
Comments	from	the	WG14	committee	on	WG23	part	3	

I	introduced	the	latest	version	of	the	document,	pointing	out	in	particular	the	Language	Concepts	
section	(why	C	is	like	it	is	–	the	vulnerabilities	are	not	errors	in	the	standard	–	but	features	to	be	
aware	of),	and	the	Section	5	‘top	10’	issues.	

There	was	a	lot	of	discussion	on	section5:	

• [line	1]	The	need	for	the	cast	after	malloc	was	not	liked.	Would	be	better	to	wrap	the	
allocation	in	a	macro,	so	the	target	type	and	the	cast	type	are	guaranteed	to	be	compatible	

• [line	2]	Martin	Sebor	has	written	a	paper	on	the	problems	with	Annex	K	functions	(thought	
there	was	some	support	that	the	guidance	to	use	Annex	K	was	appropriate	–	provided	there	
is	advice	on	how	to	use	it	correctly)	

• 	[line	4]	has	‘Remove’	in	it		(we	should	have	decided	what	to	do	with	this!)	

Overall,	there	was	some	support	for	a	top	10	–	for	programmers	not	in	the	safety/security	domain	–		
but	with	the	recognition	that	they	are	unlikely	to	be	reading	this	document.	The	counter	argument	
was	that	anyone	in	the	safety/security	domain	ought	to	be	willing	to	read	the	whole	document	and	
not	need	a	short	summary.	

The	suggestion	was	either	that:		

• the	table	is	converted	into	a	‘top	10	problems’,	rather	than	a	’top	10	solutions’	
• Remove	it	completely	(this	was	the	general	consent)		

	

Some	specific	issues	identified	were:	

6.5.2		The	final	recommendation	to	use	the	volatile	qualification	on	an	enumeration	type	switch	
selector	wasn’t	liked	as	it	interferes	with	static	analysis,	and	that	it	shouldn’t	be	necessary,		as	a	
compliant	compiler	shouldn’t	optimise	the	default	clause	away.	

6.8.2	It	was	pointed	out	that	the	advice	to	use	strncpy	is	not	without	issues	–	as	it	may	remove	the	
string	terminator	(as	explained	in	6.8.1).	There	was	general	concern	that	advice	like	‘use	X’	should	
include	how	to	use	X	correctly.	

6.11		The	focus	on	casting	the	return	from	malloc	was	not	liked,	as	it	was	argued	that	this	is	a	false	
security.	As	said	earlier	the	preferred	approach	ought	to	be	to	wrap	the	allocation	and	type	in	a	
macro							#define	allocate(T,	name,	N)		T	*name	=	(T*)malloc(N)				

It	was	also	suggested	that	this	isn’t	the	main	issue	with	allocation	–	but	rather	getting	the	size	wrong	
–	again	may	be	fixed	with	a	macro				

					#define	allocateArray(T,	name,	M)		T	*name	=	(T*)malloc(sizeof(T)	*	M)				

	

Observation:	we	don’t	say	anything	about	Variable	Length	Arrays.	

	

I	left	a	general	invitation	for	anyone	with	comments	to	mail	me	

								Clive	Pygott		1/11/2017	


