
Baseline Edition TR 24772–4

© ISO/IEC 2015 – All rights reserved i

Deleted: 3

ISO/IEC JTC 1/SC 22/WG23 N0820
Date: 2018-08-28

ISO/IEC TR 24772–4

Edition 1

ISO/IEC JTC 1/SC 22/WG 23

Secretariat: ANSI

Information Technology — Programming languages — Guidance to avoiding
vulnerabilities in programming languages – Vulnerability descriptions for the
programming language Python

Élément introductif — Élément principal — Partie n: Titre de la partie

Warning

This document is not an ISO International Standard. It is distributed for review and comment. It is subject to change
without notice and may not be referred to as an International Standard.

Recipients of this draft are invited to submit, with their comments, notification of any relevant patent rights of which they
are aware and to provide supporting documentation.

Document type: International standard
Document subtype: if applicable
Document stage: (10) development stage
Document language: E

Deleted: 13

Deleted: 7-29

WG 23/N 0813

ii © ISO/IEC 2015 – All rights reserved

Deleted: 3

Copyright notice

This ISO document is a working draft or committee draft and is copyright-protected by ISO. While the
reproduction of working drafts or committee drafts in any form for use by participants in the ISO
standards development process is permitted without prior permission from ISO, neither this document
nor any extract from it may be reproduced, stored or transmitted in any form for any other purpose
without prior written permission from ISO.

Requests for permission to reproduce this document for the purpose of selling it should be addressed as
shown below or to ISO’s member body in the country of the requester:

ISO copyright office
Case postale 56, CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org

Reproduction for sales purposes may be subject to royalty payments or a licensing agreement.

Violators may be prosecuted.

CONTENTS

FOREWORD VI

INTRODUCTION VII

1. SCOPE 1

2. NORMATIVE REFERENCES 1

3. TERMS AND DEFINITIONS, SYMBOLS AND CONVENTIONS 2

3.1 TERMS AND DEFINITIONS 2

4. LANGUAGE CONCEPTS 5

5. GENERAL GUIDANCE FOR PYTHON 6

5.1 TOP AVOIDANCE MECHANISMS 6

6. SPECIFIC GUIDANCE FOR PYTHON 8

6.1 GENERAL 8
6.2 TYPE SYSTEM [IHN] 8
6.3 BIT REPRESENTATIONS [STR] 10

Baseline Edition TR 24772–4

© ISO/IEC 2015 – All rights reserved iii

Deleted: 3

6.4 FLOATING-POINT ARITHMETIC [PLF] 11
6.5 ENUMERATOR ISSUES [CCB] 11
6.6 CONVERSION ERRORS [FLC] 12
6.7 STRING TERMINATION [CJM] 13
6.8 BUFFER BOUNDARY VIOLATION [HCB] 13
6.9 UNCHECKED ARRAY INDEXING [XYZ] 13
6.10 UNCHECKED ARRAY COPYING [XYW] 13
6.11 POINTER TYPE CONVERSIONS [HFC] 13
6.12 POINTER ARITHMETIC [RVG] 13
6.13 NULL POINTER DEREFERENCE [XYH] 13
6.14 DANGLING REFERENCE TO HEAP [XYK] 13
6.15 ARITHMETIC WRAP-AROUND ERROR [FIF] 14
6.16 USING SHIFT OPERATIONS FOR MULTIPLICATION AND DIVISION [PIK] 14
6.17 CHOICE OF CLEAR NAMES [NAI] 14
6.18 DEAD STORE [WXQ] 16
6.19 UNUSED VARIABLE [YZS] 17
6.20 IDENTIFIER NAME REUSE [YOW] 17
6.21 NAMESPACE ISSUES [BJL] 19
6.22 INITIALIZATION OF VARIABLES [LAV] 22
6.23 OPERATOR PRECEDENCE AND ASSOCIATIVITY [JCW] 22
6.24 SIDE-EFFECTS AND ORDER OF EVALUATION OF OPERANDS [SAM] 23
6.25 LIKELY INCORRECT EXPRESSION [KOA] 24
6.26 DEAD AND DEACTIVATED CODE [XYQ] 25
6.27 SWITCH STATEMENTS AND STATIC ANALYSIS [CLL] 26
6.28 DEMARCATION OF CONTROL FLOW [EOJ] 27
6.29 LOOP CONTROL VARIABLES [TEX] 27
6.30 OFF-BY-ONE ERROR [XZH] 28
6.31 STRUCTURED PROGRAMMING [EWD] 29
6.32 PASSING PARAMETERS AND RETURN VALUES [CSJ] 30
6.33 DANGLING REFERENCES TO STACK FRAMES [DCM] 31
6.34 SUBPROGRAM SIGNATURE MISMATCH [OTR] 31
6.35 RECURSION [GDL] 32
6.36 IGNORED ERROR STATUS AND UNHANDLED EXCEPTIONS [OYB] 32
6.37 TYPE-BREAKING REINTERPRETATION OF DATA [AMV] 33
6.38 DEEP VS. SHALLOW COPYING [YAN] 33
6.39 MEMORY LEAKS AND HEAP FRAGMENTATION [XYL] 34
6.40 TEMPLATES AND GENERICS [SYM] 34
6.41 INHERITANCE [RIP] 34
6.42 VIOLATIONS OF THE LISKOV SUBSTITUTION PRINCIPLE OR THE CONTRACT MODEL [BLP] 35
6.43 REDISPATCHING [PPH] 35
6.44 POLYMORPHIC VARIABLES [BKK] 35
6.45 EXTRA INTRINSICS [LRM] 35
6.46 ARGUMENT PASSING TO LIBRARY FUNCTIONS [TRJ] 36
6.47 INTER-LANGUAGE CALLING [DJS] 36

WG 23/N 0813

iv © ISO/IEC 2015 – All rights reserved

Deleted: 3

6.48 DYNAMICALLY-LINKED CODE AND SELF-MODIFYING CODE [NYY] 37
6.49 LIBRARY SIGNATURE [NSQ] 37
6.50 UNANTICIPATED EXCEPTIONS FROM LIBRARY ROUTINES [HJW] 38
6.51 PRE-PROCESSOR DIRECTIVES [NMP] 38
6.52 SUPPRESSION OF LANGUAGE-DEFINED RUN-TIME CHECKING [MXB] 38
6.53 PROVISION OF INHERENTLY UNSAFE OPERATIONS [SKL] 38
6.54 OBSCURE LANGUAGE FEATURES [BRS] 39
6.55 UNSPECIFIED BEHAVIOUR [BQF] 41
6.56 UNDEFINED BEHAVIOUR [EWF] 42
6.57 IMPLEMENTATION–DEFINED BEHAVIOUR [FAB] 43
6.58 DEPRECATED LANGUAGE FEATURES [MEM] 44
6.59 CONCURRENCY – ACTIVATION [CGA] 44
6.60 CONCURRENCY – DIRECTED TERMINATION [CGT] 45
6.61 CONCURRENT DATA ACCESS [CGX] 46
6.62 CONCURRENCY – PREMATURE TERMINATION [CGS] 46
6.63 LOCK PROTOCOL ERRORS [CGM 47
6.64 RELIANCE ON EXTERNAL FORMAT STRING [SHL] 47

7. LANGUAGE SPECIFIC VULNERABILITIES FOR PYTHON 47

8. IMPLICATIONS FOR STANDARDIZATION OR FUTURE REVISION 47

BIBLIOGRAPHY 48

INDEX 50

Baseline Edition TR 24772–4

© ISO/IEC 2015 – All rights reserved v

Deleted: 3

WG 23/N 0813

vi © ISO/IEC 2015 – All rights reserved

Deleted: 3

Foreword	

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that are members of
ISO or IEC participate in the development of International Standards through technical committees established
by the respective organization to deal with particular fields of technical activity. ISO and IEC technical
committees collaborate in fields of mutual interest. Other international organizations, governmental and non-
governmental, in liaison with ISO and IEC, also take part in the work. In the field of information technology, ISO
and IEC have established a joint technical committee, ISO/IEC JTC 1.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of the joint technical committee is to prepare International Standards. Draft International
Standards adopted by the joint technical committee are circulated to national bodies for voting. Publication as
an International Standard requires approval by at least 75 % of the national bodies casting a vote.

In exceptional circumstances, when the joint technical committee has collected data of a different kind from
that which is normally published as an International Standard (“state of the art”, for example), it may decide to
publish a Technical Report. A Technical Report is entirely informative in nature and shall be subject to review
every five years in the same manner as an International Standard.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent
rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights.

ISO/IEC TR 24772, was prepared by Joint Technical Committee ISO/IEC JTC 1, Information technology,
Subcommittee SC 22, Programming languages, their environments and system software interfaces.

Baseline Edition TR 24772–4

© ISO/IEC 2015 – All rights reserved vii

Deleted: 3

Introduction	

This Technical Report provides guidance for the programming language Python, so that application
developers considering Python or using Python will be better able to avoid the programming constructs that
lead to vulnerabilities in software written in the Python language and their attendant consequences. This
guidance can also be used by developers to select source code evaluation tools that can discover and
eliminate some constructs that could lead to vulnerabilities in their software. This report can also be used in
comparison with companion Technical Reports and with the language-independent report, TR 24772–1, to
select a programming language that provides the appropriate level of confidence that anticipated problems
can be avoided.

This technical report part is intended to be used with TR 24772–1, which discusses programming language
vulnerabilities in a language independent fashion.

It should be noted that this Technical Report is inherently incomplete. It is not possible to provide a
complete list of programming language vulnerabilities because new weaknesses are discovered continually.
Any such report can only describe those that have been found, characterized, and determined to have
sufficient probability and consequence.

Technical Report ISO/IEC TR 24772-1:2018(E)

© ISO/IEC 2018 – All rights reserved 1

Deleted: 20153

Information Technology — Programming Languages — Guidance to avoiding
vulnerabilities in programming languages — Vulnerability descriptions for
the programming language Python

1.	Scope	

This Technical Report specifies software programming language vulnerabilities to be avoided in the development
of systems where assured behaviour is required for security, safety, mission-critical and business-critical software.
In general, this guidance is applicable to the software developed, reviewed, or maintained for any application.

Vulnerabilities are described in this Technical Report document the way that the vulnerability described in the
language-independent TR 24772–1 are manifested in Python.

Python is not an internationally specified language, in the sense that it does not have a single International
Standard specification. The analysis and guidance provided in this document is targeted to Python version 3.8.
Implementations of earlier versions of Python exist and are in active usage. In general, Python is backward
compatible with earlier releases, but this is not guaranteed. Readers are cautioned to be aware of the differences
as they apply guidance provided herein.

2.	Normative	references	

The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced document
(including any amendments) applies.

ISO/IEC/IEEE 60559:2011, Information technology -- Microprocessor Systems -- Floating-Point arithmetic

ISO/IEC 10967-1: 2012 Information technology -- Language independent arithmetic -- Part 1: Integer and floating
point arithmetic

ISO/IEC 10967-2:2001 Information technology -- Language independent arithmetic -- Part 2: Elementary numerical
functions

ISO/IEC 10967-3:2006 Information technology -- Language independent arithmetic -- Part 3: Complex integer and
floating point arithmetic and complex elementary numerical functions

Commented [SGM1]: We should be clear that this TR
documents Python version 3. Version 2 implementations still exist,
but version 3 is not backwards compatible.

Deleted: ¶
I

Deleted: SO/IEC TR 24772–1:2018, Information Technology —
Programming languages — Guidance to avoiding vulnerabilities in
programming languages¶
ISO 80000–2:2009, Quantities and units — Part 2: Mathematical
signs and symbols to be use in the natural sciences and technology¶
ISO/IEC 2382–1:1993, Information technology — Vocabulary — Part
1: Fundamental terms¶
IEC 60559:2011, Information technology -- Microprocessor Systems --
Floating-Point arithmetic

Formatted: English (UK)

Moved down [1]: Achour, M. (n.d.). PHP Manual. Retrieved 3
5, 2012, from PHP: http://www.php.net/manual/en/¶
Brueggeman, E. (n.d.). Retrieved 3 5, 2012, from The Website of
Elliott Brueggeman :
http://www.ebrueggeman.com/blog/integers-and-floating-
numbers¶
Enums for Python (Python recipe). (n.d.). Retrieved from
ActiveState: http://code.activestate.com/recipes/67107/¶
Goleman, S. (n.d.). Extension Writing Part I: Introduction to PHP
and Zend. Retrieved 5 5, 12, from Zend Developer Zone:
http://devzone.zend.com/303/extension-writing-part-i-
introduction-to-php-and-zend/¶
Isaac, A. G. (2010, 06 23). Python Introduction. Retrieved 05 12,
2011, from
https://subversion.american.edu/aisaac/notes/python4class.xht
ml#introduction-to-the-interpreter¶
Lutz, M. (2009). Learning Python. Sebastopol, CA: O'Reilly Media,
Inc.¶
Lutz, M. (2011). Programming Python. Sebastopol, CA: O'Reilly
Media, Inc.¶
Martelli, A. (2006). Python in a Nutshell. Sebastopol, CA: O'Reilly
Media, Inc.¶
Norwak, H. (n.d.). 10 Python Pitfalls. Retrieved 05 13, 2011, from
10 Python Pitfalls:
http://zephyrfalcon.org/labs/python_pitfalls.html¶
Pilgrim, M. (2004). Dive Into Python.¶
Python Gotchas. (n.d.). Retrieved from
http://www.ferg.org/projects/python_gotchas.html¶
source, G. (n.d.). Big List of Portabilty in Python. Retrieved 6 12,
2011, from stackoverflow:
http://stackoverflow.com/questions/1883118/big-list-of-
portability-in-python¶
The Python Language Reference. (n.d.). Retrieved from
python.org:
http://docs.python.org/reference/index.html#reference-index¶
Will Dietz, P. L. (n.d.). Understanding Integer Overflow in C/C++.
Retrieved 3 5, 2012, from
http://www.cs.utah.edu/~regehr/papers/overflow12.pdf¶

Formatted: Font:

2 © ISO/IEC 2015 – All rights reserved

Deleted: 3

3.	Terms	and	definitions,	symbols	and	conventions	

3.1	Terms	and	definitions	

For the purposes of this document, the terms and definitions given in ISO/IEC 2382–1, in TR 24772–1, and the
following apply. Other terms are defined where they appear in italic type.

ISO and IEC maintain terminology databases for use in standardization are available at:

• IEC Glossary, std.iec.ch/glossary
• ISO Online Browsing Platform, www.iso.ch/obp/ui

assignment statement: Used to create (or rebind) a variable to an object. The simple syntax is a=b, the
augmented syntax applies an operator at assignment time (for example, a += 1) and therefore cannot create a
variable since it operates using the current value referenced by a variable. Other syntaxes support multiple
targets (that is, x = y = z = 1).

body: The portion of a compound statement that follows the header. It may contain other compound (nested)
statements.

boolean: A truth value where True equivalences to any non-zero value and False equivalences to zero.
Commonly expressed numerically as 1 (true), or 0 (false) but referenced as True and False.

built-in: A function provided by the Python language intrinsically without the need to import it (called the, str,
slice, type).
class: A program defined type which is used to instantiate objects and provide attributes that are common to all
the objects that it instantiates.

comment: Comments are preceded by a hash symbol “#”.

complex number: A number made up of two parts each expressed as floating-point numbers: a real and an
imaginary part. The imaginary part is expressed with a trailing upper or lower case "J or j".

compound statement: A structure that contains and controls one or more statements.

CPython: The standard implementation of Python coded in ANSI portable C.

dictionary: A built-in mapping consisting of zero or more key/value "pairs". Values are stored and retrieved using
keys which can be of mixed types (with some caveats beyond the scope of this annex).

docstring: One or more lines in a unit of code that serve to document the code. Docstrings are retrievable at run-
time.

exception: An object that encapsulates the attributes of an exception (an error or abnormal event). Raising an
exception is a process that creates the exception object and propagates it through a process that is optionally
defined in a program. Lacking an exception 'handler", Python terminates the program with an error message.

floating-point number: A real number expressed with a decimal point, an exponent expressed as an upper or
lower case "e or E" or both (for example, 1.0, 27e0, .456).

Formatted: List Paragraph, Bulleted + Level: 1 + Aligned at:
0.63 cm + Indent at: 1.27 cm

© ISO/IEC 2015 – All rights reserved 3

Deleted: 3

function: A grouping of statements, either built-in or defined in a program using the def statement, which can
be called as a unit.

garbage collection: The process by which the memory used by unreferenced object and their namespaces is
reclaimed. Python provides a gc module to allow a program to direct when and how garbage collection is done.

global: A variable that is scoped to a module and can be referenced from anywhere within the module including
within functions and classes defined in that module.

guerrilla patching: Also known as Monkey Patching, the practice of changing the attributes and/or methods of a
module’s class at run-time from outside of the module.

immutability: The characteristic of being unchangeable. Strings, tuples, and numbers are immutable objects in
Python.

import: A mechanism that is used to make the contents of a module accessible to the importing program.

inheritance: The ability to define a class that is a subclass of other classes (called the superclass). Inheritance uses
a method resolution order (MRO) to resolve references to the correct inheritance level (that is, it resolves
attributes (methods and variables)).

instance: A single occurrence of a class that is created by calling the class as if it was a function (for example, a =
Animal()).

integer: An integer can be of any length but is more efficiently processed if it can be internally represented by a
32 or 64 bit integer. Integer literals can be expressed in binary, decimal, octal, or hexadecimal formats.

keyword: An identifier that is reserved for special meaning to the Python interpreter (for example, if, else,
for, class).

lambda expression: A convenient way to express a single return function statement within another statement
instead of defining a separate function and referencing it.

list: An ordered sequence of zero or more items which can be modified (that is, is mutable) and indexed.

literals: A string or number (for example, 'abc', 123, 5.4). Note that a string literal can use either double
quote (“) or single apostrophe pairs (‘) to delimit a string.

membership: If an item occurs within a sequence it is said to be a member. Python has built-ins to test for
membership (for example, if a in b). Classes can provide methods to override built-in membership tests.

module: A file containing source language (that is, statements) in Python (or another) language. A module has its
own namespace and scope and may contain definitions for functions and classes. A module is only executed when
first imported and upon reloading.

mutability: The characteristic of being changeable. Lists and dictionaries are two examples of Python objects that
are mutable.

4 © ISO/IEC 2015 – All rights reserved

Deleted: 3

name: A variable that references a Python object such as a number, string, list, dictionary, tuple, set, builtin,
module, function, or class.

namespace: A place where names reside with their references to the objects that they represent. Examples of
objects that have their own namespaces include: blocks, modules, classes, and functions. Namespaces provide a
way to enforce scope and thus prevent name collisions since each unique name exists in only one namespace.

none: A null object.

number: An integer, floating point, decimal, or complex number.

operator: Non-alphabetic characters, characters, and character strings that have special meanings within
expressions (for example, +, -, not, is).

overriding: Coding an attribute in a subclass to replace a superclass attribute.

package: A collection of one or more other modules in the form of a directory.

pickling: The process of serializing objects using the pickle module.

polymorphism: The meaning of an operation – generally a function/method call – depends on the objects being
operated upon, not the type of object. One of Python’s key principles is that object interfaces support operations
regardless of the type of object being passed. For example, string methods support addition and multiplication
just as methods on integers and other numeric objects do.

recursion: The ability of a function to call itself. Python supports recursion to a level of 1,000 unless that limit is
modified using the setrecursionlimit function.

scope: The visibility of a name is its scope. All names within Python exist within a specific namespace which is tied
to a single block, function, class, or module in which the name was last assigned a value.

script: A unit of code generally synonymous with a program but usually connotes code run at the highest level as
in “scripts run modules”.

self: By convention, the name given to a class’ instance variable.

sequence: An ordered container of items that can be indexed or sliced using positive numbers. Python provides
three built-in sequences: strings, tuples, and lists. New sequences can also be defined in libraries, extension
modules, or within classes.

set: An unordered sequence of zero or more items which do not need to be of the same type. Sets can be frozen
(immutable) or unfrozen (mutable).

short-circuiting operators: Operators and and or can short-circuit the evaluation of their operand if the left
side evaluates to true (in the case of the or) or false (in the case of and). For example, in the expression a or
b, there is no need to evaluate b if a is True, likewise in the expression a and b, there is no need to evaluate
b if a is False.

© ISO/IEC 2015 – All rights reserved 5

Deleted: 3

statement: An expression that generally occupies one line. Multiple statements can occupy the same line if
separated by a semicolon (;) but this is very unconventional in Python where each line typically contains one
statement.

string: A built-in sequence object consisting of one or more characters. Unlike many other languages, Python
strings cannot be modified (that is, they are "immutable") and they do not have a termination character.

tuple: A sequence of zero or more items (for example, (1,2,3) or ("A", "B", "C")). Tuples are
immutable and may contain different object types (for example, (1, "a", 5.678)).

variable: Python variables (that is, names) are not like variables in most other languages - they are never declared
they are dynamically referenced to objects, they have no type, and they may be bound to objects of different
types at different times. Variables are bound explicitly (for example, a = 1 binds a to the integer 1) and
unbound implicitly (for example, a=1; a=2). In the last example, a is bound to the object (value) 1 then
implicitly unbound to that object when bound to 2 - a process known as rebinding. Variables can also be
unbound explicitly using the del statement (for example, del a, b, c).

4.	Language	concepts	

The key concepts discussed in this section are not entirely unique to Python but they are implemented in Python
in ways that are not intuitive to new and experienced programmers alike.

Dynamic Typing
A frequent source of confusion is Python’s dynamic typing and its effect on variable assignments (name is
synonymous with variable in this annex). In Python there are no static declarations of variables - they are created,
rebound, and deleted dynamically. Further, variables are not the objects that they point to - they are just
references to objects which can be, and frequently are, bound to other objects at any time:

a = 1 # a is bound to an integer object whose value is 1
a = 'abc' # a is now bound to a string object

Variables have no type – they reference objects which have types thus the statement a = 1 creates a new
variable called a that references a new object whose value is 1 and type is integer. That variable can be deleted
with a del statement or bound to another object any time as shown above. Refer to subclause 6.2 Type System
[IHN] for more on this subject. For the purpose of brevity this annex often treats the term variable (or name) as
being the object which is technically incorrect but simpler. For example, in the statement a = 1, the numeric
object a is assigned the value 1. In reality the name a is assigned to a newly created object of type integer which
is assigned the value 1.

 covers dynamic typing in more detail.

Mutable and Immutable Objects
Note that in the statement: a = a + 1, Python creates a new object whose value is calculated by adding 1
to the value of the current object referenced by a. If, prior to the execution of this statement a’s object had
contained a value of 1, then a new integer object with a value of 2 would be created. The integer object whose
value was 1 is now marked for deletion using garbage collection (provided no other variables reference it). Note

Deleted: –

Deleted: 6.2 Type System [IHN]

Deleted: -

6 © ISO/IEC 2015 – All rights reserved

Deleted: 3

that the value of a is not updated in place, that is, the object references by a does not simply have 1 added to it
as would be typical in other languages. The reason this does not happen in Python is because integer objects, as
well as string, number and tuples, are immutable – they cannot be changed in place. Only lists and dictionaries
can be changed in place – they are mutable. In practice this restriction of not being able to change a mutable
object in place is mostly transparent but a notable exception is when immutable objects are passed as a
parameter to a function or class. See subclause 6.22 Initialization of Variables [LAV] for a description of this.

The underling actions that are performed to enable the apparent in-place change do not update the immutable
object – they create a new object and “point” the variable to new object. This can be proven as below (the id
function returns an object’s address):

a = 'abc'
print(id(a))#=> 30753768
a = 'abc' + 'def'
print(id(a))#=> 52499320
print(a)#=> abcdef

The updating of objects referenced in the parameters passed to a function or class is governed by whether the
object is mutable, in which case it is updated in place, or immutable in which case a local copy of the object is
created and updated which has no effect on the passed object. This is described in more detail in subclause 6.32
Passing Parameters and Return Values [CSJ].

5.	General	guidance	for	Python	

5.1	Top	avoidance	mechanisms		

Each vulnerability listed in clause 6 provides a set of ways that the vulnerability can be avoided or mitigated.
Many of the mitigations and avoidance mechanisms are common. This subclause provides the most effective and
the most common mitigations, together with references to which vulnerabilities they apply. The references are
hyperlinked to provide the reader with easy access to those vulnerabilities for rationale and further exploration.
The mitigations provided here are in addition to the ones provided in TR 24772-1, clause 5.4

The expectation is that users of this document will develop and use a coding standard based on this document
that is tailored to their risk environment.

Number Recommended avoidance mechanism References
1 Do not use floating-point arithmetic when integers or booleans

would suffice especially for counters associated with program flow, such
as loop control variables.

6.4.2

2 Use of enumeration requires careful attention to readability,
performance, and safety. There are many complex, but useful
ways to simulate enums in Python [(Enums for Python (Python
recipe))]and many simple ways including the use of sets:

 colors = {'red', 'green', 'blue'}
 if red in colors: print('valid color')

6.5.2

Formatted: Font: Italic, Underline, Font color: Blue

Deleted: 6.22 Initialization of Variables [LAV]

Formatted: Font: Italic, Underline, Font color: Blue

Deleted: 6.32 Passing Parameters and Return Values [CSJ]

Formatted Table

Formatted: Normal, Indent: Left: 0.63 cm, Space After: 0
pt, Line spacing: single, No bullets or numbering

Formatted: Normal, Indent: Left: 0 cm

Formatted: Font: (Default) Courier New, 10 pt

Formatted: Indent: First line: 0 cm

Formatted: Font: (Default) Courier New, 10 pt
Deleted:

© ISO/IEC 2015 – All rights reserved 7

Deleted: 3

Be aware that the technique shown above, as with almost all other
ways to simulate enums, is not safe since the variable can be
bound to another object at any time.
en functions return error values, check the error return values before
processing any other returned data.

3 Ensure that when examining cod that a variable can be bound
(or rebound) to another object (of same or different type) at
any time.

6

 4 Avoid implicit references to global values from within functions to
make code clearer. In order to update global objects within a
function or class, place the global statement at the beginning of
the function definition and list the variables so it is clearer to the
reader which variables are local and which are global (for example,
global a, b, c)..

6.20.2

5 Use only spaces or tabs, not both, to indent to demark control
flow. Avoid the form feed characters for indentation

6.28.2 6.57.2

6 Use Python’s built-in documentation (such as docstrings) to obtain
information about a class’ method before inheriting from it

6.41.2

7 Either avoid logic that depends on byte order or use the
sys.byteorder variable and write the logic to account for byte
order dependent on its value ('little' or 'big').

6.57.2

8 When launching parallel tasks don’t raise a BaseException
subclass in a callable in the Future class

6.56.2

9 Do not depend on the way Python may or may not optimize object
references for small integer and string objects because it may vary
for environments or even for releases in the same environment.

6.55.2

10 Be aware of short-circuiting behaviour when expressions with side
effects are used on the right side of a Boolean expression such as if
the first expression evaluates to false in an and expression, then
the remaining expressions, including functions calls, will not be
evaluated.

6.23.2 6.24.2

12 Sanitize, erase or encrypt data that will be visible to others (for
example, freed memory, transmitted data).

Formatted: Indent: Left: 0 cm

Formatted: Font: (Default) Courier New

Formatted: Indent: Left: 0.63 cm, Space After: 0 pt, Line
spacing: single, Adjust space between Latin and Asian text,
Adjust space between Asian text and numbers

Deleted: e that you take into account

Formatted: Font: 11 pt, Not Bold

Deleted: Never use

Formatted: Space Before: 0 pt, After: 0 pt, Line spacing:
single

Formatted: Font: Not Bold,

Formatted: Space After: 0 pt, Line spacing: single, Adjust
space between Latin and Asian text, Adjust space between
Asian text and numbers

Formatted: Font: (Default) Courier New, 10 pt

Formatted: Font: 11 pt, Not Bold

Formatted: Font: (Default) Courier New, 10 pt

Deleted: 10

Deleted: 8

Formatted: Font: 11 pt

Formatted: Font: 11 pt, English (US)

Deleted: in

Formatted: Font: 11 pt, English (US)

Formatted: Font: 11 pt, English (US)

Deleted: 19 ... [1]
Deleted: 21

Formatted: Font: 11 pt, Highlight

Formatted: Don't adjust space between Latin and Asian text,
Don't adjust space between Asian text and numbers

Commented [Office2]: This is a section 7 rule?
Yes, but this section will cover sections 6 and 7. One we pull up rules
from clause 7, we will need to triage.

Formatted: Default Paragraph Font, Font: 11 pt, Highlight

Commented [SGM3]: No supporting rules

Formatted: Font: 11 pt, Highlight

8 © ISO/IEC 2015 – All rights reserved

Deleted: 3

6.	Specific	Guidance	for	Python	

6.1	General		

This clause contains specific advice for Python about the possible presence of vulnerabilities as described in
TR 24772-1, and provides specific guidance on how to avoid them in Python code. This section mirrors TR 24772-1
clause 6 in that the vulnerability “Type System [IHN]” is found in 6.2 of TR 24772–1, and Python specific guidance
is found in clause 6.2 and subclauses in this document.

How do we treat libraries? Python has many libraries that essentially change the programming paradigm.

6.2	Type	System	[IHN]	

6.2.1	Applicability	to	language	

Python abstracts all data as objects and every object has a type (in addition to an identity and a value). Extensions
to Python, written in other languages, can define new types.

Python is also a strongly typed language – you cannot perform operations on an object that are not valid for that
type. Python’s dynamic typing is a key feature designed to promote polymorphism to provide flexibility. Another
aspect of dynamic typing is a variable does not maintain any type information – that information is held by the
object that the variable references at a specific time. A Python program is free to assign (bind), and reassign
(rebind), any variable to any type of object at any time.

Variables are created when they are first assigned a value (see subclause 6.17 Choice of Clear Names [NAI] for
more on this subject). Variables are generic in that they do not have a type, they simply reference objects which
hold the object’s type information. Variables in an expression are replaced with the object they reference when
that expression is evaluated therefore a variable must be explicitly assigned before being referenced otherwise a
run-time exception is raised:

a = 1
if a == 1 : print(b) # error – b is not defined

When line 1 above is interpreted an object of type integer is created to hold the value 1 and the variable a is
created and linked to that object. The second line illustrates how an error is raised if a variable (b in this case) is
referenced before being assigned to an object.

a = 1
b = a
a = 'x'
print(a,b)#=> x 1

Variables can share references as above – b is assigned to the same object as a. This is known as a shared
reference. If a is later reassigned to another object (as in line 3 above), b will still be assigned to the initial object
that a was assigned to when b shared the reference, in this case b would equal to 1.

Commented [SGM4]: Recommendation from Nick Coghlan:
- the section on typing should discuss the official introduction of
gradual typing, and the availability of static type checkers such
as mypy and pytype (see PEP 484 and 526)

Formatted: hyper Char

Deleted: 6.17 Choice of Clear Names [NAI]

© ISO/IEC 2015 – All rights reserved 9

Deleted: 3

The subject of shared references requires particular care since its effect varies according to the rules for in-place
object changes. In-places object changes are allowed only for mutable (that is, alterable) objects. Numeric
objects and strings are immutable (unalterable). Lists and dictionaries are mutable which affects how shared
references operate as below:

a = [1,2,3]
b = a
a[0] = 7
print(a) # [7, 2, 3]
print(b) # [7, 2, 3]

In the example above, a and b have a shared reference to the same list object so a change to that list object
affects both references. If the shared reference effects are not well understood the change to b can cause
unexpected results.

Automatic conversion occurs only for numeric types of objects. Python converts (coerces) from the simplest type
up to the most complex type whenever different numeric types are mixed in an expression. For example:

a = 1
b = 2.0

c = a + b; print(c) #=> 3.0

In the example above, the integer a is converted up to floating point (that is, 1.0) before the operation is
performed. The object referred to by a is not affected – only the intermediate values used to resolve the
expression are converted. If the programmer does not realize this conversion takes place he may expect that c is
an integer and use it accordingly which could lead to unexpected results.

Automatic conversion also occurs when an integer becomes too large to fit within the constraints of the large
integer specified in the language (typically C) used to create the Python interpreter. When an integer becomes
too large to fit into that range it is converted to an unlimited precision integer of arbitrary length.

Explicit conversion methods can also be used to explicitly convert between types though this is seldom required
since Python will automatically convert as required. Examples include:

a = int(1.6666) # a converted to 1
b = float(1) # b converted to 1.0
c = int('10') # c integer 10 created from a string
d = str(10) # d string '10' created from an integer
e = ord('x') # e integer assigned integer value 120
f = chr(121) # f assigned the string 'y'

Dynamic typing is a key feature of Python which promotes polymorphism for flexibility. Strict typing can,
however, be imposed:

a = 'abc' # a refers to a string object
if isinstance(a, str): print('a type is string')

10 © ISO/IEC 2015 – All rights reserved

Deleted: 3

Using code to explicitly check the type of an object is strongly discouraged in Python since it defeats the benefit
that dynamic typing provides - flexibility which allows functions to potentially operate correctly with objects of
more than one type.

6.2.2	Guidance	to	language	users	

• Follow the guidance of TR 24772-1 clause 6.3.5
• Use static type checkers such as mypy and pytype to detect typing errors
• Pay special attention to issues of magnitude and precision when using mixed type expressions;
• Be aware of the consequences of shared references;
• Be aware of the conversion from simple to complex; and
• Do not check for specific types of objects unless there is good justification, for example, when calling an

extension that requires a specific type.

6.3	Bit	Representations	[STR]	

6.3.1	Applicability	to	language	

Python provides hexadecimal, octal and binary built-in functions. oct converts to octal, hex to hexadecimal and
bin to binary:

print(oct(256)) # 0o400
print(hex(256)) # 0x100
print(bin(256)) # 0b100000000

The notations shown as comments above are also valid ways to specify octal, hex and binary values respectively:

print(0o400)# => 256
a = 0x100+1; print(a)# => 257

The built-in int function can be used to convert strings to numbers and optionally specify any number base:

int('256') # the integer 256 in the default base 10
int('400', 8) # => 256
int('100', 16) # => 256
int('24', 5) # => 14

Python stores integers that are beyond the implementation’s largest integer size as an internal arbitrary length so
that programmers are only limited by performance concerns when very large integers are used (and by memory
when extremely large numbers are used). For example:

a=2**100 # => 1267650600228229401496703205376

Python treats positive integers as being infinitely padded on the left with zeroes and negative numbers (in two’s
complement notation) with 1’s on the left when used in bitwise operations:

a<<b # a shifted left b bits
a>>b # a shifted right b bits

© ISO/IEC 2015 – All rights reserved 11

Deleted: 3

There is no overflow check for shifting left or right so a program expecting an exception to halt it will instead
unexpectedly continue leading to unexpected results.

6.3.2	Guidance	to	language	users	

• Follow the guidance of TR 24772-1 clause 6.3.5
• Keep in mind that using a very large integer will have a negative effect on performance;

6.4	Floating-point	Arithmetic	[PLF]	

6.4.1	Applicability	to	language	

Python supports floating-point arithmetic. Literals are expressed with a decimal point and or an optional e or E:

1., 1.0, .1, 1.e0

There is no way to determine the precision of the implementation from within a Python program. For example, in
the CPython implementation, it’s implemented as a C double which is approximately 53 bits of precision.

6.4.2	Guidance	to	language	users	

• Follow the guidance of TR 24772-1 clause 6.4.5
• Use floating-point arithmetic only when absolutely needed;
• Do not use floating-point arithmetic when integers or booleans would suffice;
• Be aware that precision is lost for some real numbers (that is, floating-point is an approximation with

limited precision for some numbers); and
• Be aware that results will frequently vary slightly by implementation (see subclause 6.53 Provision of

Inherently Unsafe Operations [SKL] for more on this subject);

6.5	Enumerator	Issues	[CCB]	

6.5.1	Applicability	to	language	

Python has an enumerate built-in type but it is not at all related to the implementation of enumeration as
defined in other languages where constants are assigned to symbols. Given that enumeration is a useful
programming device and that there is no enumeration construct in Python, many programmers choose to
implement their own “enum” objects or types using a wide variety of methods including the creation of “enum”
classes, lists, and even dictionaries. One simple method is to simply assign a list of names to integers:

Red, Green, Blue = range (3)
print(Red, Green, Blue) # => 0 1 2

Code can then reference these “enum” values as they would in other languages which have native support for
enumeration:

a = 1
if a == Green: print("a=Green")# => a=Green

Deleted: and¶
Don't use bit operations to simulate multiplication and division.

Formatted: hyper Char

Deleted: 6.53 Provision of Inherently Unsafe Operations [SKL]

Deleted: and¶
Avoid testing floating-point numbers for equality (especially for
loops) since this can lead to unexpected results. Instead, if
floating-point numbers are needed for loop control use >= or <=
comparisons, unless it can be shown that the logic implemented
by the equality test cannot be affected by prior rounding errors.

Formatted: Font: (Default) Calibri

Formatted: Font: (Default) Calibri

Formatted: Font: (Default) Calibri

Formatted: Font: (Default) Calibri

Commented [SGM5]: From Nick Coghlan (2017-09-21)
- the section on enumerations should discuss the standard
library's
enum module (added in Python 3.4, available for 2.7 on PyPI
as enum34)

12 © ISO/IEC 2015 – All rights reserved

Deleted: 3

There are disadvantages to the approach above though since any of the “enum” variables could be assigned new
values at any time thereby undoing their intended role as “pseudo” constants. There are many forum discussions
and articles that illustrate other, safer ways to simulate enumeration which are beyond the scope of this annex.

Use of enumeration requires careful attention to readability, performance, and safety. There are many complex,
but useful ways to simulate enums in Python [[1]]and many simple ways including the use of sets:

colors = {'red', 'green', 'blue'}
if "red" in colors: print('valid color')

6.5.2	Guidance	to	language	users	

•
• Be aware that the technique shown above, as with almost all other ways to simulate enums, is not safe

since the variable can be bound to another object at any time.

6.6	Conversion	Errors	[FLC]	

6.6.1	Applicability	to	language	

Python converts numbers to a common type before performing any arithmetic operations. The common type is
coerced using the following rules as defined in the standard (http://docs.python.org/release/1.4/ref/ref5.html):

If either argument is a complex number, the other is converted to the complex type;
otherwise, if either argument is a floating point number, the other is converted to floating point;
otherwise, if either argument is a long integer, the other is converted to long integer;
otherwise, both must be plain integers and no conversion is necessary.

Integers in the Python language are of a length bounded only by the amount of memory in the machine. Integers
are stored in an internal format that has faster performance when the number is smaller than the largest integer
supported by the implementation language and platform.

Implicit or explicit conversion floating point to integer, implicitly (or explicitly using the int function), will
typically cause a loss of precision:

a = 3.0; print(int(a))# => 3 (no loss of precision)
a = 3.1415; print(int(a))# => 3 (precision lost)

Precision can also be lost when converting from very large integer to floating point. Losses in precision, whether
from integer to floating point or vice versa, do not generate errors but can lead to unexpected results especially
when floating point numbers are used for loop control.

6.6.2	Guidance	to	language	users	

• Follow the guidance of TR 24772-1 clause 6.6.5
• Though there is generally no need to be concerned with an integer getting too large (rollover) or small, be

aware that iterating or performing arithmetic with very large positive or small (negative) integers will hurt
performance; and

Moved (insertion) [3]

Formatted: Heading 3, Indent: First line: 0 cm, Space After:
0 pt, Widow/Orphan control, Don't suppress line numbers,
Allow hanging punctuation

Deleted: E.6

Deleted: ¶

Moved up [3]: Use of enumeration requires careful attention to
readability, performance, and safety. There are many complex, but
useful ways to simulate enums in Python [[1]]and many simple ways
including the use of sets:¶
colors = {'red', 'green', 'blue'}¶
if	"red"	in	colors:	print('valid	color')

Deleted:

Formatted: Font: (Default) Calibri, Kern at 14 pt

Formatted: List Paragraph, Bulleted + Level: 1 + Aligned at:
0.72 cm + Indent at: 1.36 cm

Formatted: Font: (Default) Calibri, Kern at 14 pt

Commented [SM6]: We removed “Numeric” from “Numeric
Conversion Error” and are generalizing the issues. Please try to
ensure that Python 6.6 is in sync.

Commented [SM7]: Put in bibliography and reference.

Formatted: Font: Bold

© ISO/IEC 2015 – All rights reserved 13

Deleted: 3

• Be aware of the potential consequences of precision loss when converting from floating point to integer.

6.7	String	Termination	[CJM]	

This vulnerability is not applicable, Python strings are immutable objects whose length can be queried with built-
in functions therefore Python does not permit accesses past the end, or beginning, of a string.

a = '12345'
b = a[5] #=> IndexError: string index out of range

6.8	Buffer	Boundary	Violation	[HCB]	

This vulnerability is not applicable to Python because Python’s run-time checks the boundaries of arrays and
raises an exception when an attempt is made to access beyond a boundary.

6.9	Unchecked	Array	Indexing	[XYZ]	

This vulnerability is not applicable to Python because Python’s run-time checks the boundaries of arrays and
raises an exception when an attempt is made to access beyond a boundary.

6.10	Unchecked	Array	Copying	[XYW]	

This vulnerability is not applicable to Python because Python’s run-time checks the boundaries of arrays and
raises an exception when an attempt is made to access beyond a boundary.

6.11	Pointer	Type	Conversions	[HFC]	

This vulnerability is not applicable to Python because Python does not use pointers.

6.12	Pointer	Arithmetic	[RVG]	

This vulnerability is not applicable to Python because Python does not use pointers.

6.13	Null	Pointer	Dereference	[XYH]	

This vulnerability is not applicable to Python because Python does not use pointers.

6.14	Dangling	Reference	to	Heap	[XYK]	

This vulnerability is not applicable to Python because Python does not use pointers. Specifically, Python only uses
namespaces to access objects therefore when an object is deallocated, any reference to it causes an exception to
be raised.

14 © ISO/IEC 2015 – All rights reserved

Deleted: 3

6.15	Arithmetic	Wrap-around	Error	[FIF]	

6.15.1	Applicability	to	language	

Operations on integers in Python cannot cause wrap-around errors because integers have no maximum size other
than what the memory resources of the system can accommodate.

Normally the OverflowError exception is raised for floating point wrap-around errors but, for
implementations of Python written in C, exception handling for floating point operations cannot be assumed to
catch this type of error because they are not standardized in the underlying C language. Because of this, most
floating point operations cannot be depended on to raise this exception.

6.15.2	Guidance	to	language	users	

• Be cognizant that most arithmetic and bit manipulation operations on non-integers have the potential for
undetected wrap-around errors.

• Avoid using floating point or decimal variables for loop control but if you must use these types then
bound the loop structures so as to not exceed the maximum or minimum possible values for the loop
control variables.

• Test the implementation that you are using to see if exceptions are raised for floating point operations
and if they are then use exception handling to catch and handle wrap-around errors.

6.16	Using	Shift	Operations	for	Multiplication	and	Division	[PIK]	

This vulnerability is not applicable to Python because it does not check for overflow. In addition, there is no
practical way to overflow an integer since integers have unlimited precision.

>>> print(-1<<100)#=> -1267650600228229401496703205376
>>> print(1<<100) #=> 1267650600228229401496703205376

6.17	Choice	of	Clear	Names	[NAI]	

6.17.1	Applicability	to	language	

Python provides very liberal naming rules:

• Names may be of any length and consist of letters, numerals, and underscores only. All characters in a
name are significant. Note that unlike some other languages where only the first n number of characters
in a name are significant, all characters in a Python name are significant. This eliminates a common
source of name ambiguity when names are identical up to the significant length and vary afterwards
which effectively makes all such names a reference to one common variable.

• All names must start with an underscore or a letter; and
• Names are case sensitive, for example, Alpha, ALPHA, and alpha are each unique names. While this is

a feature of the language that provides for more flexibility in naming, it is also can be a source of
programmer errors when similar names are used which differ only in case, for example, aLpha versus
alpha.

Commented [SGM8]: Email from Nick Coghlan (2017-09-21)
- the section on ambiguous naming needs to be updated to
account for
full Unicode identifier support in Python 3:

DISAGREE – Unicode identifier support does not change
these semantics.
=============

Сonfused = True
Confused = False
Сonfused == Confused
False

"Сonfused"
'Сonfused'

ascii("Сonfused")
"'\\u0421onfused'"

ascii("Confused")
"'Confused'"
=============

© ISO/IEC 2015 – All rights reserved 15

Deleted: 3

The following naming conventions are not part of the standard but are in common use:

• Class names start with an upper case letter, all other variables, functions, and modules are in all lower
case;

• Names starting with a single underscore (_) are not imported by the from module import *
statement – this not part of the standard but most implementations enforce it; and

• Names starting and ending with two underscores (__) are system-defined names.
• Names starting with, but not ending with, two underscores are local to their class definition
• Python provides a variety of ways to package names into namespaces so that name clashes can be

avoided:
• Names are scoped to functions, classes, and modules meaning there is normally no collision with names

utilized in outer scopes and vice versa; and
• Names in modules (a file containing one or more Python statements) are local to the module and are

referenced using qualification (for example, a function x in module y is referenced as y.x). Though local
to the module, a module’s names can be, and routinely are, copied into another namespace with a from
module import statement.

Python’s naming rules are flexible by design but are also susceptible to a variety of unintentional coding errors:

• Names are never declared but they must be assigned values before they are referenced. This means that
some errors will never be exposed until runtime when the use of an unassigned variable will raise an
exception (see subclause 6.22 Initialization of Variables [LAV]).

• Names can be unique but may look similar to other names, for example, alpha and aLpha, __x and
_x, _beta__ and __beta_ which could lead to the use of the wrong variable. Python will not detect
this problem at compile-time.

Python utilizes dynamic typing with types determined at runtime. There are no type or variable declarations for
an object ,which can lead to subtle and potentially catastrophic errors:

x = 1
lots of code…
if some rare but important case:
 X = 10

In the code above the programmer intended to set (lower case) x to 10 and instead created a new upper case X
to 10 so the lower case x remains unchanged. Python will not detect a problem because there is no problem – it
sees the upper case X assignment as a legitimate way to bring a new object into existence. It could be argued that
Python could statically detect that X is never referenced and therefore indicate the assignment is dubious but
there are also cases where a dynamically defined function defined downstream could legitimately reference X as
a global.

6.17.2	Guidance	to	language	users	

• Follow the guidance of TR 24772-1 clause 6.17.5;
• For more guidance on Python’s naming conventions, refer to Python Style Guides contained in PEP 8 at

http://www.python.org/dev/peps/pep-0008/ .

Formatted: Font: Italic, Underline, Font color: Blue

Deleted: 6.22 Initialization of Variables [LAV]

Formatted: Font: (Default) Calibri

Formatted: Font: (Default) Calibri

16 © ISO/IEC 2015 – All rights reserved

Deleted: 3

• Avoid names that differ only by case unless necessary to the logic of the usage, and in such cases
document the usage;

• Adhere to Python’s naming conventions;
• Do not use overly long names;
• Use names that are not similar (especially in the use of upper and lower case) to other names;
• Use meaningful names; and
• Use names that are clear and visually unambiguous because the compiler cannot assist in detecting

names that appear similar but are different.

6.18	Dead	Store	[WXQ]	

6.18.1	Applicability	to	language	

It is possible to assign a value to a variable and never reference that variable which causes a “dead store”. This in
itself is not harmful, other than the memory that it wastes, but if there is a substantial amount of dead stores
then performance could suffer or, in an extreme case, the program could halt due to lack of memory.

Python provides the ability to dynamically create variables when they are first assigned a value. In fact,
assignment is the only way to bring a variable into existence. All values in a Python program are accessed through
a reference which refers to a memory location which is always an object (for example, number, string, list, and so
on). A variable is said to be bound to an object when it is assigned to that object. A variable can be rebound to
another object which can be of any type. For example:

a = 'alpha' # assignment to a string
a = 3.142 # rebinding to a float
a = b = (1, 2, 3) # rebinding to a tuple
print(a) # => (1, 2, 3)
del a
print(b)# => (1, 2, 3)

print(a)# => NameError: name 'a' is not defined

The first three statements show dynamic binding in action. The variable a is bound to a string, then to a float,
then to another variable which in turn is assigned a tuple of value (1, 2, 3). The del statement then unbinds
the variable a from the tuple object which effectively deletes the a variable (if there were no other references to
the tuple object it too would have been deleted because an object with zero references is marked for garbage
collection (but is not necessarily actually deleted immediately)). But in this case we see that b is still referencing
the tuple object so the tuple is not deleted. The final statement above shows that an exception is raised when an
unbound variable is referenced.

The way in which Python dynamically binds and rebinds variables is a source of some confusion to new
programmers and even experienced programmers who are used to static binding where a variable is permanently
bound to a single memory location.

The Python language, by design, allows for dynamic binding and rebinding. Because Python performs a syntactic
analysis and not a semantic analysis (with one exception which is covered in subclause 6.21 Namespace Issues
[BJL] Applicability to language) and because of the dynamic way in which variables are brought into a program at

Commented [SGM9]: Email from Nick Coghlan (2017-09-21)
- the discussion of dead stores may want to mention
ResourceWarning
(which emits a warning when external resources are cleaned
up implicitly rather than explicitly) and the tracemalloc module
(which allows resource warnings to report where the resource
managing objectwas allocated)
Addressed: see last paragraph.

Deleted: 6.21 Namespace Issues [BJL]

© ISO/IEC 2015 – All rights reserved 17

Deleted: 3

run-time, Python cannot warn that a variable is referenced but never assigned a value. The following code
illustrates this:

if a > b:
 import x
else:
 import y

Depending on the current value of a and b, either module x or y is imported into the program. If x assigns a
value to a variable z and module y references z then dependent on which import statement is executed first
(an import always executes all code in the module when it is first imported), an unassigned variable reference
exception will or will not be raised.

Programmers can use ResourceWarning to detect the implicit cleanup or resources and tracemalloc to
report the location of the resource allocation.

6.18.2	Guidance	to	language	users	

• Avoid rebinding except where it adds value;
• Ensure that when examining code that you consider that a variable can be bound (or rebound) to another

object (of same or different type) at any time; and
• Variables local to a function are deleted automatically when the encompassing function is exited but,

though not a common practice, you can also explicitly delete variables using the del statement when
they are no longer needed.

• Consider using ResourceWarning to detect implicit reclamation of resources.

6.19	Unused	Variable	[YZS]	

The applicability to language and guidance to language users sections of clause 6.18 Dead Store [WXQ] write-up
are applicable to Python.

6.20	Identifier	Name	Reuse	[YOW]	

6.20.1	Applicability	to	language	

Python has the concept of namespaces which are simply the places where names exist in memory. Namespaces
are associated with functions, classes, and modules. When a name is created (that is, when it is first assigned a
value), it is associated (that is, bound) to the namespace associated with the location where the assignment
statement is made (for example, in a function definition). The association of a variable to a specific namespace is
elemental to how scoping is defined in Python.

Scoping allows for the definition of more than one variable with the same name to reference different objects.
For example:

a = 1
def x():
 a = 2

Deleted: ,

Deleted: take into account

Formatted: Font: (Default) Calibri

Formatted: Font: (Default) Courier New, 10 pt, Not Italic

Formatted: Font: (Default) Calibri

Deleted: the

Deleted: 6.19 Dead Store [WXQ]

Deleted: E.19

Deleted: here

18 © ISO/IEC 2015 – All rights reserved

Deleted: 3

 print(a)#=> 2
print(a) #=> 1

The a variable within the function x above is local to the function only – it is created when x is called and
disappears when control is returned to the calling program. If the function needed to update the outer variable
named a then it would need to specify that a was a global before referencing it as in:

a = 1
def x():
 global a
 a = 2
 print(a)#=> 2
print(a) #=> 2

In the case above, the function is updating the variable a that is defined in the calling module. There is a subtle
but important distinction on the locality versus global nature of variables: assignment is always local unless
global is specified for the variable as in the example above where a is assigned a value of 2. If the function had
instead simply referenced a without assigning it a value, then it would reference the topmost variable a which, by
definition, is always a global:

a = 1
def x():
 print(a)
x() #=> 1

The rule illustrated above is that attributes of modules (that is, variable, function, and class names) are global to
the module meaning any function or class can reference them.

Scoping rules cover other cases where an identically named variable name references different objects:

• A nested function’s variables are in the scope of the nested function only; and
• Variables defined in a module are in global scope which means they are scoped to the module only and

are therefore not visible within functions defined in that module (or any other function) unless explicitly
identified as global at the start of the function.

Python has ways to bypass implicit scope rules:

• The global statement which allows an inner reference to an outer scoped variable(s); and
• The nonlocal statement which allows an enclosing function definition to reference a nested function’s

variable(s).

The concept of scoping makes it safer to code functions because the programmer is free to select any name in a
function without worrying about accidentally selecting a name assigned to an outer scope which in turn could
cause unwanted results. In Python, one must be explicit when intending to circumvent the intrinsic scoping of
variable names. The downside is that identical variable names, which are totally unrelated, can appear in the
same module which could lead to confusion and misuse unless scoping rules are well understood.

Names can also be qualified to prevent confusion as to which variable is being referenced:

© ISO/IEC 2015 – All rights reserved 19

Deleted: 3

a = 1
class xyz():
 a = 2
 print(a)#=> 2
print(xyz.a, a) #=> 2 1

The final print function call above references the a variable within the xyz class and the global a.

6.20.2	Guidance	to	language	users	

• Do not use identical names unless necessary to reference the correct object;
• Avoid the use of the global and nonlocal specifications because they are generally a bad

programming practice for reasons beyond the scope of this annex and because their bypassing of
standard scoping rules make the code harder to understand; and

• Use qualification when necessary to ensure that the correct variable is referenced.

6.21	Namespace	Issues	[BJL]	

6.21.1	Applicability	to	language	

Python has a hierarchy of namespaces which provides isolation to protect from name collisions, ways to explicitly
reference down into a nested namespace, and a way to reference up to an encompassing namespace. Generally
speaking, namespaces are very well isolated. For example, a program’s variables are maintained in a separate
namespace from any of the functions or classes it defines or uses. The variables of modules, classes, or functions
are also maintained in their own protected namespaces.

Accessing a namespace’s attribute (that is, a variable, function, or class name), is generally done in an explicit
manner to make it clear to the reader (and Python) which attribute is being accessed:

n = Animal.num # fetches a class’ variable called num
x = mymodule.y # fetches a module’s variable called y

The examples above exhibit qualification – there is no doubt where a variable is being fetched from. Qualification
can also occur from an encompassed namespace up to the encompassing namespace using the global statement:

def x():
 global y
 y = 1

The example above uses an explicit global statement which makes it clear that the variable y is not local to the
function x; it assigns the value of 1 to the variable y in the encompassing module14F

1.

1 Values are assigned to objects which in turn are referenced by variables but it’s simpler to say the value is assigned to the variable. Also,
the encompassing code could be at a prompt level instead of a module. For brevity this annex uses this simpler, though not as exact,
wording.

Commented [SGM10]: Email from Nick Coghlan (2017-09-21)
metaclass __prepare__ methods can inject extra names into a
class body
execution namespace that the compiler knows nothing about
(see
types.prepare_class and
https://docs.python.org/3/reference/datamodel.html#preparing-
the-class-namespace)

20 © ISO/IEC 2015 – All rights reserved

Deleted: 3

Python also has some subtle namespace issues that can cause unexpected results especially when using imports
of modules. For example, assuming module a.py contains:

a = 1

And module b.py contains:

b = 1

Executing the following code is not a problem since there is no variable name collision in the two modules (the
from modulename import * statement brings all of the attributes of the named module into the local
namespace):

from a import *
print(a) #=> 1
from b import *
print(b) #=> 1

Later on the author of the b module adds a variable named a and assigns it a value of 2. b.py now contains:

b = 1
a = 2 # new assignment

The programmer of module b.py may have no knowledge of the a module and may not consider that a program
would import both a and b. The importing program, with no changes, is run again:

from a import *
print(a) #=> 1
from b import *
print(a) #=> 2

The results are now different because the importing program is susceptible to unintended consequences due to
changes in variable assignments made in two unrelated modules as well as the sequence in which they were
imported. Also note that the from modulename import * statement brings all of the modules attributes
into the importing code which can silently overlay like-named variables, functions, and classes.

A common misunderstanding of the Python language is that Python detects local names (a local name is a name
that lives within a class or function’s namespace) statically by looking for one or more assignments to a name
within the class/function. If one or more assignments are found then the name is noted as being local to that
class/function. This can be confusing because if only references to a name are found then the name is referencing
a global object so the only way to know if a reference is local or global, barring an explicit global statement, is to
examine the entire function definition looking for an assignment. This runs counter to Python’s goal of Explicit is
Better Than Implicit (EIBTI):

a = 1
def f():
 print(a)
 a = 2

© ISO/IEC 2015 – All rights reserved 21

Deleted: 3

f() #=> UnboundLocalError: local variable 'a' referenced before
 assignment
now with the assignment commented out
a = 1
def f():
 print(a)#=> 1
 #a = 2
Assuming a new session:
a = 1
def f():
 global a
 a = 2
f()
print(a)#=> 2

Note that the rules for determining the locality of a name applies to the assignment operator = as above, but also
to all other kinds of assignments which includes module names in an import statement, function and class
names, and the arguments declared for them. See subclause 6.19 Unused Variable [YZS] for more detail on this.

Name resolution follows a simple Local, Enclosing, Global, Built-ins (LEGB) sequence:

• First the local namespace is searched;
• Then the enclosing namespace (that is, a def or lambda (A lambda is a single expression function

definition));
• Then the global namespace; and
• Lastly the built-in’s namespace.

6.21.2	Guidance	to	language	users	

• When practicable, consider using the import statement without the from clause. This forces the
importing program to use qualification to access the imported module’s attributes. While it is true that
using the from statement is more convenient due to less typing required (for example, no need to qualify
names), the from statement can cause namespace corruption;

• When using the import statement, rather than use the from X import * form (which imports all of
module X’s attributes into the importing program’s namespace), instead explicitly name the attributes
that you want to import (for example, from X import a, b, c) so that variables, functions and
classes are not inadvertently overlaid; and

• Avoid implicit references to global values from within functions to make code clearer. In order to update
globals within a function or class, place the global statement at the beginning of the function definition
and list the variables so it is clearer to the reader which variables are local and which are global (for
example, global a, b, c).

Formatted: hyper Char

Deleted: 6.19 Unused Variable [YZS]

22 © ISO/IEC 2015 – All rights reserved

Deleted: 3

6.22	Initialization	of	Variables	[LAV]	

6.22.1	Applicability	of	language	

Python does not check to see if a statement references an uninitialized variable until runtime. This is by design in
order to support dynamic typing which in turn means there is no ability to declare a variable. Python therefore
has no way to know if a variable is referenced before or after an assignment. For example:

if y > 0:
 print(x)

The above statement is legal at compile time even if x is not defined (that is, assigned a value). An exception is
raised at runtime only if the statement is executed and y>0. This scenario does not lend itself to static analysis
because, as in the case above, it may be perfectly logical to not ever print x unless y>0.

There is no ability to use a variable with an uninitialized value because assigned variables always reference
objects which always have a value and unassigned variables do not exist. Therefore, Python raises an exception
when an unassigned (that is, non-existent) variable is referenced.

Initialization of class arguments can cause unexpected results when an argument is set to a default object which is
mutable:

def x(y=[]):
 y.append(1)
 print(y)
x([2])#=> [2, 1], as expected (default was not needed)
x() # [1]
x() # [1, 1] continues to expand with each subsequent call

The behaviour above is not a bug - it is a defined behaviour for mutable objects but it’s a very bad idea in almost
all cases to assign default values to mutable objects.

6.22.2	Guidance	to	language	users	

• Follow the guidance of TR 24772-1 clause 6.22.5;
• Ensure that it is not logically possible to reach a reference to a variable before it is assigned. The example

above illustrates just such a case where the programmer wants to print the value of x but has not
assigned a value to x – this proves that there is missing, or bypassed, code needed to provide x with a
meaningful value at runtime.

6.23	Operator	Precedence	and	Associativity	[JCW]	

6.23.1	Applicability	to	language	

Python provides many operators and levels of precedence so it is not unexpected that operator precedence and
order of operation are not well understood and hence misused. For example:

1 + 2 * 3 #=> 7, evaluates as 1 + (2 * 3)

© ISO/IEC 2015 – All rights reserved 23

Deleted: 3

(1 + 2) * 3 #=> 9, parenthesis are allowed to coerce precedence

Expressions that use and or or are evaluated left-to-right which can cause a short circuit:

a or b or c

In the expression above c is never evaluated if either a or b evaluate to True because the entire expression
evaluates to True immediately when any sub expression evaluates to True. The short circuit effect is non-
consequential above but in the case below the effect is subtle and potentially destructive:

def x(i):
 if i:
 return True
 else:
 1/0 # Hard stop
a = 1
b = 0
while True:
 if x(a) or x(b):
 print('a or b is True')

The code above will go into an endless loop because x(b) is never evaluated. If it was the program would
terminate due to an attempted division by zero.

6.23.2	Guidance	to	language	users	

• Follow the guidance of TR 24772-1 clause 6.23.5;
• Be aware that short-circuited expressions can cause subtle errors because not all sub-expressions may be

evaluated.

6.24	Side-effects	and	Order	of	Evaluation	of	Operands	[SAM]	

6.24.1	Applicability	to	language	

Python supports sequence unpacking (parallel assignment) in which each element of the right hand side
(expressed as a tuple) is evaluated and then assigned to each element of the left-hand side (LHS) in left-to-right
sequence. For example, the following is a safe way to exchange values in Python:

a = 1
b = 2
a, b = b, a # swap values between a and b
print (a,b)#=> 2, 1

Assignment of the targets (LHS) proceeds left-to-right so overlaps on the left side are not safe:

a = [0,0]
i = 0
i, a[i] = 1, 2 #=> Index is set to 1; list is updated at [1]

Deleted: Use parenthesis liberally to force intended precedence
and increase readability;

Formatted: Font: (Default) Calibri

Deleted: ; and¶
Break large/complex statements into smaller ones using
temporary variables for interim results.

Commented [SGM11]: Email from Nick Coghlan (2017-09-21)
- for order of evaluation: it was noticed a couple of years ago
that dictionary displays didn't actually evaluate in the expected
left to right order (they went value/key rather than key/value).

This has been fixed (in 3.6 if I recall correctly), but may be
useful as an example of the value of ensuring that operations
with side effects don't depend on subtle order of evaluation
details

24 © ISO/IEC 2015 – All rights reserved

Deleted: 3

print(a) #=> 0,2

Python Boolean operators are often used to assign values as in:

a = b or c or d or None

a is assigned the first value of the first object that has a non-zero (that is, True) value or, in the example above,
the value None if b, c, and d are all False. This is a common and well understood practice. However, trouble
can be introduced when functions or other constructs with side effects are used on the right side of a Boolean
operator:

if a() or b()

If function a returns a True result then function b will not be called which may cause unexpected results.

6.24.2	Guidance	to	language	users	

• Follow the guidance of 24772-1 clause 6.24.5;
• Be aware of Python’s short-circuiting behaviour when expressions with side effects are used on the right

side of a Boolean expression; if necessary perform each expression first and then evaluate the results:

x = a()
y = b()
if x or y …

• Be aware that, even though overlaps between the left hand side and the right hand side are safe, it is
possible to have unintended results when the variables on the left side overlap with one another so
always ensure that the assignments and left-to-right sequence of assignments to the variables on the left
hand side never overlap. If necessary, and/or if it makes the code easier to understand, consider breaking
the statement into two or more statements;

overlapping
a = [0,0]
i = 0
i, a[i] = 1, 2 #=> Index is set to 1; list is updated at [1]
print(a) #=> 0,2
Non-overlapping
a = [0,0]
i, a[0] = 1, 2
print(a) #=> 2,0

6.25	Likely	Incorrect	Expression	[KOA]	

6.25.1	Applicability	to	language	

Python goes to some lengths to help prevent likely incorrect expressions:

• Testing for equivalence cannot be confused with assignment:
a = b = 1

Commented [SGM12]: Email from Nick Coghlan (2017-09-21)
- async/await syntax introduces another opportunity for a "likely
incorrect expression", which is to forget to await a coroutine –
see https://github.com/python-trio/trio/issues/79 for discussion
(it does cause a "Coroutine was never awaited" runtime
warning)

© ISO/IEC 2015 – All rights reserved 25

Deleted: 3

if (a=b): print(a,b) #==> syntax error
if (a==b): print(a,b) #==> 1 1

• Boolean operators use English words not, and, or; bitwise operators use symbols ~, &, | respectively.
Python, however, does have some subtleties that can cause unexpected results:

o Skipping the parentheses after a function does not invoke a call to the function and will fail
silently because it’s a legitimate reference to the function object:
class a:
 def demo():
 print("in demo")
a.demo()#=> in demo
a.demo #=> <function demo at 0x000000000342A9C8>
x = a.demo
x() #=> in demo

The two lines that reference the function without trailing parentheses above demonstrate how
that syntax is a reference to the function object and not a call to the function.

• Built-in functions that perform in-place operations on mutable objects (that is, lists, dictionaries, and
some class instances) do not return the changed object – they return None:
a = []
a.append("x")
print(a) #=> ['x']
a = a.append("y")
print(a) #=> None

6.25.2	Guidance	to	language	users	

• Add parentheses after a function call in order to invoke the function; and
• Keep in mind that any function that changes a mutable object in place returns a None object – not the

changed object since there is no need to return an object because the object has been changed by the
function.

6.26	Dead	and	Deactivated	Code	[XYQ]	

6.26.1	Applicability	to	language	

There are many ways to have dead or deactivated code occur in a program and Python is no different in that
regard. Further, Python does not provide static analysis to detect such code nor does the very dynamic design of
Python’s language lend itself to such analysis.

The module and related import statement provide convenient ways to group attributes (for example, functions,
names, and classes) into a file which can then be copied, in whole, or in part (using the from statement), into
another Python module. All of the attributes of a module are copied when either of the following forms of the
import statement is used. This is roughly equivalent to simply copying in all of code directly into the importing

Deleted: However

Deleted: Be sure to a

Deleted: s

26 © ISO/IEC 2015 – All rights reserved

Deleted: 3

program which can result in code that is never invoked (for example, functions which are never called and hence
“dead”):

import modulename
from modulename import *

The import statement in Python loads a module into memory, compiles it into byte code, and then executes it.
Subsequent executions of an import for that same module are ignored by Python and have no effect on the
program whatsoever. The reload statement is required to force a module, and its attributes, to be loaded,
compiled, and executed.

6.26.2	Guidance	to	language	users	

• Import just the attributes that are required by using the from statement to avoid adding dead code; and
• Be aware that subsequent imports have no effect; use the reload statement instead if a fresh copy of

the module is desired.

6.27	Switch	Statements	and	Static	Analysis	[CLL]	

6.27.1	Applicability	to	language	

By design Python does not have a switch statement nor does it have the concept of labels or branching to a
demarcated “place”. Python enforces structure by not providing these constructs but it also provides several
statements to select actions to perform based on the value of a variable or expression. The first of these are the
if/elif/else statements which operate as they do in other languages so this warrants no further coverage
here.

Python provides a break statement which allows a loop to be broken with an immediate branch to the first
statement after the loop body:

a = 1
while True:
 if a > 3:
 break
 else:
 print(a)
 a += 1

The loop above prints 1, 2 and 3, each on separate lines, then terminates upon execution of the break
statement.

6.27.2	Guidance	to	language	users	

Use if/elif/else statements to provide the equivalent of switch statements.

Commented [SGM13]: This is in direct conflict with the
guidance of 6.21.2. We must be consistent.

Commented [SGM14]: This section promotes the use of
unstructured code and is hence unacceptable.

Commented [SGM15]: This is dramatically incomplete.
Significant coding guidelines are needed to provide the safety of full
enumeration types with condition statements.

© ISO/IEC 2015 – All rights reserved 27

Deleted: 3

6.28	Demarcation	of	Control	Flow	[EOJ]	

6.28.1	Applicability	to	language	

Python makes demarcation of control flow very clear because it uses indentation (using spaces or tabs – but not
both) and undentation as the only demarcation construct:

a, b = 1, 1
if a:
 print("a is True")
else:
 print("False")
 if b:
 print("b is true")

 print("back to main level")

The code above prints “a is True” followed by “back to main level”. Note how control is passed from
the first if statement’s True path to the main level based entirely on indentation while in most other languages
the final line would execute only when the second if evaluated to True.

6.28.2	Guidance	to	language	users	

Use only spaces or tabs, not both, to indent to demark control flow.

6.29	Loop	Control	Variables	[TEX]	

6.29.1	Applicability	to	language	

Python provides two loop control statements: while and for. They each support very flexible control
constructs beyond a simple loop control variable. Assignments in the loop control statement (that is, while or
for) which can be a frequent source of problems, are not allowed in Python – Python’s loop control statements
use expressions which cannot contain assignment statements.

The while statement leaves the loop control entirely up to the programmer as in the example below:

a = 1
while a:
 print('in loop')
 a = False # force loop to end after one iteration
else:
 print('exiting loop')

The for statement is unusual in that it does not provide a loop control variable therefore it is not possible to vary
the sequence or number of iterations that are performed other than by the use of the break statement (covered
in subclause 6.28 Demarcation of Control Flow [EOJ]) which can be used to immediately branch to the statement
after the loop block.

Commented [SGM16]: Email from Nick Coghlan (20170921)
- Python 3 makes mixing tabs and spaces for indentation a
compile-time error

Deleted: de

Commented [SM17]: Check - is it “dendentation” or
“undentation”?

Commented [SGM18]: Email from Nick Coghlan (2017-09-21)
- in Python 2, a particularly problematic case of loop control
variables leaking is in list comprehensions. In Python 3,
comprehensions use their own scope, so the loop variable
doesn't leak anymore

Deleted: 6.29 Demarcation of Control Flow [EOJ]

Deleted: E.29

28 © ISO/IEC 2015 – All rights reserved

Deleted: 3

When using the for statement to iterate though an iterable object such as a list, there is no way to influence the
loop “count” because it’s not exposed. The variable a in the example below takes on the value of the first, then
the second, then the third member of the list:

x = ['a', 'b', 'c']
for a in x:
 print(a)
#=>a
#=>b
#=>c

It is possible, though not recommended, to change a mutable object as it is being traversed which in turn changes
the number of iteratons performed. In the case below the loop is performed only two times instead of the three
times had the list been left intact:

x = ['a', 'b', 'c']
for a in x:
 print(a)
 del x[0]
print(x)
#=> a
#=> c
#=> ['c']

6.29.2	Guidance	to	language	users	

• Be careful to only modify loop control variables in ways that are easily understood and in ways that
cannot lead to a premature exit or an endless loop.

• When using the for statement to iterate through a mutable object, do not add or delete members
because it could have unexpected results.

6.30	Off-by-one	Error	[XZH]	

6.30.1	Applicability	to	language	

The Python language itself is vulnerable to off by one errors as is any language when used carelessly or by a
person not familiar with Python’s index from zero versus from one. Python does not prevent off by one errors but
its runtime bounds checking for strings and lists does lessen the chances that doing so will cause harm. It is also
not possible to index past the end or beginning of a string or list by being off by one because Python does not use
a sentinel character and it always checks indexes before attempting to index into strings and lists and raises an
exception when their bounds are exceeded.

6.30.2	Guidance	to	language	users	

• Be aware of Python’s indexing from zero and code accordingly.
• Use the for statement to execute over whole constructs in preference to loops that index individual

elements.

Formatted: Font: Bold

© ISO/IEC 2015 – All rights reserved 29

Deleted: 3

6.31	Structured	Programming	[EWD]	

6.31.1	Applicability	to	language	

Python is designed to make it simpler to write structured program by requiring indentation and dedentation to
show scope of control in blocks of code:

a = 1
b = 1
if a == b:
 print("a == b")#=> a == b
 if a > b:
 print("a > b")
else:
 print("a != b")

In many languages the last print statement would be executed because they associate the else with the
immediately prior if while Python uses indentation to link the else with its associated if statement (that is,
the one above it).

Python also encourages structured programming by not introducing any language constructs which could lead to
unstructured code (for example, GO TO statements).

Python does have two statements that could be viewed as unstructured. The first is the break statement. It’s
used in a loop to exit the loop and continue with the first statement that follows the last statement within the
loop block. This is a type of branch but it is such a useful construct that few would consider it “unstructured” or a
bad coding practice.

The second is the try/except block which is used to trap and process exceptions. When an exception is
thrown a branch is made to the except block:

def divider(a,b):
 return a/b
try:
 print(divider(1,0))
except ZeroDivisionError:

 print('division by zero attempted')

Note that “with” statements and context managers can be used to consolidate where exceptions are evaluated
and propagated, which lets developers write straight forward code without sprinkling “try … except … finally”
structures throughout the code.

Python offers few constructs that could lead to unstructured code. However, judicious use of break statements
is encouraged to avoid confusion.

Commented [SGM19]: Email from Nick Coghlan (2017-09-21)
- for structured programming, the use of with statements and
context managers may be preferable to ad hoc try/except and
try/finally statements

Formatted: Font: (Default) +Body (Calibri), English (US)

Formatted: Indent: First line: 0 cm, Space After: 10 pt,
Widow/Orphan control, Don't suppress line numbers, Allow
hanging punctuation

Moved (insertion) [4]

30 © ISO/IEC 2015 – All rights reserved

Deleted: 3

6.31.2	Guidance	to	language	users	

• Use “with” statements and context managers to enclose regions, and use them to invoke code which may
create exceptions.

• Use the break statement judiciously to exit from control structures and show statically that it behaves
correctly in all contexts.

6.32	Passing	Parameters	and	Return	Values	[CSJ]	

6.32.1	Applicability	to	language	

Python’s only subprogram type is the function. Even though the import statement does execute the imported
module’s top level code (the first time it is imported), the import statement cannot effectively be used as a way
to repeatedly execute a series of statements

Python passes arguments by assignment which is similar to passing by pointer or reference. Python assigns the
passed arguments to the function’s local variables but unlike some other languages, simply having the address of
the caller’s argument does not automatically allow the called function to change any of the objects referenced by
those arguments – only mutable objects referenced by passed arguments can be changed. Python has no concept
of aliasing where a function’s variables are mapped to the caller’s variables such that any changes made to the
function’s variables are mapped over to the memory location of the caller’s arguments.

a = 1
def f(x):
 x += 1
 print(x)#=> 2
f(a)
print(a)#=> 1

In the example above, an immutable integer is passed as an argument and the function’s local variable is updated
and then discarded when the function goes out of scope therefore the object the caller’s argument references is
not affected. In the example below, the argument is mutable and is therefore updated in place:

a = [1]
def f(x):
 x[0] = 2
f(a)
print(a)#=> [2]

Note that the list object a is not changed – it’s the same object but its content at index 0 has changed.

The return statement can be used to return a value for a function:

def doubler(x):
 return x * 2
x = 1
x = doubler(x)
print(x)#=> 2

Moved up [4]: Python offers few constructs that could lead to
unstructured code. However, judicious use of break statements
is encouraged to avoid confusion.

© ISO/IEC 2015 – All rights reserved 31

Deleted: 3

The example above also demonstrates a way to emulate a call by reference by assigning the returned object to
the passed argument. This is not a true call by reference and Python does not replace the value of the object x,
rather it creates a new object x and assigns it the value returned from the doubler function as proven by the
code below which displays the address of the initial and the new object x:

def doubler(x):
 return x * 2
x = 1
print(id(x)) #=> 506081728
x = doubler(x)
print(id(x)) #=> 506081760

The object replacement process demonstrated above follows Python’s normal processing of any statement which
changes the value of an immutable object and is not a special exception for function returns.

Note that Python functions return a value of none when no return statement is executed or when a return
with no arguments is executed.

6.32.2	Guidance	to	language	users	

• Create copies of mutable objects before calling a function if changes are not wanted to mutable
arguments; and

• If a function wants to ensure that it does not change mutable arguments it can make copies of those
arguments and operate on them instead.

6.33	Dangling	References	to	Stack	Frames	[DCM]	

This vulnerability is not applicable to Python because, while Python does provide a way to inspect the address of
an object, for example, the id function, it does not provide a way to use that address to access an object.

6.34	Subprogram	Signature	Mismatch	[OTR]	

6.34.1	Applicability	to	language	

Python supports positional, “keyword=value”, or both kinds of arguments. It also supports variable numbers of
arguments and, other than the case of variable arguments, will check at runtime for the correct number of
arguments making it impossible to corrupt the call stack in Python when using standard modules.

Python has extensive extension and embedding APIs that includes functions and classes to use when extending or
embedding Python. These provide for subprogram signature checking at runtime for modules coded in non-
Python languages. Discussion of this API is beyond the scope of this annex but the reader should be aware that
improper coding of any non-Python modules or their interface could cause a call stack problem

6.34.2	Guidance	to	language	users	

Apply the guidance described in TR 24772-1 clause 6.34.5.

Commented [SGM20]: This section needs a rewrite to
acknowledge the vulnerability.
Email from Nick Coghlan (2017-09-21)
- reading the section on dangling references to stack frames
reminded me that if you want to write robust, secure, and
reliable code, don't use the ctypes module (since that *does*
let you access arbitrary memory addresses). cffi is a safer third
party alternative, since it will read C header files and generate
safe(r) Python wrappers than direct C ABI access with ctypes.

32 © ISO/IEC 2015 – All rights reserved

Deleted: 3

6.35	Recursion	[GDL]	

6.35.1	Applicability	to	language	

Recursion is supported in Python and is, by default, limited to a depth of 1,000 which can be overridden using the
setrecursionlimit function. If the limit is set high enough, a runaway recursion could exhaust all memory
resources leading to a denial of service.

6.35.2	Guidance	to	language	users	

Follow the guidance of TR 24772-1 clause 6.35.5

6.36	Ignored	Error	Status	and	Unhandled	Exceptions	[OYB]	

6.36.1	Applicability	to	language	

Python provides statements to handle exceptions which considerably simplify the detection and handling of
exceptions. Rather than being a vulnerability, Python’s exception handling statements provide a way to foil denial
of service attacks:

def mainpgm(x, y):
 return x/y
for x in range(3):
 try:
 y = mainpgm(1,x)
 except:
 print('Problem in mainpgm')
 # clean up code…
 else:
 print (y)

The example code above prints:

Problem in mainpgm
1.0
0.5

The idea above is to ensure that the main program, which could be a web server, is allowed to continue to run
after an exception by virtue of the try/except statement pair.

6.36.2	Guidance	to	language	users	

• Follow the guidance of TR 24772-1 clause 6.36.5;
• Use Python’s exception handling with care in order to not catch errors that are intended for other

exception handlers, i.e. always catch named exceptions; and
• Use exception handling, but directed to specific tolerable exceptions, to ensure that crucial processes can

continue to run even after certain exceptions are raised.

Deleted: Apply the

Deleted: described in

Commented [SGM21]: We need to note that except : catches
all exceptions and except someOtherError: catches explicit
exceptions.

Formatted: Font: Bold

© ISO/IEC 2015 – All rights reserved 33

Deleted: 3

6.37	Type-breaking	Reinterpretation	of	Data	[AMV]	

This vulnerability is not applicable to Python because assignments are made to objects and the object always
holds the type – not the variable, therefore all referenced objects has the same type and there is no way to have
more than one type for any given object.

6.38	Deep	vs.	Shallow	Copying	[YAN]	

6.38.1	Applicability	to	language	

Python exhibits the vulnerability as described in TR 24772-1 clause 6.38.

The following example illustrates the issue in Python.

 colours1 = ["orange", "green"]

 colours2 = colours1

 print(colours1) -- ['orange', 'green']

 print(colours2) -- ['orange', 'green']

 colours2 = ["violet", "black"]

 print(colours1) -- ['orange', 'green']

 print(colours2) -- [‘violet’, ‘black’]

If, however, one writes

 colours1 = ["orange", "green"]

 colours2 = colours1

 colours2[1] = “yellow”

 print(colours1) -- ['orange', 'yellow']

n Explain why this is a problem.

When colour1 is created, Python creates it as a list type, then has the list point to its elements. When colour2 is
created as a copy of colour1, they both point to the same list container. If one sets a new value to an element
of the list, then any variable that points to that list sees the update, as shown in the second example. Example 1,
on the other hand, shows that a complete new list is created for colour2 (replacing the equivalence of colour1
and colour2), and any further changes to colour2 or colour1 do not affect the other.

Python has a method called deepcopy that copies all levels of a structured variable to another variable.

6.38.2	Guidance	to	language	users	

• Follow the guidance of TR 24772-1 clause 6.38.5.
• Use the “slice” operator [:] to force a copy up to one nested level

 Note: x = y[:] copies the complete next level, but leaves deeper levels, such as sublists shared.
• To force deep copies at all levels of a variable, use the “deepcopy” method.

Commented [SGM22]: Comment from Nick Coghlan:
For shallow copying: we don't detect or prevent it, but
reference counting at least ensures the references copied that
way remain alive.
(Hmm, that does prompt a thought though: memoryview and
the PEP 3118 buffer protocol do create some interesting new
issues, since the obligation is on the buffer publisher to ensure
that the memory remains valid at least as long as the object
lives, while buffer consumers need to make sure they keep an
active reference to the publisher)

Formatted: Normal, Level 1

Formatted: List Paragraph, Bulleted + Level: 1 + Aligned at:
0.26 cm + Indent at: 0.9 cm

Formatted: Font: (Default) Courier New, 10 pt, Font color:
Custom Color(RGB(0,0,102))

Moved down [5]: Follow the guidance of TR 24772-1 clause
6.38.5.

Deleted: In addition:

Moved (insertion) [5]

Deleted: to force a copy up to one nested level, u

34 © ISO/IEC 2015 – All rights reserved

Deleted: 3

6.39	Memory	Leaks	and	Heap	Fragmentation	[XYL]	

6.39.1	Applicability	to	language	

Python supports automatic garbage collection so in theory it should not have memory leaks. However, there are
at least three general cases in which memory can be retained after it is no longer needed. The first is when
implementation-dependent memory allocation/de-allocation algorithms (or even bugs) cause a leak – this is
beyond the scope of this annex. The second general case is when objects remain referenced after they are no
longer needed. This is a logic error which requires the programmer to modify the code to delete references to
objects when they are no longer required.

There is a third very subtle memory leak case wherein objects mutually reference one another without any
outside references remaining – a kind of deadly embrace where one object references a second object (or group
of objects) so the second object(s) can’t be collected but the second object(s) also reference the first one(s) so
it/they too can’t be collected. This group is known as cyclic garbage. Python provides a garbage collection
module called gc which has functions which enable the programmer to enable and disable cyclic garbage
collection as well as inspect the state of objects tracked by the cyclic garbage collector so that these, often very
subtle leaks, can be traced and eliminated.

6.38.2	Guidance	to	language	users	

• Follow the guidance of TR 24772-1 clause 6.39.5.
• Release all objects when they are no longer required.

6.40	Templates	and	Generics	[SYM]	

This vulnerability is not applicable to Python because Python does not implement these mechanisms.

6.41	Inheritance	[RIP]	

6.41.1	Applicability	to	language	

Python supports inheritance through a hierarchical search of namespaces starting at the subclass and proceeding
upward through the superclasses. Multiple inheritance is also supported. Any inherited methods are subject to
the same vulnerabilities that occur whenever using code that is not well understood.

6.41.2	Guidance	to	language	users	

• Follow the guidance of TR 24772-1 clause 6.41.5.
• Inherit only from trusted classes; and
• Use Python’s built-in documentation (such as docstrings) to obtain information about a class’ method

before inheriting from it.

Formatted: Heading 3

Formatted: Font: Bold

Deleted: I

© ISO/IEC 2015 – All rights reserved 35

Deleted: 3

6.42	Violations	of	the	Liskov	Substitution		Principle	or	the	Contract	Model		[BLP]	

6.42.1	Applicability	to	language	

Python is subject to violations of the Liskov substitution rule as documented in TR 24772-1 clause 6.42. The
Python community provides static analysis tools for Python, such as “mypy” which detect a large class of such
violations.

6.42.2	Guidance	to	language	users	

Follow the guidelines of TR 24772-1 clause 6.42.5. In particular, use static analysis tools such as “mypy” to detect
such violations. Validate the appropriateness of naming “mypy”.

	
6.43	Redispatching	[PPH]	

6.43.1	Applicability	to	language	

This vulnerability applies to Python. Python language processors will detect stack overflow but the exception
generated must be handled.

6.43.2	Guidance	to	language	users	

Follow the guidance of TR 24772-1 clause 6.43.5.

6.44	Polymorphic	variables	[BKK]	

6.44.1	Applicability	to	language	

TBD

6.44.2	Guidance	to	language	users	

TBD

	

6.45	Extra	Intrinsics	[LRM]	

6.45.1	Applicability	to	language	

Python provides a set of built-in intrinsics which are implicitly imported into all Python scripts. Any of the built-in
variables and functions can therefore easily be overridden:

x = 'abc'
print(len(x))#=> 3
def len(x):
 return 10

Commented [SGM23]: Note from Nick Coghlan: For
Liskov/redispatch/polymorphism, I'm not really the right person
to ask - the folks working on mypy and other typechecking
tools are.
Probably the best way to contact them would be to file an issue
on https://github.com/python/typing/issues asking for their
feedback.

Deleted: ¶

Moved down [2]: Python	is	subject	to	violations	of	the	
Liskov	substitution	rule	as	documented	in	TR	24772-1	
clause	6.42.	The	Python	community	provides	static	analysis	
tools	for	Python,	such	as	“mypy”	which	detect	a	large	class	of	
such	violations.

Moved (insertion) [2]

Formatted: Normal, Level 1

Deleted: Follow the guidelines of TR 24772-1 clause 6.42.5TBD. In
particular, use static analysis tools such as “mypy” to detect such
violations. Validate the appropriateness of naming “mypy”.

Formatted: Font: Italic

Formatted: Normal, Level 1

Deleted: TBD

Commented [SGM24]: Comment from Nick Coghlan:
For Liskov/redispatch/polymorphism, I'm not really the right
person to ask - the folks working on mypy and other
typechecking tools are.
Probably the best way to contact them would be to file an issue
on https://github.com/python/typing/issues asking for their
feedback.

Deleted: TBD

Commented [SGM25]: Daniel Moisett notes: This scenario
can happen in python asbtractly, but every implementation I
know has detection of infinite recursion by limiting the stack
size, so "[through infinite recursion] The system can then be
caused to fault with a stack overflow anytime" is generally an
impossibility

Deleted: TBD

Commented [SGM26]: Note from Nick Coghlan:
For Liskov/redispatch/polymorphism, I'm not really the right
person to ask - the folks working on mypy and other
typechecking tools are.
Probably the best way to contact them would be to file an issue
on https://github.com/python/typing/issues asking for their
feedback.

36 © ISO/IEC 2015 – All rights reserved

Deleted: 3

print(len(x))#=> 10

If the example above the built-in len function is overridden with logic that always returns 10. Note that the def
statement is executed dynamically so the new overriding len function has not yet been defined when the first
call to len is made therefore the built-in version of len is called in line 2 and it returns the expected result (3 in
this case). After the new len function is defined it overrides all references to the builtin-in len function in the
script. This can later be “undone” by explicitly importing the built-in len function with the following code:

from builtins import len
print(len(x))#=> 3

It’s very important to be aware of name resolution rules when overriding built-ins (or anything else for that
matter). In the example below, the overriding len function is defined within another function and therefore is
not found using the LEGB rule for name resolution (see subclause 6.21 Namespace Issues [BJL]):

x = 'abc'
print(len(x))#=> 3
def f(x):
 def len(x):
 return 10
print(len(x))#=> 3

6.45.2	Guidance	to	language	users	

• Do not override built-in “intrinsics” unless absolutely necessary

6.46	Argument	Passing	to	Library	Functions	[TRJ]	

6.46.1	Applicability	to	language	

Refer to subclause 6.34 Subprogram Signature Mismatch [OTR].

6.46.2	Guidance	to	language	users	

Refer to 6.34 Subprogram Signature Mismatch [OTR].

6.47	Inter-language	Calling	[DJS]	

6.47.1	Applicability	to	language	

Python has a documented API for extending Python using libraries coded in C or C++. The library(s) are then
imported into a Python module and used in the same manner as a module written in Python. Python’s standard
for interfacing to the “C” language is documented in http://docs.python.org/py3k/c-api/.

Conversely, code written in C or C++ can embed Python. The standard for embedding Python is documented in:
http://docs.python.org/py3k/extending/embedding.html.

Formatted: hyper Char

Deleted: 6.21 Namespace Issues [BJL]

Deleted: 6.34 Subprogram Signature Mismatch [OTR]

Deleted: 6.35 Subprogram Signature Mismatch [OTR]

Deleted: E.36 Subprogram Signature Mismatch [OTR]

Deleted: 5

Deleted: E.46

Deleted: 5

Deleted: E.46

Commented [SM27]: Put reference in the bibliography and
reference the bibliography (here and 2 lines down).

© ISO/IEC 2015 – All rights reserved 37

Deleted: 3

The Jython system is a Java-based implementation that interfaces with Java and IronPython provides interfaces to
Microsoft .NET languages.

6.47.2	Guidance	to	language	users	

• Use the language interface APIs documented on the Python web site for interfacing to C/C++, the Jython
web site for Java, the IronPython web site for .NET languages, and for all other languages consider
creating intermediary C or C++ modules to call functions in the other languages since many languages
have documented API’s to C and C++.

6.48	Dynamically-linked	Code	and	Self-modifying	Code	[NYY]	

6.48.1	Applicability	to	language	

Python supports dynamic linking by design. The import statement fetches a file (known as a module in Python),
compiles it and executes the resultant byte code at run time. This is the normal way in which external logic is
made accessible to a Python program therefore Python is inherently exposed to any vulnerabilities that cause a
different file to be imported:

• Alteration of a file directory path variable to cause the file search locate a different file first; and
• Overlaying of a file with an alternate.

Python also provides an eval and an exec statement each of which can be used to create self-modifying code:

x = "print('Hello " + "World')"
eval(x)#=> Hello World

Guerrilla patching, also known as monkey patching, is a way to dynamically modify a module or class at run-time
to extend, or subvert their processing logic and/or attributes. It can be a dangerous practice because once
“patched” any other modules or classes that use the modified class or module may unwittingly be using code that
does not do what they expect which could cause unexpected results.

6.48.2	Guidance	to	language	users	

• Avoid using exec or eval and never use these with untrusted code;
• Be careful when using Guerrilla patching to ensure that all users of the patched classes and/or modules

continue to function as expected; conversely, be aware of any code that patches classes and/or modules
that your code is using to avoid unexpected results; and

• Ensure that the file path and files being imported are from trusted sources.

6.49	Library	Signature	[NSQ]	

6.49.1	Applicability	to	language	

Python has an extensive API for extending or embedding Python using modules written in C, Java, and Fortran.
Extensions themselves have the potential for vulnerabilities exposed by the language used to code the extension
which is beyond the scope of this annex.

Deleted: 5

Deleted: E.46

Deleted: 6

Deleted: E.47

Deleted: 6

Deleted: E.47

Deleted: 6

Deleted: E.47

Commented [SM28]: This may not be dynamically linked code,
but the recommendation is good (just maybe elsewhere).

Deleted: 7

Deleted: E.48

Deleted: 7

Deleted: E.48

38 © ISO/IEC 2015 – All rights reserved

Deleted: 3

Python does not have a library signature checking mechanism but its API provides functions and classes to help
ensure that the signature of the extension matches the expected call arguments and types. See 6.34 Subprogram
Signature Mismatch [OTR].

6.49.2	Guidance	to	language	users	

• Use only trusted modules as extensions; and
• If coding an extension utilize Python’s extension API to ensure a correct signature match.

6.50	Unanticipated	Exceptions	from	Library	Routines	[HJW]	

6.50.1	Applicability	to	language	

Python is often extended by importing modules coded in Python and other languages. For modules coded in
Python the risks include:

• Interception of an exception that was intended for a module’s imported exception handling code (and
vice versa); and

• Unintended results due to namespace collisions (covered in 6.21 Namespace Issues [BJL] and elsewhere in
this annex).

For modules coded in other languages the risks include:

• Unexpected termination of the program; and
• Unexpected side effects on the operating environment.

6.50.2	Guidance	to	language	users	

• Wrap calls to library routines and use exception handling logic to intercept and handle exceptions when
practicable.

6.51	Pre-processor	Directives	[NMP]	

This vulnerability is not applicable to Python because Python has no pre-processor directives.

6.52	Suppression	of	Language-defined	Run-time	Checking	[MXB]	

This vulnerability is not applicable to Python because Python does not have a mechanism for suppressing run-
time error checking. The only suppression available is the suppression of run-time warnings using the command
line –W option which suppresses the printing of warnings but does not affect the execution of the program.

6.53	Provision	of	Inherently	Unsafe	Operations	[SKL]	

6.53.1	Applicability	to	language	

Python has very few operations that are inherently unsafe. For example, there is no way to suppress error
checking or bounds checking. However there are two operations provided in Python that are inherently unsafe in
any language:

Formatted: hyper Char

Deleted: 6.35 Subprogram Signature Mismatch [OTR]E.36
Subprogram Signature Mismatch [OTR]

Formatted: hyper Char

Deleted: 7

Deleted: E.48

Deleted: 48

Deleted: E.49

Deleted: 48

Deleted: E.49

Deleted: 6.22 Namespace Issues [BJL]

Deleted: E.22

Deleted: 48

Deleted: E.49

Deleted: 49

Deleted: E.50

Commented [SGM29]: Email from Nick Coghlan (2017-09-21)

- the "pre-processor directives" section isn't strictly true: "from
__future__ import feature" is a compile-time directive, and the
encoding cookie declarations in source headers allow for
arbitrary source->source translations when loading source
modules. The import hook mechanisms also provide a lot of
flexibility for runtime code to change how imports in other parts
of the program are actually handled.

Deleted: 50

Deleted: E.51

Deleted: 51

Deleted: E.52

Deleted: 1

Deleted: E.52

© ISO/IEC 2015 – All rights reserved 39

Deleted: 3

• Interfaces to modules coded in other languages since they could easily violate the security of the calling of
embedded Python code; and

• Use of the exec and eval dynamic execution functions (see 6.48 Dynamically-linked Code and Self-
modifying Code [NYY]).

6.53.2		Guidance	to	language	users	

• Use only trusted modules; and
• Avoid the use of the exec and eval functions.

6.54	Obscure	Language	Features	[BRS]	

6.54.1	Applicability	of	language		

Python has some obscure language features as described below:

Functions are defined when executed:

a = 1
while a < 3:
 if a == 1:
 def f():
 print("a must equal 1")
 else:
 def f():
 print("a must not equal 1")
 f()
 a += 1

The function f is defined and redefined to result in the output below:

a must equal 1
a must not equal 1

A function’s variables are determined to be local or global using static analysis: if a function only references a
variable and never assigns a value to it then it is assumed to be global otherwise it is assumed to be local and is
added to the function’s namespace. This is covered in some detail in 6.22 Initialization of Variables [LAV].

A function’s default arguments are assigned when a function is defined, not when it is executed:

def f(a=1, b=[]):
 print(a, b)
 a += 1
 b.append("x")
f()
f()
f()

Formatted: hyper Char

Deleted: 6.46 Dynamically-linked Code and Self-modifying Code
[NYY]E.47 Dynamically-linked Code and Self-modifying Code [NYY]

Formatted: hyper Char

Deleted: 1

Deleted: E.52

Deleted: 2

Deleted: E.53

Deleted: 2

Deleted: E.53

Commented [SGM30]: Email from Nick Coghlan (2017-09-21)
- the asyncio infrastructure has introduced a number of new
"obscure language features" for use by event loop
implementors (e.g. there's a hook that gets called any time a
native coroutine is created)

Deleted: 6.23 Initialization of Variables [LAV]

Deleted: E.23

40 © ISO/IEC 2015 – All rights reserved

Deleted: 3

The output from above is typically expected to be:

1 []
1 []
1 []

But instead it prints:

1 []
1 ['x']
1 ['x', 'x']

This is because neither a nor b are reassigned when f is called with no arguments because they were assigned
values when the function was defined. The local variable a references an immutable object (an integer) so a new
object is created when the a += 1 statement is created and the default value for the a argument remains
unchanged. The mutable list object b is updated in place and thus “grows” with each new call.

The += Operator does not work as might be expected for mutable objects:

x = 1
x += 1
print(x) #=> 2 (Works as expected)

But when we perform this with a mutable object:

x = [1, 2, 3]
y = x
print(id(x), id(y))#=> 38879880 38879880
x += [4]
print(id(x), id(y))#=> 38879880 38879880
x = x + [5]
print(id(x), id(y))#=> 48683400 38879880
print(x,y)#=> [1, 2, 3, 4, 5] [1, 2, 3, 4]

The += operator changes x in place while the x = x + [5] creates a new list object which, as the example
above shows, is not the same list object that y still references. This is Python’s normal handling for all
assignments (immutable or mutable) – create a new object and assign to it the value created by evaluating the
expression on the right hand side (RHS):

x = 1
print(id(x)) #=> 506081728
x = x + 1
print(id(x)) #=> 506081760

Equality (or equivalence) refers to two or more objects having the same value. It is tested using the == operator
which can thought of as the ‘is equal to test’. On the other hand, two or more names in Python are considered
identical only if they reference the same object (in which case they would, of course, be equivalent too). For
example:

Formatted: Spanish

Formatted: French

© ISO/IEC 2015 – All rights reserved 41

Deleted: 3

a = [0,1]
b = a
c = [0,1]
a is b, b is c, a == c #=> (True, False, True)

a and b are both names that reference the same objects while c references a different object which has the
same value as both a and b.

Python provides built-in classes for persisting objects to external storage for retrieval later. The complete object,
including its methods, is serialized to a file (or DBMS) and re-instantiated at a later time by any program which has
access to that file/DBMS. This has the potential for introducing rogue logic in the form of object methods within a
substituted file or DBMS.

Python supports passing parameters by keyword as in:

a = myfunc(x = 1, y = "abc")

This can make the code more readable and allows one to skip parameters. It can also reduce errors caused by
confusing the order of parameters.

6.54.2	Guidance	to	language	users	

• Ensure that a function is defined before attempting to call it;
• Be aware that a function is defined dynamically so its composition and operation may vary due to

variations in the flow of control within the defining program;
• Be aware of when a variable is local versus global;
• Do not use mutable objects as default values for arguments in a function definition unless you absolutely

need to and you understand the effect;
• Be aware that when using the += operator on mutable objects the operation is done in place;
• Be cognizant that assignments to objects, mutable and immutable, always create a new object;
• Understand the difference between equivalence and equality and code accordingly; and
• Ensure that the file path used to locate a persisted file or DBMS is correct and never ingest objects from

an untrusted source.

6.55	Unspecified	Behaviour	[BQF]	

6.55.1	Applicability	of	language		

Understanding how Python manages identities becomes less clear when a script is run using integers (or short
strings):

a=1
b=a
c=1
a is b, b is c, a == c #=> (True, True, True)

Formatted: Spanish

Deleted: 2

Deleted: E.53

Moved down [6]: Ensure that a function is defined before
attempting to call it; Be aware that a function is defined dynamically
so its composition and operation may vary due to variations in the
flow of control within the defining program;

Moved (insertion) [6]

Formatted: Font: Calibri

Formatted: Font: Calibri

Deleted: 3

Deleted: E.54

Deleted: 3

Deleted: E.54

42 © ISO/IEC 2015 – All rights reserved

Deleted: 3

In the example above c references the same object as a and b even though c was never assigned to either a or
b. This is a nuance of how Python is optimized to cache short strings and small integers. Other than in a test for
identity as above, this nuance has no effect on the logic of the program (for example, changing the value of c to 2
will not affect a or b). Refer also to 4. Language concepts.

When persisting objects using pickling, if an exception is raised then an unspecified number of bytes may have
already been written to the file.

6.55.2	Guidance	to	language	users	

• Do not rely on the content of error messages – use exception objects instead;
• When persisting object using pickling use exception handling to cleanup partially written files; and
• Do not depend on the way Python may or may not optimize object references for small integer and string

objects because it may vary for environments or even for releases in the same environment.

6.56	Undefined	Behaviour	[EWF]	

6.56.1	Applicability	to	language	

Python has undefined behaviour in the following instances:

• Caching of immutable objects can result in (or not result in) a single object being referenced by two or
more variables. Comparing the variables for equivalence (that is, if a == b) will always yield a True
but checking for equality (using the is built-in) may, or may not, dependent on the implementation:
a = 1
b = 2-1
print(a == b, a is b) #=> (True, ?)

• The sequence of keys in a dictionary is undefined because the hashing function used to index the keys is
unspecified therefore different implementations are likely to yield different sequences.

• The Future class encapsulates the asynchronous execution of a callable. The behaviour is undefined if
the add_done_callback(fn) method (which attaches the callable fn to the future) raises a
BaseException subclass.

• Modifying the dictionary returned by the vars built-in has undefined effects when used to retrieve the
dictionary (that is, the namespace) for an object.

• Form feed characters used for indentation have an undefined effect on the character count used to
determine the scope of a block.

• The catch_warnings function in the context manager can be used to temporarily suppress warning
messages but it can only be guaranteed in a single-threaded application otherwise, when two or more
threads are active, the behaviour is undefined.

• When sorting a list using the sort() method, attempting to inspect or mutate the content of the list will
result in undefined behaviour.

• The order of sort of a list of sets, using list.sort(), is undefined as is the use of the function used on
a list of sets that depend on total ordering such as min(), max(), and sorted().

• Undefined behaviour will occur if a thread exits before the main procedure from which it was called
itself exits.

Deleted: E.2.2 Key Concepts

Deleted: 3

Deleted: E.54

Deleted: 4

Deleted: E.55

Deleted: 4

Deleted: E.55

© ISO/IEC 2015 – All rights reserved 43

Deleted: 3

6.56.2	Guidance	to	language	users	

• Understand the difference between testing for equivalence (for example, ==) and equality (for example,
is) and never depend on object identity tests to pass or fail when the variables reference immutable
objects;

• Do not depend on the sequence of keys in a dictionary to be consistent across implementations.
• When launching parallel tasks don’t raise a BaseException subclass in a callable in the Future class;
• Never modify the dictionary object returned by a vars call;
• Never use form feed characters for indentation;
• Consider using the id function to test for object equality;
• Do not try to use the catch_warnings function to suppress warning messages when using more than

one thread; and
• Never inspect or change the content of a list when sorting a list using the sort() method.

6.57	Implementation–defined	Behaviour	[FAB]	

6.57.1	Applicability	to	language	

Python has implementation-defined behaviour in the following instances:

• Mixing tabs and spaces to indent is defined differently for UNIX and non-UNIX platforms;
• Byte order (little endian or big endian) varies by platform;
• Exit return codes are handled differently by different operating systems;
• The characteristics, such as the maximum number of decimal digits that can be represented, vary by

platform;
• The filename encoding used to translate Unicode names into the platform’s filenames varies by platform;

and
• Python supports integers whose size is limited only by the memory available. Extensive arithmetic using

integers larger than the largest integer supported in the language used to implement Python will degrade
performance so it may be useful to know the integer size of the implementation.

6.57.2	Guidance	to	language	users	

• Always use either spaces or tabs (but not both) for indentations;
• Consider using the -tt command line option to raise an IndentationError;
• Consider using a text editor to find and make consistent, the use of tabs and spaces for indentation;
• Either avoid logic that depends on byte order or use the sys.byteorder variable and write the logic to

account for byte order dependent on its value ('little' or 'big').
• Use zero (the default exit code for Python) for successful execution and consider adding logic to vary the

exit code according to the platform as obtained from sys.platform (such as, 'win32', 'darwin', or
other).

• Interrogate the sys.float.info system variable to obtain platform specific attributes and code
according to those constraints.

• Call the sys.getfilesystemcoding() function to return the name of the encoding system used.

Deleted: 4

Deleted: E.55

Deleted: 5

Deleted: E.56

Deleted: 5

Deleted: E.56

Deleted: 5

Deleted: E.56

44 © ISO/IEC 2015 – All rights reserved

Deleted: 3

• When high performance is dependent on knowing the range of integer numbers that can be used without
degrading performance use the sys.int_info struct sequence to obtain the number of bits per
digit (bits_per_digit) and the number of bytes used to represent a digit (sizeof_digit).

6.58	Deprecated	Language	Features	[MEM]	

6.58.1	Applicability	to	language	

The following features were deprecated in the latest (as of this writing) version of E 3.1. These are documented at
http://docs.python.org/release/3.1.3/whatsnew/3.1.html:

• The string.maketrans() function is deprecated and is replaced by new static methods, bytes.maketrans()
and bytearray.maketrans(). This change solves the confusion around which types were supported by the
string module. Now, str, bytes, and bytearray each have their own maketrans and translate methods with
intermediate translation tables of the appropriate type.

• The syntax of the with statement now allows multiple context managers in a single statement:

with open('mylog.txt') as infile, open('a.out', 'w') as outfile:
 for line in infile:
 if '<critical>' in line:
 outfile.write(line)

• With the new syntax, the contextlib.nested() function is no longer needed and is now
deprecated.

• Deprecated PyNumber_Int(). Use PyNumber_Long() instead.
• Added a new PyOS_string_to_double() function to replace the deprecated functions

PyOS_ascii_strtod() and PyOS_ascii_atof().
• Added PyCapsule as a replacement for the PyCObject API. The principal difference is that the new

type has a well defined interface for passing typing safety information and a less complicated signature
for calling a destructor. The old type had a problematic API and is now deprecated.

6.58.2	Guidance	to	language	users	

• When practicable, migrate Python programs to the current standard.

6.59	Concurrency	–	Activation	[CGA]	

6.59.1	Applicability	to	language	

Python is open to this vulnerability but provides features for its mitigation. Python provides the module
“threading” for thread-level concurrency, and “multiprocessing” for creating threads that execute on multiple
processors.

The threading module provides mechanisms to create, run, monitor, terminate and communicate with other
threads.

Deleted: 6

Deleted: E.57

Deleted: 6

Deleted: E.57

Commented [SM31]: Put in bibliography and reference
bibliography.

Deleted: 7

Deleted: E.57

Deleted: ¶

Formatted: Heading 3

Formatted: Normal

© ISO/IEC 2015 – All rights reserved 45

Deleted: 3

Reference implemenations examined raise an exception if the start() method cannot create a thread. This is not
documented in the Python specification. Created threads execute initialization code and can terminate silently
before reaching user code.

TBW: Analyze the standard Python libraries:

• threading: Reference implementation seems to always raise an exception if start() method is not
able to create the thread, but is not documented in the specification and thus the user cannot rely on
this. Furthermore, even if the standard library / OS can create the new thread, it can die during the
initialization phase when executing the user’s code. Method join() does not return if the thread died
through an unhandled exception? Method is_alive() to check whether is still running, and timeouts
for lock objects. Timer object TBA

• multiprocessing: Exception raised if not activated? TBA
• concurrency.futures: TBA

6.59.2	Guidance	to	language	users	

Follow the guidance of TR 24772-1 clause 6.59.5.

Always handle exceptions caused by activation.

6.60	Concurrency	–	Directed	termination	[CGT]	

6.60.1	Applicability	to	language	

In Python, a thread (created using the threading library may terminate by coming to the end of its executable
code, or may call the “terminate” method. Python does not provide mechanisms to terminate another thread
using the threading library, however, it does permit the raising of an asynchronous exception in another
thread, which may cause the named thread to terminate if it has no exception handler for that event. Alternate
mechanisms are to use shared objects, events, queues or pipes to pass a signal to another thread to terminate
itself.

Using the multiprocessing library, Python provides either the terminate(), kill() or close() methods.
Exit handlers and finally clauses will not be executed, and descendant processes will not terminate.

<<investigate regions that ignore termination requests>>

6.60.2	Guidance	to	language	users	

• Follow the guidance of TR 24772-1 clause 6.60.5.
• Prefer signaling a thread to terminate itself to killing another thread so that proper cleanup happens. This

is very important when using pipes and queues to communicate between threads.
• Use Python library routines to monitor the existence of a thread before and after termination.

Formatted: Highlight

Formatted: Normal, Level 1

Formatted: Font: (Default) Courier New, English (UK), Kern
at 14 pt, Highlight

Formatted: List Paragraph, Space After: 6 pt, Bulleted +
Level: 1 + Aligned at: 0.63 cm + Indent at: 1.27 cm, No
widow/orphan control, Suppress line numbers, Don't allow
hanging punctuation

Formatted: Highlight

Formatted: Font: (Default) Courier New, English (UK), Kern
at 14 pt, Highlight

Formatted: Highlight

Formatted: Highlight

Formatted: Highlight

Formatted: Font: (Default) Courier New, English (UK), Kern
at 14 pt, Highlight

Formatted: Highlight

Formatted: Font: (Default) Calibri, Highlight

Formatted: Font: (Default) Courier New, English (UK), Kern
at 14 pt, Highlight

Formatted: Font: (Default) Calibri, Highlight

Formatted: Font: (Default) Courier New, English (UK), Kern
at 14 pt, Highlight

Formatted: Highlight

Formatted: Normal, Level 1

Deleted: TBW

Deleted: ¶

Deleted: ¶

Formatted: Heading 3

Formatted: Normal

Formatted: Font: (Default) Courier New, 10 pt

Formatted: Font: (Default) Courier New, 10 pt

Formatted: Font: (Default) Courier New, 10 pt

Deleted: ¶

Formatted: Font: (Default) Courier New, 10 pt

Formatted: Font: (Default) Courier New, 10 pt

Formatted: Font: (Default) Courier New, 10 pt

Formatted: Normal

Formatted: Normal

Deleted: TBW: Analyze the standard Python libraries:¶
threading: No mechanism to abort another thread, the thread
has to terminate itself. Alien threads cannot be terminated nor
joined.¶
multiprocessing: TBA¶
concurrency.futures: TBA¶

Formatted: Normal

Formatted: List Paragraph, Bulleted + Level: 1 + Aligned at:
0.63 cm + Indent at: 1.27 cm

Deleted: ¶ ... [2]

46 © ISO/IEC 2015 – All rights reserved

Deleted: 3

6.61	Concurrent	Data	Access	[CGX]		

6.61.1	Applicability	to	language	

Python does permit threads to read and write shared data, as specified in TR 24772-1 clause 6.61. Python also
provides:

• locks to permit user-based protocols to access shared data sequentially,
• queues and pipes to permit two treads to have thread-safe unidirectional communication,
• concurrency.futures: TBA

6.61.2	Guidance	to	language	users	

• Follow the mitigation mechanisms of subclause 6.61.5 of TR 24772-1.
• When possible, use queues or pipes for exchanging data.
• Statically determine that no unprotected data is used directly by more than one thread
• When shared variables are used, employ model checking or equivalent methodologies to prove the

absence of race conditions.

6.62	Concurrency	–	Premature	Termination	[CGS]	

6.62.1	Applicability	to	language	

A Python threads will terminate when its run method terminates or if an unhandled exception occurs, hence the
vulnerability as documented in TR24772-1 clause 6.62 exists for Python. Python does not permit other threads to
abort or prematurely terminate other threads when using the threading library, but does provide terminate(),
kill(), and close() methods in the multiprocessing library.

TBD – how “futures” affect this vulnerability

6.62.2	Guidance	to	language	users	

• Follow the mitigation mechanisms of subclause 6.62.5 of TR 24772-1.
• Provide a finally construct for each thread method that notifies a higher-level construct of the

termination so that corrective action can be taken
• Use one or more of the threading.is_alive(), threading.active_count

threading.enumerate() methods to determine if a thread’s execution state is as-expected
• Protect data that would be vulnerable to premature termination, such as by using locks or protected

regions, or by retaining the last consistent version of the data
• Handle exceptions and clean up nested threads and potentially shared data before termination.

Deleted: ¶

Formatted: Heading 3

Formatted: Normal

Formatted: List Paragraph, Bulleted + Level: 1 + Aligned at:
0.63 cm + Indent at: 1.27 cm

Formatted: Space After: 10 pt, Bulleted + Level: 1 + Aligned
at: 0.63 cm + Indent at: 1.27 cm, Widow/Orphan control,
Don't suppress line numbers, Allow hanging punctuation

Deleted: ¶
TBW: Analyze the standard Python libraries:¶
threading: Different mechanisms TBA:: Lock, RLock (recursive
lock), Semaphore, Condition, Event, Barrier. Use ‘with statement’
with locks¶
multiprocessing: TBA

Formatted: Normal

Deleted: TBW¶
threading: Use ‘with statement’ with locks¶
multiprocessing: TBA¶
concurrency.futures: TBA¶

Formatted: Normal

Deleted: ¶

Deleted: ¶

Formatted: Heading 3

Formatted: Normal

Formatted: Font: (Default) Courier New, 10 pt

Formatted: Font: (Default) Courier New, 10 pt, Kern at 16 pt

Formatted: Font: (Default) Courier New, 10 pt, Kern at 16 pt

Formatted: Font: (Default) Courier New, 10 pt, Kern at 16 pt

Formatted: Normal

Deleted: TBW: Analyze the standard Python libraries:¶
threading: TBA¶
multiprocessing: TBA¶
concurrency.futures: TBA¶

Formatted: List Paragraph, Bulleted + Level: 1 + Aligned at:
0.63 cm + Indent at: 1.27 cm

Formatted

Formatted: Font: (Default) Courier New, 10 pt

Formatted

Formatted: Font: (Default) Courier New, 10 pt, Kern at 16 pt

Formatted: List Paragraph, Bulleted + Level: 1 + Aligned at:
0.63 cm + Indent at: 1.27 cm

© ISO/IEC 2015 – All rights reserved 47

Deleted: 3

6.63	Lock	Protocol	Errors	[CGM	

6.63.1	Applicability	to	language	

Python is open to the errors identified in TR 24772-1 subclause 6.62.1.

Python provides locks and semaphores that show the classic behaviours. Python also provides event objects that
permit programmed-specific notification between 2 threads, as well as barriers and condition objects that permit
the release of groups of threads upon a single condition becoming true.

•
• concurrency.futures: TBA

6.63.2	Guidance	to	language	users	

• Follow the guidance of TR 24772-1 subclause 6.63.5
• Prefer higher level constructs for exchanging data between threads

• concurrency.futures: TBA

6.64	Reliance	on	External	Format	String		[SHL]	

6.64.1	Applicability	to	language	

TBD

6.64.2	Guidance	to	language	users	

TBD

7.	Language	specific	vulnerabilities	for	Python	

8.	Implications	for	standardization	or	future	revision	

Future standardization efforts should consider the following items to address vulnerability issues identified earlier
in this Technical Report.

This is a dummy citation with the Word bibliography feature [2] , and the following one using bookmars [1].

Deleted: TBW

Deleted: 0

Deleted: 3	

Deleted: ¶

Formatted: Heading 3

Formatted: Normal

Deleted: TBW: Analyze the standard Python libraries:¶
threading: Use ‘with statement’ with locks ¶
multiprocessing: TBA

Formatted: Normal

Deleted: 0

Formatted: List Paragraph, Bulleted + Level: 1 + Aligned at:
0.63 cm + Indent at: 1.27 cm

Deleted: TBW ¶
threading: TBA ¶
multiprocessing: TBA

Formatted: Highlight

Formatted: Normal, Space After: 0 pt, No bullets or
numbering, Widow/Orphan control, Don't suppress line
numbers, Allow hanging punctuation

Formatted: Heading 3

Formatted: Normal, Level 1

Formatted: Normal, Level 1

Deleted: ¶

Formatted: Normal

Deleted: ¶
¶

Formatted: Heading 1

Commented [SGM32]: Note from Nick Coghlan:
Speaking of clocks & timing, there are some use cases that
should be updated to use time.monotonic() rather than
time.time() or time.clock()
: https://www.python.org/dev/peps/pep-0418/#time-monotonic

Windows applications should also be aware of the fact that
Python 3.6
always uses utf-8 for binary filesystem and console interfaces:
https://docs.python.org/dev/whatsnew/3.6.html#pep-529-
change-windows-filesystem-encoding-to-utf-8

Non-Windows applications should be aware of the fact that
Python 3.7+
will attempt to coerce the C locale to C.UTF-8 (or an equivalent ... [3]
Commented [SGM33R32]:

Deleted: ¶

Formatted: Normal

Formatted: Highlight

Formatted: Not Highlight

Formatted: Not Highlight

Formatted: Not Highlight

Formatted: Not Highlight

Field Code Changed

48 © ISO/IEC 2015 – All rights reserved

Deleted: 3

Bibliography	

[1] ISO/IEC Directives, Part 2, Rules for the structure and drafting of International Standards, 2004

[2] ISO/IEC TR 10000-1, Information technology — Framework and taxonomy of International Standardized
Profiles — Part 1: General principles and documentation framework

[3] ISO 10241 (all parts), International terminology standards

[4] Steve Christy, Vulnerability Type Distributions in CVE, V1.0, 2006/10/04

[5] Carlo Ghezzi and Mehdi Jazayeri, Programming Language Concepts, 3rd edition, ISBN-0-471-10426-4, John
Wiley & Sons, 1998

[6] John David N. Dionisio. Type Checking. http://myweb.lmu.edu/dondi/share/pl/type-checking-v02.pdf

[7] The Common Weakness Enumeration (CWE) Initiative, MITRE Corporation, (http://cwe.mitre.org/)

[8] Goldberg, David, What Every Computer Scientist Should Know About Floating-Point Arithmetic, ACM
Computing Surveys, vol 23, issue 1 (March 1991), ISSN 0360-0300, pp 5-48.

[9] IEEE Standards Committee 754. IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Standard
754-2008. Institute of Electrical and Electronics Engineers, New York, 2008.

[10] Robert W. Sebesta, Concepts of Programming Languages, 8th edition, ISBN-13: 978-0-321-49362-0, ISBN-
10: 0-321-49362-1, Pearson Education, Boston, MA, 2008

[11] Bo Einarsson, ed. Accuracy and Reliability in Scientific Computing, SIAM, July 2005
http://www.nsc.liu.se/wg25/book

[1] "Enums for Python (Python recipe)," [Online]. Available:
http://code.activestate.com/recipes/67107/.

[2] M. Pilgrim, Dive Into Python, 2004.

[3] M. Lutz, Learning Python, Sebastopol, CA: O'Reilly Media, Inc, 2009.

[4] "The Python Language Reference," [Online]. Available:
http://docs.python.org/reference/index.html#reference-index.

[5] A. Martelli, Python in a Nutshell, Sebastopol, CA: O'Reilly Media, Inc., 2006.

[6] M. Lutz, Programming Python, Sebastopol, CA: O'Reilly Media, Inc., 2011.

Deleted: Page Break

Formatted: Space After: 6 pt, No widow/orphan control,
Suppress line numbers, Don't allow hanging punctuation

Deleted: 1

Deleted: 2

Deleted: 3

Deleted: [4]➝ISO/IEC 9899:2011, Information technology —
Programming languages — C¶
[5]➝ISO/IEC 9899:2011/Cor.1:2012, Technical Corrigendum 1¶
[6]➝ISO/IEC 30170:2012, Information technology — Programming
languages — Ruby¶
[7]➝ISO/IEC/IEEE 60559:2011, Information technology –
Microprocessor Systems – Floating-Point arithmetic¶
[8]➝ISO/IEC 1539-1:2010, Information technology —
Programming languages — Fortran — Part 1: Base language¶
[9]➝ISO/IEC 8652:1995, Information technology — Programming
languages — Ada¶
[10]➝ISO/IEC 14882:2011, Information technology —
Programming languages — C++¶
[11]➝R. Seacord, The CERT C Secure Coding Standard. Boston,MA:
Addison-Westley, 2008.¶
[12]➝Motor Industry Software Reliability Association. Guidelines
for the Use of the C Language in Vehicle Based Software, 2012

(third edition)16F2.¶
[13]➝ISO/IEC TR24731–1, Information technology —
Programming languages, their environments and system software
interfaces — Extensions to the C library — Part 1: Bounds-
checking interfaces¶
[14]➝ISO/IEC TR 15942:2000, Information technology —
Programming languages — Guide for the use of the ➝Ada
programming language in high integrity systems¶
[15]➝Joint Strike Fighter Air Vehicle: C++ Coding Standards for the
System Development and Demonstration Program. Lockheed
Martin Corporation. December 2005.¶
[16]➝Motor Industry Software Reliability Association. Guidelines
for the Use of the C++ Language in critical systems, June 2008¶... [4]
Deleted: 25

Deleted: [26]➝ARIANE 5: Flight 501 Failure, Report by the
Inquiry Board, July 19, 1996 ... [5]
Deleted: 28

Deleted: [29]➝Lions, J. L. ARIANE 5 Flight 501 Failure Report.
Paris, France: European Space Agency (ESA) & National Center for ... [6]

Formatted: English (US)

Deleted: 31

Deleted: [32]➝MISRA Limited. "MISRA C: 2012 Guidelines for
the Use of the C Language in Critical Systems." Warwickshire, UK: ... [7]
Deleted: 33

Deleted:)

Deleted: 34

Deleted: 35

Deleted: 36

Deleted: 37

Moved (insertion) [1]

Formatted: French

Formatted: French

© ISO/IEC 2015 – All rights reserved 49

Deleted: 3

[7] A. G. Isaac, "Python Introduction," 23 06 2010. [Online]. Available:
https://subversion.american.edu/aisaac/notes/python4class.xhtml#introduction-to-the-interpreter.
[Accessed 12 05 2011].

[8] H. Norwak, "10 Python Pitfalls," [Online]. Available:
http://zephyrfalcon.org/labs/python_pitfalls.html. [Accessed 13 05 2011].

[9] "Python Gotchas," [Online]. Available: http://www.ferg.org/projects/python_gotchas.html.

[10] G. source, "Big List of Portabilty in Python," [Online]. Available:
http://stackoverflow.com/questions/1883118/big-list-of-portability-in-python. [Accessed 12 6
2011].

Formatted: French

Commented [SM34]: Rationalize with rest of bibliography.

Deleted: [38]➝GAO Report, Patriot Missile Defense: Software
Problem Led to System Failure at Dhahran, Saudi Arabia, B-
247094, Feb. 4, 1992, http://archive.gao.gov/t2pbat6/145960.pdf¶
[39]➝Robert Skeel, Roundoff Error Cripples Patriot Missile, SIAM
News, Volume 25, Number 4, July 1992, page 11,
http://www.siam.org/siamnews/general/patriot.htm¶
[40]➝CERT. CERT C++ Secure Coding
Standard. https://www.securecoding.cert.org/confluence/pages/
viewpage.action?pageId=637 (2009). ¶
[41]➝Holzmann, Garard J., Computer, vol. 39, no. 6, pp 95-97,
Jun., 2006, The Power of 10: Rules for Developing Safety-Critical
Code¶
[42]➝P. V. Bhansali, A systematic approach to identifying a safe
subset for safety-critical software, ACM SIGSOFT Software
Engineering Notes, v.28 n.4, July 2003¶
[43]➝Ada 95 Quality and Style Guide, SPC-91061-CMC, version
02.01.01. Herndon, Virginia: Software Productivity Consortium,
1992. Available from:
http://www.adaic.org/docs/95style/95style.pdf¶
[44]➝Ghassan, A., & Alkadi, I. (2003). Application of a Revised DIT
Metric to Redesign an OO Design. Journal of Object Technology ,
127-134.¶
[45]➝Subramanian, S., Tsai, W.-T., & Rayadurgam, S. (1998).
Design Constraint Violation Detection in Safety-Critical Systems.
The 3rd IEEE International Symposium on High-Assurance Systems
Engineering , 109 - 116.¶
[46]➝Lundqvist, K and Asplund, L., “A Formal Model of a Run-
Time Kernel for Ravenscar”, The 6th International Conference on
Real-Time Computing Systems and Applications – RTCSA 1999

Formatted: English (US)

Formatted: English (US)

Formatted: English (US)

Formatted: English (US)

50 © ISO/IEC 2015 – All rights reserved

Deleted: 3

Index	

LHS (left-hand side), 22

Formatted: Number of columns: 2

Deleted: Section Break (Continuous)
 ¶
 ¶
Ada, 13, 59, 63, 73, 76¶
AMV – Type-breaking Reinterpretation of Data, 72¶
API¶
Application Programming Interface, 16¶
APL, 48¶
Apple¶
OS X, 120¶
application vulnerabilities, 9¶
Application Vulnerabilities¶
Adherence to Least Privilege [XYN], 113¶
Authentication Logic Error [XZO], 135¶
Cross-site Scripting [XYT], 125¶
Discrepancy Information Leak [XZL], 129¶
Distinguished Values in Data Types [KLK], 112¶
Download of Code Without Integrity Check [DLB], 137¶
Executing or Loading Untrusted Code [XYS], 116¶
Hard-coded Password [XYP], 136¶
Improper Restriction of Excessive Authentication Attempts [WPL],
140¶
Improperly Verified Signature [XZR], 128¶
Inclusion of Functionality from Untrusted Control Sphere [DHU],
139¶
Incorrect Authorization [BJE], 138¶
Injection [RST], 122¶
Insufficiently Protected Credentials [XYM], 133¶
Memory Locking [XZX], 117¶
Missing or Inconsistent Access Control [XZN], 134¶
Missing Required Cryptographic Step [XZS], 133¶
Path Traversal [EWR], 130¶
Privilege Sandbox Issues [XYO], 114¶
Resource Exhaustion [XZP], 118¶
Resource Names [HTS], 120¶
Sensitive Information Uncleared Before Use [XZK], 130¶
Unquoted Search Path or Element [XZQ], 127¶
Unrestricted File Upload [CBF], 119¶
Unspecified Functionality [BVQ], 111¶
URL Redirection to Untrusted Site ('Open Redirect') [PYQ], 140¶
Use of a One-Way Hash without a Salt [MVX], 141¶
application vulnerability, 5¶
Ariane 5, 21¶
 ¶
bitwise operators, 48¶
BJE – Incorrect Authorization, 138¶
BJL – Namespace Issues, 43¶
black-list, 120, 124¶
BQF – Unspecified Behaviour, 92, 94, 95¶
break, 60¶
BRS – Obscure Language Features, 91¶
buffer boundary violation, 23¶
buffer overflow, 23, 26¶
buffer underwrite, 23¶
BVQ – Unspecified Functionality, 111¶
 ¶
C, 22, 48, 50, 51, 58, 60, 63, 73¶
C++, 48, 51, 58, 63, 73, 76, 86¶
C11, 192¶
call by copy, 61¶
call by name, 61¶
call by reference, 61¶
call by result, 61¶
call by value, 61¶
call by value-result, 61¶
CBF – Unrestricted File Upload, 119¶ ... [8]

Page 7: [1] Deleted Stephen Michell 9/22/17 9:38:00 AM

19 Avoid fall-through from one case (or switch) statement into the following
case statement: if a fall-through is necessary then provide a comment to
inform the reader that it is intentional.

1120 Do not use floating-point arithmetic when integers or booleans would
suffice, especially for counters associated with program flow, such as loop
control variables.

Page 45: [2] Deleted Stephen Michell 7/30/18 11:53:00 AM

TBW:

•

Page 47: [3] Commented [SGM32] Stephen Michell 9/27/17 10:22:00 AM

Note from Nick Coghlan:

Speaking of clocks & timing, there are some use cases that should be updated to use time.monotonic() rather than time.time()
or time.clock() : https://www.python.org/dev/peps/pep-0418/#time-monotonic

Windows applications should also be aware of the fact that Python 3.6
always uses utf-8 for binary filesystem and console interfaces:
https://docs.python.org/dev/whatsnew/3.6.html#pep-529-change-windows-filesystem-encoding-to-utf-8

Non-Windows applications should be aware of the fact that Python 3.7+
will attempt to coerce the C locale to C.UTF-8 (or an equivalent
locale), and that implementing that behaviour is an approved option
for redistributor's Python 3.6 implementations (e.g. the system Python
in Fedora implements the option).
https://www.python.org/dev/peps/pep-0538/ has the details of that.

Page 48: [4] Deleted Santiago Urueña 5/26/15 12:47:00 PM

[4] ISO/IEC 9899:2011, Information technology — Programming languages — C

[5] ISO/IEC 9899:2011/Cor.1:2012, Technical Corrigendum 1

[6] ISO/IEC 30170:2012, Information technology — Programming languages — Ruby

[7] ISO/IEC/IEEE 60559:2011, Information technology – Microprocessor Systems – Floating-Point arithmetic

[8] ISO/IEC 1539-1:2010, Information technology — Programming languages — Fortran — Part 1: Base
language

[9] ISO/IEC 8652:1995, Information technology — Programming languages — Ada

[10] ISO/IEC 14882:2011, Information technology — Programming languages — C++

[11] R. Seacord, The CERT C Secure Coding Standard. Boston,MA: Addison-Westley, 2008.

[12] Motor Industry Software Reliability Association. Guidelines for the Use of the C Language in Vehicle Based
Software, 2012 (third edition)16F

1.

[13] ISO/IEC TR24731–1, Information technology — Programming languages, their environments and system
software interfaces — Extensions to the C library — Part 1: Bounds-checking interfaces

[14] ISO/IEC TR 15942:2000, Information technology — Programming languages — Guide for the use of the
 Ada programming language in high integrity systems

[15] Joint Strike Fighter Air Vehicle: C++ Coding Standards for the System Development and Demonstration
Program. Lockheed Martin Corporation. December 2005.

[16] Motor Industry Software Reliability Association. Guidelines for the Use of the C++ Language in critical
systems, June 2008

[17] ISO/IEC TR 24718: 2005, Information technology — Programming languages — Guide for the use of the
Ada Ravenscar Profile in high integrity systems

[18] L. Hatton, Safer C: developing software for high-integrity and safety-critical systems. McGraw-Hill 1995

[19] ISO/IEC 15291:1999, Information technology — Programming languages — Ada Semantic Interface
Specification (ASIS)

[20] Software Considerations in Airborne Systems and Equipment Certification. Issued in the USA by the
Requirements and Technical Concepts for Aviation (document RTCA SC167/DO-178B) and in Europe by the
European Organization for Civil Aviation Electronics (EUROCAE document ED-12B).December 1992.

[21] IEC 61508: Parts 1-7, Functional safety: safety-related systems. 1998. (Part 3 is concerned with software).

[22] ISO/IEC 15408: 1999 Information technology. Security techniques. Evaluation criteria for IT security.

[23] J Barnes, High Integrity Software - the SPARK Approach to Safety and Security. Addison-Wesley. 2002.

Page 48: [5] Deleted Santiago Urueña 5/26/15 12:48:00 PM

[26] ARIANE 5: Flight 501 Failure, Report by the Inquiry Board, July 19, 1996
http://esamultimedia.esa.int/docs/esa-x-1819eng.pdf

[27] Hogaboom, Richard, A Generic API Bit Manipulation in C, Embedded Systems Programming, Vol 12, No 7,
July 1999 http://www.embedded.com/1999/9907/9907feat2.htm

Page 48: [6] Deleted Santiago Urueña 5/26/15 12:48:00 PM

[29] Lions, J. L. ARIANE 5 Flight 501 Failure Report. Paris, France: European Space Agency (ESA) & National
Center for Space Study (CNES) Inquiry Board, July 1996.

[30] Seacord, R. Secure Coding in C and C++. Boston, MA: Addison-Wesley, 2005. See
http://www.cert.org/books/secure-coding for news and errata.

Page 48: [7] Deleted Santiago Urueña 5/26/15 12:48:00 PM

1 The first edition should not be used or quoted in this work.

[32] MISRA Limited. "MISRA C: 2012 Guidelines for the Use of the C Language in Critical Systems."
Warwickshire, UK: MIRA Limited, March 2013 (ISBN 978-1-906400-10-1 and 978-1-906400-11-8).

Page 50: [8] Deleted Santiago Urueña 5/26/15 12:38:00 PM

Section Break (Continuous)

Ada, 13, 59, 63, 73, 76
AMV – Type-breaking Reinterpretation of Data, 72
API

Application Programming Interface, 16
APL, 48
Apple

OS X, 120
application vulnerabilities, 9
Application Vulnerabilities

Adherence to Least Privilege [XYN], 113
Authentication Logic Error [XZO], 135
Cross-site Scripting [XYT], 125
Discrepancy Information Leak [XZL], 129
Distinguished Values in Data Types [KLK], 112
Download of Code Without Integrity Check [DLB], 137
Executing or Loading Untrusted Code [XYS], 116
Hard-coded Password [XYP], 136
Improper Restriction of Excessive Authentication

Attempts [WPL], 140
Improperly Verified Signature [XZR], 128
Inclusion of Functionality from Untrusted Control

Sphere [DHU], 139
Incorrect Authorization [BJE], 138
Injection [RST], 122
Insufficiently Protected Credentials [XYM], 133
Memory Locking [XZX], 117
Missing or Inconsistent Access Control [XZN], 134
Missing Required Cryptographic Step [XZS], 133
Path Traversal [EWR], 130
Privilege Sandbox Issues [XYO], 114
Resource Exhaustion [XZP], 118
Resource Names [HTS], 120
Sensitive Information Uncleared Before Use [XZK], 130
Unquoted Search Path or Element [XZQ], 127
Unrestricted File Upload [CBF], 119
Unspecified Functionality [BVQ], 111
URL Redirection to Untrusted Site ('Open Redirect')

[PYQ], 140
Use of a One-Way Hash without a Salt [MVX], 141

application vulnerability, 5
Ariane 5, 21

bitwise operators, 48
BJE – Incorrect Authorization, 138
BJL – Namespace Issues, 43
black-list, 120, 124

BQF – Unspecified Behaviour, 92, 94, 95
break, 60
BRS – Obscure Language Features, 91
buffer boundary violation, 23
buffer overflow, 23, 26
buffer underwrite, 23
BVQ – Unspecified Functionality, 111

C, 22, 48, 50, 51, 58, 60, 63, 73
C++, 48, 51, 58, 63, 73, 76, 86
C11, 192
call by copy, 61
call by name, 61
call by reference, 61
call by result, 61
call by value, 61
call by value-result, 61
CBF – Unrestricted File Upload, 119
CCB – Enumerator Issues, 18
CGA – Concurrency – Activation, 98
CGM – Protocol Lock Errors, 105
CGS – Concurrency – Premature Termination, 103
CGT - Concurrency – Directed termination, 100
CGX – Concurrent Data Access, 101
CGY – Inadequately Secure Communication of

Shared Resources, 107
CJM – String Termination, 22
CLL – Switch Statements and Static Analysis, 54
concurrency, 2
continue, 60
cryptologic, 71, 128
CSJ – Passing Parameters and Return Values, 61, 82

dangling reference, 31
DCM – Dangling References to Stack Frames, 63
Deactivated code, 53
Dead code, 53
deadlock, 106
DHU – Inclusion of Functionality from Untrusted

Control Sphere, 139
Diffie-Hellman-style, 136
digital signature, 84
DJS – Inter-language Calling, 81
DLB – Download of Code Without Integrity Check,

137
DoS

Denial of Service, 118
dynamically linked, 83

EFS – Use of unchecked data from an uncontrolled

or tainted source, 109
encryption, 128, 133
endian

big, 15
little, 15

endianness, 14
Enumerations, 18
EOJ – Demarcation of Control Flow, 56
EWD – Structured Programming, 60
EWF – Undefined Behaviour, 92, 94, 95
EWR – Path Traversal, 124, 130
exception handler, 86

FAB – Implementation-defined Behaviour, 92, 94, 95
FIF – Arithmetic Wrap-around Error, 34, 35
FLC – Numeric Conversion Errors, 20
Fortran, 73

GDL – Recursion, 67
generics, 76
GIF, 120
goto, 60

HCB – Buffer Boundary Violation (Buffer Overflow),

23, 82
HFC – Pointer Casting and Pointer Type Changes, 28
HJW – Unanticipated Exceptions from Library

Routines, 86
HTML

Hyper Text Markup Language, 124
HTS – Resource Names, 120
HTTP

Hypertext Transfer Protocol, 127

IEC 60559, 16
IEEE 754, 16
IHN –Type System, 12
inheritance, 78
IP address, 119

Java, 18, 50, 52, 76
JavaScript, 125, 126, 127
JCW – Operator Precedence/Order of Evaluation, 47

KLK – Distinguished Values in Data Types, 112
KOA – Likely Incorrect Expression, 50

language vulnerabilities, 9
Language Vulnerabilities

Argument Passing to Library Functions [TRJ], 80
Arithmetic Wrap-around Error [FIF], 34
Bit Representations [STR], 14
Buffer Boundary Violation (Buffer Overflow) [HCB], 23
Choice of Clear Names [NAI], 37

Concurrency – Activation [CGA], 98
Concurrency – Directed termination [CGT], 100
Concurrency – Premature Termination [CGS], 103
Concurrent Data Access [CGX], 101
Dangling Reference to Heap [XYK], 31
Dangling References to Stack Frames [DCM], 63
Dead and Deactivated Code [XYQ], 52
Dead Store [WXQ], 39
Demarcation of Control Flow [EOJ], 56
Deprecated Language Features [MEM], 97
Dynamically-linked Code and Self-modifying Code

[NYY], 83
Enumerator Issues [CCB], 18
Extra Intrinsics [LRM], 79
Floating-point Arithmetic [PLF], xvii, 16
Identifier Name Reuse [YOW], 41
Ignored Error Status and Unhandled Exceptions [OYB],

68
Implementation-defined Behaviour [FAB], 95
Inadequately Secure Communication of Shared

Resources [CGY], 107
Inheritance [RIP], 78
Initialization of Variables [LAV], 45
Inter-language Calling [DJS], 81
Library Signature [NSQ], 84
Likely Incorrect Expression [KOA], 50
Loop Control Variables [TEX], 57
Memory Leak [XYL], 74
Namespace Issues [BJL], 43
Null Pointer Dereference [XYH], 30
Numeric Conversion Errors [FLC], 20
Obscure Language Features [BRS], 91
Off-by-one Error [XZH], 58
Operator Precedence/Order of Evaluation [JCW], 47
Passing Parameters and Return Values [CSJ], 61, 82
Pointer Arithmetic [RVG], 29
Pointer Casting and Pointer Type Changes [HFC], 28
Pre-processor Directives [NMP], 87
Protocol Lock Errors [CGM], 105
Provision of Inherently Unsafe Operations [SKL], 90
Recursion [GDL], 67
Side-effects and Order of Evaluation [SAM], 49
Sign Extension Error [XZI], 36
String Termination [CJM], 22
Structured Programming [EWD], 60
Subprogram Signature Mismatch [OTR], 65
Suppression of Language-defined Run-time	Checking

[MXB], 89
Switch Statements and Static Analysis [CLL], 54
Templates and Generics [SYM], 76
Termination Strategy [REU], 70
Type System [IHN], 12
Type-breaking Reinterpretation of Data [AMV], 72

Unanticipated Exceptions from Library Routines [HJW],
86

Unchecked Array Copying [XYW], 27
Unchecked Array Indexing [XYZ], 25
Uncontrolled Fromat String [SHL], 110
Undefined Behaviour [EWF], 94
Unspecified Behaviour [BFQ], 92
Unused Variable [YZS], 40
Use of unchecked data from an uncontrolled or tainted

source [EFS], 109
Using Shift Operations for Multiplication and Division

[PIK], 35
language vulnerability, 5
LAV – Initialization of Variables, 45
LHS (left-hand side), 241
Linux, 120
livelock, 106
longjmp, 60
LRM – Extra Intrinsics, 79

MAC address, 119
macof, 118
MEM – Deprecated Language Features, 97
memory disclosure, 130
Microsoft

Win16, 121
Windows, 117
Windows XP, 120

MIME
Multipurpose Internet Mail Extensions, 124

MISRA C, 29
MISRA C++, 87
mlock(), 117
MVX – Use of a One-Way Hash without a Salt, 141
MXB – Suppression of Language-defined Run-time

Checking, 89

NAI – Choice of Clear Names, 37
name type equivalence, 12
NMP – Pre-Processor Directives, 87
NSQ – Library Signature, 84
NTFS

New Technology File System, 120
NULL, 31, 58
NULL pointer, 31
null-pointer, 30
NYY – Dynamically-linked Code and Self-modifying

Code, 83

OTR – Subprogram Signature Mismatch, 65, 82
OYB – Ignored Error Status and Unhandled

Exceptions, 68, 163

Pascal, 82
PHP, 124

PIK – Using Shift Operations for Multiplication and
Division, 34, 35, 197

PLF – Floating-point Arithmetic, xvii, 16
POSIX, 99
pragmas, 75, 96
predictable execution, 4, 8
PYQ – URL Redirection to Untrusted Site ('Open

Redirect'), 140

real numbers, 16
Real-Time Java, 105
resource exhaustion, 118
REU – Termination Strategy, 70
RIP – Inheritance, xvii, 78
rsize_t, 22
RST – Injection, 109, 122
runtime-constraint handler, 191
RVG – Pointer Arithmetic, 29

safety hazard, 4
safety-critical software, 5
SAM – Side-effects and Order of Evaluation, 49
security vulnerability, 5
SeImpersonatePrivilege, 115
setjmp, 60
SHL – Uncontrolled Format String, 110
size_t, 22
SKL – Provision of Inherently Unsafe Operations, 90
software quality, 4
software vulnerabilities, 9
SQL

Structured Query Language, 112
STR – Bit Representations, 14
strcpy, 23
strncpy, 23
structure type equivalence, 12
switch, 54
SYM – Templates and Generics, 76
symlink, 131

tail-recursion, 68
templates, 76, 77
TEX – Loop Control Variables, 57
thread, 2
TRJ – Argument Passing to Library Functions, 80
type casts, 20
type coercion, 20
type safe, 12
type secure, 12
type system, 12

UNC

Uniform Naming Convention, 131
Universal Naming Convention, 131

Unchecked_Conversion, 73
UNIX, 83, 114, 120, 131

unspecified functionality, 111
Unspecified functionality, 111
URI

Uniform Resource Identifier, 127
URL

Uniform Resource Locator, 127

VirtualLock(), 117

white-list, 120, 124, 127
Windows, 99
WPL – Improper Restriction of Excessive

Authentication Attempts, 140
WXQ – Dead Store, 39, 40, 41

XSS

Cross-site scripting, 125
XYH – Null Pointer Deference, 30
XYK – Dangling Reference to Heap, 31
XYL – Memory Leak, 74
XYM – Insufficiently Protected Credentials, 9, 133
XYN –Adherence to Least Privilege, 113
XYO – Privilege Sandbox Issues, 114
XYP – Hard-coded Password, 136
XYQ – Dead and Deactivated Code, 52
XYS – Executing or Loading Untrusted Code, 116
XYT – Cross-site Scripting, 125
XYW – Unchecked Array Copying, 27
XYZ – Unchecked Array Indexing, 25, 28
XZH – Off-by-one Error, 58
XZI – Sign Extension Error, 36
XZK – Senitive Information Uncleared Before Use,

130
XZL – Discrepancy Information Leak, 129
XZN – Missing or Inconsistent Access Control, 134
XZO – Authentication Logic Error, 135
XZP – Resource Exhaustion, 118
XZQ – Unquoted Search Path or Element, 127
XZR – Improperly Verified Signature, 128
XZS – Missing Required Cryptographic Step, 133
XZX – Memory Locking, 117

YOW – Identifier Name Reuse, 41, 44
YZS – Unused Variable, 39, 40

Section Break (Next Page)

