
SofCheck
Software Analysis and √erification

™

√
AdaAda 200Y -- What and Why 200Y -- What and Why

SIGAda ‘02
December 2002

S. Tucker Taft
President

SofCheck, Inc.

ISO/IEC JTC1/SC22/WG9 N420

AdaAda is Alive and Evolving is Alive and Evolving

• Ada 83 Mantra: “No Subsets, No Supersets”
• Ada 95 Mantra: “Portable Power to the

Programmer”
• Internet, especially Comp.Lang.Ada, Team-

Ada fosters...
– Active interplay between users, vendors, and

language lawyers
– Open discussion of new ideas and possible language

enhancements

• Availability of open-source GNAT fosters…
– Grass roots interest in Ada
– Additional open-source contributions to compiler and

library
– Experiments with new syntax and semantics

ISO WG9 andISO WG9 and
Ada Rapporteur Ada Rapporteur GroupGroup

• Stewards of Ada’s Standardization and
Evolution

• Includes users, vendors, and language
lawyers

• First “Official” Corrigendum Released
9/2000

• Now Focusing on Language “Amendments”

• So Which Way do we Go?

Overall Goals forOverall Goals for
Language EvolutionLanguage Evolution

• Enhance Ada’s Position as a:
– Safe

– High Performance

– Flexible

– Portable

– Accessible

– Distributed, Concurrent, Real-Time, Object-
Oriented Programming Language

• Finish the job of integrating object-
oriented concepts into Ada

Ada

Safety Is OurSafety Is Our
Most Important ProductMost Important Product

• Ada is the premier language for safety
critical software

• Ada’s safety features are critical to making
Ada such a high-productivity language in all
domains

• Amendments to Ada should not open any
new safety holes

• Amendments should provide even more
safety, more opportunities for catching
mistakes at compile-time.

Safety
Certified

Disclaimer!Disclaimer!

• Not all of these proposals are going to make it into 200Y
• Users need to get involved to set priorities, help refine

proposals
– Please participate actively today and in Thursday workshop

• ISO WG9/ARG will be publicizing efforts more during the
coming year
– Starting with this conference!

• Big issues:
– Who are the real/important users and what do they need/want?
– How can we keep complexity of understanding and

implementation manageable?
– Upward Compatibility? Upward Consistency? What is “obscure”?

PossiblePossible
Safety AmendmentsSafety Amendments

• Pragma to prevent unintentional overriding
or non-overriding of primitive operations
– Catch spelling errors, parameter profile mismatches,

maintenance confusion (ARG Approved)

• Standardized Assert Pragma
– plus other Pre_Assert/Post_Assert/Invariant Pragmas

associated with Subprogs, Pkgs, or Types (work item)

• Pragma/Attributes for specifying physical
units associated with particular subtypes
– Catch unit inconsistencies in complex computations

• Configuration Pragma to require
initialization of local variables on all paths
prior to a use
– Match requirements of Java Virtual Machine byte-

code verifier; catch a common cause of errors

Why use Why use PragmasPragmas
for Safety checks?for Safety checks?

• Pragmas are a natural way to add safety
checks

• The only effect of an additional safety check
is to reject an otherwise legal program

• No effect on semantics of programs that
survive the check

• Pragmas can be associated with:
– A single declaration
– A point in the execution sequence
– A declarative region
– A source file or an entire library (configuration

pragma)

Dealing withDealing with
 Today’s Reality Today’s Reality

• Today’s Reality:
– The rise in importance of the Java Virtual machine

and .Net common runtime
– Increasingly complex APIs; API Wars
– Component based systems
– Multilingual Systems
– Dynamically Bound Systems

• Cyclic Dependence between types is the
norm in complex O-O systems

• Emergence of Notion of “Interface” that can
have multiple implementations (CORBA,
Java, C#, COM)

• Amendments to Ada may help address this
reality

Enhancing Interoperability withEnhancing Interoperability with
Today’s RealityToday’s Reality

• Support Cyclic Dependence Between Types
in Different Packages
– Various alternatives considered
– Current approach: “type T is [tagged] separate in P;”
– Also related to anonymous access type proposal

• Support Notion of “Interface” as used in
Java, CORBA, C#, etc.
– Already supported by Ada->JVM compilers somehow

• E.g. Pragma Convention(Java_Interface, T);
• Plus some magic Compiler-provided bodies for

primitives that call same-named op of encloser
– Proposal for “abstract interface” types

Example based on type “stub”Example based on type “stub”
ProposalProposal

 package Employees is
 type Employee is private;
 type Department is separate in Departments;
 procedure Assign_Employee(E : access Employee;
 D : access Department);
 ...
 type Dept_Ptr is access all Department;
 function Current_Department(D : access constant Employee) return
 Dept_Ptr;
 end Employees;

 package Departments is
 type Department is private;
 type Employee is separate in Employees;
 procedure Choose_Manager(D : access Department;
 Manager : access Employee);
 ...
 end Departments;

Proposed “Abstract Interface”Proposed “Abstract Interface”
AmendmentAmendment

• Type NT is new T
with Int1 and Int2 and
 record … end record;

• Int1 and Int2 are “Interfaces”
– Declared as: Type Int1 is interface;
– Similar to abstract tagged null record (no data)
– All primitives must be abstract or null

• NT must provide primitives that match all
primitives of Int1 and Int2
– In other words, NT implements Int1 and Int2.

• NT is implicitly convertible to Int1’Class and
Int2’Class, and explicitly convertible back
– and as part of dispatching, of course

• Membership test can be used to check
before converting back (narrowing)

Example of Abstract InterfaceExample of Abstract Interface
package Observers is -- “Observer” pattern
 type Observer is interface;
 type Observer_Ptr is access all Observer’Class;

 type Observed_Obj is tagged separate in Observed_Objects;

 procedure Notify(O : in out Observer;
 Obj : access Observed_Obj’Class)
 is abstract;

 procedure Set_Next(O : in out Observer; Next : Observer_Ptr)
 is abstract;
 function Next(O : Observer) return Observer_Ptr is abstract;

 type Observer_List is private;
 procedure Add_Observer(List : in out Observer_List;
 O : Observer_Ptr);
 procedure Remove_Observer(List : in out Observer_List;
 O : Observer_Ptr);
 function First_Observer(List : in Observer_List)
 return Observer_Ptr;

Portability EnhancementsPortability Enhancements

• Ada provides excellent support for building
portable code

• Ada library still relatively slim; Amendments
to define additional standard libraries could
enhance portability

• Focus should particularly be on ensuring
portability for server-side Ada, E. g.:
– Files and Directories
– Sockets
– HTTP/CGI Servlet interfaces
– Timezones
– Environment variables
– ODBC/JDBC equivalent

• Based on Posix or Win32, but simplified and
made O/S independent

Enhancing AccessibilityEnhancing Accessibility
toto Ada Ada

• Address Ease of Transition to Ada
• No Mandate from Top anymore =>

– Ada must be able to infiltrate from bottom or side of
organization

– Need to look at increasingly popular paradigms and
frameworks

• JVM, J2EE, EJB
• Microsoft COM and .Net
• XML/XSL
• ODBC/JDBC
• HTTP/Servlet

• UML-ish Modeling Increasingly Popular
– Needs to be easy to go between UML and Ada

• Full integration of Object Oriented concepts

Possible AccessibilityPossible Accessibility
AmendmentsAmendments

• Cyclic dependence (type stub) amendment

• Multiple “Interface” concept

• Object.Operation(…) syntax for calling user-
defined primitives; e.g.:

• Generalized use of anonymous access types

• Extensible Protected types

package P is
type T is tagged private;
procedure Update(
 X : in out T;
 Y : Whatever);

end P;
A : P.T;
…
P.Update(A, What); => A.Update(What);

Object.Operation syntax (Object.Operation syntax (cont’dcont’d))

• More familiar to users of other object-oriented languages
• Reduces need for extensive use of “use” clause
• Allows for uniform reference to dispatching operations and

class-wide operations, on ptrs or objects; e.g.:
package Windows is
 type Root_Window is tagged private;
 procedure Notify_Observers(Win : Root_Window’Class);
 procedure Display(Win : Root_Window) is abstract;
 ...
end Windows;
package Borders is
 type Bordered_Window is new Windows.Root_Window with private;
 procedure Display(Win : Bordered_Window) is abstract;
 ...

BW: access Bordered_Window’Class;
BW.Display; BW.Notify_Observers; -- both of these “work”

Generalized use of AnonymousGeneralized use of Anonymous
Access typesAccess types

• Two kinds of generalization
– Allow access “parameters” for access-to-constant and access-to-

subprogram cases
– Allow use of anonymous access types in components and stand-

alone variables

• Should help reduce “noise” associated with unnecessary
explicit conversions of access values

• Also allow optional specification of “not null” constraint on
access subtypes, and anonymous access type
specifications
– E.g.: type String_Ref is access all String not null;
– Improves safety, efficiency, and documentation by pushing check

for null to caller or assigner rather than ultimate point of use.

SofCheck
Software Analysis and √erification

™

√
Other Other AdaAda 200Y Amendments 200Y Amendments

Under ConsiderationUnder Consideration

Extensible Protected typesExtensible Protected types

• This was considered during Ada 9X
– Felt to be too risky given that both tagged types and protected

types were new concepts

• Time may be right to integrate the two capabilities, e.g.:

protected type Sem_With_Caution_Period is
 new Semaphore with
 function Is_In_Caution_Period
 return Boolean;
 procedure Release_With_Caution;
private
 In_Caution_period : Boolean := False;
end Sem_With_Caution_Period;

Generalize Formal PackageGeneralize Formal Package
ParametersParameters

• Allow partial specification of actual parameters
– Currently it is all or nothing
– Important when there are two formal package parameters that

need to be “linked” partially through their actual parameters

• Example

generic

with package I1 is new G1(<>);

with package I2 is new G2(

 Element => I1.Element, others => <>);

package New_Abstraction is ...

Clip

Make Limited TypesMake Limited Types
Less LimitedLess Limited

• Easier: Allow use of explicitly initialized limited objects,
where initial value is an aggregate.
– Aggregate is built in place (as it is now for controlled types)
– Define new syntax to represent “implement by default”

• Use “<>” for this, corresponds to notion of “unspecified”
– Still no copying allowed, and no assignment statements
– Aggregates can be used as initial expression for declaration, as

expression for initialized allocator, and as actual parameter value

• Harder: Allow functions to return limited objects
– Return statement must return an aggregate or function call
– Function call can be used where aggregate is proposed to be

allowed above
– Must give up on return-by-reference of Ada 95?

Other Possible Goodies...Other Possible Goodies...

• Pragma Pure_Function (from GNAT)
• Nonreserved Keywords (e.g. “Interface”)
• Controlling ‘Read/’Write of Tags
• Additional Standard Restrictions and a Standard “Profile”

for Ravenscar
• “private with A.B;” -- A.B only visible in private part
• Downward closures -- local subprograms can be passed

as parameters to global subprograms
– Uses anonymous access-to-subprogram types for parameters.

• Task termination handlers
– especially for termination due to unhandled exceptions

Which Way DoWhich Way Do
We Want to Go?We Want to Go?

• Should learn from new languages and other
programming paradigm developments
– No good model for multiple inheritance during Ada 9x

process, but now multiple interface inheritance has
emerged as good compromise

– UML establishing OO at design-time as well as at
code time

– Useful Concurrent and Distributed OO models
beginning to emerge

• Should not ignore marketing and transition
issues
– E.g. Object.Operation(…) syntax might help preserve

OO view

• Should keep our core “values” in mind
– Safety, High Performance, Portability

What can we afford?What can we afford?

• From an implementation point of view
– Minimize syntax changes

• Standardize packages, attributes, and pragmas
– Keep semantics “straightforward”
– Do trial implementations

• E.g. 127 lines to support Object.Op in GNAT for tagged types
(according to Martin Carlisle)

• From a language complexity point of view
– Try to enhance by simplifying
– Remove unnecessary restrictions
– Support “natural” extensions
– Use paradigms familiar from and well tested in other languages

ARG is looking forARG is looking for
well-formed proposalswell-formed proposals

• Packages worth standardizing
– Two groups already working on this => join in

• Pragmas/Attributes worth standardizing
– Identify existing compiler-specific features that should be more

portable

• Elimination of unnecessary restrictions, implementation
dependencies, and inappropriate “erroneous” or “bounded
error” situations, etc.

• Write to Ada-Comment@ada-auth.org
• Participate in Thursday workshop.
• Speak up now!

Two Discussion GroupsTwo Discussion Groups

• ALIOOOP Group
– Ada Linguists Interested Only

in OOP

• Type Stub
• Interfaces
• Object.Operation
• Anonymous Access Types; not

null access types
• Limited Less Limited
• Relaxing Freezing in Generics
• Partially Parameterized Formal

Packages
• Asserts/Pre/Post/Invariants

• IRONMASCC Task
– I Really Only Need Mission

And Safety Critical Computing

• Returning to our roots; MASC
issues

• Ravenscar Profile and
associated Restrictions and
Policies

• Task Termination Handling
• Extensible Protected Types
• Future of Distribution Annex
• Other High Integ/Real-Time
• Asserts/Pre/Post/Invariants

