1sonec stcusczzwes N1374

Working draft of ISO/IEC TR 15581, second edition

| nfor mation technology — Programming
languages — Fortran — Floating-point
Enhanced data type facilities

This page to be supplied by 1SO. No changes from first edition, except for for mechanical things such as dates.

ISO/IEC PDTR 15581:1999(E) © ISO/IEC

Contents

1. GENERAL 1
1.1 Scope 1
1.2 Normative References 1

2. REQUIREMENTS 2
2.1 Allocatable Attribute Regularization 2
2.2 Allocatable Arrays as Dummy Arguments 3
2.3 Allocatable Array Function Results 4
2.4 Allocatable Array Components 4

3. REQUIRED EDITORIAL CHANGES TO ISO/IEC 1539-1 : 1997 7

© ISO/IEC ISO/IEC PDTR 15581:1999(E)

Foreword
[General part to be provided by ISO CS]

This technical report specifies axtension to thelatatype facilities of the programming language
Fortran. Fortran ispecified by the internationatandard ISO/IEC 1539-1. Thitocumenthasbeen
prepared by ISO/IEC JTC1/SC22/WG5, the technical working group for the Fortran language

It is the intention ofISO/IEC JTC1/SC22/WG5 thahe semantics and syntaspecified by this
technical report béncluded in the next revision of tHeortran standard (ISO/IEC 1539-hjthout
change unless experience in the implementation and ukes dééaturadentifies anyerrors thaneed to

be corrected, or changese required to achieveroper integration, irwhich caseevery reasonable
effort will be made to minimise the impact of such changes on existing commercial implementations.

ISO/IEC PDTR 15581:1999(E) © ISO/IEC

Introduction

There are many situations when programming in Fortran where it is necessary to allocate and deallocate
arrays ofvariable sizebut the full power of pointearrays isunnecessary and undesirable. In such
situations the abilities of a pointarray to aliasotherarraysand to have non-unit (and variable at
execution time)strides are unnecessary, atmgy are undesirable because this limits optimization,
increases the complexity of th@ogram, and increases thikelihood of memoryleakage. The
ALLOCATABLE attribute solves this problerbut cancurrentlyonly be usedor locally storedarrays,

a very significant limitation. The most pressimged isfor this to beextended taarray components;

without allocatablearray components it is overwhelminggifficult to create opaqudatatypes with a

size that varies at runtime without serious performance penalties and memory leaks.

A major reason foextending theALLOCATABLE attribute toinclude dummyarguments and function
results is to avoid introducing further irregularities into the language. Furthermore, allodataiyig
arguments improve the ability tode inessentiadletails during problem decomposition by allowing the
allocation and deallocation to occur in caltbprogramswhich is often the mostatural position.
Allocatable function results ease ttask of creatingarray functions whoseshape is notletermined
initially on function entry, without negatively impacting performance.

This extension is being defined by means ofechnical Report in théirst instance to allow early
publication of the proposed definitiohhis is to encourage eatiyplementation of importaréxtended
functionalities in a consistent manner and will allow extensive testing of the design efté¢heed
functionality prior to its incorporation into the language by way of the revision of ISO/IEC 1539-1.

TECHNICAL REPORT © ISO/IEC ISO/IEC PDTR 15581:1999(E)

Information technology - Programming languages - Fortran -
Enhanced data type facilities

1 General
1.1 Scope

This Technical Report specifies antension to the data-type facilities of the programming language
Fortran.The current Fortratanguage is specified B$O/IEC 1539-1 : 1997The proposed extension
allows dummy arguments, function results, and components of derived types to be allocatable arrays.

Clause 2 of this technical report containgemeral informabut precise description of the proposed
extended functionalitieClause 3 containdetailed editorial changes which if applied to therent
International Standard would implement the revised language specification.

1.2 Normative References

The following standards contain provisiomgich, through reference in thisxt, constitutgrovisions

of this Technical ReportFor dated references, subsequent amendnents revisions of, any othese
publications do not apply. However, parties toagreements based on this Technical Report are
encouraged to investigate the possibility of applying the most recent editions of the normative
documents indicated belowFor undated references, the latestition of the normative document
referred to applies. Members C and ISOmaintain registers of currently valid International
Standards.

ISO/IEC 1539-1 : 1997nformation technology - Programming languages - Fortran - Part 1: Base language.

ISO/IEC PDTR 15581:1999(E) © ISO/IEC

2 Requirements

The following subclauses contain a general description of the extensions required to the syntax and
semantics of the currenFortran language to provide facilitiesfor regularization of the
ALLOCATABLE attribute.

2.1 Allocatable Attribute Regularization

In order to avoid irregularities in the language, the ALLOCATABitEibuteneeds to be allowed for
all dataentitiesfor which it makes senseThus, this attributevhich was previouslhylimited to locally
stored array variables is now allowed on

« array components of structures,

e dummy arrays, and

» array function results.

Allocatable entities remain forbidden from occurring in all plagksre they may be storage-associated
(COMMON blocks and EQUIVALENCE statements). Allocatableay components magppear in
SEQUENCE types, butobjects of such typesare then prohibited from COMMON and
EQUIVALENCE.

The semantics for the allocation status of an allocatable entity remain unchanged:

« If it is in a main program ohasthe SAVE attribute, it has an initial allocatiostatus of not
currently allocated. Its allocation status changes only as aesult of ALLOCATE and
DEALLOCATE statements.

» If it is a modulevariable without the SAVEttribute,the initial allocationstatus isnot currently
allocated and the allocati@tatusmay becomanot currently allocated (by automatic deallocation)
whenever execution of a RETURN or END statement results in no active procedure having access to
the module.

o If it is a local variable (not accessed by use or host association) and does not have the SAVE
attribute,the allocationstatusbecomes noturrently allocated on entry to the procedure. On exit
from this procedure, if it is currently allocated it is automatically deallocated and the allocation
status changes to not currently allocated.

Since an allocatable entity cannot beadias for an arragection (unlike pointearrays), itmay always
be stored contiguously.

© ISO/IEC ISO/IEC PDTR 15581:1999(E)

2.2 Allocatable Arrays as Dummy Arguments

An allocatable dummy argument array shall have associated witladt@aargument which iglso an
allocatable array.

On procedure entry the allocatistatus of arallocatabledummyarray becomeshat ofthe associated
actual argument. Ithe dummyargument is INTENT(OUT) anthe associatedctualargument is
currently allocated, thactual argument is deallocated on procedure invocatiorthad the dummy

argument has an allocatiostatus ofnot currently allocated. If thelummy argument is not
INTENT(OUT) and the actual argument is currently allocated, the value dtithenyargument is that
of the associated actual argument.

While the procedure iactive, an allocatabldummyargumentarray thatdoes not havéNTENT(IN)
may be allocated, deallocated, definedbertome undefined. Hny of these eventsccur no reérence
to the associated actual argument via another alias is permitted .

On exit from the routine thactual argument hagshe allocationstatus ofthe allocatabledummy
argument (there is no change, of course, if the allocataiieny argument has INTENT(IN)). The
usual rules apply for propagation of the value from the dummy argument to the actual argument.

No automatic deallocation of the allocatabiemmy argument occurs as a result efecution of a
RETURN or END statement in the procedure of which it is a dummy argument.

Notethat an INTENT(IN) allocatabldummyargumentarray cannot havéts allocationstatusaltered
within the called procedureThusthe main difference betweenich adummyargument and a normal
dummy array is that it might be unallocated on entry (and throughout execution of the procedure).

Example

SUBROUTINE LOAD(ARRAY, FILE)
REAL, ALLOCATABLE, INTENT(OUT) :: ARRAY(;, i, 3)
CHARACTER(LEN=¥), INTENT(IN) :: FILE
INTEGER UNIT, N1, N2, N3
INTEGER, EXTERNAL :: GET_LUN
UNIT = GET_LUN() I Returns an unused unit number
OPEN(UNIT, FILE=FILE, FORM="UNFORMATTED’)
READ(UNIT) N1, N2, N3
ALLOCATE(ARRAY(N1, N2, N3))
READ(UNIT) ARRAY
CLOSE(UNIT)
END SUBROUTINE LOAD

ISO/IEC PDTR 15581:1999(E) © ISO/IEC

2.3 Allocatable Array Function Results
An allocatable array function shall have an explicit interface.

On entry to an allocatablarray function, the allocatiorstatus ofthe result variabldbecomes not
currently allocated.

The function result variable may be allocated and deallocated any nuntiseetluring the execution
of the function; however, it shall be currently allocated and hadefiaed value on exit from the
function. Automatic deallocation of the result variallges notoccurimmediately onexit from the
function, but after execution of the statement in which the function reference bccurs.

Example

FUNCTION INQUIRE_FILES_OPEN() RESULT(OPENED_STATUS)
LOGICAL,ALLOCATABLE :: OPENED_STATUS()
INTEGER 1,J
LOGICAL TEST
DO 1=1000,0,-1

INQUIRE(UNIT=I,0PENED=TEST,ERR=100)
IF (TEST) EXIT

100 CONTINUE
END DO
ALLOCATE(OPENED_STATUS(O:1))

DO J=0,|
INQUIRE(UNIT=J,0PENED=OPENED_STATUS(J))
END DO
END FUNCTION INQUIRE_FILES_OPEN

2.4 Allocatable Array Components

Allocatablearray componentare defined to baultimate componentsjust as pointecomponentsare,

because the value (if any) is stored separately frometeofthe structure and this storagimes not
exist (because tharray is unallocated)when thestructure is created. Awith ultimate pointer
components, variables containing ultimate allocatablay componentsre forbidden from appearing
directly in input/output lists - the user shall list any allocatable array or pointer component for i/o.

As per allocatablearrays currently, they are forbidden from storage association contexts (so any
variable containing an ultimate allocatabégray component cannoappear in COMMON or
EQUIVALENCE); this maintains the clarity and optimizability of allocatableays. However,
allocatablearray componentsare permitted in SEQUENCE typeghich allows the same type to be
defined separately in more than one scoping unit.

! This storage can thus be reclaimed at the same time as that of array temporaries and theengslidit of
shape-spetunctions referenced in the expression.

© ISO/IEC ISO/IEC PDTR 15581:1999(E)

Deallocation of a variable containing an ultimate allocatabigycomponent automatically deallocates
all such components of the variable that are currently allocated.

In a structure constructor for a derived type containing an allocatable array component, the expression

corresponding to the allocatable array component must be one of the following:

» an argumentless reference to the intrinsic fundtioi.L(); the allocatable array component
receives the allocation status of not currently allocated.

» avariable that is itself an allocatable array; the allocatable array component receives the allocation
status of the variable, and, if allocated, the bounds and value of the variable.

» any other array expression; the allocatable array component receives the allocation status of
currently allocated with the same bounds and value as the expression.

For intrinsic assignment of objects of a derived type containing an allocatable array component, the
allocatable array component of the variable on the left-hand-side receives the allocation status and, if
allocated, the bounds and value of the corresponding component of the expression. This occurs as if the
following sequence of steps is carried dut:
1. If the component of the variable is currently allocated, it is deallocated.
2. If the corresponding component of the expression is currently allocated, the component of the
variableis allocated with the same bounds. The value of the component of the expression is then
assigned to the corresponding component of the variable using intrinsic assignment.

Note that this definition of assignment facilitates certain optimizations when the allocatable array component

of the expression is allocated. In particular:

1. If the corresponding component of the variable is allocated with the same (or larger) size, its storage can
be re-used without the overhead of an additional allocation or deallocation;

2. If the expression is a function reference, the processor can simply copy the descriptor instead of the
allocatable array contents and omit the deallocation of this component.

An allocated ultimate allocatable array component of an actual argument that is associated with an
INTENT(OUT) dummy argument is deallocated on procedure entry so that the corresponding component of
the dummy argument has an allocation status of not currently allocated.

¢ This ensures that any pointers that point to the previous contents of the allocatable array component of the
variable become undefined. Implementations are thus free to skip the allocation-deallocation (or not) when the
component of the variable happens to be allocated with the same shape as the corresponding component of the
expression, whichever is most efficient.

ISO/IEC PDTR 15581:1999(E) © ISO/IEC

Example

MODULE REAL_POLYNOMIAL_MODULE
TYPE REAL_POLYNOMIAL
REAL, ALLOCATABLE :: COEFF(:)
END TYPE
INTERFACE OPERATOR(+)
MODULE PROCEDURE RP_ADD_RP, RP_ADD_R
END INTERFACE
CONTAINS
FUNCTION RP_ADD_R(P1,R)
TYPE(REAL_POLYNOMIAL) RP_ADD_R, P1
REAL R
INTENT(IN) P1,R
ALLOCATE(RP_ADD_R%COEFF(SIZE(P1%COEFF)))
RP_ADD_R%COEFF = P1%COEFF
RP_ADD_R%COEFF(1) = PI%COEFF(1) + R
END FUNCTION
FUNCTION RP_ADD_RP(P1,P2)
TYPE(REAL_POLYNOMIAL) RP_ADD_RP, P1, P2
INTENT(IN) P1, P2
INTEGER M
ALLOCATE(RP_ADD_RP%COEFF(MAX(SIZE(P1%COEFF), SIZE(P2%COEFF))))
M = MIN(SIZE(P1%COEFF), SIZE(P2%COEFF))
RP_ADD_RP%COEFF(:M) = P1%COEFF(:M) + P2%COEFF(:M)
IF (SIZE(P1%COEFF)>M) THEN
RP_ADD_ RP%COEFF(M+1:) = P1%COEFF(M+1:)
ELSE IF (SIZE(P2%COEFF)>M) THEN
RP_ADD_ RP%COEFF(M+1:) = P29%COEFF(M+1:)
END IF
END FUNCTION
END MODULE

PROGRAM EXAMPLE
USE REAL_POLYNOMIAL_MODULE
TYPE(REAL_POLYNOMIAL) P, Q, R

P = REAL_POLYNOMIAL((/4,2,1/)) I Set P to (X**2+2X+4)
Q = REAL_POLYNOMIAL((/-1,1/)) I Set Q to (X-1)
R=P+Q I Polynomial addition
PRINT *, 'Coefficients are: ', R%COEFF

END

© ISO/IEC ISO/IEC PDTR 15581:1999(E)

3 Required editorial changes to ISO/IEC 1539-1 : 1997

The following subclauses contain the editorial changekSO/IEC 1539-1 : 199Tequired to include
these extensions in a revised definition of the International Standard for the Fortran language.
Note, where new syntax rules are inserted theyamgbered with a decimal addition to the rule number
that precedes them. In thectual document these will have to Imeoperly numbered in theevised
sequence.

Comments about each edit to the standard appear within braces {}.

{Page and line number references in these edits are to the Draft of ISO/IEC 1539-1:1997, ISO/IEC
JTC1/SC22/WG5/N1191.}

4.4, first paragraph, list item (2) [37:42]
Change “nonpointer component that is of derived type,”
To: “component that is of derived type and is not a pointer or allocatable array,”

{The direct component tree stops at allocatable arrays, just as with pointers.}

4.4, second paragraph [38:2]
Insert “allocatable arrays or” before “pointers”.
{This makes allocatable array components ittimate components, just as pointer components.}

4.4.1, R42&omponent-attr-spec [38:42+]
add new production to ruleof ALLOCATABLE”".
{Allow ALLOCATABLE attribute in component-def-strht

R427, sixth constraint [39:13]
change “the POINTER attribute is not”
to “neither the POINTER attribute nor the ALLOCATABLE attribute is”

{Do not require arexplicit-shape-spec-listhen ALLOCATABLE is specified.}

Two new constraints at end of list [39:16+]
Add:
“Constraint: If the ALLOCATABLE attribute is specified for a component, the component shall be a
deferred-shape array.
Constraint: POINTER and ALLOCATABLE shall not both appear in the samgponent-def-stmt
{Require ALLOCATABLE components to be deferred-shape arrays. Ensure POINTER and
ALLOCATABLE are exclusive.}

ISO/IEC PDTR 15581:1999(E) © ISO/IEC

R428component-initialization [39:29+]
Add new constraint to end of list:
“Constraint: If the ALLOCATABLE attribute appears in th@mponent-attr-spec-list
component-initializatiorshall not appear.”
{Forbid default initialization - allocatable array components are already effectively default-initialized to “not
currently allocated”.}

4.4.1, paragraph beginning “If tS&QUENCE statements” [39:38-39]

add “or allocatable arrays”

after both occurrences of “are not pointers”.
{Allocatable array components, like pointer components, stop a SEQUENCE type from being a standard
(numeric or character) sequence type.}

4.4.1, after Note 4.25, [42:20+]
add new example:
“Note 4.25.1
A derived type may have a component that is an allocatable array. For example:
TYPE STACK

INTEGER :: INDEX
INTEGER, ALLOCATABLE :: CONTENTS(:)
END TYPE STACK

For each scalar variable of ty8TACK the shape of compone@ONTENTSs determined by
execution of an ALLOCATE statement or assignment statement, or by argument association.”
{Example needed.}

4.4.4, add new paragraphs to end of clause: [45:19+]

“If a component of a derived type is an allocatable array, the corresponding consiquiession shall either

be a reference to the intrinsic function NULL() with no arguments, an allocatable array, or shall evaluate to an
array. If the expression is a reference to the intrinsic function NULL(), the corresponding component of the
constructor has a status of not currently allocated. If the expression is an allocatable array, thediagresp
component of the constructor has the same allocation status as that allocatable array and, if it is allocated, the
same bounds and value. With any other expression that evaluates to an array the corresponding component of
the constructor has an allocation status of currently allocated with the same bounds and value as the
expression.

Note 4.34.1:
When the constructor is an actual argument, the allocation status of the allocatable array component is
available through the associated dummy argument.

If a derived type contains an ultimate component that is an allocatable array, its constructor shall not appear
as adata-stmt-constarih a DATA statement (5.2.9), as iaitialization-exprin anentity-decl(5.1), or as an
initialization-exprin acomponent-initializatior§4.4.1).”

{Allow structure constructors for derived types with allocatable array components, and define their
semantics.}

5.1, R501-R506, third constraint [48:1-2]
Delete “that is not a dummy argument or function result”

© ISO/IEC ISO/IEC PDTR 15581:1999(E)

5.1, eighth constraint, begins “The PARAMETER attribute shall not”: [48:12]
After “allocatable arrays,”
Add “derived-type objects with an ultimate component that is an allocatable array,”
{forbid such objects from having the PARAMETER attribute.}

5.1, third-last constraint, beginiitialization shall not appear”: [48:33]

after “an allocatable array,”

add “a derived-type object containing an ultimate component that is an allocatable array,”
{forbid such types from havingimitialization.}

5.1.2.4.3, second paragraph [65:12]
After “An allocatable array is”, change “a named array” to “an array”.
{Do not insist on allocatable arrays being simple names, i.e. allow components.}

5.1.2.4.3, third paragraph, begins “The ALLOCATABLE attribute may be”: [55:15-19]

Replace paragraph with:
“The ALLOCATABLE attribute may be specified for an array in a type declaration statement, a component
definition statement, or an ALLOCATABLE statement (5.2.6). An array with the ALLOCATABLE
attribute shall be declared with deferred-shape-spec-lisin a type declaration statement, an
ALLOCATABLE statement, a component definition statement, a DIMENSION statement (5.2.5), or a
TARGET statement (5.2.8). The type and type parameters may be specified in a type declaration statement
or a component definition statement.”

5.2.10, R533-R537, following the third constraint [61:42+]
Add new constraint:
“Constraint: Adata-i-do-objector avariablethat appears asdata-stmt-objectshall not be of
a derived type containing an allocatable array as an ultimate component.”
{Forbid initialization of allocatable arrays via the DATA statement.}

5.4, R545 first constraint [66:2-3]
After: “, a pointer,”
Insert “an allocatable array, or”
After “is a pointer”
Delete “,".
{Do not allow derived types containing allocatable arrays in NAMELIST.}

5.5.1, R548 first constraint [66:40]

After “an allocatable array,”

Insert “an object of a derived type containing an allocatable array as an ultimate component,”
{Do not allow derived types containing allocatable arrays in EQUIVALENCE.}

5.5.2, R550 semd constraint [69:1]

After “allocatable array,”

Insert “an object of a derived type containing an allocatable array as an ultimate component,”
{Do not allow derived types containing allocatable arrays in COMMON.}

ISO/IEC PDTR 15581:1999(E) © ISO/IEC

6.1.2, R612-R613, fourth constraint [75:14]
Change “POINTER” to “ALLOCATABLE or POINTER”.

{We do not want to have arrays of allocatable array elements, one from each allocatable array component.}

6.3.1.1, new paragraph at end of clause [80:29+]

“If an object of derived type is created by an ALLOCATE statement, any ultimate allocatable components
have an allocation status of not currently allocated.”

{Specify allocation status of allocatable array components created by an ALLOCATE statement.}

6.3.1.2, new paragraph following the second paragraph [80:42+]

“An allocatable dummy array receives the allocation status of the actual argument with which it is associated
on entry to the procedure. An allocatable array that is an ultimate component of a dummy argument that is
not INTENT(OUT) receives the allocation status of the corresponding component of the actual argument on
entry to the procedure. An allocated actual argument that is associated with an INTENT(OUT) allocatable
dummy array is deallocated on procedure entry and the dummy array has an allocation status of not currently
allocated. An allocated ultimate allocatable array component of an actual argument that is associated with an
INTENT(OUT) dummy argument is deallocated on procedure entry and the corresponding component of the
dummy argument has an allocation status of not currently allocated.”

{Specify initial status of allocatable dummy arrays and allocatable components of dummy arguments.}

6.3.1.2, third paragraph [80:43]

After “that is a local variable of a procedure”

Insert “or an ultimate component thereof, that is not a dummy argument or a subobject thereof”
{Exclude allocatable dummy arrays from the initial “not currently allocated” status, and also from automatic
deallocation.}

6.3.1.2, third paragraph [81:1]
After “If the array”
Add “is not the result variable of the procedure or a subobject thereof and”
{Exclude allocatable function results from automatic deallocation.}

6.3.3.1, second paragraph [83:10-13]
After “has the SAVE attribute,”
Add new list items and renumber rest of list:
(2) Itis a dummy argument or an ultimate component thereof.
(3) It is a function result variable or an ultimate component thereof.
{Say that these cases retain their allocation status (and thus are excluded from automatic deallocation).}

6.3.3.1, before Note 6.18, [83:18+]
Add new paragraph:
“When a variable of derived type is deallocated, any ultimate component that is a currently allocated
allocatable array is deallocated (as if by a DEALLOCATE statement).”
{Prevent memory leaks from nested allocatable array components.}

10

© ISO/IEC ISO/IEC PDTR 15581:1999(E)

6.3.3.1, before Note 6.18, after added paragraph above [83:18+]

Add another new paragraph:
“If a statement contains a reference to a function whose result is an allocatable array or a structure that
contains an ultimate component that is an allocatable array, and the function reference is executed, an
allocatable array result and any allocated ultimate components that are allocatable arrays in the result
returned by the function are deallocated after execution of this statement.”
{Specify when a function result is deallocated. Needed in case the function result has the TARGET attribute.
Also, prevents memory leaks.}

7.1.4.1, fifth paragraph [91:27]
After “returns a disassociated pointer”
Insert “or designates an unallocated allocatable array component of a structure constructor”
After “A disassociated pointer”
Insert “or unallocated allocatable array”
After “with the result” [91:30]
Insert “or by the corresponding component in a structure constructor”

7.1.6.1. [94:6]
After “(3) A structure constructor where each component is an initialization expression”
Insert “and no component has the ALLOCATABLE attribute”

{Exclude structure constructors containing allocatable components from initialization expressions.}

7.5.1.5, paragraph after Note 7.43 [109:35-38]
After “nonpointer components” change “.” to
“that are not allocatable arrays. For allocatable array components the following sequence of operations is
applied:
1. If the component afariableis currently allocated, it is deallocated.
2. If the component axpris currently allocated, the corresponding componevaridibleis
allocated with the same bounds. The value of the comporexjiraé then assigned to the
corresponding component\gdriable using intrinsic assignment.”
{Specify semantics to be used for assignment of derived types containing allocatable array components. Note
that because pointers to deallocated objects become undefined, this definition does not rule out optimising
away the allocation-deallocation when the components are already allocated with the same shape.}

7.5.1.5, After Note 7.44 [110:5+]
Add new note:
“Note 7.44.1.
If an allocatable array componentexforis not currently allocated, the corresponding componerarable
has an allocation status of not currently allocated after execution of the assignment.”
{Note that assignments containing unallocated components are allowed and have the expected effect.}

9.4.2, paragraph after Note 9.26 [149:6]
After “If a derived type ultimately contains a pointer component”
Insert “or an allocatable array component”
{Exclude objects of derived type containing ultimate array components from appearing in i/o statements.}

11

ISO/IEC PDTR 15581:1999(E) © ISO/IEC

12.2.1.1 [192:14]
After “whether it is optional (5.1.2.6,5.2.2),”
Insert “whether it is an allocatable array (5.1.2.4.3),”

{ALLOCATABLE-ness of a dummy argument is a characteristic.}

12.2.2 [192:24-25]
After “whether it is a pointer”
Insert “or an allocatable array”
{ALLOCATABLE-ness of a function result is a characteristic.}
After “is not a pointer”
Insert “or an allocatable array”
{shape is not a characteristic for an allocatable array.}

12.3.1.1 item (2) [193:18]
After “assumed-shape array,”
Insert “an allocatable array,”

{Require explicit interface if there is an allocatable dummy array.}

12411 [200:38]
In the first paragraph beginning “If the dummy argument has the TARGET”,
After “either a scalar”
Insert “, an allocatable array,”

{Specify TARGET attribute interaction with allocatable dummy arrays.}

12.4.1.1 [201:16+]
After the paragraph beginning “If a dummy argument is an assumed-shape array”
Add a new paragraph:

“If a dummy argument is an allocatable array, the actual argument shall be an allocatable array and the types,
type parameters, and ranks shall agree. It is permissible for the actual argument to have an allocation status
of not currently allocated.”

{Requirements for arguments associated with an allocatable dummy array.}

12.4.1.6, item (1) of first paragraph [203:22]

Replace “No action that affects the allocation status may be taken.”

With “Action that affects the allocation status of the entity or an ultimate component thereof shall be
taken through the dummy argument.”
{Allow ALLOCATE/DEALLOCATE via the dummy whilst prohibiting it via any other alias.}

12.4.1.6, item (2) of first paragraph (after Note:12.23) [205:5]

Before “If the value”

Insert “If the allocation status of the entity or an ultimate component thereof is affected through the
dummy argument, then at any time during the execution of the procedure, either before or after the allocation
or deallocation, it may be referenced only through the dummy argument.”

12

© ISO/IEC ISO/IEC PDTR 15581:1999(E)

13.14.79,
After “a disassaociated pointer” [259:26]
Insert “or unallocated allocatable array”
After “disassociated association status” [259:33]

Insert “or, when corresponding to an allocatable array component in a structure constructor, an
unallocated allocatable array”

Annex A, entry allocatable array’ [293:12-13]

Change “A named array”

To “An array”

Add new sentence to end of entry “An allocatable array may be a named arrastroctare
component

Annex A, entry tirect component [295:38]
Change “nonpointer component that is of derived type”
To “component that is of derived type and is not a pointer or allocatable array,”

Annex A, entry tiltimate component [301:11-13]
After “is of intrinsic typé
Insert “, has the ALLOCATABLE attribute,”
After “does not have the POINTER attribute”
Insert “or the ALLOCATABLE attribute”

13

ISO/IEC PDTR 15581:1999(E) © ISO/IEC

Annex A
Compatibility with the next revision of ISO/IEC 1539-1:1997

The differences between this Technical Report and its first edition are listed in the document N1373 in the ftp

directory
ftp.nag.co.uk/sc22wg5

The differences between the semantics and syntax described in this Technical Report and those incorporated
in the current draft of the next revision of ISO/IEC 1539-1:1997 are listed in Standing Document 8 (SD8),
which is accessible from the same directory.

These changes have proved necessary for the reasons explained in the final paragraph of the Foreword.

The documents are also accessible through the www address
http://anubis.dkuug.dk/JTC1/SC22

14

