
1

Programming Language
Vulnerabilities within the ISO/IEC

Standardization Community

Stephen Michell
International Convenor JTC 1/SC 22 WG 23

Programming Language Vulnerabilities

 Canadian HoD to ISO/IEC/JTC 1SC 22
Programming Language Subcommittee

stephen.michell@maurya.on.ca

2

Meet JTC 1
● ISO is the International Standards Organization
● IEC is the International Electrotechnical Commission

– Both have international treaties to develop
International Standards

– Both work through internationally manned Technical
Committees to develop standards

● e.g.
– ISO 9001 Quality
– IEC 61508 Safety

– Why? - International standards can be readily adopted by
countries and put into national regulations.

– Work is done by consensus
● Wide agreement, no strong sustained opposition

3

JTC 1

● ISO and IEC jointly formed the Joint Technical
Committee 1(circa 1988)

– Everything IT
● Printers, media, network protocols, databases.

software engineering, big data
● and oh yes

– programming languages
– Has own procedures and Subcommittees to do

the work

4

Meet Subcommittee(SC) 22

● Programming languages and their environments

APL COBOL Fortran

Basic Mumps POSIX

Pascal Ada Internationalization

C Lisp Prolog

Modula 2 Formal Methods

C++ Vulnerabilities

5

Meet SC 22 (cont)

● Member Countries (20 P members)

Austria Canada China

 France Denmark Germany

 Japan Korea Spain

 Switzerland USA UK

and others that are not usually in plenary
● Also O Members

Belgium New Zealand Singapore

India Italy Argentina

6

How Standardized?
● National Body (NB) participation and voting
● Project steps

– New Work Item Proposal (NB approval)
– Working Draft (technical expert consensus)
– Committee Draft (national body consensus)
– Draft International Standard (JTC 1 vote)
– Standard

● Countries provide technical experts that do the
work

● Documents iterate through the projects steps
with international votes

– Last one (FDIS) -> Standard!

7

How Standardized?

● Also produce other international products

– Technical Corrigendum to standard
– Amendment to standard
– Technical Specification (pre-standard)
– Technical Report

8

What about innovation?
● Working with some of the best in the world
● Adding new capabilities and ideas as they

mature enough to standardize
– Interfaces, Containers (Ada)
– Assertions, Ravenscar profile (Ada)
– Bounded Libraries(C)
– Concurrency features, Static Assertions (C)
– Parallelism (fine-grained) (Ada, C, C++, Fortran)
– Concepts, Lambdas (C++)
– Async methods (C#, C++)
– Interfacing to C (Fortran)
– OO (Fortran, COBOL)

9

Programming Language
Vulnerabilities (WG 23)

● Develop a Technical Report on language
independent vulnerabilities with language-
dependent annexes to map each language to the
common ones.

– Published as TR 24772:2010
– Revised 2012 with annexes for C, Ada, Ruby, Python,

Spark and PHP.
– Revising TR 24772 to add more vulnerabilities (OO,

Time) and more languages (Fortran, C++)
● Published FDIS 17960 Code Signing for Source

Code

10

Outreach
● Work with other groups

– ISO/IEC/JTC 1/SC 27 Security (liaison)
– Programming language WG’s (WG 9 Ada, WG

14 C, WG 5 Fortran, etc)
– IEC SC 65 for Safety (liaison being initiated)

Vulnerabilities
● Various groups look at programming language

vulnerabilities
– MITRE/Homeland Security

● Common Vulnerabilities and Exposures (CVE)
– Enumerates every vulnerability instance

reported by type, OS, application
(thousands)

● Common Weakness Exposures (CWE)
– Groups reported vulnerabilities by type

(about 900)
– SANS/CWE Top 10

● Open Wasp Application Project
– OWASP Top 25

12

 Vulnerabilities (WG 23)

● Different look at vulnerabilities
– More than Security – Safety also
– Consider much more than attacks

● Programming mistakes
– From classic to obscure
– Consider real time issues

● Weaknesses that can be attacked
– Aggregated more than CWE

● Document about 90 vulnerabilities that match
900 CWE weaknesses

– Consider how vulnerabilities appear in
specific programming languages

● Separate annex for each programming
language

13

What WG 23 has not done

● Coding Standards
– Many levels of integrity (safety and security) will use

this document
– Many programming domains will use documents, from

general usage to real time community
– Concerns of each community is different and the

ways that they address vulnerabilities will differ
– No hope that a single coding standard will meet the

needs of any (let alone all) community
– Writing to the people that create coding standards
– WG 23, however, is consolidating common guidance

that many will use as coding guidelines

14

Vulnerabilities (WG 23)

● Intend that document will be used to develop coding
standards

● Provide explicit guidance to programmer to avoid
vulnerability

– Use static analysis tools
– Adopt specific coding conventions
– Always check for error return

● Recommend to language designers on steps to
eliminate vulnerability from language

– Provide move/copy/etc operations that obey
buffer size and boundaries

15

Vulnerabilities (WG 23)
● Vulnerabilities covered

– Type system
– Bit representation
– Floating point arithmetic
– Enumeration issues
– Numeric conversion issues
– String termination Issues
– Buffer boundary violations
– Unchecked array indexing
– Unchecked array copying
– Pointer type changes
– Pointer arithmetic
– Null pointer dereference

16

Vulnerabilities (WG 23)

● Vulnerabilities covered (more)
– Identifier name reuse
– Unused variable
– Operator precedence / order of evaluation
– Switch statements and static analysis
– Ignored status return and unhandled exceptions
– OO Issues (overloading, inheritance, etc)
– Concurrency Issues (activation, directed termination,

premature termination, concurrent data access)
– Time Issues (time jumps, jitter, representation)

17

Vulnerabilities (WG 23)
Application Vulnerabilities

● Design errors that cannot be traced to language
weaknesses

– Adherence to least privilege (not)
– Loading/executing untrusted code
– Unrestricted file upload
– Resource exhaustion
– Cross site scripting
– Hard coded password
– Insufficiently protected credentials

18

Vulnerabilities (WG 23)
● Look at one vulnerability

– 6.5 Enumerator Issues [CCB]

– 6.5.1 Description of Vulnerability
● What is enumeration
● Issue of non-default representation, duplicate values,
● Issue of arrays indexed by enumerations

– Holes
● Issue of static coverage

– 6.5.2 References
● Reference

– CWE counterpart,
– MISRA C and C++ rules,
– CERT C guidelines,
– JSF AV rules,
– Ada Quality Style and Guide

19

Vulnerabilities (WG 23)
– 6.5.3 Mechanism of Failure

● Interplay between order of enumerators in list, how
(and where) new members added, and changes
in representation.

● Expressions that depend on any of these are
fragile

– Incorrect assumptions can lead to
unbounded behaviours

– 6.5.4 Applicable Language Characteristics
● Languages that permit incomplete mappings (to

theoretical enumeration)
● Languages that provide only mapping of integer to

enumerator
● Languages that have no enumerator capability

20

Vulnerabilities (WG 23)

– 6.5.5 Avoiding Vulnerability & Mitigating Effects
● Use static analysis tools to detect problematic use
● Ensure coverage of all enumeration values
● Use enumeration types selected from limited set of

values

– 6.5.6 Implications for Standardization
● Provide a mechanism to prevent arithmetic

operations on enumeration types
● Provide mechanisms to enforce static matching

between enumerator definitions and initialization
expressions

21

Vulnerabilities (WG 23)

● Ada’s response to Enumerator Issues
– Complete coverage mandatory
– Order must be preserved, but holes in

representation permitted
– Arrays indexed by enumeration type may have

holes (implementation dependent)
– When “others” option used in enumeration

choice, unintended consequences can occur
– Guidance

● Do not use “others” choice for case statements &
aggregates

● Mistrust subranges as choices after enumeration
values added in middle

22

Vulnerabilities (WG 23)

● C’s response on Enumerator Issues
– Follow guidance of main part
– Use enumerators starting at 0 and incrementing

by 1
– Avoid loops that step over enumerator with non-

default representation
– Select from limited set of choices, and use static

analysis tools

23

Vulnerabilities (WG 23)

● Python’s response on Enumerator Issues
– Python only has named integers and sets of

strings
– Variable can be rebound at any time, so no

consistent use as an enumerator

24

Vulnerabilities (WG 23)

● First version of TR 24772 published in 2010
– No language specific annexes ready

● Second edition published in 2012
– Language annexes for Ada, C, Python, Ruby,

Spark, PHP
– New vulnerabilities for concurrency but no

language-specific response

25

Vulnerabilities (WG 23)

● Ongoing work
– Separate 1 document into main part (24772-1) and

language-specific parts (Ada -2, C -3, etc)
● Simplifies maintenance

– Add more language-specific annexes
● Fortran Java C++ COBOL

– Add writeups for concurrency vulnerabilities in language-
specific annexes

– Improve a number of vulnerability writeups

26

Vulnerabilities (WG 23)

● Ongoing Work (cont)
– Add vulnerabilities

● Floating point
– Have one, but very general

● Object Orientation
– Examination of C++, etc, show missing areas

● Time

– Consider application-level vulnerabilities
● Have we addressed issues such as “heartbleed”?

– Think about coding standards and design standards for
application-level vulnerabilities

– Consider creation of top-10/12 avoidance techniques

27

Contact

● Programming Languages is an exciting field,
especially in a world of “too many cores”.

● If you are interested in programming languages
or standardization in general,

– Your National body representative
– Or me,

stephen.michell@maurya.on.ca

