
7.26	Fault	Tolerance	and	Failure	Strategies	[REU]		

7.26.1	Description	of	application	vulnerability	

Check	that	the	current	writeup	works	now.	

	AI	-		to	Erhard	to	rework	this	vulnerability	to	focus	not	on	fault	tolerance	itself,	but	on	vulnerabilities	
caused	by	it.	

In	spite	of	the	best	intentions,	system	components	may	fail,	either	from	internally	poorly	written	
software	or	external	forces	such	as	power	outages/variations,	radiation	or	inadmissible	user	input.	
Systems	are	often	designed	with	fault	tolerance	to	detect	and	deal	with	such	failures.	Fault	tolerance	
is	itself	a	potential	source	of	vulnerabilities,	particularly	when	inappropriate	or	incomplete	strategies	
are	implemented.		

Fault-handling	code	is	difficult	to	design	and	program,	since	it	needs	to	execute	in	an	already	
damaged	environment.	Handler	code	is	also	difficult	to	test,	since	it	is	executed	only	when	primary	
failures	have	occurred.	These	failures,	e.g.	radiation	damage,	may	be	impossible	to	recreate	with	
sufficient	coverage	in	a	testing	environment.	Moreover,	it	is	not	easy	to	determine	the	right	kind	of	
fault	tolerance	for	a	given	fault.	For	security,	termination	of	the	malfunctioning	system	may	be	the	
best	action;	for	safety,	termination	may	be	more	catastrophic	than	any	other	fault	tolerance	
mechanism.	

Reasons	for	failures	are	plentiful	and	varied,	stemming	from	both	hard-	and	software.	Hence	the	
mechanisms	of	primary	failure	can	be	described	only	in	very	general	terms:		

• omission	failures:	a	service	is	asked	for	but	never	rendered.	The	client	might	wait	forever	or	
be	notified	about	the	failure	(termination)	of	the	service.	

• commission	failures:	a	service	initiates	unexpected	actions,	e.	g.,		communication	that	is	
unexpected	by	the	receiver.	The	service	might	wait	forever,	causing	omission	failures	for	
subsequent	calls	by	clients.	The	receiver	might	be	hindered	to	do	its	legitimate	actions	in	
time.	At	a	minimum,	resources	are	consumed	that	are	possibly	needed	by	others.		

• timing	failures:	a	service	is	not	rendered	before	an	imposed	deadline.	System	responses	will	
be	(too)	late,	causing	corresponding	damages	to	the	real	world	affected	by	the	system.	

• Value	failures:	a	service	delivers	incorrect	or	tainted	results.	The	client	continues	
computations	with	these	corrupted	values,	causing	a	spread	of	consequential	application	
errors.		

Faults	are	the	points	in	execution	where	a	failure	manifests	by	processing	going	wrong.	If	unnoticed	
or	unhandled,	they	turn	into	failures	at	the	boundaries	of	enclosing	control	units	or	components.	
Failures	of	services	are	faults	to	their	clients	and,	if	not	handled,	lead	to	a	failure	of	the	client	and	
consequently	to	faults	and	failures	in	its	clients,	possibly	until	the	entire	system	fails.		

Detection	and	handling	of	faults	constitutes	the	fault	tolerance	code	of	the	system.	The	mechanisms	
of	fault	tolerance	are	manifold,	corresponding	to	the	nature	of	the	failure	and	the	needs	of	the	
application,	and	range	from	recovery	with	subsequent	normal	continuation	of	the	system	(“full	fault	
tolerance”)	or	restricted	continuation	(“graceful	degradation”,	“fail	soft”)		to	termination	of	the	
system	(“fail	stop”,	“fail	safe”,	“fail-secure”),	possibly	combined	with	a	subsequent	restart.	

Stephen Michell� 2017-1-23 4:55 PM
Deleted: 6.XX



	

Arising	vulnerabilities	are,	for	example:	

• The	fault	is	not	recognized	and	the	system	malfunctions	or	terminates	as	a	consequence	
• The	fault	is	recognized	but	the	damage	already	done	is	incompletely	repaired,	with	the	same	

consequences	as	in	the	first	bullet	
• A	value	fault	is	recognized	too	late,	allowing	the	incorrect	value	to	be	used	in	the	

computations	of	other,	thus	corrupted,	values	(which,	if	not	repaired,	can	cause	
vulnerabilities	such	as	buffer	overflows)		

• The	fault	tolerance	processing	takes	too	long	to	meet	timing	demands	
• Recovery	is	prevented	by	the	cause	of	a	permanent	fault,	e.g.,	a	programming	error,	leading	

to	an	infinite	series	of	recovery	attempts	
• The	fault	tolerance	mechanism	causes	itself	new	faults	

For	vulnerabilities	caused	by	termination	issues	associated	with	multiple	threads,	multiple	processors	
or	interrupts	also	see	Error!	Reference	source	not	found.	Error!	Reference	source	not	found.	and	
Error!	Reference	source	not	found.Error!	Reference	source	not	found..		Situations	that	cause	an	
application	to	terminate	unexpectedly	or	that	cause	an	application	to	not	terminate	because	of	other	
vulnerabilities	are	covered	in	those	vulnerabilities.	The	vulnerability	at	hand	discusses	the	overall	
fault	treatment	strategy	applicable	to	single-threaded	or	multi-threaded	programs.	

Triggering	known	fault	detection	mechanisms	can	be	used	to	initiate	or	aggravate	Denial-of-Service	
attacks.	Knowledge	of	a	lack	of	fault	detection,	particularly	of	value	faults,	can	be	used	to	initiate	
system	intrusions	through	mechanisms	explained	elsewhere	in	this	document.Whatever	the	failure	
or	termination	process,	the	termination	of	an	application	should	not	result	in	damage	to	system	
elements	that	rely	upon	it.	Thus,	it	should	perform	“last	wishes”	to	minimize	the	effects	of	the	failure	
on	enclosing	components	(e	.g.,	release	software	locks)	and	the	real	world	(e.	g.	close	valves).		

7.26.2	Cross	reference	

JSF	AV	Rule:	24	
MISRA	C	2012:	4.1	
MISRA	C++	2008:	0-3-2,	15-5-2,	15-5-3,	and	18-0-3	
CERT	C	guidelines:	ERR04-C,	ERR06-C	and	ENV32-C	
Ada	Quality	and	Style	Guide:	5.8	and	7.5	

7.26.3	Mechanism	of	failure	

Reasons	for	failures	are	plentiful	and	varied,	stemming	from	both	hard-	and	software.	Hence	the	
mechanisms	of	failure	from	fault	tolerance	or	the	lack	thereof	can	be	described	only	in	very	general	
terms:		

• Fault	tolerance	code,	in	particular	fault	checking	code,	may	interfere	with	the	timeliness	of	
the	components	to	meet	their	deadlines	

• An	inappropriate	fault	tolerance	mechanism	or	strategy	may	lead	to	failures	in	fault	
detection	and	other	secondary	failures	

Stephen Michell� 2017-2-10 1:18 AM
Deleted: Error!	Reference	source	not	found.

Stephen Michell� 2017-2-10 1:18 AM
Deleted: 6.61	Concurrency	–	Directed	termination	
[CGT]

Stephen Michell� 2017-2-10 1:18 AM
Deleted: 6.63	Concurrency	–	Premature	
Termination	[CGS]

Stephen Michell� 2017-2-10 1:18 AM
Deleted: Error!	Reference	source	not	found.

Stephen Michell� 2017-1-23 4:56 PM
Deleted: XX

Stephen Michell� 2017-1-23 4:56 PM
Deleted: XX



• Considerable	latency	and	processor	use	can	arise	from	finalization	and	garbage	collection	
caused	by	the	termination	of	a	service.	Thus,	termination	must	be	designed	carefully	to	avoid	
causing	timing	failures	of	other	services.		The	termination	of	services	can	be	maliciously	used	
to	prevent	on-time	performance	of	other	active	services.	

• Having	inconsistent	approaches	to	detecting	and	handling	a	fault	or	a	lack	of	overall	design	
for	the	fault	tolerance	code	can	potentially	be	a	vulnerability,	as	faults	might	escape	the	
necessary	attention.		

• If	faults	are	not	detected	in	time	and	repaired	completely,	the	following	failures	arise:	
- omission	failures:	a	service	is	asked	for	but	never	rendered.	The	client	might	wait	

forever	or	be	notified	too	late	about	the	failure	(termination)	of	the	service.	
- commission	failures:	a	service	initiates	unexpected	actions,	e.	g.,		communication	

that	is	unexpected	by	the	receiver.	The	service	might	wait	forever,	causing	omission	
failures	for	subsequent	calls	by	clients,	or	the	actions	might	interfere	with	the	regular	
processing	going	on	in	the	meantime.	At	a	minimum,	it	consumes	resources	possibly	
needed	by	others	to	meet	deadlines.		

- timing	failures:	a	service	is	not	rendered	before	an	imposed	deadline.	System	
responses	will	be	(too)	late,	causing	corresponding	damages	to	the	real	world	
affected	by	the	system.	

- Value	failures:	a	service	delivers	incorrect	or	tainted	results.	If	not	the	client	
continues	computations	with	these	corrupted	values,	causing	a	spread	of	
consequential	application	errors	and	implementation	vulnerabilities	caused	by	
corrupted	values	as	discussed	elsewhere	in	this	document.		

	

7.26.5	Avoiding	the	vulnerability	or	mitigating	its	effects	

Software	developers	can	avoid	the	vulnerability	or	mitigate	its	ill	effects	in	the	following	ways:	

• Decide	on	a	strategy	for	fault	handling.		Consistency	in	fault	handling	should	be	the	same	
with	respect	to	critically	similar	parts.		

• Use	a	multi-tiered	approach	of	fault	prevention,	fault	detection	and	fault	reaction.	
• Unambiguously	describe	the	failure	modes	of	each	possibly	failing	service.		
• Check	early	for	any	faults,	particularly	value	faults.	Numerous	checks	on	values	can	and	

should	be	made	(value	range,	plausibility	within	history,	reversal	checks,	checksums,	
structural	checks,	etc.)	to	establish	the	validity	of	computed	results	or	input	received.		

• Validate	incoming	data	and	computed	results	at	strategic	points	to	discover	value	failures.	
See	also	pre-	and	postconditions	in	clause	6.43.	

• Detect	timing	failures	by	watch-dog	timers	or	similar	mechanisms.	
	
• Use	environment-	or	language-provided	means	to	stop	services	that	substantially	exceed	

deadlines.	
• Always	prepare	for	the	possibility	that	a	service	does	not	return	with	a	requested	result	in	

due	time.		
• Keep	fault	handling	simple.	If	in	doubt,	decide	for	a	lesser	level	of	fault	tolerance.	
• In	the	case	of	continued	execution,	make	sure	that	any	corrupted	variables	of	the	program	

state	have	been	corrected	to	an	actual	and	correct	or	at	least	safe	value.		

Stephen Michell� 2017-1-23 4:56 PM
Deleted: 6.37.4	Applicable	language	
characteristics ... [1]

Stephen Michell� 2017-1-23 4:56 PM
Deleted: 6.37



• Use	system-defined	components	that	assist	in	uniformity	of	fault	handling	when	available.		
• Prior	to	any	abnormal	termination	of	a	component,	perform	“last	wishes”	to	minimize	the	

effects	of	the	failure	on	enclosing	components	(e	.g.,	release	software	locks	held	locally)	and	
the	real	world	(e.	g.	close	valves	opened	by	the	component).	

• Specify	a	fault-handling	policy	whereby	a	service,	in	the	absence	of	full	fault	tolerance	or	
graceful	degradation,	will	halt	safely	and	securely	respectively.		

	


