(x) T
arcsinhp(z) ASINH(z) T
arccoshp () ACOSH(x) T
arctanhp(z) ATANH(z) T
arccothp () ACOTH(x) T
arcsechp(z) ASECH(z) T
arceschp(x) ACSCH(x) T
radp(z) RAD () T
sinp(r) SIN(z) *
cosp(x) CoS(z) *
tanp(z) TAN(z) *
cotp(x) COT(z) T
secp(z) SEC(z) T
cscr () CSC(x) T
arcsing(x) ASIN(x) *
arccosp(x) ACOS (x) *
arctanp(x) ATAN (x) *
arccotp(z) ACOT (x) T
arcctgp () ACTG(x) T
arcsecrp () ASEC(x) T
arcescp(x) ACSC(x) T
arcr(z,y) ATAN2(y, z) *
cyclep (u, x) CYCLE (u,x) T
sinup(u, ) SINU(u,x) T
cosup(u,x) COSU(u,x) T
tanup (u, ) TANU (u,x) T
cotup(u,x) COTU (u,x) T
secup(u,x) SECU(u,x) T
cscup (U, ) CSCU(u,x) T
arcsinup (u, ) ASINU(u,x) T
arccosup(u, x) ACOSU(u,x) T
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arctanup(u, x) ATANU(u,x) T
arccotup(u, ) ACOTU(u,x) T
arcctgup(u, x) ACTGU(u,x) T
arcsecup(u, ) ASECU(u,x) T
arcescup (u, ) ACSCU(u,x) T
arcup(u,z,y ATAN2U (u,y,z) T
cycler (360, x) DEGREES () T
sinup (360, ) SIND(x) T
cosur (360, ) COSD(z) T
tanu (360, ) TAND () T
cotur (360, x) COTD(z) T
secur (360, x) SECD(z) T
cscu (360, x) CSCD(x) T
arcsinup (360, x) ASIND(z) T
arccosur (360, x) ACOSD(z) T
arctanup (360, z) ATAND () T
arccotur (360, x) ACOTD(z) T
arcctgup (360, ) ACTGD () T
arcsecur (360, z) ASECD(z) T
arcescup (360, x) ACSCD(x) T
arcur(360,x,y) ATAN2D (y,x) T
rad_to_cyclep(z,u) RAD_TO_CYCLE(z, u) T
cycle_to_radp(u,x) CYCLE_TORAD(u, x) T
cycle_to_cyclep(u, x,v) CYCLE_TO CYCLE(u, z, v) T

where b, x, y, u, and v are expressions of type FLT, and z is an expressions of type INT

Arithmetic value conversions in Fortran are always explicit, and the conversion function is
named like the target type, except when converting to/from strings.

convertr_,p(x) INT (z,kind) *

Ibla FORMAT (Bn) *(binary)
convertpr r(f) READ (UNIT=f,FMT=lbla) r *
convertr_(x) WRITE (UNIT=h, FMT=lbla) = *

Iblb FORMAT (On) *(octal)
convertr_r(f) READ (UNIT=f,FMT=[blb) r *
converty_(x) WRITE (UNIT=h, FMT=[blD) z *

Ible FORMAT (In) *(decimal)
convertp r(f) READ (UNIT=f,FMT=lblc) r *
convertr_(x) WRITE (UNIT=h, FMT=lblc) x *

[bld  FORMAT (Zn) *(hexadecimal)
convertrr _r(f) READ (UNIT=f,FMT=[bld) r *
converty i (x) WRITE (UNIT=h, FMT=Ibld) =z *
roundingr_1(y) ROUND (y , kind?) T
floorg_, 1 (y) FLOOR(y,kind?) *
ceilingr—1(y) CEILING(y,kind?) *
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convert;_p(x) REAL(z,kind) or sometimes DBLE(z) *
convertp_, g (y) REAL(y,kind) or sometimes DBLE(y) *
Ible FORMAT (Fw.d) *
bl f FORMAT (Dw.d) *
Iblg FORMAT (Ew.d) *
[blh FORMAT (Ew.dEe) *
bl FORMAT (ENw.d) *
Iblj  FORMAT (ENw.dEe) *
Iblk FORMAT (ESw.d) *
[bll FORMAT (ESw.dEe) *
convertpn_p(f) READ (UNIT=f,FMT=[blz) ¢ *
convertp_ g (y) WRITE (UNIT=h, FMT=lblz) y *
convertpr pg(f) READ (UNIT=f,FMT=lblx) t *

where z is an expression of type INT, y is an expression of type FLT, and z is an expression of
type FXD, where FXD is a fixed point type. INT2 is the integer datatype that corresponds to
I.

Fortran provides base 10 non-negative numerals for all of its integer and floating point types.
Numerals for floating point types must have a *.” in them. The KIND of the a numeral is indicated
by a suffix. The details are not repeated in this example binding, see ISO/TEC 1539-1, clause
4.3.1.1 Integer type, and clause 4.3.1.2 Real type.

Fortran does not specify numerals for infinities and NaNs. Suggestion:

+o00 INFINITY 1
qNaN NAN 1
sNaN SIGNAN t

as well as string formats for reading and writing these values as character strings.

Fortran provides recording of indicators for floating point arithmetic notifications, the LIA-2
preferred method. See ISO/IEC TR 15580:1998, Information technology — Programming lan-
guages — Fortran — Floating-point exception handling [24]. absolute_precision_underflow no-
tifications are however ignored.

C.7 Haskell

The programming language Haskell is defined by Report on the programming language Haskell 98
[66], together with Standard libraries for the Haskell 98 programming panguage [67].

An implementation should follow all the requirements of LIA-2 unless otherwise specified by
this language binding.

The operations or parameters marked “” are not part of the language and should be provided
by an implementation that wishes to conform to the LIA-2 for that operation. For each of the
marked items a suggested identifier is provided.

The Haskell datatype Bool corresponds to the LIA datatype Boolean.

Every implementation of Haskell has at least two integer datatypes Integer, which is unlim-
ited, and Int, and at least two floating point datatypes, Float, and Double. The notation INT
is used to stand for the name of one of the integer datatypes, and FLT is used to stand for the
name of one of the floating point datatypes in what follows.
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The LIA-2 integer operations are listed below, along with the syntax used to invoke them:

maz(z,y)
min[ (I, y)
maz_seqr(rs)
min_seqr(xs)

dim[ (33, y)
power;(z,y)
shift2y (x, y)
shift10;(z,y)
sqrtr(z)

dividesy(x,y)
even(x)
oddy(x)
divf[(x, y)
modar(x,y)
groupr(x,y)
pad;(x, y)
qU/OtI(xa y)
remrr(z,y)
ngl (377 y)
lcml(l“, y)
ged_seqr(xs)
lem_seqr(xs)

add_wrapr(z,y)
add_ovr(z,y)
sub_wrapr(x,y)
sub_ovi(x,y)
mul _wrapr(z,y)
mul_ovr(x,y)

max r y or
min z y or
maximum xS
minimum xs

dim z y or
z ~y or

shiftl0 z y
isqrt =

divides z y
even
odd z

div z y or
mod z y or
grp z y oOr
pad z y or

ratio x y or z ‘ratiof y
remainder z y oOr

ged z y or
lcm z y or
gcd_seq zs

lcm_seq zs

feeR

8 8 8 8 8
[
<+

oy
T *:+ y

r ‘max‘ y
T ‘min‘ y

r ‘dim‘ y

™M zy
shift2 z y or

or z ‘divides‘ y

T ‘div‘ y
z ‘mod‘ y
T ‘grp‘ y
r ‘pad‘ y

x ‘gedt y
r ‘lem‘ y

z ‘shift2‘ y
or z ‘shift10‘ y

z ‘remainder‘ y

*

b ol S

— = % o = = = = Ok kO ¥ —- —_ = — o —

—_ —t — — — —1-

where z and y are expressions of type INT and where zs is an expression of type [INT].

The LTA-2 non-transcendental floating point operations are listed below, along with the syntax
used to invoke them:
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mazp(x,y)
ming(z,y)
mmazp(x,y)
mming(z,y)
maz_seqr(xs)
min_seqp(xs)
mmaz_seqr(xs)
mmin_seqp(xs)

roundingp(x)
floory ()
ceilingrp (x)
rounding_restp(z)
floor _rest ()

max r y Or
min x y oOr

mmax r y Or
mmin r Yy oOr

maximum zxs
minimum xs
mmaximum TS
mminimum s

dim z y or
fromInteger
fromInteger
fromInteger

T ‘max‘ y
z ‘min‘ y
T ‘mmax‘ y
z ‘mmin‘ y

r ‘dim‘ y

(round z)
(floor )
(ceiling z)

x - fromInteger (round z)
x - fromInteger (floor z)

— =t X —= —F X

X X X X X —+
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ceiling_restp(z) z - fromInteger (ceiling x) *
remrp(x,y) remainder z y or 2z ‘remainder‘ y T
sqrtp(x) sqrt = *
rsqrip(x) rsqrt = T
add_lop(z,y) T +:i-y T
sub_lop(z,y) r -y T
mul_lop(z,y) T k:i— Yy T
div_restp(z,y) T /1%y T
sqrt_restp(zr) sqrt_rest x T
mulp_ g (2, ) prod z y T

where z, y and z are expressions of type FLT, and where zs is an expression of type [FLT].

The binding for the floor, round, and ceiling operations here take advantage of the unbounded
Integer type in Haskell, and that Integer is the default integer type.

The LIA-2 parameters for operations approximating real valued transcendental functions can
be accessed by the following syntax:

max_err_hypotp err_hypotenuse x 1
max_err_expr err_exp r T
MaT_err_power g err_power T
max_err_sinhp err_sinh % T
maz_err_tanhp err_tanh z 1
big_angle_rp big radian_angle z T
Mmar_err_sing err_sin T
maz_err_tanp err_tan zx 1
min_angular_unitp min_angle unit =z T
big_angle_up big_angle x T
maz_err_sinup(u) err_sin_cycle u T
maz_err_tanup(u) err_tan cycle u T
max_err_convertp err_convert z T
max_err_convertpr err_convert "" 1
MaT_err_convertp: err_convert "" T

where b, z and u are expressions of type FLT. Several of the parameter functions are constant for
each type (and library), the argument is then used only to differentiate among the floating point
types.

The LIA-2 elementary floating point operations are listed below, along with the syntax used
to invoke them:

hypot g (z,y) hypotenuse z y T
powerp; (b, z) b~z or ("7) bz *
expr(z) exp = *
expm! p(x) expMl z T
exp2p(z) exp2 T
expl0p(x) expl0 z T
powerg (b, y) b xx y or (x*x) by *
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powerlpmlp(b,y) power1PM1 b y or b ‘powerlPM1‘ y T
Inp(z) log = *
Inlp p(x) loglP x T
log2p(z) log2 =z T
log10x(x) logl0 x T
logbaser (b, ) logBase b z or b ‘logBase‘ *
logbaselplp (b, x) logBaselP1P b z T
sinhp(x) sinh z *
coshp(x) cosh z *
tanhp () tanh z *
cothp(z) coth = T
sechp(z) sech z T
cschp(x) csch z T
arcsinhp () asinh z *
arccoshp () acosh x *
arctanhp(x) atanh *
arccothp(x) acoth x T
arcsechp(x) asech z T
arceschp(x) acsch x T
radp(x) radians x T
azis_radp(z) axis radians z T
sinp(x) sin x *
cosp(x) cos ¥ *
tanp(z) tan z *
cotp(x) cot x T
secp(x) sec x T
cscp(x) csc x T
cossing(z) cosSin x T
arcsing(x) asin z *
arccosp(x) acos x *
arctang(x) atan x *
arccotp(z) acot x T
arcctgp (x) actg = T
arcsecp(z) asec x T
arcescr(x) acsc x T
arcp(z,y) atan2 y =« *
cyclep(u, x) cycle u x T
azis_cyclep(u, ) axis_cycle u x T
sinup(u, x) sinU u x T
cosup (U, x) cosU u = T
tanup(u, ) tanU u x T
cotup(u, x) cotU u = T
secup(u, ) secU u x T
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cscup (u, )
cossinup(x)

arcsinup (u, )
arccosup(u, x)
arctanup(u, x)
arccotup(u, T

)
arcctgup (u, x)
arcsecup(u, )
arcescup (u, )

arcup(u,z,y)

rad_to_cyclep(x,u)
cycle_to_radp(u,x)
cycle_to_cyclep (u, x,v)

ISO/IEC FCD 10967-2.4:1999(E)

cscU u z 1
cosSinU u z 1
asinU u = 1
acosU u z 1
atanU u = 1
acotU u z 1
acotU u = 1
asecU u z 1
acscU u = 1
atan2U u y = 1
rad to_cycle z u 1
cycle torad u = 1
cycle_to_cycle u = v T

where b, x, y, u, and v are expressions of type FLT, and z is an expressions of type INT.

Arithmetic value conversions in Haskell are always explicit. They are done with the overloaded
fromIntegral and fromFractional operations.

convertr_p (x) fromIntegral z *
convertn _(z) read s *
converty_ i (z) show z *
roundingr_1(y) round (y) *
floorg_ 1 (y) floor(y) *
ceilingr—1(y) ceiling(y) *
convert;_,r(x) fromIntegral = *
convertp_,pr (y) fromFractional y *
convertpn_,p(s) read s K
convertp_,pr (y) show y ek
convertpr_yp(S) read s *
convertp_,pr(y) show y "

where z is an expression of type INT, y is an expression of type FLT, and z is an expression of
type FXD, where FXD is a fixed point type.

Haskell provides non-negative numerals for all its integer and floating point types in base is 10.
There is no differentiation between the numerals for different floating point types, nor between
numerals for different integer types, and integer numerals can be used for floating point values.
Integer numerals stand for a value in Integer (the unbounded integer type) and an implicit
fromInteger operation is applied to it. Fractional numerals stand for a value in Rationale (the
unbounded type of rational numbers) and an implicit fromRational operation is applied to it.

Haskell does not specify any numerals for infinities and NaNs. Suggestion:

+00 infinity 1
qNaN quietNaN T
sNalN sigallingNaN T

as well as string formats for reading and writing these values as character strings.
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Haskell has the notion of error, which results in a change of ‘control flow’, which cannot be
returned from, nor caught. An error results in the termination of the program. (There are
suggestions to improve this.) pole for integer types and invalid (in general) are considered to
be error. No notification results for underflow, and the continuation value (specified by LIA-
2) is used directly, since recording of indicators is not available and error is inappropriate for
underflow. The handling of integer overflow is implementation dependent. The handling of
floating point overflow and pole should be to return a suitable infinity (specified by LIA-2), if
possible, without any notification, since recording of indicators is not available.

C.8 Java

The programming language Java is defined by The Java Language Specification [65].

An implementation should follow all the requirements of LIA-2 unless otherwise specified by
this language binding.

The operations or parameters marked “}” are not part of the language and should be provided
by an implementation that wishes to conform to the LIA-2 for that operation. For each of the
marked items a suggested identifier is provided. The LIA-2 operations that are provided in Java
2 (marked “x” below) are in the final class java.lang.Math.

The Java datatype boolean corresponds to the LIA datatype Boolean.
Every implementation of Java has the integral datatypes int, and long.
Java has two floating point datatypes, float and double, which must conform to TEC 60559.

The LIA-2 integer operations are listed below, along with the syntax used to invoke them:

ming(x,y) min(z, y) *
mazy(z,y) max(z, y) *
min_seqr(xs) min_arr (zs) T
maz_seqr(zs) max_arr (zs) T
dimy(z,y) dim(z, y) T
sqrtr(z) sqrt (z) T
power(z,y) power (z, ¥) T
dividesy(x,y) divides(z, y) T
eveny(z) x h 2 == *
oddy(x) xh2'=0 *
divfr(z,y) div(z, y) T
modar(z,y) mod(z, y) T
groupr(z,y) group(z, y) t
pady(z,y) pad(z, y) T
quotr(x,y) quot(z, 1) T
remrr(z,y) rem(z, y) T
gedr(z,y) ged(z, y) t
lemyp(z,y) lem(z, y) T
ged_seqr(xs) gcd_arr (zs) T
lem_seqr(xs) lcm arr(zs) T
add_wrapr(z,y) add_wrap(z, ) T
add_ovr(z,y) add_over(z, %) T
sub_wrapr(x,y) sub_wrap(z, ) T
sub_ovi(x,y) sub_over(z, 1) T
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mul _wrapr(z,y)
mul_ovr(z,y)

ISO/IEC FCD 10967-2.4:1999(E)

mul wrap(z, y)
mul_over(z, y)

1
l

where z and y are expressions of type INT and where zs is an expression of type array of INT.

The LTA-2 non-transcendental floating point operations are listed below, along with the syntax

used to invoke them:

ming(z,y)
mazp(x,y)
mmazp(x,y)
mming (z,y)
min_seqp(xs)
maz_seqp(xs)
mmaz_seqr(xs)
mmin_seqp(s)

roundingp ()

floorp(x)

ceilingp ()

dprodys_ (7, )
remrp(x,y)
sqrip(x)
rsqrip(z)

add_lop(z,y)
sublop(z,y)
mul_lop(z,y)
div_restp(z,y)
sqrt_restp(z)

min(z, )
max(x, y)
mmax(x, y)
mmin(z, y)
min_arr(xs)
max_arr (xs)
mmax (xs)
mmin(zs)

rint (z)
floor(x)
ceil(x)

dim(z, y)

dprod(z, y)
IEEEremainder(z, y)
sqrt (z)

rsqrt(z)

add_low(x, y)
sub low(z, ¥y)
mul low(x, y)
div_rest(z, y)
sqrt_rest (z)

—_ e — — — — X

b S

— % o — —

—_ =t — — —

(only for double)

where z, y and z are expressions of type FLT, and where xs is an expression of type array of

FLT.

The LIA-2 parameters for operations approximating real valued transcendental functions can
be accessed by the following syntax:

max_err_hypotp

Mazx_err_erpp
max_err_powerp (b, x)

max_err_sinhp
max_err_tanhg

big_radian_anglep
max_err_sing
mazr_err_tang

min_angular_unitp
big_anglep
maz_err_sinup(u)
maz_err_tanup(u)

C.8 Java

err_hypotenuse ()

err_exp(z)
err_power (b, x)

err_sinh(z)
err_tanh(zx)

big radian_angle(x)
err_sin(z)
err_tan(x)

smallest_angular unit (z)
big_angle(x)

err_sin cycle(u)

err_tan cycle(u)

—_ =

—_ =t — =
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max_err_convertp err_convert () 1
maz_err_convertp err_convert_to_string 1
maz_err_convertp: err_convert_to_string 1

where b,  and u are expressions of type FLT. Several of the parameter functions are constant for
each type (and library), the argument is then used only to differentiate among the floating point
types.

The LIA-2 elementary floating point operations are listed below, along with the syntax used
to invoke them. These are defined only for double not for float.

hypotr(z,y) hypotenuse(z, y) T
powerpr (b, z) poweri(b, z) T
expr(z) exp(z) *
expm1y(x) expml (z) T
exp2p () exp2(x) T
expl0y(x) expl10(z) T
powerp (b, y) power (b, y) T
powp (b, y) pow(b, y) * Not LTA-2!
powerlpmlp(b,y) powerlpmi (b, y) T
Inp(z) log(z) *
Inlpp(z) loglp(x) T
log2p () log2(x) T
log10p(z) logl10(x) T
logbaser (b, ) log(b, z) T
logbaselplp (b, x) logliplp(b, x) T
sinhp(z) sinh(z) T
coshp(x) cosh(z) T
tanhp(z) tanh (x) T
cothp(x) coth(z) T
sechp(z) sech(z) T
cschp(x) csch(z) T
arcsinhp(z) asinh(x) T
arccoshp () acosh(x) T
arctanhp(z) atanh (x) T
arccothp(z) acoth(x) T
arcsechp(x) asech(x) T
arceschp(x) acsch(x) T
radp(x) radian(z) T
azis_radp(z) axis_rad(x) T
sing(x) sin(x) *
cosp(x) cos(x) *
tanp(z) tan(z) *
cotp(z) cot (x) T
secp(x) sec(x) T
csep(x) csc(x) T
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arcsing(x) asin(x) *
arccosp(x) acos(x) *
arctang(x) atan(z) *
arccotp () acot (z) T
arcctgp () actg(x) T
arcsecp () asec(x) T
arcescp(x) acsc(x) T
arcr(z,y) atan2(y, ) *
cyclep (u, ) cycle(u, x) T
azis_cyclep(u, ) axis_cycle(u, z) T
sinup (u, ) sinu(u, ) T
cosup(u,x) cosu(u, ) T
tanup (u, ) tanu(u, x) T
cotup(u,x) cotu(u, x) T
secup (u, ) secu(u, x) 1
cscup(u, ) cscu(u, ) T
arcsinup (u, ) asinu(u, ) T
arccosup (U, x) acosu(u, ) T
arctanup(u, x) atanu(u, ) T
arccotu g (u, x) acotu(u, ) T
arcctgup (u, x) actgu(u, ) T
arcsecup(u, ) asecu(u, ) T
arcescup (u, ) acscu(u, ) T
arcup(u,z,y) atan2u(u, y, T) T
rad_to_cyclep(x,u) radian to_cycle(z, u) T
cycle_to_radp(u,x) cycle_to_radian(u, x) T
cycle_to_cyclep(u, x,v) cycle to_cycle(u, x, v) T
rad_to_cyclep (x,360) toDegrees (z) *
cycle_to_radp (360, z) toRadians (x) *

where b, z, y, u, and v are expressions of type FLT, and z is an expressions of type INT

Arithmetic value conversions in Java can be explicit or implicit. The rules for when implicit
conversions are applied is not repeated here. The explicit arithmetic value conversions are usually
expressed as ‘casts’, except when converting to/from strings.

Integer.toOctalString(z)
Integer.toHexString(z)
Long.toString(x)
Long.toString(x,radix)
Long.toBinaryString(z)

convertr_,m(x
converty_ (T
convertr_,m(x
converty_ (T

convertr_,p(x) (INT2)z *
convert_g(s Integer.parseInt(s) *
convertn_ (s Integer.parselnt (s, radiz) *
convert_g(s Long.parseLong(s) *
convertin_g(s Long.parseLong(s,radiz) *
convertr_m(x Integer.toString(z) *
converty_m(x Integer.toString(z,radix) *
convertr_p(x Integer.toBinaryString(z) *
*
*
*
*
*

(s)
(s)
(s)
(s)
()
()
()
()
()
()
()
()

convertr_,m(x
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converty_(x) Long.toOctalString(x) *
convertr_(x) Long.toHexString(x) *
converty () Mg *
roundingr_1(y) (INT)rint (y) *
floorg_, 1 (y) (INT)floor (y) *
ceilingr—1(y) (INT)ceil(y) *
convertr_,p(x) (FLT)x *
convertp_, g (y) (FLT2)y *
convertpn g (s) Float.parseFloat (s) *
convertpn_, g (s) Double.parseDouble(s) *
convertp_,pr (y) Float.toString(z) *
convertp_, g (y) Double.toString(x) *
convertpr_p(8) Float.parseFloat (s) *
convertpr_ g (s) Double.parseDouble(s) *

where x is an expression of type INT, y is an expression of type FLT, and z is an expression of
type FXD, where FXD is a fixed point type. INT2 is the integer datatype that corresponds to
I'. A 7 above indicates that the parameter is optional. e is greater than 0.

Java provides non-negative numerals for all its integer and floating point types. The default
base is 10, but for integers base 8 and 16 can be used too. Numerals for different integer types are
distinguished by suffixes. Numerals for different floating point types are distinguished by suffix:
f for float, no suffix for double, 1 for long double. Numerals for floating point types must

(3

have a ‘.’ in them. The details are not repeated in this example binding, see The Java Language
Specification, clause 3.10.1 Integer literals, and clause 3.10.2 Floating-point literals.

Java specifies numerals for infinities and NaNs:

+o00 Float .POSITIVE_INFINITY *
+o00 Double .POSITIVE INFINITY *
—00 Float .NEGATIVE_INFINITY *
—00 Double .NEGATIVE INFINITY *
qNaN Float.NaN *
qNaN Double.NaN *
sNaN Float.SigNaN T
sNalN Double.SigNaN T

as well as string formats for writing these values as character strings. However, infinities and
NaNs cannot be converted from string.

Java has a notion of ‘exception’ that implies a non-returnable, but catchable, change of con-
trol flow. Java uses its exception mechanism as its default means of notification. Java ignores
underflow notifications since a Java exception is inappropriate for an underflow notification.
On underflow the continuation value (specified in LIA-2) is used directly without recording the
underflow itself. Java also ignores pole and overflow notifications for floating point operations,
and the continuation value (specified in LIA-2) is used directly without recording the pole or
overflow itself. Java uses the exception java.lang.ArithmeticException for invalid notifica-
tions and for pole notifications for integer operations. Java, however, ignores pole and invalid
for log and sqrt. Java uses java.lang.NumberFormatException for invalid (and pole) notifi-
cations for operations that convert from string. Since Java exceptions are non-returnable changes
of control flow, no continuation value is provided for these notifications.
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An implementation that wishes to follow LIA-2 should provide recording of indicators as an
alternative means of handling numeric notifications, including those that Java ignores when the
numeric notification handling mechanism is by Java exceptions. Recording of indicators is the
LIA-2 preferred means of handling numeric notifications.

C.9 Common Lisp

The programming language Common Lisp is defined by ANSI X3.226-1994, Information Tech-
nology — Programming Language — Common Lisp [43].

An implementation should follow all the requirements of LIA-2 unless otherwise specified by
this language binding.

The operations or parameters marked “}” are not part of the language and should be provided
by an implementation that wishes to conform to the LIA-2 for that operation. For each of the
marked items a suggested identifier is provided.

Common Lisp does not have a single datatype that corresponds to the LIA-1 datatype Boolean.
Rather, NIL corresponds to false and T corresponds to true.

Every implementation of Common Lisp has one unbounded integer datatype. Any mathemat-
ical integer is assumed to have a representation as a Common Lisp data object, subject only to
total memory limitations.

Common Lisp has four floating point types: short-float, single-float, double-float, and
long-float. Not all of these floating point types must be distinct.

The additional integer operations are listed below, along with the syntax used to invoke them:

ming(z,y) (min = y) *
mazxr(z,y) (max = y) *
min_seqr(xs) (min . zs) or (min 1 Z9 ... Zp) *
maz_seqr(zs) (max . zs) or (max z; o9 ... Zp) *
dimy(z,y) (dim z ) T
sqrtr(z) (isqrt =) T
power;(z,y) (expt x y) (returns a rational on negative power) x
shift2;(z,y) (shift2 z y) T
shift10;(z,y) (shift10 z ¥) T
dividesy(z,y) (dividesp z ¥) T
eveny(x) (evenp ) *
oddy(x) (oddp =) *

(the floor, ceiling, and round can also accept floating point arguments)
(multiple-value-bind (flr md) (floor z y))
divfr(z,y) flr or (floor z y) *
modar(z,y) md or (mod z y) *

(multiple-value-bind (ceil pd) (ceiling z y))
groupr(x,y) ceil or (ceiling z y) *
pad(z,y) (- pd) *

(multiple-value-bind (rnd rm) (round z y))

quotr(x,y) rnd or (round z y) *
remrr(z,y) rm *
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gedr(z,y) (ged = y) (deviation: (gcd 0 0) is 0) *
lemyp(z,y) (1cm z y) *
ged_seqr(xs) (ged . zs) or (ged 21 o ... Ty)  *
lem_seqr(xs) (lecm . zs) or (lem z1 Zo ... Tp) *
add_wrapr(z,y) (add-wrap = y) T
add_ovy(z,y) (add-over z y) T
sub_wrapr(x,y) (sub-wrap = y) T
sub_ovr(z,y) (sub-over = y) T
mul _wrapr(z,y) (mul-wrap = y) T
mul_ovr(x,y) (mul-over z ¥) T

where z and y are expressions of type INT and where zs is an expression of type list of INT.

The LTA-2 non-transcendental floating point operations are listed below, along with the syntax
used to invoke them:

ming(z,y) (min z y) *
mazp(x,y) (max z ) *
min_seqp(xs) (min . zs) or (min z; Z2 ... ) *
max_seqr(xs) (max . zs) or (max x| T2 ... Ip) *
(multiple-value-bind (flr frem) (ffloor z))
floorp(x) (ffloor z) or flr *
floor _rest p () frem *
(multiple-value-bind (rnd rrem) (fround x))
roundingr(z) (fround z) or rnd *
rounding_restp () rrem *
(multiple-value-bind (cln crem) (fceiling z))
ceilingrp (x) (fceiling z) or cln *
ceiling_restp(x) crem *
dimp(z,y) (dim z y) T
(multiple-value-bind (rqt remainder) (fround z y))
remrp(x,y) remainder *
sqrip(z) (sqrt z) (returns a complex on negative arg.) *
rsqrip(z) (rsqrt z) T
dprodp_gi(x,y) (prod z y) T
add_lop(z,y) (add-low z %) T
sublop(z,y) (sub-low z vy) T
mul_lop(x,y) (mul-low z %) T
div_restp(z,y) (div-rest z y) T
sqrt_restp(z) (sqrt-rest x) T

where z, y and z are data objects of the same floating point type, and where xs is a data objects
that is a list of data objects of (the same, in this binding) floating point type. Note that Common
Lisp allows mixed number types in many of its operations. This example binding does not explain
that in detail.

The LIA-2 parameters for operations approximating real valued transcendental functions can
be accessed by the following syntax:

maz_err_hypotp (err-hypotenuse z) 1
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MAT_err_erpr (err-exp z) 1
MaT_err_powerp (err-power z) 1
maz_err_sinhp (err-sinh x) 1
maz_err_tanhp (err-tanh x) 1
big_radian_anglep (big-radian-angle x) T
Mazr_err_sing (err-sin z) 1
max_err_tang (err-tan x) 1
min_angular_unitp (minimum-angular-unit z) 1
big_angle_up (big-angle ) T
maz_err_sinup(u) (err-sin-cycle u) T
maz_err_tanup(u) (err-tan-cycle u) T
max_err_convertp (err_convert z) 1
mazx_err_convertp err-convert-to-string T
max_err_convertp err-convert-to-string T

where b, z and u are expressions of type FLT. Several of the parameter functions are constant for
each type (and library), the argument is then used only to differentiate among the floating point
types.

The LIA-2 elementary floating point operations are listed below, along with the syntax used
to invoke them:

hypotp(z,y) (hypotenuse = y) T
powerpr (b, z) (expt b 2) *
expr(z) (exp ) *
exp2p(x) (exp2 x) T
expl0p () (exp10 z) T
expmlp(z) (expml x) T
powerp(b,y) (expt b y) (deviation: (expt 0.0 0.0) is 1) *
powerlpmlp(b,y) (exptipml b y) T
Ing(x) (log z) (returns a complex on negative arg.) x
Inlpp(x) (loglp x) T
log2p(x) (log2 x) T
log10p () (logl0 z) T
logbaser (b, ) (log = b) (note parameter order) *
logbaselplp (b, ) (logip = b) T
sinhp(x) (sinh x) *
coshp(x) (cosh x) *
tanhp(x) (tanh z) *
cothp(z) (coth x) T
sechp(x) (sech x) T
cschp(z) (csch x) T
arcsinhp(x) (asinh z) *
arccoshp () (acosh z) (returns a complex when z < 1) *
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arctanhp(x)
arccothp(x)
arcsechp(x)
arceschp(x)

radp(x)

azis_radp(z)
sing(x)

cosp(z)
tanp(x)
cotp(z)
secp(x)
cscp(x)

arcsing(x)
arccosp(z)
arctanp(x)
arccotp(z
arcctgp
arcsecp(z
arcescp(x

arcp(z,y)

)
)
)
)

cyclep(u, x)

azis_cyclep(u, )

sinup(u, x)
cosup(u,x)
tanup (u, x)
cotup(u, x)
secup (u,x)
cscup(u, )

arcsinup (u, )
arccosup(u, x)
arctanup(u, x)
arccotup(u, x
arcctgup (u, x
arcsecup(u, T
arcescup (u,
arcup(u,z,y

)
)
)
)

rad_to_cyclep(z,u)
cycle_to_radp(u,x)
cycle_to_cyclep(u, x,v)

Fourth committee draft

(atanh z) (returns a complex when |z| > 1) *

(acoth z)
(asech z)
(acsch z)

(radians z)
(axis_rad x)
(sin )
(cos )
(tan x)
(cot x)
(sec x)
(csc x)

(asin z) (returns a complex when |z| > 1
(acos z) (returns a complex when |z| > 1

(atan x)
(acot )
(actg )
(asec )
(acsc )
(atan y x)

(cycle u z)

(axis_cycle u x)

(sinU u z)

(cosU u x)
(tanU u )
(cotU u x)
(secU u x)
(cscU u x)
(asinU u =z
(acosU u z
(atanU u =z
(acotU u =z
(actglU u x)
(asecU u x)
(acscU u x)
(atanU v y x)

(rad_to_cycle = u)
(cycle_torad u x)
(cycle_to_cycle u x v)

1
1
t

—_ = — — — — — —- $ — = = X — = == ko O — —-

—_ = — — — — — —-

1
1
l

where b, x, y, u, and v are expressions of type FLT, and z is an expressions of type INT.

Arithmetic value conversions in Common Lisp are can be explicit or implicit. The rules for

when implicit conversions are done is implementation defined.
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converty_(x)
converty_ ()
converty_(x)

(format nil "~wB" z)
(format nil "~w0" z)
(format nil "~wD" z)

*(binary)
*(octal)
*(decimal)
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convertr_ (x) (format nil "~“wX" z) *(hexadecimal)
convertr_ (x) (format nil "“r,wR" x) *(radix r)
converty_,(x) (format nil ""@R" x) *(roman numeral)
roundingr_1(y) (round y) *

floorr_ 1 (y) (floor y) *
ceilingr_1(y) (ceiling y) *
convertr_,p(x) (float z kind) *

convertp_, g (y) (float y kind) *

convertp_, g (y) (format nil "“wF" y) *
convertp_,pr (y) (format nil "~w,e, k,cE" y) *

convertp_ g (y) (format nil "~w,e, k,cG" y) *
convertp_,pr(y) (format nil "“r,w,0,#F" y) *

where z is an expression of type INT, y is an expression of type FLT, and z is an expression
of type FXD, where FXD is a fixed point type. Convertion from string to numeric value is in
Common Lisp done via a general read procedure, which reads Common Lisp ‘S-expressions’.

Common Lisp provides non-negative numerals for all its integer and floating point types in
base 10. There is no differentiation between the numerals for different floating point datatypes,
nor between numerals for different integer types, and integer numerals can be used for floating
point values.

Common Lisp does not specify numerals for infinities and NaNs. Suggestion:

400 infinity-FLT 1
qNaN nan-FLT T
sNalN signan-FLT T

as well as string formats for reading and writing these values as character strings.

Common Lisp has a notion of ‘exception’, but it is unclear if it is used for any of the arithmetic
operations for overflow or pole. However, Common Lisp has no notion of compile time type
checking, and an operation can return differently typed values for different arguments. When
justifiable, Common Lisp arithmetic operations returns a complex floating point value rather
than giving a notification, even if the argument(s) to the operation were not complex. For
instance, (sqrt -1) (quietly) returns a representation of 0 + i.

C.10 1ISLisp

The programming language ISLisp is defined by ISO/IEC 13816:1997, Information technology
— Programming languages, their environments and system software interfaces — Programming

language ISLISP [25].

An implementation should follow all the requirements of LIA-2 unless otherwise specified by
this language binding.

The operations or parameters marked “” are not part of the language and should be provided
by an implementation that wishes to conform to the LIA-2 for that operation. For each of the
marked items a suggested identifier is provided.

ISLisp does not have a single datatype that corresponds to the LIA datatype Boolean. Rather,
NIL corresponds to false and T corresponds to true.
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Every implementation of ISLisp has one unbounded integer datatype. Any mathematical
integer is assumed to have a representation as a ISLisp data object, subject only to total memory

limitations.

ISLisp has one floating point type required to conform to TEC 60559.

The additional integer operations are listed below, along with the syntax used to invoke them:

ming(z,y)
maz(z,y)
min_seqr(xs)
maz_seqr(zs)

dim] (.’L‘, y)
sqrtr(z)
power;(z,y)
shift2y(z, )

shift10;(z,y)

dividesr(x,y)
eveny(z)
oddr(x)

divf[ (33, y)
modar(x,y)
groupr(x,y)
padl (ZE, y)
qU/OtI(xa y)
remrr(z,y)
ngl (377 y)
lemy(z,y)
ged_seqr(zs)
lem_seqr(xs)

add_wrapr(z,y)
add_ovr(z,y)
sub_wrapr(x,y)
sub_ovi(x,y)
mul _wrapr(z,y)
mul_ovr(x,y)

(min z y)
(max z y)

(min . zs) or (min z1 zo ...
(max . zs) or (max z1 z2 ...

(dim = y)
(isqrt =)

(expt z y) (deviation: (expt 0 0) is 1)

(shift2 = y)
(shift10 = y)

(dividesp = y)
(evenp )

(oddp =)

(div z y)

(mod z 1)
(group = y)
(pad z 1)

(quot z y)
(remainder z ¥)
(ged = y) (deviation: (gcd
(1em z o)

(gcds zs)

(lems zs)

(add_wrap
(add_over
(sub_wrap
(sub_over
(mul_wrap
(mul_over

y)
)
y)
)
y)
)

8 8 8 8 8 8

*

*
Tn) *
Tn) *

—-

0 0) is 0)

— = o = = = = o — — —-

—_ —t — — — —1-

where = and y are expressions of type INT and where xs is an expression of type list of INT.

The LIA-2 non-transcendental floating point operations are listed below, along with the syntax

used to invoke them:

ming(z,y)
mazp(x,y)
mming(z,y)
mmazp(x,y)
min_seqp(xs)
max_seqr(xs)
mmin_seqp(xs)
mmaz_seqr(xs)

floorp(x)
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(min z y)
(max = )
(mmin z y)
(mmax z y)

(min . zs) or (min z1 zo ...
(max . zs) or (max z1 z2 ...
(mmin . zs) or (mmin %1 zo ...
(mmax . zs) or (mmax z; x93 ...

(float (floor z))

Tn)

Tn)
Tp)
Tp)
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roundingp () (float (round z)) *
ceilingr () (float (ceiling x)) *
dimp(z,y) (dim z ) T
dprodp_,p(x,y) (prod z y) t
remrp(x,y) (remainder z %) T
sqrtp(x) (sqrt =) *
rsqrip(z) (rsqrt z) T
add_lop(z,y) (add_low z y) T
sub_lop(z,y) (sub_low = y) T
mul_lop(z,y) (mul_low z y) T
div_restp(z,y) (div_rest z y) T
sqrt_restp(z) (sqrt_rest z) T

where z, y and z are data objects of the same floating point type, and where zs is an data objects
that are lists of data objects of the same floating point type.

The LIA-2 parameters for operations approximating real valued transcendental functions can
be accessed by the following syntax:

max_err_hypotp (err-hypotenuse z) 1
MAT_err_erpr (err-exp z) 1
Max_err_powerr (err-power x) 1
maz_err_sinhp (err-sinh x) 1
maz_err_tanhp (err-tanh x) 1
big_radian_angler (big-radian-angle z) T
mazr_err_sing (err-sin ) 1
maz_err_tanp (err-tan z) 1
min_angular_unitp (minimum-angular-unit z) T
big_angler (big-angle ) T
maz_err_sinup(u) (err-sin-cycle u) T
maz_err_tanup(u) (err-tan-cycle u) T
mazx_err_convertp err-convert-to-string T
max_err_convertp err-convert-to-string T

where b, z and u are expressions of type FLT. Several of the parameter functions are constant for
each type (and library), the argument is then used only to differentiate among the floating point
types.

The LIA-2 elementary floating point operations are listed below, along with the syntax used
to invoke them:

hypotp(z,y) (hypotenuse = y) T
powerpr (b, z) (expt b 2) *
expr(z) (exp ) *
expml p(z) (expml z) T
exp2p(x) (exp2 x) T
expl0p(z) (expl10 x) T
powerp (b, y) (expt b y) *
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powerlpml1 (b, y)

Inp(x)

Inlpp(z)

log2p (z)
log10x(x)
logbaser(b, )
logbaselplp (b, x)

sinhp(x)
coshp(z)
tanhp ()
cothp(z)
sechp(z)
cschp(x)

arcsinhp ()
arccoshp(z)
arctanhp(x)
arccothp(x)
arcsechp(x)
arceschp(x)

azris_radp(z)
radp(x)

sinp(z)
cosp(r)
tanp(x)
cotp(x)
secp(x)
cscp(x)

arcsing(x)

arccosp(x)
arctanp(z)

arce(z,y)

azis_cyclep (u, )
cyclep(u, x)

(expml b y)

(log x)

(loglp =)

(log2 x)

(logl0 x)
(logbase b x)
(logbaselp b )

(sinh z)
(cosh )
(tanh z)
(coth x)
(sech x)
(csch x)

(asinh z)
(acosh )
(atanh z)
(acoth )
(asech x)
(acsch )

(axis_rad z)
(radians z)

(sin x)
(cos x)
(tan x)
(cot x)
(sec x)
(csc x)

(asin )
(acos )
(atan x)
(acot )
(actg x)
(asec )
(acsc )
(atan2 y x)

(axis_cycle u x)

(cycle u x)
(sinU u x)
(cosU u x)
(tanU u )
(cotU u x)
(secU u x)
(cscU u x)

Fourth committee draft

¥ i — — — % O F — = = k% —_ —- —_ = = o — — — = = o % —_ — — — —

—_

—_ = — — — —-

Ezample bindings for specific languages



Fourth committee draft ISO/IEC FCD 10967-2.4:1999(E)

arcsinup (u, ) (asinU u =z T
arccosup(u, x) (acosU u =z T
arctanup(u, x) (atanU u x T
arccotup(u, x) (acotU u =z T
arcctgup (u, x) (actglU u ) T
arcsecup(u, ) (asecU u x) T
arcescup (u, ) (acscU u x) T
arcup(u,z,y) (atan2U u y x) T
rad_to_cyclep(x,u) (rad_to_cycle z u) T
cycle_to_radp (u,x) (cycle_torad u ) T
cycle_to_cyclep(u, x,v) (cycle_to.cycle u x v) T

where b, x, y, u, and v are expressions of type FLT, and z is an expressions of type INT.

Arithmetic value conversions in ISLisp are can be explicit or implicit. The rules for when
implicit conversions are done is implementation defined.

converty_ (x) (format g "“B" ) *(binary)
convertr_ (x) (format g "~0" z) *(octal)
converty_ (x) (format g "“D" ) *(decimal)
convertr_ (x) (format g "“X" z) *(hexadecimal)
converty_,(x) (format g "“rR" z) *(radix r)
converty_,(x) (format-integer g = ) *(radix r)
roundingr_1(y) (round y) *
floorg_1(y) (floor y) *
ceilingp_1(y) (ceiling y) *
convert;_p(x) (float z kind) *
convertp_, i (y) (float y kind) *
convertp_,pr (y) (format g "~G" y) *
convertp_ g (y) (format-float ¢ y) *

where x is an expression of type INT, y is an expression of type FLT, and z is an expression of
type FXD, where FXD is a fixed point type. Conversion from string to numeric value is in ISLisp
done via a general read procedure, which reads ISLisp ‘S-expressions’.

[SLisp provides non-negative numerals for its integer and floating point types in base is 10.

ISLisp does not specify numerals for infinities and NaNs. Suggestion:

+00 infinity T
qNaN nan 1
sNaN signan T

as well as string formats for reading and writing these values as character strings.

ISLisp has a notion of ‘error’ that implies a catchable, possibly returnable, change of control
flow. ISLisp uses its exception mechanism as its default means of notification. ISLisp ignores
underflow notifications. On underflow the continuation value (specified in LIA-2) is used
directly without recording the underflow itself. ISLisp uses the error domain-error for invalid
and some pole notifications, the error arithmetic-error for overflow notifications, and the
error division-by-zero for other pole notifications.
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An implementation that wishes to follow LIA-2 should provide recording of indicators as an
alternative means of handling numeric notifications. Recording of indicators is the LIA-2 preferred
means of handling numeric notifications.

C.11 Modula-2

The programming language Modula-2 is defined by ISO/IEC 10514-1:1996, Information tech-
nology — Programming languages - Part 1: Modula-2, Base Language [26]. An implementation
should follow all the requirements of LIA-2 unless otherwise specified by this language binding.

The operations or parameters marked “}” are not part of the language and should be provided
by an implementation that wishes to conform to the LIA-2 for that operation. For each of the
marked items a suggested identifier is provided.

The Modula-2 datatype Boolean corresponds to the LIA datatype Boolean.

The additional integer operations are listed below, along with the syntax used to invoke them:

ming(x,y) imin(z, y) T
max(z,y) imax(z, y) T
min_seqr(xs) iminArr(zs) T
maz_seqr(rs) imaxArr(xs) T
dimy(z,y) idim(z, y) T
sqrtr(z) isqrt(z) T
powery(z,y) ipower (z, y) T
dividesr(x,y) divides(z, y) T
eveny(z) not odd(z) *
oddr () odd (z) *
divf(x,y) div(z, y) T
modar(x,y) z mod y *
groupi(z,y) group(z, y) t
pad(z,y) pad(z, y) t
quotr(x,y) ratio(z, y) T
remrr(z,y) residue(z, y) T
gedr(z,y) ged(z, y) t
lemp(z,y) lem(z, y) T
ged_seqr(zs) gcdarr (xs) T
lem_seqr(xs) lcmarr (zs) T
add_wrapy(z,y) addwrap(z, y) T
add_ovr(z,y) addover(z, y) T
sub_wrapr(z,y) subwrap(z, y) T
sub_ovr(x,y) subover(z, y) T
mul wrapy(z,y) mulwrap(z, ) T
mul_ovr(x,y) mulover(z, %) T

where x and y are expressions of type INT and where xs is an expression of type array [] of
INT.

The additional non-transcendental floating point operations are listed below, along with the
syntax used to invoke them:

ming(z,y) min(z, y) T
mazp(z,y) max(z, y) T
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mming (z,y)
mmazp(x,y)
min_seqp(xs)
maz_seqp(xs)
mmin_seqp(zs)
mmaz_seqp(xs)

dimp(z,y)
roundingp(z)
floorp ()
ceilingrp ()
rounding_restp(x)
floor _rest p(x)
ceiling_restp(z)
dprodp_,pi(z,y)
remrp(x,y)
sqrip(x)
rsqrip(z)

add_lop(z,y)
sublop(z,y)
mul_lop(z,y)
div_restp(z,y)
sqrt_restp(z)

mmin(z, y)
mmax(x, y)
minarr(xs)
maxarr (zs)
mminarr (xs)
mmaxarr (zs)

dim(z, y)
rounding(x)
floor(z)
ceiling(x)

x - rounding(z)
x - floor(x)

x - ceiling(x)
prod(z, y)
remainder(x, y)
sqrt (z)
rsqrt(z)

addlow(zx, y)
sublow(z, ¥y)
mullow(z, y)
divrest(z, y)
sqrtrest(z)

ISO/IEC FCD 10967-2.4:1999(E)
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where z, y and z are expressions of type FLT, and where xs is an expression of type array []
of FLT.

The LIA-2 parameters for operations approximating real valued transcendental functions can
be accessed by the following syntax:

maz_err_hypotp err_hypotenuse () 1
MAT_err_erpr err_exp(z) 1
MaT_err_powerp err_power () 1
maz_err_sinhp err_sinh(x) 1
max_err_tanhp err_tanh(x) 1
big_radian_anglep big radian_angle(x) 1
Mazr_err_sing err_sin(z) 1
max_err_tang err_tan(x) 1
min_angular_unitp min_angle unit (z) 1
big_angle_up big_angle(x) T
maz_err_sinup(u) err_sin_cycle(u) T
maz_err_tanup(u) err_tan_cycle(u) T
max_err_convertp err_convert () 1
mazx_err_convertp err_convert_to_string T
max_err_convertp err_convert_to_string T

where x and u are expressions of type FLT. Several of the parameter functions are constant for
each type (and library), the argument is then used only to differentiate among the floating point
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types.

The LIA-2 elementary floating point operations are listed below, along with the syntax used
to invoke them:
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hypotr(z,y)

powerp(b, z)
expr(x)
expmlp(x)
exp2p (1)
expl0p(x)
powerg (b, y)

powerlpml1 (b, y)

Inp(x)
Inlpp(z)
log2p (z)
log10x(x)
logbaser(b, )

logbaselplp (b, x)

sinhp(x)
coshp(x)
tanhp(z)
cothp(x)
sechp(z)
cschp(x)

arcsinhp ()
arccoshp(z)
arctanhp(z)
arccothp(x)
arcsechp(x)
arceschp(x)

radp(x)
azis_radp(z)

sinp(z)
cosp(r)
tanp(x)

hypotenuse(x, y)

powerI(b, 2)
exp(x)
expml (x)
exp2(x)
exp10(x)
power (b, y)

power1PM1(b, y)

1n(z)
1ni1P(x)
log2(x)
logl10(x)
log(z, b)

logiP1P(z, b)

sinh(z)
cosh(x)
tanh(z)
coth(x)
sech(x)
csch(x)

arcsinh(x)
arccosh(x)
arctanh(x)
arccoth(x)
arcsech(x)
arccsch(x)

radian(z)
axis_rad(z)

sin(x)
cos(x)
tan(z)
cot (x)
sec(x)
csc(x)

arcsin(x)
arccos(x)
arctan(x)
arccot (x)
arcctg(x)
arcsec(x)
arccsc(x)
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arcp(z,y) angle(z, y) T
cyclep (u, z) cycle(u, z) T
azis_cyclep(u,x) axis_cycle(u, x) T
sinup(u, ) sinu(u, z) T
cosup(u,x) cosu(u, ) T
tanup (u, ) tanu(u, ) T
cotup(u,x) cotu(u, x) T
secup (u,x) secu(u, x) 1
cscup(u, ) cscu(u, ) T
arcsinup (u, ) arcsinu(u, ) T
arccosup(u, x) arccosu(u, ) T
arctanup(u, x) arctanu(u, ) T
arccotup(u, x) arccotu(u, ) T
arcctgup (u, x) arcctgu(u, ) T
arcsecup(u, ) arcsecu(u, ) T
arcescup (u, ) arccscu(u, ) T
arcup(u,x,y) angleu(u, z, y) T
rad_to_cyclep(x,u) Radian_to_cycle(z, u) T
cycle_to_radp (u,x) Cycle_to_radian(u, x) T
cycle_to_cyclep(u, x,v) Cycle_to_cycle(u, x, v) T

where b, z, y, u, and v are expressions of type FLT, and z is an expressions of type INT

Arithmetic value conversions in C are can be explicit or implicit. The rules for when implicit
conversions are applied is not repeated here. The explicit arithmetic value conversions are usually
expressed as ‘casts’, except when converting to/from strings.

convertr_,p(x) INT (z) *
convertp . (f) ReadCard(f,r) *
convertp _r(f) ReadInt (f,r) *
convertp _yn(x) WriteCard(h,z) *
convertr_ (x) WriteInt (h,z) *
roundingr_1(y) round (y) *
floorg_1(y) floor(y) *
ceilingp_1(y) ceiling(y) *
convert;_p(x) FLT(x) *
convertp_, g (y) FLT2(y) *
convertpn_p(f) ReadReal(f,z) *
convertp_ g (y) WriteFloat(f,y,a,w) *
convertp_, i (y) WriteEng(h,y,a,w) *
convertp_, g (y) WriteReal(h,y,a,w) *
convertpr g (f) ReadReal(f,z) *
convertp_, pr(y) WriteFixed(h,y,a,w) *

C.11 Modula-2

where x is an expression of type INT, y is an expression of type FLT, and z is an expression of
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type FXD, where FXD is a fixed point type. INT2 is the integer datatype that corresponds to
I'. A 7 above indicates that the parameter is optional. e is greater than 0.

Modula-2 provides base 8, 10, and 16 non-negative numerals for all its integer types, and base
10 non-negative numerals for all its floating point types. Numerals for floating point types must
have a ‘.” in them. The details are not repeated in this example binding, see ISO/IEC 10514-1,
clause 6.8.7.1 Whole Number Literals, and clause 6.8.7.2 Real Literals.

Modula-2 does not specify numerals for infinities and NaNs. Suggestion:

+o00 INFINITY 1
qNaN NAN 1
sNalN SIGNAN 1

as well as string formats for reading and writing these values as character strings.

Modula-2 has a notion of ‘exception’ that implies a non-returnable, but catchable, change of
control flow. Modula-2 uses its exception mechanism as its default means of notification. Modula-
2 ignores underflow notifications since an Modula-2 exception is inappropriate for an underflow
notification. On underflow the continuation value (specified in LIA-2) is used directly without
recording the underflow itself. Modula-2 uses the exceptions WHOLE-ZERO-DIVISION, WHOLE-ZERO-REMAINDER,
NEGATIVE-SQRT-ARG, NONPOSITIVE-LN-ARG, NONPOSITIVE-POWER-ARG, TAN-OVERFLOW Ubr[nﬂe
not overflow?), ARCSIN-ARG-MAGNITUDE, and ARCCOS-ARG-MAGNITUDE for pole and invalid notifi-
cations. The exceptions WHOLE-OVERFLOW and REAL-OVERFLOW are used for overflow notifications.
Since Modula-2 exceptions are non-returnable changes of control flow, no continuation value is
provided for these notifications.

An implementation that wishes to follow LIA-2 should provide recording of indicators as an
alternative means of handling numeric notifications. Recording of indicators is the LIA-2 preferred
means of handling numeric notifications.

C.12 Pascal and Extended Pascal

The programming language Pascal is defined by ISO/IEC 7185:1990, Information technology -
Programming languages — Pascal [28]. The programming language Extended Pascal is defined in
ISO/IEC 10206:1991 Information technology — Programming languages — Extended Pascal [29].

An implementation should follow all the requirements of LIA-2 unless otherwise specified by
this language binding.

The operations or parameters marked “}” are not part of the language and should be provided
by an implementation that wishes to conform to the LIA-2 for that operation. For each of the
marked items a suggested identifier is provided.

The Pascal datatype Boolean corresponds to the LIA datatype Boolean.

The additional integer operations are listed below, along with the syntax used to invoke them:

ming(x,y) Imin(z, y) T
max(z,y) Imax(z, y) T
min_seqr(xs) IminArr(xs) T
maz_seqr(rs) ImaxArr(xs) T
dimy(z,y) Idim(z, y) T
sqrtr(z) Isqrt(z) T
powery(z,y) T pow y *(Extended Pascal)
dividesr(x,y) Divides(z, y) T
eveny(x) (not 0dd(z)) *
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oddy(x)
diUf[ (I, y)
modar(z,y)
groupr(x,y)
padr(z,y)
qUOtI (xa y)
remrr(z,y)
gedr(z,y)
lcm[ (33, y)
ged_seqp(zs)
lem_seqr(xs)

add_wrapr(z,y)
add_ovy(z,y)
subwrapy(z,y)
sub_ovr(x,y)
mul _wrapr(z,y)
mul_ovr(z,y)

0dd (z)
Divi(z, y)
Modulo(z, y)
Group(z, y)
Pad(z, y)
Ratio(x, ¥)
Residue(z, y)
Ged(z, y)
Lem(z, y)
GcdArr(zs)
LemArr (zs)

AddWrap(z, y)
AddOver(z, y)
SubWrap(z, y)
SubOver(z, y)
MulWrap(z, y)
MulOver(z, y)

—_ e e — = = — — —

—_ = — — — —-
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where x and y are expressions of type INT and where zs is an expression of type array of INT.

The LIA-2 non-transcendental floating point operations are listed below, along with the syntax

used to invoke them:

ming(z,y)
mazp(x,y)
mming (z,y)
mmazp(x,y)
min_seqp(xs)
maz_seqp(zs)
mmin_seqp(s)
mmaz_seqr(xs)

roundingp(z)

floorp(z)
ceilingp ()

dprodp . (z,Y)
remrp(z,y)
sqrip(x)
rsqrip(z)

add_lop(z,y)
sub_lop(z,y)
mul_lop(z,y)
div_restp(z,y)
sqrt_restp(z)

Min(z, y)

Max(z, y)

MMin(z, y)
MMax (z, y)
MinArr(zs)
MaxArr(zs)
MMinarr(zs)
MMaxarr(zs)

Rounding(x)
Floor(z)
Ceiling(x)

Dim(z, y)
Prod(z, y)
Remainder(x, y)
Sqrt (z)

Rsqrt (z)

AddLow(z, y)
SubLow(x, y)
MulLow(z, ¥y)
DivRest(z, )
SqrtRest ()

— o — — — —_ - — —_ — — — — — — —

—_ =t — — —

where z, y and z are expressions of type FLT, and where zs is an expression of type array of

FLT.

The LIA-2 parameters for operations approximating real valued transcendental functions can
be accessed by the following syntax:

max_err_hypotp

C.12 Pascal and Extended Pascal

Err _hypotenuse ()
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mar_err_exrpr
maxr_err_powerg

max_err_sinhg
max_err_tanhg

big_radian_angler
Max_err_sing
mazr_err_tang

min_angular_unitp
big_angler
maz_err_sinup(u)
maz_err_tanup(u)

max_err_convertp
max_err_convert g
max_err_convertpr

Err_exp(z)
Err_power ()

Err_sinh(z)
Err_tanh(z)

Big radian_angle(z)
Err_sin(z)
Err_tan(z)

Min_angle_ unit (z)
Big_angle(x)
Err_sin cycle(u)
Err_tan_cycle(u)

Err_convert (x)

Err_convert_to_string
Err_convert_to_string

Fourth committee draft
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where = and u are expressions of type FLT. Several of the parameter functions are constant for
each type (and library), the argument is then used only to differentiate among the floating point
types.

The LIA-2 elementary floating point operations are listed below, along with the syntax used
to invoke them:
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hypotr(z,y)

powerpr(b, z)
expr(z)
expmlp(z)

exp2p (1)

expl0p (x)
powerg (b, y)
powerlpmlp(b,y)

Inp(x)

Inlpp(z)

log2p (z)
log10p(z)
logbaser (b, )
logbaselplp (b, x)

sinhp(z)
coshp(z)
tanhp ()
cothp(z)
sechp(x)
cschp(x)

arcsinhp(z)
arccoshp ()

Hypotenuse(z, y)

b pow z

Exp(x)

ExpM1 ()
Exp2(z)
Expl0(z)

b x*x y
Power1PM1 (b, %)

Ln(z)
Lni1P(x)
Log2(x)
Logl0(x)
Log(z, b)
LoglP1P(z, b)

Sinh(x)
Cosh(x)
Tanh(z)
Coth(x)
Sech(x)
Csch(x)

Arcsinh(z)
Arccosh(z)

t

*(Extended Pascal)

(Extended Pascal)

—_ = — — — — o — — —
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arctanhp () Arctanh(z) T
arccothp(z) Arccoth(z) T
arcsechp(z) Arcsech(z) T
arceschp(x) Arccsch(x) T
radp(z) Radian(x) T
azis_radp(z) Axis Radian(z, h, v) T
sinp(r) Sin(z) *
cosp(x) Cos(z) *
tanp(x) Tan(z) T
cotp(x) Cot (z) T
secp(z) Sec(x) T
cscp(x) Csc(xz) T
arcsing(x) Arcsin(z) T
arccosp () Arccos(x) T
arctang(x) Arctan(z) *
arccot () Arccot (z) T
arcctgp () Arccot (z) T
arcsecr () Arcsec(x) T
arcescp(x) Arccsc(zx) T
arcp(z,y) Angle(z, y) T
cyclerp (u, x) Cycle(u, x) T
azis_cyclep (u,x) Axis Cycle(u, =, h, v) T
sinup(u, ) SinU(u, ) T
cosup(u,x) CosU(u, ) T
tanup (u, ) TanU(u, x) T
cotup(u,x) CotU(u, ) T
secup (u,x) SecU(u, ) 1
cscup(u, ) CscU(u, ) T
arcsinup (u, ) ArcsinU(u, x) T
arccosup(u, x) ArccosU(u, x) T
arctanup(u, x) ArctanU(u, ) T
arccotup(u, x) ArccotU(u, x) T
arcctgup (u, x) ArccotU(u, x) T
arcsecup(u, ) ArcsecU(u, x) T
arcescup (u, ) ArccscU(u, ) T
arcup(u,x,y) AngleU(u, z, y) T
rad_to_cyclep(x,u) RadianToCycle(x, u) T
cycle_to_radp (u,x) CycleToRadian(u, ) T
cycle_to_cyclep(u, x,v) CycleToCycle(u, =, v) T

where b, z, y, u, and v are expressions of type FLT, and z is an expressions of type INT

Arithmetic value conversions in C are can be explicit or implicit. The rules for when implicit
conversions are applied is not repeated here. The explicit arithmetic value conversions are usually
expressed as ‘casts’, except when converting to/from strings.
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convertp _r(f) read(f?, r) *
convertr_(x) write(h?, z:n?) *
roundingr_1(y) round (y) *
floorp_,1(y) floor (y) 1
ceilingp_1(y) ceiling(y) T
convertpn g (f) read(f?,m) *
convertp_,pr (y) write(h?,y:1) *
convertprp(f) read(f?,m) *
convertp_, pr(y) write(h?,y:i:a) *

where z is an expression of type INT, y is an expression of type FLT, and z is an expression of
type FXD, where FXD is a fixed point type. INT2 is the integer datatype that corresponds to
I'. A 7 above indicates that the parameter is optional. e is greater than 0.
Pascal provides base 10 non-negative numerals for its only integer type and only floating point
()

type. Numerals for floating point types must have a ‘.’ in them. The details are not repeated in
this example binding, see ISO/IEC FDIS 9899, clause xxxxxx, and clause yyyyy.

Pascal does not specify numerals for infinities and NaNs. Suggestion:

+o00 INFINITY 1
qNaN NAN 1
sNalN SIGNAN 1

as well as string formats for reading and writing these values as character strings.

Pascal has the notion of ‘error’, which results in a change of ‘control flow’, which cannot be
returned from, nor caught. An ‘error’ results in the termination of the program. pole for integer
types and invalid (in general) are considered to be error. No notification results for underflow,
and the continuation value (specified by LIA-2) is used directly, since recording of indicators is
not available and ‘error’ is inappropriate for underflow. The handling of integer overflow is
implementation dependent. The handling of floating point overflow and pole should be to return
a suitable infinity (specified by LIA-2), if possible, without any notification, since recording of
indicators is not available.

An implementation that wishes to follow LIA-2 should provide recording of indicators as an
alternative means of handling numeric notifications. Recording of indicators is the LIA-2 preferred
means of handling numeric notifications.

C.13 PL/I

The programming language PL/I is defined by ANSI X3.53-1976 (R1998), Programming languages
— PL/I [44], and endorsed by ISO 6160:1979, Programming languages — PL/I [30]. The program-
ming language General Purpose PL/I is defined by ISO/IEC 6522:1992, Information technology
— Programming languages — PL/I general-purpose subset [31], also: ANSI X3.74-1987 (R1998).

An implementation should follow all the requirements of LIA-2 unless otherwise specified by
this language binding.

The operations or parameters marked “}” are not part of the language and should be provided
by an implementation that wishes to conform to the LIA-2 for that operation. For each of the
marked items a suggested identifier is provided.
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The LIA datatype Boolean is implemented in the PL/I datatype BIT(1) (1 = true and 0 =
false).

An implementation of PL/I provides at least one integer data type, and at least one floating
point data type. The attribute FIXED(n,0) selects a signed integer datatype with at least n
(decimal or binary) digits of storage. The attribute FLOAT (k) selects a floating point datatype
with at least n (decimal or binary) digits of precision.

The LIA-2 integer operations are listed below, along with the syntax used to invoke them:

ming(z,y) min(z, y) *
mazy(z,y) max(x, y) *
min_seqr(xs) min(zs[l], zs[2], ..., zs[n]) *
max_seqr(zs) max(zs[l], zs[2], ..., zs[n]) *
dimy(z,y) dim(z, y) T
sqrtr(z) sqrt (z) T
powery(z,y) T Rk Yy *
dividesy(z,y) divides(z, y) T
eveny(x) mod(z) = 0 *
oddy(x) mod(z) —= 0 *
divfr(z,y) divi(z, y) T
modar(z,y) mod(z, y) *
groupi(z,y) group(z, y) t
pad(z,y) pad(z, y) t
quotr(x,y) ratio(z, y) T
Temh(w,y) residue(x, y) T
gedr(z,y) ged(z, y) t
lemyp(z,y) lem(z, y) T
ged_seqr(zs) ged(xs) T
lem_seqr(xs) lem(zs) T
add_wrapr(z,y) add_wrap(z, y) T
add_ovr(z,y) add_over(z, y) T
sub_wrapy(z,y) sub_wrap(z, ¥) T
sub_ovr(x,y) sub_over(z, y) T
mul _wrapr(z,y) mul wrap(z, ¥) T
mul_ovr(z,y) mul_over(z, y) T

where x and y are expressions of type INT and where zs is an expression of type array of INT.

The LIA-2 non-transcendental floating point operations are listed below, along with the syntax

used to invoke them:

ming(z,y) min(z, y) *
mazp(x,y) max(z, y) *
min_seqp(zs) min(zs[l], zs[2], ..., zs[n]) *
mazx_seqr(xs) max(zs[l], zs[2], ..., zs[n]) *
roundingp () round (z) *
floorp(x) floor(z) T
ceilingrp () ceil(z) T
dimp(z,y) dim(z, y) T
dprodp_, i (z,y) prod(z, y) T

C.18 PL/I
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remrrp(z,y)
sqrip(z
rsqrip(z)

add_lop(z,y)
sublop(z,y)
mul_lop(z,y)
div_restp(z,y)
sqrt_restp(z)

remainder(x, y)
sqrt (z)
rsqrt(z)

add_low(zx, y)
aub low(z, %)
mul_low(x, y)
div_rest(z, y)
sqrt_rest (z)

Fourth committee draft
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where z, y and z are expressions of type FLT, and where zs is an expression of type array of
FLT.

accessed by the following syntax:

The parameters for operations approximating real valued transcendental functions can be

max_err_hypotp

maxr_err_exrpr
max-err_powerg

mazx_err_sinhg
max_err_tanhp

big_radian_angler
Max_err_sing
mazr_err_tang

min_angular_unitp

big_angler
max_err_sinup(u)
maz_err_tanup(u)

max_err_convertp
max_err_convertp

err_hypotenuse (z)

err_exp(x)
err_power (x)

err_sinh(x)
err_tanh(z)

big radian_angle(z)
err_sin(x)
err_tan(z)

min_angle_unit(zx)
big_angle(x)
err_sin cycle(u)
err_tan cycle(u)

err_convert_to_string
err_convert_to_string

—_ =

—_ =t — =

1
l

where x and u are expressions of type FLT. Several of the parameter functions are constant for
each type (and library), the argument is then used only to differentiate among the floating point

typ
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The LIA-2 elementary floating point operations are listed below, along with the syntax used
to invoke them:

hypotr(z,y)

powerp(b, z)
eapr(z)
expmIp(x)

exp2p ()
expl0p(x)
powerg (b, y)
powerlpmlp(b,y)

Inp(x)
Inlpp(z)
log2p(x)

hypotenuse(z, y)

poweri(b, 2z)
exp(x)

expml (x)
exp2(x)
exp10(x)

power (b, y)
powerlpmi(b, y)

log(z)
loglp(x)
log2(x)

—_ e — — — % —

>
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log10p(x)
logbaser (b, )

logbaselplp (b, )

sinhp(x)
coshp(x)
tanhp(z)
cothp ()
sechp(x)
cschp(x)

arcsinhp(x)
arccoshp(z)
arctanhp(z)
arccothp ()
arcsechp(z)
arceschp(x)

radp(z)
azis_radp(z)

sing(x)
cosp(x)
tanp(x)
cotp(z)
secp(x)
cscp(x)

arcsing(x)

arccosp ()
arctanp(z)

arcp(z,y)

cyclep (u, z)

azis_cyclep(u,x)

arcsinup (u, )
arccosup(u, x)
arctanup(u, x)
arccotup(u, x)

C.18 PL/I

logl10(x)
log(b, x)
loglplp(b, x)

sinh(x)
cosh(x)
tanh(z)
coth(x)
sech(x)
csch(x)

arcsinh(x)
arccosh(x)
arctanh(x)
arccoth(x)
arcsech(x)
arccsch(x)

rad(z)
axis_rad(z)

sin(x)
cos(x)
tan(z)
cot(x)
sec(x)
csc(x)

arcsin(x)
arccos(z)
arctan(x)
arccot (x)
arcctg(x)
arcsec(x)
arccsc(x)
arc(z, y)

cycle(u,z)

axis_cycle(u,x)

sin(u,x)
cos(u,x)
tan(u,z)
cot(u,x)
sec(u,x)
csc(u,x)

arcsin(u,x)
arccos(u,x)
arctan(u,x)
arccot(u,x)

—_ — = o % — = = k% — =

—= —k >t X X Ot
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— ¥ — =

ISO/IEC FCD 10967-2.4:1999(E)

143



ISO/IEC FCD 10967-2.4:1999(E)

arcctgup (u, x)
arcsecup(u, )
arcescup (u, )

arcup(u,z,y

sinup (360, )
cosur (360, )
tanu g (360, )
cotur (360, x)
secur (360, x)
cscup (360, z)

arcsinur (360, x)
arccosur (360, x)
arctanup (360, z)
arccotur (360, x)
arcctgup (360, )
arcsecur (360, z)
arcescup (360, x)
arcur(360,x,y)

rad_to_cyclep(z,u)
cycle_to_radp(u,x)
cycle_to_cyclep(u, x,v)

arcctg(u,x)
arcsec(u,x)
arccsc(u,x)
arc(u,z,y)

sind(z)
cosd(x)
tand(x)
cotd(x)
secd(x)
cscd(x)

arcsind(x)
arccosd(x)
arctand(x)
arccotd(x)
arcctgd(x)
arcsecd(x)
arccscd(x)
arcd(y,z)

rad to_cycle(z, u)
cycle_torad(u, x)
cycle_to_cycle(u, x, v)

Fourth committee draft
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where b, x, y, u, and v are expressions of type FLT, and z is an expressions of type INT.

Arithmetic value conversions in PL/I are can be explicit or implicit. The rules for when
implicit conversions are applied is not repeated here. The explicit arithmetic value conversions
are usually expressed as ‘casts’, except when converting to/from strings.

convertr_,p(x)

convertp r(f)
converty_(x)

roundingrp1(y)
floorp_, 1 (y)
ceilingr—1(y)

convertr_p(x)
convertr_,p(x)
convert;_p(x)

convertp_, g (y)
convertp_, g (y)
convertp_, g (y)

convertpr g (f)
convertp_ g (y)

convertprp(f)

convertp_,pr(y)
convertp_,pr(y)

144

FIXED(z, p) *
GET FILE (f)? EDIT (r) (F(w)); *
PUT FILE (h)? EDIT (z) (F(w)); *
FIXED(ROUND(y, 0),p) *
FIXED(FLOOR(y), p) *
FIXED(CEIL(y), p) *
FLOAT(z, p) *
DECIMAL(z, p) *
BINARY(z, p) *
FLOAT(y, p) *
DECIMAL(y, p) *
BINARY(y, p) *
GET FILE (f)? EDIT (¢) (E(w,a)); *
PUT FILE (h)? EDIT (y) (E(w,a)); *
GET FILE (f)? EDIT (¢) (F(w,a)); *
FIXED(y, p, a)) *
PUT FILE (h)? EDIT (y) (F(w,a)); *
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where x is an expression of type INT, y is an expression of type FLT, and z is an expression of
type FXD, where FXD is a fixed point type. INT2 is the integer datatype that corresponds to
I'. A 7 above indicates that the parameter is optional. a is greater than 0.

PL/I provides base 10 non-negative numerals for all its integer and floating point types.

PL/T does not specify numerals for infinities and NaNs. Suggestion:

+o00 INFINITY 1
qNaN NAN 1
sNaN SIGNAN t

as well as string formats for reading and writing these values as character strings.

PL/I has a notion of ‘condition’ that implies a non-returnable, but catchable (in an ON-unit),
change of control flow. PL/I uses its condition mechanism as its default means of notifica-
tion. PL/I uses the condition UNDERFLOW for underflow notifications. PL/I uses the condition
ZERODIVIDE for pole notifications, and the conditions FIXEDOVERFLOW, SIZE, and OVERFLOW for
overflow notifications, and the exception UNDEFINED (f) for invalid notifications. Since PL/I
exceptions are non-returnable changes of control flow, no continuation value is provided for these
notifications. This is inappropriate, especially for underflow, so UNDERFLOW notifications are
ignored if there is no ON-clause for UNDERFLOW in the program.

An implementation that wishes to follow LIA-2 should provide recording of indicators as an
alternative means of handling numeric notifications. Recording of indicators is the LIA-2 preferred
means of handling numeric notifications.

C.14 SML

The programming language SML is defined by The Definition of Standard ML (Revised) [68].
An implementation should follow all the requirements of LIA-2 unless otherwise specified by
this language binding.

The operations or parameters marked “” are not part of the language and should be provided
by an implementation that wishes to conform to the LIA-2 for that operation. For each of the
marked items a suggested identifier is provided.

The SML datatype Boolean corresponds to the LIA datatype Boolean.

Every implementation of SML has at least one integer datatype, int, and at least one floating
point datatype, real. The notation INT is used to stand for the name of one of the integer
datatypes, and FLT is used to stand for the name of one of the floating point datatypes in what
follows.

The LIA-2 integer operations are listed below, along with the syntax used to invoke them:

ming(z,y) z min y or op min (z,y) *
mazy(z,y) x max y or op max (z,y) *
min_seqr(xs) minimum zs T
maz_seqr(zs) maximum zs T
dimy(z,y) z dim y or op dim (z,y) T
sqrtr(z) isqrt = T
power(z,y) z pow y or op pow (z,y) T
dividesy(z,y) divides (z,y) T
eveny(z) even T
oddy(x) odd = T
divfr(z,y) x div y or op div (z,y) *

C.14 SMTL
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modar(x,y)
groupr(x,y)
padl (377 y)
Q’U,Ot[(fL', y)
remrr(z,y)
ngI (ZE, y)
lemy (33, y)
ged_seqr(xs)
lem_seqr(xs)

add_wrapy(z,y)
add_ovr(z,y)
sub_wrapr(x,y)
sub_ovr(x,y)
mul _wrapy(z,y)
mul_ovr(x,y)

z mod y or
group (z,y)
pad (z,y)
ratio (x,y)
residue (z,y)
gcd (z,y)

lem (x,y)
gcd_seq zs
lcm_seq zs

8 8 8 8 8 8
1
L e e

x4y

op mod (x,y)
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where z and y are expressions of type INT and where zs is an expression of type INT list.

The additional non-transcendental floating point operations are listed below, along with the

syntax used to invoke them:

ming(z,y)
mazp(x,y)
mming(z,y)
mmazp(x,y)
min_seqp(xs)
maz_seqr(xs)
mmin_seqp(xs)
mmaz_seqr(xs)

roundingp(z)

floorp(z)
ceilingrp(x)

dprodp_,p/(z,y)
remrg(x,y)
sqrip(z)
rsqrip(z)

add_lop(z,y)
sublop(z,y)
mul_lop(x,y)
div_restp(z,y)
sqrt_restp(z)

Tz min y or
T max y or
Tz mmin y or
T mmax y or
minimum xs

maximum zxs

mminimum s
mmaximum s

realRound z
realFloor x
realCeil z

dim (z,y)
prod (z,y)

op min (x,y)
op max (x,y)

op mmin (z,y)
op mmax (z,y)

remainder (z,y)

sqrt «x
rsqrt =

+:-

LSe

* -
/%y
sqrt_rest z

8 8 8 8

—_ e = — — — %

—-

* ot

— o — — —

—_ — — — —

where z, y and z are expressions of type FLT, and where xs is an expression of type FLT list.

The binding for the floor, round, and ceiling operations here take advantage of the unlimited

Integer type in SML, and that Integer is the default integer type.

The parameters for operations approximating real valued transcendental functions can be

accessed by the following syntax:
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max_err_hypotr

err_hypotenuse z
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mar_err_exrpr
maxr_err_powerg

max_err_sinhp
max_err_tanhg

big_angle_rp
max_err_sing
mazr_err_tang

min_angular_unitp
big_angle_up
maz_err_sinup(u)
maz_err_tanup(u)

mazr_err_convertp
max_err_convert g
max_err_convertp

ISO/IEC FCD 10967-2.4:1999(E)

err_exp
err_power

err_sinh z
err_tanh x

big radian_angle z
err_sin
err_tan z

min_angular_unit zx
big_angle z
err_sin _cycle u
err_tan_cycle u

err_convert (z)
err_convert_to_string
err_convert_to_string

—_ =

—_ — — =

1
1
t

where x and u are expressions of type FLT. Several of the parameter functions are constant for
each type (and library), the argument is then used only to differentiate among the floating point

types.

The LIA-2 elementary floating point operations are listed below, along with the syntax used

to invoke them:

hypotr(z,vy)

powerpr(b, z)
expp(z)
expmlp(z)

exp2p (x)
expl0p(x)
powerr (b, y)
pO’U)F(b, y)
powerlpmlp(b,y)

Inp(x)

Inipp(z)

log2p ()
log105(x)
logbaser (b, )
logbaselplp (b, )

sinhp(x)
coshp(x)
tanhp(zx)
cothp ()
sechp(x)
cschp(z)

arcsinhp(x)

C.14 SMTL

hypotenuse (z,y)

b~"z or op "~ (z,y)
exp ¥

expMl x

exp2

expl0 x

b x*x y

b pow y or op pow (x,y)
powerl1PM1 (b,y)

In z

IniP z

log2 x

logl0 x

log base (b,x)

log baselP1P (b,x)

sinh
cosh
tanh
coth
sech
csch

8 8 8 8 8 8

arcsinh z

—-

— = o — — — e — — — % —-

— = ==k % X

—i-

Not LIA-2! (See C.)
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arccoshp ()
arctanhp(z)
arccothp(z)
arcsechp(x)
arceschp(x)

radp(x)
azis_radp(zr)

sing(x)
cosp(r)
tanp(x)
cotp(z)
secp(x)
cscp(x)

arcsing(x)
arccosp(z)
arctanp(x)
arccotp(z
arcctgp
arcsecp(z
arcescp(x

arcp(z,y)

)
)
)
)

cyclep (u, x)
azis_cyclep(u, )

(u, z)
arcctgup(u, x)
arcsecup(u, )
arcescup (u, )

arcup(u,z,y

rad_to_cyclep(x,u)
cycle_to_radp(u,x)
cycle_to_cyclep(u, x,v)

arccosh x
arctanh z
arccoth z
arcsech x
arccsch z

radians x
axis_rad z

sin
cos
tan
cot
sec
csc

88 8 8 8 8

arcsin
arccos
arctan
arccot
arcctg
arcsec
arccsc
arctan2 (y,z)

88 8 8 8 8 8

cycle (u,z)

axis_cycle (u,x)

sinU (u,z)
cosU (u,x)
tanU (u,z)
cotU (u,x)
secU (u,z)
cscU (u,x)

arcsinU (u,z)
arccosU (u,z)
arctanU (u,z)
arccotU (u,z)
arcctgU (u,x)
arcsecU (u,z)
arccscU (u,z)

arctan2U (u,y,z)

rad_to_cycle (x,u)
cycle torad (u,z)

Fourth committee draft
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1
1

cycle_to_cycle (u,x,v) 1

where b, x, y, u, and v are expressions of type FLT, and z is an expressions of type INT

Type conversions in SML are always explicit.
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convertr_p(x)

fromLarge x or tolarge *
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convertrn _(s) fromString s *
convertn_,(s) scan radiz getc s *
converty_, (x) toString z *
roundingr_1(y) round y *
roundingr_1(y) toInt IEEEReal.TO NEAREST y *
roundingr_1(y) toLargeInt IEEEReal.T0 NEAREST y *
floor p_, 1 (y) floor y *
floor g, ;(y) toInt IEEEReal.TO NEGINF y *
floor p_, 1 (y) toLargeInt IEEEReal.TONEGINF y *
ceilingr—1(y) ceiling y *
ceilingp_1(y) toInt IEEEReal.TO_POSINF y *
ceilingr—1(y) toLargeInt IEEEReal.TO_POSINF y *
convert;_p(x) fromInt *
convertr_,r(x) fromLargeInt = *
convertp_,p (y) toLarge y *
convertp_, g (y) fromLarge IEEEReal.TO_NEAREST y *
convertpn_p(S) fromString s *
convertpn_,p(s) fromDecimal s *
convertpn_p(S) scan getc s *
convertp_, g (y) fmt (SCI a) y *
convertp_,pr (y) toDecimal y *
convertpr_yp(S) fromString s *
convertpr_,p(S) scan getc s *
convertp_, pr(y) fmt (FIX a) y *

where x is an expression of type INT, y is an expression of type FLT, and z is an expression of
type FXD, where FXD is a fixed point type. INT2 is the integer datatype that corresponds to
I.

SML provides non-negative base 10 numerals for all its integer and floating point types. There
is no differentiation between the numerals for different floating point types, nor between numerals
for different integer types, but integer numerals cannot be used for floating point values. The
details are not repeated in this example binding, see The Definition of Standard ML (Revised) [68].

SML specifies numerals for infinities, but not NaNs:

+o00 posInf *
—00 negInf *
qNaN NaN 1
sNalN sigNaN T

An implementation wishing to conform to LIA-2 should also provide string formats for reading
and writing these values as character strings.

SML has a notion of ‘exception’ that implies a non-returnable, but catchable, change of control
flow. SML uses its exception mechanism as its default means of notification. SML ignores
underflow notifications since an SML exception is inappropriate for an underflow notification.
On underflow the continuation value (specified in LIA-2) is used directly without recording the
underflow itself. SML uses the exception Div for pole notifications, the exception Overflow
for overflow notifications, and the exception Domain for invalid notifications (except for sin,
cos, or tan given an infinitary argument, where the invalid notification is ignored). Since SML
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exceptions are non-returnable changes of control flow, no continuation value is provided for these
notifications.

An implementation that wishes to follow LIA-2 should provide recording of indicators as an
alternative means of handling numeric notifications. Recording of indicators is the LIA-2 preferred
means of handling numeric notifications.
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