Baseline Edibon¢3 TR 24772

ISO/IEC JTC 1/22N OOOO

Date:201302-20
ISO/IEC TR 24772
Edition3
ISO/IEC JTC 1/SC 22/WG 23

Secretariat: ANSI

Information Technology Programmindanguages Guidance tavoiding
vulnerabilitiesin programminglanguageshroughlanguageselectionanduse

Elément introductit Elémentprincipalt Partien: Titre de la partie

Warning

11

This document is not an ISO International Standard. It is distributed for review and comment. It is subject to chang
without notice and may not be referred to as an International Standard.

Recipients of tts draft are invited to submit, with their comments, notification of any relevant patent rights of which they
are aware and to provide supporting documentation.

Document type: International standard
Document subtype: if applicable
Document stage:1Q) developmentstage
Document language: E

© ISTIEC2013¢ All rights reserved [

WG 23/N 043

Gopyright notice

This ISO document is a working draft or committee draft amdpgrightprotected by ISO. While the
reproduction of working drafts or committee drafts in any form for use by participants in the ISO
standards development process is permitted without prior permission from 1SO, neither this document
nor any extract fromt may be reproduced, stored or transmitted in any form for any other purpose
without prior written permission from 1SO.

Requests for permission to reproduce this document for the purpose of selling it should be addressed
aK2gy o0Sft2¢ 2 Nbodyanthe ¢obn@yiof theSequeSear)

ISO copyright office

Case postale 56, CF211 Geneva 20
Tel. +41 2274901 11

Fax + 41 22 749 09 47

E-mail copyright@iso.org

Web www.iso.org

Reproduction for sales purposes may be subject to royalty paymentaarsing agreement.

Violators may be prosecuted.

© ISTIEC2013 ¢ All rights reserve

as

Baseline Edibon¢3 TR 24772

Contents Page
0= o PSSR XVi
T 0o [8 o 1o o TR EPP PP XVii
I T o0 o 1= 1
B [0 g 4P LAV o] (T =] o = P 1
3. Terms and definitions, Symbols and CONVENTIONS............uuuuiiiriiiiiiimn e a e e e e e e e aa e 1
3.1 Terms and defiNitiONS.........ooiiiiiiiii et e e e e e e e e e e e e e e e aeeeas 1
3.2 SYMDOIS ANA CONVENTIONSeeeiiiiieiiiiiiiie ittt e e e e s s ims bbbt e e e e e e s et b e e e eme e e e e e e e e e nnneee s 5
O ST TS (ol oo Tod=T | =3 6
4.1 Purpose of this TEChNICAl REPOIL........i e s e e e e e e e e e e e emraenaaan s 6
A 1 1 (=1 o [=To = W o 1T o Lo = 6
4.3 HOW 10 USE thiS HOCUMIENL.euiiiiiiieiiiiiiiie et e e e e e ettt e e e e tame sttt e e e e e e e s e et e e e emr e e e e e e e e e e ennneees 7
B VUINEIADIIILY ISSUBS.....uuui ittt r e e e e ettt s et e e e e e e e e eeeeteaa e s emetsann s eeeeeeeenennnnnnseeeeens 8
5.1 PrediCtable @XECULION..........cviiiei et e e e e a e e e a e e e e e e e aaaaaan 8
5.2 Sources of unpredictability in language specificatiQn............cccooieiiiiiiiee e, 9
5.2.1 Incomplete or evolving SPECITICALION.ciii i i i e e e e e e e e e e e eea e e eeems 9
5.2.2 UNdefiNed DENAVIOUL.......coo oottt e s 10
5.2.3 Unspecified DENAVIOUL..........ccoiiiiiiccc e 10
5.2.4 Implementatiordefined DENAVIOU............oooiiiiiii e 10
5.2.5 DIffiCUIt fEALUIES. .. .o et e e e e e s ansa s anrannernnrrnnrnane 10
5.2.6 Inadequate [aNQUAGE SUPPOLL........uuuuurirerrrrinsersienasaaaseaassaessassssssssssssimeasaeesaaaaaeaaaaseaesaaeeseesmeseseeees 10
5.3 Sources of unpredictability in [aNQUAGE USAGE.......c.coiiiiiiiiiiiii et m e 10
5.3.1 POrting @nd iNTEIOPEIATION.uitieeitiiiiiiiiie et ee e e e e e s sttt e e e e e e s s s ime s bbb e e et e e e e e s s annbbbeeeeameeeeeeesaannen 10
5.3.2 Compiler SEIECION AN USAGE.........uuureriuriiiiiiiiiiereeeee s eess s s s s ee s s s sime e e e e e e e e aaaaaaaaaeaeaaaaeeaesmraeeeeeees 11
6. Programming Language VUINErabilities............ooiiiiiiiiiiieiieeeeee e 11
8.0 BN aaaaaaaaaaas 11
L0220 =1 0 11 T] o o | 11
6.3 TYPE SYSTEM [THNI ...t iiee ittt e e e e e e s e e et e e et e e e e e e e nbb e s reeeeeeeaann 12
6.4 Bit REPreSENtatioNS [STR] . .uuuuuuuiiiiiiiiiiiiiiiitimrassaessssssss s sss s s ss s sss s s srmeaeaaaeaaaaeaaaaaaaaaaaaaaeesamerrrerrererseees 14
6.5 Floatingpoint ArithMELIC [PLF]........u e e e e e e e e e e e e e ameeeeeeeeees 16
6.6 ENUMETALOr ISSUES [CCBYutiiiiiiiiiiiiiiit ettt e et e e e e e e e e s e ma e e e e e e e e e 18
6.7 Numeric ConVErSiOBITOrS [FLC].......ooiiiiiiiiiiiiiiiieee et e s e e e e e sameaaaaeeas 20
6.8 String TerminNation [CIMY e e e e e e e e e e e e aaaaaaaaaaeaaeeameeeeeeeeeeeeeeeees 22
6.9 Buffer Boundary Violation (Buffer Overflow) [HCB]...........ooiiiiiiiiiiimiiiiieeeee e 23
6.10 Unchecked Array INAeXing [XY.Z].....oooi i e ime e e e 25
6.11 Unchecked Array Copying XY V.. et m e 27
6.12 Pointer Casting and Pointer Type Changes [HFEC]........ccciiiiiiii s 28
6.13 Pointer ArithMEtiC [RVG]. . .uuuuriiiiiiiiiiriiiiiitees e ss s s s s s s s s e s s e e e e e e e aaaeaaaaaaaaaaaeaeeesamrareeeeeeeeeeeees 29

© ISTIEC2013¢ All rights reserved ili

WG 23/N 043

6.14 Null Pointer DereferenCe [XYH. e 30
6.15 Dangling Reference t0 Heap [XY.K] . ..o e me s 31
6.16 Arithmetic Wraparound Error [FIE]........oo ittt 34
6.17 Using Shift Operations for Multiplication and Division [PIK]........ccccooiiiiiiiiiiiioe e, 35
6.18 SigN EXIENSION EITON [XZI]... ettt e e e e e e emr e e e e e e e e annes 36
6.19 Choice of Clear Names [NALL. ...t e e e e rme b 37
LI 0J DI=T= T IS (o (=TT] 39
6.21 UNUSE Variable [YZS] ... o oottt e e et e e et e e e e 40
6.22 Identifier Name REUSE [YOW].....uuuiiiiiieiiiiiiiit ettt e e e s s rme et e e e e e s st e e enreeeeeaeeas 41
6.23 NaNBSPACE ISSUES [BIL]...ceeeiiiiiiiii it mr e e et r e e e e e e e e et e e e e e eenan e e eeeeees 43
6.24 Initialization of VariableS [LAV]........ooo et e e 45
6.25 Operator Precedence/Order of Evaluation [JCW].......ccoueiiiiiiiiiiiieiieee e me e 47
6.26 Sideeffects and Order of Evaluation [SAMI........ooi i e emrr e e e e e e e eeaened 49
6.27 Likely Incorrect EXPression [KQAL..... ..o ittt e s enre s 50
6.28 Dead and Deactivated Code [XY.Q ... uiu ittt eme s 52
6.29 Switch Statements and Static ANalySiS [CLL]......oi i e e e eeees 54
6.30 Demarcation of CoNtrol FIOW [EOJ]......cooiiiiiiiiiieeee et e s 56
6.31 Loop Control Variables [TEX].........ooviiiiiiiiiiii e e me e e e aaeeeeas 57
SRR A @12 o) Va0 LT =1 o] g 1,07 o I P 58
6.33 Structured Programming [EWD]............uuiiiiiiiiiiierii et e e 60
6.34 Passing Parameters and Return Values [CSJ)uuuiuiiiiiiiiiiiiieeececce s sime e e e e e e e e e 61
6.35 Dangling References to Stack Frames [DCM]...... i 63
6.36 Subprogram Signature Mismatch [OTRI............ooeiiiiiiiiiie e 65
LSRG = LYo U £ 1] o TN (7 P 67
6.38 Ignored Error Status and Unhandled EXceptions [QYB].....cccocoiiiiiiiiiiiieieeeiees e eeee e emeeees 68
6.39 Termination Strategy [REUL ..ot e e 70
6.40 Typebreaking Reinterpretation of Data [AMV]........cooooiiiiiii e, 72
LS 1Y/ 1= o Y == 1 2 1 74
6.42 Templates and GENEIICS [SYM]....coiiiiiiiiiiiiiiie it e e e e e e e s s 76
6.43 INNETTANCE [RIP]...ccoiiiiiiiiiieeeee e e e e a e e e s e s e ame e e e e e e e e aaaaaaaaaaaaaaaaaaens 78
6.44 EXtra INtriNSICS [LRM]...cciiiiiii i e e et e et s s e e e e e e e e eettaa s rmreeeeennneeeeeeeennes 79
6.45 ArgumentPassing to Library FUNCHONS [TRJIJ......uuuiiiiiiiiiiiiiimiie e 80
6.46 Interlanguage Calling [DJIS].....ccoiiiiiiiiir e e e e e e e e et e e e e e e e et e e e e e eenann 81
6.47 Dynamicallstinked Code and Sethodifying Code [NYY].....oe e 83
6.48 Library Signature [NSQ]......ooviiiiiiiiiiii e e e e e e e e e e e aaaaaaas 84
6.49 Unanticipated Exceptions from Library Routines [HIW].......cccoooiiiiiiiiiice e 86
6.50 Preprocessor DIreCtVES [NIMP] i e e e e e e e e e e e e e e e ameeeeeees 87
6.51 Suppression of Languaglefined Runtime Checking [MXB]..........vuuiiiiiiiiiieeiiieeieiccand 89
6.52 Provision of Inherently Unsafe Operations [SKL]...........uioiiiiiiiiiici i eevmn e e e eeeeens 90
6.53 Obscure Language Features [BRS]........coiiiuiiiiiiiiiieeeee ettt 91
6.54 Unspecified Behaviour [BQE].......c.oovviiiiiiiiiiii e e s s smeaaeaaeeeeas 92
6.55 Undefined Behaviour [EWE].......ccoo e emis s e e e e e e s s e e e e e e eeamr e e e e e aeenees 94
6.56 Implementatiordefined Behaviour [FAB]........ccooiiiiiiii e 95
6.57 Deprecated Language Features [MEMI...........uuuuuiiiriiiirieicccee s mr e e e e e e e e e e e e e e e e a e e e e e 97

iv © ISAIEC2013¢ All rights reserve

Baseline Edibon¢3 TR 24772

7. ApPlication VUINEIaDIlItIESuuuiiiiiiiii e amre e e e e e eeeaeees 98
0 R = 1= - | 98
A K= 11 111 0o] (oo | PP PP PO TP P PRPPPPP 99
7.3 Unspeified Functionality [BVQ]......ccuuiiiiiiiiiiiiieiieee ettt er s s s s s e s s s s e s e sn s sameaaaaaeas 99
7.4 Distinguished Values in Data TYPes [KLKI........cooiiiiiiiiii e me e 100
7.5 Adherence to Least Privilege [XY.N] ..ot 101
7.6 Privilege SandboXx I1SSUES [XY Q.. .couuuiiiiiii i e e tmr e e e e e e e e e e e e e et re e e eene 102
7.7 Executing or Loading Untrusted Code [XY.S].......uumiiiiiieiiiiiimiiiie e e e e 103
7.8 MEMOTY LOCKING [XZX]..ettteeteeeiiiititte ettt ettt ettt e e e et e e e et e e e e e e e as 104
7.9 ResoUurce EXNaUSHION [XZB]. ... i e et s e s e e e e e e e e e e te e s emerenan e e e e e s 105
7.10 Unrestricted File Upload [CBE]..........uuuiiiiiiiiiimrii e ia st e e e menee e 107
7.11 ReSOUICE NAMES [HTS] ..ottt bt ettt e e e e e et e e e e e e e e e m bbb e n e e e e e e e ens 108
0 A =T 1o o T S 3 109
7.13 CroSSItE SCHPLNG XY T .eiiiiitiieeiiiiitte ettt e e e e e e bbbttt e e e e e s e e e e e e et e e e e e e annneees 112
7.14 Unquoted Search Path or Element [XZQY]......cooiiiiiiiiiiiiie et 115
7.15 Improperly Verified Signature [XZR]........ccooiiiii et e e es e e e e e e e e 115
7.16 Discrepancy Information Leak [XZL.........cooi ittt e e n 116
7.17 Sensitive Information Uncleared Before Use [XZK]..........cccoeei i, 117
7.18 Path Traversal [EWR]......ooooiiii i et e e e e e e e e e e e e anr e e e e e e e eerann s 118
7.19 Missing Required CryptographiC StEP [XZS].......uuuiiiiiiiiiiimiie et 120
7.20 Insufficiently Protected CredentialS [XYM ueiiiuriiiiiiiiiiiimsees i sessses s es s s s sime e e e e e aaeaaaaaaaeeaas 121
7.21 Missing or Inconsistent Access Control [XZN].......oooeiiiiiiii i vsrer e 122
7.22 Authentication LOgiC Error [XZQY.........ooiiiiiiiii ettt 122
7.23 Hardcoded Passiord [XY P ... e —————— 124
7.24 Download of Code Without Integrity CheCk [DLB]......ccccooeeiiiiiiiiiiiireeeiin e e 125
7.25 Incorrect AUtNOTIZAION [BIE]L. ... utiiiiiiiiiitiiiiiiee ettt e e e e e e e e e e e e e 126
7.26 Inclusion of Functionality from Untrusted Control SpBDHU]............vvvviiiiiiiiiiiiiiieeciiceeeccce s 126
7.27 Improper Restriction of Excessive Authentication Attempts [WPRL].........cccovieiiiiiiiiiciiiin e 127
7.28 URL Redirection to Untrusted Site (‘Open Redirect’) [RY.QJuueviiiiiiiiiiiimiiiiieeeee e 128
7.29 Use of a On&Vay Hash without a Salt [MVX]......coooooiiiiiiececccciiee e, 129
8. NeW VUINErabilities.cooi oottt 130
S TR =T 1= - | 130
S FZA =1 0 11 T] (o o) 130
8.3 Conarrency ¢ ACtIVAtiON [CGA].......oii it e e e e e e e 130
8.4 Concurrency Directed termination [CGT].. ... i a e e e e aaaaaaaaaaaaaas 132
8.5 Concurrent Data ACCESS [CGX]...uuuuuuiiiiiieiiiiiiiiimr e eeee et ess s e e e e e e e eaaaat e e e eeeeeaaa e s e eeeeeeaesssnnmeeeeennnes 133
8.6 Concurrencyg Premature Termination [CGS].......oviiiiiiiiiiiiiiiiii et eeemees s 135
8.7 ProtoCOl LOCK ErrOrs [CGM].....uuiiiiiiiiiiieiiiieesie i m s e s smnaaaeeeeeeaeees 136
8.8 Inadequately Secure Communication of Shared Resources [CGY]....cccoovviivrriiiiioiieevveevniiennn. 139
8.9 Use of unchecked data from an uncontrolled or tainted source [EES]..........cccooiiiiiciiiiinen 140
8.10Uncontrolled Format String [SHL].......oooiiiii e 141
AnnexA (informative) Vulnerability Taxonomy and LiSL.............eeiiiiiiiiiiiiiciiiiee e 143
N A 1= o = = | PSSP 143

© ISTIEC2013 ¢ All rights reserved \%

WG 23/N 043

A.2 Outlire of Programming Language Vulnerabilities..............ccccoooiiiiiieiiieeeeeeeeeeeeeee e 143
A.3 Outline of Application VUINErabilitiS........c..oiiiiiiiiiiiee s 145
A4 VUINEIADIIITY LISL ...t ettt et e e e e e e e st e e e e e e e e e e bnnreeeeeeas 146
AnnexB (nformative) Language Specific Vulnerability Template...............ccooo i, 149
AnnexC (nformative) Vulnerability descriptions for the language Ada...........cccccooiiiiiiimiiieeeeeenines 151
C.1 Identification of standards and associated dOCUMENTALION.............oiiuviriiiiimiiie e 151
C.2 General terminology and CONCEPLS.......uuuiiii i i eeiiime e e e e e e e et rmr e e ee e e e e e e e e eeeennnan smees 151
C.3TyPe SYSIEM [THN ...t e et e e e e s e m e et e e e e e e e nnnnn e es 157
C.4 Bit Representation [STR]......coiiiiiiiiiiiie ettt e e e e s mr bbb e e e e s 157
C.5 Floatingpoint ArthmEtIC [PLF]......uu it e e e emr e s s e e e e e e e e eana e e e e emrnenanas 158
C.6 ENUMErator ISSUES [CCBL....cciiiiiiiieieie ettt e e e e e m b eeeeeas 158
C.7 Numeric Conversion Errors [FLC]ottt e e eme e 159
C.8 String Termination [CIMY........cuuuuiiii e r e e e e e et e e e e e e et aaa s e e e e e e eeeetatme e e eeererannn s 159
C.9 Buffer Boundary Violation (Buffer Overflow) [HCB]........cooiiiiiiiiiiiiimeeeeeiieeee e 160
C.10 Unchecked Array INAeXing [XYZ].......uuuiiiiiiiiiiiiimre it esr et a e e e e e nmn 160
C.11 Unchecked Array Copying [XY MV ... i e e e s e et s vme e et s s e e e e e e e eeeennnnn e emenes 160
C.12 Pointer Casting and Pointer Type Changes [HEC].......ccoi e 160
C.13 Pointer ArithmetiC [RVG].......cooooiiii et eer e 161
C.14 Null Pointer Dereference [XYH] ... i e e e e e e e e e ee e smreeees 161
C.15 Dangling Reference to Heap [XYKI. .. oo e 161
C.16 Arithmetic Wraparound Error [FIE]........ooooii e neannee 161
C.17 Using Shift Operations for Multiplication and Division [PLK]..........ccccoeiiiiiiiiic i, 162
C.18 Sign EXIENSION EFTON [XZI] ..ottt e e e e enr e e e e e e 162
C.19 Choice of Clear Names [NAI].....ooor e ime e e aaaeaeas 162
O 0 B =T To IS (o] (= 772] 163
C21 UNUSEA Variable [YZS]ottt et emr e e e e 163
C.22 Identifier Name ReUSE [YOWV].....coo it eer e ne e e as 164
C.23 NamMeESPACE ISSUES [BIL]...eeuiiiiiii it e e e e e et mr e e e et e s s e e e e e e e e et e e e e eennaan e e eeeas 164
C.24 Initialization Of Variables [LAV]......coo ittt eee e e e sne e 164
C.25 Operator Precedence/Order of Evaluation [JCMV]........uuuuuiimiiiiiiiiimn i sessees s sse s sesimeeeeae e 165
C.26 Sideeffects and Order of Evaluation [SAMI.......oi i e eme e e e e e e e eeees 165
C.27 Likely Incorrect EXPression [KOAL.......oeiiiiiiieiiieeeeeeeiiiniiniiaeie e e e s e s s ene s e e em s 166
C.28 Dead and Deactivated Code [XY Q) ... e e e e e e 167
C.29 Switch Statements and Static ANAIYSIS [CLL]......uuiiiiiiiiiiim e 167
C.30 Demarcation of Control FIOW [EQJ]..........coiiiiiiiiiiiiiieiiiiiiiieveev e e 168
C.31 Loop Control VariabIes [TEX]......occi it e e e st e e e e e e e e e e e e e e e amre e e e e e 168
C.32 Off0Y-0N€ EFTOr [XZH]....coiiiiiiiiiieeieeeieeee et e e e e e e e e e e e e aeeeeens 168
C.33 Structured Programming [EWD]........uuuuuiuuiiiiiiiiiimn s s simea e e e e e e e e e aaaaaaaaaaaaaaeeeameaes 169
C.34 Passing Parameters and Return Values [CS].....ccoii it e e 169
C.35 Dangling References to Stack Frames [DCM].......coooiiiiiiiiiiimiiiiceee e 170
C.36 Subprogram Signature Mismatch [OTR]..........cooiiiiiiiiiiiiieeee e e 170
O A == ot U £] o TN [5. T 171
C.38 Ignored Error Status and Unhandled Exceptions [OQYB]........ccuuviiiiiiiiiiciiiiieeecee e 171

Vi © ISAIEC2013¢ All rights reserve

Baseline Edibon¢3 TR 24772

C.39 Termination Strategy [REU] ... e e 172
C.40 Typédreaking Reinterpretation of Data [AMV] i 172
C.41 MeMOIY LEAK PXY.L .. iiitiiiiie et e ettt et e e e ettt e et e e e e s e bbb na bbb e e e e e e e e annnbeee s 173
C.42 Templates and GENEIICS [SYM]...uuuuirriiiiiiiiiiieiirieieceie e mr e aaaeeeeameaaees 173
C.A3 INNEITANCE [RIP] ... ittt ettt e e e e e e s e e et e e e e e e r e e e e eee s 174
C.44 EXtra INtrNSICS [LRMY-....eiiiiiiiiiiiee ettt e et e e et e e e e e e e e as 174
C.45 Argument Passing to Library FUNctions [TRJ].......ccouiiiiii e vsen e e e e eeeens 174
C.46 Interlanguage CalliNg [DJIS].......uuuiiiieiiiiiii e ims e e e e e reemr e e e e e e e 175
C.47 Dynamicallinked Code and Selnodifying Code [NYY].....oooiiiiiiiiiiiiiieree e 175
C.48 Library Signature [NSQ].......cooiiiiiiiiiie e e e e e e ss s e e e e e e e e eetea s s e e e e e s amrasaeeeeeeeensenen 175
C.49 Unanticipated Exceptions from Library Routines [HIW].......ccooiiiiiiiiiiiimiieieeeee e 175
C.50 PreProcessor DIreCtives [NIMP........ooiiii ittt et 176
C.51 Suppression of Languadefined Runtime Checking [MXB]........cccooiiiiiiiiiiiiiireeceicen e eeeeeenns 176
C.52 Provision of Inherently Unsafe Operations [SKL].........oooiiiiiiiiiiiini e 176
C.53 Obscure Language FeatUreSPBR ...ttt 177
C.54 Unspecified Behaviour [BQE].........uiiiiiiiiiiiiiime s e e e e teime e s e ee s s e e e e e e e e eaenenaameeeeesenes 177
C.55 Undefined BEhaviour [EVWE].........ooo et im e eme e e 178
C.56 ImplementatiorDefined BEhaviour [FAB]..........uuuiiiiiiiiiiiiiiimnaes e sesessssses s ses s s s imieaaeeaaeaaaaaaaeaans 179
C.57 Deprecated Language Features [MEMI].........c.oooo it ee e e e e e e e eeees 180
C.58 Implications for StANUArQIZATION.ce i ittt e e e e e e e e e e s 180
AnnexD (nformative) Vulnerability descriptions for the language.C..................coo e, 182
D.1 Identification of standards and associated dOCUMENtS..............oooiiiiiiiiiciiiiiiieeeeeeeeeeeeeeeeeeee 182
D.2 General terminolog @nd CONCEPTS........uuueiiieiiiiiiiitteeimr et e e e e aass bt e e e e e e s s sims b r e e e e e e s e annne e e e e eees 182
D.3 TYPE SYSIEM [IHN]...oieeiiiiiiiiiiiiiee e s e s e e e e e e e s s e e ame e e e aaaaaaaaaaaaaaaaaaaaans 185
D.4 Bit Representations [STR].......uuiiiiii et e e e et rmr e et e e e e e e e e e aeaaa e e eenna e e eeeas 186
D.5 Floatingpoint ArithmMeEtiC [PLEL........ue ittt ee e 187
D.6 ENUMeErator ISSUES [CCB.......coiiiiiiiiiiiiei e e e rme e e e e e e aaeaaaaaeas 188
D.7 Numeric Conversion Errors [FLC] ... i e et sme e ee s s e e e e e e e eenenan e e emrrenes 189
D.8 String Termination [CIMI......cou ittt enr e e e e e e e e e e s s rme e e eeeeeeas 191
D.9 Buffer Boundary Violation (Buffer Overflow) [HCBJ...........uuuuiiiiiiiiiiiionicee e 191
D.10 Unchecked Array INdeXiNg [XY.Z]......oi oo eeess e e e e e et sme e et s s e e e e e e e eeennan e smeenes 193
D.11 Unchecked Array Copying [XYNM]......ueeeeiiiiiiiiiiiiee ettt rme et e e e e e e e enee e 193
D.12 Pointer Casting and Pointer Type Changes [HEC]........cccoov e 194
D.13 Pointer Arithmetic [RVG]......cooo oottt em e 194
D.14 Null Pointer Dereference [XYH] ... 195
D.15 Dangling Reference to Heap [XY K] . .o it e e e e e e e e s 195
D.16 Arithmetic Wraparound Error [FIE].......ooooiiiiiiii et m e 197
D.17 Using Shift Operations for Multiplication and Division [PIK].......ccccooeiiiiiiiiiiiim e, 198
RS IS [| W =t =] 0 F o = (0] gl 974 | 198
D.19 Choice of Clear Names [NALL.........uuiiiiiie e e e m s 198
D.20 Dead Store [WXQYcoviiiiiiiiiiiii e eet e e e aaaaaaaaaaaaaaaaaaaans 199
D.21 UNUSE Variable [YZS]....uuuuiiii ettt e ettt s et s s e e e e e e e e ee et s smr e e senaaneeeeeeees 199
D.22 Identifier Name REUSE [YOWV]......uuuiiiiiiiiiiiiiii ettt srme et e e e e eeemr e e e e s 199

© ISTIEC2013¢ All rights reserved Vii

WG 23/N 043

D.23 NamespacCe ISSUES [BIL]ttt 200
D.24 Initialization of Variables [LAV].......coi ettt e en e 200
D.25 Operator Precedence/Order of Evaluation [JCMV]..........uueiiiiiiiiiimniiiiiiee e 201
D.26 Sideeffects and Order of Evaluation [SAM]........coooiiiiiiiiiii e 201
D.27 Likely Incorrect EXpression [KOAL.......c i ittt eme e e e inans 202
D.28 Dead and Deactivated Code [XYQIuuuiiiiiiiiiiiiiimiiiiii e 203
D.29 Switch Statements and Static Analysis [CLL]....ccooriiiiii e err e eeens 204
D.30 Demarcation of Control FIOW [EQJ].........ooiiiiiiiiii e 205
D.31 Loop Control Variables [TEX].....cooou it e e e e 206
DR A © 5 o) Vo] A TSI = o G 07 | T 207
D.33 Structured Programming [EWD]........cccoiiiiiiiiiiiii ittt eme s 207
D.34 Passing Parameters and Return Values [CS].......ccuuiiiiiiiiiii e emeee e 208
D.35 Dangling References to Stack Frames [DCM].......cooouiiiiiiii e rsr s e e eeens 209
D.36 Subprogram Signature MiSmatCh [OTR]......ccciiiiiiiiiiiiie e 209
D.37 RECUISION [GDL].....utiiiiiiiiiiiiiiitt ettt e s ettt e e e e e e bbbttt e et e e e e e e e s anbbb e e e e e eeeeans 210
D.38 Ignored Error Status and Unhandled EXceptifD¥B]..........cccuiiiiiiiiiiiiiiein e, 210
D.39 Termination Strategy [REU].........cooi e r e e e e e 211
D.40 Typebreaking Reinterpretation of Data [AMV].......uuvieiiiiiiiiiiiieie e nr e 211
I I =T o e To YA =T 1 1) 2 R N 212
D42 Templates and GENEIICS [SYM]......uiiiiiiiiiiiiiiiiii e e e s eneee s 212
D.43 Inheritance [RIP]......coo i 212
[= W L (T ST o= 1 212
D.45 Argument Passing to Library FUNCHONS [TRIJ......cooiiiiiiiiieeiie e 213
D.46 Interlanguage Calling [DJIS].......ccooiiiiiiiii e ————— 213
D.47 Dynamicalljinked Code and Selhodifying Code [NY Y] ..o 213
D.48 Library Signature [NSQYI........cuiiiiiiiiiiii ittt m e e e e s e e e e e e 214
D.49 Unanticipated Exceptions from Library Routines [HIW]............ooooiiiiiic 214
D.50 Preprocessor DireCtives [NIMP]... ..o eerss s e e et e e e e e e e amr s 215
D.51 Suppression of Languagefined Runtime Checking [MXB].........ooiiiiiiiiiiiiiii e 216
D.52 Provision of Inherently Unsafe Operations [FK........oovviiiiiiiiiiiiiiiicier e 216
D.53 Obscure Language Features [BRS].......ccuuuiiiiii e esie s e e e e e e e e e e e eaeas 216
D.54 Unspecified Behaviour [BQE].......coo ittt e e s e 217
D.55 Undefined Behaviour [EWE]........uu ittt e et e e e e e e e e et anme e e e eeeeees 217
D.56 Implementationdefined Behaviour [FABJ...........o i e 218
D.57 Deprecated Language Features [MEM].......ccooooiiiiiiiiiiiiie e 218
D.58 Implications for standardization..............ouuuiii e 219
AnnexE (nformative) Vulnerability descriptions for the language BYNoeveiiiiiiiiiiiiiimiiiinans 222
E.1 Identification of standards and associated dOCUMENLS.............ceeviiiiiiiimiiiiiiiieee e 222
E.2GeneralTerminology and CONCEPLS.....iiiiiiiiiiiiiiie e e s e e e e s s e e e e e s e e e e e e e e e an e e e e e e e eeeenas 223
E.3 Type SYSIEM [THN ..ot e e e e e e e e e e et e e e e s e e e e e e e e e anee 227
E4 Bit Representations [STR] i i ee s s s s s s s i e e e e e e e e e e e e e e e aaaaaaaaaaeesamaaeaeeeereeeeees 229
E.5 Floatingpoint ArithmetiC [PLF].......ooouuiiiii et e e s e e e e e e e e e aren e e eeeenes 230
E.6 ENUMErAtOr ISSUES [CCBY.......uiiiiiiieiiiiitit ettt e e e e e e emr e e e e e e e e annne 230

viii © ISAIEC2013¢ All rights reserve

Baseline Edibon¢3 TR 24772

E.7 Numeric Conversion Errors [FLC] ... aere e 231
E.8 String Termination [CIM]........oooiiiiiiiiiiiii e e e a e s e e e e e e e e e e e e e e e ame e e e e e aaaaeaaaans 232
E.9 Buffer Boundary Violation [HCB]........cooiiiiiiiiiiiii et m et eme e 232
E.10 Unchecked Array INdexing [XY.Z]....coooo oot 232
E.11 Unchecked Array Copying [XYMV]......oui iiiioiiiiiiiiimiie et e e ame e e e e e e e e e enee e 232
E.12 Pointer Casting and Pointer Type Changes [HEC]..........oo e 232
E.13 Pointer ArithmetiC [RVG]......coooiiiiiii sttt er e e e e et e e e e e e e e e trane e e e e eeeeenanas 232
E.14 Null Pointer Dereference [XY.H]o e 232
E.15 Dangling Reference to Heap [XY.K] it m e 232
E.16 Arithmetic Wraparound Error [FIF]......ooo et eeetmr e e e e e e e e e e eeneeee 233
E.17 Using Shift Operations for Multiplication and Division [RIK]............ooooeiiieeee 233
E.18 Sign EXIENSION EFTOIZM . ..ottt e e e e e e e e e as 233
E.19 Choice of Clear Names [NALL....ccoo et er e e e e e e e e e e e e e e eraemr e e e eeennes 233
E.20 Dead StOre [WXQ eiieiieieeee it ettt e et e e e e e e b bt e e e e e e ma e e e e e e e e 235
E21 UNUuSed Variable [YZS].......ouiiiiiiiiiiiie ittt et bbb e e e e e e nas e e e e e e e e e e 236
E.22 Identifier Name REUSE [YOW] ... i e et s e e e e s ema s e e e e s e e e e et s e e e e e e e eamnn e e eeeas 236
E.23 NamMeSPACE ISSUES [BIL]....etiiiiiiiiiiiiiiii ettt m e e et e et e e e e e 238
E.24 Initialization of Variables [LAV]........coooiiiiiii e 241
E.25 Operator Precedence/Order of Evaluation [JCM].........ceiii i eevme e 241
E.26 Sideeffects and Order of Evaluation [SAM]..........ociiiiiiiiiiiiiiee e 242
E.27 Likely Incorrect EXPression [KQAL i e e e e e et ie e s st imna e e e e e e e e e e e e e aaaaaaaaaaa e e e e 243
E.28 Dead and Deactivated Code [XY.Q] e it s e e s e e e e s et vmr e e e et s s e e e e e e eeeennnan s ams 244
E.29 Switch Statements and Static ANAlYSIS [CLL]......cccuueriiiiiiiiii e 245
E.30 Demarcation of Control FIOW [EOJ]..........ccoiiiiiiiiiiii et e s 245
E.31 Loop Control Variables [TEX].....ccor i ieies e e e e eeetmr s e e e e e e e et s e e e e e e e e eeenemreeeeeennes 246
E.32 OfDY-0NE EITOI [XZH] ... it iiiiiiiii ittt rme e e e e e e e enr et e e e e e e e annees 247
E.33 Structured Programming [EWD].........cooiiiiiiiiii e 247
E.34 Passing Parameters and Return Values [CSJ]... ..o 248
E.35 Dangling References to Stack Frames [DCMI.........oooiiiiiiiiiimiiiiice e 250
E.36 Subprogram Signature Mismatch [OTR]..........uuuiiimiiiiiiiiimiieieiees e ses s s e e e e e e e e e e e e e aaaaaaaaaas 250
R = = To U1 £ 1o o T 1 5 PP 250
E.38 Ignored Error Status and Unhandled Exceptions [QYB]........ccccuviiiiiiiiiciiiiieeeeee e 250
E.39 Termination Strategy [REUL ..o eer e et e e e e e e e er e me e e e e eeeeees 251
E.40 Typébreaking Reinterpretation of Data [AMV]........cooi i 251
E.4L MeMOrY Leak XY L. et e e nr e e e e e e e e e e e e e e e e aaeaeas 251
E.42 Templates and GeNeriCS [SYMY]co oo e e e enr e e e e e e e e e e emran s 252
g T g =Yg ot | 252
E.44 EXtra INtrNSICS [LRMI......uuniiime sttt e et e et e e e e e e e e e e e am e e e aarareeseeenees 252
E.45 Argument Passing to Library FUNCIONS [TRJ]. ..o 253
E.46 Interlanguage Calling [DJS]......cooiiiiiiiiiiiiie it e e e ame e 253
E.47 Dynamicallinked Code and Selhodifying Code [NYY]......uuuuiiiiiiiiiiiiiiiiiriereieecseesseseeese e 254
E.48 Library Signature [NSQJ........uuuiiiiii it e e e e et s s e e e e e e e e e e e e e e aeenn s 254
E.49 Unanticipated Exceptions from Library Routines [HIM/]...........oeviiiiiiiiiiiieeeeeeeeee e 255
E.50 Preorocessor DireCtives [NMPY]... ... 255

© ISTIEC2013 ¢ All rights reserved iX

WG 23/N 043

E.51 Suppression of Languadefined Runtime Checking [MXB].........ccoooiiiiiiiiieeeee, 255
E.52 Provision of Inherently Unsafe Operations [SKL]..........uu it 255
E.53 Obscure Language Features [BRS]..........uuiiiiiiiiiiriiiiie et 256
E.54 Unspecified Behaviour [BQE].....ccooooiiii it 258
E.55 Undefined BENaVIOUr [EWE]oooo ittt emr e 259
E.56 Implementatioigdefined Behaviour [FAB]..........ouuiiiiiie e 260
E.57 Deprecated Language Features [MEM].........cc.ooooiiiiir it e e e eeeeee 261
AnnexF {nformative) Vulnerability descriptions for the langage RUbY.............ccciiiiiiiic 262
F.1 Identification of standards and associated dOCUMENLS............ceeiiieiiiiiimniiiiiiiee e 262
F.2 General Terminology and CONCEPIS......ccoiiiiiiiiiii e e e e emre e e e e e e e e ae e e e e e e eeenes 262
F.3 TYPE SYSIEM [THNL ... eeeeieeiiie ettt e e e e e e et e e e et e e e e e e e e e e e e e s anee 263
F.4 Bit Representations [STR].......c i it e bbb e et e e e e e nnneees 264
F.5 Floatingpoint ArithmetiC [PLF]....coooiiiii ettt s et s s e e e e e e e e e e e e eeenees 265
F.6 ENUMErator ISSUES [CCBJ......uuiiiiiiiiii et enr e e e e e e e 265
F.7 Numeric Conversion Errors [FLC].... ... it enee e 266
F.8 String Termination [CIMY].... ..o e e s s e e emr s e e e e e e e e e et s e e e e s amrnnn s eeeeeeeennes 266
F.9 Buffer Boundary Violation (Buffer Overflow) [HCBJ.........ccouiiiiiiiiiiimiiieeeeeeeiiee e 266
F.10 Unchecked Array INAeXing [XY.Z]......oooiiiiiiiiiiiii e e me e 266
F.11 Unchecked Array Copying XYM ..o e e rmss e e e e s e e e e e e e e e amas 266
F.12 Pointer Casting and Pointer Type Changes [HEC] ... 266
F.13 Pointer ArithmMEtiC [RVG] .. .uuuuiiiiiiiiiiiieiiiieties s imr e amneaaeeeeeeaeeees 267
F.14 Null Pointer Dereference [XYH] ... eeer e e e 267
F.15 Dangling Reference to Heap [XYK] i et 267
F.16 Arithmetic Wraparound Error [FIRE] e ssime ea e 267
F.17 Using Shift Operations for Multiplication and Division [PIK].......cccoooeiiiiiiiiiiciieicin e 267
F.18 Sign EXeNSION EITOr [XZI]....cci oottt e e s e e e e 267
F.19 Choice of Clear Names [NAL]......cooooii e 267
L O B =T Vo IS (o T (=N VAT) S 268
F.21 UNUSEd Variable [YZS].....coo oottt e e e e e e e rme bbb eeaeeeas 268
F.22 Identifier Name REUSE [YOWV]... ...t e s e e e e s st st it e e e e e e e e e e e e e e e aaaaaaeaaaaeeamreeeeaens 268
F.23 NameSPaCe ISSUES [BL].....i it e et eemr s s s e e e e e e e ettt s e e e e e emrann e neeeeeeeeenes 269
F.24 Initialization of VariableS [LAV]..........u et 269
F.25 Operator Precedence/Order of Evaluation [JCW]......ccoooi i 269
F.26 Side=ffects and Order of Evaluation [SAMI........oooi e 270
F.27 Likely Incorrect EXpression [KQAL ... 271
F.28 Dead and Deactivated Code [XY.Q]. ... e e e e e e e 271
F.29 Switch Statements and Static ANalysiS [CLL]........ooiiiiiii e 272
F.30 Demarcation of Control FIOW [EQJ].........uuuiiiiiiins ettt 272
F.31 Loop Control Variables [TEX]cuuiiiii e iiieeeiies e et ss s e e e e e e eettmr e e e e s e eeetta s s e e eeeeeeessnnmeeeeeennes 272
F.32 OffDY-0N€ EITON [XZH]. e i ittt e et e e e e s rme e e e e e e as 272
F.33 Structured Programming [EWD]..........oooiiiiiiiiiii e e me s 273
F.34 Passing Parameters and Return Values [CSJ] ..o e e s e e e eeneees 273
F.35 Dangling References to Stack Frames [DCMY].........cocuiiiiiiiiimiee e 274

X © ISTIEC2013 ¢ All rights reserve

Baseline Edibon¢3 TR 24772

F.36 Subprogram Signature MismatCh [OTR]........uuuuiiiiiiiiiiiiiimiiies s i e e e e e e e e aaeaaaaaaaaaaas 274
F.37 RECUISION [GDL]... ittt e et et e et et oo e oo e e e et et ettt e et e e et e e e e eeeeeeeeeeesameseeeeeeeseeessneneneeneenens 275
F.38 Ignored Error Status and Unhandled Exceptions [QYB]........ccccovviiiiiiiciiiiieee e 275
F.39 Termination Strategy [REU]..........uuuuiiiiiiiiiiie et e e e e e e e e e e e e e s e e e e e e e e 275
F.40 Typebreaking Reinterpretation of Data [AMV].......ccooiiiiiiiiiiieii e 275
F.AL MEMOTY LEAK PXY L ..ttt ettt ettt e e e e et e e eme e e e e e e e bneeeeeeas 275
F.42 Templates and GeneriCS [SYMI.... ..o emr e e e e e e e e e s emran s 276
F.A3 INNEIITANCE [RIP].... ittt e et e e e e e e e e e e e e e e e nnnnee s 276
F.44 EXtra INtrinSICS [LRIMY.....o ittt enr et e et e e e e e e s e me s e e e e e e e 276
F.45 Argument Passing to Library FUNCHIONS [TRIJ.....coiii i 276
F.46 Interlanguage Calling [DJS] uueeeiiiiiiriii ettt e e e e e e e e e e e e e e emr e e e e e e anne 276
F.47 Dynamicalljinked Code and Setlnodifying Code [NY Y], 277
F.48 Library Signature [NSQI.....uuuuoiii it e ettt s s e e s e e e e e et e ssme e s eetena s e e e e e e eeeeestan s rmreeereannreeeees 277
F.49 Unanticipated Exceptions from Library Routines [HIW].............cooeiieiiiiiiiiieee e 277
F.50 Preprocessor DIreCtVES [NIMP]......coo ittt iime etttk emba e e e e et e e e e e e e e ame e 277
F.51 Suppression of Languadefined Runtime Checking [MXB].......cccvuuiiiiiiiieiiiimie e 278
F.52 Provisiorof Inherently Unsafe Operations [SKL]...........ouiiiiiiiiimiiieeeee e 278
F.53 Obscure Language Features [BRS]........uuuuuiiuiuiiiiiimiaiieesissssssssesssssssime e e e e e e s e e e e saeaaaeaaaeeaaeeeameas 278
F.54 Unspecified Behaviour [BOQE]L......ccoo i emis s e e e e e e e e eemn e e e e 278
F.55 Undefined Behaviour [EWE].........oo ittt e e ame e 278
F.56 Implementatiordefined Behaviour [FAB].........coooiir e eev e 279
F.57 Deprecated Language Features [MEM]..........iiiiiiiirii e eeemn e e e e 279
AnnexG (nformative) Vulnerability descriptions for the language SPARKooiiiiiiiieieeee e 280
G.1 Identification of standards and associated dOCUMENTAtION.ccoeriiiiiiimiiiiieiee e 280
(CR A CT=Tol= eI (= aal g o] (ole) VA= To RoTo) o [ol=T] £ PP 280
G.3 TYPE SYSLEM [ITHIN....eeeeeee ettt ettt et e e e e s e e e e et e e e e e s e e e e eeeeeeans 281
G.4 Bit Representation [STR]cciiiiiimre e et e et re et e et e e e e e e e e e e e e e e e e e e e s amaraaareesreneees 282
G.5 Floatingpoint ArthmMEtIC [PLF]......coooeiiiii e e e e ttmr e e e et s e e e e e e e e eetranameeeeeenes 282
G.6 ENUMETALOr ISSUES [CCBY....uuitiiiiiiiie ittt ettt e e e e e e e e e e s e ana b e e e e e e e e e ns 282
G.7 Numeric Conversion EITOrs [FLC]......oooiiiiiiiiiiii e e e ame e e 282
G.8 String Termination [CIMI........cooiiiiiiiii e ceice e e e s e e e e s emrea s s e e e e e e e e ttra s e e e e e e seamrseeeeeeeeennnnnn 282
G.9 Buffer Boundary Violation (Buffer Overflow) [HCBJ..........ouuiiiiiiiiiimiiiiieeeee e 282
G.10 Unchecked Array INdeXing [XY.Z].......couuuiiiiiie oo e et er e e e e et e e e e e e e e e aenane e 282
G.11 Unchecked Array Copying XY M. ..ottt ee e e enenanns 282
G.12 Pointer Casting and Pointer Type Changes [HEC]...........ooooviiiiiiiciiiiiieveeeeevvse e 283
G.13 Pointer ArthMEIC [RVG] oo e it e e s e e e e emra s e e e e e e e e e teaa s e e e e e e emseeeeaeeenes 283
G.14 Null Pointer Dereference [XYH] . o e 283
G.15 Dangling Reference to Heap [XYK] ... 283
G.16 Arithmetic Wraparound Error [FIE]. ... oo est s e e e e e e e e e e 283
G.17 Using Shift Operations for Multiplication and DiviSion [PLK]..........cccuuiiiiiiiiiiniiiieeeeeees 283
G.18 Sign EXIENSION EFTOr [XZI]...ooveeiieeiiieiieiieeeet e e e s e s amnaaeeeeeeaaees 283
G.19 Choice of Clear NamMeS [NAI]......uu i e e rmr et e e e e e e e e e aeaa s e eneennnns 283
G.20 Dead StOre [WXQ .. e eiiiiiite ettt eme ettt ettt ettt e e e e e ettt e e e e e e e e e e e e e e e 283

© ISTIEC2013 ¢ All rights reserved Xi

WG 23/N 043

G21 UNUSEd Variable [YZS]..coo oo e e a e e e e aaaaaaaaaaas 284
G.22 Identifier Name ReUSE [YOW]. ..ottt eenme e 284
G.23 NAmMESPACE ISSUES [BUIL] ..o iiiiiiiiiieee ettt e et e e e e e s rme s n e e as 284
G.24 Initialization of Variables [LAV]......ccoooo oo 284
G.25 Operator Precedence/Order of Evaluation [JCM]........ccooiiiiiiiiiiiieiieeeeee e 284
G.26 Sideeffects and Order of Evaluation [SAMI.........ouiiiiiiiiiiieie e 284
G.27 Likely Incorrect EXPression [KOA] ittt s s e e e s e e et ime e e e eetenans e e e e e e e eeaennnan sme s 284
G.28 Dead and Deactivated Code [XY.QJ . ..coiiiiiiiiiiiiiiiei ittt 284
G.29 Switch Statements and Static ANAlYSIS [CLL].....uuiiiiiiiiiiiiiimiee e 285
G.30 Demarcation of Control FIOW [EOQJ]........oouiiiii e eever e e e e e e e e e e eeeen 285
G.31 Loop Control Variables [TEX]........uui et 285
G.32 OffDY-0NE EITOI [XZH]...eeieiiieeiiii ettt e et e e e e e rme e e e e as 285
G.33 Structured Programming [EWD]........ooi i e et smr e s e e e e e e e eeanenn e emrnnes 285
G.34 Passing Parameters and Return Values [CSJ].......coouuiiiiiiiieiiieee e m e 285
G.35 Dangling References to Stack Frames [DCMI.......cccooiiiiiiiiiimiiiie e m e 286
(.36 Subprogram Signature Mismatch [OTR]........ccooviiiiiiiiii e e rs e 286
G.37 RECUISION [GDL.... ittt e e e e e e e e e e s s ame e r e e e e e e e e e annees 286
G.38Ignored Error Status and Unhandled Exceptions [QYB].......cccccuiiiiiiii i 286
G.39 Termination Strategy [REUL.......coorr e rrrr e e e e e e e amrn e e e e e 286
G.40 Typebreaking Reinterpretation of Data [AMV]........ccuiiiiiiiiiiiiere e 287
G.AL Memory Leak [XY L] .o 287
G.42 Templates and GENEICS [SYM] ...uuuuiiiii i e e et e e e s e e e e e e e eeeenna e eenes 287
G.43 INNEMTANCE [RIP] ...ttt e e e e e e s e e e e e e e e e e e 287
GA44 EXtra INtriNSICS [LRM]ueieiiiiiiiiiiiiiii s s s s s e i e amtaeeeaeeseeeeeeeeeees 287
G.45 Argument Passing to Library FUNCLONS [TRJ]......coii it 287
G.46 Interlanguage Calling [DJS]........ccuiiiiiiiiieiieiee et e e 287
G.47 Dynamicallinked Code and Selthodifying Code [NY Y] 288
G.48 Library Signature [NSQJ....ooeeiiiiii it e e et e e e e e e e et e e e e e e e e e e et rme e e e e e eerran s 288
G.49 Unanticipated Exceptions from Library Routines [HIMV].........coooeiiiiiiiiiimiieiieee e 288
G.50 PreProcessor DireCtiVES [NMP]uuuiiiiiiiiiien i a e e e e e e e e e e e e e 288
G.51 Suppression of Languadefined Runtime Checking [MXB]....... ..o 288
G.52 Provision of Inherently Unsafe Operations [SKL].........coouiiiiiiiiiimiiie e e 288
G.53 Obscure Language FeatUreSPHBRR.........uuuiiiii it e e e e e e e e e e e aneannas 288
G.54 Unspecified Behaviour [BQE].........ooiiiiiiiiiiiiie ettt em s a e 289
G.55 Undefined BEhaViour [EVWE]........ooiiiiiiiiiiieei e e nsime e e aaaeaaas 289
G.56 ImplementationDefined Behaviour [FAB]........cccoo oo e e e e e e eeneees 289
G.57 Deprecated Language Features [MEM]........oo e 289
G.58 Implications for StaNAardiZAtiON...............uuuuiiriiiiiiie 289
AnnexH (nformative) Vulnerability descriptions for the language PHP.....................cci i, 290
H.1 Identification of standards and associated doCUMENTALION.........ccvveeiiiiiiiirimiiiie e 290
H.2 General TerMology and CONCEPISuuuuuiriiiiiiiiimr e e e e i a e e e e e aaaaaaaeaaaaaaaaaaaeeam, 291
[1 T IV oI V21 (T T 1 S 292
H.4 Bit Representations [STRY e e s ame e e 293

Xii © ISAIEC2013¢ All rights reserve

Baseline Edibon¢3 TR 24772

H.5 Floatingpoint ArithmetiC [PLE].........ooiiiiiii e me e 294
H.6 ENuMeErator ISSUES [CCB.....cooiiiiiiiiiiiiiee ettt e e a e e e e e e e e e e e e e e ame e e e e e aaaaaaeaens 294
H.7 Numeric Conversion Errors [FLC]... ..ottt ime s 295
H.8 String Termination [CIM]......ooviiiiiiiiiiiiees e ame e aaaaaaaaaaaaaas 296
H.9 Buffer Boundary Violation (Buffer Overflow) [HCBJ.........ooociiiiiiiiiii e 297
H.10 Unchecked Array INAeXing [XY.Z]......cc.uuuiiiiiiiiiiiiier ittt e e e e e emne 297
H.11 Unchecked Array COPYING [XY Y. i s s e e e e e et s s s emee e s e e e e e e e eeeaenn e e e eemenns 297
H.12 Pointer Casting and Pointer Type Changes [HEC] ... 297
H.13 Pointer ArithMeEtiC [RVG]......c.uuiiiiiiiiieiiiie ettt e e e e et anana e e e eeeeas 297
H.14 Null Pointer DereferenCe [XY H] ... e s emr e s e e e e e e e eeaena e e emerenes 298
H.15 Dangling Reference to Heap [XY K]o e m e 298
H.16 Arithmetic Wraparound Error [FIE].......oooiiiiiiiiiie ittt e e e 298
H.17 Using Shift Operations for Multiplication and BEION [PIK]........ccoooiiiiiiie e, 299
H.18 Sign EXIENSION EITOI [XZI].....eeiiiiiiiiiiiiite ettt e e amn e et e e e e e e e e e emr e e e e e e e e anees 300
H.19 Choice Of Clear Names [NAL]......c.uuuiiiiiiiee et e e e e m e 300
[2O B L= Vo IR (] (N AT | S 302
H.21 Unused Variable [YZS].... ..o e enr e e e e e e 302
H.22 Identifier Name REUSE [YOW].....ooo oottt ettt e s nnane e e e e e as 302
H.23 NamMeSPacCe ISSUES [BuL]......uuuuiiiiieiiiiiiiiiie et e s e e e e e ettt me e s e e e ee s e e e e e e e e eeaeename e e eeeeennaneeas 303
H.24 Initialization of Variables [LAV].......oo it a e e e e e ame e 304
H.25 Operator Precedence/Order of Evaluation [JCW].........ccoiiiiiiiiiiiiiime e 305
H.26 Sideeffects and Order of Evaluation [SAMI........cooi i e 305
H.27 Likely Incorrect EXPression [KQAL..... ..o i e e sme s e e e e e 306
H.28 Dead and Deactivated Code [XY.Q].....uuiiiiiiiieiiiieeeeierieireeriiinrrsreerrreenrerr e e es s senssaessaesames 307
H.29 Switch Statements and Static ANalySiS [CLL]......cii i e 308
H.30 Demarcation of Control FIOW [EOJ].....cc.coiiiiiiiiiiii e 308
H.31 Loop Control Variables [TEX]........oiiiiiiiiiiiies e e e s s imeeaaaeaeas 309
[R @5 o) Vo o =T = o T G 2 07 | 310
H.33 Structured Programming [EWD]........cc.uuuuiiiiiiiiiiieriii et eme e e e e e e e enmne 310
H.34 Passing Parameters and Return Values [CSJ].......uuuiuiiiiiiiiiimieieicei e ssime e e 311
H.35 Dangling References to Stack Frames [DCM].......ooi oot 311
H.36 Subprogram Signature MismatCh [OTR].........c..uuiiiiiiiiiiii e 311
[TR A LTl 3) 1 7 1 P 312
H.38lgnored Error Status and Unhandled Exceptions [OYB].......cccvviiiiiiiiiiiieeee e 312
H.39 Termination Strategy [REU]........uuuiiiiiiiie et a e e e e e e e e 314
H.40 Typebreaking Reinterpretation of Data [AMV]......coooeiiiiiiii e eeer e e 314
[B Y =T o g o) oV ==) 1 314
H.42 Templates and Generics [SYM] ... 315
[I oY o= = VLot | | 315
H.44 EXtra INtriNSICS [LRIMI.... ..ttt e e e e e e e e e mas e e e e e e e e e e e 315
H.45 Argument Passing to Library FUNCIONS [TRJ].......uuiiiiiiiiiiiiiiiieniie e sime e e e 315
H.46 Interlanguage Calling [DJIS].....coooriiiiiii e e e e et e e e e e e et e e e e e e e e eeearmr e e e e eennees 315
H.47 Dynamicalljfinked Code and Sethodifying Code [NY Y]uuiiiiiiiiiiiieeeeeeee e 316
H.48 Library Signature [NSQJ.......ooviiiiiiiiiiiii e e s a s s s e s e e s e a s ame e aaaaaaaaaaeeans 316

© ISTIEC2013¢ All rights reserved Xiii

WG 23/N 043

H.49 Unanticipated Exceptions from Library Routines [HIW]............ooooi i, 316
H.50 Preprocessor DIireCtives [NIMP]......ooooiiiiiiiiii e me s 317
H.51 Suppressionf Runtime Checking [MXBJ.........uuiiiiiiiiiiiei e 317
H.52 Provision of Inherently Unsafe Operations [SKL].........oovviiiiiiiiiiiicime e 317
H.53 Obscure Language Features [BRS]..........cui it 317
H.54 Unspecified Behaviour [BOQE].......ooo it eame e 318
H.55 Undefined Behaviour [EWE]........uu it e ettt e e e e e e e et e enme e e e eeeenes 319
H.56 Implementatiorgdefined Behaviour [FAB]...........ouiiiiiiiiiimi e 320
H.57 Deprecated Language Features [MEM].........co it 320
Annexl| (informative) Vulnerability descriptions for the language Fortran.............cccccceviviiiieeeeeeeeeennn. 321
[.1 Identification Of STANUAIAS.uuiiiiiiiiieii eeeeeeeeeeees 321
1.2 General Terminology and CONCEPLS........cc.uuuiiiiiiee ettt e e et e e e e e s s e e e e e e s aainn 321
T I 1= 321 (=T 0 L | 324
1.4 Bit Representations [STR].... ... i i ittt e e e e e e e e enr e e e e e e e e e anane 325
1.5 Floatingpoint ArithmMeETiC [PLF]......oou oot e e e e 326
O = W] g [T = Lo g ESTST U [[O = TP 327
1.7 Numeric Conversion Errors [FLEC]. i et e e 327
1.8 String Termination [CIMY]..... ..ottt et e e e e e e e e e e e enr b ararrrrernnes 328
1.9 Buffer Boundary Violation [HCB].........oouiiiiii et e e e e e nne e e 328
[.20Unchecked Array INAeXiNg [XY.Z].... .o ettt enee e 329
1.11 Unchecked Array Copying [XYM].....coooiiiiiiiiiiiiiii e e me e 330
1.12 Pointer Casting and Pointer Type Changes [HEC].........ooviiic e 331
1.13 Pointer ArtNMETIC [RV Gueeeiiiiiiiiite ittt et e e e e et e e e e e 331
[.14 Null Pointer Derefer@ncCe [XYH] ... o i aeeeas 331
RS0 Y o o] 1= o 111§V (o 1 =Yg o 11 = Vo =T 332
1.16 Arithmetic Wraparound Error [FIR]..........ouiiie et 332
1.17 Using Shift Operations for Multiplication and Division [PIK]...........covviiiiiiiiiiiciiiiiiiiiiiiinnn 333
(RS T [T b (=T 15 o I =1 1 (0), 74 | P 333
[.19 Choice of Clear NamMeES [INALL......uu it e e e e e et emr e e aeeeas 333
2O D T=T= (o IS (o T (= L2 @) TSSO 334
2 R U EST=T o I 2= Ty = o] L= I 70 | 334
1.22 1dentifier Name REUSE [YOWM]....oiu ittt ettt i e e e e e s e e e e e e e s e e e 334
[.23 NAMESPACE ISSUES [BuL] ... eeiieeiiiiiiii e ert s e e e e e e e et s s e e e e s ema s e aeeeeeennenes 335
[.24 Initialization of Variables [LAV]..... .o e a e e 335
1.25 Operator Precedence/Order of Evaluation [JCMW].......ceviviiiiiiiieeieiieriiiiiiinnnnme e 335
1.26 Sideeffects and Order of Evaluation [SAM]......cooouiiii e e 336
1.27 Likely Incorrect EXpression [KQA]ottt neennen s 336
1.28 Dead and Deactivated Code [XY.Q]....ccooiiiiiiiiii i 337
1.29 Switch Statements and Static ANalysiS [CLL]......oovuiiiiiii e eer e 337
1.30 Demarcation of Control FIOW [EOJ].........uuiiiiiiiiiiiimiiie et e e e 337
1.31 Loop Control Variables [TEX]........ccooooii e e e 338
IR @ 3 o) Yo | A T=TN = (o 1, 07 - | 338
1.33 Structured Programming [EWD].........oeiiii ittt enen s 339

Xiv © ISAIEC2013¢ All rights reserve

Baseline Edibon¢3 TR 24772

1.34 Passing Parameters and Return Values [CSJ]..... ... ses i aaaaaaaaaae e 339
1.35 Dangling References to Stack Frames [DCM]..........ouiiiiiiiiiiiiiiee e 340
1.36 Subprogram Signature MismatCh [OTR].......cooiiiiiiiiiii e 340
RS A = Tor 0= o 1 340
1.38 Ignored Error Status and Unhandled Exceptions [OY.B].......coooiiiiiiiiieecce e 341
[.39 Termination Strategy [REU].......cou i ae e e e 341
1.40 Typebreaking Reinterpretation of Data [AMV]........uiiiiiiiiiiiee e e 342
142 MEMIOTY LEAK [XY L] . eitteieiieeee ittt ettt rme et e e e e e e emr et et e e e e e e reeeeas 342
[.42 Templates and GENEIICS [SYM]......uiiiiiiiiiiiiii et e e e ene e e es 342
S Vo] =T = U o= | | = PP 342
[.44 EXtra INtriNSICS [LRIM]....ccoiiiiiiiiee ettt e e e e e e e e e m b e e e e e e e e ane 343
.45 Argument Passing to Library FUNCHONS [TRJI]......cc.uviiiiiiiiiiiiie e 343
1.46 Interlanguage Calling [DJIS]......coooiiiiiiiii e e e eer e e e e e e et r e e e e e e en e e e eeeeeenen 343
1.47 Dynamicallylinked Code and Selhodifying Code [NY Y. 344
.48 Library Signature [NSQY ueeeeiiiiiiiiiiiit et ct e sttt e e e e e s m bbb ee e e s e e e st b e e e e e et e e e e e e e nnnneeees 344
1.49 Unanticipated Exceptions from Library Routines [HIW].........cooorriiiiiiiiiciie e 344
1.50 Preprocessor DIreCtiVES [NIMP... ..o ittt s e e e e e e 344
1.51 Suppression of Languagiefined Runtime Checking [MXB]..........cooooiiiiiiiiii i, 345
1.52 Provision of Inherently Unsafe Operations [SKL].........cccoiiii e eeeeer e e 345
1.53 Obscure Language Features FBR..........u et 346
1.54 Unspecified BEhaviour [BQE]........uuiiiiiiiiieiiieie e s rme e s e amnaeeeeaees 346
1.55 Undefined Behaviour [EWE]........oooii et eemr s e e e s s e e e e e e eemr e e e e e e e eeaen 346
1.56 Implementationdefined BEhaviour [FABY............ooiiiiiimiee et e e 347
1.57 Deprecated Language Features [MEM].........ccouiiiiiiii it a e 347
1.58 Implications for StanNdardiZatiON..............cooiiiiiiiii i e e e e e e e eerre e e emrreee 348
=] o1 T Te] =T o] 1| AT P PP PPPPP 349
100 = RPN 352

© ISTIEC2013 ¢ All rights reserved XV

WG 23/N 043

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialized systBmworldwide standardization. National bodies that are members of

ISO or IEC participate in the development of International Standards through technical committees established
by the respective organization to deal with particular fields of technicaliactiSO and IEC technical

committees collaborate in fields of mutual interest. Other international organizations, governmental and non
governmental, in liaison with ISO and IEC, also take part in the work. In the field of information technology, ISO
andIEC have established a joint technical committee, ISQITEL

International Standards are drafted in accordance with the rules given in the 1SQifdeGves, Par2.

The main task of the joint technical committee is to prepare International Standard#. International
Standards adopted by the joint technical committee are circulated to national bodies for voting. Publication as
an International Standard requires approval by at least 75 % of the national bodies casting a vote.

In exceptional circumances, when the joint technical committee has collected data of a different kind from

0KFG oKAOK Aada y2N¥IFffe LJzotAaKSR Fad Iy LYGSNYylFraaAzylt
publish a Technical Report. A Technical Report issgninformative in nature and shall be subject to review

every five years in the same manner as an International Standard.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent
rights. ISO and IECahnot be held responsible for identifying any or all such patent rights.

ISO/IEAR24772, was prepared by Joint Technical Committee ISONEL Information technology
Subcommittee S€2, Programming languages, their environmeatsd system softwaraterfaces

XVi © ISAIEC2013¢ All rights reserve

Baseline Edibon¢3 TR 24772

Introduction

All programming languages contain constructs thi incompletely specifieexhibit undefined behaviar,

are implementationdependent, or are difficult to use correctlflhe use of those constructs may therefore
give rise tovulnerabilities as a result of which, software programs can execute differently than intended by
the writer. In some cases, these vulnerabilities campromise the safety of a systemtwg exploited by
attackers to compromise the security privacy ofa system.

This Technical Report is intended to provide guidance spanning multiple programming languages, so that
application developers will be better able to avoid the programming constructs that lead to vulnerabilities in
software written in their chosetanguageand their attendant consequences. This guidance can also be

used by developers to select source code evaluation tools that can discover and eliminate some constructs
that could lead to vulnerabilities in their softwaoe to select a programming language that avoids

anticipated problems

It should be noted that this Technical Report is inherently incomplktis. not possible to provide a
complete list of programming language vulnerabilities because new weaknessgis@reered continually.
Any such report can only describe those that have been found, characterized, and determined to have
sufficient probability and consequence.

Furthermore to focus its limited resources, the working group developing this reporéeicio defer
comprehensivdareatment of several subject areas until future editions of the repdmese subject areas
include:

1 Objectoriented language feature@lthoughsome simple issues related to inheritance are
described ir6.43 InheritancelRIR)

1 Numerical analysis (although some simple items regarding the use of floating point are described in
6.5 Floatingpoint Arithmetic[PLH)
1 Inter-language operability

© ISTIEC2013¢ All rights reserved XVii

Technical Report ISO/IEC TR 2472D13(E

Information Technologyt Programming Languagas Guidance toavoiding
vulnerabilitiesin programminglanguageghrough languageselectionand
use

1. Scope

This Technical Report specifies softwaregramming languageulnerabilitiesto be avoidedn the development
of systemswvhere assured behaviour is required for security, safetigsioncritical andbusinesscritical software.
In general, this guidance is applicable to the software developed, reviewed, or maintained for any application.

Vulnerabilities are descrdd in a generic manner that is applicable to a broad range of programming languages.

2. Normative references

The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applieBor undated references, the latest edition of the referenced document
(including any amendments) applies.

ISO8000@;2:2009 Quantities and units Part2: Mathematical signs and symbdtsbeuse in thenatural
sciences and technology
ISO/IE@382¢1:1993,Information technology Vocabularyt Part 1: Fundamental terms

3. Terms and definitions , symbols and conventions

3.1 Terms and definitions

For the purposes of this documerthie terms and definitiongjiven in ISO/IEC 238R and the followingapply.
Other terms are defined where they appeaiitalic type.

3.1.1 Communication

3.111

protocol

set of rules and supporting structures for the interaction of threads

Note 1: A protocol can be tightly embedded and rely upon data in memory and hardwamntomot
interaction of threads or can be applied to more loosely coupled arrangements, such as message
communication spanning networks and computer systems.

© ISTIEC2013 ¢ All rights reserved 1

WG 23/N 043

3.11.2

stateless protocol

communication or cooperation between threads where no state is preservéue protocol itself (example HTTP
or dired access to a shared resource)

Note 1: Since most interaction between threads requdtbat state be preserved, the cooperating threads
must use values of the resources(s) themselves or add additional commianieaxthanges to maintain
state. Stateless protocols require that the application provide explicit resource protection and locking
mechanisms to guarantee the correct creation, view, access to, modification of, and destruction of the
resourceg for exampe, the state needed forarrect handling of the resource

3.1.2 Execution model
3.121

thread

sequential stream of execution

Note 1: Although the term thread is used here and the context portrayed is thahafedmemory threads
executingas part of a process, everything documented applies equally to other variants of concususicy

as interrupt handlers being enabled by a process, processes being created on the same system using
operating system routines, or processes created as a result of distributed messages sent over a network. The
mitigation approaches will be similar thdse listed in the relevant vulnerability descriptions, but the

implications for standardization would be dependent on how much language support is provided for the
programming of the concurrent system.

3.12.2
thread activation
creation and setup of thread up to the point where the thread begins execution

Note 1: Athreadmay depend upon one or more other threads to defineaitsess to otheobjects to be
accessed and to deterime its duration

3.12.3
activated thread
threadthat is created andhen begins execution as a resultthiread activation

3.124

activating thread

thread that exists first and makes the library calls or contains the language syntax that causes the activated thread
to be activated

Note 1. Theactivatingthreadmay or may notvait for the activatedthreadto finish activation and may or
may not check for errors if the activation fails. Tdutivatingthreadmay or may not be permitted to
terminate until after theactivatedthreadterminates.

2 © ISTIEC2013 ¢ All rights reserve

Baseline Edibn¢3 TR 24772

3.125

static thread activation

creation and initiation of a thread by program initiation, an operating system or runtime kernel, or by another
thread as part of a declarative part of the thread before it begins execution

Note 1: In static activation, a static analysis can determine #ydow many threads will be created and how
much resource, in terms of memory, processors, cpu cycles, priority ranges anthiet®dl communication
structures, will be needed by the executing program before the program begins.

3.12.6

dynamic thread adwation

creation and initiation of a thread by another thread (including the main program) as an executable, repeatable
command, statement or subprogram call

3.12.7
thread abort
request to stop and shut down a thread immediately

Note 1: The request is amchronous if from another thread, or synchronous if from the thread itself. The
effect of the abort requestsuch asvhether it is treated as an exception) and its immedidbgt(is, how long
the thread may continue to execute before it is shut down) &g on languagspecific rules. Immediate
shutdown minimizes latency but may leave shared data structures in a corrupted state.

3.12.8
termination-directing thread
thread (including the OS) that requests the alimmtof one or more threads

3.12.9

thread termination

completion and orderly shutdown of a thread, where the thread is permitted to make data objects consistent,
release any acquired resourcesd notify any dependent threads that it is terminating

Note 1: There are a number of steps in the temation of a thread as listed below, but depending upon the
multithreading model, some of these steps may be combined, may be explicitly programmed, or may be
missing

1 thetermination of programmed execution of the thread, including termination of any symzius
communication;
the finalization of the local objects of the thread;
waiting for any threads that may depend on the thread to terminate;
finalization of any state associated with dependent threads;
netification thatfinalization is complete, includinpossible notification of the activating task;
removal and cleanup of thread control blocks and any state accessible by the tbrégobther
threads in outer scopes.

=A =4 =4 =4 =4

© ISTIEC2013 ¢ All rightsreserved 3

WG 23/N 043

3.12.10
terminated thread
thread thathas beerhalted from any further execution

3.1211

master thread

thread which must wait foaterminated thread before it can take further execution stepgliiding termination
of itself)

3.1.2.12
process
single execution of a prograror portion of an application

Note 1: Processeslo not normally share a common memory space, diten share

1 processor,

network,

operating system,

filing system,
environment variables, or
other resources.

= =4 =4 =4 =4

Processes are usually started and stopped by an operating system and may or may not\vitaratiter
processesA process may contain multiple threads.

3.1.3 Properties

3.1.3.1

software quality

degree to which software implements the requirements described by its specificatidnthe degree to which
the characteristis of a software product fulfill itsequirements

3.13.2
predictableexecution
property of the program such that all possible executions have results that can be predicted from the source code

3.1.4 Safety

3.14.1

safety hazard

potential source of harm

Note 1 IEC 615081 Y RSFTAYySa I alFTFNRéE Fa F GLRGSYGALFE &2
damage to the health of people either directly or indirectly as a result of damage to pyopetd the
SYGANRYYSY (¢ o {2YS RSNRARGSR i 56/ RdadeiRtBexefigittnOK | a !
GKEFENXYE G2 AyOftdzRS YFGSNAIE FYR SYy@ANRYyYSyidlt REY
environmental damage).

Y
I

4 © ISTIEC2013 ¢ All rights reserve

Baseline Edibn¢3 TR 24772

3.1.4.2
safety-critical software
software for applications where failure can cause very serious consequences such as human injury or death

Note 1: IEC 615081 Y RSTANGStAl SR THRARI S NBé | & aeénesafetyw I NB K
functions in a safetyelated system.Notwithstanding that in some domains a distinction is made between
safetyrelated (can lead to any harm) and safetytical (life threatening), this Technical Report uses the term
safety-critical for all winerabilities that can result in safety hazards.

3.1.5 Vulnerabilities

3.151

application vulnerability

security vulnerability or safety hazard, or defect

3.15.2

languagevulnerability

property(of a programming language) that caontributeto, or that is strongly correlated with, application
vulnerabilities in programs written in that language

Note 1: The term "property” can meathe presence othe absence of a specific featynesedsingly or in
combination As an example of the absence of a featugrcapsulation (control of where nameanbe
referenced from) is generally considerbdneficialsince it narrows the interface between modules and can
help prevent data corruptionTheabsence of encapsulation from a programming language can thus be
regarded as a vulnerabilityNote that a property together with its complemenanboth be considered
language vulnerabilitiesFor example, automatic storage reclamation (garbage colleptan bea

vulnerability since it can interfere with time predictability and result in a safety hazard. On the other hand,
the absence of automatic storage reclamatamalsobe a vulnerability since programmers can mistakenly
free storage prematurelyesulting in dangling references.

3.1.5.3

security vulnerability

weakness in an information system, system security procedures, internal controls, or implementation that could
be exploited or triggered by a threat

3.2 Symbols and conventions
3.2.1 Symbols

For the purposes of this document, tegmbolsgiven in ISO 800@@ apply. Other symbols are defined where
they appear in this document.

3.2.2 Conventions

Programming language tokeand syntactic tokesappear incou rier font.

© ISTIEC2013 ¢ All rightsreserved 5

WG 23/N 043

4. Basic concepts

4.1 Purpose of this Technical Report

This Technical Report specifies software programming language vulnerabilities to be avoided in the development
of systems where assured behaviour is required for security, safety, mig#ical and business critical software.
In general, this guidance is applicable to the software developed, reviewed, or maintained for any application.

This Technical Report does not address software engineering and management issues such as howaodlesig
implement programs, use configuration management tools, use managerial processes, and perform process
improvement. Furthermore, the specification of propertiesd applicationso be assuredre not treated.

While thisTechnical Repodoes not disass specification or design issues, there is recognition that boundaries
among the various activities are not cleaurt. ThisTechnical Reposeeks to avoid the debate about where low
level design ends and implementation begins by treating selectedigbaé some might consider design issues
rather than coding issues.

The body of thiFechnical Report provides users of programming languages with a lanonasgpendent
overview of potential vulnerabilities their usage Annexes describe how the general observations apply to
specific languages.

4.2 Intended audience

The intended audience for this Technical Repwetthose who are concerned with assuritige predictable

execution of thesoftware of their system; that ishose who are developing, qualifying, or maintaining a software
system and need to avoid language constructs that could cause the software to execute in a manner other than
intended.

Developers of applications that have clear safety, securityigsioncriticality are expected to be aware of the
risks associated with their code and could use T@shnical Repotb ensure that theidevelopment practices
address the issues presented by the chosen programming languages, for example by subsettingiogprovid
coding guidelines

It should not be assumed, howevéhat other developers can ignore thi®chnical ReportA weakness ia non
critical applicatiormay provide the route by which an attacker gains control of a system or otherwise distpt
hostedapplications that are criticallt is hoped thatall developers would use thiBechnical Repottb ensure that
common vulnerabilities are removed or at least minimized from all applications.

Secific audiences for this International Technical Repaittide developersmaintainers and regulatoi:

Safetycritical applications that might cause loss of life, human injury, or damage to the environment
Securitycritical applications that must ensure properties of confidentiality, integrity, and avatijabili
Missioncritical applications that must avoid loss or damage to property or finance

Businesgritical applications where correct operation is essential to the successful operation of the
business

91 Scientific, modeling and simulation applications whieguire high confidence in the results of possibly
complex, expensive and extended calculation

=A =4 =4 =2

6 © ISTIEC2013 ¢ All rights reserve

Baseline Edibn¢3 TR 24772

4.3 How to use this document

This Technical Report gathers descriptions of programming language vulnerabilities, as well as selected
application vulnerabilitis, which haveccurred in the past and are likely to occur agdtach vulnerability and its
possible mitigations are described in the body of the report in a langiragpendent mannerthough

illustrative examples may be language specifitaddition, annexes for particular languages describe the
vulnerabilities and their mitigations in a manner specific to the language.

Because new vulnerabilities are always being discovered, it is anticipated th@ethnical Repowill be revised

and newv descriptions addedFor that reason, a scheme that is distinct from slduse numbering has been

adopted to identify the vulnerability description&ach description has been assigned an arbitrarily generated,
unique threeletter code. These codes shid be used in preference to stdbause numbers when referencing
descriptionsbecause they will not change as additional descriptions are added to future editions of this Technical
Report.

The main part of tls Technical Reportontains descriptions thatra intended to be languagmdependent to the
greatest possible extenAnnexesapply the generic guidance to particular programming languages.

This Technical Repottas been written with several possible usages in mind:

1 Programmers familiar with the vulnabilities of a specific language can reference the guide for more
generic descriptions and their manifestations in less familiar languages.

f Tool vendors canuse thethréeS 1 G SNJ O2RS& Ia | adzOOAy Ol ¢l & G2
consideed by their tools.

91 Individual organizations may wish to write their own coding standards intended to reduce the number of
vulnerabilities in their software products. The guide can assist in the selection of vulnerabilities to be
addressed in those standds and the selection of coding guidelines to be enforced.

9 Organizations or individuals selecting a language for use in a project may want to consider the
vulnerabilities inherent in various candidate languages.

1 Scientistsengineers, economiststatisticians, or others who write computer programs as tools of their
chosen craft can read this document to become more familiar with the issues that may affect their work.

Thedescriptionsnclude suggestions for ways of avoiding the vulnerabilitigsne are simply the avoidance of
particular coding constructs, but others may involve increased review or other verification and validation
methods. Source code checking tools can be used to automatically enforce some coding rules and standards.

Clause 2 pvides Normative references, and Clause 3 provides Terms, definitions, symbols and conventions.
Clause 4 provides the basic concepts used for this Technical Report.

Clause 5Yulnerability Issuegprovides rationale for this Technical Report and exglaiow many of the
vulnerabilities occur.

Clause 6Programming Language Vulnerabilitiggovides languagandependent descriptions of vulnerabilities in
programming languages that can lead to application vulnerabilities. Each description provides:

1 asummay of the vulnerability,

© ISTIEC2013 ¢ All rightsreserved 7

WG 23/N 043

characteristics of languages where the vulnerability may be found,

typical mechanisms of failure,

techniques that programmers can use to avoid the vulnerability, and

ways that language designers can modify language specifisatighe future to help programmers
mitigate the vulnerability.

= =4 =4 =4

Clause 7Application Vulnerabilitiegprovides descriptions of selected application vulnerabilities which have been
found and exploited in a number of applications and which have well kmoitigation techniques, and which

result from design decisions made by coders in the absence of suitable language library routines or other
mechanisms For these vulnerabilities, each description provides:

1 asummary of the vulnerability,
1 typicalmechanisms of failure, and
i techniques that programmers can use to avoid the vulnerability.

Clause 8New Vulnerabilitiesprovides new vulnerabilities that have not yet had corresponding programming
language annex text developed.

AnnexA, VulnerabilityTaxonomyand List is a categorization of the vulnerabilities of this report in the form of a
hierarchical outline and a list of the vulnerabilities arranged in alphabetic order by their three letter code.

AnnexB, Language Specific Vulnerability Templasa template for the writing of programming language specific
annexes that explain how the vulnerabilities from clause 6 are realized in that programming language (or show
how they are absent), and how they might be mitigated in langesageific terms.

Addtional annexes, each named for a particular programming language, list the vulnerabilities of Clauses 6 and 7
and describe how eachulnerability appearn the specific language and how it may be mitigated in that

language, whenever possible. All of taaguagedependent descriptions assume that the user adheres to the
standard for the language as listed in the siiduse of each annex.

5 Vulnerability issues

5.1 Predictable execution

There are many reasons why software might not execute as expectitsl dgvelopers, its users or other
stakeholders. Reasons include incorrect specifications, configuration management errors and a myriad of others.
This Technical Report focuses on one caube usage of programming languages in ways that render the
executbdn of the code less predictable.

Predictable executiois a property of a program such that all possible executions have results that can be
predicted from examination of the source codachieving predictability is complicated by that fact that software
may be used:

1 on unanticipated platformsf@r example ported to a different processor)
9 in unanticipated ways (as usage patterns change),
1 in unanticipated contextd@r example software euse and systerof-system integrations), and

8 © ISTIEC2013 ¢ All rights reserve

Baseline Edibn¢3 TR 24772

1 by unanticipated userddr examplethose seeking to exploit and penetrate a software system).

CdZNIKSNXY2NBZ (2RI Qa dzoAljdzAid2dza O2yySOGAGAGE 2F a2z
attackedrt either because it is a target for penetration or because it offers a springboard for penetration of other
software.! OO2NRAy3If &z G2RIFI@Q&a LINPINFYYSNR Ydzaad GF1S I RF
the new challenges.

Software vinerabilitiesare unwanted characteristics of softwatfeat may allow software to execute in watfsat
are unexpected.Programmers introduce vulnerabilities into software by using language features that are
inherently unpedictable in the variable circumstances outlined above or by using features in a manner that
reduces what predictability they could offe©f course, complete predictability is an ideal (particularly because
new vulnerabilities are often discovered thrdugxperience), but any programmer can improve predictability by
carefuly avoiding the introduction of known vulnerabilities into code.

This Technical Report focuses on a particular class of vulnerabidiigsiage vulnerabilitiesThese are

properties of programming languages that can contribute to (or are strongly correlatedapitiication

vulnerabilities security weaknesses, safety hazards, or defedts.example may clarify thelationship. The
LINEINJI YYSNRa dzaS 27F | & doidhetidlen@iena be ¥xploitedday ab atackef to i K |
place incorrect return values on the program stack, hence passing control of the execution to code provided by
the attacker. Thestring copying function is the language vulnerability and the resulting weakness of the program
in the face of the stack attack is the application vulnerabilithe programming language vulnerability enables

the application vulnerabilityThe languageulnerability can be avoided by using a string copying function that

does set appropriate bounds on the length of the string to be copigdusing a bounded copy function the
LINEINI YYSNI AYLINR@SE GKS LINBRAOGFIoAtAGE 2F (GKS O2RS

The primary pupose of this Technical Report is to survey common programming language vulnerabilities; this is
done in Clause 6Each description explains how an application vulnerability can rebuflause 7, a few

additional application vulnerabilities are desah These are selected because they are associated with language
weaknesses even if they do not directly result from language vulnerabilfi@sexample, a programmer might

have stored a password in plaixt (see7.20 Insufficiently Protected Credentid$§Y M) because the

programming language did not provide a suitable library function for storing the password irrecaverable

format.

In addition to considering the individual vulnerabiliti#ss instructive to consider the sources of uncertainty that
can decrease the predictability of softwar&hese sources are briefly considered in the remainder of this clause.

5.2 Sources of unpredictability in language specification

5.2.1 Incomplete or evolving specification

The design and specification of a programming language involves considerations that are very different from the
use of the language in programminganguage specifiers often need to maintain compatibility with older

versions of thdanguage even to the extent of retaining inherently vulnerable featuré&ometimes the
aSYlLyiada 2F yS6 2N O2YLX SE FSIGdzNB& | NBy Qi O2YLX S
features.

© ISTIEC2013 ¢ All rightsreserved 9

WG 23/N 043

5.2.2 Undefined behaviour

LG Q& &aA Y L fér the sheacifieds & proframming language to describe every possible behaviour. For
example, the result of using a variable to which no value has been assigned is left undefinaayttgnguages.

In such cases, a program might do anythimgcludingcrashing with no diagnostic or executing with wrong data,
leading to incorrect results.

5.2.3 Unspecified behaviour

The behaviour of some features may be incompletely defined. The language implementer would have to choose
from afinite set of choices, buthe choice may not be apparent to the programmer. In such cases, different
compilers may lead to different results.

5.2.4 Implementation -defined behaviour

In some cases, the results of execution may depend upon characteristics of the compiler that wabkeised
processor upon which the software is executed, or the other systems with which the software has intehfaces.
principle, one could predict the execution with sufficient knowledge of the implementation, but such knowledge
is sometimes difficult to latain. Furthermore, dependence on a specific implementati@fined behaviour will

lead to problems when a different processor or compiler is ussgimetimes if different compiler switch settings
are used.

5.2.5 Difficult features

Some language features mae difficult to understand or to use appropriately, either due to complicated
semanticsfor example floating point in numerical analysis applications) or human limitatifomrsgxample,

deeply nested program constructs or expressiormetimes simgl typing errors can lead to major changes in
behaviour without a diagnostiéqr examplefi @ LAYy 3 al¢ F2NJ [aadA3yYSyld 6KSy 2\
comparison).

5.2.6 Inadequate language support

No language is suitable for every possible applicatieurthermore, programmers sometimes do nave the

freedom to select the language that is most suitable for the task at hand. In many cases, libraries must be used to
supplement the functionality of the language. Then, the library itself becomes a faitsatirce of uncertainty
reducing the predictability of execution.

5.3 Sources of unpredictability in language usage

5.3.1 Porting and interoperation

When a program is recompiled using a different compiler, recompiled using different switches, exedhted wi
different libraries, executed on a different platform, or even interfaced with different systems, its behaviour will
change. Changes result from different choices for unspecified and implementifored behaviour,

differences in library function, ahdifferences in underlying hardware and operating system suppidre

10 © ISTIEC2013 ¢ All rights reserve

Baseline Edibn¢3 TR 24772

problem is far worse if the original programmer chose to use implementatependent extensions to the
language rather than staying with the standardized language.

5.3.2 Compiler sele ction and usage

Nearly all software has bugs and compilers are no excepfitiey should be carefully selected from trusted
sources and qualified prior to us®erhaps less obvious, though, is the use of compiler switdbé&erent switch
settingscanresult in differences in generated codA. careful selection of settings can improve the predictability
of code, for example, a setting that causes the flagging of any usage of an implemexqifiived behavioutr

6. Programming Language Vulnerabilities

6.1 General

This clause provides languaielependent descriptions of vulnerabilities in programming languages that can lead
to application vulnerabilitiesEach description provides:

1 a summary of the vulnerability,

characteristics of languages where thdnerability may be found,

typical mechanisms of failure,

technigues that programmers can use to avoid the vulnerability, and

waysthat language designers can modify language specifications in the future to help programmers
mitigate the vulnerability.

=A =4 =4 =4

Desciptions of how vulnerabilities are manifested in particular programming languages are provided in annexes
of this Technical Report. In each case, the behaviour of the language is assumed to be as specified by the stand:
cited in the annex. Clearly, pnagns could have different vulnerabilities in a rstandard implementation.

Examples of nostandard implementations include:

1 compilers written to implement some specification other than the stangard
9 use of nonstandard vendor extensions to the languaged
9 use of compiler switches providing alternative semantics.

6.2 Terminology

The following descriptions are written in a langudagdependent manner except when specific languages are
used in examplesThe annexes may be consulted for language spea8criptions.

This clause will, in general, use the terminology that is most natural to the description of each individual
vulnerability. Hence terminology may differ from description to description.

© ISTIEC2013 ¢ All rightsreserved 11

WG 23/N 043

6.3 Type System [IHN]

6.3.1 Description of application vulnerability

When data values are converted from one data type to another, even when done intentionally, unexpected
results can occur.

6.3.2 Cross reference

JSF AV Rugel48and 183

MISRA C 2004: 6.1, 6.2, 6.3, 10.1, and 10.5

MISRA C++ 2008:932, 50-3 to 50-14

CERT C guitiges: DCLOT, DCLEC, DCL3E, EXPOE and EXP32
AdaQualityand Style Guide: 3.4

6.3.3 Mechanism of failure

Thetype of a data object informs the compiler how values should be represented and which operations may be
applied. Thaype systenof a language is the set of rules used by the language to structure and organize its
collection oftypes Any dtempt to manipulate data objects with inappropriate operations iye error A

program is said to bgype safe(or type securgif it can be demonstrated that it has no type errc23]|

Every programming languag@s some sort of type systermh language istatically typedf the type of every
expression is known at compile tim&he type system is said to B&ongif it guarantees type safety andeakif
it does not. There are strongly typed languages thag awot statically typed because they enforce type safety
with runtime checksZ7].

In practical terms, nearly every language falls short of being strongly typed (in an ideal sense) because of the
inclusion of mechanisms to bypass type safety in particitanimstances.For that reason and because every
language has a different type system, this description will focus on taking advantage of whatever features for type
safety may be available in the chosen language.

Sometimes it is appropriate for a data valto be converted from one type to anotheompatibleone. For
example, consider the following program fragment, written in no specific language:

float a;
integer i;
a==a+i

The variablei"" is of integer type. It must be converted to the float type before it can be added to the data value.
An implicit conversion, as shown, is called coercibnon the other hand, the conversion must be explitit,
example "a := a + float(i) ", then the conversion is calledaast

Typeequivalencas the strictest form of type compatibility; two types are equivalent if they are compatible
without using coercion or casting.ype equivalence is usually characterized in termsaaie type equivalence
two variables have the same type if they are declared in the same declaration or declarations that use the same
type nama or structure type equivalencetwo variables have the same type if thegve identical structures.

12 © ISTIEC2013 ¢ All rights reserve

Baseline Edibn¢3 TR 24772

There are variations of these approaches and most languages use different combinations a28hefngrefore,
a programmer skilled in one language may very well code inadvertent type errors when using a different
language.

It is desirable for a program to be type safe because the application of operations to operands of an inappropriate
type may produce unexpected results. In addition, the presence of type errors can reduce the effectiveness of
static analysis for other probins. Searching for type errors is a valuable exercise because their presence often
reveals design errors as well as coding errdiany languages check for type errorsome at compildime,

others at runtime. Obviously, compiltéime checking is more W#able because it can catch errors that are not
executed by a particular set of test cases.

Making the most use of the type system of a language is useful in two Wags$, data conversions always bear
the risk of changing the value. For example, a eosion from integer to float risks the loss of significant digits
while the inverse conversion risks the loss of any fractional vallemversion of an integer value from a type with
a longer representation to a type with a shorter representation risksltiss of significant digitsThis can

produce particularly puzzling results if the value is used to index an ab@yversion of a floatinrgoint value

from a type with a longer representation to a type with a shorter representation risks the lossai$ipn. This

can be particularly severe in computations where thenber of calculations increasas a power of the problem
size. (It should be noted that similar surprises can occur when an application is retargeted to a machine with
different representations of numeric values.)

Second, grogrammercan use the type system to increase the probabditgatching design errors or coding
blunders. For example, the following Atagment declares two distinct floatirgoint types:

type Celsius is new Float;
type Fahrenheit is new Float;

The declaration makes it impossible to add a valueypé Celsius to a value of type Fahrenheit without explicit
conversion.

6.3.4 Applicable language characteristics

This vulnerability is intended to be applicable to languages with the following characteristics:
i Languages that support multiple types aatbw conversions between types.

6.3.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

9 Takeadvantage of any facility offered by the programming languiagdeclare distinct types and use any
mechanism provided by the language processor and related tools to check for or enforce type
compatibility.

1 Use available language atubls facilities to preclude or detect the occurrence of coercidinit is not
possible, use human revietw assist in searching for coercions.

1 Avoid casting data values except when there is no alternaacument such occurrences so that the
justification is made available to maintainers.

© ISTIEC2013 ¢ All rightsreserved 13

WG 23/N 043

1 Use the most restricted datiype that suffices to accomplish the joBor example, use an enumeration
type to select from a limited set of choicesi¢h asa switch statement or the discriminant of a union
type) rather than a more general type, such as intedgeris will make ipossible for tooling to check if all
possible choices have been covered.

1 Treat every compiler, tool, or rutime diagnostic concerning type compatibility as a serious issue. Do not
resolve the problem bynodifying the code by inserting an explicit castheut further analysisinstead
examine the underlying design to determine if the type error is a symptom of a deeper problem.

1 Never ignore instances of coercion; if the conversion is necesdaggeit to a cast and document the
rationale for use by matainers.

1 Analyze the problem to be solved to learn the magnitudes and/or the precisions of the quantities needed
as auxiliary variables, partial results and final results.

6.3.6 Implications for standardization

In future standardizatiomctivities the following items should be considered:

1 Language specifiers should standardize @ommon,uniform terminologyto describe their type systems
so that programmers experienced in other languages can reliably learn the type system of a language that
is new to hem.

1 Provide a mechanism for selecting data types with sufficient capability for the problem at hand.

Provide a way for the computation to determine the limits of the data types actually selected.

1 Language implementers should consider providing compiléckes or other tools to provide the highest
possible degree of checking for type errors.

=

6.4 Bit Representations [STR]

6.4.1 Description of application vulnerability

Interfacing with hardware, other systems and protocols often requires access to one or more bits in a single
computer word, or access to bit fields that may cross computer words for the machine in question. Mistakes can
bemadeastowhat A ia NS (2 0SS I 00S3aasSR2 P SOK AN GES I KBNIaBY R
of miscalculations Access to those specific bits may affect surrounding bits in ways that compromise their

integrity. This can result in the nong information being read from hardware, incorrect data or commands being
given, or information being mangled, which can result in arbitrary effects on components attached to the.system

6.4.2 Cross reference

JSF AV Ruléd7, 154 and 155

MISRA C 2004:3 6.4, 6.5, and 12.7

MISRA C++ 2008:0821, 52-4 to 52-9, and 95-1

CERT C guililees: EXP3&, INTOEC, INTOLC, INT1Z, INT1Z, and INTHE
AdaQualityand Style Guide: 7.6.1 throu@h6.9, and 7.3.1

14 © ISTIEC2013 ¢ All rights reserve

Baseline Edibn¢3 TR 24772

6.4.3 Mechanism of failure

Computer languagesdquently provide a variety of sizes for integer variables. Languages may support short,
integer, long, and even big integers. Interfacing with protocols, device drivers, embedded systems, low level
graphics or other external constructs may require ehittor set of bits to have a particular meaning. Those bit
sets may or may not coincide with the sizes supported by a particular languatgamentation When they do

not, it is common practice to pack all of the bits into one word. Masking and sluoftithg word using powers of
two to pick out individual bits or using sums of powers of 2 to pick out subsets ofdritsxample using
28=Z+2*+2* to create the mask 11100 and then shifting 2 bits) provides a way of extracting those bits.
Knowledge of the underlying bit storage is usually not necessary to accomplish simple extractions such as these.
Problems can arise when programmers mix theaht@iques to reference the bits or output the bit®roblems

can arise when programmers mix arithmetic and logical operations to reference the bits or output th&Hhsts.
storage ordering of the bits may not be what the programmer expects.

Packing of b in an integer is not inherently problematic. However, an understanding of the intricacies of bit
level programming must be knowrSome computers or other devices store the hetft-to-right while others

store themright-to-left. Thekind of storage an cause problems when interfacing with external devices that
expect the bits in the opposite order. One problem arises when assumptions are made when interfacing with
external constructs and the ordering of the bits or words are not the same as theirgcetity. Programmers
may inadvertently use the sign bit in a bit field and then may not be aware that an arithmetic shift (sign
extension) is being performed when right shifting causing the sign bit to be extended into other fields.
Alternatively, aéft shift can cause the sign bit to be onBit manipulations can also be problematic when the
manipulations are done on binary encoded records that span multiple words. The storage and ordering of the
bits must be considered when doingwise operatims across multiple words as bytes may be stored in big
endianor little-endianformat.

6.4.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages wittollogving characteristics:
9 Languages that allow bit manipulatians

6.4.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

1 Any assumption about bit orderg should be explicitly documented.

1 The way bit ordering is done on the host system and on the systems with which the bit manipulations will
be interfaced should be understood.

i Bit fields should be used in languages that support them.

1 Bit operators shouldot be used on signed operands.

9 Localize and document the code associated with explicit manipulation of bits and bit fields.

6.4.6 Implications for standardization

In future standardization activities, the following items should be considered:

© ISTIEC2013 ¢ All rightsreserved 15

WG 23/N 043

9 For languages that are commonly used for bit manipulation&RI§Application Programming Interface)
for bit manipulations that is independent of word size and machine instruction set should be defined and
standardized.

6.5 Floating -point Arithmetic [PLF]

6.5.1 Description of application vulnerability

Most real numbersannot be represented exactly in a computdio represent real numbers, most computers
uselEC 605597], or the US equivale®NSI/IEEE Std 753b]. Furthermore he bit representation for a floating

point number carvary from compiler to compiler and on different platform®wever relying on a particular
representation can cause problems when a different compiler is used or the code is reused on another platform.
Regardless of the representation, many real numlzans only be approximated since representing the real

number using a binary representatiomay wellrequire an endlessly repeating string of bits or more binary digits
than are available for representation. Therefore it should be assumed thadting-point number is only an
approximation, even though it may be an extremely good one. Floating representation of a real number or

a conversion to floatingoint can cause surprising results and unexpected consequences to those unaccustomed
to the idiosyncrasies of floatingoint arithmetic.

Many dgorithms that use floating point can have anomalous behaviour when used with certain values. The most
common results are erroneous results or algorithms that never terminate for certain segmehts mfitneric

domain, or for isolated valuesThose without training or experience in numerical analysis may not be aware of
which algorithmsor, for a particular algorithm, of which domain values should be the focus of attention.

6.5.2 Cross reference

JSFAV Rules: 146, 147, 184, 197, and 202

MISRA C 2004: 1.5, 12.13,3, and 13.4

MISRA C++ 2008483, 39-3, and 62-2

CERT C guililees: FLPOC, FPOL, FLPOZ and FLP3C
AdaQualityand Style Guides.5.6 and 7.2.1 througi.2.8

6.5.3 Mechanism of fai lure

Floatingpoint numbers are generally only an approximation of the actual valixressedi base 10 world, the
@l t dzS 2 F ™k Bhe dame typeaf sitoation ockurs in the binary world, thetnumbers that can be
represented with a limitechumber of digitdn base 10such as 1/10=0.1 become endlessly repeating sequences
in the binary world. So 1/10 represented as a binary number is:

neanaAaMMANMMAAMMAAMMAAMMAAMMAAMMAAMMAAMMAAMMAAMMIAIN

Which is 0%¥1/2 + 0*1/4 + 0*1/8 + 1*1/16 + 1*1/32+0*"d/n X YR y2 YI GGSNJI K2¢ Yl yeé F
representation will still only be an approximation of 1/10. Therefore when adding 1/10 ten times, the final result
may or may not be exactly 1.

Accumulating floating point values through the repeated additd values, particularly relatively small values,
can provide unexpected result&lsing an accumulated value to terminate a loop can result in an unexpected

16 © ISTIEC2013 ¢ All rights reserve

Baseline Edibn¢3 TR 24772

number of iterations.Rounding and truncation can cause tests of floafiint numbers againgtther values to
yield unexpected resultsAnother cause of floating point errors is reliance upon comparisons of floating point
values or the comparison of a floating point value with zeFests of equalitpr inequality can vary due to
rounding or trurcation errors, which may propagate far from the operation of origin. Even comparisons of
constants may fail when a different rounding mode was employed bydnepiler and by the application
Differences in magnitudes of floatifmgpint numbers can resulb no change of a very large floatipgint number
when a relatively small number is added to or subtracted fram it

Manipulating bits in floatingpoint numbers is also very implementation dependent. Typically special
representations are specified for pitive and negative zero and infinity. Relying on a particular bit representation
is inherently problematic, especially when a new compiler is introduced or the code is reused on another
platform. The uncertainties arising from floatipgint can be dided into uncertaiby about the actual bit
representation of a given valusuch asbigendian or littleendian) and the uncertaty arising from the rounding

of arithmetic operationsfor example the accumulation of errors when imprecise floatipgint values are used

as loop indices).

6.5.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

1 All languages with floatirgoint variables can be subject to roundingtouncation errors.
6.5.5 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

1 Do not use a floatingoint expression in a Boolean test for equality. lasteusecodingthat determines
the difference between the two values to determine whether the difference is acceptably small enough
a2 0KFrG Go2 OFftdzSa OFry 6S O2yaARSNBR SljdzZ f o b 2
Sy2dzaKé RA R ENBgOSmbert y o

1 Use library functions with known numerical characteristics whenever possible.

1 Unless the use of floatingoint is simplean expert in numerical analysis should check the stability and
accuracy of the algorithm employed.

1 Avoid the use of a floatirgoint variable as a loop counter. ilis necessary to use a floatiqapint value
as a loop control, use inequality to determine the loop conttloh(is,<, <=, > or >=).

1 Understand the floatingpoint format used to represdrthe floatingpoint numbers. This will provide
some understanding of the underlying idiosyncrasies of flogbioigt arithmetic.

1 Manipulating the bit representation of a floatiFgpint number should not be done except with biitt
language operators anfdinctions that are designed to extract the mantissa and exponent.

91 Do not use floatingpoint for exact values such as monetary amounts. Use flogiiigt only when
necessary such as for fundamentally inexact values such as measurements.

1 Consider the usef decimal floatingpoint facilities when available.

6.5.6 Implications for standardization

In future standardizatiomctivities the following items should be considered:

© ISTIEC2013 ¢ All rightsreserved 17

WG 23/N 043

1 Languages that do not already adhere to or only adhere to a sub$ECo80559 [Hhould consider
adhering completely to the standard. Examples of standardization that should be considered:
0 C should consider requmg IEC 6055%or floating-point arithmetig rather than providing it as an
option, as is the case in ISO/IEC 92091[4].
o Javashould consider fully adhering t&C 6055%stead of a subset.
9 Languages should consider providing a means to generate diagnostics for code that attempts to test
equality of two floating point values
1 Languages should consider standaitg their data type to ISO/IEC 10961994 andSO/IEC 10967
2:2001

6.6 Enumerator Issues [CCH

6.6.1 Description of application vulnerability

Enumerationsare a finite list of named entities that contain a fixed mapping from a set of names to a set of
integral values (called the representation) and an order between the members of the set. In some languages
there are no other operations avable except order, equality, first, last, previous, and next; in others the full

dzy RSNI @Ay 3 NBLINBaSydalaGA2y 2 LISNI 42 N MéeBirato8 Af | 6f S

Most languages that provide enumeration types also provide mechanismsest nondefault representations. If
these mechanisms do not enforce whdige operations and check for conflicts then some members of the set
may not be properly specified or may have the wrong piags If the valuesetting mechanisms are positional
only, then there is a risk that improper counts or changes in relative order will result in an incorrect mapping.

For arrays indexed by enumerations with ro@fault representations, there is a risk of structures with holes, and
if those indexes can be mamilated numerically, there is a risk of eof-bound accesses of these arrays.

Most of these errors can be readily detected by static analysis tools with appropriate coding standards,
restrictions and annotationsSimilarly mismatches in enumeration vakgecification can be detected statically.
Without such rules, errors in the use of enumeration types are computationally hard to detect statically as well as
being difficult to detect by human review.

6.6.2 Cross reference

JSF AV Rule: 145

MISRA C 2004:2 and 9.3

MISRA C++ 2008:533

CERT C guililees: INTOSC
Holzmanrrule 6

AdaQualityand Style Guide: 3.4.2

6.6.3 Mechanism of failure

As a program is developed and maintained the list of items in an enumeration often changes in three basic ways:
new elements are added to the list; order between the members of the set often changes; and representation
(the map of values of the items) changexpressions that depend on the full set or specific relationships between

18 © ISTIEC2013 ¢ All rights reserve

Baseline Edibn¢3 TR 24772

elements of the set can createlua errors that could result in wrong results or in unbounded behaviours if used
as array indices.

Improperly mapped representations can result in some enumeration values being unreachable, or may create
GK2ft Sa¢ Ay (KS NB LiNBcarBoyhe delife@ afprapdg&edS G f dzS &

If arrays are indexed by enumerations containing1default representations, some implementations may leave
space for values that are unreachable using the enumeration, with a possibilibnetessarily large memory
allocatonsor a way to pass information undetected (hidden channel).

When enumerators are set and initialized explicitly and the language permits incomplete initializers, then change:
to the order of enumerators or the addition or deletion of enumerators camltgas the wrong values being

assigned or default values being assigned improp&lybsequent indexingan result innvalidaccesses and

possibly unbounded behaviours.

6.6.4 Applicable language Characteristics

This vulnerability description is intendéal be applicable to languages with the following characteristics:

1 Languages that permit incomplete mappings between enumerator specification and value assignment, or
that provide a positionabnly mapping require additional static analysis tools and antimra to help
identify the complete mapping of every literal to its value.

9 Languages that provide a trivial mapping to a type such as integer require additional static analysis tools
to prevent mixed type errorsThey also cannot prevemtvalidvalues fom being placed into variables of
such enumerator types. For example:

enum Directions {back, forward, stop};
enum Directions a = forward, b = stop, c = a + b;

In this example¢ may have a value not defined by the enumeration, and any further use as that
enumeration will lead to erroneous results.

1 Some languages provide no enumeration capability, leaving it to the programmer to define named
constants to represent the values and ranges.

6.6.5 Avoiding the vulnerability or mitigating its effects

Software deelopers can avoid the vulnerability or mitigate its ill effects in the following ways:

i Use static analysis tools that will detect inappropriate use of enumerators, such as using them as integers
or bit maps, and that detect enumeration definition express that are incomplete or incorrect. For
languages with a complete enumeration abstraction this is the compiler.

6.6.6 Implications for standardization

In future standardizatiomctivities the following items should be considered:

1 Languages thaturrently permit arithmetic and logical operations on enumeration types could provide a
mechanism to ban such operations progravite.

© ISTIEC2013 ¢ All rightsreserved 19

WG 23/N 043

1 Languages that provide automatic defaults or that do not enforce static matching between enumerator
definitions and initalization expressions could provide a mechanism to enforce such matching.

6.7 Numeric Conversion Errors [FLJ

6.7.1 Description of application vulnerab ility

Certain contexts in various languages may require exact matches with respect to3gpes [

aVar := anExpression
valuel + value2
foo(argl, arg?2, ar g3, e ar gN)

Typeconversion seeks to follow these exact match rules while allowing programmers some flexibility in using
values such as: structuraljguivalent types in a namequivalent language, types whose value ranges may be
distinct but intersect (for example, subrges), and distinct types with sensible/meaningful corresponding values
(for example, integers and floatsxplicit conversions are callggbe casts An implicit typeconversion between
compatible but not necessarily equivalent typesalledype coercion

Numeric conversions can lead to a loss of data, if the target representation is not capable of representing the
original value. For example, converting from an integer type to a smaller integer type cétrirduncation if

the original value cannot be represented in the smaller size and converting a floating point to an integer can
result in a loss of precision or an eaftrange value.

Typeconversion errors can lead to erroneous data being generatgdyithms that fail to terminate, array
boundserrors,or arbitrary program execution.

6.7.2 Cross reference

CWE:
192. Integer Coercion Error
MISRA C 20040.1-10.6, 11.311.5, and 12.9
MISRA C++ 2008:13-3, 50-3, 50-4, 50-5, 50-6, 50-7, 50-8, 50-9, 50-10, 52-5, 52-9, and 53-2
CERT C guiliimes: FLP3€, INTOZ, INTO&C, INT34C, and INT3E&

6.7.3 Mechanism of failure

Numericconversion errorsesults in data integrity issugbut they may also result in a number of safety and
securityvulnerabilities

When the conversion results in no change in representation but a change in value for the new type, this may
result in a value that is not expressible in the new type, or that has a dramatically different order or meaning.
One such situatin is the change of sign between the origin and destination (negatip®sitive or positive>
negative), which changes the relative order of members of the two types and could result in memory access
failures if the values are used in address calcutetio

20 © ISTIEC2013 ¢ All rights reserve

Baseline Edibn¢3 TR 24772

Vulnerabilities typically occur when appropriate range checking is not performedjraanticipatedvalues are
encountered. These can result in safety issues, for examvplenthe Ariane Sauncherfailure occurred due to
an impropety handled conversion error resulting in the processor being shutd@8in

Conversiorerrors can also result in security issuds attackermay input gparticular numeric valuéo exploit a
flaw in the program logicThe resulting erroneous value mayethhbe used as an array indexloop iteratora
length, a sizestate datg or in some othesecuritycritical manner For example, a truncated integer value may
be used to allocate memory, while the actual length is used to copy information to the a#edated memory,
resulting in a buffer overflo30].

Numerictype-conversiorerrorsoften lead to undefined states of execution resulting in infinite loops or crashes.
In some cases, integgype-conversionerrors can lead to exploitable buffer overflow conditions, resulting in the
execution of arbitrary code. Integéype-conversionerrors result in an incorrect value being stored for the
variable in question.

6.7.4 Applicable language characteristics

Thisvulnerability description is intended to be applicable to languages with the following characteristics:

Languages that perform impliditpe-conversion (coercion).

Weakly typed languages that do not strictly enforce type rules.
Languages that support logi¢ arithmetic, or circular shiftn integer values
Languages that do not generate exceptions on problematic conversions.

=A =4 =4 =4

6.7.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill &facthe following ways:

1 The first line of defense against integer vulnerabilities should be range checking, either explicitly or
through strong typing. All integer values originating from a source that is not trusted should be validated
for correctnessHowever, it is difficult to guarantee that multiple input variables cannot be manipulated
to cause an error to occur in some operation somewhere in a pro¢8am

1 An alternative or ancillary approach is to protect each operatidowever, because of tHarge number
of integer operations that are susceptible to these problems and the number of checks required to
prevent or detect exceptional conditions, this approach can be prohibitively labor intensive and expensive
to implement.

1 Alanguage that generas exceptions on erroneous data conversions might be chadesign objects
and program flow such that multiple or complex casts are unneces&arsure that any data type casting
that you must use is entirely understood to reduce the plausibility aframr use.

1 The use of static analysis can often identify whether or not unacceptable numeric conversions will occur.

Verifiably inrange operations are often preferable to treating out of range values as an error condition because
the handling of these errors has been repeatedly shown to cause dafrsairvice problems in actual

applications. Faced with a numeric conversion erroe, inderlying computer system may do one of two things:
(a) signal some sort of error condition, or (b) produce a numeric value that is within the range of representable
values on that system. The latter semantics may be preferable in some situatiorsg inalows the computation

© ISTIEC2013 ¢ All rightsreserved 21

WG 23/N 043

to proceed, thus avoiding a denial-service attack. However, it raises the question of what numeric result to
return to the user.

A recent innovation fromiSO/IEC TR 24731 13] that has been added to the C standard 9899 2P{M]is the
definition of thersize_t type for the Qorogramming languageExtremely large object sizes are frequently a
aA3dy GKFG |y 2062 3ncaredy. Farietasplegnegativerurb@rdzippedr 8Rvery larsiéve
numbers wherconverted to an unsigned type lilsize t . Also, some implementations do not suppoljects
as large as the maximum value that can be represented bydigeet . Forthesereasons, it is sometimes
beneficial to restrict the range of object sizes to detect programming eriieos.implementations targeting
machines with large address spaciess recommended thaRSIZE_MAXbe defined as the smaller of the size of
the larges object supported o(SIZE_MAX >> 1) , even if this limit is smaller than the sizesoime legitimate,
but very large, objects. Implementations targeting machines with sagalfess spaces may wish to define
RSIZE_MAXasSIZE_MAX which means that ther&s no object size that is considered a runtiroenstraint
violation.

6.7.6 Implications for standardization
In future standardizatiomctivities the following items should be considered:

9 Languages should consider providing means similar to the IS@8EX201L [4] definition ofrsize_t
type for Cto restrict object sizes so as to expose programming errors.

1 Languages should consider makingygke-conversionsexplicit or at least generating warnings for implicit
conversions where loss of data might occ

6.8 String Termination [CIM

6.8.1 Description of application vulnerability

Some programming languages use a termination character to indicate the end of a string. Relying on the
occurrence of the string termination character without verification can lead to either exploitation or unexpected
behaviour

6.8.2 Cross reference

CWE:
170. Improper Null Termination
CERT C guililees: STRO8, STR3C, STR3E, and STR36

6.8.3 Mechanism of failure

String termination errors occur when the termination character is solely relied upon to stop processing on the
stringandthe termination claracter is not present. Continued processing on the string can cause an error or
potentially be exploited as a buffer overflow. This may occur as a result of a programmer making an assumption
that a string that is passed as input or generated by a lbcantains a string termination character when it does

not.

22 © ISTIEC2013 ¢ All rights reserve

Baseline Edibn¢3 TR 24772

Programmers may forget to allocate space for the string termination character and expect to be able to store an
length character string in an array thatnisharacters long. Doing so may wanksome instances depending on
what is stored after the array in memory, but it may fail or be exploited at some point.

6.8.4 Applicable language characteristics
This vulnerability description is intended to be applicable to languages with the follonangatéristics:

1 Languages that use a termination character to indicate the end of a string.
9 Languages that do not do bounds checking when accessing a string or array.

6.8.5 Avoiding the vulnerability or mitigating its effects
Software developers can avdige vulnerability or mitigate its ill effects in the following ways:

1 Do not rely solely on the string termination character.
1 Use library calls that do not rely on string termination characters suslriaspy instead ofstrcpy in
the standard C library.

6.8.6 Implications for standardization

In future standardizatiomctivities the following items should be considered:

1 Eliminating library calls that make assumptions about string termination characters.
1 Checking bounds when amray or string is accessed.
1 Specifying a string construct that does not need a string termination character.

6.9 Buffer Boundary Violation (Buffer Overflow) [HCB]

6.9.1 Description of application vulnerability

A buffer boundary violatioarises when, due to unchecked array indgxar unchecked array copying, storage
outside the buffer is accessedlsually boundary violations describe the situation where such storage is then
written. Depending on where the buffer is located, logically unrelated portions of the stack or the beladbe
modified maliciously or unintentionallyJsually, buffer boundary violations are accesses to contiguous memory
beyond either end of the buffer data, accessing before the beginning or beyond the end of the buffer data is
equally possible, dangeroasd maliciously exploitable.

6.9.2 Cross reference

CWE:
MHAN® . dZFFSNI 0218 6AGK2dzi / KSO1Ay3a {AT S 2F Ly Lz
122. Heapbased Buffer Overflow
MHN® . 2dzy RENE . SIAYYAYy3I +A2fl GA2Yy oW. dZFFSNJ ! yRSN
129. Unchecked Array Indexing
131 Incorrect Calculation of Buffer Size
787. Out-of-bounds Write
805. Buffer Access with Incorrect Length Value

© ISTIEC2013 ¢ All rightsreserved 23

WG 23/N 043

JSF AV Rule: 15 and 25

MISRA C 2004: 21.1

MISRA C++ 2008:0615 to 50-18

CERT C guidelines: ARR3®ARR3EZ, ARR3&, ARR3&, MEM35C and STH3C

6.9.3 Mechanism of failure

The program statements that cause buffer boundary violations are often difficult to find.

There are several kinds of failures (in all cases an exception may be raised if the accessed location is outside of
some permitted rang of the runtime environment):

|l

A read access will return a value that has no relationship to the intended value, such as, the value of
another variable or uninitialized storage.

An outof-bounds read access may be used to obtain information that is ieéno be confidential.

A write access will not result in the intended value being updated and may result in the value of an
unrelated object (that happens to exist at the given storage location) being modifieldding the
possibility of changes in exteal devices resulting from the memory location being hardwaspped.
When an array has been allocated storage on the stack aofabunds write access may modify
internal runtime housekeeping information (for example, a function's return address) wikigit change

I LINP3INFYQa O2yiGNRBEf Ff260

An inadvertent or malicious overwrite of function pointers that may be in meneaysinghem to point

to an unexpected location dhe attacker's code Even in applications that do not explicitly use function
pointers, the runtime will usually store pointers to functions in memotfyor example, object methods in
objectoriented languages are generally implemented using function pointers in a datastuart
structures that are kept in memoryl'he consequence of a buffer boundary violation can be targeted to
cause arbitrary code execution; this vulnerability may be used to subvert any security service.

6.9.4 Applicable language characteristics

This vuherability description is intended to be applicable to languages with the following characteristics:

1

Languages that do not detect and prevent an array being accessed outside of its declared bounds (either
by means of an index or by poinfgr

Languagethat do not automatically allocate storage when accessing an array element for which storage
has not already been allocated.

Languages that provide bounds checking but permit the check to be suppressed.

Languages that allow a copy or move operation with@uutomatic length check ensuring that source

and target locations are of at least the same size. The destination target can be larger than the source
being copied.

1 Using the physical memory address to access the memory location.

24

© ISOIEC2013 ¢ All rights reserve

Baseline Edibn¢3 TR 24772

6.9.5 Avoiding the vulnerability or mitigating its effects
Software developers can avdige vulnerability or mitigate its ill effects in the following ways:

1 Use of implementatiosprovided functionality to automatically check array element accesses and prevent
out-of-bounds accesses.

1 Use of static analysis to verify that all array accessesvithin the permitted bounds. Such analysis may
require that source code contain certain kinds of information, such as, that the bounds of all declared
arrays be explicitly specified, or that prand postconditions be specified.

9 Sanity checks should Iperformed on all calculated expressions used as an array index or for pointer
arithmetic.

Some guideline documents recommend only using variables having an unsigned data type when indexing an
array, on the basis that an unsigned data type can never bativeg This recommendation simply converts an
indexing underflow to an indexing overflow because the value of the variable will wrap to a large positive value
rather than a negative one. Also some languages support arrays whose lower bound is greagertha@o an

index can be positive and be less than the lower boudme languages support zesized arrays, SO any
reference to a location within such an array is invalid.

In the past the implementation of array bound checking has sometimes incutatiivas been considered to be

a high runtime overhead (often because unnecessary checks were performed). It is now practical for translators
to perform sophisticated analysis that significantly reduces the runtime overhead (because runtime checks are
only made when it cannot be shown statically that no bound violations can occur).

6.9.6 Implications for standardization
In future standardization activities, the following items should be considered:

9 Languages should provide safe copying of arrays asibwoitteration.

1 Languages should consider only providing array copy routines in libraries that perform checks on the
parameters to ensure that no buffer overrun can occur.

1 Languages should perform automatic bounds checking on accesses to array elamérgshe compiler
can statically determine that the check is unnecessdiyis capability may need to be optional for
performance reasons.

9 Languages that use pointer types should consider specifying a standardized feature for a pointer type tha
would enablearray bounds checking.

6.10 Unchecked Array Indexing [XYZ]

6.10.1 Description of application vulnerability

Unchecked array indexing occurs wheralueis used as an index into an array without checking that it falls
within the acceptable index range

© ISTIEC2013 ¢ All rightsreserved 25

WG 23/N 043

6.10.2 Cross reference

CWE:
129. Unchecked Array Indexing
676.Use of Potentially Dangerous Function
JSF AV Rules: 164 and 15
MISRA C 2004: 21.1
MISRA C+2008: 50-15 to 50-18
CERT C guililees: ARR3C, ARR3EZ, ARR3&, and ARR38
AdaQualityand Style Guide: 5.5.1, 5.5.2, 7.6.7, and 7.6.8

6.10.3 Mechanism of failure

A single fault could allow both an overflow and underflow of the array indexindexoverflow exploit might use
buffer overflow techniques, but this can often be exploited without having to provide "large inpé&tsay index
overflows can also trigger owif-bounds read operations, or operations on the wrong objeittat is, "buffer
overflows" are not always the result. Unchecked array indexing, depending on its instantiation, can be responsible
for any number of related issue$dost prominent of these possible flaws is the buffer overfloandition,with
consequences ramgg from denial of service, and data corruption, to arbitrary code executidime most

common situation leading to unchecked array indexing is the use of loop index variables as buffer itfdbees.
end condition for the loop is sulgéto a flaw, the index can grow or shrink unbounded, therefore causing a
buffer overflow or underflow.Another common situation leading to this condition is the use of a function's
return value, or the resulting value of a calculation directly as anxiimiéo a buffer.Unchecked array indexing
can result in the corruption of relevant memory and perhaps instructions, lead to the program halting, if the
values are outside of the valid memory ardathe memory corrupted is data, rather than instructgrnhe

system might continue to function with improper valud§the corrupted memory can be effectively controlled, it
may be possible to execute arbitrary code, as with a standard buffer overflow.

Language implementations might or might not staticdiyect out of bound access and generate a compitee
diagnostic. At runtime the implementation might or might not detect tha-of-boundaccess and provide a
notification. The natification might be treatable by the program or it might not be. Acsessght violate the
bounds of the entire array or violate the bounds of a particinaex It is possible that the former is checked and
detected by the implementation while the latter is nothe information needed to detect the violation might or
mightnot be available depending on the context of ugeor example, passing an array to a subroutine via a
pointer might deprive the subroutine of information regarding the size of the array.)

Aside from bounds checking, some languages have ways of prgiegainsbut-of-boundsaccesse. Some

languages automatically extend the bounds of an array to accommodate accesses that might otherwise have been
beyond the bounds. However, this may or may not match the programmer's intent and can mask errors. Some
languages provide for whole array operations that may obviate the need to access individual elements thus
preventing unchecked array accesses.

6.10.4 Applicable language characteristics

This vulnerability description is intended to be applicable to langsiagth the following characteristics:

26 © ISTIEC2013 ¢ All rights reserve

Baseline Edibn¢3 TR 24772

1 Languages that do not automatically bounds check array accesses.
1 Languages that do not automatically extend the bounds of an array to accommodate array accesses.

6.10.5 Avoiding the vulnerability or mitigating its effe cts

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

1 Include sanity checks to ensure the validity of any values used as index variables.
1 The choice could be made to use a language that is not susceptithles®e issues.
1 When available, use whole array operations whenever possible.

6.10.6 Implications for standardization
In future standardizatiomctivities the following items should be considered:

1 Languagsshould consider providing compiler switches or other tools to check the size and bounds of
arrays and their extents that are statically determinable.

1 Languages should consider providing whole array operations that may obviate the need to access
individualelements.

1 Languages should consider the capability to generate exceptions or automatically extend the bounds of
an array to accommodate accesses that might otherwise have been beyond the bounds.

6.11 Unchecked Array Copying [XYW]

6.11.1 Description of application vulnerability

A buffer overflow occurs when some number of bytes (or other units of storage) is copied from one buffer to
another and the amounbeing copied is greater than is allocated for the destination buffer.

6.11.2 Cross reference

CWE:
121.Stackbased Buffer Overflow
JSF AV Rule: 15
MISRA C 2004: 21.1
MISRA C++ 2008:(615 to 50-18
CERT C guililees: ARR3E and STR3T
AdaQualityand Style Guide: 7.6.7 and 7.6.8

6.11.3 Mechanism of failure

Many languages and some third party libraries provide functions that efficiently copy the contents of one area of
storage to another area of storage. Most of these libraries do not perfornthegks to ensure that the copied
from/to storage area is large enough a@commodateghe amount of data being copied.

The arguments to these library functions include the addresses of the contents of the two storage areas and the
number of bytes (or sometber measure) to copyPassing the appropriate combination of incorrect start
addresses or number of bytes to copy makes it possible to read or write outside of the storage allocated to the

© ISTIEC2013 ¢ All rightsreserved 27

WG 23/N 043

source/destination area. When passed incorrect parameters brarly function performs one or more
unchecked array index accesses, as describéd.inUnchecked Array IndexifgY 4.

6.11.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

1 Languages that contastandardlibrary functions for performing bulk copying of storageas.
1 The same range of languages having the characteristics listetiliunchecked Array IndexifgY Z.

6.11.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

1 Only use library functions that perform checks on the arguments to ensure no buffer overrun cen occ
(perhaps by writing a wrapper for the Standard provided functioR&form checks on the argument
expressions prior to calling the Standard library function to ensure that no buffer overrun will occur.

i Use static analysis to verify that the appropeidibrary functions are only called with arguments that do
not result in a buffer overrun. Such analysis may require that source code contain certain kinds of
information, for example that the bounds of all declared arrays be explicitly specified, drpgtex and
post-conditions be specified as annotations or language constructs.

6.11.6 Implications for standardization
In future standardizatiomctivities the following items should be considered:

9 Languages should consider only providing libraries tleafigom checks on the parameters to ensure that
no buffer overrun can occur.
1 Languages should consider providing full array assignment.

6.12 Pointer Casting and Pointer Type Changes [HF(C]

6.12.1 Description of application vulnerability

The code produced for access via a data or function pointer requires that the type of the pointer is appropriate

for the data or functiod SAy 3 | O0OS&aaSR® hiKSN¥AAS dzyRSTAYSR 0SKI -
RFGF LIR2AYGSNE A& RSTFAYSR (2 0S aFSGOK 2NJ Aa02NB AYRA
RSTAYSR (2 0S aAy@20LBAFUSNIIPRANBERSE BSG KNP 8B KNB K tizd NS
GFLIINZPLINR I GS¢ GelIS YIFIe @FNEB Yz2y3a €l y3dzZd 3Sao

Even if the type of the pointer is appropriate for the access, erroneous pointer operations can still cause a fault.

6.12.2 Cross reference

CWE
136. Type Errors
188. Reliance on Data/Memory Layout

28 © ISTIEC2013 ¢ All rights reserve

Baseline Edibn¢3 TR 24772

JSF AV Rules: 182 and 183

MISRA C 2004: 11.1, 11.2,11.3,11.4, and 11.5
MISRA C++ 2008:52 to 52-9

CERT C guililees: INT14C and EXP3a

Hatton 13: Pointer casts

AdaQualityand Style Guide: 7.6ahd 7.6.8

6.12.3 Mechanism of failure

LT I LRAYIGSNRa GeLlsS Aa y20 FLIINBLNAFGS F2N GKS RE
be broken by inappropriate read or write operation using the indirection provided by the poinigz.Vélith a

suitable type definition, large portions of memory can be maliciously or accidentally modified or read. Such
modification of data objects will generally lead to value faults of the applicatidodification of code elements

such as function gaters or internal data structures for the support of objewnientation can affect control flow.

This can make the code susceptible to targeted attacks by causing invocation via a-fmfatestion that has

0SSY Yl yALMz I 6§ SR UGrgaicbiskodei G2 'y Fadl O SNRa

6.12.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

1 Pointers (and/or references) can be converted to different pointer types.
1 Pointers to funtions can be converted to pointers to data.

6.12.5 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:
9 ¢NBFG G§KS O 2c6mdrdios Wihings Ederibug érdrbld
1 Adopt programming guidelines (preferably augmented by static analysis) that restrict pointer conversions.
For example, consider the rules itemized above from JJESA\CERT [11] Hatton[18], or MISRA C
[12].

1 Other means of assurance might include proofs of correctness, analysis with tools, verification
technigquesor other methods

6.12.6 Implications for standardization

In future standardizatiomctivities the following items should be considered:

1 Languageshould consider creating a mode that provides a runtime check of the validity of all accessed
objects before the object is read, written or executed.

6.13 Pointer Arithmetic [RVG]

6.13.1 Description of application vulnerability

Using pointer arithmetic incorrectly caasult inaddresing arbitrary locations, which in turn can cause a program
to behave in unexpected ways.

© ISTIEC2013 ¢ All rightsreserved 29

WG 23/N 043

6.13.2 Cross reference

JSF AVUke: 215
MISRA C 20047.1,17.2,17.3, and 17.4

MISRA C++ 2008:0615 to 50-18
CERT C guiliiges: EXPOE

6.13.3 Mechanism of failure

Pointer arithmetic used incorrectly can produce:

1 Addressing arbitrary memory locatigriacluding buffer underflovand overflow.
1 Arbitrary code execution.
1 Addressing memory outside the range of the program

6.13.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

1 Languagethat allow pointer arithmetic.

6.13.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

9 Avoid using pointer arithmetic for accessing anything except caitgptypes
1 Prefer indexing for accessing array elements rather than using pointer arithmetic
1 Limit pointer arithmetic calculations to the addition and subtraction of integers.

6.13.6 Implications for standardization
[None]

6.14 Null Pointer Dereference [XYH]

6.14.1 Description of application vulnerability

A nultpointer dereference takes place when a pointer with a valudlbiLLis used as though it pointed to a valid
memory locationThis is a special case of accessing storage via an invalid pointer.

6.14.2 Cross reference

CWE:

476. NULL Pointer Dereference
JSF AV Rule 174
CERT C guililees: EXP3C
AdaQualityand Style Guide: 5.4.5

30 © ISTIEC2013 ¢ All rights reserve

Baseline Edibn¢3 TR 24772

6.14.3 Mechanism of failure

When apointer with a value oNULLIis used as though it pointed to a valid memory location, then apuiliter
dereference is said to take place. Ttamresult in a segmentation fault, unhandled eptien, oraccessing
unanticipated memory locations.

6.14.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

1 Languages that permit the use of pointers and tatnot check the validity of the location being
accessed prior to the access.
1 Languages that allow the use oN&JLL pointer.

6.14.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid thelwverability or mitigate its ill effects in the following ways:
9 Before dereferencing a pointer, ensure it is not equaNtdLL

6.14.6 Implications for standardization

In future standardizatiomctivities the following items should be considered:

1 Alanguag featurethat would check a pointer valutor NULLbefore performinganaccesshould be
considered.

6.15 Dangling Reference to Heap [XYK]

6.15.1 Description of application vulnerability

A dangling reference is a reference to an object whose lifetime has ended due to explicit deallocation or the stacl
frame in which the object resided has been freed due to exiting the dynamic sdtgememory fothe object

may be reused; therefore, any access through the dangling reference may affect an apparently arbitrary location
of memory, corrupting data or code.

This description concerns the former case, dangling references to the Adepdescription oflangling
references to stack frames[BCM. In many languages references are called pointers; the issues are identical.

A notable special case of using a dangling referéncalling a deallocator, for exampfege(), twice on the
samepointervalue { dzZOK | a52dz0f S CNBSE¢ YIF & O2NNYzLIW Ay dSNYI €
leading to faulty application behaviour (such as infinite loops within the allocator, returning the same memory
repeatedly as the resutif distinct subsequent allocations, or deallocating memory legitimately allocated to
another request since the firétee() call, to name but a few), or it may have no adverse effects at alll.

Memory corruption through the use of a dangling reference i@agithe most difficult of errors to locate.

© ISTIEC2013 ¢ All rightsreserved 31

WG 23/N 043

With sufficient knowledge about the heap management scheme (often provided b H®@perating Systengr
run-time system), use of dangling references is an exploitable vulnerability, since the danglingaeferevides

a method with which to read and modify valid data in the designated memory locations after freed memory has
been reallocated by subsequent allocations.

6.15.2 Cross reference

CWE:
415. Double Free (Note that Double Free (415) is a speciabtalse After Free (416))
416. Use After Free

MISRA C 2004: 1761

MISRA C++ 2008:391, 7-5-1, 7-5-2, 7-5-3, and 184-1

CERT C guililees: MEMO01C, MEM36C, and MEM31.C

AdaQualityand Style Guide: 5.4.5, 7.3.3, and 7.6.6

6.15.3 Mechanism of failure

Thelifetime of an object is the portion of program execution during which storage is guaranteed to be reserved
for it. An object exists and retains its legbred value throughout its lifetime. If an object is referred to outside of
its lifetime, the behaviar is undefined.Explicit deallocation of heagllocated storage ends the lifetime of the
object residing at this memory location (as does leaving the dynamic scope of a declared vafiabledlue of a
pointer becomes indeterminate when the objecpibints to reaches the end of its lifetime. Such pointers are
called dangling references.

The use of dangling references to previously freed memory can have any number of adverse conseguences
ranging from the corruption of valid data to the execution dfikary code, depending on the instantiation and

timing of the deallocation causing all remaining copies of the reference to become dangling, of the system's reuse
of the freed memory, and of the subsequent usage of a dangling reference.

Like memory leakand errors due to double dallocation, the use of dangling references has two common and
sometimes overlapping causes:

1 An error condition or other exceptional circumstandleat unexpectedly cause an object to become
undefined
1 Developer confusion overhich part of the program is responsible for freeing the memory.

If a pointer to previously freed memory is used, it is possible that the referenced memory has been reallocated.
Therefore, assignment using the original pointer has the effect of chatiggngalue of an unrelated variable.

This induces unexpected behaviour in the affected progrirthe newly allocated data happens to hold a class
description, in an objeebriented language for example, various function pointers may be scattered wfitain

heap data.If one of these function pointers is overwritten with an address of malicious code, execution of
arbitrary code can be achieved.

6.15.4 Applicable language characteristics

This vulnerability description is intended to be applicable to laggs with the following characteristics:

32 © ISTIEC2013 ¢ All rights reserve

Baseline Edibn¢3 TR 24772

1 Languages that permit the use of pointers and that permit explicit deallocation by the developer or
provide for alternative means to reallocate memory still pointed to by some pointer value

9 Languages that permitefinitions of constructs that can be parameterized without enforcing the
consistency of the use of parameter at compile time.

6.15.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate itdfiflots in the following ways:

1 Use an implementation that checks whether a pointer is used that designates a memory location that has
already been freed.

1 Use a coding style that does not permit deallocation.

1 In complicated error conditions, be sure thataheup routines respect the state of allocation properly.
the language is objedairiented, ensure that object destructors delete each chunk of memory only once.
Ensuring that all pointers are setMlULLonce the memory they point to have been freechdze an
effective strategy.The utilization of multiple or complex data structures may lower the usefulness of this
strategy.

1 Use a static analysis tool that is capable of detecting some situations when a pointer is used after the
storage it refers to im0 longer a pointer to valid memory location.

1 Allocating and freeing memory in different modules and levels of abstraction burdens the programmer
with tracking the lifetime of that block of memony.his may cause confusion regarding when and if a
block ofmemory has been allocated or freed, leading to programming defects such as dmele
vulnerabilities, accessing freed memory, or dereferendittiL pointers or pointers that are not
initialized. To avoid these situations, it is recommended that menmmallocated and freed at the same
level of abstraction, and ideally in the same code module.

6.15.6 Implications for standardization

In future standardizatiomctivities the following items should be considered:

1 Implementations of the free function coutdlerate multiple frees on the same reference/pointer or frees
of memory that was never allocated.

9 Language specifiers should design generics in such a way that any attempt to instantiate a generic with
constructs that do not provide the required capai$ results in a compiléme error.

9 For properties that cannot be checked at compile time, language specifiers should provide an assertion
mechanism for checking properties at rtime. It should be possible to inhibit assertion checking if
efficiency $ a concern.

9 A storage allocation interface should be provided that will allow the called function to set the pointer
used to NULL after the referenced storage is deallocated.

© ISTIEC2013 ¢ All rightsreserved 33

WG 23/N 043

6.16 Arithmetic Wrap -around Error [FIF]

6.16.1 Description of application vulnerability

Wrap-around errors can occur whenever a value is incremented past the maximum or decremented past the
minimum value representable in itgpe and, depending upon

1 whether the type is signed or unsigned
1 the specification of the language semantics and/or
1 implementation choices,

"wraps around” to an unexpected valuEhis vulnerability is related .17 Using Skit Operationsfor
Multiplication and DivisiofPIK?2.

6.16.2 Cross reference

CWE:

128. Wraparound Error

190. Integer Overflow or Wraparound
JSF AV Rules: 164 and 15
MISRA C 2004: 10.1 to 10.6, 12.8 and 12.11
MISRA C++ 2008:13-3, 50-3 to 50-10, and 519-1
CERT C guidelines: INTBONT3ZC, and INT3€

6.16.3 Mechanism of failure

5dzS (G2 K2g¢ FNAGKYSGAO A& LISNF2NN¥VSR o0& O2YLJziSNBXZ AT
representable in its type, the system may fail to provide an overflow indication to the progbama.of the most
O02YY2y LINPOSaa2NILEKIIZA 2dzNISANER (f2 NdBSS yS3IF GA GBS Ot dzS3
underflow, or saturate at the largest representable value.

Wrap-around often generates an unexpected negative value; this unexpected value may cause a loop to continue
for a longtime (because the termination condition requires a value greater than some positive value) or an array
bounds violation. A wrajaround can sometimes trigger buffer overflows that can be used to execute arbitrary
code.

It should be noted that the precis@uesequences of wrapround differ depending on:

1 Whether the type is signed or unsigned

1 Whether the type is a modulus type

T 2KSGKSNJ GKS G(GeliSQa NI y3IS Aa OAz2tlGSR 60& SEOSSRAY
the minimum representable vadu

1 The semantics of the language specification

1 Implementation decisions

2 This description is derived from Wrapound Error [XYY], which appeared in Edition 1 of this international technical report.

34 © ISTIEC2013 ¢ All rights reserve

Baseline Edibn¢3 TR 24772

However, in all cases, the resulting problem is that the value yielded by the computation may be unexpected.
6.16.4 Applicable language characteristics
This vulnerability description is intended to be applicable to languages with the following characteristics:
9 Languages that do not trigger an exception condition when a varapnd error occurs.
6.16.5 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:
1 Determine applicable upper and lower bounds for the range of all variables and use language mechanisir
or static analysis to determine that values are ¢oed to the proper range.
1 Analyze the software using static analysis looking for unexpected consequences of arithmetic operations.
6.16.6 Implications for standardization
In future standardization activities, the following items should be considered:
1 Language standards developers should consider providing facilities to specify either an error, a saturated
value, or a modulo result when numeric overflow occudeally, the selection among these alternatives

could be made by the programmer.

6.17 Using Shift Operations for Multiplication and Division [PIK]

6.17.1 Description of application vulne rability

Using shift operations as a surrogate for multiply or divide may produce an unexpected valuéhetsgm bit is
changed or when value bits are losthis vulnerability is related 16.16 Arithmetic Wraparound ErrofFIf3.

6.17.2 Cross reference

CWE:

128. Wraparound Error

190. Integer Overflow or Wraparound
JSF AV Rules: 164 and 15
MISRAC 2004: 10.1to0 10.6, 12.8 and 12.11
MISRA C++ 2008:13-3, 50-3 to 50-10, and 519-1
CERT C guidelines: INTBONT3ZC, and INT3C

6.17.3 Mechanism of failure

Shift operations intended to produce results equivalent to multiplication or division fail to produce correct results
if the shift operation affects the sign bit or shifts significant bits from the value.

3This description is derived from Wragound Error [XYY], udh appeared in Edition 1 of this international technical report.

© ISTIEC2013 ¢ All rightsreserved 35

WG 23/N 043

Such error®ften generate an unexpected negativalue; this unexpected value may cause a loop to continue for
a long time (because the termination condition requires a value greater than some positive value) or an array
bounds violation.The errorcan sometimes trigger buffer overflows that can be usedxecute arbitrary code.

6.17.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:
1 Languages that permit logical shift operations on variables of arithrgie

6.17.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

1 Determine applicable upper and lower bounds for the range of all variables and use langaealganisms
or static analysis to determine that values are confined to the proper range.

1 Analyze the software using static analysis looking for unexpected consequences of shift operations.

1 Avoid using shift operations as a surrogate for multiplicadiod division.Most compilers will use the
correct operation in the appropriate fashion when it is applicable.

6.17.6 Implications for standardization
In future standardization activities, the following items should be considered:
9 Not providing logicaltsfting on arithmetic values or flagging it for reviewers.

6.18 Sign Extension Error [XZI]

6.18.1 Description of application vulnerability
Extending a signedhaviable that holds a negative value marpducean incorrect result.
6.18.2 Cross reference

CWE:

194. Incorrect Sign Extension
MISRA C++ 2008:054
CERT C guililges: INT13C

6.18.3 Mechanism of failure

Converting a signed data type to a larger data tgp@ointer can cause unexpected behaviour due to the
extension of the sign bit. Aegativedata element that is extendedith an unsigned extension algorithm will
produce an incorrect resultor instance, this can occur when a signed character isscmuvto a type short or a
signed integer (3dit) is converted to an integer type long (64). Sig extension errors calead tobuffer

overflows and other memory based problemBhis can occur unexpectedly when moving software designed and
tested ona 32bit architecture to a 64bit architecture computer.

36 © ISTIEC2013 ¢ All rights reserve

Baseline Edibn¢3 TR 24772

6.18.4 Applicable language characteristics
This vulnerability description is intended to be applicable to languages with the following characteristics:

1 Languages that are weakly typed due to thetklaf enforcement of type classifications and interactions.
1 Languages that explicitly or implicitly allow applying unsigned extension operations to signed entities or
viceversa.

6.18.5 Avoiding the vulnerability or mitigating its effects
Software developes can avoid the vulnerability or mitigate its ill effects in the following ways:

1 Use a sign extension libraistandard function or appropriate languagspecific coding method®
extend signed values.

9 Use static analysis tools to help locate situationg/hich the conversion of variables might have
unintended consequences.

6.18.6 Implications for standardization
In future standardization activities, the following items should be considered:

1 Language definitions shouttefine implicit and explicit conveions in a way that prevents alteration of
the mathematical value beyond traditional rounding rules

6.19 Choice of Clear Names[NAI]

6.19.1 Description of application vulnerability

Humanssometimeschoose similar or identical names for objects, types, aggregates of types, subprograms and
modules. They tend to use characteristittzat are specific to the native language of the software develdaper

aid in ths effort, such as use of mixedsing, underscores and periods,use of plural and singular forms to
support the separation of items with similar nameSimilarly, development conventions sometimes use casing
for differentiation for example all uppecase for constants).

Human cognitive problems occur when different (but similar) objects, subprograms, types, or constants differ in
name so little that human reviewers are unlikely to distinguish between them, or when the systessowp
entities to a angle entity.

Conventions such dhe use ofcapitalization and singular/plural distinctionmaywork in small and medium
projects, but there are a number of significant issues to be considered:

9 Large projects often have mixed languages and such conveaie often languagepecific.

1 Many implementations support identifiers that contain international character aatssome language
character sets have different notions of casing and plurality.

9 Different wordforms tend to be language and dialesgiecific, such as a pidgin, and may be meaningless
to humans that speak other dialects.

© ISTIEC2013 ¢ All rightsreserved 37

WG 23/N 043

An important general issue is the choice of names that differ from each other negligibly (in human terms), for
example by differing by only underscores, (none, " ", plurals ("s"), visuallgimilar characterg¢such as "I" and
"1","O" and "0"), or underscores/dashes"("_"). [There is also an issue where identifiers appear distinct to a
human but identical to the computer, such as FOO, Foo, and foo in some cemlgmujuages.[Character sets
extended with diacritical marks and ndratin characters may offer additional problentSome languages or their

implementations may pay attention to only the finscharacters of an identifier.

The problems described abowee different from overloading or overriding where the same name is used
intentionally (and documented) to access closely linked sets of subprograms. This is also different than using
reserved names which can lead to a conflict with the reserved usehendse of which may or may not be
detected at compile time.

Name confusion can lead to the application executing different code or accessing different objects than the writer
intended, or than the reviewers understoodhis can lead to outright errors, tmave in place code that may
executesometimein the future with unacceptable consequences

Although most such mistakes are unintentional, it is plausible thethasagescan be intentional, if masking
surreptitious behaviour is a goal.

6.19.2 Crossreference

JSF AV Rules:-88

MISRA C 2004: 1.4

CERT C guiliiees: DCLOZ
AdaQualityand Style Guide: 3.2

6.19.3 Mechanism of Failure

Calls to the wrong subprogram or references to the wrong data element (that was missed by human review) can
result in unntended behaviour.Language processors will not make a mistake in name translation, but human
cognition limitations may cause humans to misunderstand, and therefore may be missed in human reviews.

6.19.4 Applicable language characteristics

This vulnerabiity description is intended to be applicable to languages with the following characteristics:

1 Languages with relatively flat name spaeéi be more susceptibleSystems with modules, classes,
package€an use qualificatioto disambiguate names that iginate from different parents.

9 Languages that provide preconditiommst conditions invariance and assertionsr redundant coding of
subprogram signatureiselp to ensure that the subprograms in the module will behave as expected, but
do nothing if diferent subprograms are called.

9 Languages that treat letter case as significant. Some languages do not differentiate between names with
differing case, while others do.

6.19.5 Avoiding the vulnerability or mitigating its effects

Software developers carvaid the vulnerability or mitigate its ill effects in the following ways:

38 © ISTIEC2013 ¢ All rights reserve

Baseline Edibn¢3 TR 24772

1 Implementers can create coding standards that provide meaningful guidance on name selection and use.
Goodlanguage specific guidelines could eliminate most problems.

1 Use static analysis tools to show the target of calls and accesses and to produce alphabetical lists of
names. Human review cathen often spot the names that are sorted at an unexpected locatiowhich
look almost identical to an adjacent name in tist.|

9 Use static tools (often the compiler) to detect declarations that are unused.

1 Use languages with a requirement to declare names before use or use available tool or compiler options
to enforce such a requirement.

6.19.6 Implications for standardization

In future standardization activities, the following items should be considered:

1 Languages that do not require declarations of names should consider providing an option that does
impose that requirement.

6.20 Dead Store [WXQ]

6.20.1 Description of application vulnerability

A variable's value is assigned but nesebsequentlyused either because the variable is not referenced again, or
because a second value is assigned beforditheis used.Thismaysuggest that the design has been
incompletely or inaccurately implementefbr example)} @ f dzS Kl & 06SSy ONBIF ISR Iy

This vulnerability is very similar 621 Unused VariablgYZ$&

6.20.2 Cross reference

CWE:

563. Unused Variable
MISRA C++ 2008:14 and 01-6
CERT C guidelines: MS13
See als®.21 Unused VariablEYZ$

6.20.3 Mechanism of failure

A variable is assigned a value but this is newbsequentlyused.Such arassignment is then generally referred to
as a dead store.

Adead storemay beindicative of careless programming or of a design or coding easmither the use of the

value was forgotten (almost certainly an error) or the assignment was performed even though it was not needed
(at best inefficient).Dead storesnay also arise as the result of mistyping the name of a variable, if the mistyped
name matches the name of a variable in an enclosing scope.

There are legitimate uses for apparent dead stores. For example, the value of the variable might be intended to
be read by another execution thread or an external device. In such cases, though, the variable should be markec

© ISTIEC2013 ¢ All rightsreserved 39

WG 23/N 043

as volatile. Common compiler aptization techniques will remove apparent dead stores if the variables are not
marked as volatile, hence causing incorrect execution.

A dead store is justifiablié, for example:

1 The code has beeautomatically generated where it is commonplace to fincedd stores introduced to
keep the generation process simple and uniform

i The code ignitializinga sparse data set, where all members are cleased, thenselected values
assigned a value.

6.20.4 Applicable language characteristics

This vulnerability dscription is intended to be applicable to languages with the following characteristics:
1 Anyprogramming language that provides assignment.

6.20.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability otigaite its ill effects in the following ways:

9 Use static analysis to identify any dead stores in the program, and ensure that there is a justification for
them.

9 If variables are intended to be accessed by other execution threads or external deviceshenaks
volatile.

1 Avoid declaring variables of compatible types in nested scopes with similar names.

6.20.6 Implications for standardization
In future standardization activities, the following items should be considered:
9 Languages should considanmoviding optional warning messagédsr dead store.

6.21 Unused Variable [YZ]

6.21.1 Description of application vulnerability

An unused variable is one that is declated neither read nor written in the progranThis type of error suggests
that the design has been incompletely or inaccurately implemented.

Unused variables by themselves are innocudus they may provide memory space that attackers could use in
combinaion with other techniques

This vulnerability isimilarto 6.20 Dead Stor¢WXQ if the variable is initialized but never used

6.21.2 Cross reference

CWE:
563. Unused Variable

40 © ISTIEC2013 ¢ All rights reserve

Baseline Edibn¢3 TR 24772

MISRA C++ 2008:183
CERT C guidelines: MSQ13
See als®.20 Dead StoréWXQ

6.21.3 Mechanism of failure

A variable is declared, but never us@the existence of an unused variable may indicate a design or coding error

Becauseompilers routinely diagnose unuséatalvariables, their presencmay bean indication that compiler
warnings are either suppressed or are being ignored.

While unused variables are innocuous, they may provide available memory space to be used by attackers to
exploit other vulnerabilities.

6.21.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:
1 Languages that provide variable declarations.

6.21.5 Avoiding the vulnerability or mitigating its eff ects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:
1 Enable detection of unused variables in the compiler.

6.21.6 Implications for standardization

In future standardization activities, the following items should be considered:
9 Languages should consider requiring mandatory diagnostics for unused variables.

6.22 Identifier Name Reuse [YOW]

6.22.1 Description of application vulnerability

When distinctentitiesare defined in nested scopes using the same name it is possiblpribgitam logic will
operate on an entity other than the one intended

When itis notclear which identifier isised, the program could behave in ways that were not predicted by reading
the sourcecode. Thiscan befound by testing, but circumstances can arise (such as the values of the-samed
objects being mostly the same) wleeharmful consequences occufhis weakness can also lead to vulnerabilities
such as hidden channels where humans believe that important objects are being rewritten or overwritten when in
fact other objects are being manipulated

For example, the innermoslefinition is deleted from the source, the program will continue to compile without a
diagnostic being issugbut execution can produce unexpected reshlts

© ISTIEC2013 ¢ All rightsreserved 41

WG 23/N 043

6.22.2 Cross reference

JSF AV Rules: 120 and B35

MISRA C 2005:2,5.5, 5.6, 5.7, 20.1, 20.2

MISRA C++ 2008:10-2, 210-3, 22104, 210-5, 2106, 170-1, 170-2, and 170-3
CERT C guiliies: DCLOLC andDCL3ZC

AdaQualityand Style Guide: 5.6.1 and 5.7.1

6.22.3 Mechanism of failure

Many languages support the concept of sco@ne of the idea behind the concept of scope is to provide a
mechanism for the independent definitiasf identifiers that may share the same name.

For instance, in the following code fragment:

int some_vatr,
L
intt_var;
int some_var; /* definition in nested scope */
t var = 3;
some_var = 2;
}

an identifier calledsome_var has been defined in different scopes.

If either the definition osome_var ort_var that occurs in the nested scope is deletéar example when the
source is modified) itis necessagyt RSt SGS | ff 230G KSNJ N5 T §adeyelogenadeleied G KS
the definition oft_var but fails to delete the statement that references it, then most languages require a
diagnostic to be issuedijch ageference to undefined variable However, if the nested definition glome_var

is deleted but the reference to it in the nested scope is not deleted, thediagnostic will be issued (because the
reference resolves to the definition in the outer scope).

In some cases heanique identifers in the same scope can also be introduced through the use of identifiers
whose common substring exceeds the length of characters the implementation considers to be distinct. For
example, in the following code fragment:

extern int global_symbol_definition_lookup_table_a[100];
extern int global_symbol_definition_lookup_table b[100];

the external identifiers are not unique on implementations where only the first 31 characters are significant. This
situation only occurs in languagdsat allow multiple declarations of the same identifier (other languages require
a diagnosti message to be issued).

A related problem exists in languages that allow overloading or overriding of keywords or standard library
function identifiers. Such oveding can lead to confusion about which entity is intended to be referenced.

42 © ISTIEC2013 ¢ All rights reserve

Baseline Edibn¢3 TR 24772

Definitions for new identifiers should not use a name that is already visible within the scope containing the new
definition. Alternately,utilize languagespecific facilitiesHat check for and prevent inadvertent overloading of
names should be used.

6.22.4 Applicable language characteristics
This vulnerability is intended to be applicable to languages with the following characteristics:

1 Languages that allow the same name toused for identifiers defined in nested scopes.
1 Languages where unique names can be transformed inteumdque names as part of the normal tool
chain.

6.22.5 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerapibr mitigate its ill effects in the following ways:

1 Ensure that a definition of aentity does not occur in a scope where a differentity with the same
name is accessible and can be used in the same confelanguagespecific project coding convenh
can be used to ensure that such errors are detectabith static analysis

1 Ensure that a definition of a@ntity does not occur in a scope where a differentity with the same
name is accessible and has a type that permits it to occur in at leastamtext where the firsentity can

occur.

1 Uselanguage features, if any, which explicitly mark definitions of entities that are intended to hide other
definitions.

9 Develop or use tools that identify name collisions or reuse when truncated versionsekraause
conflicts

1 Ensure that all identifiers differ within the number of characters considered to be significant by the
implementations that are likely to be used, and document all assumptions.

6.22.6 Implications for standardization
In future standarization activities, the following items should be considered:

1 Languages should require mandatory diagnostics for variables with the same name in nested scopes.

1 Languages should require mandatory diagnostics for variable names that exceed the lengtle that th
implementation considers unique.

1 Languages should consider requiring mandatory diagnostics for overloading or overriding of keywords or
standard library function identifiers.

6.23 Namespace Issues[BJL]

6.23.1 Description of Application Vulnerability

If a language provides separate, Roierarchical namespacea usercontrolled ordering of namespacesnd a
means to make names declared in these name spacestlyingsible to an application, the potential of

© ISTIEC2013 ¢ All rightsreserved 43

WG 23/N 043

unintentional and possible disastrous change in applicatigimaviourcan arise, when names are added to a
namespace during maintenance.

Namespaces include constructs like packages, modules, librarieseasany other means of grouping
declarations for import into other program units.

6.23.2 Crossreferences
MISRA C++ 2008:3-1, 7-3-3, 7-3-5, 145-1, and 160-2
6.23.3 Mechanism of Failure

The failure is best illustrated by an exampkamespacdNl1 provides the name\ but not B; Namespac®&l2
provides the namd but not A. The application wishes to ugefrom N1andB from N2. At this point, there are
no obvious issuesThe application chooses (or needs to) import the namespaces to obtain nandissictr
usagefor an example.

UseN1, N2; ¢ presumed to make all names NiL and N2 directly visible
é X = A + B;
The semantics of the above example are intuitive and unambiguous.

Later, during maintenance, the nanBds added taN1. The change to the namespace usually implies a
recompilation of dependent unitsAt this point, two declarations d are applicable for the use &in the above
example.

Some languages try to disambiguate the above situation by stating preferencerralesel of such ambiguity
among names provided by different name spacksin the above examplé\1is preferred oveN2, the meaning
of the use oBB changes silently, presuming that no typing error arisésensequently the semantics of the
program chage silently and assuredly unintentionally, since the implement&tlofannotassume that all users
of N1would prefer to take any declaration 8ffrom N1 rather than its previous namespace.

It does not matter what the preference rules actualg, as bng as the namespaces are mutabléhe above
example is easily extended by addiagp N2 to show a symmetric error situation for a different precedence rule.

LF¥ F fFy3dzr3S &dzLIR NI A 2GSNI2FRAY3I 2F &dzxadpBEANI Y&
extended to mean not only the same name, but also the same signature of the subprogoamulnerabilities
associated with overloading and overriding, $e22 Identifier Name Reud& OW. In the context of namespaces,
however, adding signhature matching to the name binding process, merely extends the described problem from
simple names to full signatures, but does not altee mechanism or quality of the described vulnerability. In
particular, overloading does not introduce more ambiguity for binding to declarations in different name spaces.
This vulnerability not only creates unintentional errofsalso can be exploited aticiously, if the source of the
application and of the namespaces is known to the aggressor and one of the namespaces is mutable by
attacker.

44 © ISTIEC2013 ¢ All rights reserve

Baseline Edibn¢3 TR 24772

6.23.4 Applicable Language Characteristics

The vulnerability is applicable to languages with the followirgyatteristics:
1 Languages that support ndrierarchical separate namgpaces, have means to import all names of a
YIEYSaLlk OS agK2ft SaltS¢ F2N RANDL@motganfiiplelimpéttedK | &S
direct homographs. All three conditions netxbe satisfied for the vulnerability to arise.

6.23.5 Avoiding the Vulnerability or Mitigating its Effects

Software developers can avoid the vulnerability or mitigatdlieffects in the following ways:

T ' §2ARAY 3 GoK2fSaltSé AYLR2NI RANBOGAGSaA
T 'aAy3a 2yfte aStSOGAGS aaAydatsS yIYSE AYLRNI RANBC
provided that the language offers the respective capabilities)

6.23.6 Implications for Standardization
In future standardization activities, the followiitgms should be considered:

1 Languages should not have preference rules among mutable namespaces. Ambiguities slmwdticdbe
and avoidable by the useigr example by using names qualified by their originating namespace.

6.24 Initialization of Variables [LAV]
6.24.1 Description of application vulnerability

Reading a variable that has not been assigned a value appropriate to its type can cause unpredictable execution
the block that uses the value of the variable, and has the potential to export bad values to callers, or caafse out
bounds memory accesses.

Uninitialized variable usage is frequently not detected until after testing and often when the code in question is
delivered and in use, because happenstance will provide variables with adequate values (such as default data
settings or accidental lefvver values) until some other change exposes the defect.

Variables that are declared during module construction (by a class constructor, instantiation, or elaboration) may
have alternate paths that can read values before they are $bis can happen in stight sequential code but is
more prevalent when concurrency or-coutines are present, with the same impacts described above.

Another vulnerability occurs when compound objects are initialized incompletely, as can happen when objects
are incrementally bilt, or fields are added under maintenance.

When possible and supported by the language, whsbtacture initialization is preferable to fieloy-field

initialization statements, and named association is preferable to positional, as it facilitates hunen end is

less susceptible to failures under maintenan€@r classes, the declaration and initialization may occur in
separate modules. In such cases it must be possible to show that every field that needs an initial value receives
that value, and to dcument ones that do not require initial values.

© ISTIEC2013 ¢ All rightsreserved 45

WG 23/N 043

6.24.2 Cross reference

CWE:

457. Use of Uninitialized Variable
JSF AV Rules: 71, 143, and 147
MISRA C 2004: 9.1, 9.2, and 9.3
MISRA C++ 2008:531
CERT C guiliiees: DCL1L and EXP33
AdaQualityand Sty Guide: 5.9.6

6.24.3 Mechanism of failure

Uninitialized objects may havevalidvaluesvalidbut wrong values, ovalidand dangerous valuedarong
values could cause unbounded branches in conditionals or unbounded loop executions, or could simply cause
wrong calculations and results.

There is a special case of pointers or access types. When such a type contains null values, a boundmiblation a
hardware exception can result. When such a type contains plausible but meaningless values, random data reads
and writes can collect erroneous data or can destroy data that is in use by another part of the program; when
such a type is an access to aprdgram with a plausible (but wrong) value, then either a bad instruction trap

may occur or a transfer to an unknown code fragment can ocailirof these scenarios can result in undefined
behaviour.

Uninitialized variables are difficult to identify ande for attackers, but can be arbitrarily dangerous in safety
situations.

6.24 .4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:
1 Languages that permit variasd to be read before they are assigned.

6.24.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

9 The general problem of showing that all objects areatied is intractable; hence developers must
carefully structure programs to show that all variables are set before first read on every path throughout
the subprogram.Where objects are visible from many modules, it is difficult to determine where tbie fir
read occurs, and identify a module that must set the value before that rgdiden concurrency,
interrupts and coroutines are present, it becomes especially imperative to identify where early
initialization occurs and to show that the correct orderesda program structure, not by timing, OS
precedence, or chance.

9 The simplest method is to initialize each object at elaboration time, or immediately after subprogram
execution commences and before any branchiéshe subprogram must commence with catioinal
statements, then the programmer is responsible to show that every variable declared and not initialized

46 © ISTIEC2013 ¢ All rights reserve

Baseline Edibn¢3 TR 24772

earlier is initialized on each branchlowever, the initial value must be a sensible value for the logic of the
program. Socalled "junkinitialization”, for example, setting every variable to zero, prevents the use of
tools to detect otherwise uninitialized variables.

1 Applications can consider defining or reserving fields or portions of the object to only be setuwiligen
initialized. However, this approach has the effect of setting the variable to possibly mistaken values while
defeating the use of static analysis to find the uninitialized variables.

9 It should be possible to use static analysis tools to show that all objects are set hefoin certain
specific cases, but as the general problem is intractable, programmers should keep initialization
algorithms simple so that they can be analyzed.

1 When declaring and initializing the object togethiéthe language does not require thdi¢ compiler
statically verify that the declarative structure and the initialization structure matcle static analysis
tools to help detect any mismatches.

1 When setting compound objects, if the language provides mechanisms to set all components togsther,
those in preference to a sequence of initializations as this helps coverage analysis; otherwise use tools th
perform such coverage analysis and document the initializatidm not perform partial initializations
unless there is no choice, and docem any deviations from 100% initialization.

1 Where default assignmeatofmultiple components are performed, explicit declaration of the component
names and/or ranges helps static analysis and identification of component changes during maintenance.

1 Some laguages have named assignments that can be used to build reviewable assignment structures
that can be analyzed by the language processor for completenesguages with positional notation
only can use comments and secondary tools to help show corrsigrasent.

6.24.6 Implications for standardization

In future standardization activities, the following items should be considered:

1 Some languages have ways to determine if modules and regions are elaborated and initialized and to
raise exceptions if thidoes not occur Languages that do not could consider adding such capabilities.

1 Languages could consider setting aside fields in all objects to identify if initialization has occurred,
especially for security and safety domains.

1 Languages that do not spprt whole-object initialization could consider adding this capability.

6.25 Operator Precedence/Order of Evaluation [JCW|
6.25.1 Description of application vulnerability

Each language provides rules of precedence and associativity, for each expression that operands bind to which
2LISNI (2 NBR D ¢KS&S NHzZ Sa INB Ffaz2 (yz26y |a GaNRdAzZLAY

Experience and experimentavidence shows that developers can have incorrect beliefs about the relative
precedence of many binary operators. SBeyeloper beliefs about binary operator precedeit&/'u, 18(4):14
21, August 2006

6.25.2 Cross reference

JSF AV Rules: 204 and 213

© ISTIEC2013 ¢ All rightsreserved 47

WG 23/N 043

MISRA C 2004: 12.1, 12.2, 12.5, 12.6, 13.2, 19.10, 19.12, and 19.13

MISRA C++ 20085-1, 45-2, 45-3, 50-1, 50-2, 52-1, 53-1, 160-6, 163-1, and 163-2
CERT C guiliiees: EXPOC

AdaQualityand Style Guide: 7.1.8 and 7.1.9

6.25.3 Mechanism of failure

In Cand C+¢the bitwise operatorgbitwise logical and bitwise shift) are sometimes thought of by the

LINE AN YYSNI KFE@AYy3T AAYATI NI LINBOSRSYyOS G2 | NRiGK22SGAO
0 x&dydza 2yS A& SldzZf G2 1T SNPRE& O X&N ==LONETNIYYSWIINJI f ¥ AT KiiK
andedwith1A a Sljdz-t G2 T SNRBESX GgKSNBlFa GKS 2LISNI 2N LINBOS|
F'a & O2A¥=0Xz(IINE R tzOnfeh@teddaszero, then bitwiseand the result wittké ¥ LINB RdzOAy 3 ¢
Oz2yailyido TSNRBS O2yGNINEB (G2 GKS LINPINIYYSNDRAE AydSyid

Examples from an opposite extreme can be found in programs written inw&fth is noteworthy for the

absenceoBnyRA A G AY Ol A2y a 2F LINSOSRSYyOSo aryffc OLYYRY i BY RRKY
LINE R dar®sbluscé = g KSNBIF a | t-tp-loftiassdeiatvil INNBYR b@IERE timesaé @

6.25.4 Applicable language characteristics

Thisvulnerability description is intended to be applicable to languages with the following characteristics:

1 Languages whose precederered associativityules are sufficiently complex that developers do not
remember them.

6.25.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

1 Adopt programming guidelines (preferably augmented by static analysis). For example, consider the rules
itemized above frondSFAV[15], CERT [11]or MISRA €12].

1 Useparenthegsaround binary operator combinations that are known to be a source of efoor (
example mixed arithmetic/bitwise and bitwise/relational operator combinations).

1 Break up complex expressions and use tempovanjables to make the order clearer.

6.25.6 Implications for standardization
In future standardizatiomctivities the following items should be considered:

1 Language definitions should avoid providing precedence or a particular associativity for opdrat@ne
not typically ordered with respect to one another in arithmetic, and instead require full parenthesization
to avoid misinterpretation.

48 © ISTIEC2013 ¢ All rights reserve

Baseline Edibn¢3 TR 24772

6.26 Side-effects and Order of Evaluation [SAM]

6.26.1 Description of application vulnerability

Some programming languages allow subexpressions to causeffggés (such as assignment, increment, or
decrement). For example, some progmnaing languages permit such sidéects, and if, within one expression
6 a dzO¥k= v[H+4 d € ,two or more sideeffects modify the same object, undefined behaviour results.

Some languages allow subexpressions to be evaluated in an unspecified grdeewngn removed during
optimization If these subexpressions contain siéfects, then the value of the full expression can be dependent
upon the order of evaluation. Furthermore, the objects that are modified by theedidets can receive values
that are dependent upon the order of evaluation.

If a program containthese unspecified or undefindgehavious, testing the program and seeing that it yields the
expected results may give the false impression that the expression will always yield the expsaoted

6.26.2 Cross reference

JSF AV Rules: 157, 158, 166, 204, 204.1, and 213
MISRA C 20042.1-12.5

MISRA C++ 2008:051

CERT C guitilges: EXPXC, EXP3C

AdaQualityand Style Guide: 7.1.8 and 7.1.9

6.26.3 Mechanism of failure

Whensubexpressions with side effects are used within an expressioryrispecifiedorder of evaluation can
result ina program producingifferent results on different platforms, or even at different times on the same
platform. For exampleconsider

a=f(b) + 9(b);

wheref andg both modifyb. Iff(b) is evaluated first, then thb used as a parameter tg(b) may be a
different value than ifg(b) is performed first. Likewise,g{b) is performed firstf(b) may be called with a
different value ot.

Other examples of unspecified order, or even undefined behavioan be manifestedsuchas
a=f(i) + i++;

or
afi++] = b[i++];

Parenthegs around expressions can assist in removing ambigbibyit grouping butthe issues regarding side
effects and order of evaluatioare not changed by the presencepdrenthe®s; consider

j =it * i+

© ISTIEC2013 ¢ All rightsreserved 49

WG 23/N 043

whereevenif parenthegs are placedaround thei++ subexpressionsindefined behavioustill remains (All
examples use theyntax of @r Javdor brevity; the effects can be created in any language that allows functions
with sideeffects in the places where C allows the increment operatjons

The unpredictable nature of the calculation means that thegpam cannot be tested adequately to any degree
of confidence.A knowledgeable attacker can take advantage of this characteristic to manipulate data values
triggering execution that was not anticipated by the developer.

6.26.4 Applicable language characte ristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

1 Languages that permitxpressons to contain subexpressions with side effects
1 Languages whose subexpressions@mmputed in anunspecified ordering.

6.26.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

1 Make use of one or more programming guidelines which (a) prohibit theseegified or undefined
behaviours, and (b) can be enforced by static analysis. (See JSF AV and MISRA rules in Cross reference
clause[SAM])

1 Keep expressions simple. Complicated code is prone to error and difficult to maintain.

6.26.6 Implications for stan dardization
In future standardizatiomctivities the following items should be considered:

1 In developinghew or revised languages, give consideration to langdiegiresthat will eliminate or
mitigate this vulnerabilitysuch as pure functions

6.27 Lik ely Incorrect Expression [KOA]

6.27.1 Description of application vulnerability

Certain expressions are symptomatic of what is likely to be a mistake made by the prograiraestatement is
not contrary to the language standartut is unlikely to béntended The statement may have no effect and
effectively is a null statement anay introduce an unintended sigeffect. A common example is the use®in
anif expression in @here the programmer meant to do an equality test using theoperator. Other easily
confused operators in C are the logical operators sudt®e®r the bitwise operato’, or vice versa It isvalid

and possible that the programmer intended to do an assignment withinfthexpression, but due to this being a
common error, a programmer doing so would be using a poor programming practices likédgsoccurrence, but
still possible is the substitution ef= for = in what is supposed to be an assignment statement, but which
effectively becomes a null statementhese mistakes may survive testing only to manifest themselves in
deployed code whear they may be maliciously exploited.

50 © ISTIEC2013 ¢ All rights reserve

Baseline Edibn¢3 TR 24772

6.27.2 Cross reference

CWE:
480. Use of Incorrect Operator
481. Assigning instead of Comparing
482. Comparing instead of Assigning
570. Expression is Always False
571. Expression is Always True
JSF AV Rules50 and 166
MISRAC2004: 12.3, 12.4,12.13, 13.1, 13.7, and 14.2
MISRAC++2008: 01-9, 50-1, 62-1, and 65-2
CERT C guiliies: MSCOZ and MSC0GB

6.27.3 Mechanism of failure

Some of the failures are simply a case of programmer carelessness. Substitatimstefid of==in a Boolean

test is easy to do and mostabd C+¥rogrammers have made this mistake at one time or another. Other
instances can be the result of intricaciedtud language definition that specifies what part of aqpeession must

be evaluated For instance, having an assignment expression in a Boolean statement is likely making an
assumption that the complete expression will be executed in all cases. However, this is not always the case as
sometimes the truthvalueof the Boolean expression can be determined after only executing some portion of the
expression. For instance:

if (@a==b)| | (c=(d -1))
Should(a==b) be determined to be true, then there is no need for the subexpresgiefd - 1)) to be
executed andas such, the assignmefd=(d - 1)) will not occur.

Embedding expressions in other expressions can yield unexpected rdsgitsment and decrement operators
(++ and--) can also yield unexpected results when mixed into a complex expression.

Incorrecty calculated results can lead to a wide variety of erroneous program execution

6.27 .4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:
1 All languages are suscdpt to likely incorrect expressions.

6.27.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

1 Simplify expressions.

1 Do not use assignment expressiondlaxtion parameters. Sometimes the assignment may not be
executed as expected. Instead, perform the assignment before the function call.

1 Do not perform assignments within a Boolean expression. This is likely unintendedt mutat, then
move the &signment outside of the Boolean expression for clarity and robustness.

© ISTIEC2013 ¢ All rightsreserved 51

WG 23/N 043

1 On some rare occasions, some statements intentionally do not have side effects and do not cause control
flow to change. These should be annotated through comments and made obvidukdgare
intentionally neops with a stated reason. If possible, such reliance on null statements should be avoided.
In general, except for those rare instances, all statements should either have a side effect or cause control
flow to change.

6.27.6 Im plications for standardization
In future standardizatiomctivities the following items should be considered:

1 Languages should consider providing warnings for statements that are unlikely to be right such as
statements without side effectsA null (neop) statement may need to be added to the language for
those rare instances where an intentional null statement is need¢alving a null statement as part of
the language will reduce confusion as to why a statement with no side effects is present in code.

9 Languages should consider not allowing assignments used as function parameters.

Languages should consider not allowing assignments within a Boolean expression.

9 Language definitions should avoid situations where easily confused syrabolsgs= and==, or; and
., orl= and/=) arevalidin the same context. For examptejs not generallyalidin anif statement in
Javabecause it does not normally return a boolean value.

=

6.28 Dead and Deactivated Code [XY(Q

6.28.1 Description of application vulnerability

Dead and Deactivated code is code that exists in the executable, but which can never be executed, &itis® bec
there is no call path that leads to fo¢ example a function that is never called), or the path is semantically
infeasible for example its execution depends on the state of a conditional that can never be achieved).

Dead and Deactivated codeaybe undesirable because fhayindicate the possibility of a coding erroA
aSOdzNAGe AaadzS Aa | f inpctetdI2Vidy sabefy Standafds prohibit2lead cadebécalBeS | ¢
dead code is not traceable to a requirement.

Also covered in thigulnerability is code which is believed to be dead, but which is inadvertently executed.

Dead and Deactivated code is considesegarately from the description of Unused Variable, which is provided
by[YZ$

6.28.2 Cross reference

CWE:
561. Dead Code
570. Expression is Always False
571. Expression is Always True
JSF AV Rules: 127 and 186
MISRA C 2004: 2.4 and 14.1
MISRA C++ 20083161 to 0-1-10, 27-2, and 27-3

52 © ISTIEC2013 ¢ All rights reserve

Baseline Edibn¢3 TR 24772

CERT C guidelines: MS@)@nd MSC12
DO178B/C

6.28.3 Mechanism of failure

DO 178B deifnesDeadand Deactivated codes:

1 Dead code; Executable object code (or data) which cannot be executed (code) or used (data) in an
operational configuration of the target computer environment and is not traceable to a system or
software requirement.

1 Deactivated code Exesutable object code (or data) which by design is either (a) not intended to be

executed (code) or used (data), for example, a part of a previously developed software component, or (b)
is only executed (code) or used (data) in certain configurations dbtiget computer environment, for
example, code that is enabled by a hardware pin selection or software programmed options.

Dead code is code that exists in an application, but which can never be executed, either because there is no call
path to the codefor example a function that is never called) or because the execution path to the code is
semantically infeasibl&sin

integer i = 0;

if (i == 0)
then fun_a();
else fun_b();

fun_b is dead code, as onfun_a can ever be executed.

Compilers that optimizeometimes generate and then remove dead code, including code placed there by the
programmer. The deadness of code can also depend on the linking of separately compiled modules.

The presence of dead code is not in itself an erfirere may also béegitimate reasosfor its presence, for

example:
91 Defensive code, only executed as the result of a hardware failure.
1 Code that is part of a library not required in this application.
1 Diagnostic code not executed in the operational environment.
1 Code that isemporarily deactivatedut may be needed soon. This may occur as a way to make sure the

1

code is still accepted by the language translator to reduce opportunities for errors when it is reactivated.
Code that is made available so that it can be executadually via a debugger

{ dzOK O2RS Yl & 0S NBTHaNKdddode thhtds tharRdy ineni. A gF G SREé @

There is a secondary consideration for dead code in languages that permit overloading of functions and other

constructsthat usecomplex nameesolution strategies.The developer may believe that some code is not going

to be used (deactivated), but its existence in the program means that it appears in the namespace, and may be

selected as the best match for some use that was intended to la@ olverloading functionThat is, although the
developer believes it is never going to be used, in practice it is used in preference to the intended function.

© ISTIEC2013 ¢ All rightsreserved 53

WG 23/N 043

However, it may be the case that because of some other error, the code is rendered unreadftadriefore, any
dead code should be reviewed and documented.

6.28.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:
1 Languages that allow code to exist in #»ecutable that can never be executed.

6.28.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

1 Thedeveloper shoulegndeavorto removedead code from a@applicationunless its presence serves a
purpose

1 When a developer identifies code that is dead because a condittmmaistentlyevaluates to the same
value, this could be indicative of an earlier bargt could be indicative of inadequate path coverage¢he
test regimen. Additional investigation may be needed to ascertain why the same value is occurring

1 The developer should identify any dead code in the application, and provide a justification (if only to
themselves) as to why it is there.

1 The deveadper should also ensure that any code that was expected to be unused is adh@liyented
as dead code.

1 The developer should apply standard branch coverage measurement tools and ensure by 100% coverage
that all branches are neither dead nor deactivated

i The developer shouldse analysis tools to identify unreachable code.

6.28.6 Implications for standardization
[None]

6.29 Switch Statements and Static Analysis [CLL]
6.29.1 Description of application vulnerability

Many programming languages provide a construct, such@kka switch statement, that chooses among
multiple alternative control flows basedoon the evaluated result of an expressiofihe use of such constructs
may introduce application vulnerabilities if not all possible caggsear within the switctor if control
unexpectedly flows from one alternative to another.

6.29.2 Cross reference

JSFAV Rules: 148, 193, 194, 195, and 196
MISRA C 2004: 15.2, 15.3, and 15.5

MISRA C++ 2008:4-3, 64-5, 64-6, and 64-8
CERT C guililees: MSCOC

AdaQualityand Style Guide: 5.6.1 and 5.6.10

54 © ISTIEC2013 ¢ All rights reserve

Baseline Edibn¢3 TR 24772

6.29.3 Mechanism of failure

The fundamental challenge when usingwaitch statement is to make sure that all possible cases are, in fact,
treated correctly

6.29.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with tloevfiog characteristics:

1

f
f

Languages thatomtain a construct, such assavitch ~statement, that provides a selection among
alternative control flows based on the evaluation of an expression.

Languages that do not require full coverage sfratch statement.

Languages that provide a default case (choice)switch statement.

6.29.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

1 Base the switch choice updine value ofan expression that has a small number of potential values that

can be statically enumerated. In languages that provide them, a variable of an enumerated type is to be
preferred becausa possible set of values is known statically and is smalimber (as compared, for
example, to the value set of an integer variablé)here it is practical to statically enumerate the

switched type, it is preferable to omit the default case, because the static analysis is simplified and
because maintainersan better understand the intent of the original programmék/hen one must
switchbased upon the value of an instance of some other typig,riecessary to have a default case,
preferably to be regarded as a serious error condition.

| 2AR aFfEBHAYHER W KAF 823 Gea iScoriedly impfeténted iNpdifficult for
reviewers and maintainers to distinguish whether the construct was intended or is an error of orfission
In cases where flosthrough is necessary and intended, an expliaithded branch may be preferalie
clearly mark the intent.Providing comments regarding intention can be helpful to reviewers and
maintainers.

Perform static analysis to determine if all cases are, in fact, covered by the (o that the use of a
default case can hamper the effectiveness of static analysis since the tool cannot determine if omitted
alternatives were or were not intended for default treatmeént.

Other means of mitigation include manual review, bounds testing, tool analysis, vésifitathniques,

and proofs of correctness.

6.29.6 Implications for standardization

In future standardizatiomctivities the following items should be considered:

1 Language specifications could require compilers to ensure that a complete set of alterimpvegided

in cases where the value set of the switch variable can be statically determined.

4 Using multiple labels on individual alternatives is not a violation ofrétiemmendation though.

© ISTIEC2013 ¢ All rightsreserved 55

WG 23/N 043

6.30 Demarcation of Control Flow [EOJ]

6.30.1 Description of application vulnerability

Some programming languages explicitly mark the end df astatement or a loop, whereas other languages
mark only the end of a block of statements. Languages of the latter category are prone to oversights by the
programmer, causinginintended sequences of control flow.

6.30.2 Cross reference

JSF AV Rules: 59 and 192

MISRA C 2004: 14.8, 14.9, 14.10, and 19.5

MISRA C++ 2008:3-1, 64-1, 64-2, 64-3, 64-8, 65-1, 6:5-6, 6:6-1 to 6:6-5, and160-2
Hatton 18: Control flowg if structure

AdaQualityand Style Guide3, 5.6.1through5.6.10

6.30.3 Mechanism of failure

Programmers may rely on indentation to determine inclusion of statements within constructs. Testing of the
software may not reveal it statementsthat appear to be included in a construct (due to formatting) actually lay
outside of it because of the absence of a terminatbtoreover, for a nestedf - then - else statement the
programmer may be confused about whi€h statement controlstieelse part directly This anlead to
unexpected results.

6.30.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

1 Languages that contain loops aconditionala G I 6§ SYSy da GKIF G N8B y2i SELX A
construct.

6.30.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

1 Adopt aconvention for marking the closing of a construct that can be checked by a tool, to ensure that
program structure is apparent.

1 Adopt programming guidelines (preferably augmented by static analysis). For example, consider the rules
itemized above from JS¥, MISRA C, MISRA C++ or Hatton.

1 Other means of assurance might include proofs of correctness, analysis with tools, verification
techniguesor other methods

1 Pretty-printers and syntasaware editors may be helpful in finding such problems, but sometifisziise
them.

T Include a final else statement at the endibf-X-else -if constructs to avoid confusion.

1 Always enclose the body of statements ofitin while ,for , do, or other statements potentially
introducing a block of code y 6 N O &2 NIneaicdiG MbidatBrs appropriate to the language
used.

56 © ISTIEC2013 ¢ All rights reserve

Baseline Edibn¢3 TR 24772

6.30.6 Implications for standardization
In future standardizatiomctivities the following items should be considered:

1 Specifierof languages should consider adding a mode that strictly enforces compound conditional and
f22LIAY 3 O2yaidNHzOG&a oA GédiS ELI2ZANOA G Qf SNMAYY3E (6AND yC5] S5

1 Specifiers of languages might consider explicit termination of loops and malistatements.

1 Specifiers might consider features to terminate named loops and conditionals and determine if the
structure as named matches the structure as inferred.

6.31 Loop Control Variables [TEX]

6.31.1 Description of application vulnerability

Many languages support a looping construct whose number of iterations is controlled by the value of a loop
control variable. Looping constructs providenathod of specifying an initial value for this loop control variable, a
test that terminates the loop and the quantity by which it should be decrementadcremented on each loop
iteration.

In some languages it is possible to modify the value of the éooyrol variable within the body of the loop.
Experience shows that such value modifications are sometimes overlooked by readers of the source code,
resulting in faults being introduced.

6.31.2 Cross reference

JSF AV Rule: 201
MISRA C 2004: 13.6
MISRA C#2008: 65-1 to 6:5-6

6.31.3 Mechanism of failure

Readers of source code often make assumptions about what has been wrtteommon assumption is that a
loop control variable isot modified in the body of the loop. A programmer may write incorrectecbased on
this assumption.

6.31.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

9 Languages that permit a loop control variable to be modified in the bodg associated loop.
6.31.5 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

1 Not modifying a loop control variable in the body of its associated loaly bo

© ISTIEC2013 ¢ All rightsreserved 57

WG 23/N 043

1 Some languages, such aar@@ C++lo not explicitly specify which of the variables appearing in a loop
header is the control variabler the loop MISRAC[12] and MISRA C+H.6] have proposed algorithms
for deducing which, if an of these variables is the loop control variable in the programming languages C
and C++ (these algorithms could also be applied to other languages that supplikedd®loop).

6.31.6 Implications for standardization
In future standardizatiomctivities, the following items should be considered:

1 Language designers should consider the addition of an identifier type for loop control that cannot be
modified by anything other than the loop control construct.

6.32 Off-by-one Error [XZH]

6.32.1 Description of application vulnerability

A program uses an incorrect maximum or minimum value that is 1 more or 1 less than the correct value. This
usually arises frm one of a number of situations where the bounds as understood by the developer differ from
the design, such as:

M Confusion between the need ferand<= or > and>= in a test.

9 Confusion as to the index range of an algorithm, such as: beginning an algatithwhen the underlying
structure is indexed from O; beginning an algorithm at O when the underlying structure is indexed from 1
(or some other start point); or using the length of a structure as its bound instead of the sentinel values.

1 Failing to allowfor storage of a sentinel value, such as MidLL string terminator that is used in the C
and C+#programming languages.

These issues arise from mistakes in mapping the design into a particular language, in moving between languages
(such as between languages where all arrays start at 0 and other languages where arrays start at 1), and when
exchanging data between languageshndifferent default arraybounds

The issue also can arise in algorithms where relationships exist between components, and the existence of a
boundsvalue changes the conditions of the test.

The existence of this possible flaw can also be a seriousityelcale as it can permit someone to surreptitiously
provide an unused location (such as 0 or the last element) that can be used for undocumented features or hidden
channels.

6.32.2 Cross reference

CWE:
193. Offby-one Error

6.32.3 Mechanism of failure

Anoff-by-one error could lead to:

58 © ISTIEC2013 ¢ All rights reserve

Baseline Edibn¢3 TR 24772

an outof bounds access to an array (buffer overflow),
incomplete comparisons or calculation mistakes,

a read from the wrong memory location, or

9 anincorrect conditional.

= =4 =4

Such incorrect accesses can cause cascadingaraeferences tanvalidlocations, resulting in potentially
unbounded behaviour.

Off-by-one errors are not often exploited in attacks because they are difficult to identify and exploit externally,
but the cascading errors and boundagndition errors an be severe.

6.32.4 Applicable language characteristics

As this vulnerability arises because of an algorithmic error by the developer, it can in principle arise in any
language; however, it is most likely to occur when:

1 The language relies on tldeveloper having implicit knowledge of structure start and end indifmas (
example knowing whether arrays start at 0 orglor indeed some other value).
1 Where the language relies upon explisgundsvalues to terminate variable length arrays.

6.32.5 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

1 A systematic development process, use of development/analysis tools and thorough testing are all
commonways of preventing errors, and in this case;mffone errors.

1 Where references are being made to structure indices and the languages provide ways to specify the
whole structure or the starting and ending indices explicity €xample Adaprovides xxx'First and
xxx'Last for each dimension), these should be used alwa§gere the language doesn't provide these,
constants can be declared and used in preference to numeric literals.

f 2KSNB (GKS fl y3dza 3S R2SayQi SyOl LjadzZ I §S @F NRAI 6f &
through library objects and a coding standard developed that requires such arrays to only be used via
those library objects, so the developer does not needdcekplicitly concerned with managitbgunds
values.

6.32.6 Implications for standardization
In future standardizatiomctivities the following items should be considered:

1 Languages should provide encapsulations for arrays that:
o Prevent the need for the desloper to be concerned with explicit bounds values.
o Provide the developer with symbolic access to the array start, end and iterators.

© ISTIEC2013 ¢ All rightsreserved 59

WG 23/N 043

6.33 Structured Programming [EWD]

6.33.1 Description of application vulnerability

Programs that have a convoluted control structure are likely to be more difficult to be human readable, less
understandable, harder to maintain, more difficult to modify, harder to staticatiglyze, more difficult to match
the allocation and release of resourcesd more likely to be incorrect

6.33.2 Cross reference

JSF AV Rules: 20, 113, 189, 190, and 191
MISRA C 20044.4,145, and 20.7

MISRA C++ 2008:6-1, 6:6-2, 66-3, and 170-5
CERT C guitiees: SIG3Z

AdaQualityand Style Guide: 3, 4, 5.4, 5.6, and 5.7

6.33.3 Mechanism of failure

Lack of structured programming can lead to:

1 Memory or resource leaks.

1 Errorprone maintenance.

91 Design that is difficult or impossible to validate.

9 Source code that is difficult or impossible to statically analyze.

6.33.4 Applicable language characteristics
This vulnerability description is intended to be applicable to languages with the following characteristics:

Languages that allow leaving a loojth@ut consideration for the loop control.

Languages that allow local jummgm({o statemend.

Languages that allow ndocal jumps getimp /longjmp in the Cprogramming language).

Languages that suppomultiple entry and exit points from a function, procedure, subroutine or method.

=A =4 =4 =4

6.33.5 Avoiding the vulnerability or mitigating its effects

Use only those features of the programming language émdibrce a logical structure on the program. The
program flow follows a simple hierarchical model that employs looping constructs stich asepeat , do, and
while .

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

Avoid using language features suctgato .

Avoid using language features suctcastinue and break in the middle of loops.
Avoid using language features that transfer control of the program flow via a jump.
Avoid multiple exit points to a function/procedure/mebd/subroutine.

Avoid multiple entry points to a function/procedure/method/subroutine.

=A =4 =4 =4 =4

60 © ISTIEC2013 ¢ All rights reserve

Baseline Edibn¢3 TR 24772

6.33.6 Implications for standardization
In future standardizatiomctivities the following items should be considered:

1 Languages should support afayor structured programming through their constructs to the extent
possible.

6.34 Passing Parameters and Return Values [CS)

6.34.1 Description of application vulnerability

Nearly every procedural languageovides some method of process abstraction permitting decomposition of the
flow of control into routines, functions, subprograms, or metho@Sor the purpose of this descriptiotie term
subprogram will be used.Jo have any effect on the computation, the subprogram must change data visible to
the calling program. It can do this by changing the value of dawal variable, changing the value of a

parameter, or, in the case offanction, providing a return valueBecause different languages use different
mechanisms with different semantics for passing parameters, a programmer using an unfamiliar language may
obtain unexpected results.

6.34.2 Cross reference

JSF AV Rules: 116,71 and 118

MISRA C 2004: 16.1, 16.2, 16.3, 16.4, 16.5, 16.6, 16.7, and 16.9
MISRA C++ 2008:3-2, 7-1-2, 84-1, 84-2, 84-3, and 84-4

CERT C guililees: EXP1Z and DCL33

AdaQualityand Style Guide: 5.2 and 8.3

6.34.3 Mechanism of failure

The mechanisms for parameter passing inclugg: by referencecall by copyandcall by name The last is so
specialized and supported by so few programming languages that it wilentveated in this description.

In call by reference, the calling program passes the addresses of the arguments to the called subpvdlesm.
the subprogram references the corresponding formal parameter, it is actually sharing data with the calling
program. If the subprogram changes a formal parameter, then the corresponding actual argument is also
changed.If the actual argument is an expression or a constant, then the address of a temporary location is
passed to the subprogram; this may be an erroséme languages.

In call by copy, the called subprogram does not share data with the calling program. Instead, formal parameters
act as local variablesd/alues are passed between the actual arguments and the formal parameters by copying.
Some languages may control changes to formal parameters based on labels sugloats, orinout . There

are three cases to considarall by valudor in parametersicall by resulfor out parameters and function return
values; anctall by valueresultfor inout parameters.For call by value, the calling program evaluates the actual
arguments and copies the result to the corresponding formal parameters thaharetreated as local variables

by the subprogramFor call byesult, the values of the locals corresponding to formal parameters are copied to

© ISTIEC2013 ¢ All rightsreserved 61

WG 23/N 043

the corresponding actual argumentEor call by valueesult, the values are copied in from the actual argums
at the beginning of the subprogram'’s execution and back out to the actual arguments at its termination.

The obvious disadvantage of call by copy is that extra copy operations are needed and execution time is required
to produce the copiesParticulaty if parameters represent sizable objects, such as large arrays, the cost of call by
copy can be highFor this reason, many languages also provide the call by reference mechanism. The
disadvantage of call by reference is that the calling program cammassured that the subprogram hasn't

changed data that was intended to be unchang&ar example, if an array is passed by reference to a

subprogram intended to sum its elements, the subprogram could also change the values of one or more elements
of the array. However, some languages enforce the subprogram's access to the shared data based on the labeling
of actual arguments with modessuch asn , out , orinout or by constant pointers

Another problem with call by reference is unintended aliasing.dossible that the address of one actual
argument is the same as another actual argument or that two arguments overlap in stokaggdprogram,
assuming the two formal parameters to be distinct, may treat them inappropriatedy.example, if one codes a
subprogram to swap two values using the exclusivenethod, then a call tewap(x,x) will zero the value of
X. Aliasing can also occur between arguments andlnoal objects.For example, if a subprogram modifies a
non-local object as a sideffect ofits execution, referencing that object by a formal parameter will result in
aliasing and, possibly, unintended results.

Some languages provide only simple mechanisms for passing data to subprograms, leaving it to the programmer
to synthesize appropriate nthanisms.Often, the only available mechanism is to use call by copy to pass small
scalar values or pointer values containing addresses of data structOfesourse, the latter amounts to using call

by reference with no checking by the language procesbosuch cases, subprograms can pass back pointers to
anything whatsoever, including data that is corrupted or absent.

Some languages use call by copy for small objects, such as scalars, and call by reference for large objects, such ac
arrays. The choie of mechanism may even be implementatibefined. Because the two mechanisms produce
different results in the presence of aliasing, it is very important to avoid aliasing.

An additional problem may occur if the called subprogram fails to assign ateadufermal parameter that the

caller expects as an output from the subprograim.the case of call by reference, the result may be an
uninitialized variable in the calling program. In the case of call by copy, the result may be that a legitimate
initialization value provided by the caller is overwritten by an uninitialized value because the called program did
not make an assignment to the parametérhis error may be difficult to detect through review because the

failure to initialize is hidden in the bprogram.

An additional complication with subprograms occurs when one or more of the arguments are expressions. In such
cases, the evaluation of one argument might have gffects that result in a change to the value of another or
unintended aliasingImplementation choices regarding order of evaluation could affect the result of the
computation. This particular problem is describedSideeffects and Order of Evaluatiaause[SAM].

6.34.4 Applicable language characteristics

This vulnerability desgtion is intended to be applicable to languages with the following characteristics:

62 © ISTIEC2013 ¢ All rights reserve

Baseline Edibn¢3 TR 24772

1 Languages that provide mechanisms for defining subprograms where the data passes between the calling
program and the subprogram via parameters and return values. Thislexmethods in many popular
object-oriented languages.

6.34.5 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

1 Use available mechanisms to label paraemstas constants or with modes like, out , orinout
1 When a choice of mechanisms is available, pass small simple objects using call by copy.
1 When a choice of mechanisms is available and the computational cost of copying is tolerable, pass larger
objectsusing call by copy.
1 When the choice of language or the computational cost of copying forbids using call by copy, then take
safeguards to prevent aliasing:
0 Minimize sideeffects of subprograms on nencal objects; when sideffects are coded, ensure
that the affected norlocal objects are not passed as parameters using call by reference.
o0 To avoid unintentional aliasing, avoid using expressions or functions as actual arguments; instead
assign the result of the expression to a temporary local and passdhk lo
o Utilize tookor other forms of analysis to ensure that nobvious instances of aliasing are absent.
o Perform reviews or analysis to determine that called subprogriatfidl their responsibilities to
assign values to all output parameters.

6.34.6 Imp lications for standardization
In future standardizatiomctivities the following items should be considered:

1 Programming language specifications could provide labsigeh asn , out , andinout Tt that control
0KS &dzo LINPINI YQa | OO0OSaa G2 Ada F2NXIEE LI NFYSGSN

6.35 Dangling References to Stack Frames [DCM]

6.35.1 Description of application vulnerability

Many languages allow treating the address of a local variable as a value stored in other variables. Examples are
the application of the address operator irn€C+E 2 NJ 2 F (1 K S sdlattridudeS i Ada@ dehe?! RRNB
languages, this facility is also used to model thelwgleference mechanism by passing the address of the actual
parameter byvalue. An obvious safety requirement is that the stored address shall not be usattiaé lifetime

of the local variable has expiredt KA a4 aAddz 6A2y OFly 6S RSaONAOGSR Fa |

6.35.2 Cross reference

CWE:
562. Return of Stack Variable Address
JSF AV Rule: 173
MISRA C 2004: 17.6 and 21.1
MISRA C++ 2008:3-1, 7-5-1, 7-5-2, and 75-3

© ISTIEC2013 ¢ All rightsreserved 63

WG 23/N 043

CERT C guililees: EXP3& and DCL30
AdaQualityand Style Guide: 7.6.7, 7.6.8, and 10.7.6

6.35.3 Mechanism of failure

The consequences of dangling references to the stack come in two variants: a deterministically pieedictab
variant, which therefore can be exploited, and an intermittent, rdeterministic variant, which is next to
impossible to elicit during testingr'he following code sample illustrates the two variants; the behaviour is not
languagespecific:

struct s { e };

typedef struct s array_type[1000];
array_type* ptr;

array_type* F()

{

struct s Arr[1000];
ptr = &Arr; /I Risk of variant 1;
return &Arr; /I Risk of variant 2;
b
é

struct s secret;
array_type* ptr2;

ptr2 = F();
secret = (*ptr2)[10]; /[Fault of variant 2
é

secret = (*ptr)[10]; /[Fault of variant 1

The risk of variant 1 is the assignment of the addregsrofto a pointer variable that survives the lifetime of

Arr . The fault is the subsequent use of the dangling reference to the stack, which references memory since
altered by other calls and possibly validly owned by other routidespart of a calback, the fault allows

systematic examination of portions of theask contents without triggering an arrdgpundschecking violation.

Thus, this vulnerability is easily exploitabkss a fault, the effects can be most astounding, as memory gets
corrupted by completely unrelated code portion@A lifetime check as paof pointer assignment can prevent

the risk. In many casesuch aghe situations above, the check is statically decidable by a compiler. However, for
the general case, a dynamic check is needed to ensure that the copied pointer value lives no lamglee th
designated object.)

¢KS NAxal 2F QGFENRFYyG W Ada Yy ARAZ2Y aa StGaloidiayexpefsibe ¢ A f R
copy of a function result, as long as it is consumed before the next routine call oddwrsdiom is based ahe

ill-founded assumption that the stack will not be affected by anything until this next call is is§bed.
FaadzYLJiA2y Aa FlLftaSy K2eSOSNE AT Fy AydSNNHzLIG 2 OOdzN
stealing > @i UsiGgkthe cuent stack to satisfy its memory requirementghus, the value ofrr can be

overwritten before it can be retrieved after the call &n As this fault will only occur if the interrupt arrives after

the call has returned but before the returned result@nsumed, the fault is highly intermittent and next to

impossible to recreate during testing.Thus, it is unlikely to be exploitable, but also exceedingly hard to find by
testing. It can begin to occur after a completely unrelated interrupt handler bas lsoded or alteredOnly

static analysis can relatively easily detect the danger (unless the code combines it with risks of vaBamél).

64 © ISTIEC2013 ¢ All rights reserve

Baseline Edibn¢3 TR 24772

compilers issue warnings for this situation; such warnings need to be headddome forms of static analysis
are effective in identifying such problems.

6.35.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

1 The address of a local entity (or formal parameter) ad@tine can be obtained and stored in a variable
or can be returned by this routine as a result.

1 No check is made that the lifetime of the variable receiving the address is no larger than the lifetime of
the designated entity.

6.35.5 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

1 Do not use the address of locally declared entities as storable, assignable or returnable value (except
where idiomsof the language make it unavoidable).

1 Where unavoidable, ensure that the lifetime of the variable containing the address is completely enclosed
by the lifetime of the designated object.

1 Never return the address of a local variable as the result of a fuamctill.

6.35.6 Implications for standardization

In future standardizatiomctivities the following items should be considered:

1 Do not provide means to obtain the address of a locally declared entity as a storable value; or

1 Define implicit checks to impheent the assurance of enclosed lifetime expressesuinclauses of this
vulnerability. Note that, in many cases, the check is statically decidable, for example, when the address of
a local entity is taken as part of a return statement or expression.

6.36 Subprogram Signature Mismatch [OTR]

6.36.1 Description of application vulnerability

If a subprogram is called with a different number ofgraeters than it expects, or with parameters of different
types than it expects, then the results will be incorreDepending on the language, the operating environment,
and the implementation, the error might be as benign as a diagnostic message>dreaneas a program
continuing to execute with a corrupted stackhe possibility of a corrupted stack provides opportunities for
penetration.

6.36.2 Cross reference

CWE:
628. Function Call with Incorrectly Specified Arguments
686. Function Call withncorrect Argument Type
683. Function Call with Incorrect Order of Arguments

© ISTIEC2013 ¢ All rightsreserved 65

WG 23/N 043

JSF AV Rule: 108

MISRA C 2004: 8.1, 8.2, 8.3, 16.1, 16.3, 16.4, 4608,6.6

MISRA C++ 2008:3-2, 32-1, 32-2, 32-3, 32-4, 3-3-1, 39-1, 83-1, 84-1, and 84-2
CERT C gidlines: DCL3TC, and DCL36

6.36.3 Mechanism of failure

When a subprogram is called, the actual arguments of the call are pushed on to the execution\éheckthe
subprogram terminates, the formal parameters are popped off the stéicthe number ad type of the actual
arguments do not match the number and type of the formal parameters, thepending upon the calling
mechanism used by the language translatbg push and the pop will not beonsistentand, if so,the stack will

be corrupted. Stackcorruption can lead to unpredictable execution of the program and can provide opportunities
for execution of unintended or malicious code.

The compilation systems for many languages and implementations can check to ensure that the list of actual
parametes and any expected return match the declared set of formal parameters and return value (the
subprogram signaturein both number and type(ln some cases, programmers should observe a set of
conventions to ensure that this is truetjowever, when the chis being made to an externally compiled
subprogram, an objeetode library, or a module compiled in a different language, the programmer must take
additional steps to ensure a match between the expectations of the caller and the called subprogram.

6.36.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

! Languages that do noequire their implementations to ensurhat the number and types of actual
argumentsare equal to the number and types of the formal parameters.

1 Implementations that permit programs to call subprograms that have been externally compiled (without
a means to check for a matching subprogram signature), subprograms in object code libratiasy
subprograms compiled in other languages.

6.36.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the ratability or mitigate its ileffects in the following ways:

! Take advantage of any mechanism provided by thguage to ensure thaubprogramsignatures
match.

1 Avoid any language features that permit variable numbers of actual arguments without a method of
enforcing a match for any instance of a subprogram call.

1 Take advantage of any language or implementatiatiufee that would guarantee matching the
subprogram signature in linkirtg other languages or to separately compiled modules.

1 Intensively review subprogram calls where the match is not guaranteed by tooling

1 Ensure that only a trusted source is used whsimg nonstandard imported modules.

6.36.6 Implications for standardization

In future standardizatiomctivities the following items should be considered:

66 © ISTIEC2013 ¢ All rights reserve

Baseline Edibn¢3 TR 24772

1 Language specifiers could ensure that the signatures of subprograms match within &smgliation
unit and could provide features for asserting and checking the match with externally compiled
subprograms.

6.37 Recursion [GDL]

6.37.1 Description of application vulnerability

Recursion is an elegant mathematical mechanism for defining the values of some funtttisrtempting to
write code that mirrors the mathematicdlowever, the use of recursion in a computer can have a profound
effect on theconsumption of finite resources, leading to denial of service.

6.37.2 Cross reference

CWE:

674. Uncontrolled Recursion
JSF AV Rule: 119
MISRA C 2004: 16.2
MISRA C++ 2008:574
CERT C guililees: MEMOSC
AdaQualityand Style Guide: 5.6.6

6.37.3 Mechanism of failure

Recursion provides for the economical definition of some mathematical functiblmsvever, economical

definition and economical calculation are two different subjedtds tempting to calculate the value of a

recursive function using recursive subprograms because the expression in the programming language is
straightforward and easy to understantiowever, the impact on finite computing resources can be profound.
Each invocation of a recursive subprogram may result in the creation of a new stack frame, complete with local
variables.If stack space is limited and the calculation of some values will lead to an exhaustion of resources
resulting in the program terminaig.

In calculating the values of mathematical functions the use of recursion in a program is usually obvious, but this i
not true when considering computer operations generally, especially when processing error condiams

example, finalization of eomputing context after treating an error condition might result in recursguch as
attempting torecover resourceby closing a file after an error was encountered in closing the same file).

Although such situations may have other problems, they sipicdo not result in exhaustion of resources but

may otherwise result in a denial of service.

6.37.4 Applicable language characteristics
This vulnerability description is intended to be applicable to languages with the following characteristics:

1 Any langage that permits the recursive invocation of subprograms.

© ISTIEC2013 ¢ All rightsreserved 67

WG 23/N 043

6.37.5 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

9 Minimize the use of recursion.

9 Converting recursive calculations to the corresponding iterative calculatioprinciple, any recursive
calculation can be remodeled as an iterative calculation which will have a smaller impact on some
computing resources but which may be harder foruafan to comprehend.The cost to human
understanding must be weighed against the practical limits of computing resource.

1 In cases where the depth of recursion can be shown to be statically bounded by a tolerable number, then
recursion may be acceptable, tghould be documented for the use of maintainers.

It should be noted that some languages or implementations provide special (more economical) treatment of a
form of recursion known asil-recursion In this case, the impact on cqgmting economy is reducedhen
using such a language, tail recursion may be preferred to an iterative calculation.

6.37.6 Implications for standardization
[None]

6.38 Ignored Error Status and Unhandled Exceptions [OYB]

6.38.1 Description of application vulnerability

Unpredicted faults and exceptional situations arise during the @tkee of code, preventing the intended
functioning of the codeThey are detected and reported by the language implementation or by explicit code
written by the user. Different strategies and language constructs are used to report such errors and to take
remedial action.Serious vulnerabilities arise when detected errors are reported but ignored or not properly
handled.

6.38.2 Cross reference

CWE:
754. Improper Check for Unusual or Exceptional Conditions
JSF AV Rules: 115 and 208
MISRA C 20046.10
MISRA C++ 2008:-B=2 and 193-1
CERT C guililees: DCLOZ, ERROGC, and ERRE2

6.38.3 Mechanism of failure

The fundamental mechanism of failure is that the program does not react to a detected error or reacts
inappropriately to it. Execution may comtie outside the envelope provided by its specification, making
additional errors or serious malfunction of the software likely. Alternatively, execution may terminate. The
mechanism can be easily exploited to perform deniaservice attacks.

68 © ISTIEC2013 ¢ All rights reserve

Baseline Edibn¢3 TR 24772

The specifi mechanism of failure depends on the error reporting and handling scheme provided by a language or
applied idiomatically by its users.

In languages that expect routines to report errors via status variables, return codes, or-thoaherror

indicators,the error indications need to be checked after each ca.these frequent checks cost execution time
and clutter the code immensely to deal with situations that may occur rarely, programmers are reluctant to apply
the scheme systematically and consrgtg. Failure to check for and handé arisingerror condition continues
execution as if the error never occurreth most cases, this continued execution in adéfined program state

will sooner or later fail, possibly catastrophically.

The raising and handling of exceptions was introduced into languages to address these prdiiiegimindle

the exceptional code in exception handlers, they need not cost execution time if no error is present, and they will
not allow the program to contime execution by default when an error occurs, since upon raising the exception,
control of execution is automatically transferred to a handler for the exception found on the call Staekisk

and the failure mechanism is that there is no such handieles the language enforces restrictions that
guarantees its existence), resulting in the termination of the current thread of conMisb, a handler that is

found might not be geared to handle the multitude of error situations that are vectored téxteption handling

is therefore in practice more congt for the programmer than, for examplde use of status pameters.
Furthermore, differenfanguages provide exceptidmandling mechanisms that differ in details of their design,

which in turn mayead to misunderstandings by the programmer.

The cause for the failure might be simply laziness or ignorance on the part of the programmer, or, more
commonly, a mismatch in the expectations of where fault detection and fault recovery is to be Barteularly
when components meet that employ different fault detection and reporting strategies, the opportunity for
mishandling recognized errors increases and creates vulnerabilities.

Another cause of the failure is the scant attention that many library providers pay to describe all error situations
that calls on their routines might encounter and report. In this case, the caller cannot possibly react sensibly to all
error situations tlat might arise.As yet another cause, the error information provided when the error occurs may
be insufficiently complete to allow recovery from the error.

6.38.4 Applicable language characteristics

Whether supported by the language or not, error repogtiand handling is idiomatically present in all languages.
Of course, vulnerabilities caused by exceptions require a language that supports exceptions.

6.38.5 Avoiding the vulnerability or mitigating its effects

Given the variety of error handling mechamis, it is difficult to provide general guidelinedowever, dealing with
exception handling in some languages can stress the capabilities of static analysis tools and can, in some cases,
reduce the effectiveness of their analysis. Inversely, the userorf status variables can lead to confusingly
complicated control structures, particularly when recovery is not possible locHtlgrefore, for situations where

the highest of reliability is required, the decision for or against exception handling @ésseaveful thought. In

any case, exceptiehandling mechanisms should be reserved for truly unexpected situations and other situations
where no local recovery is possibiBituations which are merely unusual, like the end of file condition, should be
treated by explicit testing either prior to the call which might raise the error or immediately afterwalrd.

© ISTIEC2013 ¢ All rightsreserved 69

WG 23/N 043

general, error detection, reporting, correction, and recovery should not be a late opportunisticradulit should
be an integral part of a systenesign.

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

1 Checking error return values or auxiliary status variables following a call to a subprogram is mandatory
unless it can be demonstrated that the errmwndition is impossible.

1 Equally, exceptions need to be handled by the exception handlers of an enclosing construct as close as
possible to the origin of the exception but as far out as necessary to be able to deal with the error.

9 For each routine, a#trror conditions need to bdocumentedand matching error detection and reporting
needs to be implemented, providing sufficient information for handling the error situation.

1 When execution within a particular context is abandoned due to an exception ar @ndition, it is
important to finalize the context by closing open files, releasing resources and restoring any invariants
associated with the context.

1 Itis often not appropriate to repair an error situation and retry the operation. It is usuallytarbe
solution to finalize and terminate the current context and retreat to a context where the fault can be
handled completely.

9 Error checking provided by the language, the software system, or the hardware should never be disabled
in the absence of a colusive analysis that the error condition is rendered impossible.

1 Because of the complexity of error handling, careful review of all error handling mechanisms is
appropriate.

1 In applications with the highest requirements for reliability, defeirsdepth approaches are often
appropriate, for example, checking and handling errors even if thought to be impossible.

6.38.6 Implications for standardization
In future standardizatiomctivities the following items should be considered:

1 A standardized set of mechanisms for detecting and treating error conditions should be developed so that
all languages to the extent possible could use thdrhis does not mean that all languages ddause the
same mechanisms as there should be a variety each of the mechanisms should be standardized.

6.39 Termination Strategy [REU]

6.39.1 Description of application vulnerability

Expectations that a system will be dependable are based on the confidence that the system will operate as
expected and not fail in normal use. The dependability of a syatatrits fault tolerancean be measured

through the omponent parts reliability, availability, safety and securitiReliability ishe ability of a system or
component to perform its required functions under stated conditions for a specified period of lfi&& 1990
glossary]. Availability is how timely and reliable the system is to its intended users. Both of these factors matter
highly in systems used for safety and security. In spite of the best intentions, systems may encounter a failure,
either from internally poorly written software or external forces such as power outages/variations, floods, or
other natural disasters. The reaction to a fault can affect the performance of a system and in particular, the
safety and security of the system and itsets.

70 © ISTIEC2013 ¢ All rights reserve

Baseline Edibn¢3 TR 24772

When the software does not terminate in the plannednner, safety or security is compromised, as failing in an
unspecified way interferes with the alternative recovery featurbessafetyrelated systems the results can be
catastrophic: for otherstems the result can mean failure of the complete system

For termination issues associated with multiple threads, multiple processors or intealgoisee8.4
Concurrency Directed terminatiodfCGThnd 8.6 Concurrency Premature TerminatiofCGS] Situations that
cause an application terminate unexpectedly or that cause an application to not terminate because of other
vulnerabilities are covered in those vulnerabilities.

6.39.2 Cross reference

JSF AV Rule: 24

MISRA C 2004: 20.11

MISRA C++ 2008:32, 155-2, 155-3, and 180-3
CERT @uiddines: ERROGZ, ERROGG and ENV3EZ
AdaQualityand Style Guide: 5.8 and 7.5

6.39.3 Mechanism of failure

The reactiorto a fault in a system can depend on the criticality of the part in which the fault originstégn a
program consists of severalgks, each task may be critical, or not. If a task is critical, it may or may not be
restartable by the rest of the program. Ideally, a task that detects a fault within itself should be able to halt
leaving its resources available for use by the reshefprogram, halt clearing away its resources, or halt the
entire program.The latency of task termination and whether tasks can ignore termination signals should be
clearly specifiedHaving inconsistent reactions to a fault can potentially be a vulnksabi

When a fault is detected, there are many ways in which a system can fEaetquickest and most noticeable

way is to fail hard, also known as fail fast or fail stop. The reaction to a detected fault is to immediately halt the
system. Alternativegi, the reaction to a detected fault could be to fail soft. The system would keep working with
the faults present, but the performance of the system would be degraded. Systems used in a high availability
environment such as telephone switching centerspenmerce or other "always available" applicatiomgould

likely use a fail soft approach. What is actually done in a fail soft approach can vary depending on whether the
system is used fasafety-critical or security critical purposes. For{galfe systms, such as flight controllers,

traffic signals, or medical monitoring systems, there would be no effort to meet normal operational requirements,
but rather to limit the damage or danger caused by the fault. A system that fails securely, such asgig/ptolo
systems, would maintain maximum security when a fault is detected, possibly through a denial of service.

For termination issues associated with multiple threads, multiple processors or intealsoisee8.4

Concurrency Directed terminatiodfCGThnd 8.6 Concurrency Premature TerminatiofCGS]Situations that

cause an application to terminate unexpectedly or that cause an application to not terminate because of other
vulnerabilities are covered in those vulnerabilities.

6.39.4 Applicable langua ge characteristics

This vulnerability description is intended to be applicable to all languages.

© ISTIEC2013 ¢ All rightsreserved 71

WG 23/N 043

6.39.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

1

A strategy for fault handling should be decided. Consistency in fault handling should be the same with
respect to critically similar parts.
A multitiered approach of fault prevention, fault detion and fault reaction should be used.
Systemdefined compnents that assist in uniformity of fault handling should be usten available.For
one exampledesigning druntime constraint handler{as describedh Annex K of 9899:2012 Mjermits
the application to intercept various erroneous situaticared peform one consistent response, such as
flushing a previous transaction amnetstarting at the next one.
When there are multiple tasks, a fatitandling policy should be specified whereby a task may
0 Halt, and keep its resources available for other tasksti{pps permitting restarting of the faulting
task)
0 Halt and remove its resources (perhaps to allow other tasks to use the resources so freed, or to
allow a recreation of the task)
0 Halt, and signal the rest of the program to likewise halt.

6.39.6 Implica tions for standardization

In future standardizatiomctivities the following items should be considered:

|l

Languages should consider providing a means to perform fault handlgmninology and the means
should be coordinated with other languages.

6.40 Type-breaking Reinterpretation of Data [AMV]

6.40.1 Description of application vulnerability

In most cases, objects in pn@gns are assigned locations in processor storage to hold their vHltiee same
storage space is assigned to more than one obj&dther statically or temporarily then a change in the value of
one object will have an effect on the value of the oth€&urthermore, if the representation of the value of an
object is reinterpreted as being the representation of the value of an object with a different type, unexpected
results may occur

6.40.2 Cross reference

JSF AV Rules 153 and183

MISRA 2004: 18.2, 18.3)ch18.4

MISRA C++ 2008541 to 45-3, 410-1, 410-2, and 50-3 to 50-9
CERT C guililees: MEMOSC

AdaQualityand Style Guide: 7.6.7 and 7.6.8

72

© ISOIEC2013 ¢ All rights reserve

Baseline Edibn¢3 TR 24772

6.40.3 Mechanism of failure

Sometimes there is a legitimate need for applications to place differgetpretations upon the same stored
representation of data.The most fundamental example is a program loader that treats a binary image of a
program as data by loading it, and then treats it as a program by invokiMpgt programming languages permit
type-breaking reinterpretation of data, however, some offer lessor-prone alternatives for commonly
encountered situations.

Typebreaking reinterpretation of representation presents obstacles to human understanding of the code, the
ability of tools toperform effective static analysis, and the ability of code optimizers to do their job

Examples include:

1 Providing alternative mappings of objects into blocks of storage performed either statialy 4s
Fortrancommor) or dynamicallysuch aspointers).

1 Union types, particularly unions that do not have a discriminant stored as part of the data structure.

1 Operations that permit a stored value to be interpreted as a different tygpelf asreating the
representation of a pointer as an gger).

In all of these cases accessing the value of an object may produce an unanticipated result.

A related problem, the aliasing of parameters, occurs in languages that permit call by reference because
supposedly distinct parameters might refer to tharsaistorage area, or a parameter and a Hooal object might
refer to the same storage area. That vulnerability is describ&hasing Parameters and Return Val@&S]]

6.40.4 Applicable language characteristics

This vulnerability description istended to be applicable to languages with the following characteristics:

1 A programming language that permits multiple interpretations of the same bit pattern.
6.40.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid thalnerability or mitigate its ill effects in the following ways:

1 Programmers should avoid reinterpretation performed as a matter of convenience; for example, using an
integer pointer to manipulate character string data should be avoidafthen typebreaking
reinterpretation is necessary, it should be carefully documented in the code. However this vulnerability
cannot becompletely avoided because some applications view stored data in alternative ways.

1 When using union types it is preferable to use disorated unions.This is dype of a union where a
stored value indicates which interpretation is to be placed upon the d8tame languagesiich as
variant records in Ada) enforce the view of data indicated by the value of the discrimilfi&imé.
language does not enforce the interpretatiofo¢ example equivalence in Fortraand union in Gnd
C+4, then the code should implement an explicit discriminant and check its value before accessing the
data in the union, or use some other mechanism to ensure that correct interpretation is placed upon the
data value.

© ISTIEC2013 ¢ All rightsreserved 73

WG 23/N 043

1 Operations that reinterpret the sameated value as representing a different type should be avoided. It
is easier to avoid such operations when the language clearly identifies tRemexample, the name of
Adds Unchecked_Conversion function explicity warns of the problemA much more difficult
situation occurs when pointers are used to achieve type reinterpretatfdome languages perform type
checking of pointers and place restrictions on the ability of pointers to access arbitrary locations in
storage. Others permit the free use of pointersn such cases, code must be carefully reviewed in a
search for unintended reinterpretation of stored valuekherefore it is important to explicitly comment
the source code whermtendedreinterpretationsoccur.

9 Static analysis tools may be helpful in locating situations where unintended reinterpretation oCurs.
the other hand, the presence of reinterpretation greatly complicates static analysis for other problems, so
it may be appropriate to segregaietended reinterpretation operations into distinct subprograms.

6.40.6 Implications for standardization
In future standardizatiomctivities the following items should be considered:

1 Because the ability to perform reinterpretation is sometimes neces$athe need for it is rare,
programming language designers might consider putting caution labels on operations that permit
reinterpretation. For example, the operation in Ada that permits unconstrained reinterpretation is called
Unchecked_Conversion

9 Because of the difficulties with undiscriminated unions, programming language designers might consider
offering union types that include distinct discriminants with appropriate enforcement of access to objects.

6.41 Memory Leak [XYL]

6.41.1 Description of application vulnerability

A memory leak occurs when software does not release allocated memory after it ceases to be used. Repeated
occurrences of a memory leak can consumesidgrable amounts of available memor. memory leak can be
exploitedby attackers to generate deniaf-serviceby causing the program to execute repeatedly a sequence

that triggers the leakMoreover, a memory leak can cause any loagning critical pogram to shutdown
prematurely.

6.41.2 Cross reference

CWE:
nnmM® ClIAfd2NBE G2 wSftSFrasS aSY2NE . SF¥F2NB wSY2@0Ay3 [
JSF AV Rule: 206
MISRA C 2004: 20.4
CERT C guililees: MEM0OEC and MEM3LC
AdaQualityand Style Guide: 5.4.5, 5.9.2, and 7.3.3

6.41.3 Mechanism of failure
As a process or system runs, any memory taken from dynamic memory and not returned or reclaimed (by the

runtime system or a garbage collector) after it ceases to be used, may reautiiie@ memory allocation requests

74 © ISTIEC2013 ¢ All rights reserve

Baseline Edibn¢3 TR 24772

failing for lack of free spacelternatively, memory claimed and returned can cause the heap to fragment, which
will eventually result in an inability tallocatethe necessary size storagEgither condition will resulin a memory
exhaustion exception, and program termination or a system crash.

If an attacker can determine the cause of an existing memory leak, the attacker may be able to cause the
application to leak quickly and therefore cause the application to crash

6.41.4 Applicable language characteristics
This vulnerability description is intended to be applicable to languages with the following characteristics:

9 Languages that support mechanisms to dynamically allocate memory and reclaim memory under progran
contral.

6.41.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

1 Use ofgarbagecollectors that reclaim memory that will never be used by the application agaime
garbage collectors are part of the language while others arecarid

1 In systems with garbage collectors, set all hocal pointers or references to null, when the designated
data is no longer needed, since the data will not be garbaailected aherwise. In systems without
garbage collectors, cause deallocation of the data before the last pointer or reference to the data is lost.

1 Allocating and freeing memory in different modules and levels of abstraction may make it difficult for
developers tanatch requests to free storage with the appropriate storage allocation requiEss may
cause confusion regarding when and if a block of memory has been allocated or freed, leading to memon
leaks. To avoid these situations, it is recommended that merbergllocated and freed at the same level
of abstraction, and ideally in the same code module.

9 Storage pools are a specialized memory mechanism where all of the memory associated with a class of
objects is allocated from a specific bounded regidvhen ugd with strong typing one can ensure a
strong relationship between pointers and the space accessed such that storage exhaustion in one pool
does not affect the code operating on other memory.

1 Memory leaks can be eliminated by avoiding the use of dynapialticated storage entirely, or by doing
initial allocation exclusively and never allocating once the main execution commences. Focstbety
systems and long running systems, the use of dynamic memory is almost always prohibited, or restricted
to the initialization phase of execution.

9 Use static analysisvhich can sometimes deteathenallocated storage is no longer used and has not
been freed.

6.41.6 Implications for standardization
In future standardizatiomctivities the following items shoulbde considered:

i Languages can provide syntax and semantics to guarantee pregidarthat dynamic memory is not
used (such as the configuratipmagmas feature offered by some programming languages

© ISTIEC2013 ¢ All rightsreserved 75

WG 23/N 043

i Languages can document or specify tilaplementations must document choices for dynamic memory
management algorithms, to hope designers decide on appropriate usage patterns and recovery
techniques as necessary

6.42 Templates and Generics [SYM|

6.42.1 Description of application vulnerability

Many languages provide a mechanism that allows objects and/or functions to be defined parameterized by type
and then instantiated for specific typds.C+# YR NBf I G SR f I y3dzZ 3Sasx GKBalSy R NS
AdaandJava G ISWRENN@R AR KIFGAy3d (2 1SSLI NRGAY T iMHplyDy LI | G
referred to collectively as generics.

Used well, generics can make code clearer, more predictable and easier to malssaith badly, they can have
the reverse effect, making code difficult to review and maintain, leading to the possibilitpgfgm error.

6.42.2 Cross reference

JSF AV Rules: 101, 102, 103, 104, and 105
MISRA C++ 20084-6-1, 146-2, 147-1 to 147-3, 148-1, and 148-2
Ada Quality and Style Guide: 8.3.1 through 8.3.8, and 8.4.2

6.42.3 Mechanism of failure

The value of genericcomes from having a single piece of code that supports some behaviour in a type
independent manner. This simplifies development and maintenance of the dodbkould also assist in the
understanding of the code during review and maintenance, by pnogitie same behaviour for all types with
which it is instantiated.

Problems arise when the use of a generic actually makes the code harder to understand during review and
maintenance, by not providing consistent behaviour.

In most cases, the generic ddfion will have to make assumptions about the types it can legally be instantiated

with. For example, a sort function requires that the elements to be sorted can be copied and compared. If these
assumptions are not met, the result is likely to be a coenptror. For example if the sort function is instantiated
gAGK | dzaSNJ RSTAYSR (@L)S (KIKSNR SBWAARIZZKS @S2 7 INBF 9 yiS\
error, this can be regarded as a development issue, and not a software vulitgrabil

Confusion, and hence potential vulnerability, can arise where the instantiated code is apparealily but
R2SayQil NIBa&dz (Fdrgxantple, @ gevidri dass Nafireda\sBt Nffmembers, a subset of which rely

on a particular propertpf the instantiation type (such as a generic container class with a sort member function,

only the sort function relies on the instantiating type having a defined relational operditogome languages,

such as C++f the genericisinstartii SR gAGK | (e8I GKIFIG R2SayQid YSSa I
never subsequently makes use of the subset of members that rely on the property of the instantiating type, the
code will compile and execute (for example, the generic container iantiated with a user defined class that
R2Say Qi RSTAYS I NBtlIGA2ylFf 2LISNFG2NE 0dzi {vén LINE 3N

76 © ISTIEC2013 ¢ All rights reserve

Baseline Edibn¢3 TR 24772

the code is reviewed the generic class will appear to reference a member of the instantiating typeah@ta y Q
exist.

The problem as described in the two prior paragraphs can be reduced by a language feature (sucioaseibis
language feature being designed by the C++ committee).

Similar confusion can arise if the language permits specific elementgesfeic to be explicitly defined, rather

than using the common code, so that behaviour is not consistent for all instantiatiarsexample, for the same
generic container class, the sort member normally sorts the elements of the container into aggendin. In
flIy3dza 3Sa &4dzOK a /bbX I WALISOAILE OFasSQ OFy 6S ONB
C2NJ SEIFYLIX S GKS a2NI YSYOSNI F2NJ | Wt 21 G4Q O2yil Ay
sorting the dements into descending orde{. LISOAF f AT I GA2y GKFIG R2SayQi | FF8
instantiation is not an issueAgain, for C++, there are some irregularities in the semantics of arrays and pointers
that can lead to the generic having diftat behaviour for different, but apparently very similar, typés.such

cases, specialization can be used to enforce consistent behaviour.

6.42.4 Applicable language characteristics
This vulnerability is intended to be applicable to languages withdhewing characteristics:

1 Languages that permit definitions of objects or functions to be parameterized by type, for later
instantiation with specific types, such as:
0 Templatesn C++
0 Generics in Ada, Java.

6.42.5 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

1 Document the properties of an instantiating type necessary for a generic to be valid.

1 If an instantiating type has #required properties, the whole of the generic should be ensured to be
valid, whether actually used in the program or not.

T t NEFTSNIof& | @2ARY odzi G €SlFad OF NEFdzZ & R2O0dzY¢
I & LISOA F A Gehdve a98 doRsXds éthérQyipes.

6.42.6 Implications for standardization
In future standardization activities, the following items should be considered:

9 Language specifiers should standardize on a common, uniform terminology to describe
generics/templats so that programmers experienced in one language can reliably learn and refer to the
type system of another language that has the same concept, but with a different name.

9 Language specifiers should design generics in such a way that any atteimgtatttiate a generic with
constructs that do not provide the required capabilities results in a contipile error.

9 Language specifiers should provide an assertion mechanism for checking propertiediateufor those
properties that canot be checkect compile time.It should be possible to inhibit assertion checking if
efficiency is a concern.

© ISTIEC2013 ¢ All rightsreserved 77

WG 23/N 043

6.43 Inheritance [RIP]

6.43.1 Description of application vulnerability

Inheritance the ability to create enhanced and/or restricted object classes based on existing object classes can
introduce a number of vulnerabilities, both inadvertent and malicious. Because Inheritance allows the overriding
of methods of tle parent class and because object oriented systems are designed to separate and encapsulate
code and data, it can be difficult to determine where in the hierarchy an invoked method is actually defined. Also,
since an overriding method does not need tal thé method in the parent class that has been overridden,

essential initialization and manipulation of class data may be bypassed. This can be especially dangerous during
constructor and destructor methods.

Languages that allow multiple inheritance adtbi@ional complexities to the resolution of method invocations.
Different object brokerage systems may resolve the method identity to different classes, based on how the
inheritance tree is traversed.

6.43.2 Cross reference

JSF AV Rules: 86 to 97
MISRA C#2008: 01-12, 83-1, 101-1 to 101-3, and 163-1 to 103-3
AdaQualityand Style Guide: 9 (complete clause)

6.43.3 Mechanism of failure

The use of inheritance can lead to an exploitable application vulnerability or negatively impact system safety in
seweral ways:

1 Execution of malicious redefinitions, this can occur through the insertion of a class into the class hierarchy
that overrides commonly called methods in the parent classes.

9 Accidental redefinition, where a method is defined that inadvertentlgrodes a method that has already
been defined in a parent class.

1 Accidental failure of redefinition, when a method is incorrectly named or the parameters are not defined
properly, and thus does not override a method in a parent class.

1 Breaking of classvariants, this can be caused by redefining methods that initialize or validate class data
without including that initialization or validation in the overriding methods.

These vulnerabilities can increase dramatically as the complexity of the hieraccbgsas, especially in the use
of multiple inheritance.

6.43.4 Applicable language characteristics
This vulnerability description is intended to be applicable to languages with the following characteristics:

9 Languages that allow single and multiphdneritances.

78 © ISTIEC2013 ¢ All rights reserve

Baseline Edibn¢3 TR 24772

6.43.5 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

1 Avoid the use of multiple inheritance whenever possible.

1 Provide complete documentian of all encapsulated data, and how each method affects that data for
each object in the hierarchy.

91 Inherit only from trusted sources, and, whenever possible, check the version of the parent classes during
compilation and/or initialization.

91 Provide a mthod that provides versioning information for each class.

6.43.6 Implications for standardization

In future standardization activities, the following items should be considered:

1 Language specification should include the definition of a common versionitigpthe
9 Compilers should provide an option to report the class in which a resolved method resides.
1 Runtime environments should provide a trace of all runtime method resolutions.

6.44 Extra Intrinsics [LRM]

6.44.1 Description of application vulnerability

Most languages define intrinsic procedures, which are easily available, or always "simply available", to any
translation unit. If a translator extends the set of intrirsslieyond those defined by the standard, and the

standard specifies that intrinsics are selected before procedures of the same signature defined by the application
a different procedure may be unexpectedly used when switching between translators.

6.44 .2 Cross reference
[None]
6.44.3 Mechanism of failure

Most standard programming languages define a set of intrinsic procedures which may be used in any application
Some language standards allow a translator to extend this set of intrinsic proced@oe® language standards
specify that intrinsic procedures are selected ahead of an application procedure of the same sighatanmay

cause a different procedure to be used whamitching between translators.

For example, most languages provide a mogitto calculate the square root of a number, usually narsed()

If a translator also provided, as an extension, a cube root routine, say nelongll , that extension may
override an application defined procedure of the same signature. If the tworéiffebrt() routines chose
different branch cuts when applied to complex arguments, the application could unpredictably go wrong.

If the language standard specifies that application defined procedures are selected ahead of intrinsic procedures
of the samesignature, the use of the wrong predure may mask a linking error.

© ISTIEC2013 ¢ All rightsreserved 79

WG 23/N 043

6.44.4 Applicable language characteristics
This vulnerability description is intended to be applicable to languages with the following characteristics:

1 Any language where translators maxtend the set of intrinsic procedures and where intrinsic
procedures are selected ahead of application defined (or external library defined) procedures of the same
signature.

6.44.5 Avoiding the vulnerability or mitigating its effec ts
Software developersan avoid the vulnerability or mitigate its ill effects in the following ways:

1 Use whatever language features are available to mark a procedure as language defined or application
defined.

1 Be aware of the documentation for every translator in use and avsigguprocedure signatures matching
those defined by the translatas extending the standard set.

6.44.6 Implications for standardization

In future standardization activities, the following items should be considered:

1 Qearly state whether translatorsanextend the set of intrinsic procedures or not

1 Qearly state what the precedence is for resolving collisions

1 Qearly provide ways to mark a procedure signature as being the intrinsic or an application provided
procedure

1 Require that a diagnostic is isstigvhen an application procedure matches the sigme of an intrinsic
procedure.

6.45 Argument Passing to Library Functions [TRJ]

6.45.1 Description of application vulnerability

Libraries that supply objects or functions are in most cases not required to check the validity of parameters
passed to them. In those cases where paramesdidation is required there might not be adequate parameter
validation.

6.45.2 Cross reference

CWE:
114. Process Control
JSF AV Rules 16, 18, 19, 20, 21, 22, 23, 24, and 25
MISRA C 20020.2, 20.3, 20.4, 20.6, 20.7, 20.8, 20.9, 20.10, 20.11, and 20.12

MISRA C++ 2008:-071, 170-5, 180-2, 180-3, 180-4, 182-1, 187-1 and 270-1
CERT C guiliiges: INTOZC and STReECZ

80 © ISTIEC2013 ¢ All rights reserve

Baseline Edibn¢3 TR 24772

6.45.3 Mechanism of failure

When calling a library, either the calling function or the library may make assumptions about parankaters.
example, it may be assumed by a library that a parameter iszeoo so division by that parameter is performed
without checking the valueSometimes some validation is performed by the calling function, but the library may
use the parameters in waybat were unanticipated by the calling function resulting in a potential vulnerability.
Even when libraries do validate parameters, their response to an invalid parameter is usually undefined and can
cause unanticipated results.

6.45.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

1 Languagegroviding or usingibraries that do not validate the parameters accepted by functions,
methods and objects.

6.45.5 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

9 Libraries should be defined to validate any values passed to the library before the value is used.

1 Devebp wrappers around library functions that check the parameters before calling the function.

1 Demonstrate statically that the parameters are never invalid.

1 Use only libraries known to have been developed with consistent and validated interface requirements.

It is noted that several approachean be taken, some work best if used in conjunction with each other.
6.45.6 Implications for standardization
In future standardizatiomctivities the following items should be considered:

1 Ensure thatll library functions defined operateas intended over the specifiednge of input values and
reactin a defined manner to values that are outside the specified range.

9 Languages should define libraries that provide the capability to validate parameters during compilation,
during execution or by static analysis.

6.46 Inter -language Calling [DJY

6.46.1 Description of application vulnerability

When an application is developeding more than one programming language, complications arise. The calling
conventions, data layout, error handing and return conventions all differ between languages; if these are not
addressed correctly, stack overflow/underflow, data corruption, andrmey corruption are possible.

In multi-language development environments it is also difficult to reuse data structures and object code across
the languages.

© ISTIEC2013 ¢ All rightsreserved 81

WG 23/N 043

6.46.2 Cross reference
[Nondg
6.46.3 Mechanism of failure

When calling a function that has been @&sped using a language different from the calling language, the call
convention and the return convention used must be taken into account. If these conventions are not handled
correctly, there is a good chance the calling stack will be corrupted;.86&ubprograntignature Mismatch
[OTR. The call convention covers how the language invtthegall;see6.34 Passing Parameters and Return
ValuedCS]] and how the parameters are handled.

Many languages restrict the length of identifiers, the tygecharacters that can be used as the first character,

and the case of the characters used. All of these need to be taken into account when invoking a routine written in
a language other than the calling language. Otherwise the identifiers might binchémaer different than

intended.

Character and aggregate data types require special treatimeatmultilanguage development environment. The
data layout of all languages that are to be used must be taken into consideration; this includes padding and
alignment. If these data types are not handled correctly, the data could be corrupted, the meaubdybe
corrupted, or both may become corrupt. This can happen by writing/reading past either end of the data
structure, see5.9 Buffer Boundary Violation (Buffer OverfldiCB. For example, RascaBTRINGdata type

VAR str: STRING(10);
corresponds to a C structure
struct {
int length;

char str [10];
b

andnot to the C structure

char str [10]

wherelength contains the actual length @TRING. The second C construct is implemented with a physical
length that is different from physical length of the Pasg&8RINGand assumes a null terminator.

Most numeric dataypes have counterparts across languages, but again the layout should be understood, and
only those types that match the languages should be used. For example, in some implementations of C++ a

signed char

would match a Fortran
integer(1)

and would match #&ascal

82 © ISTIEC2013 ¢ All rights reserve

Baseline Edibn¢3 TR 24772

PACKED- 128..127
These correspondences can be implementatileiined and should be verified.
6.46.4 Applicable language characteristics

The vulnerability is applicable to languages with the following characteristics:

1 All high level programming langges and low level programming languages are susceptible to this
vulnerability when used in a mulainguage development environment.

6.46.5 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigéali effects in the following ways:

1 Use the intedanguage methods and syntax specified by the applicable language standard(s). For
example, Fortran and Ada specify how to call C funstion
1 Understand the calling conventions of all languages used.
1 Foritems comprising the intelanguage interface:
0 Understand the data layout of all data types used.
o Understand the return conventions of all languages used.
o0 Ensure that the language in which error check occurs is the one that handles the error.
0 Avoid assumig that the language makes a distinction between upper case and lower case letters
in identifiers.
Avoid using a special character as the first character in identifiers.
0 Avoid using long identifier names.

o

6.46.6 Implications for standardization

In future standardization activities, the following items should be considered:

1 Standards committees should consider developing standard provisions fodaniguage calling with
languages most often used with their programming language.

6.47 Dynamically -linked Cod e and Seltmodifying Code [NYY]

6.47.1 Description of application vulnerability

Code that is dynamicallinkedmay be different from the code that was tested. This may be the result of
replacing a library with another of the same name or by altering an environment variable such as

LD _LIBRARY_PATHon UNIXplatforms so that a different directory is searched for the library file. Executing
code that is different than thatvhich was tested may lead to unanticipated errors or intentional malicious
activity.

On some platforms, and in some languages, instructions can modify other instructions in the code space.
Historically selmodifying code was needed for software that was required to run on a platform with very limited
memory. Itis now primarily used (orisused) to hide functionality of software and make it more difficult to
reverse engineer or for specialty applications such as graphics where the algorithm is tuned at runtime to give

© ISTIEC2013 ¢ All rightsreserved 83

WG 23/N 043

better performance. Selfhodifying code can be difficult to write aectly and even more difficult to test and
maintain correctly leading to unanticipated errors.

6.47.2 Cross reference
JSF AV Rule: 2
6.47.3 Mechanism of failure

Through the alteration of a library file or environment variable, the code that is dynanlicalyg may be
different from the code which was tested resulting in different functionality.

On some platforms, a pointdp-data can erroneously be given an address value that designates a location in the
instruction space. If subsequently a modificatisrmade through that pointer, then an unanticipated behaviour
can result.

6.47.4 Applicable language characteristics
This vulnerability description is intended to be applicable to languages with the following characteristics:

1 Languages that allow a point&r-data to be assigned an address value that designates a location in the
instruction space

1 Languages that allow execution@ide that exists inlata space

1 Languages that permit the use of dynamically linked or shared libraries

1 Languagethat executeon an OS that permits program memory to be both writable and executable.

6.47.5 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

Verify that thedynamically linked or shared code being used is the same as that which was tested.

Do not write seHmodifying code except in extremely rare instances. Most software applications should
never have a requirement for satiodifying code.

1 Inthose extremelyare instances where its use is justified, galfdifying code should be very limited and
heavily documented.

)l
il

6.47.6 Implications for standardization

In future standardizatiomctivities the following items should be considered:

1 Languages should considaioviding a means so that a program can either automatically or manually
check that the digital signaturef a library matches the one in the compile/test environment.

6.48 Library Signature [NSQ

6.48.1 Description of application vulnerability

Programs written in modern languages may use libraries written in other languages than the program
implementation language. If the library is large, the effort of adding signatures for all of the functions use by

84 © ISTIEC2013 ¢ All rights reserve

Baseline Edibn¢3 TR 24772

hand may be tedious and err@rone. Porable crosdanguage signatures will require detailed understanding of
both languages, which a programmer may lack.

Integrating two or more programming languages into a single executable relies upon knowing how to interface
the function calls, argument lisind global data structures so the symbols match in the object code during linking.

Byte alignment can be a source of data corruption if memory boundaries between the programming languages
are different. Each language may also align structure data diffdye

6.48.2 Cross reference

MISRA C 2004: 1.3
MISRA C++ 2008:012

6.48.3 Mechanism of failure

When the library and the application in which it is to be used are written in different languages, the specification
of signatures is complicated by intenguage issues.

As used in this vulnerability description, the term library includes the interface to the operating system, which
may be specified only for the language used to code the operating system itself. In this case, any program writte
in any othe language faces the intdanguage interoperability issue of creating a fdllpctional signature.

When the application language and the library language are different, then the ability to specify signatures
according to either standard may not exist,ba very difficult. Thus, a translatby-translator solution may be
needed, which maximizes the probability of incorrect signatures (since the solution must be recreated for each
translator pair). Incorrect signatures may or may not be caught durintintkieg phase.

6.48.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:
1 Languages that do not specify how to describe signatures for subprograms writtereinlaniguages.

6.48.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

9 Use tools to create the signatures.
1 Avoid using translator options or languagetf@as to reference library subprograms without proper
signatures.

6.48.6 Implications for standardization
In future standardization activities, the following items should be considered:

91 Provide correct linkage even in the absence of correctly spegifiscedure signatures. (Note that this
may be very difficult where the original source code is unavailable.)

© ISTIEC2013 ¢ All rightsreserved 85

WG 23/N 043

9 Provide specified means to describe the signatures of subprograms.

6.49 Unanticipated Exceptions from Library Routines [HJW]

6.49.1 Description of application vulnerability

A library in this context is taken to mean a set of software routines prodoaégide the control of the main
application developer, usually by a third party, and where the application developer may not have access to the
source. In such circumstances the application developer has limited knowledge of the library functions, ather th
from their behavioural interface.

Whilst the use of libraries can present a number of vulnerabilities, the focus of this vulnerability is any undesirable
behaviour that a library routine may exhibit, in particular the generation of unexpected exceptions

6.49.2 Cross reference

JSFAV Rule208

MISRA @004 3.6, 20.3

MISRA C+2008 153-1, 153-2, 1704
AdaQualityand Style Guide: 5.8 and 7.5

6.49.3 Mechanism of failure

In some languages, unhandled exceptions leadmglementationdefinedbehaviou. This can include immediate
termination, without for example, releasing previously allocated resourtfes library routineraisesan
unanticipated exception, this undesirable behaviour may result.

It should be noted that the considerations[@YB, IgnoredError Statusand Unhandled Exceptionare also
relevant here.

6.49.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

f Languages thatan link previousl RS @St 2LJSR f AN} NBE O2RS 6sKSNB (K.
access to the library source)
1 Languages that permit exceptions to be thrown but do not require handlers for them

6.49.5 Avoiding the vulnerability or mitigating its effects
Software deelopers can avoid the vulnerability or mitigate its ill effects in the following ways:
T 1ttt fAONINEB OF ffa acksdtm SF OENdihdlgsiRadashfpotaSfchh WO I
construct), so that any unanticipated exceptions can be caught and handled appropribitétywrapping

may be done for each library function call or for the entire behaviour of the prog@mexample having
the excepton handler in main for C++However, note thatthe laB NJ A ay Qd I O2 YLX S S 2

86 © ISTIEC2013 ¢ All rights reserve

Baseline Edibn¢3 TR 24772

objects are constructed before maimantered and are destroyed after it has been exité&bnsequently,
MISRA CH#f6] bars clas constructors and destructors from throwing exceptions (unless handled locally).

1 An alternative approach would be to use only library routines for which all possible exceptions are
specified.

6.49.6 Implications for standardization

In future standardizabn activities, the following items should be considered:

1 Languages that provide exceptions should provide a mechanism for catching all possible ex¢fptions
examplel W@ I AKX Klhe/bRHaBoddofdhe program when encountering an unhandled
exception should be fully defined.

9 Languages should provide a mechanism to determine which exceptions might be thrown by a called
library routine.

6.50 Pre-processor Directives [NMP]

6.50.1 Description of application vulnerability

Preprocessor replacements happen before any source code syntax check, therefore there is no type checking
this is especially important in functidike macro parameters.

If great care is not taken in the writing of macros, the expanded macro can have an unexpected meaning. In
many cases if explicit delimiters are not added around the macro text and around all macro arguments within the
macro text, unexpected expansiathe result.

Source code that relies heavily on complicated-precessor directives may result in obscure and hard to
maintain code since the syntax they expect may be different from the expressions programmers regularly expect
in a given programming hguage.

6.50.2 Cross reference

Holzmannr8

JSFAV Rules: 26, 27, 28, 29, 30, 31, and 32

MISRA C 2004: 191).7, 19.8, and 19.9

MISRA C++ 2008:-D&3, 160-4, and 160-5

CERT C guidelines: PREQPREQZ, PRE1C, and PRE3Q

6.50.3 Mechanism of failur e

Readability and maintainability may be greatly decreased Hppoeessing directives are used instead of language
features.

While static analysis can identify many problems early; heavy use of therpcessor can limit the effectiveness
of many statianalysis tools, which typically work on the grecessed source code.

In many cases where complicated macros are used, the program doés mdtat is intended. For example:

© ISTIEC2013 ¢ All rightsreserved 87

WG 23/N 043

define a macro as follows,
#define CD(x, y) (x +y -1y

whose purposeés to divide. Then suppose it is used as follows
a=CD (b &c, sizeof (int));

which expands into
a = (b & c + sizeof (int) - 1)/ sizeof (int);

which most times will not do what is intended. Defining the macro as
#define CD(x, y) ((X) + (y) - D/

will provide the desired result.
6.50.4 Applicable language characteristics
This vulnerability description is intended to be applicable to languages with the following characteristics:

Languages that have a lexitavel preprocessor.

Languagethat allow unintended groupings of arithmetic statements.
Languages that allow cascading macros.

Languages that allow duplication of side effects.

Languages that allow macros that reference themselves.
Languages that allow nested macro calls.

1 Languagethat allow complicated macros.

=A =2 =4 =4 =4 =4

6.50.5 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

1 Where it is possible to achieve the desired functionality withibiet use of preprocessor directives, this
should be done in preference to the use of ym@cessordirectives

6.50.6 Implications for standardization
In future standardization activities, the following items should be considered:

I Standardsshould reduce peliminate dependence on lexiekdvel preprocessors for essential
functionality (such as conditional compilation).

i Standards should consider providing capabilities to inline functions and procedure calls, to reduce the
need for preprocessor macros.

88 © ISTIEC2013 ¢ All rights reserve

Baseline Edibn¢3 TR 24772

6.51 Suppression of Language-defined Run -time Checking [MXB]

6.51.1 Description of application vulnerabi lity

Some languages include the provision for runtime checking to prevent vulnerabilities to @arenical
examples are bounds or length checks on array operations owalule checks upon dereferencing pointers or
references. In most cases, the reaction to a failed check is the raising of a larupiegel exception.

As runtime checking requiresxecution time and as some project guidelines exclude the use of exceptions,
languages may define a way to optionally suppress such checking for regions of the code or for the entire
program. Analogously, compiler options may be used to achieve thisteffec

6.51.2 Cross reference
[None]
6.51.3 Mechanism of Failure

Vulnerabilities that could have been prevented by the-tume checks are undetected, resulting in memory
corruption, propagation of incorrect values or unintended execution paths.

6.51.4 Applic able language characteristics
This vulnerability description is intended to be applicable to languages with the following characteristics:

9 Languages that define runtime checks to prevent certain vulnerabilities and
1 Languages that allow the above check®&¢éosuppressed,
)l

Languages or compilers that suppress checking by default, or whose compilers or interpreters provide

options to omit the above checks

6.51.5 Avoiding the vulnerability

Software developers can avoid the vulnerability or mitigate ieffidlcts in the following ways:

1 Do not suppress checks at all or restrict the suppression of checks to regions of the code that have been

proved to be performanceritical.

If the default behaviour of the compiler or the language is to suppress checksettable them.
Where checks are suppressed, verify that the suppressed checks could not have failed.
Clearly identify code sections where checks are suppressed.

Do not assume that checks in code verified to satisfy all checks could not fail neverthelées du
hardware faults.

= =4 =4 =4

6.51.6 Implications for standardization

[None]

© ISTIEC2013 ¢ All rightsreserved 89

WG 23/N 043

6.52 Provision of Inherently Unsafe Operations [SKL]

6.52.1 Description of application vulnerability

Languages define semantic rules to be obeyeddnformingprograms. Compilers enforce these rulesd
diagnoseviolating programs.

A canonical example are the rules of type checking, intended among other reasons to prevent semantically
incorrect assignments, such as characters to pointers, meter to feet, euro to dollar, real numbers to booleans, or
complex numbers to twalimensional oordinates.

Occasionally there arises a need to step outside the rules of the type model to achieve needed fuitytiQre
suchsituation is the casting of memory as part of the implementation of a heap allocator to the type of object for
which the menory is allocated A typesafe assignment is impossible for this functionalityus, a capability for

dzy OKSO1 SR aidél)S OlradAay3daé o0SGeSSYy INDAGNI NBE (éLlSa (2
inherently unsafe operation, without ich the typesafe albcator cannot be programmed.

Another example is the provision of operations known to be inherently unsafe, such as the deallocation of heap
memory without prevention of dangling references.

A third example is any interfacing with ahet language, since the checks ensuring tgp&eness rarely extel
across language boundaries.

These inherently unsafe operations constitute a vulnerability, since they can (and will) be used by programmers in
situations where their use is neither necasg nor appropriate.

The vulnerability is eminently exploitaltie violate program security.
6.52.2 Cross reference

[None]
6.52.3 Mechanism of Failure

The use of inherently unsafe operations or the suppression of checkimgnventshe features that are
normally applied to ensure safe execution. Control flow, data values, and memory accesses can be corrupted as a
consequence. See the respective vulnerabilities resulting from such corruption.

6.52.4 Applicable lan guage characteristics
This vulnerability description is intended to be applicable to languageshétfollowing characteristics:
1 Languages that allow compitane checks for the prevention of vulnerabilities to be suppressed by

compiler or interpreter option®r by language constructs, or
1 Languages that provide inherently unsafe operations

6.52.5 Avoiding the vulnerability

Software developers can avoid the vulnerability or mitigate itfféicts in the following ways:

90 © ISTIEC2013 ¢ All rights reserve

Baseline Edibn¢3 TR 24772

Restrict the suppression of comptiiiene checks to where the suppression is functionally essential.

Use inherently unsafe operations only when they are functionally essential.

Clearly identify program code that suppresses checks or uses unsafe operations. This permits the focusir
of review efort to examine whether the function could be performed in a safer manner.

= =4 =

6.53 Obscure Language Features [BRS]

6.53.1 Description of application vulnerability

Every programming language has features that are obscure, difficult to understand or difficult to use correctly.
The problem is compounded if a software design must be reviewed by people who may not be language experts,
such as, hardware enmtgers, humarfactors engineers, or safety officerEven if the design and code are initially
correct, maintainers of the software may not fully understand the intéflhe consequences of the problem are

more severe if the software is to be used in taegapplications, such as safetyraissioncritical ones.

Misunderstood language features or misunderstood code sequences can lead to application vulnerabilities in
development or in maintenance.

6.53.2 Cross reference

JSF AV Rules: 84, 86, 88, and 97

MISRA C 2004: 3.2,10.2,13.1, 126.620.12, and 12.10
MISRA C++ 2008:201, 2-3-1, and 121-1

CERT C guililees: FIO0, MSCOE, MSC3C, and MSC3(.
ISO/IEC TR 15942:2000: 5.4.2,5.6.2 and 5.9.3

6.53.3 Mechanism of failure

The use of obscure langge features can lead to an application vulnerability in several ways:

1 The original programmer may misunderstand the correct usage of the feature and could utilize it
incorrectly in the design or code it incorrectly.

1 Reviewers of the design and code nmigunderstand the intent or the usage and overlook problems.

1 Maintainers of the code cannot fully understand the intent or the usage and could introduce problems
during maintenance.

6.53.4 Applicable language characteristics

This vulnerability descriptiois intended to be applicable to any language.

6.53.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

1 Individual programmers should avoid the use of language features that are obscure or difficult to use,
especially in combination with other difficult language featur€ganizations should adopt coding
standards that discourage use of such features @mshow to use them correctly.

© ISTIEC2013 ¢ All rightsreserved 91

WG 23/N 043

1 Organizations developing software with critically important requirements should adopt a mechanism to
monitor which language features are correlated with failures during the development process and during
deployment.

1 Organizatbns should adopt or develop stereotypical idioms for the use of difficult language features,
codify them in organizational standards, and enforce them via review processes.

1 Avoid the use of complicated features of a language.

1 Avoid the use of rarely useastructs that could be difficult for entrgvel maintenance personnel to
understand.

{1 Static analysis can be used to find incorrect usage of some language features.

It should be noted that consistency in coding is desirable for each of review and maioéeiderefore, the
desirability of the particular alternatives chosen for inclusion in a coding standard does not need to be empirically
proven.

6.53.6 Implications for standardization
In future standardization activities, the following items should besidered:

1 Language designers should consider removing or deprecating obscure, difficult to understand, or difficult
to use features.
1 Language designers should provide language directives that optionally disable obscure language features.

6.54 Unspecified Behaviour [BQF]

6.54.1 Description of application vulnerability

The external behaviour of a program whose source code contains one or more instances fatsstving
unspecified behaviour may not be fully predictable when the source code is (re)compiled or (re)linked.

6.54.2 Cross reference

JSF AV Rules:-25

MISRA C 2004:3,1.5,3.13.3,34,17.3,1.2,5.1, 18.2,19.2, and 19.14

MISRA C++ 2008:0-1, 52-6, 7-2-1, and 163-1

CERT C guiliiees: MSC1&

See 6.55 Undefined BehaviodEWH and 6.56 ImplementationdefinedBehavioufFAB.

6.54.3 Mechanism of failure

Language specifications do not always uniquely define the behaviour of a construct. When an instance of a
construct that is not uniquely defined is encountereligtmight be at any of compile, link, or run time)
implementations are permitted to choose from the set of behaviours allowed by the language specifiddten.
term 'unspecified behaviour' is sometimes applied to such behaviours, (language specifingaideed to
analyze and document the terms used by their respective language).

92 © ISTIEC2013 ¢ All rights reserve

Baseline Edibn¢3 TR 24772

A developer may use a construct in a way that depends on a subset of the possible behaviours octering.
behaviour of a program containing such a usage is dependent amahglator used to build it always selecting
the 'expected’ behaviour.

Many language constructs may have unspecified behaviour and unconditionally recommending against any use
these constructs may be impracticdtor instance, in many languages théer of evaluation of the operands
appearing on the leftand righthand side of an assignment is unspecified, but in most cases the set of possible
behaviours always produce the same result.

The appearance of unspecified behaviour in a language spedifidatecognitionby the language designers that
in some cases flexibility is needed by software developers and provides a worthwhile benefit for language
translators; this usage is not a defect in the language.

The important characteristic is not the imteal behaviour exhibited by a construct (such as the sequence of
machine code generated by a translator) but its external behaviour (that is, the one visible to a user of a
program). If the set of possible unspecified behaviours permitted for a spefoafi a construct all produce the

same external effect when the program containing them is executed, then rebuilding the program cannot result in
a change of behaviour for that specific usage of the construct.

For instance, while the following assignmetdtement contains unspecified behaviour in many langugtfest
is, it is possible to evaluate either thfeor B operand first, followed by the other operand)

A =B;

in most cases the order in whighandB are evaluated does not affect the external behaviour of a program
containing this statement.

6.54.4 Applicable language characteristics

This vulnerability is intended to be applicable to languages with the following characteristics:

1 Languages whose spécétion allows a finite set of more than one behaviour for how a translator
handles some construct, where two or more of the behaviours can result in differences in external
program behaviour.

6.54.5 Avoiding the vulnerability or mitigating its effects
Sdtware developers can avoid the vulnerability or mitigate its ill effects in the following ways:

1 Use language constructs that have specified behaviour.

1 Ensure that a specific use of a construct having unspecified behaviour produces a result that issthe sam
for all of the possible behaviours permitted by the language specification.

1 When developing coding guidelines for a specific language all constructs that have unspecified behaviour
should be documented and for each construct the situations where thefgabssible behaviours can
vary should be enumerated.

© ISTIEC2013 ¢ All rightsreserved 93

WG 23/N 043

6.54.6 Implications for standardization
In future standardization activities, the following items should be considered:

9 Languages should minimize the amount of unspecified behaviours, minimineithieer of possible
behaviours for any given "unspecified" choice, and document what might be the difference in external
effect associated with different choices.

6.55 Undefined Behaviour [EWF]

6.55.1 Description of application vulnerability

The external behaviour of a program containing an instance of a construct having undefined behaviour, as defined
by the language specification, is not predictable.

6.55.2 Crossreference

JSF AV Rules:-25

MISRA C 2004:3, 1.5, 3.13.3,3.4,17.3,1.2,5.1, 18.2, 19.2, and 19.14

MISRA C++ 2008:13-1, 52-2, 162-4, and 162-5

CERT C guiliiees: MSC1&

See 6.54 UnspecifiedBehavioulBOK and 6.56 ImplementationdefinedBehavioufFAB.

6.55.3 Mechanism of failure

Language specifications may categorizelibhaviourof a language construct as undefined rather than as a
semantic violation (that is, an erroneous use of thegiaage) because of the potentially high implementation cost

of detecting and diagnosing all occurrences of it. In this case no specific behaviour is required and the translator
or runtime system is at liberty to do anything it pleases (which may incisienig a diagnostic).

Thebehaviourof a program built from successfully translated source code containing a construct having
undefinedbehaviouris not predictable. For example, in some languages the value of a variable is undefined
before it is initialzed.

6.55.4 Applicable language characteristics
This vulnerability is intended to be applicable to languages with the following characteristics:

1 Languages that do not fully define the extent to which the use of a particular construct is a violation of
the language specification.

1 Languages that do not fully define the behaviour of constructs during compile, link and program
execution.

6.55.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigatdlieffects in the following ways:

94 © ISTIEC2013 ¢ All rights reserve

Baseline Edibn¢3 TR 24772

1 Ensuring that undefined language constructs are not used.

1 Ensuring that a use of a construct having undefined behaviour does not operate within the domain in
which the behaviour is undefinedVhen it is not possible to completely verify the domain of operation
during translation a runtime check may need to be performed.

1 When developing coding guidelines for a specific language all constructs that have untefiraetbur
should be documentedThe items on this list might be classified by the extent to whichodteaviouris
likely to have some critical impact on the exterbahaviourof a program (the criticality may vary
between different implementations, for example, whether conversion between object and function
pointers has well definedehaviouy.

6.55.6 Implications for standardization

In future standardization activities, thelfowing items should be considered:

1 Language designers should minimize the amount of undefirdviourto the extent possible and
practical.
1 Language designers should enumerate all the cases of undefined behaviour.

9 Language designers should provide maukms that permit the disabling or diagnosing of constructs that

may produce undefined behaviau

6.56 Implementation -defined Behaviour [FAB]

6.56.1 Description of application vulnerability

Some constructs in programming languages are not fully defineds(Séénspecified3ehavioufBOH) and thus
leave compiler implementations to decide how the construct will operate. bEf@viourof aprogram,whose
source code contains one or more instances of constructs having implatrmnmtefinedbehavioutr can change
when the source code is recompiled or relinked.

6.56.2 Cross reference

JSF AV Rules:-2%

MISRA C 2004:3,1.5,3.13.3,3.4,17.3,1.2,5.1, 18.2,19.2, and 19.14
MISRA C++ 2008:29, 53-3, 7-3-2, and 95-1

CERT Quiddines: MSC1&

ISO/IEC TR 15942:2000: 5.9

AdaQualityand Style Guide: 7.1.5 and 7.1.6

See 6.54 UnspecifiedBehavioulBOF and6.55 Undefined BehavioJEWH.

6.56.3 Mechanism of failure

Language specifications do not always uniquely defind#teviourof a construct.When an instance of a
construct that is not uniquely defined is encountered (this might be at any of translatioirhek or program
execution) implementations are permitted to choose from a sdbeffiavious. The only difference from
unspecifiedoehaviouris that implementations are required to document how they behave.

© ISTIEC2013 ¢ All rightsreserved 95

WG 23/N 043

A developer may use a construct in a way that depends on a particular implementgtioed behaviour
occurring. Thebehaviourof a program containing such a usage is dependent ertrdmslator used to build it
always selecting the 'expecteokhaviour

Some implementations provide a mechanism for changing an implementation's implemendatioed

behaviour(for example, use gfragmas in source code). Use of such a change mechanism creates the potential
for additional human error in that a developer may be unaware that a changetaviourwas requestedtarlier

in the sourcecode and may write code that depends the implementationdefinedbehaviourthat occurred

prior to that explicit change diehaviour.

Many language constructs may have implementatitfiinedbehaviourand unconditionally recommending
against any use of these constructs may be completely impractealinstancein many languages the number
of significant characters in an identifier is implementataefined. Developers need to choose a minimum
number of characters and require that only translators supporting at least that nuribef,characters be used.

Theappearance of implementatiodefinedbehaviourin a language specification is recognition by the language
designers that in some cases implementation flexibility provides a worthwhile benefit for language translators;
this usage is not a defect in the larage.

6.56.4 Applicable language characteristics
This vulnerability is intended to be applicable to languages with the following characteristics:

1 Languages whose specification allows some variation in how a translator handles some construct, where
reliance on one form of this variation can result in differences in external progedravioutr

1 Language implementations may not be required to proviseehanism for controlling implementatien
definedbehaviour

6.56.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

1 Document the set of implementatiedefined features an application depends upon, so that upon a
change of translator, development tools, or target configuration it can be ensured that those
dependencies are still met

1 Ensure that a specific use of a construct having implementatafimedbehaviourproduces an external
behaviourthat is the same for all of the possititdehavious permitted by the language specification.

1 Only use a language implementation whose implementatiefinedbehavious are within a known
subset of implementatiordefined behavious. The known subset should be chosen so that the 'same
externalbehaviout condition described above is met.

1 Create highly visible documentation (perhaps at the start of a source file) that the default
implementationndefinedbehaviouris changd within the current file.

1 When developing coding guidelines for a specific language all constructs that have implementation
definedbehaviourshall be documented and for each construct, the situations where the set of possible
behavious can vary shalleoenumerated.

96 © ISTIEC2013 ¢ All rights reserve

Baseline Edibn¢3 TR 24772

1 When applying this guideline on a project the functionality provided by and for changing its
implementationdefinedbehaviourshall be documented.
1 Verify code behaviour using at least two different compilers with two different technologies.

6.56.6 Implications for standardization
In future standardization activities, the following items should be considered:

1 Portability guidelines for a specific language should provide a list of common implemerdafioed
behavious.

1 Language specifieshould enumerate all the cases of implementatidefined behaviour

1 Language designers should provide language directives that optionally disable obscure language feature:s

6.57 Deprecated Language Features [MEM]

6.57.1 Description of application vulnerability

Ideally & code should conform to the current standard for the respective language. In reality though, a language
standard may change ding the creation of a software system or suitable compilers and development
environments may not be available for the new standard for some period of time after the standard is published.
Tosmooth the process of evolution, features that are no longezdex or which serve as the root cause of or
contributing factor for safety or security problems are often deprecated to temporarily allow their continued use
but to indicate that those features may be removed in the future. The deprecation of a featgstring

indication that it should not be used. Other features, although not formally deprecated, are rarely used and there
exist other more common ways of expressing the same function. Use of these rarely used features can lead to
problems when otherare assigned the task of debugging or modifying the code containing those features.

6.57.2 Cross reference

JSF AV Rules: 8 and 11

MISRA C 2004: 1.1, 4.2, and 20.10

MISRA C++ 2008:0-1, 23-1, 25-1, 27-1, 52-4, and 180-2
AdaQualityand Style Guide:.Z.1

6.57.3 Mechanism of failure

Most languages evolve over time. Sometimes new features are added making other features extraneous.
Languages may have features that are frequently the basis for security or safety problems. The deprecation of
these featires indicates that there is a better way of accomplishing the desired functionality. However, there is
always a time lag between the acknowledgement that a particular feature is the source of safety or security
problems, the decision to remove or replate feature and the generation of warnings or error messages by
O2YLWAESNE (KIG GKS FSIGdNBE aKz2dzZ RyQli 0SS dzaSRo DA D
possible and even likely that a language standard will change causing stimeecfeditures used to be suddenly
deprecated. Modifying the software can be costly and time consuming to remove the deprecated features.
However, if the schedule and resources permit, this would be prudent as future vulnerabilities may result from

© ISTIEC2013 ¢ All rightsreserved 97

WG 23/N 043

leavingthe deprecated features in the code. Ultimately the deprecated features will likely need to be removed
when the features are removed

6.57.4 Applicable language characteristics
This vulnerability description is intended to be applicable to languageghétfollowing characteristics:

1 All languageshat have standards, though some only have defacto standards.
1 All languages that evolve over time and as such could potentially have deprecated features at some point.

6.57.5 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

1 Adhere to the latest published standard for which a suitable complier and development environment is
available.

1 Avoid the use of depiated features of a language.

9 Stay abreast of language discussions in language user groups and standards groups on the Internet.
Discussions and meeting notes will give an indication of problem prone features that should not be used
or should beused withcaution.

6.57.6 Implications for standardization
In future standardization activities, the following items should be considered:

1 Obscure language features for which there are commonly used alternatives should be considered for
removal from the languagstandard.

1 Obscure language features that have routinely been found to be the root cause of safety or security
vulnerabilities, or that are routinely disallowed in software guidance documents should be considered for
removal from the language standard.

1 Langiage designers should provide language mechanisms that optionally disable deprecated language
features.

7. Application Vulnerabilities

7.1 General

This clause provides descriptions of selected application vulnerabilities which have been found anddexpéoite
number of applications and which have well known mitigation techniques, and which result from design decisions
made by coders in the absence of suitable language library routines or other mechahkisnibese
vulnerabilities, each description prigkes:

1 asummary of the vulnerability,

1 typical mechanisms of failure, and

9 techniques that programmers can use to avoid the vulnerability

98 © ISTIEC2013 ¢ All rights reserve

Baseline Edibn¢3 TR 24772

7.2 Terminology

These vulnerabilities are applicatioelated rather than languageelated. They are written in a leguage
independent manner, and there are no corresponding sections in the annexes.

7.3 Unspecified Functionality [BVQ]

7.3.1 Description of application vulnerability

Unspecified functionalitis code that may be executed, but whose behaviour does not contribute to the
requirements of the applicatior? KAt S (KA A& YI& 0S y2 Y2 NI thdightgimiaor I Y
in a spreadsheetit does raise questions about the level of control of the development process.

InasecurityONR G A OFf SY@ANRYYSY(d LI NOAOdzZ I NI &> RESNRSGST P
illegitimate accss to the system on which it is eventually executed, irrespective of whether the application has
obvious security requirements.

7.3.2 Cross reference

JSF AV Rule: 127
MISRA C 2004: 2.2,2.3,2.4,and 14.1
XYQ: Dead and Deactivated code.

7.3.3 Mechanism of failure

Unspecified functionalitys not a software vulnerability per se, but more a development issue. In some cases,
unspecified functionality may be added by a developer without the knowledge of the developmentzati@mi

In other cases, typically Easter Eggs, the functionality is unspecified as far as the user is concerned (nobody buy
spreadsheet expecting to find it includes a flight simulator), but is specified by the development organization. In
effecttheyo/f & NBGSIf | &adzoaSid 2F (GKS LINPINI YQa 0SKI @A2d

In the first case, one would expecteell-manageddevelopment environment to discover the additional
functionality during validation and verification. In the second case, the user is relying on the supplier not to
release harmful code.

Ly SFFSOGZ | LINRPINIYQAE NBI|dZANBKSYyTHAft ABAWHKSI YINB BN
¢tKS WIYyR R2 y2iKAy3a StasSqQ OfldaaS Aa 2FiGSy y2i SELX

7.3.4 Avoiding the vulnerability or mitigating its effects
End usergan avoid the vulnerability or mitigaits ill effects in the following ways:

1 Programs and development tools that are to be used in critical applications should come from a
developer who uses a recognized and audited development process for the development of those
programs and tools

1 The devadpment process should generate documentation showing traceability from source code to
NBIljdZANBYSy(ias Ay STFFSOG | yagSNR yWherdundpecifieda (KA &

© ISTIEC2013 ¢ All rightsreserved 99

WG 23/N 043

functionality is there for a legitimate reason (such as diagnosticsinedjfor developer maintenance or
enhancement), the documentation should also record thigs not unreasonable for customers of
bespoke critical code to ask to see such traceability as part of their acceptance of the application.

7.4 Distinguished Values in Data Types [KLK]

7.4.1 Description of application vulnerability

Sometimes, in a type representation, certain valuesdistinguished as not being members of the type, but
rather as providing auxiliary informatiorexamples include special characters used as string terminators,
distinguished values used to indicate out of type entrieS@L(Structured Query Languagdatabase fields, and
sentinels used to indicate the bounds of queues or other data structuMdsen the usage pattern of code
containing distinguished values is changed, it may happen that the distinguished valuafappeincide with a
legitimate intype value. In such a case, the value is no longer distinguishable frortygpeinalue and the
software will no longer produce the intended results.

7.4.2 Cross reference

CWE:
20. Improper input validation
137. Represatation errors
JSFAV Rule151

7.4.3 Mechanism of failure

' GRAAOGAYIdAEAKSR GFfdzS¢ 2NJ I+ bYF3IAO ydzYoSNh Ay- (KS
of-type information. Some examples include the following:

 Theuseofaspecialcodrichasinné ¥ G2 AYRAOIGS GKS GSNXYAYLFGAZY
f The use of a special vallich ast X pé = a GKS AYRAOFGAZ2Y GKIFG (K
is invalid.

If the use of the software is later generalized, the ospecialvalue can become indistinguishable from valid
data. Note that the problem may occur simply if the pattern of usage of the software is changed from that
FYGAOALI GSR 0& (KS az2Fidgl NEQa RSaAAIYSNAED hcés. YI & | f 4

An example of a change in the pattern of usage is this: An organization logs visitors to its buildings by recording
their names and national identity numbers or social security numbers in a dataldsmurse, some visitors

f SAAGAYF (0 SANI RR2WMIM K2 GKSANI a20A1f aSOdzZNA (& ydzyoSH
GKS 02 Y LIziWwSNISK B 2ydéa Ga |G 2yS o0dzAft RAy3 KI @S55F R2 LJGI SF
ppppé G2 RSaAIyl G SReCeptibrisk AtBndthe? HuildiSghhde @séd3he dame code to

designate foreign nationalsiVhen the databases are merged, the children are reclassified as foreign nationals or
viceversa depending on which set of receptionists are using the newly meiafatake.

An example of an unanticipated change due to reuse is this: Suppose a software component analyzes radar data,
recording data every degree of azimuth from 0 to 3P%ckets of data are sent to other components for
processing, updating displayscording, and so onSince all degree values are npegative, a distinguished

100 © ISTIEC2013 ¢ All rights reserve

Baseline Edibn¢3 TR 24772

value of-1 is used as a signal to stop processing, compute summary data, close files, andvemprof the
components are to be reused in a new system with a new radar sisadgmponent.However the new
component represents direction by numbers in the rarty@0 degrees to 179 degree®¥hen an azimuth value
of -1 is provided, the downstream components will interpret that as the indication to stop procedsig.
magicvalue is changed to, sa§99, the software is still at risk of failing when future enhancements (say,
counting accumulated degrees on complete revolutions) i@@9 into the range of valid data.

Distinguished values should be avoided. Instead, the software should be designed to use distinct variables to
encode the desired oubf-type information. For example, the length of a character string might be encoded in a
dope vector and validity of datntries might be encoded in distinct Boolean values.

7.4.4 Avoiding the vulnerability or mitigating its effects

End usergan avoid the vulnerability or mitigate its ill effects in the following ways:

1 Use auxiliary variables (perhaps enclosed in variactnds) to encode oubf-type information.

1 Use enumeration types to convey category informati@uo not rely upon large ranges of integers, with
distinguished values having special meanings.

1 Use named constants to make it easier to change distinguisheds:al

7.5 Adherence to Least Privilege [XYN]

7.5.1 Description of application vulnerability
Failure to adhere to the principle of least pragke amplifies the risk posed by other vulnerabilities.
7.5.2 Cross reference

CWE:
250. Design Principle Violation: Failure to Use Least Privilege
CERT C guililees: POS0OZ

7.5.3 Mechanism of failure

This vulnerability type refers to cases in whichagplication grants greater access rights than necessary.
Depending on the level of access granted, this may allow a user to access confidential inforfRatierample,
programs that run with root privileges have caused innumeralildXsecuity disasters. It is imperative that you
carefully review privileged programs for all kinds of security problems, but it is equally important that privileged
programs drop back to an unprivileged state as quickly as possilieit the amount of damagéhat an
overlooked vulnerability might be able to cause. Privilege management functions can behave in setmanless
obvious ways, and they have different quirks on different platforifisese inconsistencies are particularly
pronounced if you are transiining from one norroot user to another.Signal handlers and spawned processes
run at the privilege of the owning process, so if a process is running as root when a signal fires-pracsshis
executed, the signal handler or splbocess will operatavith root privileges.An attacker may be able to leverage
these elevated privileges to do further damagko grant the minimum access level necessary, first identify the
different permissions that an application or user of that application will neecetéopm their actions, such as file

© ISTIEC2013 ¢ All rightsreserved 101

WG 23/N 043

read and write permissions, network socket permissions, and so fattlen explicitly allow those actions while
denying all else.

7.5.4 Avoiding the vulnerability or mitigating its effects

Software developers can avoidg vulnerability or mitigate its ill effects in the following ways:

1 Very carefully manage the setting, management and handling of privileges. Explicitly manage trust zones
in the software.
1 Follow the principle of least privilege when assigning accessrighentities in a software system.

7.6 Privilege Sandbox Issues [XY(

7.6.1 Description of application vulnerability

A variety of vulnerabilitiesccur with improper handling, assignment, or management of privilegesse are
especially present in sandbox environments, although it could be argued that any privilege problem occurs within
the context of some sort of sandbox.

7.6.2 Cross reference

CWE:

266. Incorrect Privilege Assignment

267. Privilege Defined With Unsafe Actions

268. Privilege Chaining

269. Privilege Management Error

270. Privilege Context Switching Error

272. Least Privilege Violation

273. Failure to Check Whether Privileges weregpped Successfully

274. Failure to Handle Insufficient Privileges

276. Insecure Default Permissions

732 Incorrect Permission Assignment for Critical Resource
CERT C guililees: POS3€

7.6.3 Mechanism of failure

The failure to drop system privileges whieis reasonable to do so is non applicationvulnerability by itself. It
does, however, serve to significantly increase the severity of other vulnerabilkis=ording to the principle of
least privilege, access should be allowed only when it islatedp necessary to the function of a given system,
and only for the minimal necessary amount of timeny further allowance of privilege widens the window of
time during which a successful exploitation of the system will provide an attacker with that savilege.

Many situations could lead to a mechanism of failure:

9 A product could incorrectly assign a privilege to a particular entity.
1 A particular privilege, role, capability, or right could be used to perform unsafe actions that were not
intended, eve when it is assigned to the correct entitfNote that there are two separate stiategories

102 © ISTIEC2013 ¢ All rights reserve

Baseline Edibn¢3 TR 24772

here: privilege incorrectly allows entities to perform certain actions; and the object is incorrectly
accessible to entities with a given privilege.)

1 Two distin¢ privileges, roles, capabilities, or rights could be combined in a way that allows an entity to
perform unsafe actions that would not be allowed without that combination.

1 The software may not properly manage privileges while it is switching betweenetiffeontexts that
cross privilege boundaries.

1 A product may not properly track, modify, record, or reset privileges.

1 In some contexts, a system executing with elevated permissions will hand off a processifiter
objectto another process/userlf the privileges of an entity are not reduced, then elevated privileges are
spread throughout a system and possibly to an attacker.

1 The software may not properly handle the situation in which it has insufficient privileges to perform an
operation.

1 A program, pon installation, may set insecure permissions for an object.

7.6.4 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

f The principle of least privilegehen assigning access rights to entities in a software system should be
followed. The setting, management and handling of privileges should be managed very cargpdly.
changing security privileges, one should ensure that the change was successful.

1 Cansider following the principle of separation of privilegeequire multiple conditions to be met before
permitting access to a system resource.

1 Trust zones in the software should be explicitly manadédt all possible, limit the allowance of system
privilege to small, simple sections of code that may be called atomically.

1 As soon as possible after acquiring elevated privilege to call a privileged function sichat§) , the
program should drop root privilege and return to the privilege level ofitiveking user.

1 In newer Windows implementations, make sure that the mstoken has the SelmpersonBté&vilege

7.7 Executing or Loading Untrusted Code [XYS

7.7.1 Description of application vulnerability

Executing commands or loading libraries from an untrusted source or in an untrusted environment can cause an
application to execte malicious commands (and payloads) on behalf of an attacker

7.7.2 Cross reference

CWE:

114. Process Control

306. Missing Authentication for Critical Function
CERT C guiliiees: PREOZ, ENVOZ, and ENVGG

7.7.3 Mechanism of failure

Process controlulnerabilities take two forms:

© ISTIEC2013 ¢ All rightsreserved 103

WG 23/N 043

1 An attacker can change the command that the program executes so that the attacker explicitly controls
what the command is.

1 An attacker can change the environment in which the command executes so that the attacker implicitly
controls what the command means.

Considering only the first scenario, the possibility that an attacker may be able to control the command that is
executed, process control vulnerabilities occur when:

91 Data enters the application frora sourcethat is not trusted

9 The data is used as or as part of a string representing a command that is executed by the application.

1 By executing the command, the application gives an attacker a privilege or capability that the attacker
would not otherwise have.

7.7.4 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

1 Libraries that are loaded should be well understood and come from a trusted source with a digital
signature. The application can execute code containedativelibraries, which often contain calls that
are susceptible to other security problems, such as bufferflows or command injection.

¢ All native libraries should be validated

1 Determine if theapplication requires the use of the native librarycdin bevery difficult to determine
what these libraries actually do, and the potential for malicious code is high.

1 To help prevent buffer overflow attacks, validate all input to ratialls for contenand length.

{1 If the native library does not come from a trusted source, review the source code of the libizey.
library should be built from the reviewed source before using it.

7.7.5 Implications for standardization

In future standardization activis, the following items should be considered:

1 Language independent AR&s code signing and data signisigould be defined, allowing each
Programming Language to define a binding.

7.8 Memory Locking [XZX]

7.8.1 Description of application vulnerability

Sensitive data stored in memory that was not locked or that has been improperly locked may be written to swap
files on disk by the virtual memory manager.

7.8.2 Cross reference

CWE:
591. Sensitive Data Storage in Improperly Locked Memory
CERT C guililees: MEMO&C

104 © ISTIEC2013 ¢ All rights reserve

Baseline Edibn¢3 TR 24772

7.8.3 Mechanism of failure

Sensitive data that is not kept cryptographically secure may become visible to an attacker by any of several
mechanisms.Someoperating systems may write memory to swap or page files that may be visible to an attacker.
Some operating systems may provide mechanisms to examine the physical memory of the system or the virtual
memory of another applicationApplication debuggers nysbe able to stop the target application and examine or
alter memory.

7.8.4 Avoiding the vulnerability or mitigating its effects
In almost all cases, these attacks require elevated or appropriate privilege.
Software developers can avoid the vulnerabilitynaitigate its ill effects in the following ways:

1 Remove debugging tools from production systems.

1 Log and audit all privileged operations.

1 Identify data that needs to be protected and use appropriate cryptographic and other data obfuscation
techniques toavoid keeping plaintext versions of this data in memory or on disk.

9 If the operating systenallows, clear the swap file on shutdown.

Note: Several implementations of the PO®&ick() and the Microsoft Window¥irt ualLock()
functions will prevent the named memory region from being written to a swap or pagefoeever, such
usage is not portable.

Systems that provide a "hibernate" facility (such as laptops) will write all of physical mémfife that may be
visible to an attacker on resume.

7.8.5 Implications for standardization

In future standardization activities, the following items should be considered:

1 Language independent APIs foemory lockingshould be defined, allowing each Programming Language
to define a binding.

7.9 Resource Exhaustion [XZP]

7.9.1 Description of application vulnerability

Theapplication is susceptible to generating and/or accepting an excessive number of requests that could
potentially exhaust limited resources, such as memory, file system storage, database connection pool entries, or
CPU.This could ultimately lead to a dexhiof service that could prevent any other applications from accessing
these resources.

7.9.2 Cross reference

CWE
400. Resource Exhaustion

© ISTIEC2013 ¢ All rightsreserved 10E

WG 23/N 043

7.9.3 Mechanism of failure

There are two primary failures associated with resource exhausiithe most common result of resource
exhaustion is denial of servicén some cases an attacker or a defect may cause a system to fail in an unsafe or
insecure fashion by causing an application to exhaust the available resources.

Resource exhaustimissues are generally understood but are far more difficult to prev@aking advantage of
various entry points, an attacker could craft a wide variety of requests that would cause the site to consume
resources.Database queries that take a long tinegrocess are gooboS(Denial of Service) targeté\n

attacker would only have to write a few lines of Perl code to generate enough traffic to exceed the site's ability to
keep up. This would effectively prevent authorizeders from using the site at all.

Resources can be exhausted simply by ensuring that the target machine must do much more work and consume
more resourceso service a request than the attacker must do to initiate a requ&sevention of these attacks
requires that the target system either recognizes the attack and denies that user further access for a given
amount of time or uniformly throttles all requests make it more difficult to consume resources more quickly

than they can again be freed.he firg of these solutions is an issue in itself though, since it may allow attackers

to prevent the use of the system by a particular valid uskthe attacker impersonates the valid user, he may be
able to prevent the user from accessing the server in goastThe second solution is simply difficult to

effectively institute and even when properly done, it does not provide a full soluticsimply makes the attack
require more resources on the part of the attacker.

The final concern that must be discuds#bout issues of resource exhaustion is that of systems which "fail open."
This means that in the event of resource consumption, the system fails in such a way that the state of the system
T and possibly the security functionality of the systemare compromised. A prime example of this can be

found in old switches that were vulnerable to "matattacks (so named for a tool developed by Dug3ong

These attacks flooded a switch with randorfitiernet Protocolland MAGQMedia Access Contraddress
combinations, therefore exhausting the switch's cache, which held the information of which port corresponded to
which MAC addresse®nce this cache was exhausted, the switch would fail in an insecurenslayauld begin

to act simply as a hub, broadcasting all traffic on all ports and allowing for basic sniffing attacks.

7.9.4 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effedisariollowing ways:

1 Implement throttling mechanisms into the system architectufie best protection is to limit the
amount of resources that an application can cause to be expendextrong authentication and access
control model will help prevent such attacks from occurring in the first plade= authentication
application should be protected against denial of service attacks as much as poksititeng the
database access, geps by caching result sets, can help minimize the resources expeiidddrther
limit the potential for a denial of service attack, consider tracking the rate of requests received from users
and blocking requests that exceed a defined rate threshold.

1 Ensure that applications have specific limits of scale placed on them, and ensure that all failures in
resource allocation cause tlapplication to fail safely.

106 © ISTIEC2013 ¢ All rights reserve

Baseline Edibn¢3 TR 24772

7.10 Unrestricted File Upload [CBF

7.10.1 Description of application vulnerability

A first step often used to attack is to get an executable on the system to be attacked. Then the attack only needs
to execute this code. Many times this fisdep is accomplished by unrestricted file upload. In many of these
attacks, the malicious code can obtain the same privilege of access as the application, or even administrator
privilege.

7.10.2 Cross reference

CWE:
434.Unrestricted Upload of File withangerous Type

7.10.3 Mechanism of failure
There are several failures associated with an uploaded file:

Executing arbitrary code.

Phishing page added to a website.

Defacing a website.

Creating a vulnerability for other attacks.

Browsing the file system.

Crating a denial of service.

Uploading a malicious executable to a server, which could be executed with administrator privilege.

=A =4 =4 =4 =4 4 A

7.10.4 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate iefféicts in the following ways:

Allow only certain file extensions, commonly known aghite-list.

Disallow certain file extensions, commonly known daaklist.

Use a utility to check the type of the file.

Check tle contenttype in the header information of all files that are uploadékhe purpose of the

contenttype field is to describe the data contained in the body completely enough that the receiving

agent can pick an appropriate agent or mechanism to pregdentta to the user, or otherwise deal with

the data in an appropriate manner.

1 Use a dedicated location, which does not have execution privileges, to store and validate uploaded files,
and then serve these files dynamically.

1 Require a unique file extensignamed by the application developer), so only the intended type of the file
is used for further processing. Each upload facility of an application could handle a unique file type.

1 Remove all Unicode characters and all control charatfess the filerame and the extensions.

= =4 =4 =

S Seehttp://www.ascii.cl/corntrol-characters.htm

© ISTIEC2013 ¢ All rightsreserved 107

http://www.ascii.cl/control-characters.htm

WG 23/N 043

1 Set a limit for the filename length; including the file extension. IN&aR§New Technology File System)
partition, usually a limit of 255 characters, without path information will suffice.
1 Set upper and lower limits on file size. Setting these limits can help in denial of service attacks.

All of the above have some short comings, for example, & @f}-file may contain a frelorm comment field,
and therefore a sanity check of the fBecontents is not always possible. An attacker can hide code in a file
segment that will still be executed by the application or server. In many casest#keith combination of the
techniques from the above list to avoid this vulnerability.

7.10.5 Implications for standardization
In future standardization activities, the following items should be considered:

1 Language independent APIs for file identificatshrould be defined, allowing each Programming
Language to define a binding.

7.11 Resource Names [HTS]

7.11.1 Description of application vulnerability

Interfacing with tke directory structure or other external identifiers on a system on which software executes is

very common. Differences in the conventions used by operating systems can result in significant changes in
behaviourwhen the same program is executed underetiént operating systems. For instance, the directory
structure, permissible characters, case sensitivity, and so forth can vary among operating systems and even
among variations of the same operating systeffar exampleMicrosoftLINE K A 0 AFié&F POkl K2YésT 6 dzd !
Linuxand OSE LISNI Ay 3 &deadasSvya tt26 ye OKIFNIOGSNI SEOSLI
filename.

Some operating systems are case sensitive vdiiiers are not. On ncoase sensitive operating systems,
RSLISYRAY3I 2y (KS a2FGgtrNBE 60SAy3 dzaSRxX GKS alyYS FAfS
GCL[9b!ag9é¢ FYyR Fff g2dZ R NBFSNI (2 GKS alryS FAfSo
Some operating systems, particularly oldees, only rely on the significance of the finstharacters of the file

name. n can be unexpectedly small, such as the first 8 characters in the case of &vamli@ctures which would
Ol dzaS aGFAESYlI YSMeéZT EFANRSYIHEYSHE LI iR GOKSE S IVSSF AL So

Variations in the filename, named resource or external identifier being referenced can be the basis for various
kinds of problems.Such mistakesr ambiguity can be unintentionady intentional, and in either case they cha
potentially exploited, ikurreptitious behaviour is a goal.

7.11.2 Crossreference

JSF AV Rules: 46, 51, 53, 54, 55, and 56
MISRA C 2004: 1.4 and 5.1
CERT C guiliies: MSCOZ and MSC1C

108 © ISTIEC2013 ¢ All rights reserve

Baseline Edibn¢3 TR 24772

7.11.3 Mechanism of Failure

The wrong named resource, such ddeg may be used within a program in a form that provides access to a
resource that was not intended to be accessed. Attackers could exploit this situation to intentionally misdirect
access of a named resource to another named resource.

7.11.4 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

1 Where possible, use an API that provides a known common set of conventions for naming and accessing
external resurces, such as POSIX, ISO/IEC 9945:2003 (IEEE Ste2000QR.1

1 Analyze the range of intended target systems, develop a suitable API for dealing with them, and
document the analysis

1 Ensure that programs adapt théaehaviourto the platform on which theware executing, so that only the
intended resources are accessed. The means that information on such characteristics as the directory
separator string and methods of accessing parent directories need to be parameterized and not exist as
fixed strings witln a program.

1 Avoid creating resource names that are longer than the guaranteed unique length of all potential target
platforms.

1 Avoid creating resources, which atiéferentiatedonly by the case in their names.

1 Avoidall Unicode characters and all control characténdilenames and the extensions.

7.11.5 Implications for standardization
In future standardization activities, the following items should be considered:

1 LanguageéndependentAPIs for interfacing with external identifiers shoulddefined, allowing each
Programming Language to define a binding

7.12 Injection [RST]

7.12.1 Description of application vu Inerability

Injection problems span a wide range of instantiatiom$ie basic form of this weakness involves the software
allowing injection of additional data in input data alter the control flow of the processCommand injection
problems are a subs@f injection problens, in which the process can be tricked into calling external processes of
Fy Fadlr Ol SNRa OK2A0S GKNRdAzZAK (KS ANMWBOGAZ2Y 2F 02YY
leading/internal/trailing special elements injected into an applicatthrough input can be used to compromise a
system. As data is parsed, improperly handled multiple leading special elements may cause the process to take
unexpected actions that result in an attacRoftware may allow the injection of special elemethiat are non

typical but equivalent to typical special elements with control implicatiofisis frequently occurs when the

product has protected itself against special element injectiBoftware may allow inputs to be fed directly into

an output file that is later processed as codrich as library file or template Line or section delimiters injected

into an application can be used to compromise a system.

6 Seehttp://www.ascii.cl/controkcharacters.htm

© ISTIEC2013 ¢ All rightsreserved 10¢

http://www.ascii.cl/control-characters.htm

WG 23/N 043

Many injection attacks involve the disclosure of important informatiomn terms of both data sensitivity and
usefulness in further exploitation. In some cases injectable code controls authentication; this may lead to a
remote vulnerability.Injection attacks are characterized by the ability to significantly change the flavgiven
process, and in some cases, to the execution of arbitrary cBdea injection attacks lead to loss of data integrity
in nearly all cases as the contglhne data injected is always incidental to data recall or writi@ffen the

actions perfomed by injected control code are not logged.

SQL injection attacks are a common instantiation of injection attack, in which SQL commands are injected into
input to effect the execution of predefined SQL comman8sice SQL databases generally hold serditata,

loss of confidentiality is a frequent problem with SQL injection vulnerabilitiggoorly implemented SQL

commands are used to check user names and passwords, it may be possible to connect to a system as another
user with no previous knowledg# the password.If authorization information is held in a SQL database, it may

be possible to change this information through the successful exploitation of the SQL injection vulnerability. Just
as it may be possible to read sensitive information, #i$® possible to make changes or even delete this
information with a SQL injection attack.

Injection problems encompass a wide variety of issuedl mitigated in very different waysThe most important
issue to note is that all injection problems sharge thing in common they allow for the injection of control

data into the user controlled dataThis means that the execution of the process may be altered by sending code
in through legitimate data channels, using no other mechanigvhile buffer oveflows and many other flaws
involve the use of some further issue to gain execution, injection problems need only for the data to be parsed.
Many injection attacks involve the disclosure of important information in terms of both data sensitivity and
usefuness in further exploitation. In some cases injectable code controls authentication, this may lead to a
remote vulnerability.

7.12.2 Cross reference

CWE:
74. Failure to Sanitize Data into a Different Plane ('Injection’)
76. Failure to Resolve EquivalepeSial Elements into a Different Plane
TYy® CIFLAfdzNB G2 {FyAGATS 5FGF Ayd2 Fy h{ [/ 2YYlIYyR 6
89: Improper Neutralization of Special Elements used in an SQL Command (‘'SQL Injection")
90. Failure to Sanitize Data into LDAP Queries{gkab ! t Ly 2SOGA2Yy Q0
91. XML Injection (aka Blind XPath Injection)
92. Custom Special Character Injection
95. Insufficient Control of Directives in Dynamically Code Evaluated Code (aka 'Eval Injection')
97. Failure to Sanitize Serv8ide Includes (SSI) Wit a Web Page
Py ® LyadzFFAOASY(d /2yiNRt 2F CAfSylFYS F2N LyOf dzRS«k
hpd LYyadzFFAOASYG /2y iNRE 2F wS&az2d2NOS LRSYUGATFASNE
144. Failure to Sanitize Line Delimiters
145. Failure t&anitize Section Delimiters
161. Failure to Sanitize Multiple Leading Special Elements
163. Failure to Sanitize Multiple Trailing Special Elements
165. Failure to Sanitize Multiple Internal Special Elements
166. Failure to Handle Missing Special Element

110 © ISTIEC2013 ¢ All rights reserve

Baseline Edibn¢3 TR 24772

167. Failure to Handle Additional Special Element
168. Failure to Resolve Inconsistent Special Elements
564. SQL Injection: Hibernate

CERT C guililees: FIO3€C

7.12.3 Mechanism of failure

A software system that accepts and executes input in the form ofadjpey system commandsifch as

system() ,exec() ,open()) could allow an attacker with lesser privileges than the target software to execute
commands with the elevated privileges of the executing proc€&snmand injection is a common problem with
wrapper programs Often, parts of the command to be run are controllable by the end udex.malicious user
injects a character (such as a saroion) that delimits the end of one command and the beginningnatther, he

may then be able to insert an entirely new and unrelated command to do whatever he pleases.

Dynamically generating operating system commands that include user input as parameters can lead to commanc
injection attacks.An attacker can insertpeerating system commands or modifiers in the user input that can cause
the request to behave in an unsafe mann&uch vulnerabilities can be very dangerous and lead to data and
system compromiself no validation of the parameter to the exec commandsexian attacker can execute any
command on the system the application has the privilege to access.

There are two forms of command injection vulnerabilitiés attacker can change the command that the
program executes (the attacker explicitly controlsavthe command is)Alternatively, an attacker can change
the environment in which the command executes (the attacker implicitly controls what the command means).
The first scenario where an attacker explicitly controls the command that is executeadcanvehen:

{ Data enters the application from an untrusted source.

! The data is part of a string that is executed as a command by the application.

1 By executing the command, the application gives an attacker a privilege or capability that the attacker
would na otherwise have.

Eval injection occurs when the software allows inputs to be fed directly into a funstioh @s'eval”) that

dynamically evaluates and executes the input as code, usually in the same interpreted language that the product
uses. Eval ifection is prevalent in handler/dispatch procedures that might want to invoke a large number of
functions, or set a large number of variables.

A PHPHAile inclusion occurs when a PHP product usegiire orinclude statements, or equivalent
statements, that use attackeczontrolled data to identify code ddTML(HyperText Markup Language)be
directly processed by the PHP interpreter before inclusion in the script.

A resource injection issue occurs whee fiollowing two conditions are met:

1 An attacker can specify the identifier used to access a system resource. For example, an attacker might b
able to specify part of the name of a file to be opened or a port number to be used.

1 By specifying the resourcthe attacker gains a capability that would not otherwise be permittedr
example, the program may give the attacker the ability to overwrite the specified file, run with a
configuration controlled by the attacker, or transmit sensitive information tbiad-party server.Note:
Resource injection that involves resources stored on the file system goes by the name path manipulation

© ISTIEC2013 ¢ All rightsreserved 111

WG 23/N 043

and is reported in separate categorgeethe 7.18 Path TraversdEWR description for further details of
this vulnerability. Allowing user input to control resource identifiers may enable an attacker to access or
modify otherwise protected system resources.

Line or section delimiters injected into an application can be used to compromise a syAtedata is parsed, an
injected/absent/malformed delimiter may cause the process to take unexpected actions that result in an attack.
One example of a section deltei is the boundary string in a multipaMIME (Multipurpose Internet Mail
Extensionymessage. In many cases, doubled line delimiters can serve as a section delimiter.

7.12.4 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

1 Assume all input is malicioutlse an apropriate combination of blacksts and whiteliststo ensure only
valid, expected and appropriate input is processed by the system.

1 Narrowly define the set of safe characters based on the expected values of the parameter in the request.

91 Developers should anticipate that delimiters and special elementsdvosil
injected/removed/manipulated in the input vectors of their software system and appropriate
mechanisms should be put in place to handle them.

1 Implement SQL strings using prepared statements that bind variaBlepared statements that do not
bind vaiables can be vulnerable to attack.

9 Use vigorous whitdist style checking on any user input that may be used in a SQL comiRatiter than
escape metacharacters, it is safest to disallow them entirely since the later use of data that have been
entered n the database may neglect to escape mekaracters before use.

1 Follow the principle of least privilege when creating user accounts to a SQL datalsse.should only
have the minimum privileges necessary to use their account. If the requirements sf/item indicate
that a user can read and modify their own data, then limit their privileges so they cannot read/write
others' data.

1 Assign permissions to the software system that prevents the user from accessing/opening privileged files.

1 Restructure codso that there is not a need to use tlegal() utility.

7.13 Cross-site Scripting [XYT]

7.13.1 Description of application vulnerability

Crosssite scripting XS$occurs when dynamically generated web pages display input, such amfognation

that is not properly validated, allowing an attacker to embed malicious scripts into the generated page and then
execute the scripbn the machine of any user that views the site. If successful,-sitesscripting vulnerabilities

can be exploited to manipulate or steal cookies, create requests that can be mistaken for those of a valid user,
compromise confidential information, or egute malicious code on the end user systems for a variety of
nefarious purposes.

7.13.2 Cross reference
CWE:

79. Failure to Preserve Web Page Structure ('GsitssScripting’)

112 © ISTIEC2013 ¢ All rights reserve

Baseline Edibn¢3 TR 24772

80. Failure to Sanitize ScrRelated HTML Tags in a Web Page (Basic XSS)
81. Failure to Sanitize Directives in an Error Message Web Page

82. Failure to Sanitize Script in Attributes of IMG Tags in a Web Page

83. Failure to Sanitize Script in Attributes in a Web Page

84. Failure to Resolve Encoded URI Schemes in a Web Page

85. Dowbled Character XSS Manipulations

86. Invalid Characters in ldentifiers

87. Alternate XSS Syntax

7.13.3 Mechanism of failure

Crosssite scripting (XSS) vulnerabilities occur when an attacker uses a web application to send malicious code,
generally JavaSeti to a different end userWhen a web application uses input from a user in the output it
generates without filtering it, an attacker can insert an attack in that input and the web application sends the
attack to other usersThe enduser trusts the web application, and the attacks exploit that trust to do things that
would not normally be allowedAttackers frequently use a variety of methods to encode the malicious portion of
the tag, such as using Unicode, so the request loolsssaspicious to the user.

XSS attacks can generally be categorized into two categories: stored and refl8tiest] attacks are those

where the injected code is permanently stored on the target servers in a database, message forum, visitor log,
and so foth. Reflected attacks are those where the injected code takes another route to the victim, such as in an
email message, or on some other servi¢hen a user is tricked into clicking a link or submitting a form, the

injected code travels to the vulnerableeb server, which reflects the attack back to the user's browser. The
browser then executes the code because it came from a 'trusted' seRara reflected XSS attack to work, the
victim must submit the attack to the serverhis is still a very dangmus attack given the number of possible

ways to trick a victim into submitting such a malicious request, including clicking a link on a malicious Web site, ir
an email, or in aimter-office posting.

XSS flaws are very common in web applications, asrdwpyre a great deal of developer discipline to avoid them
in most applications. It is relatively easy for an attacker to find XSS vulnerablitese of these vulnerabilities

can be found using scanners, and some exist in older web application sdifversonsequence of an XSS attack is
the same regardless of whether it is stored or reflected.

The difference is in how the payload arrives at the server. XSS can cause a variety of problems for the end user
that range in severity from an annoyance to quate account compromiseThe most severe XSS attacks involve
disclosure of the user's session cookie, which allows an attacker to hijack the user's session and take over their
account. Other damaging attacks include the disclosure of end user filég/lat®n of Trojan horse programs,
redirecting the user to some other page or site, and modifying presentation of content.

Crosssite scripting (XSS) vulnerabilities occur when:

91 Data enters a Web application through an untrusted source, most frequemtBbarequest. The data is
included in dynamic content that is sent to a web user without being validated for malicious code.

1 The malicious content sent to the web browser often takes the form of a segment of Java3dripay
also inailde HTML, Flash or any other type of code that the browser may exetuteyvariety of attacks
based on XSS is almost limitless, but they commonly include transmitting private data like cookies or

© ISTIEC2013 ¢ All rightsreserved 113

WG 23/N 043

other session information to the attacker, redirecting thietim to web content controlled by the
attacker, or performing other malicious operations on the user's machine under the guise of the
vulnerable site.

Crosssite scripting attacks can occur wherever an untrusted user has the ability to publish comgetrusted

web site. Typically, a malicious user will craft a cliside script, whicht when parsed by a web browser
performs some activity (such as sending all site cookies to a giveaileaddress)If the input is unchecked, this
script will beloaded and run by each user visiting the web sBénce the site requesting to run the script has
access to the cookies in question, the malicious script does &lsere are several other possible attacks, such as
running "Active X" controls (under Mbsoft Internet Explorer) from sites that a user perceives as trustworthy;
cookie theft is however by far the most commoAll of these attacks are easily prevented by ensuring that no
script tagst or for good measure, HTML tags attallare allowed irdata to be posted publicly.

Specific instances of XSS are:

i 'Basic' XSS involves a complete lack of cleansing of any special characters, including the most fundamental
XSS elements such as'"">", and '&".

1 A web developer displays input on an error pagigch asa customized 403 Forbidden pagdfan
attacker can influence a victim to view/request a web page that causes an error, then the attack may be
successful.

1 A Web application that trusts input in the form of HTML IMG tags is potentially vulndmaiI8S attacks.
Attackers can embed XSS exploits into the values for IMG attritatieb @sSRC) that is streamed and
then executed in a victim's browseNote that when the page is loaded into a user's browser, the exploit
will automatically execute.

1 The software does not filterJavaSript:" or other URIs (Uniform Resource Identifiefjom dangerous
attributes within tags, such asmmouseover , onload , onerror , orstyle

1 The web applicatiofails to filter input for executable script disguised with URI encodings.

1 The web application fails to filter input for executable script disguised using doubling of the involved
characters.

i The software does not strip out invalid characters in the middleag names, schemes, and other
identifiers, which are still rendered by some web browsers that ignore the characters.

1 The software fails to filter alternate script syntax provided by the attacker.

Crosssite scripting attacks may occur anywhere that ibk/ malicious users are allowed to post unregulated
material to a trusted web site for the consumption of other valid usdiise most common example can be found
in bulletin-board web sites that provide web based mailingdistle functionality. The most common attack
performed with crosssite scripting involves the disclosure of information stored in user cookiesome
circumstances it may be possible to run arbitrary code on a victim's computer whenrs@®ssripting is
combined with other flavs.

7.13.4 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

§ Carefully check each input parameter against a rigsnoositive specification (whitkst) defining the
specificcharacters and format allowed.

114 © ISTIEC2013 ¢ All rights reserve

Baseline Edibn¢3 TR 24772

1 Allinput should be sanitized, not just parameters that the user is supposed to specify, but all data in the
request, including hidden fields, cookies, head#rs,URL(Uniform Resource Locatdt¥elf, and so
forth.

1 A common mistake that leads to continuing XSS vulnerabilities is to validate only fields that are expected
to be redisplayed by the site.

1 Data is frequently encountered from the request that is reflected by the application server or the
application that the development team did not anticipatalso, a field that is not currently reflected may
be used by a future developefherefore, validting ALL parts of theTTP(Hypertext Transfer Protocpl
request is recommended.

7.14 Unquoted Search Path or Element [XZQ]

7.14.1 Description of application vulnerability

Strings injected into a software system that are not quoted can permit an attacker to execute arbitrary
commands.

7.14.2 Cross reference

CWE:
428. Unguoted Search Path Blement
CERT C guililees: ENVOL

7.14.3 Mechanism of failure

The mechanism of failure stems from missing quoting of strings injected into a software sByeatiowing
white-spaces in identifiers, an attacker could potentially exearbitrary commans. This vulnerability covers
"C:\ Program Files " and spacén-searchpath issues.Theoretically this could apply to otheperating
systemsbesides Windows, especially those that make it easy for spaces to benaniidsor foldersnames

7.14.4 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

1 Software should quote the input data that can be potentially executed on a system.
1 Use a programming languageattenforces the quoting of strings.

7.15 Improperly Verified Signature [XZR]
7.15.1 Description of application vulnerability

The softwaredoes not verify, or improperly verifies, the cryptographic signature for data. By not adequately
performing the verification step, the data being received should not be trusted and may be corrupted or made
intentionally incorrect by an adversary.

© ISTIEC2013 ¢ All rightsreserved 11E

WG 23/N 043

7.15.2 Cross reference

CWE:
347. Improperly Verified Signature

7.15.3 Mechanism of failure

Data is signed using techniques that assure the integrity of the déttere are two ways that the integrity can be
intentionally compromised. The exchange of tmgptologickeys may have been compromised so that an
attacker could provide encrypted data that has been altered. Alternatively, the cryptologic verification could be
flawed so that the encryptioof the data is flaved which again allows an attacker to alter the data.

7.15.4 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

1 Use data signatures to the extent possitiiéhelp ensure trust in data.
1 Use builtin verifications for data.

7.15.5 Implications for standardization
In future standardization activities, the following items should be considered:

1 Language independent APIs for data signing should be defiledjng each Programming Language to
define a binding.

7.16 Discrepancy Information Leak [XZL]

7.16.1 Description of application vulnerabili ty

A discrepancy information leak is an information leak in which the product behaves differently, or sends different
responses, in a way that reveals securitlevant information about the state of the product, such as whether a
particular operation wasuccessful or not.

7.16.2 Cross reference

CWE:
203. Discrepancy Information Leaks
204. Response Discrepancy Information Leak
206. Internal Behavioural Inconsistency Information Leak
207. External Behavorial Inconsistency Information Leak
208. Timingpiscrepancy Information Leak

7.16.3 Mechanism of failure

A response discrepancy information leak occurs when the product sends different messages in direct response to
an attacker's request, in a way that allows the attacker to learn about the inner atdlte product. The leaks
can be inadverten(bug) or intentional (design).

116 © ISTIEC2013 ¢ All rights reserve

Baseline Edibn¢3 TR 24772

A behavioural discrepancy information leak occurs when the product's actions indicate important differences
based on (1) the internal state of the product or (2) differences fobher products in the same claséttacks

such as OS fingerprinting rely heavily on both behavioural and response discrep&aciaternal behavioural
inconsistency information leak is the situation where two separate operations in a product cays®thet to
behave differently in a way that is observable to an attacker and reveals seigtant information about the
internal state of the product, such as whether a particular operation was successful cAmetxternal
behavioural inconsistenapformation leak is the situation where the software behaves differently than other
products like it, in a way that is observable to an attacker and reveals sewelgtyant information about which
product is beingised, or its operating state.

A timingdiscrepancy information leak occurs when two separate operations in a product require different
amounts of time to complete, in a way that is observable to an attacker and reveals saeleitgint information
about the state of the product, such as whetreeparticular operation was successful or not.

7.16.4 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

1 Compartmentalizehe system to have "safe" areaghere trust boundaries can be unambiguously drawn.
1 Do not allow sensitive data to go outside of the trust boundary and always be careful when interfacing
with a compartment outside of the safe area

7.17 Sensitive Information Uncleared Before Use[XZK]

7.17.1 Description of application vulnerability

The software does not fully clear previously used information in a data structure, file, or other resource, before
making that resource available to another party that did not have access to the original information.

7.17.2 Crossreference

CWE:
226. Sensive Information Uncleared Before Release
CERT C guililees: MEMO3C

7.17.3 Mechanism of failure

This typically involves memory in which the new dataupies less memory thahe old data, which leaves
portions of the old data still available ("memory dizssure’). However, equivalent errors can occur in other
situations where the length of data is variable but the associated data structure iShwt.can overlap with
cryptographic errors and crod®undary cleansing infmation leaks.

Dynamic memory managers are not required to clear freed memory and generally do not because of the
additional runtime overheadFurthermore, dynamic memory managers are free to reallocate this same memory.
As a result, it is possible to accidelty leak sensitive information if it is not cleared before calling a function that
frees dynamic memoryProgrammers should not and c@rely on memory being cleared during allocation.

© ISTIEC2013 ¢ All rightsreserved 117

WG 23/N 043

7.17.4 Avoiding the vulnerability or mitigating its effects
Softwae developers can avoid the vulnerability or mitigate its ill effects in the following ways:

9 Use library functions and or programming language feat(sash as destructors or finalization
procedures}hat provide automatic clearing of freed buffers or the functionality to clear buffers.

7.18 Path Traversal [EWR]

7.18.1 Description of application vulnerability

The sdtware constructs a path that contains relative traversal sequence such as ".." or an absolute path sequence
such as "/path/here.” Attackers run the software in a particular directory so that the hard link or symbolic link
used by the software accessefila that the attacker has under their control. In doing this, the attacker may be

able to escalate their privilege level to that of the running process.

7.18.2 Cross reference

CWE:
22. Path Traversal
24. Path Traversal.../filedir'
25. Path Traversadl-./filedir'
Hec® t K ¢NI@SNEIEfY UKRANKDPOKTFALSYl YSQ
27. Path Traversal: 'dir/../../filename’
28. Path Traversal:\filename'
29. Path Traversak.\filename'
30. Path Traversakdir\..\filename'
31. Path Traversal: 'dir\filename'
32. Path Travesal: "..." (Triple Dot)
33. Path Traversal: "...." (Multiple Dot)
34. Path Traversal: "..../I"
35. Path Traversal: ".../..II"
OTP® tIFGK ¢NFPSNAFTY Wkl o0a2tdziSkLI GKYFYSKKSNBQ
oy ® t I K \abddt&pathidErak 8 N8B Q
39. Path Traversal: 'C:dirname'
40.Path Traversah\UNGshardnama' (Windows UNC Share)
61. UNIX Symbolic Link (Symlink) Following
62. UNIX Hard Link
64. Windows Shortcut Following (.LNK)
65. Windows Hard Link
CERT C guiliiges: FIO0X

7.18.3 Mechanism of failure
There are two primary ways that an attacker can orchestrate an attack using path traversal. In the first, the

attacker alters the path being used by the software to point to a location that the attacker has control over.

118 © ISTIEC2013 ¢ All rights reserve

Baseline Edibn¢3 TR 24772

Alternatively, the attacker hasoncontrol over the path, but can alter the directory structure so that the path
points to a location that the attacker do&ésvecontrol over.

For instance, a software system that accepts input in the form diléname’, . \filename’,
'[directory/../ffilename', 'directory/../../[filename', ' \filename', \. \filename', \directory\. \filename',
'directorA. \. \filename', "...", "...." (mulple dots), "....//", or "...[.../I' without appropriate validation can allow an
attacker to traverse the file system to access an arbitrary file. Note that '.." is ignored if the current working
directory is the root directorySome of these input formsan be used to cause problems for systems that strip
out'.." from input in an attempt to remove relative path traversal.

There are several common ways that an attacker can point a file access to a file the attacker has under their
control. A software syem that accepts input in the form of ‘/absolute/pathname/here’ or

‘\absolutd pathnamahere' without appropriate validation can also allow an attacker to traverse the file system
to unintended locations or access arbitrary filds attacker can inject drive letter or Windows volume letter
(‘'C:dirname’) into a software system to potentially redirect access to an unintended location or arbitra#y file.
software system that accepts input in the form of a backslash absolute path without appropriateivalickn

allow an attacker to traverse the file system to unintended locations or access arbitraryAtiesttacker can

inject a Windows UN@niversal Naming Convention or iigmm Naming Conventiorghare

(\\UNGsharaname") into a software system to potentially redirect access to an unintended location or arbitrary
file. A software system that allows UNd¥mbolic links (symlinkas part of path whether in internal code or

through user input can allow an attacker to spoof the symbolic link and traverse the file system to unintended
locations or access arbitrary file$he symbolic link can permit an attacker to read/write/corrupt a file thatyth
originally did not have permissions to access. Failure for a system to check for hard links can result in vulnerabili
to different types of attacksFor example, an attacker can escalate their privileges if he/she can replace a file
used by a privilged program with a hard link to a sensitive file, for examgle/passwd . When the process

opens the file, the attacker can assume the privileges of that process.

A software system that allows Windows shortcuts (.LNK) as part of paths whether in irtedeadr through user
input can allow an attacker to spoof the symbolic link and traverse the file system to unintended locations or
access arbitrary filesThe shortcut (file with thelnk extension) can permit an attacker to read/write a file that
they originally did not have permissions to access.

Failure for a system to check for hard links can result in vulnerability to different types of attacks. For example, ar
attacker can escalaténeir privileges if he/she can replace a file used by a privileged program with a hard link to a
sensitive file guch astc/passwd). When the process opens the file, the attacker can assume the privileges of
that process or possibly prevent a program fragcturately processing data in a software system.

7.18.4 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

1 Assume all input is maliciousttackers canrisert paths into input vectors and traverse the file system.

1 Use an ppropriate combination of blacksts and whitelists to ensure only valid and expected input is
processed by the system.

T 1! aryAGATAy3a YSOKIyAayY Ol y wiNd M BeSeqlirkbi SdmOéxSditd & d
An attacker can try to fool the sanitizing mechanism into "cleaning" data into a dangerousSoppose

© ISTIEC2013 ¢ All rightsreserved 11¢

WG 23/N 043

GKS I ddF 01 SNJ Ay 2 S 6Gay senbi.tiveFibel)) ard 1ha Jaritiing ImechakisnSrghtovesSth 6
character resulting in the valid filename, "sensitiveFilé'the input data are now assumed to be safe,
then the file may be compromised.

9 Files can often be identified by other attributes in addition to the file name, for example, by comparing

file ownership or creation time. Information regarding a file that has been created and closed can be

stored and then used later to validate the identity of the file when it is reoper@amparing multiple
attributes of the file improves the likelihood that thie is the expected one.

Follow the principle of least privilege when assigning access rights to files.

Denying access to a file can prevent an attacker from replacing that file with a link to a sensitive file.

Ensure good compartmentalization in the ®ra to provide protected areas that can be trusted.

When two or more users, or a group of users, have write permission to a directory, the potential for

sharing and deception is far greater than it is for shared access to a fewTilesvulnerabilitieshat

result from malicious restructuring via hard and symbolic links suggest that it is best to avoid shared

directories.

9 Securely creating temporary files in a shared directogrrigr-prone and dependent on the version of the
runtime library used, the perating system, and the file syster@ode that works for a locally mounted
file system, for example, may be vulnerable when used with a remotely mounted file system.

1 The mitigation should be centered on converting relative paths into absolute pathsandserifying
that the resulting absolute path makes sense with respect to the configuration and rights or pensissi
This may include checkinghite-lists andblacklists, authorized super user status, access control lats,
other fully trusted stats.

=A =4 =4 =2

7.19 Missing Required Cryptographic Step [XZY

7.19.1 Description of application vulnerability

Cryptographic implementationshould follow the algorithms that define them exacibgherwise encryptiorcan
be faulty.

7.19.2 Cross reference

CWE:
325. Missing Required Cryptographic Step
327. Use of a Broken or Risky Cryptographic Algorithm

7.19.3 Mechanism of failure

Not following the algorithms that define cryptographic implementations exactly can lead to weak encryption.
This could be the result of many factors such as a programmer missing a required cryptographic step or using
weak randomization algorithms.

7.19.4 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

1 Implement cryptographic algorithms precisely.

120 © ISTIEC2013 ¢ All rights reserve

Baseline Edibn¢3 TR 24772

1 Use system functions and libraries rather thantimg the function.

7.20 Insufficiently Protected Credentials [XYM]

7.20.1 Description of application vulnerability

Thisweakness occurs when the application transmits or stores authentication credentials and uses an insecure
method that is susceptible to unauthorized interception and/or retrieval.

7.20 .2 Cross reference

CWE:
256. Plaintext Storage of a Password
257. Storig Passwords in a Recoverable Format

7.20.3 Mechanism of failure

Storing a password in plaintext may result in a system comproniiaesword management issues occur when a
password is stored in plaintext in an application's properties or configuratianAilgrogrammer can attempt to
remedy the password management problem by obscuring the password with an encoding function, such as
Base64 encoding, but this effort does not adequately protect the passwiatating a plaintext password in a
configuration fle allows anyone who can read the file access to the passwarticted resource.Developers
sometimes believe that they cannot defend the application from someone who has access to the configuration,
but this attitude makes an attacker's job easi&ood password management guidelines require that a password
never be stored in plaintext.

The storage of passwords in a recoverable format makes them subject to password reuse attacks by malicious
users. If a system administrator can recover the passwairgctly or use a brute force search on the information
available to him, he can use the password on other accounts.

The use of recoverable passwords significantly increases the chance that passwords will be used maliiciously.
fact, it should be notedhat recoverable encrypted passwords provide no significant benefit over-fdatn
passwords since they are subject not only to reuse by malicious attackers but also by malicious insiders.

7.20.4 Avoiding the vulnerability or mitigating its effects

Softwae developers can avoid the vulnerability or mitigate its ill effects in the following ways:

Avoid storing passwords in easily accessible locations.

Never store a password in plaintext.

Ensure that strong, nereversible encryption is used to protestored passwords.

Consider storing cryptographic hashes of passwords as an alternative to storing in plaintext.

= =4 =4 =

© ISTIEC2013 ¢ All rightsreserved 121

WG 23/N 043

7.21 Missing or Inconsistent Access Control [XZN]

7.21.1 Description of application vulnerability
The software does not perform access control checks in a consistent manner across all potential execution paths.
7.21.2 Cross reference

CWE:
285. Missing or Incongent Access Control
352 CrossSite Request Forgery (C3RF
807. Reliance on Untrusted Inputs in a Security Decision
862. Missing Authorization
CERT C guililees: FIO0&C

7.21.3 Mechanism of failure

For web applications, attackers can issue a request directly to a page (URL) that they may not be authorized to
access.If the access control policy is not consistently enforced on every page restricted to authorized users, then
an attacker could gain aess to and possibly corrupt these resources

7.21.4 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

1 For web applications, make sure that the accesgrobmechanism is enforced correctly at the server
side on every pageUsers should not be able to access any informagiomply by requesting direct access
to that page, if they do ndbtaveauthorization Ensure that all pages containing sensitive infation are
not cached, and that all such pages restrict access to requests that are accompanied by an active and
authenticated session token associated with a user who has the required permissions to access that page.

7.22 Authentication Logic Error [XZQ]

7.22.1 Description of application vulnerability
The software does not properly ensure that the user has proven their identity
7.22.2 Crossreference

CWE:
287. Improper Authentication
288. Authentication Bypass by Alternate Path/Channel
289. Authentication Bypass by Alternate Name
290. Authentication Bypass by Spoofing
294. Authentication Bypass by Captuisplay
301. Reflection Attack in aruthentication Protocol
302. Authentication Bypass by Assurdetnutable Data

122 © ISTIEC2013 ¢ All rights reserve

Baseline Edibn¢3 TR 24772

303. Improper Implementation of Authentication Algorithm
305. Authentication Bypass by Primary Weakness

7.22.3 Mechanism of failure

There are many ways that an attacker can potalhtibypass the validation of a user. Some of the ways are
means of impersonating a legitimate user while others are means of bypassing the authentication mechanisms
that are in place. In either case, a user who should not have access to the software ggis access.

Authentication bypass by alternate path or channel occurs when a product requires authentication, but the
product has an alternate path or channel that does not require authenticatdote that this is often seen in web
applications thahassume that access to a particu@G(CommonGateway Interfaceprogram can only be
obtained through a "front" screen, but this problem is not just in ve@iplications

Authentication bypass by alternate name occurs when the software perfautigentication based on the name
of the resource being accessed, but there are multiple names for the resource, and not all names are checked.

Authentication bypass by captureplay occurs when it is possible for a malicious user to sniff network teadtic
bypass authentication by replaying it to the server in question to the same effect as the original message (or with
minor changes).Messages sent with a capturelay attack allow access to resources that are not otherwise
accessible without properwhentication. Capturereplay attacks are common and can be difficult to defeat

without cryptography.They are a subset of network injection attacks that @tyistening in on previously sent

valid commands, then changing them slightly if necessaryesehding the same commands to the servBimce

any attacker who can listen to traffic can see sequence numbers, it is necessary to sign messages with some kin
of cryptography to ensure that sequence numbers are not simply doctored along with content.

Reflection attacks capitalize on mutual authentication schetoasck the target into revealing the secret shared
between it and another valid useitn a basic mutuahuthentication scheme, a secret is known to both a valid
user and the server; thislalvs them to authenticate. In order that they may verify this shared secret without
sending it plainly over the wire, they utilize a DHfellmanstylescheme in which they each pick a value, then
request the hash of that vaé as keyed by the shared secret. In a reflection attack, the attacker claims to be a
valid user and requests the hash of a random value from the se¥Mben the server returns this value and
requests its own value to be hashed, the attacker opens arratbanection to the serverThis time, the hash
requested by the attacker is the value that the server requested in the first connedfithen the server returns
this hashed value, it is used in the first connection, authenticating the attacker sudbeasfthe impersonated
valid user.

Authentication bypass by assumé@dmutable data occurs when the authentication scheme or implementation
uses key data elements that are assumed to be immutable, but can be controlled or modified by the aftacker,
example, if a web application relies on a cookiudthenticated=1 "

Authentication logic error occurs when the authentication techniques do not follow the algorithms that define

them exactly and so authentication can be jeopardized. For instance, a malf@mmagroper implementation of
an algorithm can weaken the authorization technique.

© ISTIEC2013 ¢ All rightsreserved 123

WG 23/N 043

An authentication bypass by primary weakness occurs when the authentication algorithm is sound, but the
implemented mechanism can be bypassed as the result of a sepaeatieness that is primary to the
authentication error.

7.22.4 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

1 Funnel all access through a single chokepim simplify how users can access a resoufeer. every
access, perform a check to determine if the user has permissions to access the regougickmaking
decisions based on names of resourdes ¢xample files) if those resawes can have altert@ names.

9 Canonicalize the name to match that of the file system's representation of the name. This can sometimes
be achieved with an available ARIr(examplejn Win32 theGetFullPathName function).

1 Utilize some sequence or time stamping functionaliyng with a checksum that takes this into account
to ensure that mesages can be parsed only once.

1 Use different keys for the initiator and responder or of a different type of challenge for the initiator and
responder.

7.23 Hard -coded Password [XYP]

7.23.1 Description of application vulnerability

Hard coded passwords may compromise system security in a way that cannot be easily rertiddliedver a

good ideao hardcode a passwordNot only does hard coding a password allow all of the project's developers to
view the password, it also makes fixing the problem extremely diffi€dittce the code is in production, the
password cannot be changed without patoithe software.If the account protected by the password is
compromised, the owners of the system will be forced to choose between security and availability.

7.23.2 Cross reference

CWE:
259. HardCoded Password
798. Use of Harecoded Credentials

7.23.3 Mechanism of failure

The use of a hardoded password has many negative implicatigtise most significant of these being a failure

of authentication measures under certain circumstanc®s many systems, a default administration account

exists which is set to a simple default password that is {takd into the program or devicel his hardcoded

password is the same for each device or system of this type and often is not changedmddisaend userslf

a malicious user comes across a device of this kind, it is a simple matter of looking up the default password (which
is likely freely available and public on the Internet) and logging in with complete adnessstems that

authenticate with a baclend service, hardoded passwords within closed source or dingsolution systems

require that the baclend service use a password that can be easily discovezkentside systems with hard

coded passwordpresenteven more of a threta since the extraction of a password from a binary is exceedingly

124 © ISTIEC2013 ¢ All rights reserve

Baseline Edibn¢3 TR 24772

simple. If hardcoded passwords are used, it is almost certain that unauthorized users will gain access through
the account in question.

7.23.4 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

1 Rather than hard code a default username and password for first time logins, utilize a "first login" mode
that requires the user to enter a uniqué@eng password.
1 For frontend to backend connections, there are the solutions that may be used.
1. Use of generated passwords that are changed automatically and must be entered at given time
intervals by a system administratolhese passwords will be ldeih memory and only bealid
for the time intervals.
2. The passwords used should be limited at the back end to only performing actions for the front
end, asopposed to having full access.
3. The messages sent should be tagged and checksummed with time sensities so as to
prevent replay style attacks.

7.24 Download of Code Without Integrity Check [DLB]

7.24.1 Description of application vulnerability

Some applications download source code or executables from a remote, and implicitly trusted, location (such as
the application author) and use the source code or invoke the executables without sufficiently vehfying
integrity of the downloaded files

7.24.2 Cross reference

CWE:
494, Download of Code Without Integrity Check

7.24 .3 Mechanism of failure

An attacker can execute malicious code by compromising the host sgsgedrto download code or executables
performing DNS spoofing, or modifying the code in transit.

7.24.4 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

91 Perform proper forward and reverse DIN®kups to detect DNS spoofing. Encrypt the code with a
reliable encryption scheme before transmitting.

i Thisis only a partial solution since it will not prevent your code from being modified on the hosting site or
in transit.

1 Use a vetted library or fraework that does not allow this weakness to occur or provides constructs that
make this weakness easier to avoid.

1 Specifically, it may be helpful to use tools or frameworks to perform integrity checking on the transmitted

© ISTIEC2013 ¢ All rightsreserved 12E

WG 23/N 043

code.
9 If providingcode that is tdoe downloaded, such as for automatic updates of software, then use
cryptographic signatures fdhe code and modifghe download clients to verify the signatures.

7.25 Incorrect Authorization[BJH

7.25.1 Description of application vulnerability

The software performa flawedauthorization check when an actor attempts to access a resource or perform an
action. This allows attackers to bypass intendeckas restrictions.

7.25.2 Cross reference

CWE:
863. Incorrect Authorization

7.25.3 Mechanism of failure

Authorization is the process of determining whether that user can access a given resource, based on the user's
privileges and any permissions or oth@casscontrol specifications that apply to the resource.

When access control checaigeincorrectly applied, users are able to access data or perform actions that they
should not be allowed to perform. This can lead to a wide range of problems, inclatbngation exposures,
denial of service, and arbitrary code execution.

7.25.4 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

1 Ensure that you perform aess control checks related to your busineesds These checks may be
different and more detailedhan those appliedto more generic resources such as files, connections,
processes, memory, and database records. For example, a database may restrefacoegical
records to a specific database user, but each record might only be intended to be accessible to the patient
and the patient's doctor.

7.26 Inclusion of Functionality from Untrusted Control Sphere [DHU]

7.26.1 Description of application vulnerability

The software imports, requires, or includes executable functionfditgh as a library) from a source that is
unknown to the user, unexpected or otherwisény call or use of the included functionally can result in
unexpected behaviour, up to and including arbitrary execution.

7.26.2 Cross reference

CWE:
98.Improper Contol of Filename for Include/Require Statement in PHP Program ('PHP File Inclusion’)

126 © ISTIEC2013 ¢ All rights reserve

Baseline Edibn¢3 TR 24772

829.Inclusion of Functionality from Untrusted Control Sphere
7.26.3 Mechanism of failure

When including thireparty functionality, such as a web widget, library, or oteeurce of functionality, the
software must effectively trust that functionality. Without sufficient protection mechanisms, the functionality
could be malicious in nature (either by coming from an untrusted source, being spoofed, or being modified in
transit from a trusted source). The functionality might also contain its own weaknesses, or grant access to
additional functionality and state information that should be kept private to the base system, such as system
state information, sensitive application dgtor the DOM of a web application.

This might lead to many different consequences depending on the included functionality, but some examples
include injection of malware, information exposure by granting excessive privileges or permissions to the
untrusted functionality, DOMbased XSS vulnerabilities, stealing user's cookies, or open redirect to malware.

7.26.4 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the follonayg:w

1 Use a vetted library or framework that does not allow this weakness to occur or provides constructs that
make this weakness easier to avoid.

1 When the set of acceptable objects, such as filenames or URLS, is limited or known, create a mapping
from a sé of fixed input values (such as numeric IDs) to the actual filenames or URLSs, and reject all other
inputs. For example, ID 1 could map to "inbox.txt" and ID 2 could map to "profile.txt". Features such as
the ESAPI AccessReferenceMap provide this caabili

9 For any security checks that are performed on the client side, ensure that these checks are duplicated on
the server side, in order to avoid CVBB2. Attackers can bypass the clianie checks by modifying
values after the checks have been performedby changing the client to remove the cliesitle checks
entirely. Then, these modified values would be submitted to the server.

7.27 Improper Restriction of Excessive Authentication Attempts [WPL]

7.27.1 Description of application vulnerability

The software does not implement sufficient measures to prevent multiple failldkdentication attempts within in
a short time frame, making it more susceptible to brute force attacks.

7.27.2 Cross reference

CWE:
307.Improper Restriction of Excessive Authentication Attempts

7.27.3 Mechanism of failure

In a recent incident aattackertargeted a member o& popular social networking sitesipport team and was
able to successfully guess the member's password using a brutediback by guessing a large number of
common words. Once the attacker gained access as the member of thersstgit) he used the administrator

© ISTIEC2013 ¢ All rightsreserved 127

WG 23/N 043

panel to gain access tonumber ofaccounts that belonged to celebrities and paiins. Ultimately, fake
messages were sent that appeared to come from the compromised accounts.

7.27.4 Avoiding the vulnerability or mi tigating its effects

Software developers can avoid the vulnerability or mitigate liesfiiects in the following way:

Disconnecting the user after a small number of failed attempts

Implementing a timeout

Locking out a targeted account

Requiring a&omputational task on the user's part.

Use a vetted library or framework that does not allow this weakness to occur or provides constructs that
make this weakness easier to avoid.

1 Consider using libraries with authentication capabilities such as Open8®&l E8APIAuthenticator.

=A =4 =4 =4 =4

7.28 URL Redirection to Untrusted Site (‘Open Redirect) [PYQ

7.28.1 Description of application vulnerability

A web application accepts a usawntrolled input that specifies a link to an external site, and uses that link in a
redirectwithout checking that the URL points to a trusted locatidhis simplifies phishing attis.

7.28.2 Cross reference

CWE:
601. URL Redirection to Untrusted Site (‘Open Redirect’)

7.28.3 Mechanism of failure

An http parameter may contain a URL value and could cause the web application to redirect the request to the
specified URL. By modifyinget URL value to a malicious site, an attacker may successfully launch a phishing scam
and steal user credentials. Because the server name in the maodified link is identical to the original site, phishing
attempts have a more trustworthy appearance.

7.28.4 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

1 Input Validation

1 Assume all input is malicious. Use an "accept known good" input validation strategyafaple, use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not strictly
conform to specifications, or transform it into something that does. Do not rely exclusively on looking for
malicious or malforrad inputs (for example, do not rely on a blacklist). However, blacklists can be useful
for detecting potential attacks or determining which inputs are so malformed that they should be
rejected outright.

1 When performing input validation, consider all poteily relevant properties, including length, type of

128 © ISTIEC2013 ¢ All rights reserve

Baseline Edibn¢3 TR 24772

input, the full range of acceptable values, missing or extra inputs, syntax, consistency across related field:
and conformance to business rules. As an example of business rule logic, "boat" mayals&cajiyt valid
because it only contains alphanumeric characters, but it is not validabr such as "red" or "bluewas
expected. Use a whitelist of approved URLs or domains to be used for redirection.

7.29 Use of aOne-Way Hash without a Salt [MVX]

7.29.1 Description of application vulnerability

The software uses a ongay cryptographic hash against an input that shauidd be reversible, such as a
password, but the software does not also use a’smtpart of the input.

7.28.2 Cross reference

CWE:
327. Use of a Broken or Risky Cryptographic Algorithm
759. Use of a On#/ay Hash without a Salt

7.29.3 Mechanism of failure

This makes it easier for attackers to gr@mpute the hash value using dictionary attack techniques such as
rainbow tables.

7.29.4 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its illot$fen the following ways:

1 Generate a random salt each time you process a hew password. Add the salt to the plaintext password
before hashing it. When you store the hash, also store the salt. Do not use the same salt for every
password that you process.

1 Us oneway hashing techniques that allow you to configure a large number of rounds, such as bcrypt.
This may increase the expense when processing incoming authentication requests, but if the hashed
passwords are ever stolen, it significantly increases ff@tfor conducting a brute force attack,
including rainbow tables. With the ability to configure the number of rounds, one can increase the
number of rounds whenever CPU speeds or attack techniques become more efficient.

1 When industryapproved techniqueare used, they must be used correctly. Never skip reseinteasive
steps (CWEB25). These steps are often essential for preventing common attacks.

"in cryptography, a salt consists of random bits, early systems usedbia $8t, modern implementations use 48 to8A8its.

© ISTIEC2013 ¢ All rightsreserved 12¢

WG 23/N 043

8. New Vulnerabilities

8.1 General

This claus@rovides languagéndependent descriptions ofulnerabilitiesunder consideration for inclusion in the
next edition d this InternationalTechnical Reportlt is intended that revisions of these descriptions will be
incorporated into Clauses 6 and 7 of the next edition and that they will be tréatéte languagespecific
annexes of that edition

8.2 Terminology

The following descriptions are written in a langudagdependent manner except when specific languages are
used in examples.

This clause will, in general, use the terminology that is mostrahto the description of each individual
vulnerability. Hence the terminology may differ from description to description.

8.3 Concurrency z Activation [CGA]

8.3.1 Description of application vulnerability

A vulnerability can occur if an attempt has been made to activate a thread, but a programming error or the lack of
some resource prevents the activation from completifidne activating thread may not hasefficient visibility or
awareness into the execution of the activated thread to determirikefactivation has been successfllhe
unrecognized activation failure can cause a protocol failure in the activating thread or in other threads that rely
uponsome action by the unactivated threadhis may cause the other thread(s) to wait forever for some event
from the unactivated thread, or may cause an unhandled event or exception in the other threads.

8.3.2 Cross References

CWE:
364. Signal Handler Race Condition
Hoare A., Communicating Sequential Process&sentice Hall, 1985
Holzmann G.,The SPIN Model Checker: Principles and Reference Mahddison Wesley Professional. 2003
UPPAAL, available from www.uppaal.com,
LarsenPeterson, Wang,Model Checking for Re@ime Systenis Proceedings of the fOnternational
Conference on Fundamentals of Computation Theory, 1995
Ravenscar Tasking Profilpecified in ISO/IEC 8652:1995 Ada with TC 1:2001 and AM 1:2007

8.3.3 Mechanism of Failure

The context of the problem is that all threads except the main thread are activated by program steps of another
thread. The activation of each thread requires that dedicated resources be created for that thread, such as a
thread stack, threadttributes, and communication portdf insufficient resources remain when the activation
attempt is made, the activation will faiSimilarly, if there is a program error in the activated thread or if the
activated thread detects an error that causewiterminate before beginning its main work, then it may appear

130 © ISTIEC2013 ¢ All rights reserve

