ofCheck” |SO/IEC JTCL/SC22/WG9 N420

‘ hre Analysis and Qerification
Ada 200Y -- What and Why

S GAda ‘02

December 2002
S Tucker Taft
President
SofCheck, Inc.



Ada Is Alive and Evolving

Ada 83 Mantra: “No Subsets, No Supersets”

1« Ada 95 Mantra: “Portable Power to the
) T Programmer”

* Internet, especially Comp.Lang.Ada, Team-
Ada fosters...

— Active interplay between users, vendors, and
language lawyers

— Open discussion of new ideas and possible language
enhancements

* Availability of open-source GNAT fosters...
— Grass roots interest in Ada

— Additional open-source contributions to compiler and
library

— Experiments with new syntax and semantics



1ISO WG9 and
Ada Rapporteur Group

« Stewards of Ada’s Standardization and
Evolution

* Includes users, vendors, and language
lawyers

o First “Official” Corrigendum Released
9/2000

« Now Focusing on Language “Amendments”

* So Which Way do we Go? é



Overall Goals for
Language Evolution

 Enhance Ada’s Position as a:
— Safe
— High Performance
— Flexible

— Portable

— Accessible
— Distributed, Concurrent, Real-Time, Object-
Oriented Programming Language
* Finish the job of integrating object-
oriented concepts into Ada



Safety
Certified

Safety Is Our
Most Important Product

Ada s the premier language for safety
critical software

« Ada’s safety features are critical to making
Ada such a high-productivity language in all
domains

« Amendments to Ada should not open any
new safety holes

« Amendments should provide even more
safety, more opportunities for catching
mistakes at compile-time.



Disclaimer!

Not all of these proposals are going to make it into 200Y
Users need to get involved to set priorities, help refine
proposals

— Please participate actively today and in Thursday workshop
1ISO WG9/ARG will be publicizing efforts more during the
coming year

— Starting with this conference!

Big Issues:

— Who are the real/important users and what do they need/want?

— How can we keep complexity of understanding and
iImplementation manageable?

— Upward Compatibility? Upward Consistency? What is “obscure”?



= Possible
Safety Amendments

« Pragmato prevent unintentional overriding
or non-overriding of primitive operations

— Catch spelling errors, parameter profile mismatches,
maintenance confusion (ARG Approved)
o Standardized Assert Pragma
— plus other Pre_Assert/Post_Assert/Invariant Pragmas
associated with Subprogs, Pkgs, or Types (work item)
 Pragmal/Attributes for specifying physical
units associated with particular subtypes
— Catch unit inconsistencies in complex computations

« Configuration Pragma to require
Initialization of local variables on all paths
prior to a use

— Match requirements of Java Virtual Machine byte-
code verifier; catch a common cause of errors



Why use Pragmas
for Safety checks?

Pragmas are a natural way to add safety
checks

The only effect of an additional safety check
IS to reject an otherwise legal program

No effect on semantics of programs that
survive the check

Pragmas can be associated with:
— A single declaration

— A point in the execution sequence

— A declarative region

— A source file or an entire library (configuration
pragma)



Dealing with
Today's Reality

« Today’s Reality:

— The rise in importance of the Java Virtual machine
and .Net common runtime

— Increasingly complex APIs; APl Wars

— Component based systems +
— Multilingual Systems

— Dynamically Bound Systems

 Cyclic Dependence between types is the
norm in complex O-O systems

e Emergence of Notion of “Interface” that can
have multiple implementations (CORBA,
Java, C#, COM)

« Amendments to Ada may help address this
reality




nhancing Interoperability with
Today's Reality

 Support Cyclic Dependence Between Types
In Different Packages

— Various alternatives considered

— Current approach: “type T is [tagged] separate in P;”
— Also related to anonymous access type proposal

o Support Notion of “Interface” as used in
Java, CORBA, C#, etc.
— Already supported by Ada->JVM compilers somehow
* E.g. Pragma Convention(Java_Interface, T);

* Plus some magic Compiler-provided bodies for
primitives that call same-named op of encloser

— Proposal for “abstract interface” types




xample based on type “stub”
Proposal

package Employees is
type Employee is private;
type Department is separate in Departments;
procedure Assign_Employee(E : access Employee;
D : access Department);

type Dept_Ptr is access all Department;
function Current_Department(D : access constant Employee) return
Dept_Ptr;
end Employees;

package Departments is
type Department is private;
type Employee is separate in Employees;
procedure Choose Manager(D : access Department;
Manager : access Employee);

end Departments;



Proposed “Abstract Interface”

Amendment

Type NTisnew T
with Intl and Int2 and
record ... end record;

Intl and Int2 are “Interfaces”

— Declared as: Type Intl is interface;

— Similar to abstract tagged null record (no data)
— All primitives must be abstract or null

NT must provide primitives that match all
primitives of Intl and Int2

— In other words, NT implements Intl and Int2.

NT is implicitly convertible to Int1’Class and
Int2’Class, and explicitly convertible back

— and as part of dispatching, of course

Membership test can be used to check
before converting back (narrowing)




Example of Abstract Interface

package Observers is -- “Observer” pattern

type Observer is interface;
type Observer Ptr is access all Observer'Class;

type Observed_ODbj is tagged separate in Observed_Objects;

procedure Notify(O : in out Observer;
Obj : access Observed _Obj'Class)
IS abstract;

procedure Set_Next(O : in out Observer; Next : Observer_Ptr)
IS abstract;
function Next(O : Observer) return Observer_Ptr is abstract;

type Observer_List is private;

procedure Add_Observer(List : in out Observer_List;
O : Observer_Ptr);

procedure Remove_Observer(List : in out Observer_List;
O : Observer_Ptr);

function First_Observer(List : in Observer_List)
return Observer_Ptr;



Portability Enhancements

Ada provides excellent support for building
portable code

Ada library still relatively slim; Amendments
to define additional standard libraries could
enhance portability

Focus should particularly be on ensuring
portability for server-side Ada, E. g.:

— Files and Directories

— Sockets

— HTTP/CGI Servlet interfaces
— Timezones

— Environment variables

— ODBC/JDBC equivalent

Based on Posix or Win32, but simplified and
made O/S independent




Enhancing Accessibility
to Ada

e Address Ease of Transition to Ada

 No Mandate from Top anymore =>

— Ada must be able to infiltrate from bottom or side of
organization

— Need to look at increasingly popular paradigms and
frameworks

 JVM, J2EE, EJB

* Microsoft COM and .Net
e XML/XSL

« ODBC/JDBC

« HTTP/Servlet

« UML-ish Modeling Increasingly Popular
— Needs to be easy to go between UML and Ada

* Full integration of Object Oriented concepts




Possible Accessibility g%
Amendments

 Cyclic dependence (type stub) amendment
e Multiple “Interface” concept

 Object.Operation(...) syntax for calling user-

defined primitives; e.g.:
package P is
type T is tagged private;
procedure Update(
X:inoutT;
Y : Whatever);
end P;
A:P.T,

I5:Update(A, What); => A.Update(What);
 Generalized use of anonymous access types

 Extensible Protected types



Object.Operation syntax (cont’'d)

 More familiar to users of other object-oriented languages
 Reduces need for extensive use of “use” clause

* Allows for uniform reference to dispatching operations and
class-wide operations, on ptrs or objects; e.g.:

package Windows is
type Root_Window is tagged private;
procedure Notify Observers(Win : Root_Window’'Class);
procedure Display(Win : Root_Window) is abstract;

end Windows;

package Borders is
type Bordered Window is new Windows.Root_Window with private;
procedure Display(Win : Bordered Window) is abstract;

BW: access Bordered Window’Class;
BW.Display; BW.Notify Observers; -- both of these “work”



Generalized use of Anonymous
Access types

« Two kinds of generalization

— Allow access “parameters” for access-to-constant and access-to-
subprogram cases

— Allow use of anonymous access types in components and stand-
alone variables
e Should help reduce “noise” associated with unnecessary
explicit conversions of access values

« Also allow optional specification of “not null” constraint on
access subtypes, and anonymous access type
specifications

— E.g.: type String_Ref is access all String not null;

— Improves safety, efficiency, and documentation by pushing check
for null to caller or assigner rather than ultimate point of use.



y0fCheck”
‘ wre Analysis and Qrification

Other Ada 200Y Amendments
Under Consideration



Extensible Protected types

* This was considered during Ada 9X

— Felt to be too risky given that both tagged types and protected
types were new concepts

 Time may be right to integrate the two capabillities, e.q.:

protected type Sem_With_Caution_Period is
new Semaphore with
function Is_In_Caution_Period
return Boolean;

procedure Release With Caution;
private ‘

In_Caution_period : Boolean := False;
end Sem_With_Caution_Period;




Generalize Formal Package
Parameters

« Allow partial specification of actual parameters
— Currently it is all or nothing

— Important when there are two formal package parameters that
need to be “linked” partiafPthrough their actual parameters

« Example

generic
with package 11 is new G1(<>);
with package 12 is new G2(
Element => I11.Element, others => <>);

package New_ Abstraction is ...



Make Limited Types
Less Limited

« Easier: Allow use of explicitly initialized limited objects,
where initial value is an aggregate.
— Aggregate is built in place (as it is now for controlled types)
— Define new syntax to represent “implement by default”
» Use “<>" for this, corresponds to notion of “unspecified”
— Sitill no copying allowed, and no assignment statements
— Aggregates can be used as initial expression for declaration, as
expression for initialized allocator, and as actual parameter value

« Harder: Allow functions to return limited objects

— Return statement must return an aggregate or function call

— Function call can be used where aggregate is proposed to be
allowed above

— Must give up on return-by-reference of Ada 957



Other Possible Goodies...

 Pragma Pure_Function (from GNAT)
 Nonreserved Keywords (e.g. “Interface”)
o Controlling ‘Read/’"Write of Tags

e Additional Standard Restrictions and a Standard “Profile”
for Ravenscar

e “private with A.B;” -- A.B only visible in private part

 Downward closures -- local subprograms can be passed
as parameters to global subprograms
— Uses anonymous access-to-subprogram types for parameters.

o Task termination handlers
— especially for termination due to unhandled exceptions



Which Way Do
We Want to Go?

 Should learn from new languages and other
programming paradigm developments

— No good model for multiple inheritance during Ada 9x
process, but now multiple interface inheritance has
emerged as good compromise

— UML establishing OO at design-time as well as at
code time

— Useful Concurrent and Distributed OO models
beginning to emerge
 Should not ignore marketing and transition
Issues

— E.g. Object.Operation(...) syntax might help preserve
OO view

 Should keep our core “values” in mind
— Safety, Hiah Performance, Portability



What can we afford?

 From an implementation point of view
— Minimize syntax changes
» Standardize packages, attributes, and pragmas
— Keep semantics “straightforward”
— Do trial implementations
* E.g. 127 lines to support Object.Op in GNAT for tagged types
(according to Martin Carlisle)
 From a language complexity point of view
— Try to enhance by simplifying
— Remove unnecessary restrictions
— Support “natural” extensions
— Use paradigms familiar from and well tested in other languages



ARG Is looking for
well-formed proposals

Packages worth standardizing
— Two groups already working on this => join in
Pragmas/Attributes worth standardizing

— ldentify existing compiler-specific features that should be more
portable

Elimination of unnecessary restrictions, implementation
dependencies, and inappropriate “erroneous” or “bounded
error” situations, etc.

Write to Ada-Comment@ada-auth.org
Participate in Thursday workshop.
Speak up now!



ALIOOOP Group

— Ada Linguists Interested Only
in OOP

Type Stub
Interfaces
Object.Operation

Anonymous Access Types; not
null access types

Limited Less Limited
Relaxing Freezing in Generics

Partially Parameterized Formal
Packages

Asserts/Pre/Post/Invariants

Two Discussion Groups

IRONMASCC Task

— | Really Only Need Mission
And Safety Critical Computing

Returning to our roots; MASC
Issues

Ravenscar Profile and
associated Restrictions and
Policies

Task Termination Handling
Extensible Protected Types
Future of Distribution Annex
Other High Integ/Real-Time
Asserts/Pre/Post/Invariants



