
ISO/IEC N 0405, Python Clarifications and Edits v00, Kevin Coyne

Issue #23

JWM 23 TH E.45 TRJ-
Python

The python annex equates
TRJ (checking parameter
values) with OTR
(checking parameter
types). This is an incorrect
equation and the guidance
given is appropriate.

Change E.45 to be similar
to C.45 (the C annex).

Response #23

I misunderstood the definition of TRJ and have corrected as below and have pattered the response after
the C portion of the annex (D.45) as suggested.

E.45 Argument Passing to Library Functions [TRJ]

E.45.1 Applicability to language

Parameter passing in Python is called “passing by assignment” which, dependent on the mutability of
the passed object, is analogous to passing by reference (when the object is mutable) or passing by value
(when the object is immutable). In either case, the underlying mechanism is the passing of a pointer to
the object.

Python supports all of the following argument passing capabilities:

• Positional - E.g., f(a,b,c)

• Keyword – E.g., f(a=1, b=10, z=99)

• Keyword only – Functions can specify which arguments must be specified as keywords.

• Defaults – Functions can specify values for parameters that are not passed.

• Variable numbers of arguments (a.k.a “varargs”). The variation can be in the number of
arguments specified by the caller and/or the number specified by the function.

It is possible to pass invalid arguments to a function because it is not possible to statically check the
types of arguments due to the dynamic typing capabilities of Python. However, Python catches any
attempt to execute an operation that is not permissible for an object.

E.45. Guidance to language users

• Use the type function to check the type of passed objects if necessary to ensure that the
passed object is of the correct type;

• Use default values for parameters when it will help guard against undefined parameters; and

• Do not make assumptions about the values of parameters.

Issue # 33

JWM 33 TL E.28 XYQ-
Python

The description doesn't
add much to the LI
description.

Replace first paragraph of
E.28.1 with the following:
"Python allows the usual
sources of dead code
(described in 6.28) that are
common to most
conventional programming
languages." Insert a new first
bullet in E.28.2 "Apply the
guidance provided in 6.28.5."

Response #33

Concur.

Issue #63

CA-28 63 TL E.3.1 We dispute the statement that Python is strongly typed. By the
common definitions of strong typing, such as strong guarantees about
the runtime behaviour of a program, fixed and invariable typing of
data objects, or the absence of unchecked run-time type errors,
Python fails these tests and cannot be considered to be strongly typed.

Remove the
statement.

Response #63

Python is strongly typed. Python, in fact, passes each of the aforementioned tests:

Strong guarantees about the runtime behaviour of a program – It is not possible to perform an operation on
a Python object that is inappropriate for its type. Further, the exception is caught at the point where the
operation is attempted not at an obscure location which is possible, even commonplace, in weakly typed
languages.

Fixed and invariable typing of data objects – Objects are fixed in their type and cannot be changed. In fact,
there is not even a way to cast objects to a different type – there is no concept of casting Python.

Absence of unchecked run-time type errors – It is not possible to have runtime type errors – the interpreter
will only perform operations that are permissible for the object’s type.

There are additional explanations of why Python is a strongly typed language at:
http://wiki.python.org/moin/Why%20is%20Python%20a%20dynamic%20language%20and%20also%20a
%20strongly%20typed%20language

http://wiki.python.org/moin/Why%20is%20Python%20a%20dynamic%20language%20and%20also%20a%20strongly%20typed%20language�
http://wiki.python.org/moin/Why%20is%20Python%20a%20dynamic%20language%20and%20also%20a%20strongly%20typed%20language�

The fact that Python is also a dynamically-typed language does not diminish its strongly typed character.
There is some confusion about Python’s strength in typing due to two unusual capabilities that were
intentionally made part of the design of Python:

Variables do not have types – only the objects that they point to do. Therefore, it is possible,
and commonplace, to have a variable point to different types of objects at different times with
no ill effects. This has no effect whatsoever on the types of operations that can be performed on
the objects being pointed to.

Python does not support static typing. I.e., there is no declaration of a variable’s type (or more
accurately in Python – there is no declaration of the type of the object pointed to by the
variable). Typing is done dynamically but dynamic typing and strong typing are orthogonal – one
does not preclude the other.

Issue #64

CA-
29

64 E E.8 Be consistent in language
stating that the language
does have a vulnerability.

Begin the clause with “This
vulnerability is not applicable
to Python since...”

Response #64

Concur.

Issue #64

CA-29 64 E E.8 Be consistent in language stating that the
language does have a vulnerability.

Begin the clause with “This vulnerability
is not applicable to Python since...”

Response #64

Concur.

