Programming Language
Vulnerabilities within the ISO/IEC
Standardization Community

Stephen Michell

International Convenor JTC 1/SC 22 WG 23
Programming Language Vulnerabilities

Canadian HoD to ISO/IEC/JTC 1SC 22
Programming Language Subcommittee

stephen.michell@maurya.on.ca

Meet JTC 1

« IS0 is the International Standards Organization

 |[EC is the International Electrotechnical Commission

- Both have international treaties to develop
International Standards

- Both work through internationally manned Technical
Committees to develop standards

¢ e.g.
- 1SO 9001 Quality
- |EC 61508 Safety

- Why? - International standards can be readily adopted by
countries and put into national regulations.

- Work is done by consensus

« Wide agreement, no strong sustained opposition

JTC 1

« |SO and IEC jointly formed the Joint Technical
Committee 1(circa 1988)

- Everything IT
* Printers, media, network protocols, databases.
software engineering, big data
* and oh yes
- programming languages

- Has own procedures and Subcommittees to do
the work

Meet Subcommittee(SC) 22

 Programming languages and their environments

APL COBOL Fortran

Basic Mumps POSIX

Pascal Ada Internationalization
C Lisp Prolog

Modula 2 Formal Methods

C++ Vulnerabilities

 Member Countries (20 P members)

Austria Canada China
France Denmark Germany
Japan Korea Spain
Switzerland USA UK

and others that are not usually in plenary
* Also O Members
Belgium New Zealand Singapore

India ltaly Argentina

How Standardized?
National Body (NB) participation and voting

Project steps

- New Work Item Proposal (NB approval)

- Working Draft (technical expert consensus)
- Committee Draft (national body consensus)
- Draft International Standard (JTC 1 vote)

- Standard

Countries provide technical experts that do the
work

Documents iterate through the projects steps
with international votes

- Last one (FDIS) -> Standard!

How Standardized?

« Also produce other international products

- Technical Corrigendum to standard
- Amendment to standard
- Technical Specification (pre-standard)

— Technical Report

What about innovation?

« Working with some of the best in the world

« Adding new capabilities and ideas as they
mature enough to standardize
- Interfaces, Containers (Ada)
- Assertions, Ravenscar profile (Ada)
- Bounded Libraries(C)
- Concurrency features, Static Assertions (C)
- Parallelism (fine-grained) (Ada, C, C++, Fortran)
- Concepts, Lambdas (C++)
- Async methods (C#, C++)
- Interfacing to C (Fortran)
- OO (Fortran, COBOL)

Programming Language
Vulnerabilities (WG 23)

« Develop a Technical Report on language
independent vulnerabilities with language-
dependent annexes to map each language to the
common ones.

— Published as TR 24772:2010

- Revised 2012 with annexes for C, Ada, Ruby, Python,
Spark and PHP.

- Revising TR 24772 to add more vulnerabilities (OO,
Time) and more languages (Fortran, C++)

« Published FDIS 17960 Code Signing for Source
Code

Outreach
» Work with other groups

- ISO/IEC/JTC 1/SC 27 Security (liaison)

- Programming language WG’s (WG 9 Ada, WG
14 C, WG 5 Fortran, etc)

- |[EC SC 65 for Safety (liaison being initiated)

10

Vulnerabilities

 Various groups look at programming language
vulnerabilities

- MITRE/Homeland Security

« Common Vulnerabilities and Exposures (CVE)

- Enumerates every vulnerability instance
reported by type, OS, application
(thousands)

« Common Weakness Exposures (CWE)

- Groups reported vulnerabilities by type
(about 900)

- SANS/CWE Top 10
* Open Wasp Application Project

- OWASP Top 25

Vulnerabilities (WG 23)

e Different look at vulnerabilities

- More than Security — Safety also
— Consider much more than attacks

 Programming mistakes

- From classic to obscure
— Consider real time issues

 \Weaknesses that can be attacked
- Aggregated more than CWE

 Document about 90 vulnerabilities that match
900 CWE weaknesses

- Consider how vulnerabilities appear in
specific programming languages

» Separate annex for each programming
language

12

What WG 23 has not done

Coding Standards

- Many levels of integrity (safety and security) will use
this document

- Many programming domains will use documents, from
general usage to real time community

- Concerns of each community is different and the
ways that they address vulnerabilities will differ

- No hope that a single coding standard will meet the
needs of any (let alone all) community

- Writing to the people that create coding standards

- WG 23, however, is consolidating common guidance
that many will use as coding guidelines

13

Vulnerabilities (WG 23)

* |ntend that document will be used to develop coding
standards

* Provide explicit guidance to programmer to avoid
vulnerability

- Use static analysis tools
- Adopt specific coding conventions
- Always check for error return

« Recommend to language designers on steps to
eliminate vulnerability from language

- Provide move/copy/etc operations that obey
buffer size and boundaries

14

Vulnerabilities (WG 23)

 \Vulnerabilities covered

Type system

Bit representation
Floating point arithmetic
Enumeration issues
Numeric conversion issues
String termination Issues
Buffer boundary violations
Unchecked array indexing
Unchecked array copying
Pointer type changes
Pointer arithmetic

Null pointer dereference

15

Vulnerabilities (WG 23)

* Vulnerabilities covered (more)

|dentifier name reuse

Unused variable

Operator precedence / order of evaluation
Switch statements and static analysis

Ignored status return and unhandled exceptions
OO lIssues (overloading, inheritance, etc)

Concurrency Issues (activation, directed termination,
premature termination, concurrent data access)

Time Issues (time jumps, jitter, representation)

16

Vulnerabilities (WG 23)
Application Vulnerabilities

« Design errors that cannot be traced to language
weaknesses

- Adherence to least privilege (not)
- Loading/executing untrusted code
- Unrestricted file upload

- Resource exhaustion

- Cross site scripting

- Hard coded password

- Insufficiently protected credentials

Vulnerabilities (WG 23)

* Look at one vulnerability

- 6.5 Enumerator Issues [CCB]
- 6.5.1 Description of Vulnerability

* What is enumeration
 Issue of non-default representation, duplicate values,
 Issue of arrays indexed by enumerations

- Holes
 Issue of static coverage

- 6.5.2 References

 Reference

- CWE counterpart,

- MISRA C and C++ rules,

- CERT C guidelines,

- JSF AV rules,

Ada Quality Style and Guide

Vulnerabilities (WG 23)

- 6.5.3 Mechanism of Failure

* Interplay between order of enumerators in list, how
(and where) new members added, and changes
in representation.

« Expressions that depend on any of these are
fragile

- Incorrect assumptions can lead to
unbounded behaviours

- 6.5.4 Applicable Language Characteristics

« Languages that permit incomplete mappings (to
theoretical enumeration)

« Languages that provide only mapping of integer to
enumerator

« Languages that have no enumerator capability

19

Vulnerabilities (WG 23)

- 6.5.5 Avoiding Vulnerability & Mitigating Effects

» Use static analysis tools to detect problematic use
» Ensure coverage of all enumeration values

« Use enumeration types selected from limited set of
values

- 6.5.6 Implications for Standardization

* Provide a mechanism to prevent arithmetic
operations on enumeration types

» Provide mechanisms to enforce static matching
between enumerator definitions and initialization
expressions

20

Vulnerabilities (WG 23)

« Ada’s response to Enumerator Issues

Complete coverage mandatory

Order must be preserved, but holes in
representation permitted

Arrays indexed by enumeration type may have
holes (implementation dependent)

When “others” option used in enumeration
choice, unintended consequences can occur

Guidance

Do not use “others” choice for case statements &
aggregates

« Mistrust subranges as choices after enumeration
values added in middle

21

Vulnerabilities (WG 23)

« C’s response on Enumerator Issues

Follow guidance of main part

Use enumerators starting at 0 and incrementing
by 1

Avoid loops that step over enumerator with non-
default representation

Select from limited set of choices, and use static
analysis tools

22

Vulnerabilities (WG 23)

» Python's response on Enumerator Issues

- Python only has named integers and sets of
strings

- Variable can be rebound at any time, so no
consistent use as an enumerator

23

Vulnerabilities (WG 23)

* First version of TR 24772 published in 2010
- No language specific annexes ready
« Second edition published in 2012

- Language annexes for Ada, C, Python, Ruby,
Spark, PHP

- New vulnerabilities for concurrency but no
language-specific response

24

Vulnerabilities (WG 23)

e Ongoing work
- Separate 1 document into main part (24772-1) and
language-specific parts (Ada -2, C -3, etc)
« Simplifies maintenance
- Add more language-specific annexes
« Fortran Java C++ COBOL

- Add writeups for concurrency vulnerabilities in language-
specific annexes

- Improve a number of vulnerability writeups

25

Vulnerabilities (WG 23)

Ongoing Work (cont)
- Add vulnerabilities

* Floating point
- Have one, but very general
» Object Orientation

- Examination of C++, etc, show missing areas
« Time

- Consider application-level vulnerabilities

e Have we addressed issues such as “heartbleed”?

- Think about coding standards and design standards for
application-level vulnerabilities

- Consider creation of top-10/12 avoidance techniques

26

Contact

 Programming Languages is an exciting field,
especially in a world of “too many cores”.

 |f you are interested in programming languages
or standardization in general,
- Your National body representative

- Or me,
stephen.michell@maurya.on.ca

27

