Baseline Editior2 TR 24772 WG 23/N 086

ISO/IEC JTC 1/SC 22/WG 26386

Date Jamnuary 2012
Contributed by James Mooreand John Benito

Original file name

Notes Based oriN 0376,

Editorial issues from David Keaton

Editorial issues from Larry Wagoner

Editorial issues from Rddhapman

N 0381,reorganization of Clause, 3rom meeting #20

N 0378, PDF markup from meeting #20

Undated C Standard reference to 9899:2011

Undated IEEE 745:2008 to ISO/IEC/IEEE 60559:2011
Added SPARK annex, furnished by R. Chapman

Added an updated Python annex, furnisheddsvin Coyne
Added text fromN 0385furnishedby Jim Moore
Miscellaneous editorial changes

Note: theForwardtext is not correct, will need to be changemmatch the new
procedures that rename type s Technical Specifican.

=

= =4 -4 4 -4 -8 a8 -2 _—a - -2

© ISVIEC2012 ¢ Al rights reserved i

WG 23/N 086 Baseline Edition 2 TR 24772

ISO/IEC JTC 1/22N OOOO

‘ Date:2012-01-10
ISO/IEC TR 24772

Edition 2
‘ ISO/IEC JTC 1/SC 22/WG 23

Secretariat: ANSI

Information Technology Programming Languages Guidance to Avoiding
Vulnerabilities in Programmin@hguages through Language Selection and Use

Elément introductit Elément principat Partien: Titre de la partie

Warning

This document is not an ISO International Standard. It is distributed for review and comment. It is subject to chang
without notice and may not be referred to as an International Standard.

11

Recipients of this draft are invited to submit, with their commts notification of any relevant patent rights of which they
are aware and to provide supporting documentation.

Document type: International standard
Document subtype: if applicable

‘ Document stage:20) developmentstage
Document language: E

ii © ISQIEC2012 ¢ All rights reserve

Baseline Editior2 TR 24772 WG 23/N 086

Gopyright notice

This ISO document is a working draft or committee draft and is copypigiécted by ISO. While the
reproduction of workiig drafts or committee drafts in any form for use by participants in the ISO
standards development process is permitted without prior permission from 1SO, neither this document
nor any extract from it may be reproduced, stored or transmitted in any fornafgrother purpose

without prior written permission from 1SO.

Requests for permission to reproduce this document for the purpose of selling it should be addressed
aK2gy o0St2¢ 2NJ G2 L{hQa YSYOSNIoO62R& Ay (KS 02

ISO copyright office

Case postale 56, CI211 Geneva 20
Tel. +41 22749 01 11

Fax + 41 22 749 09 47

E-mail copyright@iso.org

Web www.iso.org

Reproduction for sales purposes may be subject to royalty payments or a licensing agreement.

Violators may be prosecuted.

© ISOIEC2012 ¢ All rights reserved ili

as

dzy

WG 23/N 086 Baseline Edition 2 TR 24772

Contents Page
0 =1 o PR Xiv
110 To [8Tox 1 o] o PR PPPPRPTPRPRPR XV
1. 00 01 16
2. NOIMALIVE FEIEIEINCES......iiiiiiiiieii et e e e e e e e e e e eeaeens 16
3. Terms and definitions, symbols and cONVENtioNS..................ooooiiiiiciiiieiieeeeeeeeeeeee e 16
3.1 Termsand defiNitioNS..........ooiii i 16
3.2 SYMDOIS @NU CONVENTIONS.ciiiiiiiiiiiiiii ettt e e e e s s e e e e e e e s ame s nnneees 20
4, R F Ty o 0] 01=T o = 21
4.1 Purpose of this Technical REPQLL..........coooriiiiiiii i e e e e e e e 21
4.2 [a1 (=T aTo [=To A [1= o ol T 21
4.3 HOW t0 USE ThiS DOCUMEBNL......cciiiiiiiiiiiitiiiee ettt n e e e e e e s s bbb e e e e s eme e e e e e anns 22
5 VUINEIADIITY ISSUBS ... utueiii e r e e e et s e e e e e e e e e e e aettaa s s e s emeeeana e eeeeeeennnnnn 23
5.1 Predictable @XECULION............coiiiiiiii e e e e e e e e e e e e e e e e s 23
5.2 Sources of unpredictabilityn language specification...............c.cccoee i, 24
5.2.1 Incomplete or evolving SPECIfICALION.........ccciiiiiiiiiie e emr e e e e e 24
A A U 1 (o 1= 1 0 T=To I o 1= o= AV o 11 | P 25
5.2.3 Unspecified BENAVIOUL........ccooiiii i 25
5.2.4 Implementation-defined DENAVIOUL.............ooiiiiiiiiii i 25
5.2.5 DIffiCUt FEAIUMES... ..o 25
5.2.6 [nadequate langUAQE SUPPOILuuurirrriririirtitttimree s s eesseessea s s as s s s s s ssassimeaaaaaaaaaaaaaaaaaaaaaaaeaeessmesens 25
5.3 Sources of unpredictability in [anNQUAgE USAQE............uuiiiiiieiiiiir e 25
5.3.1 PoOrting and iNTErOPEIALION.........cuiiiiiiiiiiiiie ettt e ettt e e e e e n e e e e e e e s bbb e e e e e ameeeeeaans 25
5.3.2 Compiler SEleCtion and USAQE.........uuuuuuiiiiiiiiiiiiieiie e s e e e s s e e i e e e e e e e e e aaaaaeaaaaaaaaaaaesameaaes 26
6. ProgrammingLanguage VUINErabilitieS...........ooiiiiiiiiiiiii e 26
6.1 L T=T 1= - 1SR 26
6.2 B 1= 11211 T] (oo 26
6.3 TYPE SYSIEM [THN]. ..o e e e e s e e e e et e e e e e e e e e e e an 27
6.4 Bit Representations [STR].......uuuuuuiiiiiiiiiieeiriei e mr e e e e e e e e e e e e e e e e e e s aeaaaeeeamraeeeeeeees 29
6.5 Floatingpoint ArthMEtic [PLF].........u i e 31
6.6 ENUMErator ISSUES [CCBI........uuiiiiiiieiiiii ettt e e e e e e e s eman e e e aeeas 33
6.7 Numeric Conversion Errors [FLC]....oooiii et m e 35
6.8 String Termination [BM]........ oo e e e e e e e e e 37
6.9 Buffer Boundary Violation (Buffer Overflow) [HCBI..........cccuuviiiiiiiiiiie e 38
6.10 Unchecked Array INAeXing [XY.Z]......ccoo oot ee e 40
6.11 Unchecked Array Copying XYV ..o 42
6.12 Pointer Casting and Pointer Type Changes [HEC]...........ooooiiiiimiiieeeeeee e 43
6.13 Pointer ArthMELIC [RVG].....veiiiiiiieiiieeiieesees e smneeeaeeeeeees 44
iv © ISTIEC2012 ¢ All rights reserve

Baseline Editior2 TR 24772 WG 23/N 086

6.14 Null Pointer Dereference [XYH] ... 45
6.15 Dangling Reference 10 HEap XY K] ..o e 46
6.16 Arithmetic Wrap-around Error [FIE].......ccuuiiiiiiie et 48
6.17 Using Shift Operations for Multiplication and Division [PLK].............cocoooiiiiiiiicee 50
6.18 Sign EXENSION EITOr [XZI]....eeeieiieiiie ettt et e el 51
6.19 Choice Of Clear NamMES [NAI]o ittt e e e e e eeameeaeeeas 52
LI 0 I B L= T= (o] (o] £ =T KA 54
6.21 UNUSEd Variable [YZS].... .ottt 55
6.22 Identifier Name ReUSE [YOW]....ooii ittt e e e et e e e e e e e 56
6.23 NAMESPACE ISSUES [BIL]..uueeiiii i e e e e e e e e e e e s emr e e e e e 58
6.24 Initialization of Variables [LAV] ...t 60
6.25 Operator Precedence/Order of Evaluation MMcooiiiiiiiiiiiieeiiie e enree e 62
6.26 Sideeffects and Order of Evaluation [SAM]......ccooo i 63
6.27 Likely Incorrect EXPresSion [KOA]L. o ittt m et 65
6.28 Dead and Deactivated Code [XYQ). .. cciiiiiiiiiiiiieeie it e e e e 67
6.29 Switch Statements and Static ANAlYSIS [CLL] ..o e e 69
6.30 Demarcation of Control FIOW [EQUJ]........cccuuiiiiiiieiiiiie et e e 70
6.31 Loop Control Variables [TEX] ... e nme e 71
LS A @ i o) Yo] 8 =T = (o 2 07 | 73
6.33 Structured Programming [EWD]..........couuiiiiiiiiiiimiieeeee e 74
6.34 Passing Parameters and Return Values [CSd].......uuuuiruiiiirirerieiiieiennnnnme e e e e e e e e 75
6.35 Dangling References to Stack Frames [DCM].....ccoocoiiiiiiiiiii it 78
6.36 Subprogram Signature MiSmatCh [OTR]........cuuiiiiiiiiiiiiiiee e 80
LSRG A = = To1 0 ¢ To] o T [T T N TSP 81
6.38 Ignored Error Status and Unhandled Exceptions [QY.B].......ccccociiiiiiii e 83
6.39 Termination Strategy [REU]........cuuiiiiiiiieoie e 85
6.40 Typebreaking Reinterpretation of Data [AMV].........oooi e 86
(S0 R |V =T 0 4 To T A == 1) 2 S 88
6.42 Templates and GEemES [SYMI......coo it e e e e e e e e e s seme 90
LS T] o 1= = L ToT TN [= P 92
6.44 EXIra INtriNSICS [LRIM] . ..uuui it r e e e e s emt s s e e e e e e e teaa s s e e e e e eemasseeeeeeeennnenns 93
6.45 Argument Passing to Library FUNCHIONS [TRI]....ccoiiiiiiiiiiiiiiiiieiiee e me e 94
6.46 Inter-language Calling [DJIS].....cccuuuiiiiiii e e et e e e e e e e e e e e e eene 96
6.47 Dynamicallylinked Code andelfmodifying Code [NY Y] 98
6.48 Library Signature [NSQY]......coooiiiiiiiiiiiiii e e e e e e e e e e e e as 99
6.49 Unanticipated Exceptions from Library Routines [HIW].........ccoovrriiiiii i, 100
6.50 Preprocessor Directives [NMP] ..o 101
6.51 Suppression of Languaggefined Runtime Checking [MXB]..........uuuvviiiiiiiiiiiiiisimneeeieeeseeesenns 103
6.52 Provision of Inherently Unsafe Operations [SKL].......cccoviiiiiiiiiiiiicr e 104
6.53 Obscure Language Features [BRS]........oooiiiiiiiiiiie et 105
6.54 Unspecified Behaviour [BQFE]........oooriiiiiiiiiiiiiieiei e ame e 106
6.55 Undefined Behaviour [EWE]..........ouiii it e e e e e e e e eee e eenes 108
6.56 Implementation-defined Behaviour [FAB].........coo s 109
6.57 Deprecated Language Features [MEM]..........uuuiiiiiiiiiiiiimiicecsecesecme e e e e e e e e e e 111

© ISYIEC2012 ¢ All rights reserved \Y

WG 23/N 086 Baseline Edition 2 TR 24772

7. Application VUINEIrabIltIES.covviiiiiiiiiiii e e e e e e e as 113
7.1 L= 1= =1 113
7.2 LI 0011 Te] (o0 VOO P P PP PPPPPPPP 113
7.3 Unspecified Functionality [BVQ]........uuuuuuiiiiiiiiiiiiiiimns s ime e e e e s e 113
7.4 Distinguished Values in Data Types [KLK]........oui e 114
7.5 Adherence to Least Privilege DXYINI ..o 115
7.6 Privilege SandboxX ISSUES [XYO].. ..ot errr e e 116
7.7 Executing or Loading Untrusted Code [XY.S]......ccuuiiiiiiiiiiiimiiie e 118
7.8 MEMOTY LOCKING [XZX] ... ettiieeiiee ettt ettt rme et e e e e e e e s et e e e e e e e e e aan 119
7.9 Resource EXhaustion [XZP] ...t s e e e e e e e eene 120
7.10 Unrestricted File Upload [CBE].........ooiiiiiiiiiiii et 121
7.11 ReS@UICE NAMES [HT S .. ittt e e e e e e s eb b enr e e e e e e e e e aans 122
0 A 1][o] T |) I 124
7.13 CrossSite SCHPLNG PXY T iiiieiiiiiiiiii ittt s e e e e e e e e e e e e e e e e s e ame e nnnnees 127
7.14 Unquoted Search Path or Element [XZQJ.........uueiiiiiiiiiiiiieiieiieee e 129
7.15 Improperly Verified Signature [XZR] ... oo rmr e e e e 130
7.16 Discrepancynformation Leak [XZL].........ooouiiiiiiiieiiiieiiee e 131
7.17 Sensitive Information Uncleared Before Use [XZK].....ooooieoiiiiiiiiiiiiiie e, 132
7.18 Path Traversal [EWR].. ...t e e e e s e e e e e e e e et b bme e e e e eeeaana s 132
7.19 Missing Required CryptographiC Step [XZS].......coocurririiieeeiiie et e e 135
7.20 Insufficiently Protected Credentials [XYM]......coooiiriiiiiiiii e eere e 135
7.21 Missing or Inconsistent Access Control [XZN].........cuuieiiiiiiiiiiii i e e eeaeens 136
7.22 Authentication LOgIiC Error [XZOJttt 137
7.23 Hardcoded Password [XYP] ... 138
8. N Y AT] g LT = | 1T R 139
8.1 L= 1= -1 139
8.2 Q=T 14T T0] (oo PP 140
8.3 (Of0T (o101 (=10 (3ol AVox 1)Y= 11 To) I [@7 AN 140
8.4 Concurrency; Directed termination [CGT]......oouviiiiiiiieeiiiimee e 142
8.5 Concurrent Data ACCESS [CGX]...ciiiiiiiiiiiiiiii e e s 143
8.6 Concurrencyc Premature Termination [CGS........couiiiiiiii i e e eevtmr e e e e eeneees 145
8.7 ProtoCol LOCK Errors [CGMI....euuiiiiiiiiiiiiiiee ettt m et e e eme e e e e 146
8.8 Inadequately Secure Communication of Shared Resources [CGY]......viiiiiiiiiiicicciinieeeee, 149
AnnexA (informative) Vulnerability Taxonomy and List...........coooooiiiiiii e 151
NS R € 1= =T - | PP PSPPI 151
A.2 Outline of Programming Language Vulnerabilities. ..., 151
A.3 Outline of Application VUINErabilities......... ... 153
A4 VUINEIADIITY LIST....eiiiiiiiiiiiiiiiiii it e s s e rme e e e e e e e aeaaaaaaaaaanns 153
AnnexB (nformative) Language Specific Vulnerability Template...............cccooiiiiiiieieeeeeeeeeeeee 156
AnnexC (nformative) Vulnerability descriptions for the language.C...........oociiiiiiiiiie e 158
C.1 Identification of standards and associated dOCUMENTS..........cooviiiiiiiiiiimiiie e 158
C.2 General terminology and CONCEPLS.......cciiiiiiiiiiii e ceies e e et e e rnrrr e e e e e e e 158

Vi © ISQIEC2012 ¢ All rights reserve

Baseline Editior2 TR 24772 WG 23/N 086

C.3 TYPE SYSIN [IHN] oo e e e e ame e e e e e aaaaaaaaaaaaans 161
C.4 Bit Representations [STRY......cuu et m e e e e e e e e e e e aees 162
C.5 Floatingpoint ArithmetiC [PLF]........oi ittt 163
C.6 EnumMerator ISSUES [CCB].....ccccoiii e 164
C.7 Numeric Conversion EIMOrs [FLC.... .ottt m e n 165
C.8 String Termination [CIM]uueiii ittt e e e e e e e s bbb e e e e e e e e e e aanees 166
C.9 Buffer Boundary Violation (Buffer Overflow) [HCB]........ccooviiiiiiii i 167
C.10 Unchecked Array INAeXiNg [XY Z]......ueeiiiiiiiiiiiiie ittt m e n 169
C.11 Unchecked Array CopyiNg PXYWN].....e oottt ettt m et e e e e s 169
C.12 Pointer Casting and Pointer Type Changes [HEC].....ccooi i 170
C.13 Pointer ArithmetiC [RVG]......oeiiiiiiiiiiiiii ittt e e e e e e e e 170
C.14 Null Pointer Dereference [XYH]... ..o i et e e 171
C.15 Dangling Reference to Heap [XYK] .. .t emreten s e e e e e e e e anna s 172
C.16 Arithmetic Wrap-around Error [FIE]........ccuiiiiiiieeim et 173
C.17 Using Shift Operations for Multiplication and Division [PLK]............cccoiiiiiiiiimiiiiieeeeeiiiee 174
L O Y T | I b ra (= 153 o) I =1 (o 1,74 174
C.19 Choice of Clear NamMES [NAI]o i ittt me e e e e e e e e es 174
C.20 Dead StOrE VX Q] i iiiiiiiiiiiiiii ettt ———aaaaaaaaaaaaaaaans 175
C.22 Identifier Name REUSE [YOW].. ..ot e e e e e emrs e e e e e e e et e e e e e e e e e aane s 175
C.23 NamMESPACE ISSUES [BILiiiiiiiiiiieeeiiimi ettt e e e e e e e e e e m e eeas 176
C.24 Initialization of Variables [LAV] ... 176
C.25 Operator Precedence/Order of Evaluation [JCW].........cooiiiiiiiiiiiiiiie e ee et 177
C.26 Sideeffects and Order of Evaluation [SAMI.........couiiiiiiiiiiiiiimieieee e 177
C.27 Likely Incorrect EXPression [KOA] iiiierieetsiereeesess s me e e e e e e e e e e e e e e e e aeaaaaeaaeeas 178
C.28 Dead and Deactivated Code [XY Q] .. it ieeeeeiis s e e e e e e e et eme e e e e e e s e eeeeenenaaes 179
C.29 Switch Statements and Static ANalySiS [CLL].......uiiiiiiiiiiiiieiee e 180
C.30 Demarcation of Control FIOW [EQU]..........cooiiiiiiiiiiiii et ae e ennennnes 181
C.31 Loop Control Variables [TEX]......oceuiiiii et e e e e e mr e e e e et e e e e e e e e aanname e e e 182
C.32 Off-BY-0N€ EITOr [XZH]...ceeiiiiiiieeeee ettt e e e e e ame e e s 183
C.33 Structured Programming [EWD].......cccoiiiiiiiiiiie i 183
C.34 Passing Parameters and Return Values [CSJ]......ccoiriiiiiiiii st emren e 184
C.35 Dangling References to Stack Frames [DCM].........cooiiiiiiiiiiiimiiee oo meeee e 185
C.36 Subprogram Signature Mismatch [OTR]........couuiiiiiiii e e 185
(O iy A = = To 1 £ To] o T €T 186
C.38 Ignored Eror Status and Unhandled Exceptions [OYB]......ccooooiiiiiiiiiiiiiie e, 186
C.39 Termination Strategy [REU].......cuuiiiiiii e e e e et rmr e e e e e e e e e e e e eeeeena s eeenees 187
C.40 Typebreaking Reinterpretation of Data [RIV] ... 188
C.AL MemMOry LeaK PXY L]t —————- 188
C.42 Templates and GENEriCS [SYMI.....cco it erre s e e e e e e eans 189
C.43 INNEIIANCE [RIP]. ... ittt e rme sttt e e e e e s et senr e e e e e e e e e annnneee s 189
C.44 EXIra INtrNSICS [LRM] . .uuiiiiiiiiiiiiiiiiiiiiiiies s s s rme emreeeaeeeeeeeeees 189
C.45 Argument Passing to Library FUNCLIONS [TRJ]......ccooriiiiiiiii et emr e 189
C.46 Inter-language Calling [DJS]......cccuurmiiiiieiiiiimr et e e e e 189
C.47 Dynamicallylinked Code and Sethodifying Code [NYY]...oooviiiiiiiiiiiiiiiiiieeveeiiiineiins 190

© ISOIEC2012 ¢ All rights reserved Vii

WG 23/N 086 Baseline Edition 2 TR 24772

C.48 Library Signature [NSQJ........uuuuuuuiiieiiiiiiiiiimre e ee e e s s s s e e s s s s s s s e s s s s s s sime e e e e aaaaaaaaaaaaaaaaaaaaaeeeamaneeeeeeeens 190
C.49 Unanticipated Exceptions from Library Routines [HIW]...........ooooiiiieeeeeee 191
C50 Preprocessor DIreCtives [NIMP]......ooo it 191
C.51 Suppression of Languaggefined Runtime Checking [MXB]..............ccooo i 192
C.52 Provision of Inheretly Unsafe Operations [SKL].........cc.uuuiiiiieiiiiiimiieeee e 192
C.53 Obscure Language Features [BRS].........uuu ettt ee e e e e e e e 192
C.54 Unspecified BEhaviour [BQE]......uuciiii i eetiiss s e e e e e eeet s smreene s e e e e s seeeesennn s e s emrenns 193
C.55 Undefined Behaviour [EWE].........oo ittt mene 193
C.56 Implementation-defined Behaviour [FAB]..........cooi e 194
C.57 Deprecated Language Features [MEM].......ccooo oo e e e e eeees 195
C.58 Implications for StandardiZatiON...............uuuiiiiieeiiie e 195
AnnexRuby (nformative) Vulnerability descriptions for the language Ruly.............cccoviiiiiiiiiicnnnns 198
Ruby.1 Identification of standards and associated dOCUMENLS............c.cieiiiiiicciiiiii e 198
Ruby.2General Terminolog¥Nd CONCEPLS..........uuuiiiiiieiiiiiiiimiiee e e e e e e e e e et e e e e eeeeeeaaans 198
RUDY.3Type SYSEM [THN].....oiiiiiiiii e e e e e e ame e e e e e e s 199
Ruby.4 Bit Representations [STR].......cuuiiiiiii i e e e e e et e e e e e e e et s s e e e e e e e eeeenameeeeeeene 200
Ruby.5 Floatingpoint ArithmMetiC [PLF]........ccuiiiiiieieeeee et 201
Ruby.6 Enumerator ISSUES [CCBI.......ccoo oot eer e nr e e e e e e e as 201
Ruby.7 Numeric Conversion EFFGIFLC].........uu i uiiiiiiiiiieiitimeaaas eeae e 202
Ruby.8 String Termination [CIMI........ouuii it e e e e e s r e e e ame e e e e e e 202
Ruby.9 Buffer Boundary Violation (Buffer Overflow) [HCBJ...........ccoooiiiiiiiiiiiieeeeeeveevveee e 202
Ruby.10 Unchecked Array INdexing [XY.Z]......uooiiiiiiiiiiiime et s s e e e e ee s vmr s e et e e e e e e e eennnes 202
Ruby.11 Unchecked Array Copying [XYW].....ooou i 202
Ruby.12 Pointer Casting and Pointer Type Changes [HEC].......cccooiiiiiiiiiiiie e 202
Ruby.13 Pointer Arithmetic [RVG]... oo rse st e e e aeas 203
Ruby.14 Null Pointer Dereferene [XYH]. ... et e e 203
Ruby.15 Dangling Reference to HEap [XYK] ...uu i e 203
Ruby.16 Arithmetic Wrap-around Error [FIE] ..o emn s 203
Ruby.17 Using Shift Operations for Multiplication and Division [PIK]...........cccoviiiiiniiineeiiee, 203
Ruby.18 Sign EXtension Error [XZI].........coooiiiiiiii s 203
Ruby.19 Choice of Clear Names [NAL ... e e e e e e e eeane s 203
Ruby.20 Dead StOre [WXQY] ... o eiiiiiieiiiiteeeeeeime ettt e sttt e e e e e e e et r e e e e e e e s ame e e s 204
Ruby.21 Unused Variable [YZS]......oouiiiiii e e e etme e e e s s e e e e e e e eeeeannmeeeenees 204
Ruby.22 Identifier Name ReUSE [YOW].....ooooiiiiiiiiiiiiii ettt m s 204
Ruby.23 Namespace ISSUES [BIL]......ccoiviiiiiiiiiiiiii et nn e 205
Ruby.24 Initialization of VariableS [LAV]........oeuiii e e e e e eeee 205
Ruby.25 Operator Precedence/Order of Evaluation [JCW].........cccuvviiiiieeiiiiiiieeeee e 205
Ruby.26 Sideeffects and Order of Evaluation [SAM].....ccccooieiiiiiiiiiicccie e, 206
Ruby.27 Likely Incorrect EXpression [KOAL ... tme e 207
Ruby.28 Dead and Deactivated Code [XY.Q]......uuuumriiiiiiiiiiiimiiiiei e rme e 207
Ruby.29 Switch Statements and Static ANalysisS [CLL]........uuuuiiiiiiiiiiiiiene i 208
Ruby.30 Demarcation of Control FIOW [EOQJ].......ccouuiiiiiiii e eevmr e e 208
Ruby.31 Loop Control VariableS [TEX]........cuu et emie e e e 208

viii © ISTIEC2012 ¢ All rights reserve

Baseline Editior2 TR 24772 WG 23/N 086

Ruby.32 Off-by-0ne Error [XZH] ... e 208
Ruby.33 Structured Programming [EWD]..........uuuuuiuiiiiiiiiiiimnaaae e e aes e aes s ees s aes s ameeaaaaaaeaaaaaaaaaaaaaans 209
Ruby.34 Passing Parameters and Return Values [CSd].........ccuiiiiiiiimniiiiiiiie e 210
Ruby.35 Dangling References to Stack Frasn®CM]...........ooooiiiiiiiiiii e eeraees 210
Ruby.36 Subprogram Signature Mismatch [OTR].........cccuuiiiiiiiiiii e 210
RUDY.37 RECUISION [GDL]..ciiiiiiiiiiiiiiiie ettt e et e e e e e e s rme s n e e as 211
Ruby.38 Ignored Error Status and Unhandled Exceptions [QY.B].......cccccviiiiiniiicmiiciii e 211
Ruby.39 Termination Strategy [REUJ.......cccooiiiiiiiiiiii e 212
Ruby.40 Typebreaking Reinterpretation of Data [AMV].........ccccuiiiiiiiiiiiiiin e 212
] o)V R V1= o o T Y == | 1 T SRR 212
Ruby.42 Templates and GeneriCS [SYMI......ouii oo 212
RUDY.43 INNeritanCe [RIPL......cooi ittt e e e e e e e e e e e s 212
Ruby.44 EXtra INtriNSICS [LRM]....uii it e e eme s e e e e e e e e e e e e eeamr e e e e e e e 212
Ruby.45 Argument Passing to Library FUNCtions [TRJ].........couiiiiiiiiiimiiiieeceeee e 213
Ruby.46 Inter-language Calling [DJS].....cccueeiiiiiiiiiiiiii e 213
Ruby.47 Dynamicallylinked Codeand Selfmodifying Code [NYY]....ccoooiiiiiiririiiiiiis e 213
Ruby.48 Library Signature [NSQYJ.......coeeiiiiiiiiiiiii et emr e 213
Ruby.49 Unanticipated Exceptions from Library ROUtINESIW]...........covviviiiiiiiiiiiiiiciiiians 214
Ruby.50 Preprocessor DIireCtives [NMP]......coc oo vsn s 214
Ruby.51 Suppression of Languag#efined Runtime Checking [MXB].........ceiiiiiiiiiiiineeeeee 214
Ruby.52 Provision of Inherently Unsafe Operations [SKL]..........uuuiiiiiiiiiiiiiciiiins 214
Ruby.53 Obscure Language Features [BRS] ..ot emeren e e e e e e eeees 214
Ruby.54 Unspecified Behaviour [BQE]..........ouiiiiiiiiiiiieiee e 214
Ruby.55 Undefined Behaviour [EWE]..........ooooiiiiiiiii e e 215
Ruby.56 Implementation-defined Behaviour [FABI............iiiiiiiiiiiien e eeeeme e 215
Ruby.57 Deprecated Language Features [MEMY]...........oooiiiiiiiiiimeeeieiiieee e 216
AnnexPython {nformative) Vulnerability descripions for the language Python.................................. 217
Python.1 Identification of standards and associated dOCUMENLS............cceuuvviiriiiemiiiin e e e e e e eeeeeeens 217
Python.2 General TerminologANd CONCEPLS.ccviiiiiiiiiiiiiiiii et e e e 217
Python.3 Type SYStEM [IHN] emre e 222
Python.4 Bit Representations [STR].......ciii i e e ee s emr e s e e e e e e e e eerran e e e emees 224
Python.5 Floatingpoint ArithmetiC [PLF]........oo s 224
Python.6 Enumerator ISSUES [CCBY......uuiiii it v e e s s e e e e e e e aeteaa s emeenes 225
Python.7 Numeric ConVesion Errors [FLC]......oo i i it me e e e e 226
Python.8 String Termination [CIM]........uuuuuuiuiiiiiiiiiiiiiere s i e e e e e e e e e e e e e e aaaaaaaaaaeeaanees 226
Python.9 Buffer Boundary Violation [HCB]........cooriiiiiiiii e vstss e e e e e e 226
Python.10 Unchecked Array INdexing [XYZ]......oooiiiiiiiiiiieiii et esm e 227
Python.11 Unchecked Array Copying [XYWW].....ooooiriiiii e eer e 227
Python.12 Pointer Casting and Pointer Type Changes [HEC]........cccooiiiiiriie e 227
Python.13 Pointer ArithmetiC [RVG]........ouiiiiiiiieiii et 227
Python.14 Null Pointer Deeference [XYH]. ... e s 227
Python.15 Dangling Reference to Heap [XY.K]........iiiiiiiiiiiieime e eevtvme e 227
Python.16 Arithmetic Wrap-around Error [FIF]........oooiiiiieie e 227

© ISOIEC2012 ¢ All rights reserved iX

WG 23/N 086

Baseline Edition 2 TR 24772

Python.17 Using Shift Operations for Multiplication and Division [PLK].........ccccccevviiiiiiinnneennnn. 228
Python.18 Sign EXIENSION EITOr [XZI]....oeeeeiieeiiii e 228
Python.19 Choice of Clear Names [NAI].......ouuiiiiiiiiiiie e e e 228
Python.20 Dead Store [WXQY]....coo oo ———————— 230
Python.21 UnusedVariable [YZS]... ...t 231
Python.22 Identifier Name ReUSE [YOW]... ..o eiee et 231
Python.23 Namespace ISSUES [BIL]. ... esr e e e e e e e e e e 233
Python.24 Initialization of VariableS [LAV]........ou e e 235
Python.25 Operator Precedence/Order of Evaluation [JCW].........oooiiiiiiiiiiiiiic e 236
Python.26 Sideeffects and Order of Evaluation [SAM]........ccooiiririiiiii e 237
Python.27 Likely Incorrect EXpression [KOA]L ettt 238
Python.28 Dead and Deactivated Code [XY.Q].....cuuurmiiiiieiiiiiimiieiee e 239
Python.29 Switch Statements and Static Analysis [CLL]......ooiiiriiiiriiie e 239
Python.30 Demarcation of CoNtroFIOW [EOJ].........cuuiiiiiiiiiiiiiiimie e 240
Python.31 Loop Control Variables [TEX]......coouiiiiiiieeeee it ene e 241
Python.32 (O o) Voo] o L= TN = o] g 2 07 | 242
Python.33 Structured Programming [EWD].........ooeiiiiiiiiiiiimieeee e 242
Python.34 Passing Parameters and Return Values [CSJI].......uuuuiiiiiiiiiiiiciiiinenevens 243
Python.35 Dangling References to Stack Frames [DCM].........couiiiiiiiiiriciiii e 244
Python.36 Subprogram Signature Mismatch [OTR].........coouiiiiiiiiim e 245
Python.37 RECUISI@ [GDL]...uuvuviiiiiiiiiiiiiiieit e e e e e e s e s e e e e s e e e ime e e e e e e e e e e e e aaaaaaaaaeeaaeeeamaeeeeeeeeees 245
Python.38 Ignored Error Status and Unhandled Exceptions [OY.B]........ccccccoeeeiiiiiviciiciiiii e, 245
Python.39 Termination Strategy [REU]......coooiiiiiic e 246
Python.40 Typebreaking Reinterpretation of Data [AMV].........uuuiiiiiiiiiiiiiiiiimiccsecessssesssee s 246
Python.41 L= g ToT YA =T 1 2 T 246
Python.42 Templates and GeneriCS [SYM].....ooii i 247
Python.43 INNEMHEANCE [RIP]..cccieiiiiiiieeeeeeeeee e e e e aaeaaas 247
Python.44 EXtra INtriNSICS [LRMJ ...t rme s e e e e e e e e e e e e anas 247
Python.45 Argument Passing to Library FUNCHIONS [TRJ].......cuviiiiiiiiiiiiieieiieeee e 248
Python.46 Inter-language Calling [DJIS]......uuuuuiiiiiiiiiiiiiesierccees e e e e e e e e e e e e e e e e aaaaaaaeas 248
Python.47 Dynamicallylinked Code and Selhodifying Code [NYY]...cooviiiiriiiiiiiiercecen e, 249
Python.48 Library Signature [NSQJ........euiiiiiiiiiiii et m e e ens 249
Python.49 Unanticipated Exceptions from Library Routines [HIW]..........cccceeiiiiiiiiiiciii e, 250
Python.50 Pre-processor Directives [NMP]o 250
Python.51 Suppression of Languagiefined Runtime Checking [MXB]..........ccccooeeiiiiiiiiriieee, 250
Python.52 Provision of Inherently Unsafe Operations [SKL]........ccccooovviriiiiiiicrrieiicis e eeeeeen 250
Python.53 Obscure Language Features [BRS].........coooiiiiiiiiieieceeeeeeee e m e 251
Python.54 Unspecified Behaviour [BQFE]..........oooiiiiiiiiiii et eea e 253
Python.55 Undefined Behaviour [EWFE]........uii ettt e e e e e 254
Python.56 Implementationcdefined Behaviour [FAB].........ccooiiiiiiiiiineceeeeieee e 255
Python.57 Deprecated Language Features [MEM]...........uuuviiiiiiiiiiiciiee e 256
AnnexAda {nformative) Vulnerability descriptions for the language Ada............cccccoceiiiiiiieeeeneeennnn. 257
Ada.l Identification of standards and associated documentation............ccccooveuvvvrimiieeeeeeee e, 257
X © ISTIEC2012 ¢ All rights reserve

Baseline Editior2 TR 24772 WG 23/N 086

Ada.2 General terminology and CONCEPLS.ciiieiieei e e 257
Ada.3 TYPE SYSIEM [IHN] ...ttt e et e et e e et e e e e teeeeeeeameseeneaeeeeeeeneenes 263
Ada.4 Bit Representation [STRY......cooiiiiiiiiiiiie ittt r e e e e s s ame e eneeees 263
Ada.5 Floatingpoint ArIthMELIC [PLF]...ccooriiiiiiieeeeeeeee e e 264
Ada.6 EnUMErator ISSUES [CCBY.....coiiiiiiiiiiiii ettt e e e e e e e e e e e ame e 264
Ada.7 Numeric Conversion Errors [FLC].......oiiiiiiiiiieeiiiie et e e e e e 265
Ada.8 String Termination [CIM] ... oo e em e e e e e e e e e e s em e e e e e s 266
Ada.9 Buffer Boundary Violation (Buffer Overflow) [HCB].......coooiiiiiiiiiiiiiie e 266
Ada.10Unchecked Array INAeXiNg [XYZ].....ooo ittt e e e e e e e 266
Ada.11Unchecked Array Copig [XY W] ..ot e e e e e e e e e ttmr e e e e e e e anaa s e e e e e e eeeennnns 266
Ada.12 Pointer Casting and Pointer Type Changes [HEC]........ooviiiiiiiiimiiieeeeee e 267
Ada.13Pointer ArthMEtIC [RVG].....coiiiiiiiiiiiie ettt e e e e m e 267
Ada.14 Null Pointer Dereference [XYH]...oo e e e e e e e e s 267
Ada.15Dangling Reference to Heap [XYK]......o e 267
Ada.16 Arithmetic Wrap-around Error [FIE]........ooo e 268
Ada.17 Using Shift Operations for Multiplication and Division [PLK]...........ccooeviiiiiiiiiciiiin e eeeeeeeenns 268
Ada.18 SgN EXIENSION ErrOr [XZL]......coceiiieieeeee ettt 268
Ada.19 Choice of Clear NamMeES [NAI]... ... i e e e 268
Ada.20Dead StOre [WXQuuuuii i e eieieeeiiiie s i ettt s s e e e e e e e eetta e s s s eme et e e eeeeeeeaetns s s eeeemrannnaaeeeeeeeerrnnnn 269
Ada.21Unused Variable [YZS]...... ..o it 269
Ada.22 Identifier Name REUSE [YOW]....uuuuiiiiiiiiiiiiiiiiiiiimre s s s s s s s s s s s e s s s imn e e e e e e e e e e aaaaaaaaaaaaaaaeaa e 270
Ada.23NameSPaCE ISSUEBIL]......ccoiiiiiiiiii e e e e e e er s e e e e e e e e et e s e e e e e e e eetenreeaeeeeerenen 270
Ada.24 Initialization of Variables [LAV].......ou et e e 270
Ada.25 Operator Precedence/Order of Evaluation [JCW]............oooiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeee e 271
Ada.26 Sideeffects and Order of Evaluation [SAMY]...........oiiiiiiiiiiiiin e 272
Ada.27 Likely Incorrect EXPression [KOA]......c..uui i iiiieeeiiie ettt e e 272
Ada.28Dead and Deactivated Code [XY Q). .ccooiiiiiiiiieii i 273
Ada.29 Switch Statements and Static AnalysisS [CLL]........coiiiiiiiiii e 274
Ada.30 Demacation of Control FIOW [EOJ]........cciiiiiiiiiiiiiiiiieeee e er e 274
Ada.31Loop Control Variables [TEX].... .. imr e amraees 274
Yo F= W A @ 1 & o) oL L= = {0 €74 = | N 275
Ada.33 Structured Programming [EWD].......cooiiiiiiiiiieee it 275
Ada.34 Passing Parameters and Return Values [CSd]........coiiiiieiiiieiimii e e e e eevien e e e e e eeaeee 276
Ada.35Dangling References to Stack Frames [DCM].........c.cuuiiiiiiiiiiiiiee e 276
Ada.36 Subprogram Signature Mismatch [OTR].......ccooiiiiiii i, 277
F o = I =Tt U] £ o] 1 1 0 T 277
Ada.38Ignored Error Status and Unhandled Exceptions [OYB]........ccooiiiiiiiiiiiieceeeeeeeeeeeeeeeeeeee 278
Ada.39 Termination Strategy [REUJ.........coooo e 278
Ada.40 Typebreaking Reinterpretation of Data [AMV].......ccoorieiiiiiii e eemr e 279
AdA.ALMEMOIY LEAK [XY L] .. iteeiiiieeeiiiiitie ettt ettt e e e rme et e e e e e e s e e e emr et e e e e e e e e nnnees 279
Ada.42Templates and GENEIICS [SYM]...uuuiiiiiiiiiiiiriiiieeiimr e rmr e e e e e e e e e e e e e e e e aaaeaaaeeeeames 280
Yo = W G [g T) = g [t 1 P 280
Ada. 44 EXtra INtrNSICS [LRMJ.....ooiiiiiiieiii ettt e e e e m e e e as 280
Ada.45Argument Passing to Library FUnctions [TRJI].......ccoooooiiiiiiii i, 281

© ISOIEC2012 ¢ All rights reserved Xi

WG 23/N 086 Baseline Edition 2 TR 24772

Ada.46 Inter-language Calling [DJIS].....ccviiiiiiiiiiiiiieee e ———_ 281
Ada.47 Dynamicallylinked Code and Sethodifying Code [NY Y] 281
Ada.48 Library Signature [NSQI......cuuueeeiiiieeiiiiiimt e e et e e s r e e e e e s s as 282
Ada.49 Unanticipated Exceptions from Library Routines [HIW]..........uuvuiiiiiiiiiiiiimiiiiiecisecccceeeceee s 282
Ada.50 Pre-Processor DIreCtives [NIMP].........uu it e e 282
Ada.51 Suppression of Languag#efined Run-time Checking [MXB]..........cccuviiiiiiieiniiiieniiiieeeeee e 283
Ada.52 Provision of Inherently Unsafe Operations [SKL].......cccoooviiiiiiiiiiio e eeeeeevvvime e 283
Ada.530bscure Language Features [BRS].........ccuiiiiiiiii e 283
Ada.54 Unspecified Behaviour [BQE]........couiiiiiiiiiiiiii et m e 284
Ada.55Undefined BEhaviour [EWE]......ccooi et er e e e e e e e e 285
Ada.56 Implementation-Defined Behaviour [FABI..........c.uuiiiiiiiim e 286
Ada.57 Deprecated Language FeatureS [MEMI...........oooiiiiiiiiiiimiiiiicceeeee e 287
Ada.58 Implicationsfor StandardiZatiON..............cooiiieiiiiii e 287
AnnexSPARKirfformative) Vulnerability descriptions for the language SPARK...........cccccoiiiiieennen. 288
SPARK.1 Identification of standards and associated documentation..............ccceeeeeeriiinsiciiiieeeeenn. 288
SPARK.2 General terminology and CONCEPLS.......ciiiiiiiiiiiiiis e e e e e e et e e emrena e e e e e e e eeenens 288
SPARK.3 Type SYSIEM [IHN]....oeiiiiiiieiiiie et rr e eeme e e e e e e 289
SPARK.4 Bit Representation [STR].........uuuuiiuiiiiiiiiiriiimniessiessssssssssssss s s ssiime e e e e e e e e e e aeaaaeaaeeaaaeaeessmees 290
SPARK.5 Floatingpoint ArithmetiC [PLF].......coo e emr s 290
SPARK.6 Enumerator ISSUES [CCBI.........uiiiiiiiiiiii et 290
SPARK.7 Numeric Conversion Errors [FLC].........oooiiiiiii e eev e 290
SPARK.8 String Termination [CIM]........uiiiiii i s e e e e et s rmr e et s s e e e e e e e eeeennnnn e emenes 290
SPARK.9 Buffer Boundary Violation (Buffer Overflow) [HCB]...........covvieiiiiiiiimieceee e 290
SPARK.10 Unchecked Array INdexXing [XY.Z]........oooiiiiiiiiiii et ae e 290
SPARK.11 Unchecked Array COPYING [XY W] .. it e e s e e et s e e st s e e e e e e eenaennnns 290
SPARK.12 Pointer Casting and Pointer Type Changes [HEC].........c.oooiiiiiiiiimiiiiieeeeee e 291
SPARK.13 Pointer ArithmMetiC [RVG].......uuuuiiiiiiiiiiiiiiiiiims e e s s ssimn e amee s 291
SPARK.14 Null Pointer Dereference [XYH] ... erre e 291
SPARK.15 Dangling Reference thleap [XYK]oo et 291
SPARK.16 Arithmetic Wrap-around Error [FIE] ... 291
SPARK.17 Using Shift Operations for Multiplication and DiviSiORIK]..........ccccccceeiiiiieiiiiiin e 291
SPARK.18 Sign EXtENSION EITOr [XZI].....uueiiiiiiiiiiiiiiiit ettt e e e eees 291
SPARK.19 Choice of Clear Names [NALL.....cooeuiiiii e e e e e e e e eeaeees 291
SPARK.20 Dead StOre [WXQJ ... uuiiiiiieeiiiiitie ittt m e e amr e e e e 291
SPARK.21 Unused Variable [YZS]......ccoo ettt e 291
SPARK.22 Identifier Name ReUSE [YOWot amr s e e e e e e e e e 292
SPARK.23 Namespace ISSUES [BILL........cciiiiiiiiiiiiiiiee ettt e e mee 292
SPARK.24 Initialization Of VariableS [LAV]......eeeeieeiieeieeeieeeeee e mr e e e s e e a e aaa e 292
SPARK.25 Operator Precedence/Order of Evaluation [JCW]..........ccooiiiiiiiiiiiic i 292
SPARK.26 Sideeffects and Order of Evaluation [SAMI.........c.c.ouiiiiiiiiiiiimriiee e 292
SPARK.27 Likely Incorrect EXpression [KOA]........ooooiiii e 292
SPARK.28 Dead and Deactivated Code [XY.Q] ... oiriiiaiiiieiiiiiiireeeetiie s s e e e e e e e e et emreerannas e e e e e eeeenes 292
SPARK.29 Switch Statement@and Static ANalysiS [CLL]........uuviiiiiiiiiiiimiee e 292

Xii © ISTIEC2012 ¢ All rights reserve

Baseline Editior2 TR 24772 WG 23/N 086

SPARK.30 Demarcation of Control FIOW [EOJ].........uuiiiiiiiiiiiiiieeiemr e e e e e 293
SPARK.31 Loop Control Variables [TEX] ... 293
SPARK.32 Off-DY-0N€ EITOr [XZH].....coo ittt 293
SPARK.33 Structured Programming [EWD].........ccoooiiiiiiii e 293
SPARK.34 Passing Parameters and Return Values [CSJ].........cccvriiiiiiiiiceeeiieeee e 293
SPARK.35 Dangling References to Stack Frames [DCM]........coouuviiiiiiiiiieee e 293
SPARK.36 Siwbprogram Signature MismatCh [OTR].........coiiiiiiiiiiiiii et emre e 293
SPARK.37 RECUISION [GDL]......uiiiiiiiiiieiiiiiit ettt eme e et e e e e e s amas e e e e e e e e 294
SPARK.38 Ignored Error Status and Unhandled Exceptions [OYB]........ccccovviiiiiimiiiiieiieeeeeee 294
SPARK.39 Termination Strategy [REU].......ccooiiiiiiiii i esrees e e e e e e e ae e e e e 294
SPARK.40 Typebreaking Reinterpretation of Data [AMV]..........oooiiiiiiiiiiiieeeeeeeee e 294
SPARK.AL MemOry LEaAK PXY L] ..ottt ettt e et r e e e e e e et anas e e e e e eeeas 295
SPARK.42 Templates and GeneriCS [SYMI.....uu i e s e e e e e e eeneen 295
SPARK.43 INNErtanCe [RIP].......eiiiiiiiiiiii et e e e enr e e e e e e e e 295
SPARK.44 EXtra INtriNSICS [LRM].....ceiiiiiiiiiiiiiiiie ettt e e e e s e e e 295
SPARK.45 Argument Passing to Library FUNCLIONS [TRJ].......coiiiiiiiiiiiie e 295
SPARK.46 Inter-language Calling [DJS]........uuuiiiiiiiiiiiiiimiie et e e e e 295
SPARK.47 Dynamicallylinked Code and Sethodifying Code [NYY]......ouuviiiiiiiiiiiiiiiiiiimneecieeeceeeenns 295
SPARK.48 Library Signature [NSQYJ.......ccuuiiiiiiiiiiiiiiimr e e e e e e e rme e e e e eaaa s e e e e e e e e eeeeenn e eenes 295
SPARK.49 Unanticipated Exceptions from Library Routines [HIW]..........cccooiiiiiiiimiiiiieeee e 296
FPARK.50 Pre-Processor Directives [NMP).........ooooiiiiiiii e 296
SPARK.51 Suppression of Languaggefined Runtime Checking [MXB].....ccoooveviviiiiiiiiii e 296
SPARK.52 Provison of Inherently Unsafe Operations [SKL]..........ooociiiiiiiiiiiiceeiiieeece e 296
SPARK.53 Obscure Language Features [BRS].........uuuiiiiiiiiiiiiimiiiiiciiseeeseccime s e e e e e e e e e e e e e 296
SPARK.54 Unspecified Behaviour [BQE]oiii i e et emrrsnsn s e e e e e eeennna s 296
SPARK.55 Undefined Behaviour [EWE].........ouo ettt n 296
SPARK.56 Implementation-Defined Behaviour [FAB]...........ccooooiiiiiiiiii e, 297
SPARK.57 Deprecated Language Features [MEM]........cooouiiiii e eses e e 297
SPARK.58 Implications for standardiZation..............c.ouiiuuiiiiiieiiee e 297
2111 [oTo T =T o] 0|V /0 USSP 298
10T [G 301

© ISY/IEC2012 ¢ All rights reserved Xiii

WG 23/N 086 Baseline Edition 2 TR 24772

Foreword

ISO (the International Organization for Standardization) and IEC (theatitaral Electrotechnical

Commission) form the specialized system for worldwide standardization. National bodies that are members of
ISO or IEC participate in the development of International Standards through technical committees established
by the respetive organization to deal with particular fields of technical activity. ISO and IEC technical
committees collaborate in fields of mutual interest. Other international organizations, governmental and non
governmental, in liaison with ISO and IEC, also pakein the work. In the field of information technology, ISO

and IEC have established a joint technical committee, ISONEC

International Standards are drafted in accordance with the rules given in the 1SQifdeGves, Par2.

The main task of #joint technical committee is to prepare International Standards. Draft International
Standards adopted by the joint technical committee are circulated to national bodies for voting. Publication as
an International Standard requires approval by at le&s¥%of the national bodies casting a vote.

In exceptional circumstances, the joint technical committee may propose the publication of a Technical Report
of one of the following types:

T typel, when the required support cannot be obtained for the publimatdf an International Standard,
despite repeated efforts;

T type2, when the subject is still under technical development or where for any other reason there is the
future but not immediate possibility of an agreement on an International Standard;

T type 3, when the joint technical committee has collected data of a different kind from that which is .
Y2N¥YItfte LlzotAaKSR a Fy LYUSNyroaAz2yrt {4FyRFENR oO0d&

Technical Reports of typdsand 2 are subject to review within three yeafgablication, to decide whether
they can be transformed into International Standards. Technical Reports oBtglpenot necessarily have to be
reviewed until the data they provide are considered to be no longer valid or useful.

Attention is drawn to thepossibility that some of the elements of this document may be the subject of patent
rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights.

ISO/IEQ'R24772, which is a Technical Report of tevas prepared by It Technical Committee
ISO/IEQTCL, Information technologySubcommittee S22, Programming languages, their environmeatsd
system software interfaces

Xiv © ISTIEC2012 ¢ All rights reserve

Baseline Editior2 TR 24772 WG 23/N 086

Introduction

All programming languages contain constructs thii incompletely specifieexhikit undefined behaviar,

are implementationdependent, or are difficult to use correctlflhe use of those constructs may therefore
give rise tovulnerabilities as a result of which, software programs can execute differently than intended by
the writer. In some cases, these vulnerabilities campromise the safety of a systemtwg exploited by
attackers to compromise the security privacy of a system.

This Technical Report is intended to provide guidance spanning multiple programming languages, so tha
application developers will be better able to avoid the programming constructs that lead to vulnerabilities in
software written in their chosen languagid their attendant consequences. This guidance can also be
used by developers to select source cadmluation tools that can discover and eliminate some constructs
that could lead to vulnerabilities in their softwaoe to select a programming language that avoids

anticipated problems

It should be noted that this Technical Report is inherently incetaplit is not possible to provide a

complete list of programming language vulnerabilities because new weaknesses are discovered continually.
Any such report can only describe those that have been found, characterized, and determined to have
sufficient pobability and consequence.

Furthermore to focus its limited resources, the working group developing this report decided to defer
comprehensivdareatment of several subject areas until future editions of the repdmese subject areas
include:

9 Objectoriented language feature@lthough some simple issues related to inheritance are
described in RIP)

1 Numerical analysis (although some simple items regarding the use of floating point are described in
PLF)

1 Inter-language operability

© ISYIEC2012 ¢ All rights reserved XV

Technical Report Baseline Ed 2 of SO/IEC TR 24772D11(E

Information Technology Programming Languagas Guidance to Avoiding
Vulnerabilities in Programming Languages through Language Selection and
Use

1. Scope

This Technical Report specifies softwaregramming languageulnerabilitiesto be avoidedn the development
of systemswvhere assured behaviour is required for security, safety, mission critical and business critical software.
In general, this guidance is applicable to the software developed, reviewed, or maintained for any ipplicat

Vulnerabilities are described in a generic manner that is applicable to a broad range of programming languages.

2. Normative references

The following referenced documents are indispensable for the application of this document. For dated
references, aly the edition cited applies. For undated references, the latest edition of the referenced document
(including any amendments) applies.

ISTIEC 800062:2009 Quantities and units Part2: Mathematical signs and symbdtsbeuse in thenatural
sciencesand technology
ISO/IE@382¢1:1993,Information technology Vocabularyt Part 1: Fundamental terms

3. Terms and definitions , symbols and conventions

3.1Terms and definitions

For the purposes of this documerthie terms and definitiongjiven in ISO/IEC 82¢1 and the followingapply.
Other terms are defined where they appeairitalic type.

3.11
communication

3.111
protocol
set of rules and supporting structures for the interaction of threads

Note 1: A protocol can be tightly embedded and rely upatalin memory and hardware to control
interaction of threads or can be applied to more loosely coupled arrangements, such as message
communication spanning networks and computer systems.

© ISTIEC2010¢ All rights reserved 16

Baseline Editiol2 TR 24772 WG 23/N 086

3.11.2

stateless protocol
communication or cooperation between thads where no state is preserved in the protocol itself (example HTTP
or dired access to a shared resource)

Note 1: Since most interaction between threads require that state be preserved, the cooperating threads
must use values of the resources(s) themssler add additional communication exchanges to maintain
state. Stateless protocols require that the application provide explicit resource protection and locking
mechanisms to guarantee the correct creation, view, access to, modification of, and destroicthe
resourceg for examplethe state needed forarrect handling of the resource

3.12
execution model

3.12.1
thread
sequential stream of execution

Note 1: Although the term thread is used here and the context portrayed is thahafesl memory threads
executing as part of a process, everything documented applies equally to other variants of concsa@ncy
as interrupt handlers being enabled by a process, processes being created on the same system using
operating system routines, or processes created as a result of distributed messages sent over a network. The
mitigation approaches will be similar to those listed in the relevant vulnerability descriptions, but the
implications for standardization would be depemd®n how much language support is provided for the
programming of the concurrent system.

3.12.2
thread activation
creation and setup of a thread up to the point where the thread begins execution

Note 1: Threads may depend upon one or more other threamdefine itsaccess to otheobjects to be
accessed and to deterime its duration

3.12.3
activated thread
threadthat is created andhen begins execution as a resultthiread activation

3.124

activating thread
thread that exists first and makes thbrary calls or contains the language syntax that causes the activated thread
to be activated

Note 1: The Activating Thread may or may not wait for the Activated Thread to finish activation and may or
may not check for errors if the activation fails. Thaivating Thread may or may not be permitted to
terminate until after the Activated Thread terminates.

© ISTIEC2012 ¢ All rights reserved 17

WG 23/N 086 Baseline Edition 2TR 24772

3.125

static thread activation

creation and initiation of a thread by program initiation, an operating system or runtime kernel, or by another
thread a part of a declarative part of the thread before it begins execution

Note 1: In static activation, a static analysis can determine exactly how many threads will be created and how
much resource, in terms of memory, processors, cpu cycles, priority rangesterthread communication
structures, will be needed by the executing program before the program begins.

3.12.6

dynamic thread activation

creation and initiation of a thread by another thread (including the main program) as an executable, repeatable
command, statement or subprogram call

3.12.7
thread abort
request to stop and shut down a thread immediately

Note 1: The request is asynchronous if from another thread, or synchronous if from the thread itself. The
effect of the abort request (e.g. whedh it is treated as an exception) and its immediacy (i.e., how long the
thread may continue to execute before it is shut down) depend on langapgeific rules. Immediate
shutdown minimizes latency but may leave shared data structures in a corrupted state

3.12.8
termination directing thread
thread (including the OS) that requests the abort of one or more threads

3.12.9

thread termination

completion and orderly shutdown of a thread, where the thread is permitted to make data objects consistent,
release ay acquired resourcegnd notify any dependent threads that it is terminating

Note 1: There are a number of steps in the termination of a thread as listed below, but depending upon the
multithreading model, some of these steps may be combined, may be&#ypbrogrammed, or may be
missing.

1 The termination of programmed execution of the thread, including termination of any synchronous
communication;
the finalization of the local objects of the thread;
waiting for any threads that may depend on the thraaderminate;
finalization of any state associated with dependent threads;
netification thatfinalization is complete, including possible notification of the activating task;
removal and cleanup of thread control blocks and any state accessible by tlael tbréy other
threads in outer scopes.

=A =4 =4 =4 =4

18 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 086

3.12.10
terminated thread
thread that is being héed from any further execution

3.1211

master thread

thread which must wait foaterminated thread before it can take further execution stepgliiding terminatbn
of itself)

3.1.2.12
process
single execution of a programr portion of an application

Note 1: Processeslo not normally share a common memory space, diten share

1 processor,

network,

operating system,

filing system,
environment variables, or
other resources.

= =4 =4 =4 =4

Processes are usually started and stopped by an operating system and may or may not interact with ot
processesA process may contain multiple threads.

3.1.3
properties

3.1.3.1eftware quality
degree to which safvare implements the requirements described by its specificatind the degree to which
the characteristics of a software product fulfill tsquirements

3.1.3.2
predictableexecution
property of the program such that all psible executions have results that can be predicted from the source ¢

314
safety

3.14.1
safety hazard
potential source of harm

Note 1 IEC 615081 Y RSTFAYySa + al T FNRE a | &L 4 SiAjarkadr
damage to the health of people either directly or indirectly as a result of damage to property or to the
SYGANRYYSYy(éd {2YS RSNXGSR a i-b6/RdadeiRiBexefigitonOR | J

her

ode

© ISTIEC2012 ¢ All rights reserved 19

WG 23/N 086 Baseline Edition 2TR 24772

GKIFNXYE (G2 AyOf dzRS tdllddmEgednot just hagfnRo pSopl@ dadsBdyby @Boperty and
environmental damage).

3.14.2
safety-critical software
software for applications where failure can cause very serious consequences such as human injury or death

Note 1: IEC 615081 Y RS T ANSStAl YR FHRALRISI NS a4 aaz2Ffisol NB GKI
functions in a safetyelated system.Notwithstanding that in some domains a distinction is made between
safetyrelated (can lead to any harm) and safetitical (life threatening), this Technical Report uses the term
safety-criticalfor all vulnerabilities that can result in safety hazards.

3.15
vulnerabilities

3151
application vulnerability
security vulnerability osafety hazard, or defect

3.15.2

languagevulnerability

property(of a programming language) that caontributeto, or that is strongly correlated with, application
vulnerabilities in programs written in that language

Note 1: The term "property” can meathe presence othe absence of a specific featynesed singly or in
combination As an example of the absence of a feafugrcapsulation (control of where nameanbe
referenced from) is generally considerbdneficialsince it narrows the interface between modules and can
help prevent data corruptionThe absence of encapsulation from a programming language can thus be
regarded as a vulnerabilityNote that a property together with its complemenanboth be considerd
language vulnerabilitiesiFor example, automatic storage reclamation (garbage collectmmbea

vulnerability since it can interfere with time predictability and result in a safety hazard. On the other hand,
the absence of automatic storage reclaneaicanalsobe a vulnerability since programmers can mistakenly
free storage prematurely, resulting in dangling references.

3.1.5.3

secuity vulnerability

weakness in an information system, system security procedures, internal controls, or implementation that could
be exploited or triggered by a threat

3.2 Symbols and conventions
3.2.1 Symbols

For the purposes of this document, tegmbolsgiven in ISO/IEC 800§®apply. Other symbols are defined
where they appear in this document.

‘ 20 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 086

3.2.2 Conventions

Programming language token and syntactic tokenesgwpncourier ~ font.

4. Basic Concepts

4.1 Purpose of this Technical Report

This Technical Report specifies software programming language vulnerabilities to be avoided in the development
of systems where assured behaviour is required for security, safeésgjon critical and business critical software.
In general, this guidance is applicable to the software developed, reviewed, or maintained for any application.

This Technical Report does not address software engineering and management issues suctoatebign and
implement programs, use configuration management tools, use managerial processes, and perform process
improvement. Furthermore, the specification of propertiesid applicationso be assuredre not treated.

While thisTechnical Repodoesnot discuss specification or design issues, there is recognition that boundaries
among the various activities are not cleaurt. ThisTechnical Reporeeks to avoid the debate about where low
level design ends and implementation begins by treating setkissues that some might consider design issues
rather than coding issues.

The body of thiFechnical Report provides users of programming languages with a lanonegpendent
overview of potential vulnerabilities their usage Annexes describe how ¢hgeneral observations apply to
specific languages.

4.2 Intended Audience

The intended audience for this Technical Repoetthose who are concerned with assuritige predictable

execution of thesoftware of their system; that is, those who are developiggalifying, or maintaining a software
system and need to avoid language constructs that could cause the software to execute in a manner other than
intended.

Developers of applications that have clear safety, security or mission criticality are expettecdware of the

risks associated with their code and could use Tshnical Repoitb ensure that theidevelopment practices
address the issues presented by the chosen programming languages, for example by subsetting or providing
coding guidelines

It should not be assumed, howevéehat other developers can ignore thisechnical ReportA weakness ia non
critical applicatiormay provide the route by which an attacker gains control of a system or otherwise dismipt
hosted applications that areitical. It is hoped thatll developers would use thiBechnical Repottb ensure that
common vulnerabilities are removed or at least minimized from all applications.

Secific audiences for this International Technical Repurtude developersmaintaners and regulatorsf:

1 Safetycritical applications that might cause loss of life, human injury, or damage to the environment
9 Securitycritical applications that must ensure properties of confidentiality, integrity, and availability

© ISTIEC2012 ¢ All rights reserved 21

WG 23/N 086 Baseline Edition 2TR 24772

9 Missioncritical appications that must avoid loss or damage to property or finance

9 Busines<ritical applications where correct operation is essential to the successful operation of the
business

1 Scientific, modeling and simulation applications which require high confidertbe results of possibly
complex, expensive and extended calculation

4.3 How to Use This Document

This Technical Report gathers descriptions of programming language vulnerabilities, as well as selected
application vulnerabilities, which hawecurred n the past and are likely to occur agaigach vulnerability and its
possible mitigations are described in the body of the report in a langustgpendent mannerthough

illustrative examples may be language specifit addition, annexes for particulnguages describe the
vulnerabilities and their mitigations in a manner specific to the language.

Because new vulnerabilities are always being discovered, it is anticipated thaethnical Repomill be revised

and new descriptions added-or thatreason, a scheme that is distinct from sclause numbering has been

adopted to identify the vulnerability description&ach description has been assigned an arbitrarily generated,
unique threeletter code. These codes should be used in preference teckalse numbers when referencing
descriptionsbecause they will not change as additional descriptions are added to future editions of this Technical
Report.

The main part of tls Technical Reportontains descriptions that are intended to be langudaggependent to the
greatest possible extenAnnexesapply the generic guidance to particular programming languages.

ThisTechnical Repotias been written with several possible usages in mind:

1 Programmers familiar with the vulnerabilities of a specific languzan reference the guide for more
generic descriptions and their manifestations in less familiar languages.

f Tool vendors can use thethrdeS G G SNJ O2RSa +a |+ adzOO0OAyOdG ¢le G2 a
considered by their tools.

1 Individual @ganizations may wish to write their own coding standards intended to reduce the number of
vulnerabilities in their software products. The guide can assist in the selection of vulnerabilities to be
addressed in those standards and the selection of codingdgegines to be enforced.

9 Organizations or individuals selecting a language for use in a project may want to consider the
vulnerabilities inherent in various candidate languages.

Thedescriptionsinclude suggestions for ways of avoiding the vulnerabilit®sme are simply the avoidance of
particular coding constructs, but others may involve increased review or other verification and validation
methods. Source code checking tools can be used to automatically enforce some coding rules and standards.

Clause? provides Normative references, and Clause 3 provides Terms, definitions, symbols and conventions.
Clause 4 provides the basic concepts used for this Technical Report.

Clause 5Yulnerability Issuegrovides rationale for this Technical Report andlaixig how many of the
vulnerabilities occur.

22 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 086

Clause 6Programming Language Vulnerabilitiggovides languagandependent descriptions of vulnerabilities in
programming languages that can lead to application vulnerabilities. Each description provides:

1 asummary of the vulnerability,

characteristics of languages where the vulnerability may be found,

typical mechanisms of failure,

techniques that programmers can use to avoid the vulnerability, and

ways that language designers can modify language spditifisan the future to help programmers
mitigate the vulnerability.

= =4 =4 =

Clause 7Application Vulnerabilitiegprovides descriptions of selected application vulnerabilities which have been
found and exploited in a number of applications and which have welivkrmitigation techniques, and which

result from design decisions made by coders in the absence of suitable language library routines or other
mechanisms For these vulnerabilities, each description provides:

1 asummary of the vulnerability,
9 typical mechaisms of failure, and
9 techniques that programmers can use to avoid the vulnerability.

Clause 8New Vulnerabilitiesprovides new vulnerabilities that have not yet had corresponding programming
language annex text developed.

AnnexA, VulnerabilityTaxonomyand List is a categorization of the vulnerabilities of this report in the form of a
hierarchical outline and a list of the vulnerabilities arranged in alphabetic order by their three letter code.

AnnexB, Language Specific Vulnerability Templasea tenplate for the writing of programming language specific
annexes that explain how the vulnerabilities from clause 6 are realized in that programming language (or show
how they are absent), and how they might be mitigated in langesageific terms.

Additional annexes, each named for a particular programming language, list the vulnerabilities of Clauses 6 and 7
and describe how eachulnerability appearn the specific language and how it may be mitigated in that

language, whenever possible. All of the langedependent descriptions assume that the user adheres to the
standard for the language as listed in the siiduse of each annex.

5 Vulnerability issues

5.1 Predictable execution

There are many reasons why software might not execute as expected vétoders, its users or other
stakeholders. Reasons include incorrect specifications, configuration management errors and a myriad of others.
This Technical Report focuses on one caube usage of programming languages in ways that render the
execution ofthe code less predictable.

Predictable executiois a property of a program such that all possible executions have results that can be
predicted from examination of the source codachieving predictability is complicated that fact that software
may be used:

© ISTIEC2012 ¢ All rights reserved 23

WG 23/N 086 Baseline Edition 2TR 24772

on unanticipated platformsf¢r example ported to a different processor)

in unanticipated ways (as usage patterns change),

in unanticipated contexts@r example software reuse and systeiwf-system integrations),rad

by unanticipated userddr examplethose seeking to exploit and penetrate a software system).

=A =4 =4 =4

CdzNI KSNY2NB>X G(G2RIF&Qa dzoAljdzAii2dza O2yySOGAQAGE 2F az2¥
attacked either because it is a target fpenetration or because it offers a springboard for penetration of other
softwvare.! OO2 NRAy It &> G2RIF&Qa LINPIANF YYSNA Ydzad GF{1S FRRA
the new challenges.

Software vulnerabilitieare unwanted characteristics of softwatteat may allow software to execute in watsat
are unexpected Programmers introduce vulnerabilities into software by using language features that are
inherently unpredictable in the variable circumstanceslioed above or by using features in a manner that
reduces what predictability they could offe©f course, complete predictability is an ideal (particularly because
new vulnerabilities are often discovered through experience), but any programmer caavenpredictability by
careful avoiding the introduction of known vulnerabilities into code.

This Technical Report focuses on a particular class of vulnerabitiigsiage vulnerabilitiesThese are

properties of programrimg languages that can contribute to (or are strongly correlated veitiplication

vulnerabilities security weaknesses, safety hazards, or defedts.example may clarify the relationshiphe

LINEZ 3 NJ Y Y S NXirg copgan furtbn that ddes bdeck length may be exploited by an attacker to place
incorrect return values on the program stack, hence passing control of the execution to code provided by the
attacker. The string copying function is the language vulbdity and the resulting weakness of the program in

the face of the stack attack is the application vulnerabiljre programming language vulnerability enables the
application vulnerability.The language vulnerability can be avoided by using a stojpgirng function that does

set appropriate bounds on the length of the string to be copiBg.using a bounded copy function the

LINEINF YYSNI AYLINRP@PSAa (GKS LINSRAOGIOAfAGE 2F GKS O2RSQ

The primary purpose of this Technical Report is to survey canpnagramming language vulnerabilities; this is
done in Clause 6Each description explains how an application vulnerability can reuflause 7, a few
additional application vulnerabilities are describethese are selected because they are assediwith language
weaknesses even if they do not directly result from language vulnerabilfi@sexample, a programmer might
have stored a password in plaintext (§&€&/M) because the programming language did not provide a suitable
library function fo storing the password in a necoverable format.

In addition to considering the individual vulnerabilities, it is instructive to consider the sources of uncertainty that
can decrease the predictability of softwar&hese sources are briefly consideiadhe remainder of this clause.

5.2 Sources of unpredictability in language specification
5.2.1 Incomplete or evolving specification

The design and specification of a programming language involves considerations that are very different from the
use of thelanguage in programmingd.anguage specifiers often need to maintain compatibility with older
versions of the languageeven to the extent of retaining inherently vulnerable featuré&ometimes the

24 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 086

aSYLFLyiada 2F ySg 2N 02 Y LibvhFespechlly iivideNiBsad intcoitbiyfaboin with BthetJt S
features.

5.2.2 Undefined behaviour

LGQa aAvyLie y2i LlaaAroftsS F2N GKS aLISOAFASNI 2F | LN
example, the result of using a variable to which no gdlas been assigned is left undefined by most languages.

In such cases, a program might do anythimgcluding crashing with no diagnostic or executing with wrong data,
leading to incorrect results.

5.2.3 Unspecified behaviour

The behaviour of some featusenay be incompletely defined. The language implementer would have to choose
from finite set of choices, but the choice may not be apparent to the programmer. In such cases, different
compilers may lead to different results.

5.2.4 Implementation -defined be haviour

In some cases, the results of execution may depend upon characteristics of the compiler that was used, the
processor upon which the software is executed, or the other systems with which the software has intehfaces.
principle, one could predidhe execution with sufficient knowledge of the implementation, but such knowledge
is sometimes difficult to obtainFurthermore, dependence on a specific implementatimiined behaviour will
lead to problems when a different processor or compiler is mssgoimetimes if different compiler switch settings
are used.

5.2.5 Difficult features

Some language features may be difficult to understand or to use appropriately, either due to complicated
semanticsfor example floating point in numerical analysis apg@lions) or human limitationggr example,

deeply nested program constructs or expressior&)metimes simple typing errors can lead to major changes in
behaviour without a diagnostiéqr examplefi @ LAy 3 alé F2NJ I aaA3IyYSyadi 6KSy :
comparison).

5.2.6 Inadequate language support

No language is suitable for every possible application. Furthermore, programmers sometimes doentiteh
freedom to select the language that is most suitable for the task at hand. In many cases, linzsid®e used to
supplement the functionality of the language. Then, the library itself becomes a potential source of uncertainty
reducing the predictability of execution.

5.3 Sources of unpredictability in language usage
5.3.1 Porting and interoperation

When a program is recompiled using a different compiler, recompiled using different switches, executed with
different libraries, executed on a different platform, or even interfaced with different systems, its behaviour will

© ISTIEC2012 ¢ All rights reserved 25

WG 23/N 086 Baseline Edition 2TR 24772

change. Changes result fronffdient choices for unspecified and implementatidefined behaviour,
differences in library function, and differences in underlying hardware and operating system suppert.
problem is far worse if the original programmer chose to use implementatependent extensions to the
language rather than staying with the standardized language.

5.3.2 Compiler selection and usage

Nearly all software has bugs and compilers are no exceplitiey should be carefully selected from trusted
sources and qualified pnido use. Perhaps less obvious, though, is the use of compiler switdb#&erent switch
settings will result in differences in generated code. A careful selection of settings can improve the predictability
of code, for example, a setting that causes flagging of any usage of an implementataefined extension.

6. Programming Language Vulnerabilities

6.1 General

This clause provides languamelependent descriptions of vulnerabilities in programming languages that can lead
to application vulnerabilies. Each description provides:

1 asummary of the vulnerability,

1 characteristics of languages where the vulnerability may be found,

1 typical mechanisms of failure,

9 techniques that programmers can use to avoid the vulnerability, and

1 waysthat language dsigners can modify language specifications in the future to help programmers

mitigate the vulnerability.

Descriptions of how vulnerabilities are manifested in particular programming languages are provided in annexes
of this Technical Report. In each cabe behaviour of the language is assumed to be as specified by the standard
cited in the annex. Clearly, programs could have different vulnerabilities in-ataodard implementation.

Examples of nostandard implementations include:

9 compilers written b implement some specification other than the standard
9 use of nonstandard vendor extensions to the languagad
9 use of compiler switches providing alternative semantics.

6.2 Terminology

The following descriptions are written in a languagdependent maner except when specific languages are
used in examplesThe annexes may be consulted for language specific descriptions.

This clause will, in general, use the terminology that is most natural to the description of each individual
vulnerability. Hencearminology may differ from description to description.

26 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 086

6.3 Type System [IHN]

6.3.1 Description of application vulnerability

When data values are converted from one data type totaan even when done intentionally, unexpected
results can occur.

6.3.2 Cross reference

JSF AV Rugel48 and 183 |
MISRA C 2004: 6.1, 6.2, 6.3, 10.1, and 10.5

MISRA C++ 2008922, 50-3 to 50-14

CERT C guitilees: DCLOT, DCLLL, DCL3E, EXPGE andEXP3XT

AdaQualityand Style Guide: 3.4 ‘

6.3.3 Mechanism of failure

Thetype of a data object informs the compiler how values should be represented and which operations may be
applied. Thaype systenof a language is the set afles used by the language to structure and organize its
collection oftypes Any attempt to manipulate data objects with inappropriate operationstigoa error A

program is said to bgype safe(or type securgif it can be demonstrated that it has no type errogs7J

Every programming language has some sort of type sysfefanguage istatically typedf the type of every
expression is known at compile tim&he type system is said to B&ongif it guaranees type safety andieakif

it does not. There are strongly typed languages that are not statically typed because they enforce type safety
with run time checks{7].

In practical terms, nearly every language falls short of being strongly typed (inars@ese) because of the

inclusion of mechanisms to bypass type safety in particular circumstakoeghat reason and because every
language has a different type system, this description will focus on taking advantage of whatever features for typs
safety may be available in the chosen language.

Sometimes it is appropriate for a data value to be converted from one type to anotimepatibleone. For
example, consider the following program fragment, written in no specific language:

float a;
integer i;
a: =a+i;

The variablei"" is of integer type. It must be converted to the float type before it can be added to the data value.
An implicit conversion, as shown, is called coercibnon the other hand, the conversion must be explitit,
example "a :=a + float(i) ", then the conversion is calledcast

Typeequivalencas the strictest form of type compatibility; two types are equivalent if they are compatible
without using coercion or casting.ype equivalence is usually characterized in terimsame type equivalence

two variables have the same type if they are declared in the same declaration or declarations that use the same
type nama or structure type equivalencetwo variables lve the same type if they have identical structures.

© ISTIEC2012 ¢ All rights reserved 27

WG 23/N 086 Baseline Edition 2TR 24772

There are variations of these approaches and most languages use different combinations a28hefngrefore,
a programmer skilled in one language may very well code inadvertent type errors whegraudiiifierent
language.

It is desirable for a program to be type safe because the application of operations to operands of an inappropriate
type may produce unexpected results. In addition, the presence of type errors can reduce the effectiveness of
static analysis for other problemsSearching for type errors is a valuable exercise because their presence often
reveals design errors as well as coding errdiany languages check for type errorsome at compildime,

others at runtime. Obviously, compg-time checking is more valuable because it can catch errors that are not
executed by a particular set of test cases.

Making the most use of the type system of a language is useful in two Wags$, data conversions always bear
the risk of changing thealue. For example, a conversion from integer to float risks the loss of significant digits
while the inverse conversion risks the loss of any fractional vallemversion of an integer value from a type with
a longer representation to a type with a shertrepresentation risks the loss of significant digithisTcan

produce particularly puzzling results if the value is used to index an a&b@yversion of a floatinrgoint value

from a type with a longer representation to a type with a shorter représton risks the loss of precisiofhis

can be particularly severe in computations where thenber of calculations increasas a power of the problem
size. (It should be noted that similar surprises can occur when an application is retargeted toiaemetih
different representations of numeric values.)

Second, grogrammercan use the type system to increase the probability of catching design errors or coding
blunders. For example, the following Aitagment declares two distinct floatirgoint types:

type Celsius is new Float;
type Fahrenheit is new Float;

The declaration makes it impossible to add a value of type Celsius to a value of type Fahrenheit without explicit
conversion.

6.3.4 Applicable language characteristics

This vulnerabity is intended to be applicable to languages with the following characteristics:
1 Languages that support multiple types and allow conversions between types.

6.3.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulability or mitigate its ill effects in the following ways:

i Takeadvantage of any facility offered by the programming language to declare distinct types and use any
mechanism provided by the language processor and related tools to check for or enforce type
compatibility.

1 Use available language atubls facilities to preclude or detect the occurrence of coercidinit is not
possible, use human revietw assist in searching for coercions.

1 Avoid casting data values except when there is no alternaa@cunent such occurrences so that the
justification is made available to maintainers.

28 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 086

1 Use the most restricted data type that suffices to accomplish the kuy.example, use an enumeration
type to select from a limited set of choicesu¢h asa switch staterant or the discriminant of a union
type) rather than a more general type, such as integdris will make it possible for tooling to check if all
possible choices have been covered.

1 Treat every compiler, tool, or rdtime diagnostic concerning type comjaitity as a serious issue. Do not
resolve the problem bynodifying the code by inserting an explicit cast, without further anglysstead
examine the underlying design to determine if the type error is a symptom of a deeper problem.

1 Never ignore instaces of coercion; if the conversion is necessary, convert it to a cast and document the
rationale for use by maintainers.

1 Analyze the problem to be solved to learn the magnitudes and/or the precisions of the quantities needed
as auxiliary variables, paatiresults and final results.

6.3.6 Implications for standardization

In future standardizatiomctivities the following items should be considered:

1 Language specifiers should standardize @ommon,uniform terminologyto describe their type systems
so that programmers experienced in other languages can reliably learn the type system of a language tha
is new to them.

1 Provide a mechanism for selecting data types with sufficient capability for the problem at hand.

Provide a way for the computation to detaime the limits of the data types actually selected.

1 Language implementers should consider providing compiler switches or other tools to provide the highest
possible degree of checking for type errors.

=

6.4 Bit Representations [STR]

6.4.1 Description of application vulnerability

Interfacing with hardware, other systems and protocols often requires access to one or more bits in a single
computer word, or access tottfields that may cross computer words for the machine in question. Mistakes can
0S YIRS ta (2 ¢KIG oAda FINBE (2 2% GROSAKBASaSONUAES
of miscalculations Access to those spedifbits may affect surrounding bits in ways that compromise their

integrity. This can result in the wrong information being read from hardware, incorrect data or commands being
given, or information being mangled, which can result in arbitrary effectoorponents attached to the system

6.4.2 Cross reference

JSF AV Rulé47, 154 and 155
MISRA C 2004: 3.5, 6.4, 6.5, and 12.7

MISRA C++ 2008:0621, 52-4 to 52-9, and 95-1

CERT C guitilees: EXP3€, INTOG, INTOLTC, INT1Z, INT1&, and INTLE

AdaQualityand Style Guide: 7.6.1 through6.9, and 7.3.1 ‘

© ISTIEC2012 ¢ All rights reserved 29 ‘

WG 23/N 086 Baseline Edition 2TR 24772

6.4.3 Mechanism of failure

Computer languages frequently provide a variety of sizes for integer variables. Languages may support short,
integer, long, and even big integers. Interfacing witbtpcols, device drivers, embedded systems, low level
graphics or other external constructs may require each bit or set of bits to have a particular meaning. Those bit
sets may or may not coincide with the sizes supported by a particular languatgEmertation. When they do

not, it is common practice to pack all of the bits into one word. Masking and shifting of the word using powers of
two to pick out individual bits or using sums of powers of 2 to pick out subsets ofdritsxample using

28=7+2*+2*to create the mask 11100 and then shifting 2 bits) provides a way of extracting those bits.
Knowledge of the underlying bit storage is usually not necessary to accomplish simple extractions such as these.
Problems can arise when programmers mix thedhniques to reference the bits or output the bit®roblems

can arise when programmers mix arithmetic and logical operations to reference the bits or output th&Hhsts.
storage ordering of the bits may not be what the programmer expects.

Packing of its in an integer is not inherently problematic. However, an understanding of the intricacies of bit
level programming must be knowrsome computers or other devices store the bits left to right while others
store them right to left. The type of storagan cause problems when interfacing with external devices that
expect the bits in the opposite order. One problem arises when assumptions are made when interfacing with
external constructs and the ordering of the bits or words are not the same as thiiregentity. Programmers
may inadvertently use the sign bit in a bit field and then may not be aware that an arithmetic shift (sign
extension) is being performed when right shifting causing the sign bit to be extended into other fields.
Alternatively, deft shift can cause the sign bit to be onBit manipulations can also be problematic when the
manipulations are done on binary encoded records that span multiple words. The storage and ordering of the
bits must be considered when doing bitwise opevat across multiple words as bytes may be stored in big
endianor little-endianformat.

6.4.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with tloevfiog characteristics:
1 Languages that allow bit manipulatians

6.4.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

1 Any assumption about bit orderirghould be explicitly documented.

1 The way bit ordering is done on the host system and on the systems with which the bit manipulations will
be interfaced should be understood.

i Bit fields should be used in languages that support them.

9 Bit operators should ndbe used on signed operands.

9 Localize and document the code associated with explicit manipulation of bits and bit fields.

6.4.6 Implications for standardization

In future standardization activities, the following items should be considered:

30 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 086

1 For languageshat are commonly used for bit manipulations, ARI(Application Programming Interface)
for bit manipulations that is independent of word size and machine instruction set should be defined and
standardized.

6.5 Floating -point Arithmetic [PLF]

6.5.1 Description of application vulnerability

Most real numbersannot be represented exactly encomputer. To represent real numbers, most computers
uselEC 6055¢47], or the USquivalentANSI/IEEE Std 7535]. The bit representation for a floatingoint

number can vary from compiler to compiler and on diff@rplatforms. Relying on a particular representation

can cause problems when a different compiler is used or the code is reused on another platform. Regardless of
the representation, many real numbers can only be approximated since representing thmeinglagr using a

binary representation would require an endlessly repeating string of bits or more binary digits than are available
for representation. Therefore it should be assumed that a floagiaimt number is only an approximation, even
though it maybe an extremely good one. Floatipgint representation of a real number or a conversion to
floating-point can cause surprising results and unexpected consequences to those unaccustomed to the
idiosyncrasies of floatingoint arithmetic.

Algorithms that e floating point can have anomalous behaviour when used with certain values. The most
common results are erroneous results or algorithms that never terminate for certain segments of the numeric
domain, or for isolated values.

6.5.2 Cross reference

JSF ARules: 146, 147, 184, 197, and 202

MISRA C 2004: 1.5, 12.13,3, and 13.4

MISRA C++ 2008:483, 39-3, and 62-2

CERT C guililees: FLPOC, FPOL, FLPOZ and FLP3G
AdaQualityand Style Guides.5.6 and 7.2.1 througii.2.8

6.5.3 Mechanism of failure

Floatingpoint numbers are generally only an approximation of the actual value. In the base 10 world, the value
2F MK o0 A dThesdnwedypecobsibution occurs in the binary world, but numbers that can be represented
with a limited numbetof digitsin base 10such as 1/10=0.1 become endlessly repeating sequences in the binary
world. So 1/10 represented as a binary number is:

neanAMMANAMMAAMMAAMMAAMMAAMMAAMMAAMMAAMMAAMMIINMMIA

2 KAOK A& NFMKH b nfFmkn b 1 pdmxnyattebhow pankdigits arb usedpthek o H b
representation will still only be an approximation of 1/10. Therefore when adding 1/10 ten times, the final result
may or may not be exactly 1.

Accumulating floating point values through the repeated additionadfies, particularly relatively small values,
can provide unexpected resultélsing an accumulated value to terminate a loop can result in an unexpected
number of iterations.Rounding and truncation can cause tests of floafdoint numbers against otheralues to

© ISTIEC2012 ¢ All rights reserved 31

WG 23/N 086 Baseline Edition 2TR 24772

yield unexpected resultsAnother cause of floating point errors is reliance upon comparisons of floating point
values or the comparison of a floating point value with zeFests of equality/inequality can vary due to
propagation or conversioarrors. Differences in magnitudes of floatiggpint numbers can result in no change of
a very large floatingoint number when a relatively small number is added to or subtracted from it

Manipulating bits in floatingpoint numbers is also very implemetion dependent. ThougheC 60558 a

commonly used representation for floatiqgpint data types, it is not universally used or required by all computer
languages. Some languages pred&€ 6055and make the support for the standard tignal. OnelEC 60559
representation usesa 24bit mantissa (including the sign bit) and aiBexponent, but the number of bits

allocated to the mantissa and exponent can vary when using other representa®ean the particular
representaton used for the mantissa and exponent. Even witki@ 60559various alternative representations

' NB LISNXYAGGESR T2N GKS d S Eth 2FHR &Restdtids Awittho without & Bidddhl G o
bit). Typically special represenians are specified for positive and negative zero and infinity. Relying on a
particular bit representation is inherently problematic, especially when a new compiler is introduced or the code
is reused on another platform. The uncertainties arising frlmatingpoint can be divided into uncertaiy about

the actual bit representation of a given valigi¢h asbigendian or littleendian) and the uncertaty arising

from the rounding of arithmetic operation$of example the accumulation of errors whemprecise floating

point values are used as loop indices).

6.5.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:
1 All languages with floatirgoint variables cabe subject to rounding or truncation errors.

6.5.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

1 Do not use a floatingoint expression in a Booledest for equality. Instead, ussdingthat determines
the difference between the two values to determine whether the difference is acceptably small enough
a2 00KFG Go2 @FrtdzSa Oty 6S O2yaARSNBR SljdzZ f o b2
Sy2dzakKé RAFTFSNBYOS OFry o6S I @SNEBR fFNHS ydzyoSNO®

1 Use library functions with known numerical characteristics whenever possible.

1 Unless the use of floatingoint is simplean expert in numerical analysis should check the stability and
accuracy of the algotiim employed.

1 Avoid the use of a floatirgoint variable as a loop counter. If necessary to use a flogiigt value as a
loop control, use inequality to determine the loop contrtidt is,<, <=, > or >=).

1 Understand the floatingpoint format used to epresent the floatingpoint numbers. This will provide
some understanding of the underlying idiosyncrasies of flogbioigt arithmetic.

1 Manipulating the bit representation of a floatiFgpint number should not be done except with biitt
language operairs and functions that are designed to extract the mantissa and exponent.

91 Do not use floatingpoint for exact values such as monetary amounts. Use flogidigt only when
necessary such as for fundamentally inexact values such as measurements.

1 Considerte use of decimal floatingoint facilities when available.

32 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 086

6.5.6 Implications for standardization
In future standardizatiomctivities the following items should be considered:

9 Languages that do not already adhere to or only adhere to a sub$eC08059 [47]should consider
adhering completely to the standard. Examples of standardization that should be considered:
0 C should consider requmg IEC 6055%or floating-point arithmetig rather than providing it as an
option, as ighe case in ISO/IEC 9820114].
o Javashould consider fully adhering t&C 6055%stead of a subset.
1 Languages should consider providing a means to generate diagnostics for code that attempts to test
equality of two floathg point values
9 Languages should consider standardizing their data type to ISO/IEG- 10984 andSO/IEC 10967
2:2001

6.6 Enumerator Issues [CCH

6.6.1 Description of application vulnerability

Enumerationsare a finite list of named entities that contain a fixed mapping from a set of names to a set of
integral values (called the representation) and an order between the members of the seminlanguages

there are no other operations available except order, equality, first, last, previous, and next; in others the full
dzy RSNI @Ay3 NBLINBaSydaldAaz2y 2LISNI42NFHRéelferatlod Af | 6f S

Most languages thatmpvide enumeration types also provide mechanisms to setdefault representations. If
these mechanisms do not enforce whdlge operations and check for conflicts then some members of the set
may not be properly specified or may have the wrong piags If the valuesetting mechanisms are positional
only, then there is a risk that improper counts or changes in relative order will result in an incorrect mapping.

For arrays indexed by enumerations with roefault representations, there is a risk of sttues with holes, and
if those indexes can be manipulated numerically, there is a risk effbibund accesses of these arrays.

Most of these errors can be readily detected by static analysis tools with appropriate coding standards,
restrictions and anndations. Similarly mismatches in enumeration value specification can be detected statically.
Without such rules, errors in the use of enumeration types are computationally hard to detect statically as well as
being difficult to detect by human review.

6.6.2 Cross reference

JSF AV Rule: 145

MISRA C 2004:Dand 9.3

MISRA C++ 2008:533

CERT C guililees: INTOSC
Holzmanrrule 6

AdaQualityand Style Guide: 3.4.2

© ISTIEC2012 ¢ All rights reserved 33

WG 23/N 086 Baseline Edition 2TR 24772

6.6.3 Mechanism of failure

As a program is developed and maintained the list oghgén an enumeration often changes in three basic ways:
new elements are added to the list; order between the members of the set often changes; and representation
(the map of values of the items) chandgexpressions that depend on the full set or specédlationships between
elements of the set can create value errors that could result in wrong results or in unbounded behaviours if used
as array indices.

Improperly mapped representations can result in some enumeration values being unreachable, or atay cre
GK2t Sa¢ Ay (KS NI LiNGScardof beldéfinedl giprapag&edS O+ £ dzS a

If arrays are indexed by enumerations containing Hdlefiault representations, some implementations may leave
space for values that are unreachable using the enumeratidth, a possibility ofinnecessarily large memory
allocationsor a way to pass information undetected (hidden channel).

When enumerators are set and initialized explicitly and the language permits incomplete initializers, then changes
to the order of enumeators or the addition or deletion of enumerators can result in the wrong values being

‘ assigned or default values being assigned impropeSlybsequent indexingan result innvalidaccesses and
possibly unbounded behaviours.

6.6.4 Applicable langu age Characteristics
This vulnerability description is intended to be applicable to languages with the following characteristics:

9 Languages that permit incomplete mappings between enumerator specification and value assignment, or
that provide a positionabnly mapping require additional static analysis tools and annotations to help
identify the complete mapping of every literal to its value.

1 Languages that provide a trivial mapping to a type such as integer require additional static analysis tools

‘ to preventmixed type errors.They also cannot preveirivalidvalues from being placed into variables of
such enumerator types. For example:

enum Directions {back, forward, stop};
enum Directions a = forward, b = stop, c = a + b;

In this example¢ may hae a value not defined by the enumeration, and any further use as that
enumeration will lead to erroneous results.

1 Some languages provide no enumeration capability, leaving it to the programmer to define named
constants to represent the values and ranges.

6.6.5 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

1 Use static analysis tools that will detect inappropriate use of enumerators, such as using titegeas
or bit maps, and that detect enumeration definition expressions that are incomplete or incorrect. For
languages with a complete enumeration abstraction this is the compiler.

34 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 086

6.6.6 Implications for standardization

In future standardizatiomctivities, the following items should be considered:

1 Languages that currently permit arithmetic and logical operations on enumeration types could provide a
mechanism to ban such operations progravide.

1 Languages that provide automatic defaults or that do ndbece static matching between enumerator
definitions and initialization expressions could provide a mechanism to enforce such matching.

6.7 Numeric Conversion Errors [FLQ

6.7.1 Description of application vulnerability

Certain contexts in various languages may require exact matches with respect to3gpes [

aVar := anExpression
valuel + value2
foo(argl, arg2, arg3, €& , argN)

Type conversion seeks tollfmv these exact match rules while allowing programmers some flexibility in using
values such as: structuraiguivalent types in a namequivalent language, types whose value ranges may be
distinct but intersect (for example, subranges), and distinpegywith sensible/meaningful corresponding values
(for example, integers and floatslxplicit conversions are callggbe casts An implicit type conversion between
compatible but not necessarily equivalent types is catjge coerain.

Numeric conversions can lead to a loss of data, if the target representation is not capable of representing the
original value. For example, converting from an integer type to a smaller integer type can result in truncation if
the original value cannot be represented in the smaller size and converting a floating point to an integer can
result in a loss of precision or an enftrange value.

Type conversion errors can lead to erroneous data being generated, algorithms thatiéaihtoate, array
bounds errors, and arbitrary program execution.

6.7.2 Cross reference

CWE:
192. Integer Coercion Error
MISRA C 20040.1-:10.6, 11.311.5, and 12.9
MISRA C++ 2008:13-3, 50-3, 50-4, 50-5, 50-6, 50-7, 50-8, 50-9, 50-10, 52-5, 52-9, and 53-2
CERT C guililees: FLP3€, INTOZ, INTO&, INT34C, and INT3E

6.7.3 Mechanism of failure

Numericconversion errorsesults in data integrity issugbut they may also result in a number of safety and
security vulnerabilities

© ISTIEC2012 ¢ All rights reserved 35

WG 23/N 086 Baseline Edition 2TR 24772

Vulnerabiities typically occur when appropriate range checking is not performeduaadticipatedvalues are
encountered. These can result in safety issues, for examvplenthe Ariane Sauncherfailure occurred due to
an improperly handled aoversion error resulting in the processor being shutdd24.

Conversiorerrors can also result in security issuds attackermay input gparticular numeric valuéo exploit a
flaw in the program logicThe resulting erroneous value may then be usedraarray indexa loop iteratora
length, a sizestate datg or in some other security critical manndfor example, a truncated integer value may
be used to allocate memory, while the actual length is used to copy information to the newly allocateatyne
resulting in a buffer overflo30].

Numerictype conversiorerrorsoften lead to undefined states of execution resulting in infinite loops or crashes.
In some cases, integérpe conversiorerrors can lead to exploitable buffer overflow conditionssulting in the
execution of arbitrary code. Integéype conversiorerrors result in an incorrect value being stored for the
variable in question.

6.7.4 Applicable language characteristics

This vulnerability description is intended to be applicableatiguages with the following characteristics:

Languages that perform implicit type conversion (coercion).

Weakly typed languages that do not strictly enforce type rules.
Languages that support logical, arithmetic, or circular sbiftinteger values
Larguages that do not generate exceptions on problematic conversions.

=A =4 =4 =4

6.7.5 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

1 The first line of defense agahinteger vulnerabilities should be range checking, either explicitly or
through strong typing. All integer values originating from a source that is not trusted should be validated
for correctness. However, it is difficult to guarantee that multiple inpariables cannot be manipulated
to cause an error to occur in some operation somewhere in a pro¢8am

1 An alternative or ancillary approach is to protect each operatidowever, because of the large number
of integer operations that are susceptilite these problems and the number of checks required to
prevent or detect exceptional conditions, this approach can be prohibitively labor intensive and expensive
to implement.

1 Alanguage that generates exceptions on erroneous data conversions might lemcBesign objects
and program flow such that multiple or complex casts are unneces&arsure that any data type casting
that you must use is entirely understood to reduce the plausibility of error in use.

1 The use of static analysis can often identityether or not unacceptable numeric conversions will occur.

Verifiably inrange operations are often preferable to treating out of range values as an error condition because
the handling of these errors has been repeatedly shown to cause dafrsairviceproblems in actual

applications. Faced with a numeric conversion error, the underlying computer system may do one of two things:
(a) signal some sort of error condition, or (b) produce a numeric value that is within the range of representable
values on tlat system. The latter semantics may be preferable in some situations in that it allows the computation

36 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 086

to proceed, thus avoiding a denial-service attack. However, it raises the question of what numeric result to
return to the user.

A recent innovationrbm ISO/IEC TR 2473113] is the definition of thesize_t type for the Gorogramming
language 9 EG NBYSt & I NBS 262800 &aAril Sa&a I+ NB T NE&dreeSyRof & |
example, negative numbeeppear as very large positive numbers wioemverted to an unsigned type like

size_t . Also, some implementations do not suppoljects as large as the maximum value that can be
represented by typaize_t . Forthesereasons, it is sometimdseneficial to restrict the range of object sizes to
detect programming errorsFor implementations targeting machines with large address spéadss,

recommended thaRSIZE_MAXbe defined as the smaller of the size of the largegect supported or

(SI ZE_MAX >> 1) , even if this limit is smaller than the sizesoime legitimate, but very large, objects.
Implementations targeting machines with smadldress spaces may wish to deflR8IZE_MAXasSIZE_MAX

which means that therés no object size that isoasidered a runtimeconstraint violation.

6.7.6 Implications for standardization
In future standardizatiomctivities the following items should be considered:

1 Languages should consider providing means similar to the ISO/IEC TRLZ#&fBfition ofrsize _t
type for Cto restrict object sizes so as to expose programming errors.

1 Languages should consider making all type conversgpiicit or at least generating warnings for implicit
conversions where loss of data might occur.

6.8 String Termination [CJM

6.8.1 Description of application vulnerability

Some programming languages use a termination character to indicate the end of a string. Relying on the
occurrence othe string termination character without verification can lead to either exploitation or unexpected
behaviour

6.8.2 Cross reference

CWE:
170. Improper Null Termination
CERT C guiliges: STRO8, STR3C, STR3E, and STR36

6.8.3 Mechanism of failure

Sring termination errors occur when the termination character is solely relied upon to stop processing on the
stringandthe termination character is not present. Continued processing on the string can cause an error or
potentially be exploited as a buffe@verflow. This may occur as a result of a programmer making an assumption
that a string that is passed as input or generated by a library contains a string termination character when it does
not.

Programmers may forget to allocate space for the strergnination character and expect to be able to storeman
length character string in an array thatricharacters long. Doing so may work in some instances depending on
what is stored after the array in memory, but it may fail or be exploited at somé.poin

© ISTIEC2012 ¢ All rights reserved 37

WG 23/N 086 Baseline Edition 2TR 24772

6.8.4 Applicable language characteristics
This vulnerability description is intended to be applicable to languages with the following characteristics:

9 Languages that use a termination character to indicate the end of a string.
1 Languages that do not deoobnds checking when accessing a string or array.

6.8.5 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

1 Do not rely solely on the string termination chater.
1 Use library calls that do not rely on string termination characters sushriaspy instead ofstrcpy in
the standard C library.

6.8.6 Implications for standardization
In future standardizatiomctivities the followirg items should be considered:

i Eliminating library calls that make assumptions about string termination characters.
1 Checking bounds when an array or string is accessed.
1 Specifying a string construct that does not need a string termination character.

6.9 Buffer Boundary Violation (Buffer Overflow) [HCBH]

6.9.1 Description of application vulnerability

A buffer boundary wlation arises when, due to unchecked array indexing or unchecked array copying, storage
outside the buffer is accessetlisually boundary violations describe the situatishere such storage is then

written. Depending on where the buffer is located, logically unrelated portions of the stack or the heap could be
modified maliciously or unintentionallyJsually, buffer boundary violations are accesses to contiguous memory
beyond either end of the buffer data, accessing before the beginning or beyond the end of the buffer data is
equally possible, dangerous and maliciously exploitable.

6.9.2 Cross reference

CWE:
MHN® . dZFFSNJ O2L) 6AGK2dzi NKEOBANFH2HERQOLS 2F LyLdzi o
122. Heaphased Buffer Overflow
MHN® . 2dzy RENE . SAAYYAYy3a £A2f{l GA2y oW. dzZFFSNJ ! YRSNB
129. Unchecked Array Indexing
131 Incorrect Calculation of Buffer Size
787. Out-of-bounds Write
805. Buffer Access with Incorrect Length Value
JSF AVURe: 15 and 25
MISRA C 2004: 21.1
MISRA C++ 2008:0615 to 50-18
CERT C guidelines: ARR3ARR3EZ, ARR3E, ARR3E, MEM3EC and STR3Q

38 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 086

6.9.3 Mechanism of failure

The program statements that cause buffer boundary violations are often difficultdo fin

There are several kinds of failures (in all cases an exception may be raised if the accessed location is outside of
some permitted range of the rutime environment):

|l

A read access will return a value that has no relationship to the intended valueasyuitte value of
another variable or uninitialized storage.

An outof-bounds read access may be used to obtain information that is intended to be confidential.
A write access will not result in the intended value being updated and may result in theofane
unrelated object (that happens to exist at the given storage location) being modifieldding the
possibility of changes in external devices resulting from the memaory location being hardveaed.
When an array has been allocated storage ondtaek an oubf-bounds write access may modify
internal runtime housekeeping information (for example, a function's return address) which might change
I LINP3INI YQa O2yGNREf Fft260

An inadvertent or malicious overwrite of function pointers that may be in mgneausinghem to point

to an unexpected location dhe attacker's code Even in applications that do not explicitly use function
pointers, the rurtime will usually store pointers to functions in memoryor example, object methods in
objectorientedlanguages are generally implemented using function pointers in a data structure or
structures that are kept in memoryThe consequence of a buffer boundary violation can be targeted to
cause arbitrary code execution; this vulnerability may be used toestibny security service.

6.9.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

1

Languages that do not detect and prevent an array being accessed outsiddexlased bounds (either

by means of an index or by poinfgr

Languages that do not automatically allocate storage when accessing an array element for which storage
has not already been allocated.

Languages that provide bounds checking but permit treckho be suppressed.

Languages that allow a copy or move operation without an automatic length check ensuring that source
and target locations are of at least the same size. The destination target can be larger than the source
being copied.

6.9.5 Avoidi ng the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

1

Use of implementatiofprovided functionality to automatically check array element accesses and prevent
out-of-bounds accesses.

1 Using the physical memory address to access the memory location.

© ISTIEC2012 ¢ All rights reserved 39

WG 23/N 086 Baseline Edition 2TR 24772

1 Use of static analysis to verify that all array accesses are within the permitted bounds. Such analysis may
require that source code contain certain kinds of information, such as, that the bounds of all declared
arrays be explicitly spd@d, or that pre and postconditions be specified.

9 Sanity checks should be performed on all calculated expressions used as an array index or for pointer
arithmetic.

Some guideline documents recommend only using variables having an unsigned data typgadeierg an

array, on the basis that an unsigned data type can never be negative. This recommendation simply converts an
indexing underflow to an indexing overflow because the value of the variable will wrap to a large positive value
rather than a negatie one. Also some languages support arrays whose lower bound is greater than zero, so an
index can be positive and be less than the lower bound.

In the past the implementation of array bound checking has sometimes incurred what has been considered to be
a high runtime overhead (often because unnecessary checks were performed). It is now practical for translators
to perform sophisticated analysis that significantly reduces the runtime overhead (because runtime checks are
only made when it cannot be showtatically that no bound violations can occur).

6.9.6 Implications for standardization
In future standardization activities, the following items should be considered:

1 Languages should provide safe copying of arrays asibuifieration.

1 Languages should osider only providing array copy routines in libraries that perform checks on the
parameters to ensure that no buffer overrun can occur.

1 Languages should perform automatic bounds checking on accesses to array elaméggs the compiler
can statically diermine that the check is unnecessarfhis capability may need to be optional for
performance reasons.

9 Languages that use pointer types should consider specifying a standardized feature for a pointer type that
would enable array bounds checking.

6.10 Unchecked Array Indexing [XYZ]

6.10.1 Description of application vulnerability

Unchecked array indexing occurs wheemalue is used as an index into amagirwithout checking that it falls
within the acceptable index range

6.10.2 Cross reference

CWE:
129. Unchecked Array Indexing
JSF AV Rules: 164 and 15
MISRA C 2004: 21.1
MISRA C++ 2008:0615 to 50-18
CERT C guiliiees: ARR3C, ARR3Z, ARR3E, andARR3&C
AdaQualityand Style Guide: 5.5.1, 5.5.2, 7.6.7, and 7.6.8

40 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 086

6.10.3 Mechanism of failure

A single fault could allow both an overflow and underflow of the array indexindex overflow exploit might use
buffer overflow techniques, but thisan often be exploited without having to provide "large inputéfray index
overflows can also trigger owif-bounds read operations, or operations on the wrong objeittat is, "buffer
overflows" are not always the result. Unchecked array indexingending on its instantiation, can be responsible
for any number of related issue$dost prominent of these possible flaws is the buffer overfloandition,with
consequences ramgg from denial of service, and data corruption, tdodrary code executionThe most
commonsituation leading to unchecked array indexing is the use of loop index variables as buffer inéléxes.
end condition for the loop is subject to a flaw, the index can grow or shrink unbounded, theosing a

buffer overflow or underflow.Another common situation leading to this condition is the use of a function's
return value, or the resulting value of a calculation directly as an index in to a buffehecked array indexing
can result in thecorruption of relevant memory and perhaps instructions, lead to the program halting, if the
values are outside of the valid memory ardithe memory corrupted is data, rather than instructions, the
system might continue to function with improper valud§the corrupted memory can be effectively controlled, it
may be possible to execute arbitrary code, as with a standard buffer overflow.

Language implementations might or might not statically detect out of bound access and generate a-tiomepile
diagnogic. At runtime the implementation might or might not detect tbet-of-boundsaccess and provide a
notification. The natification might be treatable by the program or it might not be. Accesses might violate the
bounds of the entire array or violate tHmunds of a particulaindex It is possible that the former is checked and
detected by the implementation while the latter is nothe information needed to detect the violation might or
might not be available depending on the context of ufieor exarple, passing an array to a subroutine via a
pointer might deprive the subroutine of information regarding the size of the array.)

Aside from bounds checking, some languages have ways of protecting agai$toundsaccesse Some
languages automaticigl extend the bounds of an array to accommodate accesses that might otherwise have been
beyond the bounds. However, this may or may not match the programmer's intent and can mask errors. Some
languages provide for whole array operations that may obwuiaéeneed to access individual elements thus
preventing unchecked array accesses.

6.10.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

1 Languages that do noutomatically bounds check array accesses.
1 Languages that do not automatically extend the bounds of an array to accommodate array accesses.

6.10.5 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or miigits ill effects in the following ways:
1 Include sanity checks to ensure the validity of any values used as index variables.

1 The choice could be made to use a language that is not susceptible to these issues.
1 When available, use whole array operations waeer possible.

© ISTIEC2012 ¢ All rights reserved 41

WG 23/N 086 Baseline Edition 2TR 24772

6.10.6 Implications for standardization
In future standardizatiomctivities the following items should be considered:

1 Languagsshould consider providing compiler switches or other tools to check the size and bounds of
arrays and their erents that are statically determinable.

1 Languages should consider providing whole array operations that may obviate the need to access
individual elements.

1 Languages should consider the capability to generate exceptions or automatically extend the bbunds o
an array to accommodate accesses that might otherwise have been beyond the bounds.

6.11 Unchecked Array Copying [XYW]

6.11.1 Description of application vulnerability

A buffer overflow occurs when some number of bytes (or other units of storage) is copied from one buffer to
another and the amount being copied is greater than is allocated for the destination buffer.

6.11.2 Cross reference

| CWE:
121.Stackbased Buffer Overflow
JSF AV Rule: 15
MISRA C 2004: 21.1
MISRA C++ 2008:0615 to 50-18
CERT C guililees: ARR3® and STR3T
AdaQualityand Style Guide: 7.6.7 and 7.6.8

6.11.3 Mechanism of failure

Many languages and some third party libran@svide functions that efficiently copy the contents of one area of
storage to another area of storage. Most of these libraries do not perform any checks to ensure that the copied
from/to storage area is large enough aecommodateghe amount of data beig copied.

The arguments to these library functions include the addresses of the contents of the two storage areas and the
number of bytes (or some other measure) to cofassing the appropriate combination of incorrect start
addresses or number of bytés copy makes it possible to read or write outside of the storage allocated to the
source/destination area. When passed incorrect parameters the library function performs one or more
unchecked array index accesses, as described in Unchecked Array gri#&h

6.11.4 Applicable language characteristics
This vulnerability description is intended to be applicable to languages with the following characteristics:

1 Languages that contastandardlibrary functions for performing bulk copying of storage areas.
1 The same range of languages having the characteristics listed in Unchecked Array [péx]ng

42 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 086

6.11.5 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

9 Only use library functions that perform checks on the arguments to ensure no buffer overrun can occur
(perhaps by writing a wrapper for the Standard provided functioR&rform checks on the argument
expressions prior to calling the Standard librarydtion to ensure that no buffer overrun will occur.

1 Use static analysis to verify that the appropriate library functions are only called with arguments that do
not result in a buffer overrun. Such analysis may require that source code contain certainfkinds
information, for example that the bounds of all declared arrays be explicitly specified, or thatgore
postconditions be specified as annotations or language constructs.

6.11.6 Implications for standardization
In future standardizatiomctivities the following items should be considered:

1 Languages should consider only providing libraries that perform checks on the parameters to ensure that
no buffer overrun can occur.
1 Languages should consider providing full array assignment.

6.12 Pointer Casting and Pointer Type Changes [HFC]

6.12.1 Description of application vulnerability

The code produced for access via a datéunction pointer requires that the type of the pointer is appropriate
F2NJ GKS RFEGEFE 2N FdzyOlAz2zy o0SAy3a | O0SaaSRo hiKSNBAa
RIFGE LRAYGSNE Aada RSTFAYSR (2 WWEAVFSNOKI 2RI AliQ0Ha & yR
RSFAYSR (2 0SS aAy@20lGA2y AYRANBOGte& GKNRdAAK GKI G
GFLILIINBLINRF GS¢ GelIS Yre GFENEB FY2y3 fFy3dz3Sao

Even if the type of the pointer is appropriate fie access, erroneous pointer operations can still cause a fault.
6.12.2Cross reference

CWE
136. Type Errors
188. Reliance on Data/Memory Layout
JSF AV Rules: 182 and 183
MISRA C 2004: 11.1,11.2,11.3,11.4, and 11.5
MISRA C++ 2008:252 to 52-9
CER C guidines: INT14C and EXP3a
Hatton 13: Pointer casts
AdaQualityand Style Guide: 7.6.7 and 7.6.8 ‘

© ISTIEC2012 ¢ All rights reserved 43 ‘

WG 23/N 086 Baseline Edition 2TR 24772

6.12.3 Mechanism of failure

LT | LRAYGISNRa GelLIS Aa y20 FLILINBLNARIFGS FT2N) 6§K& RIFGF
be broken by inappropriate read or write operation using the indirection provided by the pointer VAliib.a

suitable type definition, large portions of memory can be maliciously or accidentally modified or read. Such
modification of data objects wifjenerally lead to value faults of the applicatidiodification of code elements

such as function pointers or internal data structures for the support of oleentation can affect control flow.

This can make the code susceptible to targeted attégksausing invocation via a pointer-function that has

0SSY YIFyYyALMz I G§SR G2 LRAyd G2 Iy FaddlrO1SNRa LI e&f2FRD

6.12.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following chasticseri

f Pointers (and/or references) can be converted to different pointer types.
f Pointers to functions can be converted to pointers to data.

6.12.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability origdite its ill effects in the following ways:
T ¢NBFG (KS O 2comddiod Wihings biZsarigus &idds.
1 Adopt programming guidelines (preferably augmented by static analysis) that restrict pointer conversions.
For example, consider the rules itezad above from JSF AMb], CERT [11] Hatton[18], or MISRA C
[12].
1 Other means of assurance might include proofs of correctness, analysis with tools, verification
techniguesor other methods

6.12.6 Implications for standardization
In future standardizatioractivities the following items should be considered:

1 Languages should consider creating a mode that provides a runtime check of the validity of all accessed
objects before the object is read, written or executed.

6.13 Pointer Arit hmetic [RV(G

6.13.1 Description of application vulnerability

Using pointer arithmetic incorrectly caasult inaddresing arbitrary locations, which in turn caragse a program
to behave in unexpected ways.

6.13.2 Cross reference

JSF AV Rule: 215
MISRA C 20047.1,17.2,17.3, and 17.4

MISRA C++ 2008:0615 to 50-18
CERT C guililees: EXPOE

44 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 086

6.13.3 Mechanism of failure
Pointer arithmetic used incorrectly canqatuce:

1 Addressing arbitrary memory locatignacluding buffer underflow and overflow.
9 Arbitrary code execution.
1 Addressing memory outside the range of the program

6.13.4 Applicable language characteristics

This vulnerability description is intended te bBpplicable to languages with the following characteristics:

9 Languages that allow pointer arithmetic.

6.13.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the follomayg:

1 Avoid using pointer arithmetic for accessing anything except compbygies
1 Prefer indexing for accessing array elements rather than using pointer arithmetic
9 Limit pointer arithmetic calculations to the addition and subtraction of integers.

6.13.6 Implications for standardization
[None]

6.14 Null Pointer Dereference [XYH]

6.14.1 Description of application vulnerability

A nultpointer dereference takes place when a pointer with a valudlbiLLis used as though it pointed to a valid
memory locationThis is a special case of accessing storage via an invalid pointer.

6.14.2 Cross reference

CWE:
476. NULL Pointer Dereference
JSKAV Rule 174
CERT C guiliiees: EXP3€C
AdaQualityand Style Guide: 5.4.5 ‘

6.14.3 Mechanism of failure

When apointer with a value oNULLIis used as though it pointed to a valid memory location, then apuiliter
dereference is said to take plkac Thianresult in a segmentation fault, unhandled exceptionaocessing
unanticipated memory locations.

© ISTIEC2012 ¢ All rights reserved 45

WG 23/N 086 Baseline Edition 2TR 24772

6.14.4 Applicable language characteristics
This vulnerability description is intended to be applicable to languages with the following chiastacier

1 Languages that permit the use of pointers and that do not check the validity of the location being
accessed prior to the access.
1 Languages that allow the use oN&JLL pointer.

6.14.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:
9 Before dereferencing a pointer, ensure it is not equaNtdLL

6.14.6 Implications for standardization

In future standardizatiomctivities, the following items should be considered:

1 Alanguagédeaturethat would check a pointer valutor NULLbefore performinganaccesshould be
considered.

6.15 Dangling Reference to Heap [XYK]

6.15.1 Description of application vulnerability

A dangling reference is a reference to an object whose lifetime has ended due to explicit deallocation or the stack
frame in which the object resided hasdrefreed due to exiting the dynamic scopehe memory for the object

may be reused; therefore, any access through the dangling reference may affect an apparently arbitrary location
of memory, corrupting data or code.

This description concerns the formeaise, dangling references to the heafhe description of dangling
references to stack frames[IBCM. In many languages references are called pointers; the issues are identical.

A notable special case of using a dangling referéncalling a deallocator, for exampfege(), twice on the
samepointervalue { dzOK | a52dz0f S CNBSE¢ YIF & O2NNMYzLIWG Ay dSNYIFf |
leading to faulty application behaviour (such as infinite loops within the allocegturning the same memory

repeatedly as the result of distinct subsequent allocations, or deallocating memory legitimately allocated to

another request since the firétee() call, to name but a few), or it may have no adverse effects at alll.

Memory coruption through the use of a dangling reference is among the most difficult of errors to locate.

With sufficient knowledge about the heap management scheme (often provided b H@perating Systengr
run-time system), use of dangling references is aplatable vulnerability, since the dangling reference provides
a method with which to read and modify valid data in the designated memory locations after freed memory has
been reallocated by subsequent allocations.

46 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 086

6.15.2 Cross reference

CWE:
415. Doul# Free (Note that Double Free (415) is a special case of Use After Free (416))
416. Use After Free

MISRA C 2004: 1761

MISRA C++ 2008:391, 7-5-1, 7-5-2, 7-5-3, and 184-1

CERT C guililees: MEMO01C, MEM36C, and MEM31.C

AdaQualityand Style Gide: 5.4.5, 7.3.3, and 7.6.6

6.15.3 Mechanism of failure

The lifetime of an object is the portion of program execution during which storage is guaranteed to be reserved
for it. An object exists and retains its lagbred value throughout its lifetime. #n object is referred to outside of

its lifetime, the behaviour is undefinedxplicit deallocation of heagllocated storage ends the lifetime of the
object residing at this memory location (as does leaving the dynamic scope of a declared vafiabla)ue of a
pointer becomes indeterminate when the object it points to reaches the end of its lifetime. Such pointers are
called dangling references.

The use of dangling references to previously freed memory can have any number of adverse conseguences
ranging from the corruption of valid data to the execution of arbitrary code, depending on the instantiation and
timing of the deallocation causing all remaining copies of the reference to become dangling, of the system's reus
of the freed memory, and of thsubsequent usage of a dangling reference.

Like memory leaks and errors due to doubleallecation, the use of dangling references has two common and
sometimes overlapping causes:

1 An error condition or other exceptional circumstances.
1 Developer confusio over which part of the program is responsible for freeing the memory.

If a pointer to previously freed memory is used, it is possible that the referenced memory has been reallocated.
Therefore, assignment using the original pointer has the effect afigimg the value of an unrelated variable.

This induces unexpected behaviour in the affected progr#rihe newly allocated data happens to hold a class
description, in an objeebriented language for example, various function pointers may be scatteithih the

heap data.If one of these function pointers is overwritten with an address of malicious code, execution of
arbitrary code can be achieved.

6.15.4 Applicable language characteristics
This vulnerability description is intended to be applicabl&anguages with the following characteristics:

1 Languages that permit the use of pointers and that permit explicit deallocation by the developer or
provide for alternative means to reallocate memory still pointed to by some pointer value

1 Languages thatermit definitions of constructs that can be parameterized without enforcing the
consistency of the use of parameter at compile time.

© ISTIEC2012 ¢ All rights reserved 47

WG 23/N 086 Baseline Edition 2TR 24772

6.15.5 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigasdliteffects in the following ways:

1 Use an implementation that checks whether a pointer is used that designates a memory location that has
already been freed.

1 Use a coding style that does not permit deallocation.

1 In complicated error conditions, be suresatt clearup routines respect the state of allocation properly.
the language is objeairiented, ensure that object destructors delete each chunk of memory only once.
Ensuring that all pointers are set MlULLonce the memory they point to have beemeéd can be an
effective strategy.The utilization of multiple or complex data structures may lower the usefulness of this
strategy.

1 Use a static analysis tool that is capable of detecting some situations when a pointer is used after the
storage it refergo is no longer a pointer to valid memory location.

1 Allocating and freeing memory in different modules and levels of abstraction burdens the programmer
with tracking the lifetime of that block of memory.his may cause confusion regarding when and if a
block of memory has been allocated or freed, leading to programming defects such as-tteeble
vulnerabilities, accessing freed memory, or dereferen®ili_L pointers or pointers that are not
initialized. To avoid these situations, it is recommended thamory be allocated and freed at the same
level of abstraction, and ideally in the same code module.

6.15.6 Implications for standardization
In future standardizatiomctivities the following items should be considered:

1 Implementations of the free functiocould tolerate multiple frees on the same reference/pointer or frees
of memory that was never allocated.

9 Language specifiers should design generics in such a way that any attempt to instantiate a generic with
constructs that do not provide the require@dgabilities results in a compitéme error.

9 For properties that cannot be checked at compile time, language specifiers should provide an assertion
mechanism for checking properties at rtime. It should be possible to inhibit assertion checking if
efficiency is a concern.

1 A storage allocation interface should be provided that will allow the called function to set the pointer
used to NULL after the referenced storage is deallocated.

6.16 Arithmetic Wrap -around Error [FIF]

6.16.1 Description of application vulnerability

Wrap-around errors can occur whenever a value is incremented past the maximum or decremented past the
minimum value representablim its type and, depending upon

1 whether the type is signed or unsigned
1 the specification of the language semantics and/or
9 implementation choices,

48 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 086

"wraps around" to an unexpected valuEhis vulnerability is related tdsing Shift Operations for Multipation
and DivisiorjPIKE.

6.16.2 Cross reference

CWE: |
128. Wraparound Error
190. Integer Overflow or Wraparound |
JSF AV Rules: 164 and 15
MISRA C 2004: 10.1 to 10.6, 12.8 and 12.11
MISRA C++ 2008:13-3, 50-3 to 50-10, and 519-1
CERT C gudtines: INT3€C, INT3ZC, and INT3€

6.16.3 Mechanism of failure

5dzS (G2 K2¢g INRAGKYSGAO A& LISNF2NYSR o0& O02YLzi SNEZ A
representable in its type, the system may fail to provide an overflow indicatidimetprogram. One of the most
O02YY2Yy LINPOSaa2NJ 0SKF@A2dzNJ Aa (2 daéN¥LX (2 + GSNE
underflow, or saturate at the largest representable value.

Wrap-around often generates an unexpected negativueathis unexpected value may cause a loop to continue
for a long time (because the termination condition requires a value greater than some positive value) or an array
bounds violation. A wrajaround can sometimes trigger buffer overflows that can beduseexecute arbitrary

code.

It should be noted that the precise consequences of waeqund differ depending on:

1 Whether the type is signed or unsigned

1 Whether the type is a modulus type

T 2KSGKSN) KS G@LisqQa NI y3aS Aa @desable inlSeor fallidag sBoe 6 S S
the minimum representable value

1 The semantics of the language specification

1 Implementation decisions

P
S

However, in all cases, the resulting problem is that the value yielded by the computation may be unexpected.
6.16.4 Applicable language characteristics
This vulnerability description is intended to be applicable to languages with the following characteristics:

1 Languages that do not trigger an exception condition when a sarapnd error occurs.

6.16.5 Avoiding the vul nerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

2 This description is derived from Wragound Error [XYY], which appeared in Edition 1 ofitiégnational technical report.

© ISTIEC2012 ¢ All rights reserved 49

WG 23/N 086 Baseline Edition 2TR 24772

91 Determine applicable upper and lower bounds for the range of all variables and use language mechanisms
or static analyts to determine that values are confined to the proper range.
1 Analyze the software using static analysis looking for unexpected consequences of arithmetic operations.

6.16.6 Implications for standardization
In future standardization activities, the follang items should be considered:
1 Language standards developers should consider providing facilities to specify either an error, a saturated
value, or a modulo result when numeric overflow occueally, the selection among these alternatives

could be nade by the programmer.

6.17 Using Shift Operations for Multiplication and Division [PIK]

6.17.1 Description of application vulnerability

Using shift operations as a surrogate for multiply or divide may produce an unexpected valuéhe/tsggm bit is
changed or when value bits are losthis vulnerability is related to Arithmetic Wrapound Eror [FIF}.

6.17.2 Cross reference

CWE:

128. Wraparound Error

190. Integer Overflow or Wraparound
JSF AV Rules: 164 and 15
MISRA C 2004: 10.1 to 10.6, 12.8 and 12.11
MISRA C++ 2008:13-3, 50-3 to 50-10, and 519-1
CERT C guidelines: INTGONT32C, and INT3€

6.17.3 Mechanism of failure

Shift operations intended to produce results equivalent to multiplication or division fail to produce correct results
if the shift operation affects the sign bit or shifts significant bits from the value.

SQuch errorsoften generate an unexpected negative value; this unexpected value may cause a loop to continue for
a long time (because the termination condition requires a value greater than some positive value) or an array
bounds violation.The errorcan sanetimes trigger buffer overflows that can be used to execute arbitrary code.

6.17.4 Applicable language characteristics
This vulnerability description is intended to be applicable to languages with the following characteristics:

1 Languages that permit logal shift operations on variables of arithmetic type.

3This description is derived from Wrapound Error [XYY], which appeared in Edition 1 of this international technical report.

50 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 086

6.17.5 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

1 Determine applicable upper and lower bounfbr the range of all variables and use language mechanisms
or static analysis to determine that values are confined to the proper range.

1 Analyze the software using static analysis looking for unexpected consequences of shift operations.

91 Avoid using sfiftioperations as a surrogate for multiplication and divisidmost compilers will use the
correct operation in the appropriate fashion when it is applicable.

6.17.6 Implications for standardization
In future standardization activities, the following itershould be considered:
1 Not providing logical shifting on arithmetic values or flagging it for reviewers.

6.18 Sign Extension Error [XZI]

6.18.1 Description of application vulnerability
Extending a signed variable that holds a negative valuepr@aucean incorrect result.
6.18.2 Cross reference

CWE:

194. Incorrect Sign Extension
MISRA C++ 2008:054
CERT C guililees: INT13C

6.18.3 Mechanism of failure

Caverting a signed data type to a larger data type or pointer can cause unexpected behaviour due to the
extension of the sign bit. Aegativedata element that is extendedith an unsigned extension algorithm will
produce an incorrect result-or instane, this can occur when a signed character is converted to a type short or a
signed integer (3Dit) is converted to an integer type long (Bit). Sig extension errors calead tobuffer

overflows and other memory based probleniBhis can occur unexpeaxtly when moving software designed and
tested on a 32it architecture to a 64it architecture computer.

6.18.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics

i Languages that are weakly typed due to their lack of enforcement of type classifications and interactions.
1 Languages that explicitly or implicitly allow applying unsigned extension operations to signed entities or
vice-versa.

© ISTIEC2012 ¢ All rights reserved 51

WG 23/N 086 Baseline Edition 2TR 24772

6.18.5 Avoiding the vulnerab ility or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

1 Use a sign extension libraistandard functionor appropriate languagspecific coding method®
extend signed values.

i Usestatic analysis tools to help locate situations in which the conversion of variables might have
unintended consequences.

6.18.6 Implications for standardization
In future standardization activities, the following items should be considered:

1 Language defitions shoulddefine implicit and explicit conversions in a way that prevents alteration of
the mathematical value beyond traditional rounding rules

6.19 Choice of Clear Names [NAI]

6.19.1 Description of application vulnerability

Humanssometimeschoose similar or identical names for objects, types, aggregates of types, subprograms and
modules. They tend to use characteristitzat are specific to the nateszlanguage of the software developier

aid in this effort, such as use of mixedsing, underscores and periods,use of plural and singular forms to
support the separation of items with similar namesimilarly, development conventions sometimes uasimg

for differentiation for example all uppercase for constants).

Human cognitive problems occur when different (but similar) objects, subprograms, types, or constants differ in
name so little that human reviewers are unlikely to distinguish betweemthor when the system maguch
entities to a single entity.

Conventions such dhe use ofcapitalization and singular/plural distinctionmaywork in small and medium
projects, but there are a number of significant issues to be considered:

91 Large projets often have mixed languages and such conventwoasften languagepecific.

1 Many implementations support identifiers that contain international character aatssome language
character sets have different notions of casing and plurality.

9 Different word-forms tend to be language and dialesgiecific, such as a pidgin, and may be meaningless
to humans that speak other dialects.

An important general issue is the choice of names that differ from each other negligibly (in human terms), for
example by di#ring by only underscores, (none, " "" "), plurals ("s"), vissaiylar characterg¢such as "I" and
"1", "O" and "0"), or underscores/dashes"("_"). [There is also an issue where identifiers appear distinct to a
human but identical to the computesuch as FOO, Foo, and foo in some computer langua@baracter sets
extended with diacritical marks and ndratin characters may offer additional problentSome languages or their
implementations may pay attention to only the first n characters ofdamtifier.

The problems described abowee different from overloading or overriding where the same name is used
intentionally (and documented) to access closely linked sets of subprograms. This is also different than using

52 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 086

reserved names which can letwla conflict with the reserved use and the use of which may or may not be
detected at compile time.

Name confusion can lead to the application executing different code or accessing different objects than the writer
intended, or than the reviewers understd. This can lead to outright errors, or leave in place code that may
executesometimein the future with unacceptable consequences

Although most such mistakes are unintentional, it is plausible thelhasagesan be intentional, if masking
surreptitious behaviour is a goal.

6.19.2 Crossreference

JSF AV Rules:-88

MISRA C 2004: 1.4

CERT C guiliiees: DCLOZ
AdaQualityand Style Guide: 3.2

6.19.3 Mechanism of Failure

Calls to the wrong subprogram or references to the wrong data elemeat {tas missed by human review) can
result in unintended behaviourn_anguage processors will not make a mistake in name translation, but human
cognition limitations may cause humans to misunderstand, and therefore may be missed in human reviews.

6.19.4 Applicable language characteristics
This vulnerability description is intended to be applicable to languages with the following characteristics:

1 Languages with relatively flat name spae@i be more susceptibleSystems with modules, classes,
packagesanuse qualificatiorto disambiguate names that originate from different parents.

1 Languages that provide preconditiommst conditionsinvariance and assertionsr redundant coding of
subprogram signatureselp to ensure that the subprograms in the modul#l behave as expected, but
do nothing if different subprograms are called.

9 Languages that treat letter case as significant. Some languages do not differentiate between names with
differing case, while others do.

6.19.5 Avoiding the vulnerability or mi tigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

1 Implementers can create coding standards that provide meaningful guidance on name selection and use.
Goodlanguage specific guidelinesuld eliminate most problems.

9 Use static analysis tools to show the target of calls and accesses and to produce alphabetical lists of
names. Human review cathen often spot the names that are sorted at an unexpected locatiowhich
look almost idential to an adjacent name in the list

9 Use static tools (often the compiler) to detect declarations that are unused.

1 Use languages with a requirement to declare names before use or use available tool or compiler options
to enforce such a requirement.

© ISTIEC2012 ¢ All rights reserved 53

WG 23/N 086 Baseline Edition 2TR 24772

6.19.6 Implications for standardization
In future standardization activities, the following items should be considered:

1 Languages that do not require declarations of names should consider providing an option that does
impose that requirement.

6.20 Dead Store [WXQ]

6.20.1 Description of application vulnerability

A variable's value is assigned but nesebsequentlyused either because the variable is not referenced again, or
because a s@mnd value is assigned before the first is us@tlismaysuggest that the design has been
incompletely or inaccurately implementetbr example} @ f dzS Kl & 06SSy ONBIFGSR | yR

This vulnerability is very similar tdnused VariableYZ3.
6.20.2 Cross reference

CWE:

563. Unused Variable
MISRA C++ 2008:104 and 01-6
CERT C guidelines: MS@13
See alsdJnused Variable[Z$

6.20.3 Mechanism of failure

A variable is assigned a value but this is neubisequentlyused.Such arassignment is then generally referred to
as a dead store.

A dead storanay beindicative of careless programming or of a design or coding easmither the use of the

value was forgotten (almost certainly an error) or the assignment was performed baegh it was not needed

(at best inefficient).Dead stores may also arise as the result of mistyping the name of a variable, if the mistyped
name matches the name of a variable in an enclosing scope.

There are legitimate uses for apparent dead stores.a@xample, the value of the variable might be intended to

be read by another execution thread or an external device. In such cases, though, the variable should be marked
as volatile. Common compiler optimization techniques will remove apparent dead stdnesviariables are not

marked as volatile, hence causing incorrect execution.

A dead store is justifiablié€ for example:

1 The code has beeautomatically generated where it is commonplace to find dead stores introduced to
keep the generation processgple and uniform

1 The code ignitializinga sparse data set, where all members are cleased, thenselected values
assigned a value.

54 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 086

6.20.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languagbéstieé following characteristics:
1 Anyprogramming language that provides assignment.

6.20.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

9 Use staic analysis to identify any dead stores in the program, and ensure that there is a justification for
them.

9 If variables are intended to be accessed by other execution threads or external devices, mark them as
volatile.

1 Avoid declaring variables of compa types in nested scopes with similar names.

6.20.6 Implications for standardization
In future standardization activities, the following items should be considered:

1 Languages should considaovidingoptional warning messagdsr dead store.

6.21 Unused Variable [YZ]

6.21.1 Description of application vulnerability

An unused variable is one that is declared but neither read nor written in the prograim type o&rror suggests
that the design has been incompletely or inaccurately implemented.

Unused variables by themselves are innocubus,they may provide memory space that attackers could use in
combination with other techniques

This vulnerability isimilar to Dead Store [WXQf the variable is initialized but never used
6.21.2 Cross reference

CWE:

563. Unused Variable
MISRA C++ 2008:163
CERT C guidelines: MSC13
See als®ead Store\VXJ

6.21.3 Mechanism of failure

A variable is declared, bukver usedThe existence of an unused variable may indicate a design or coding error

Becausecompilers routinely diagnose unuséatalvariables, their presenamay bean indication that compiler
warnings are either suppressed or are being ignored.

© ISTIEC2012 ¢ All rights reserved 55

WG 23/N 086 Baseline Edition 2TR 24772

While unused variables are innocuous, they may provide available memory space to be used by attackers to
exploit other vulnerabilities.

6.21.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages hetfotlowing characteristics:
9 Languages that provide variable declarations.

6.21.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:
1 Enable detectiomf unused variables in the compiler.

6.21.6 Implications for standardization

In future standardization activities, the following items should be considered:
9 Languages should consider requiring mandatory diagnostics for unused variables.

6.22 Identifier Name Reuse [YOW]

6.22.1 Description of application vulnerability

When distinctentitiesare defined in nested scopes using the same name it is possiblpribgitam logic will
operate on an entity other than the one intended

When it is notclear which identifier isised, the program could behave in ways that were not predicted by reading
the sourcecode. Thiscan befound by testing, but circumstances caarise (such as the values of the sanmamed
objects being mostly the same) where harmful consequences oddis. weakness can also lead to vulnerabilities
such as hidden channels where humans believe that important objects are being rewritten or otesrwutiten in

fact other objects are being manipulated

For example, the innermost definition is deleted from the source, the program will continue to compile without a
diagnostic being issugbut execution can produce unexpected reshlts

6.22.2 Cross reference

JSF AV Rules: 120 and B35
MISRA C 200%:2,5.5, 5.6, 5.7, 20.1, 20.2
MISRA C++ 2008:10-2, 2210-3, 22104, 210-5, 210-6, 170-1, 170-2, and 170-3
CERT C guiliies: DCLOLC andDCL3ZC
‘ AdaQualityand Style Guide: 5.6.1 and 5.7.1

‘ 56 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 086

6.22.3 Mechanism of failure

Many languages support the concept of sco@ne of the ideas behind the concept of scope is to provide a
mechanism for the independent definitiasf identifiers that may share the same name.

For instance, in the following codeagment:

int some_vatr,
L
intt_var;
int some_var; /* definition in nested scope */
tvar = 3;
some_var = 2;
}

an identifier calledsome_var has been defined in different scopes.

If either the definition osome_var ort_var that occurs in tle nested scope is deletetb(example when the
a2dz2NOS Aa Y2RAFASRO Al Aa ySoOSaal NB (fadekefpebdei&est f f
the definition oft_var but fails to delete the statement that references it, then masiguages require a
diagnostic to be issuedijch ageference to undefined variable However, if the nested definition slome_var

is deleted but the reference to it in the nested scope is not deleted, thediagnostic will be issued (because the
reference resolves to the definition in the outer scope).

In some cases neanique identifiers in the same scope can also be introduced through the use of identifiers
whose common substring exceeds the length of characters the implementation considers teirtet.diSor
example, in the following code fragment:

extern int global_symbol_definition_lookup_table_a[100];
extern int global_symbol_definition_lookup_table b[100];

the external identifiers are not unique on implementations where only the first 31 ctenaare significant. This
situation only occurs in languages that allow multiple declarations of the same identifier (other languages require
a diagnosti message to be issued).

A related problem exists in languages that allow overloading or overridikgyovords or standard library
function identifiers. Such overloading can lead to confusion about which entity is intended to be referenced.

Definitions for new identifiers should not use a name that is already visible within the scope containing the new
definition. Alternately,utilize languagespecific facilities that check for and prevent inadvertent overloading of
names should be used.

6.22.4 Applicable language characteristics

This vulnerability is intended to be applicable to languages with theviolg characteristics:

1 Languages that allow the same name to be used for identifiers defined in nested scopes.

© ISTIEC2012 ¢ All rights reserved 57

WG 23/N 086 Baseline Edition 2TR 24772

1 Languages where unique names can be transformed inteumdque names as part of the normal tool
chain.

6.22.5 Avoiding the vulnerability or miti gating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

1 Ensure that a definition of a@ntity does not occur in a scope where a differentity with the same
name is accessible and can be usethe same contextA languagespecific project coding convention
can be used to ensure that such errors are detectabith static analysis

1 Ensure that a definition of a@ntity does not occur in a scope where a differentity with the same
name is acessible and has a type that permits it to occur in at least one context where thenfiityt can

occur.

1 Uselanguage features, if any, which explicitly mark definitions of entities that are intended to hide other
definitions.

91 Develop or use tools thatlentify name collisions or reuse when truncated versions of names cause
conflicts

1 Ensure that all identifiers differ within the number of characters considered to be significant by the
implementations that are likely to be used, and document all assiongt

6.22.6 Implications for standardization

In future standardization activities, the following items should be considered:

1 Languages should require mandatory diagnostics for variables with the same name in nested scopes.

1 Languages should require mandataliagnostics for variable names that exceed the length that the
implementation considers unique.

i Languages should consider requiring mandatory diagnostics for overloading or overriding of keywords or
standard library function identifiers.

6.23 Namespacelssues [BJL]

6.23.1 Description of Application Vulnerability

If a language provides separate, Rbierarchical namespacgea usercontrolled ordering of namespacesnd a
means to make names declared in these name spaces directly visible to an application, the potential of
unintentional and possible disastrous change in applicabemaviourcan arise, when names are added to a
namespace during maintenance.

Namespaces include constructs like packages, modules, libraries, classes or any other means of grouping
declarations for import into other program units.

6.23.2 Crossreferences

MISRA C++ 2008:3-1, 7-3-3, 7-3-5, 145-1, and 160-2

58 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 086

6.23.3 Mechanism of Failure

The failure is best illustrated by an examphamespacdNl provides the name\ but not B; Namespacd&l2
provides the namé but not A. The application wishes to ugefrom N1 andB from N2. At this point, there are
no obvious issuesThe applicatin chooses (or needs to) import the namespaces to obtain names for direct
usagefor an example.

UseN1, N2; ¢ presumed to make all names il and N2 directly visible
e X = A + B;
The semantics of the above example are intuitive and unambiguous.

Later,during maintenance, the namgis added toN1. The change to the namespace usually implies a
recompilation of dependent unitsAt this point, two declarations d are applicable for the use &in the above
example.

Some languages try to disambigude above situation by stating preference rules in case of such ambiguity
among names provided by different name spacksin the above exampl@J1is preferred oveN2, the meaning
of the use o changes silently, presuming that no typing error ariséensequently the semantics of the
program change silently and assuredly unintentionally, since the implemeniét cAnnotassume that all users
of N1would prefer to take any declaration 8ffrom N1 rather than its previous namespace.

It does not méer what the preference rules actualbre, as long as the namespaces are mutafllbe above |
example is easily extended by additigp N2 to show a symmetric error situation for a different precedence rule.

If a language supports overloading of subptogfa = G KS y20A2y 2F aalyYS yIl YSé
extended to mean not only the same name, but also the same signature of the subprogoamulnerabilities
associated with overloading and overriding, $éentifier Name Reuse [YOWh the catext of namespaces,
however, adding signature matching to the name binding process, merely extends the described problem from
simple names to full signatures, but does not alter the mechanism or quality of the described vulnerability. In
particular, overbading does not introduce more ambiguity for binding to declarations in different name spaces.
This vulnerability not only creates unintentional errotsalso can be exploited maliciously, if the source of the
application and of the namespaces is knawrthe aggressor and one of the namespaces is mutabtbdy

attacker.

6.23.4 Applicable Language Characteristics

The vulnerability is applicable to languages with the following characteristics:
1 Languages that support ndrierarchical separate namgpaceshave means to import all names of a
YIEYS&aLI OS aoKz2f SalfS¢é F2N RANDLGmotgintiEiplelimpitedK I @S
direct homographs. All three conditions need to be satisfied for the vulnerability to arise.

6.23.5 Avoiding the Vulnerab ility or Mitigating its Effects

Software developers can avoid the vulnerability or mitigatdlieffects in the following ways:

© ISTIEC2012 ¢ All rights reserved 59

WG 23/N 086 Baseline Edition 2TR 24772

T ' @2ARAY3 apK2f SalftSé AYLRNI RANBOGAGSaA
T 'aAy3a 2yfeée aStSOUGADS aaAyaftsS ylI YSénbo¥icdaNIi RANBOID
provided that the language offers the respective capabilities)

6.23.6 Implications for Standardization
In future standardization activities, the following items should be considered:

1 Languages should not have preference rules among mutasteeepaces. Ambiguities should ipgalid
and avoidable by the useigr example by using names qualified by their originating namespace.

6.24 Initialization of Variables [LAV]
6.24.1 Description of application vulnerability

Reading a variable that has not been assigned a value appropriate to its type can cause unpredictable execution in
the block that uses the value of the variable, and thespotential to export bad values to callers, or cause-@idt
bounds memory accesses.

Uninitialized variable usage is frequently not detected until after testing and often when the code in question is
delivered and in use, because happenstance will iglvariables with adequate values (such as default data
settings or accidental lefbver values) until some other change exposes the defect.

Variables that are declared during module construction (by a class constructor, instantiation, or elaboration) may
have alternate paths that can read values before they are $bits can happen in straight sequential code but is
more prevalent when concurrency or-coutines are present, with the same impacts described above.

Another vulnerability occurs when compadiiobjects are initialized incompletely, as can happen when objects
are incrementally built, or fields are added under maintenance.

When possible and supported by the language, wisbtacture initialization is preferable to fieloy-field

initialization satements, and named association is preferable to positional, as it facilitates human review and is
less susceptible to failures under maintenané®r classes, the declaration and initialization may occur in
separate modules. In such cases it must be ibbs$o show that every field that needs an initial value receives
that value, and to document ones that do not require initial values.

6.24.2 Cross reference

CWE:

457. Use of Uninitialized Variable
JSF AV Rules: 71, 143, and 147
MISRA C 2004: 9.1, 9.2da%.3
MISRA C++ 2008:531
CERT C guililees: DCLIE and EXP33
AdaQualityand Style Guide: 5.9.6

60 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 086

6.24.3 Mechanism of failure

Uninitialized objects may havevalidvaluesvalidbut wrong vales, orvalidand dangerous valuedarong
values could cause unbounded branches in conditionals or unbounded loop executions, or could simply cause
wrong calculations and results.

There is a special case of pointers or access types. When such atypes null values, a bound violation and
hardware exception can result. When such a type contains plausible but meaningless values, random data read:
and writes can collect erroneous data or can destroy data that is in use by another part of the prodram

such a type is an access to a subprogram with a plausible (but wrong) value, then either a bad instruction trap
may occur or a transfer to an unknown code fragment can ocailirof these scenarios can result in undefined
behaviour.

Uninitialized wariables are difficult to identify and use for attackers, but can be arbitrarily dangerous in safety
situations.

6.24.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following avéstcs:
i Languages that permit variables to be read before they are assigned.

6.24.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

1 The general probla of showing that all objects are initialized is intractable; hence developers must
carefully structure programs to show that all variables are set before first read on every path throughout
the subprogram.Where objects are visible from many modulessidifficult to determine where the first
read occurs, and identify a module that must set the value before that ri#ddlden concurrency,
interrupts and coroutines are present, it becomes especially imperative to identify where early
initialization occur@nd to show that the correct order is set via program structure, not by timing, OS
precedence, or chance.

1 The simplest method is to initialize each object at elaboration time, or immediately after subprogram
execution commences and before any branchiéshe subprogram must commence with conditional
statements, then the programmer is responsible to show that every variable declared and not initialized
earlier is initialized on each branch.

9 Applications can consider defining or reserving fields or portifrise object to only be set whefully
initialized. However, this approach has the effect of setting the variable to possibly mistaken values while
defeating the use of static analysis to find the uninitialized variables.

1 It should be possible to useadic analysis tools to show that all objects are set before use in certain
specific cases, but as the general problem is intractable, programmers should keep initialization
algorithms simple so that they can be analyzed.

1 When declaring and initializing tlebject together,if the language does not require that the compiler
statically verify that the declarative structure and the initialization structure matcle static analysis
tools to help detect any mismatches.

© ISTIEC2012 ¢ All rights reserved 61

WG 23/N 086 Baseline Edition 2TR 24772

1 When setting compound objects, if the lgunage provides mechanisms to set all components together, use
those in preference to a sequence of initializations as this helps coverage analysis; otherwise use tools that
perform such coverage analysis and document the initializatiamnot perform patial initializations
unless there is no choice, and document any deviations from 100% initialization.

1 Where default assignmestofmultiple components are performed, explicit declaration of the component
names and/or ranges helps static analysis and ifieation of component changes during maintenance.

1 Some languages have named assignments that can be used to build reviewable assignment structures
that can be analyzed by the language processor for completehesgyuages with positional notation
only canuse comments and secondary tools to help show correct assignment.

6.24.6 Implications for standardization

In future standardization activities, the following items should be considered:

1 Some languages have ways to determine if modules and regions aratikadb and initialized and to
raise exceptions if this does not occuranguages that do not could consider adding such capabilities.

f Languages could consider setting aside fields in all objects to identify if initialization has occurred,
especially fosecurity and safety domains.

1 Languages that do not support whebdject initialization could consider adding this capability.

6.25 Operator Precedence/Order of Evaluation [JCW]
6.25.1 Description of application vulnerability

Each language provides rules of precedence and associativity, for each expression that operands bind to which
operators. These rules are alsoknowinad INR dzLJA y 3¢ 2NJ G0AYRAYIE O

Experience and experimental evidence shows that developers can have incorrect beliefs about the relative
precedence of many binary operators. SBeyeloper beliefs about binary operator precedeit&/'u, 18(4):14
21, August 200

6.25.2 Cross reference

JSF AV Rules: 204 and 213

MISRA C 2004: 12.1,12.2, 12.5,12.6, 13.2, 19.10, 19.12, and 19.13

MISRA C++ 2008:5-1, 45-2, 45-3, 50-1, 50-2, 52-1, 53-1, 160-6, 163-1, and 163-2
CERT C guiliiees: EXPOC

AdaQuality and Style Guide: 7.1.8 and 7.1.9

6.25.3 Mechanism of failure

In Cand C+¢the bitwise operatorgbitwise logical and bitwise shift) are sometimes thought of by the

programmer having similar precedencetdd § KYSGA O 2LISNI A2y &z az2x edza=i | a
0 x&/dydza 2yS A& Sldzt G2 1T SNREO Zx&ll == ONZE NI YYSYWSINI £ ¥ AeT KK
andedwith1A a SljdzZ-t (2 1 SNRéZX SKSNBI G+ Sctually8nd thei expridssidh B O S |

62 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 086

I a & O2¥DXz(IINE R dzOmeyp@tedtaFzerd, theéh Qitwiseand the result withké = LINE RdzOA y 3
O2yadltyido TSNRBZ O2yGNINB G2 G4KS LINPINFYYSNRE AyiaSy

Examples from an opposite extreme can be found in progranttewiin APL.which is noteworthy for the

absenceonyRA a G Ay Ot A2y ad 2F LINBOSRSYyOSo® arifsc O2YYRYy U8y RKA
LINE R dadr@sbluscé = g KSNBI & ! t-tp-loftassdeiathvifINBYR @GR imesaé d

6.25.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

1 Languages whose precedereed associativityules are sufficiently complex that developels not
remember them.

6.25.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

1 Adopt programming guidelines (preferably augmented by static analysm)example, consider the rules
itemized above frondSFAV[15], CERT [11]or MISRA €12]. |

1 Useparenthegsaround binary operator combinations that are known to be a source of efoor (
example mixed arithmetic/bitwise and bitwise/relational opeatcombinations).

1 Break up complex expressions and use temporary variables to make the order clearer.

6.25.6 Implications for standardization
In future standardizatiomctivities the following items should be considered:

1 Language definitions should avgicbviding precedence or a particular associativity for operators that are
not typically ordered with respect to one another in arithmetic, and instead require full parenthesization
to avoid misinterpretation.

6.26 Side-effects and Order of Evaluation [SAM]

6.26.1 Description of application vulnerability

Some programming languages allow subexpressions to causeffadés (such aassignment, increment, or
decrement). For example, some programming languages permit suckffédes, and if, within one expression
0 a dzOi= v[i+4d] & £ ,liwo or more sideeffects modify the same object, undefined behaviour results.

Some languages al subexpressions to be evaluated in an unspecified ordedngven removed during
optimization If these subexpressions contain siéfects, then the value of the full expression can be dependent
upon the order of evaluation. Furthermore, the objetiiat are modified by the sideffects can receive values
that are dependent upon the order of evaluation.

If a program containthese unspecified or undefindagehavious, testing the program and seeing that it yields the
expected results may give the falanpression that the expression will always yield the expected result.

© ISTIEC2012 ¢ All rights reserved 63

WG 23/N 086 Baseline Edition 2TR 24772

6.26.2 Cross reference

JSF AV Rules: 157, 158, 166, 204, 204.1, and 213
MISRA C 20042.1-12.5

MISRA C++ 2008:061

CERT C guiliilees: EXPHC, EXP3C

AdaQualityand StyleGuide: 7.1.8 and 7.1.9

6.26.3 Mechanism of failure

Whensubexpressions with side effects are used within an expressionytispecifiedorder of evaluation can
result ina program producinglifferent results on different platforms, or even at different ta® on the same
platform. For exampleconsider

a = f(b) + g(b);

wheref andg both modifyb. Iff(b) is evaluated first, then the used as a parameter t[gb) may be a
different value than ifj(b) is performed first. Likewise,di{b) is performed firg f(b) may be called with a
different value ofb.

Other examples of unspecified order, or even undefined behavaaur be manifestedsuchas
a=f(i) + i++;

or
afi++] = b[i++];

Parenthegs around expressions can assist in removing ambigbityit groupig, butthe issues regarding side
effects and order of evaluatioare not changed by the presencepsdrenthegs; consider

j =i+ F i+

whereevenif parenthegs are placedaround thei++ subexpressionaindefined behavioustill remains (All
exampleause the syntax of @r Javdor brevity; the effects can be created in any language that allows functions
with sideeffects in the places where C allows the increment operatjons

The unpredictable nature of the calculation meanstttiee program cannot be tested adequately to any degree
of confidence.A knowledgeable attacker can take advantage of this characteristic to manipulate data values
triggering execution that was not anticipated by the developer.

6.26.4 Applicable language characteristics
This vulnerability description is intended to be applicable to languages with the following characteristics:

1 Languages that permitx@ressons to contain subexpressions with side effects
1 Languages whose subexpressionsamputed in an uspecified ordering.

64 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 086

6.26.5 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

1 Make use of one or more programming guidelines which (a) prohibit these atifigokor undefined
behaviours, and (b) can be enforced by static analysis. (See JSF AV and MISRA rules in Cross reference
clausg[SAM])

1 Keep expressions simple. Complicated code is prone to error and difficult to maintain.

6.26.6 Implications for standa rdization
In future standardizatiomctivities the following items should be considered:

1 In developinghew or revised languages, give consideration to langdeagiresthat will eliminate or
mitigate this vulnerabilitysuch as pure functions

6.27 Likely Incorrect Expression [KOA]

6.27.1 Description of application vulnerability

Certain expressions are symptomatic of what is likely to be a neistedde by the programmerThe statement is

not wrong, but it is unlikely to be right. The statement may have no effect and effectively is a null statement or
may introduce an unintended siekffect. A common example is the use=oin anif expression irCwhere the
programmer meant to do an equality test using the operator. Other easily confused operators in C are the

logical operators such &&for the bitwise operato®, or vice versa It isvalidand possible that the programmer
intended to do an assignment within thile expression, but due to this being a common error, a programmer

doing so would be using a poor programming practice. A less likely occurrence, but still possible is the
substitution of== for = in what is supposetb be an assignment statement, but which effectively becomes a null
statement. These mistakes may survive testing only to manifest themselves in deployed code where they may be
maliciously exploited.

6.27.2 Cross reference

CWE:
480. Use of Incorrect Opator
481. Assigning instead of Comparing
482. Comparing instead of Assigning
570. Expression is Always False
571. Expression is Always True
JSF AV Ruless0 and 166
MISRAC2004: 12.3,12.4,12.13, 13.1, 13.7, and 14.2
MISRAC++2008: 01-9, 50-1, 62-1, and 65-2
CERT C guililees: MSCOZ and MSC0OG

© ISTIEC2012 ¢ All rights reserved 65

WG 23/N 086 Baseline Edition 2TR 24772

6.27.3 Mechanism of failure

Some of the failures are simply a case of programmer carelessness. Substitatimstefid of==in a Boolean

test is easy to do and mostadd C+¥progammers have made this mistake at one time or another. Other
instances can be the result of intricaciedtud language definition that specifies what part of an expression must
be evaluated For instance, having an assignment expression in a Booldamstat is likely making an

assumption that the complete expression will be executed in all cases. However, this is not always the case as
sometimes the truthvalue of the Boolean expression can be determined after only executing some portion of the
expresion. For instance:

if (@a==b)|(c=(d -1))

There is no guarantee which of the two subexpressiarrs= b) or (c=(d -1)) will be executed first.
Should(a==b) be determined to be true, then there is no need for the subexpresgiefd - 1)) to be
execuked and as such, the assignméot(d - 1)) will not occur.

Embedding expressions in other expressions can yield unexpected rdsgitsment and decrement operators
(++ and--) can also yield unexpected results when mixed into a complex expression.

Incorrectly calculated results can lead to a wide variety of erroneous program execution

6.27.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:
1 All languages are socsptible to likely incorrect expressions.

6.27.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

1 Simplify expressions.

1 Do not use assignment expresssoas function parameters. Sometimes the assignment may not be
executed as expected. Instead, perform the assignment before the function call.

1 Do not perform assignments within a Boolean expression. This is likely unintended, but if not, then move
the assignment outside of the Boolean expression for clarity and robustness.

1 On some rare occasions, some statements intentionally do not have side effects and do not cause control
flow to change. These should be annotated through comments and made obvidukdgare
intentionally ncops with a stated reason. If possible, such reliance on null statements should be avoided.
In general, except for those rare instances, all statements should either have a side effect or cause control
flow to change.

6.27.6 Implications for standardization

In future standardizatiomctivities the following items should be considered:

66 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 086

1 Languages should consider providing warnings for statements that are unlikely to be right such as
statements without side effectsA null (neop) statement may need to be added to the language for
those rare instances where an intentional null statement is need¢alving a null statement as part of
the language will reduce confusion as to why a statement with no side effects is present in code.

9 Languages should consider not allowing assignments used as function parameters.

Languages should consider not allowing assignments within a Boolean expression.

9 Language definitions should avoid situations where easily confused symabolsgs= and==, or; and
., or!l= and/=) arevalidin the same context. For examptejs not generallywalidin anif statementin
Javabecause it does not normally return a boolean value.

=

6.28 Dead and Deactivated Code [XY(Q

6.28.1 Description of application vulnerability

Dead and Deactivated code (the distinction is address@dYiQ] is code that exists in the executable, but which
can nevelbe executed, either because there is no call path that leads foriekample a function that is never
called), or the path is semantically infeasilitar @xample its execution depends on the state of a conditional that
can never be achieved).

Dead anl Deactivated codenay beundesirable because ihayindicate the possibility of a coding ertoA
ASOdzNAGe A&aadzS Aa |t injpcted2Vviandy sadety Standlafds prohibit2lelad tadebécaliBEeS G ¢
dead code is not traceable to a requirenten

Also covered in this vulnerability is code which is believed to be dead, but which is inadvertently executed.

Dead and Deactivated code is considered different than used data, used data is covered in a different
vulnerability, seeYZ§$

6.28.2 Cross reference

CWE:
561. Dead Code
570. Expression is Always False
571. Expression is Always True
JSF AV Rules: 127 and 186
MISRA C 2004: 2.4 and 14.1
MISRA C++ 20083161 to 0-1-10, 27-2, and 27-3

CERT C guidelines: MS@)@nd MSC12
DO178B/C

6.28.3 Mechanism of failure

DO 178B definePeadandDeactivated codeas:

1 Dead code; Executable object code (or data) which... cannot be executed (code) or used (data) in an
operational configuration of the target computer environment and is matéable to a system or
software requirement.

© ISTIEC2012 ¢ All rights reserved 67

WG 23/N 086 Baseline Edition 2TR 24772

91 Deactivated code Executable object code (or data) which by design is either (a) not intended to be
executed (code) or used (data), for example, a part of a previously developedsofteamponent, or (b)
is only executed (code) or used (data) in certain configurations of the target computer environment, for
example, code that is enabled by a hardware pin selection or software programmed options.

Dead code is code that exists in an Bggtion, but which can never be executed, either because there is no call
path to the codefpor example a function that is never called) or because the execution path to the code is
semantically infeasibl&sin

integer i = 0;

if (i == 0)
then fun_a() ;
else fun_b();

fun_b is dead code, as onfun_a can ever be executed.

Compilers that optimize sometimes generate and then remove dead code, including code placed there by the
programmer. The deadness of code can also depend on the linking of s#pa@mpiled modules.

The presence of dead code is not in itself an error its preseraebe arindication that the developer believed it
to be necessary, but some error means it will never be execufa?e may also bdegitimate reasosfor its
presence, for example:

Defensive code, only executed as the result of a hardware failure.

Code that is part of a library not required in this application.

Diagnostic code not executed in the operational environment.

Code that is temporarily deactivated buy mas needed soon. This may occur as a way to make sure the
code is still accepted by the language translator to reduce opportunities for errors when it is reactivated.
1 Code that is made available so that it can be executed manually via a debugger

=A =4 =4 =

Suchcode& @ 6S NBTSNNEBR Thais, ledd cadr thdt iOthekedy iftehtR ¢ P

There is a secondary consideration for dead code in languages that permit overloading of functions and other
constructsthat usecomplex name resolution strategie$he devéoper may believe that some code is not going

to be used (deactivated), but its existence in the program means that it appears in the namespace, and may be
selected as the best match for some use that was intended to be of an overloading furithiahis although the
developer believes it is never going to be used, in practice it is used in preference to the intended function.

6.28.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with tloevfod characteristics:
1 Languages that allow code to exist in the executable that can never be executed.

6.28.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the follomayg:

68 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 086

1 Thedeveloper shoulegndeavorto removedead code from an applicatiaamless its presence serves a
purpose

1 When a developer identifies code that is dead because a conditional always evaluates to the same value,
this could be indicative of an eanlibug and additional testing may be needed to ascertain why the same

value is occurring.

1 The developer should identify any dead code in the application, and provide a justification (if only to
themselves) as to why it is there.

1 The developer should also sure that any code that was expected to be unused is actually rezsmjas
dead code.

1 The developer should apply standard branch coverage measurement tools and ensure by 100% coverage

that all branches are neither dead nor deactivated
6.28.6 Implications for standardization
[None]

6.29 Switch Statements and Static Analysis [CLL]

6.29.1 Description of application vulnerability

Many programming languages provide a construct, suchsagtah statement, that chooses among multiple
alternative control flows based upon the evaluated result of an expresdibe.use of such constructs may
introduce application vulnerdlities if not all possible caseppear within the switctor if control unexpectedly
flows from one alternative to another.

6.29.2 Cross reference

JSF AV Rules: 148, 193, 194, 195, and 196
MISRA C 2004: 15.2, 15.3, and 15.5

MISRA C++ 2008:4-3, 64-5, 64-6, and 64-8
CERT C guililees: MSC0OLC

AdaQualityand Style Guide: 5.6.1 and 5.6.10

6.29.3 Mechanism of failure

The fundamental challenge when usingvaitch statement is to make sure that all possible cases are, in fact,
treated correctly

6.29.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

! Languages thatantain a construct, such assavitch statement, that provides a selection among
alternative control flows based on the evaluation of an expression.

f Languages that do not require full coverage sfxatch statement.

1 Languages that provide a default case (choice)switch statement.

© ISTIEC2012 ¢ All rights reserved 69

WG 23/N 086 Baseline Edition 2TR 24772

6.29.5 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

1 Switch on an expression that has a small number of potential values that can be statically enumerated. In
languages that provide them, a variable of an enuated type is to be preferred becausgossible set
of values is known statically and is small in number (as compared, for example, to the value set of an
integer variable).Where it is practical to statically enumerate the switched type, it is preferabbenit
the default case, because the static analysis is simplified and because maintainers can better understand
the intent of the original programmenWhen one must switch on some other form of type, it is necessary
to have a default case, preferably be regarded as a serious error condition.

T ' @2AR aFf2Ay 3 (KNP dz3 Een iffchiictly ifpe®entdd, igisSdiffict fol v 2 (K S N
reviewers and maintainers to distinguish whether the construct was intended or is an error of orfission
In cases where flowhrough is necessary and intended, an explicitly coded branch may be prefévable
clearly mark the intent.Providing comments regarding intention can be helpful to reviewers and
maintainers.

1 Perform static analysis to determine if edlses are, in fact, covered by the codNote that the use of a
default case can hamper the effectiveness of static analysis since the tool cannot determine if omitted
alternatives were or were not intended for default treatmeént.

1 Other means of mitigadin include manual review, bounds testing, tool analysis, verification techniques,
and proofs of correctness.

6.29.6 Implications for standardization
In future standardizatiomctivities the following items should be considered:

1 Language specifications dduequire compilers to ensure that a complete set of alternatives is provided
in cases where the value set of the switch variable can be statically determined.

6.30 Demarcation of Control Flow [EOJ

6.30.1 Description of application vulnerability

Some programming languages explicitly mark the end df astatement or a loop, whereas other languages
mark only the end of a block of statements. gaages of the latter category are prone to oversights by the
programmer, causingnintended sequences of control flow.

6.30.2 Cross reference

JSF AV Rules: 59 and 192
MISRA C 2004: 14.8, 14.9, 14.10, and 19.5
MISRA C++ 2008:3-1, 64-1, 64-2, 64-3, 64-8, 65-1, 65-6, 66-1 to 6:6-5, and160-2
Hatton 18: Control flovg if structure
‘ AdaQualityand Style Guide3, 5.6.1through5.6.10

4 Using multiple labels on individual alternatives is not a violation ofréiemmendation though.

‘ 70 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 086

6.30.3 Mechanism of failure

Programmers may rely on indentation to determine inclusion of statements withistoacts. Testing of the
software may not reveal that statements thought to be included infanthen ,if -then - else , orloops that
arenot in realitya part ofthe if statement Moreover, for a nested - then - else statement the
programmer may be confuseabout whichif statement controls theslse part directly This anlead to
unexpected results.

6.30.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

1 Languags that contain loops anconditionala G I 6 SYSy da GKIFG I NB y2i SELIX
construct.

6.30.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the fioigpways:

1 Adopt a convention for marking the closing of a construct that can be checked by a tool, to ensure that
program structure is apparent.

1 Adopt programming guidelines (preferably augmented by static analysis). For example, consider the rule
itemized above from JSF AV, MISRA C, MISRA C++ or Hatton.

1 Other means of assurance might include proofs of correctness, analysis with tools, verification
techniguesor other methods

1 Pretty-printers and syntasaware editors may be helpful in finding such probk but sometimes disguise
them.

7 Include a final else statement at the endibf-X-else -if constructs to avoid confusion.

1 Always enclose the body of statements ofifan while , for , or other statements potentially
introducing a block of codey 6 NF O® 42 MJa2 KSNJ RSYI NOIF A2y AYyRAOI
used.

6.30.6 Implications for standardization

In future standardizatiomctivities the following items should be considered:

1 Specifierof languages should consider adding a mode that str@tfgprces compound conditional and
f22LAy3 O2yaiNHzOGa 6AGK SELX AOAG GSNWYAYLFGAZ2YZI &
1 Specifiers of languages might consider explicit termination of loops and conditional statements.
9 Specifiers might consider featuresterminate named loops and conditionals and determine if the
structure as named matches the structure as inferred.

6.31 Loop Control Variables [TEX]

6.31.1 Description of application vulnerability

Many languages support a looping construct whose number of iterations is controlled by the value of a loop
control variable. Looping constructs provide a method of specifying an initial value for this loop gantble, a

© ISTIEC2012 ¢ All rights reserved 71

WG 23/N 086 Baseline Edition 2TR 24772

test that terminates the loop and the quantity by which it should be decrementdadcremented on each loop
iteration.

In some languages it is possible to modify the value of the loop control variable within the body of the loop.
Experiencelsows that such value modifications are sometimes overlooked by readers of the source code,
resulting in faults being introduced.

6.31.2 Cross reference

JSF AV Rule: 201
MISRA C 2004: 13.6
MISRA C++ 2008:561 to 6:5-6

6.31.3 Mechanism of failure

Readers bsource code often make assumptions about what has been writteoommon assumption is that a

loop control variable is a constant since such variables are not usually modified in the body of the associated loop.
A reader of the source may incorrectlysame that a loop control variable is not modified in the body of its loop

and write (incorrect) code based on this assumption.

6.31.4 Applicable language characteristics
This vulnerability description is intended to be applicable to languages with tleafoly characteristics:
9 Languages that permit a loop control variable to be modified in the body of its associated loop.
6.31.5 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effictise following ways:

1 Not modifying a loop control variable in the body of its associated loop body.

1 Some languages, such aar@@ C++lo not explicitly specify which of the variables appearing in a loop
header is the control varidéfor the loop MISRAC[12] and MISRA C+H.6] have proposed algorithms
for deducing which, if any, of these variables is the loop control variable in the programming languages C
and C++ (these algorithms could also be applied to other languages phadrsa Clike for-loop).

6.31.6 Implications for standardization

In future standardizatiomctivities the following items should be considered:

1 Language designers should consider the addition of an identifier type for loop control that cannot be
modifiedby anything other than the loop control construct.

72 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 086

6.32 Off-by-one Error [XZH]

6.32.1 Description of application vulnerability

A program uses an incorrect maximumnoinimum value that is 1 more or 1 less than the correct value. This
usually arises from one of a number of situations where the bounds as understood by the developer differ from
the design, such as:

M Confusion between the need ferand<= or > and>= in atest.

9 Confusion as to the index range of an algorithm, such as: beginning an algorithm at 1 when the underlyin
structure is indexed from O; beginning an algorithm at O when the underlying structure is indexed from 1
(or some other start point); or usingé length of a structure as its bound instead of the sentinel values.

9 Failing to allow for storage of a sentinel value, such as\theL string terminator that is used in the C
and C+programming languages.

These issuearise from mistakes in mapping the design into a particular language, in moving between languages
(such as between languages where all arrays start at 0 and other languages where arrays start at 1), and when
exchanging data between languages with differdafault arraybounds

The issue also can arise in algorithms where relationships exist between components, and the existence of a
boundsvalue changes the conditions of the test.

The existence of this possible flaw can also be a serious security hibtagermit someone to surreptitiously
provide an unused location (such as 0 or the last element) that can be used for undocumented features or hidder
channels.

6.32.2 Cross reference

CWE:
193. Offby-one Error

6.32.3 Mechanism of failure
An offby-oneerror could lead to:

an outof bounds access to an array (buffer overflow),
incomplete comparisons or calculation mistakes,

a read from the wrong memory location, or

9 anincorrect conditional.

= =4 =4

Such incorrect accesses can cause cascading errors or regerminvalidlocations, resulting in potentially
unbounded behaviour.

Off-by-one errors are not often exploited in attacks because they are difficult to identify and exploit externally,
but the cascading errors and boundargndition errors can beevere.

© ISTIEC2012 ¢ All rights reserved 73

WG 23/N 086 Baseline Edition 2TR 24772

6.32.4 Applicable language characteristics

As this vulnerability arises because of an algorithmic error by the developer, it can in principle arise in any
language; however, it is most likely to occur when:

9 The language relies on the developer imgvimplicit knowledge of structure start and end indicks (
example knowing whether arrays start at O orglor indeed some other value).
1 Where the language relies upon explisgundsvalues to terminate variable length arrays.

6.32.5 Avoiding the vul nerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

1 A systematic development process, use of development/analysis tools and thorough testing are all
common ways of prevemip errors, and in this case, dff-one errors.

1 Where references are being made to structure indices and the languages provide ways to specify the
whole structure or the starting and ending indices explicfty €xample Adaprovides xxx'Fitsand
xxx'Last for each dimension), these should be used alwAjgre the language doesn't provide these,
constants can be declared and used in preference to numeric literals.

T 2KSNB GKS fly3dzZ 3S R2SayQid Sy Ol Lahdeildbé @ovidet NA | 6 f S
through library objects and a coding standard developed that requires such arrays to only be used via
those library objects, so the developer does not need to be explicitly concerned with mabaginds
values.

6.32.6 Implications for s tandardization
In future standardizatiomctivities the following items should be considered:

1 Languages should provide encapsulations for arrays that:
o Prevent the need for the developer to be concerned with explicit bounds values.
o0 Provide the developer wh symbolic access to the array start, end and iterators.

6.33 Structured Programming [EWD]

6.33.1 Description of application vulnerability

Programs that Ave a convoluted control structure are likely to be more difficult to be human readable, less
understandable, harder to maintain, more difficult to modify, harder to statically analyze, more difficult to match
the allocation and release of resourgesd nore likely to be incorrect

6.33.2 Cross reference

JSF AV Rules: 20, 113, 189, 190, and 191
MISRA C 20044.4,145, and 20.7
MISRA C++ 2008:6-1, 66-2, 6:6-3, and 170-5
CERT C guililees: SIG3Z

| AdaQualityand Style Guide: 3, 4, 5.4, 5ad 5.7

74 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 086

6.33.3 Mechanism of failure

Lack of structured programming can lead to:

|l

)l
|l
T

Memory or resource leaks.

Error prone maintenance.

Design that is difficult or impossible to validate.

Source code that is difficult or impossible to statically analyze.

6.33.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

= =4 =8 =4

Languages that allow leaving a loop without consideration for the loop control.

Languages that allow local jyrs goto statemeny.

Languages that allow ndocal jumps getimp /longjmp in the Cprogramming language).
Languages that support multiple entry and exit points from a function, procedure, subroutmetbhnd.

6.33.5 Avoiding the vulnerability or mitigating its effects

Use only those features of the programming language #mdibrce a logical structure on the program. The
program flow follows a simple hierarchical model that employs looping constructsasfor |, repeat , do, and

while .

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

=A =4 =4 =4

1

Avoid using language features suctgato .

Avoid using language features suctcastinue and break in the middle of loops.
Avoid using language features that transfer control of the program flow via a jump.
Avoid multiple exit points to a function/procedure/method/subroutine.

Avoid multiple entry points to a function/procedure/method/subrougin

6.33.6 Implications for standardization

In future standardizatiomctivities the following items should be considered:

1

Languages should support afaor structured programming through their constructs to the extent
possible.

6.34 Passing Parameters and Return Values [CS)

6.34.1 Description of application vulnerability

Nearly every procedural languageovides some method ofrpcess abstraction permitting decomposition of the
flow of control into routines, functions, subprograms, or metho@Sor the purpose of this description, the term
subprogram will be used.Jo have any effect on the computation, the subprogram must geatata visible to
the calling program. It can do this by changing the value of alawal variable, changing the value of a
parameter, or, in the case of a function, providing a return valBecause different languages use different

© ISTIEC2012 ¢ All rights reserved 75

WG 23/N 086 Baseline Edition 2TR 24772

mechanisms with diérent semantics for passing parameters, a programmer using an unfamiliar language may
obtain unexpected results.

6.34.2 Cross reference

JSF AV Rules: 116, 117, and 118

MISRA C 2004: 16.1, 16.2, 16.3, 16.4, 16.5, 16.6, 16.7, and 16.9
MISRA C++ 2008:3-2, 7-1-2, 84-1, 84-2, 84-3, and 84-4

CERT C guililees: EXP1Z and DCL3G3

AdaQualityand Style Guide: 5.2 and 8.3

6.34.3 Mechanism of failure

The mechanisms for parameter passing inclugg: by referencecall by opy, andcall by name The last is so
specialized and supported by so few programming languages that it will not be treated in this description.

In call by reference, the calling program passes the addressas arguments to the called subprogratihen
the subprogram references the corresponding formal parameter, it is actually sharing data with the calling
program. If the subprogram changes a formal parameter, then the corresponding actual argument is also
changed. If the actual argument is an expression or a constant, then the address of a temporary location is
passed to the subprogram; this may be an error in some languages.

In call by copy, the called subprogram does not share data with the callingapmotrstead, formal parameters

act as local variables/alues are passed between the actual arguments and the formal parameters by copying.
Some languages may control changes to formal parameters based on labels sugloats, orinout . There

are threecases to considecall by valudor in parametersicall by resulfor out parameters and function return
values; anctall by valueresultfor inout parameters.For call by valughe calling program evaluates the actual
arguments and copies the result to the corresponding formal parameters that are then treated as local variables
by the subprogramFor call byesult, the values of the locals corresponding to formal parametercapeed to

the corresponding actual argument&or call by valueesult, the values are copied in from the actual arguments

at the beginning of the subprogram's execution and back out to the actual arguments at its termination.

The obvious disadvantage cdll by copy is that extra copy operations are needed and execution time is required

to produce the copiesParticularly if parameters represent sizable objects, such as large arrays, the cost of call by
copy can be highFor this reason, many languagaso provide the call by reference mechanism. The

disadvantage of call by reference is that the calling program cannot be assured that the subprogram hasn't
changed data that was intended to be unchang&ar example, if an array is passed by referemnca t

subprogram intended to sum its elements, the subprogram could also change the values of one or more elements
of the array. However, some languages enforce the subprogram's access to the shared data based on the labeling
of actual arguments with modessuch asn , out , orinout or by constant pointers

Another problem with call by reference is unintended aliasing. It is possible that the address of one actual
argument is the same as another actual argument or that two arguments overlap in stokagéprogram,
assuming the two formal parameters to be distinct, may treat them inappropriatedy.example, if one codes a
subprogram to swap two values using the exclusivenethod, then a call tewap(x,x) will zero the value of
X. Aliasing can also occhetween arguments and nelocal objects.For example, if a subprogram modifies a

76 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 086

non-local object as a sideffect of its execution, referencing that object by a formal parameter will result in
aliasing and, possibly, unintended results.

Some languages@vide only simple mechanisms for passing data to subprograms, leaving it to the programmer
to synthesize appropriate mechanisnm®@ften, the only available mechanism is to use call by copy to pass small
scalar values or pointer values containing addresdekata structures.Of course, the latter amounts to using call
by reference with no checking by the language procesbosuch cases, subprograms can pass back pointers to
anything whatsoever, including data that is corrupted or absent.

Some languageasse call by copy for small objects, such as scalars, and call by reference for large objects, such a:
arrays. The choice of mechanism may even be implementatiefined. Because the two mechanisms produce
different results in the presence of aliasingisivery important to avoid aliasing.

An additional problem may occur if the called subprogram fails to assign a value to a formal parameter that the
caller expects as an output from the subprograim.the case of call by reference, the result may be an
uninitialized variable in the calling program. In the case of call by copy, the result may be that a legitimate
initialization value provided by the caller is overwritten by an uninitialized value because the called program did
not make an assignment to éhparameter. This error may be difficult to detect through review because the

failure to initialize is hidden in the subprogram.

An additional complication with subprograms occurs when one or more of the arguments are expressions. In sucl
cases, the evahtion of one argument might have sigdfects that result in a change to the value of another or
unintended aliasingImplementation choices regarding order of evaluation could affect the result of the
computation. This particular problem is describedSideeffects and Order of Evaluatimause[SAM].

6.34.4 Applicable language characteristics
This vulnerability description is intended to be applicable to languages with the following characteristics:

1 Languages that provide mechanisms for defining sab@ms where the data passes between the calling
program and the subprogram via parameters and return values. This includes methods in many popular
objectoriented languages.

6.34.5 Avoiding the vulnerability or mitigating its effects
Software developersan avoid the vulnerability or mitigate its ill effects in the following ways:

1 Use available mechanisms to label parameters as constants or with modas Jikat , orinout
1 When a choice of mechanisms is available, pass small simple objects usingopil.by
1 When a choice of mechanisms is available and the computational cost of copying is tolerable, pass larger
objects using call by copy.
1 When the choice of language or the computational cost of copying forbids using call by copy, then take
safeguards t@revent aliasing:
0 Minimize sideeffects of subprograms on ndncal objects; when sideffects are coded, ensure
that the affected noHocal objects are not passed as parameters using call by reference.
o0 To avoid unintentional aliasing, avoid using expi@ss or functions as actual arguments; instead
assign the result of the expression to a temporary local and pass the local.

© ISTIEC2012 ¢ All rights reserved 77

WG 23/N 086 Baseline Edition 2TR 24772

o Utilize tooling or other forms of analysis to ensure that fafvious instances of aliasing are
absent.

o Perform reviews or analysis determine that called subprograniglfill their responsibilities to
assign values to all output parameters.

6.34.6 Implications for standardization
In future standardizatiomctivities the following items should be considered:

1 Programming language sgiéications could provide labaissuch asn , out , andinout Tt that control
0KS adzo LINPINF YQa | O0Saa G2 AdGa F2NX¥IEE LI NI YSHSNA

6.35 Dangling References to Stack Frames [DCM]

6.35.1 Description of application vulnerability

Many languages allow treating the address of a local variable as a value stored in other variables. Examples are
the application of the addressperatorin@rC+E 2 NJ 2F (G KS W! O00S&aa.l@dmed! RRNEB & ¢
languages, this facility is also used to model thelwgleference mechanism by passing the address of the actual
parameter byvalue. An obvous safety requirement is that the stored address shall not be used after the lifetime

of the local variable has expiredt KA a4 aAddz 6A2y OlFly 6S RSaONAOGSR Fa |

6.35.2 Cross reference

CWE:
562. Return of Stack Variabeldress
JSF AV Rule: 173
MISRA C 2004: 17.6 and 21.1
MISRA C++ 2008:3-1, 7-5-1, 7-5-2, and 75-3
CERT C guiliiees: EXP3E and DCL3C
AdaQualityand Style Guide: 7.6.7, 7.6.8, and 10.7.6

6.35.3 Mechanism of failure

The consequences of dangjireferences to the stack come in two variants: a deterministically predictable
variant, which therefore can be exploited, and an intermittent, fdeterministic variant, which is next to
impossible to elicit during testingl'he following code sample ifitrates the two variants; the behaviour is not
languagespecific:

struct s { e };

typedef struct s array_type[1000];
array_type* ptr;

array_type* F()

{

struct s Arr[1000];
ptr = &Arr; /I Risk of variant 1;
return &Arr; /I Risk of varia nt 2;

78 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 086

—

struct s secret;
array_type* ptr2;

ptr2 = F();
secret = (*ptr2)[10]; /[Fault of variant 2
e

secret = (*ptr)[10]; /[Fault of variant 1

The risk of variant 1 is the assignment of the addregsrofto a pointer variable tht survives the lifetime of

Arr . The fault is the subsequent use of the dangling reference to the stack, which references memory since
altered by other calls and possibly validly owned by other routidespart of a calback, the fault allows

systematt examination of portions of the stack contents without triggering an ab@yndschecking violation.

Thus, this vulnerability is easily exploitabkss a fault, the effects can be most astounding, as memory gets
corrupted by completely unrelated code piimns. (A lifetime check as part of pointer assignment can prevent

the risk. In many casestch aghe situations above, the check is statically decidable by a compiler. However, for
the general case, a dynamic check is needed to ensure that thedcppister value lives no longer than the
designated object.)

¢CKS NAal 2F QGFENRIYG w Ada |y ARAZ2Y daa SiGaloidayexpeisibe & A f
copy of a function result, as long as it is consumed before the next rowlheacurs.The idiom is based on the
ill-founded assumption that the stack will not be affected by anything until this next call is is§bed.
FaadzYLIiA2y Aa FlLftaSy K2SOSNE AF +y AYydSNNHzII 2 00d:
stealing = giKusiGgkhe current stack to satisfy its memory requiremeiitsus, the value oArr can be
overwritten before it can be retrieved after the call &n As this fault will only occur if the interrupt arrives after

the call has returnetbut before the returned result is consumed, the fault is highly intermittent and next to
impossible to recreate during testing.Thus, it is unlikely to be exploitable, but also exceedingly hard to find by
testing. It can begin to occur after a completalyrelated interrupt handler has been coded or altergdnly

static analysis can relatively easily detect the danger (unless the code combines it with risks of vaGaniéd.).
compilers issue warnings for this situation; such warnings need to be headédome forms of static analysis

are effective in identifying such problems.

6.35.4 Applicable language characteristics
This vulnerability description is intended to be applicable to languages with the following characteristics:

9 The address of a local &y (or formal parameter) of a routine can be obtained and stored in a variable
or can be returned by this routine as a result.

1 No check is made that the lifetime of the variable receiving the address is no larger than the lifetime of
the designated entit.

6.35.5 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

1 Do not use the address of locally declared entities as storable, assignable or returnabléexakpt
where idioms of the language make it unavoidable).

© ISTIEC2012 ¢ All rights reserved 79

WG 23/N 086 Baseline Edition 2TR 24772

1 Where unavoidable, ensure that the lifetime of the variable containing the address is completely enclosed
by the lifetime of the designated object.
I Never return the address of a local variablégtss result of a function call.

6.35.6 Implications for standardization
In future standardizatiomctivities the following items should be considered:

1 Do not provide means to obtain the address of a locally declared entity as a storable value; or

1 Define mplicit checks to implement the assurance of enclosed lifetime expressabiciause5 of this
vulnerability. Note that, in many cases, the check is statically decidable, for example, when the address of
a local entity is taken as part of a return statemh or expression.

6.36 Subprogram Signature Mismatch [OTR]

6.36.1 Description of application vulnerability

If a subprogram is called withdifferent number of parameters than it expects, or with parameters of different
types than it expects, then the results will be incorreDepending on the language, the operating environment,
and the implementation, the error might be as benign as gulistic message or as extreme as a program
continuing to execute with a corrupted stackhe possibility of a corrupted stack provides opportunities for
penetration.

6.36.2 Cross reference

CWE:
628. Function Call with Incorrectly Specified Arguments
686. Function Call with Incorrect Argument Type
683. Function Call with Incorrect Order of Arguments
JSF AV Rule: 108
MISRA C 2004: 8.1, 8.2, 8.3, 16.1, 16.3, 16.4, 4605,6.6
MISRA C++ 2008:3-2, 32-1, 32-2, 32-3, 32-4, 33-1, 39-1, 83-1, 84-1,and 84-2
CERT C guiliiees: DCL3L, and DCL36

6.36.3 Mechanism of failure

When a subprogram is called, the actual arguments of the call are pushed on to the executioW#ackthe
subprogram terminates, the formal parameters are popped off tleelstIf the number and type of the actual
arguments do not match the number and type of the formal parameters, then the push and the pop will not be
commensurable and the stack will be corruptegtack corruption can lead to unpredictable execution @f th
program and can provide opportunities for execution of unintended or malicious code.

The compilation systems for many languages and implementations can check to ensure that the list of actual
parameters and any expected return match the declared sevtwhél parameters and return value (the
subprogram signaturein both number and type(In some cases, programmers should observe a set of
conventions to ensure that this is truetjowever, when the call is being made to an externally compiled

80 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 086

subprograman objectcode library, or a module compiled in a different language, the programmer must take
additional steps to ensure a match between the expectations of the caller and the called subprogram.

6.36.4 Applicable language characteristics

This vulnerabily description is intended to be applicable to languages with the following characteristics:

1 Languages that do noéquire their implementations to ensurat the number and types of actual
arguments are equal to the number and types of the formal paramset

1 Implementations that permit programs to call subprograms that have been externally compiled (without
a means to check for a matching subprogram signature), subprograms in object code libratiagy
subprograms compiled in other languages.

6.36.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the natability or mitigate its ileffects in the following ways:

1 Take advantage of any mechanism provided by the language to ensurauth@ariogramsignatures
match.

1 Avod any language features that permit variable numbers of actual arguments without a method of
enforcing a match for any instance of a subprogram call.

1 Take advantage of any language or implementation feature that would guarantee matching the
subprogram sigature in linkingo other languages or to separately compiled modules.

1 Intensively review subprogram calls where the match is not guaranteed by tooling.

6.36.6 Implications for standardization

In future standardizatiomctivities the following items shodlbe considered:

9 Language specifiers could ensure that the signatures of subprograms match within a single compilation
unit and could provide features for asserting and checking the match with externally compiled
subprograms.

6.37 Recursion [GDL]

6.37.1 Description of application vulnerability

Recursion is an elegant mathematical mechanism for defining the values of some funtttisrtempting to
write code that mirrors the mathmatics. However, the use of recursion in a computer can have a profound
effect on the consumption of finite resources, leading to denial of service.

6.37.2 Cross reference

CWE:

674. Uncontrolled Recursion
JSF AV Rule: 119
MISRA C 2004: 16.2

© ISTIEC2012 ¢ All rights reserved 81

WG 23/N 086 Baseline Edition 2TR 24772

MISRA C++ 2008-5-4
CERT C guililees: MEMOSC
AdaQualityand Style Guide: 5.6.6

6.37.3 Mechanism of failure

Recursion provides for the economical definition of some mathematical functiblasvever, economical

definition and economical calculation are twdfdrent subjects.It is tempting to calculate the value of a

recursive function using recursive subprograms because the expression in the programming language is
straightforward and easy to understantiowever, the impact on finite computing resources ¢e profound.

Each invocation of a recursive subprogram may result in the creation of a new stack frame, complete with local
variables.If stack space is limited and the calculation of some values will lead to an exhaustion of resources
resulting in theprogram terminating.

In calculating the values of mathematical functions the use of recursion in a program is usually obvious, but this is
not true in the general casd-or example, finalization of a computing context after treating an error condition

might result in recursionsfuich asattempting to "clean up” by closing a file after an error was encountered in

closing the same file)Although such situations may have other problems, they typically do not result in

exhaustion of resources but may otheseiresult in a denial of service.

6.37.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:
1 Any language that permits the recursive invocation of subprograms.

6.37.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

1 Minimize the use of recursion.

9 Converting recursive calculations to the corresponding iterativeutaion. In principle, any recursive
calculation can be remodeled as an iterative calculation which will have a smaller impact on some
computing resources but which may be harder for a human to compreh&hd.cost to human
understanding must be weigheatjainst the practical limits of computing resource.

1 In cases where the depth of recursion can be shown to be statically bounded by a tolerable number, then
recursion may be acceptable, but should be documented for the use of maintainers.

It should be notedhat some languages or implementations provide special (more economical) treatment of a
form of recursion known atgil-recursion In this case, the impact on computing economy is redud&tien using
such a language, tail recursiamy be preferred to an iterative calculation.

6.37.6 Implications for standardization

[None]

82 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 086

6.38 Ignored Error Status and Unhandled Exceptions [OYB]

6.38.1 Description of application vulnerability

Unpredicted faults and exceptional situations arise during the execution of code, preventing the intended
functioning of the code. They are detected and reportedhmy language implementation or by explicit code
written by the user. Different strategies and language constructs are used to report such errors and to take
remedial action. Serious vulnerabilities arise when detected errors are reported but ignored mopetly
handled.

6.38.2 Cross reference

CWE:
754. Improper Check for Unusual or Exceptional Conditions
JSF AV Rules: 115 and 208
MISRA C 20046.10
MISRA C++ 2008:-B=2 and 193-1
CERT C guililees: DCLOZ, ERROGC, and ERRE2

6.38.3 Mechanism of failure

The fundamental mechanism of failure is that the program does not react to a detected error or reacts
inappropriately to it. Execution may continue outside the envelope provided by its specification, making
additional errors or serious malfunoti of the software likely. Alternatively, execution may terminate. The
mechanism can be easily exploited to perform depiaservice attacks.

The specific mechanism of failure depends on the error reporting and handling scheme provided by a language ¢
applied idiomatically by its users.

In languages that expect routines to report errors via status variables, return codes, or-thoaherror

indicators, the error indications need to be checked after each call. As these frequent checks cost execation ti
and clutter the code immensely to deal with situations that may occur rarely, programmers are reluctant to apply
the scheme systematically and consistently. Failure to check for and hamdiesingerror condition continues
execution as if the error@ver occurred. In most cases, this continued execution in-defithed program state

will sooner or later fail, possibly catastrophically.

The raising and handling of exceptions was introduced into languages to address these prdiiiegimindle

the exceptional code in exception handlers, they need not cost execution time if no error is present, and they will
not allow the program to continue execution by default when an error occurs, since upon raising the exception,
control of execution is automatidgltransferred to a handler for the exception found on the call stack. The risk
and the failure mechanism is that there is no such handler (unless the language enforces restrictions that
guarantees its existence), resulting in the termination of the curteread of control. Also, a handler that is

found might not be geared to handle the multitude of error situations that are vectored to it. Exception handling
is therefore in practice more congt for the programmer than, for exampléhe use of statusgrameters.
Furthermore, differenfanguages provide exceptidmandling mechanisms that differ in details of their design,
which in turn may lead to misunderstandings by the programmer.

© ISTIEC2012 ¢ All rights reserved 83

WG 23/N 086 Baseline Edition 2TR 24772

The cause for the failure might be simply laziness or ignorance guattt®f the programmer, or, more
commonly, a mismatch in the expectations of where fault detection and fault recovery is to be Bartecularly
when components meet that employ different fault detection and reporting strategies, the opportunity for
mishandling recognized errors increases and creates vulnerabilities.

Another cause of the failure is the scant attention that many library providers pay to describe all error situations
that calls on their routines might encounter and report. In this casectiler cannot possibly react sensibly to all
error situations that might ariseAs yet another cause, the error information provided when the error occurs may
be insufficiently complete to allow recovery from the error.

6.38.4 Applicable language characteristics

Whether supported by the language or not, error reporting and handling is idiomatically present in all languages.
Of course, vulnerabilities caused by exceptions require a language that supports exceptions.

6.38.5 Avoiding the vulnerability or mi tigating its effects

Given the variety of error handling mechanisms, it is difficult to provide general guidelimegever, dealing with
exception handling in some languages can stress the capabilities of static analysis tools and can, in some cases,
reduce the effectiveness of their analysis. Inversely, the use of error status variables can lead to confusingly
complicated control structures, particularly when recovery is not possible locHtigrefore, for situations where

the highest of reliabilitys required, the decision for or against exception handling deserves careful thought. In

any case, exceptiehandling mechanisms should be reserved for truly unexpected situations and other situations
where no local recovery is possibi8ituations which i merely unusual, like the end of file condition, should be
treated by explicit testing either prior to the call which might raise the error or immediately afterwalrd.

general, error detection, reporting, correction, and recovery should not be a [atertunistic addon, but should

be an integral part of a system design.

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

9 Checking error return values or auxiliary status variables following a call tqoeogam is mandatory
unless it can be demonstrated that the error condition is impossible.

1 Equally, exceptions need to be handled by the exception handlers of an enclosing construct as close as
possible to the origin of the exception but as far out asassary to be able to deal with the error.

1 For each routine, all error conditions need to d@cumentedand matching error detection and reporting
needs to be implemented, providing sufficient information for handling the error situation.

1 When execution wihin a particular context is abandoned due to an exception or error condition, it is
important to finalize the context by closing open files, releasing resources and restoring any invariants
associated with the context.

1 Itis often not appropriate to redgaan error situation and retry the operation. It is usually a better
solution to finalize and terminate the current context and retreat to a context where the fault can be
handled completely.

1 Error checking provided by the language, the software systertihe hardware should never be disabled
in the absence of a conclusive analysis that the error condition is rendered impossible.

1 Because of the complexity of error handling, careful review of all error handling mechanisms is
appropriate.

84 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 086

1 In applicationswith the highest requirements for reliability, defengedepth approaches are often
appropriate, for example, checking and handling errors even if thought to be impossible.

6.38.6 Implications for standardization
In future standardizatiomctivities the following items should be considered:

1 A standardized set of mechanisms for detecting and treating error conditions should be developed so that
all languages to the extent possible could use thdrhis does not mean that all languages should use the
samemechanisms as there should be a varjdiyt each of the mechanisms should be standardized.

6.39 Termination Strategy [REU]

6.39.1 Description of application vulnerability

Expectations that a system will be dependable are based on the confidence that the system will operate as
expected and not fail in normal use. The dependability of a syatatrits fault tolerancean be measured

through the component pat$reliability, availability, safety and securityRreliability ishe ability of a system or
component to perform its required functions under stated conditions for a specified period oflfi&& 1990
glossary]. Availability is how timely and reliable 8ystem is to its intended users. Both of these factors matter
highly in systems used for safety and security. In spite of the best intentions, systems may encounter a failure,
either from internally poorly written software or external forces such as@ooutages/variations, floods, or

other natural disasters. The reaction to a fault can affect the performance of a system and in particular, the
safety and security of the system and its users.

When the software does not terminate in the planned mechamnisafety or security is compromised, as failing in
an unspecified way interferes with the alternative recovery features. In saéddyed systems the results can be
catastrophic: for other systems the result can mean failure of the complete system

6.39.2 Cross reference

JSF AV Rule: 24

MISRA C 2004: 20.11

MISRA C++ 2008:32, 155-2, 155-3, and 180-3
CERT C guiliimes: ERROZ, ERROG and ENV3EZ
AdaQualityand Style Guide: 5.8 and 7.5

6.39.3 Mechanism of failure

The reactiorto a fault ina system can depend on the criticality of the part in which the fault originaféisen a
program consists of several tasks, each task may be critical, or not. If a task is critical, it may or may not be
restartable by the rest of the program. ldeallytagk that detects a fault within itself should be able to halt
leaving its resources available for use by the rest of the program, halt clearing away its resources, or halt the
entire program.The latency of task termination and whether tasks can ignermmination signals should be
clearly specifiedHaving inconsistent reactions to a fault can potentially be a vulnerability.

© ISTIEC2012 ¢ All rights reserved 85

WG 23/N 086 Baseline Edition 2TR 24772

When a fault is detected, there are many ways in which a system can rEaetquickest and most noticeable

way is to fail hard, lao known as fail fast or fail stop. The reaction to a detected fault is to immediately halt the
system. Alternatively, the reaction to a detected fault could be to fail soft. The system would keep working with
the faults present, but the performance tife system would be degraded. Systems used in a high availability
environment such as telephone switching centerspenmerce or other "always available" applicatiomgould

likely use a fail soft approach. What is actually done in a fail soft appoaactary depending on whether the
system is used for safety critical or security critical purposes. Faafailsystems, such as flight controllers,

traffic signals, or medical monitoring systems, there would be no effort to meet normal operationaleegunts,

but rather to limit the damage or danger caused by the fault. A system that fails securely, such as cryptologic
systems, would maintain maximum security when a fault is detected, possibly through a denial of service.

6.39.4 Applicable language characteristics

This vulnerability description is intended to be applicable to all languages.

6.39.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects ifiall@ving ways:

9 A strategy for fault handling should be decided. Consistency in fault handling should be the same with
respect to critically similar parts.
1 A multitiered approach of fault prevention, fault detgon and fault reaction should be used.
1 Sygem-defined components that assist in uniformity of fault handling should be wdesh available.For
one exampledesigning aruntime constraint handler(as describedh ISO/IEC TR 2473113]) permits
the application to intercept various erroneoususitionsand perform one consistent response, such as
flushing a previous transaction anetstarting at the next one.
1 When there are multiple tasks, a fatiiindling policy should be specified whereby a task may
0 Halt, and keep its resources available &her tasks (perhaps permitting restarting of the faulting
task)
0 Halt, and remove its resources (perhaps to allow other tasks to use the resources so freed, or to
allow a recreation of the task)
0 Halt, and signal the rest of the program to likewise halt.

6.39.6 Implications for standardization
In future standardizatiomctivities the following items should be considered:

1 Languages should consider providing a means to perform fault handlgmgninology and the means
should be coordinated with other frguages.

6.40 Type-breaking Reinterpretation of Data [AMV]

6.40.1 Description of application vulnerability

In most cases, lgects in programs are assigned locations in processor storage to hold their Vialie same
storage space is assigned to more than one objesther statically or temporarily then a change in the value of

86 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 086

one object will have an effect on the valuetbé other. Furthermore, if the representation of the value of an
object is reinterpreted as being the representation of the value of an object with a different type, unexpected
results may occur

6.40.2 Cross reference

JSF AV Rules 153 and183

MISRA 2004t8.2, 18.3, and 8.4

MISRA C++ 200841 to 45-3, 410-1, 410-2, and 50-3 to 50-9
CERT C guiliies: MEMOSC

AdaQualityand Style Guide: 7.6.7 and 7.6.8

6.40.3 Mechanism of failure

Sometimes there is a legitimate need for applications axeldifferent interpretations upon the same stored
representation of data.The most fundamental example is a program loader that treats a binary image of a
program as data by loading it, and then treats it as a program by invokiMpgt programming laguages permit
type-breaking reinterpretation of data, however, some offer less error prone alternatives for commonly
encountered situations.

Typebreaking reinterpretation of representation presents obstacles to human understanding of the code, the
ability of tools to perform effective static analysis, and the ability of code optimizers to do their job

Examples include:

1 Providing alternative mappings of objects into blocks of storage performed either statialy 4s
Fortrancommon) ordynamically guch agpointers).

1 Union types, particularly unions that do not have a discriminant stored as part of the data structure.

1 Operations that permit a stored value to be interpreted as a different typelf agreating the
representation of a paiter as an integer).

In all of these cases accessing the value of an object may produce an unanticipated result.

A related problem, the aliasing of parameters, occurs in languages that permit call by reference because
supposedly distinct parameters miglefer to the same storage area, or a parameter and a-local object might
refer to the same storage area. That vulnerability is describ&hssing Parameters and Return Val@&Ss]]

6.40.4 Applicable language characteristics

This vulnerability descrifin is intended to be applicable to languages with the following characteristics:
1 A programming language that permits multiple interpretations of the same bit pattern.

6.40.5 Avoiding the vulnerability or mitigating its effects

Software developers can an the vulnerability or mitigate its ill effects in the following ways:

© ISTIEC2012 ¢ All rights reserved 87

WG 23/N 086 Baseline Edition 2TR 24772

1 Programmers should avoid reinterpretation performed as a matter of convenience; for example, using an
integer pointer to manipulate character string data should be avoidaithen typebreaking
reinterpretation is necessary, it should be carefully documented in the code. However this vulnerability
cannot becompletely avoided because some applications view stored data in alternative ways.

1 When using union types it is preferable to uscriminated unionsThis is d@ype of a union where a
stored value indicates which interpretation is to be placed upon the d8tame languagesiich as
variant records in Ada) enforce the view of data indicated by the value of the discrimilfidime.
language does not enforce the interpretatidiorl example equivalence in Fortraand union in Gnd
C+4, then the code should implement an explicit discriminant and check its value before accessing the
data in theunion, or use some other mechanism to ensure that correct interpretation is placed upon the
data value.

1 Operations that reinterpret the same stored value as representing a different type should be avoided. It
is easier to avoid such operations when thaduage clearly identifies thentkor example, the name of
Adds Unchecked_Conversion function explicitly warns of the problemA much more difficult
situation occurs when pointers are used to achieve type reintgiion. Some languages perform type
checking of pointers and place restrictions on the ability of pointers to access arbitrary locations in
storage. Others permit the free use of pointersn such cases, code must be carefully reviewed in a
search founintended reinterpretation of stored valueg herefore it is important to explicitly comment
the source code wherimtendedreinterpretations occur.

9 Static analysis tools may be helpful in locating situations where unintended reinterpretation o€xurs.
the other hand, the presence of reinterpretation greatly complicates static analysis for other problems, so
it may be appropriate to segregate intended reinterpretation operations into distinct subprograms.

6.40.6 Implications for standardization

In future standardizatioractivities the following items should be considered:

1 Because the ability to perform reinterpretation is sometimes necessary, but the need for it is rare,
programming language designers might consider putting caution labels on opertitainsermit
reinterpretation. For example, the operation in Ada that permits unconstrained reinterpretation is called
Unchecked_Conversion

1 Because of the difficulties with undiscriminated unions, programming language designers might consider
offering urion types that include distinct discriminants with appropriate enforcement of access to objects.

6.41 Memory Leak [XYL]

6.41.1 Description of application vulnerability

A memoryleak occurs when software does not release allocated memory after it ceases to be used. Repeated
occurrences of a memory leak can consume considerable amounts of available mé&mogmory leak can be
exploitedby attackers to generate deniaf-serviceby causing the program to execute repeatedly a sequence
that triggers the leakMoreover, a memory leak can cause any loagning critical program to shutdown
prematurely.

88 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 086

6.41.2 Cross reference

CWE:
401. Failure to Release Memory Before Removing L&SREE Yy OS 61 1 WaSY2NR [St]
JSF AV Rule: 206
MISRA C 2004: 20.4
CERT C guiliges: MEMOEC and MEM31C
AdaQualityand Style Guide: 5.4.5, 5.9.2, and 7.3.3

6.41.3 Mechanism of failure

As a process or system runs, any memory taken from dynamic nyesnolrnot returned or reclaimed (by the

runtime system or a garbage collector) after it ceases to be used, may result in future memory allocation request:
failing for lack of free spacelternatively, memory claimed and returned can cause the heap tfemt, which

will eventually result in an inability to take the necessary size stor&gber condition will result in a memory
exhaustion exception, and program termination or a system crash.

If an attacker can determine the cause of an existing mertealy, the attacker may be able to cause the
application to leak quickly and therefore cause the application to crash

6.41.4 Applicable language characteristics
This vulnerability description is intended to be applicable to languages with the followingctbrstics:

1 Languages that support mechanisms to dynamically allocate memory and reclaim memory under progran
control.

6.41.5 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effiectise following ways:

1 Use ofgarbagecollectors that reclaim memory that will never be used by the application again. Some
garbage collectors are part of the language while others arecad

1 Allocating and freeing memory in different modules and Is\wdlabstraction may make it difficult for
developers to match requests to free storage with the appropriate storage allocation reqUieist may
cause confusion regarding when and if a block of memory has been allocated or freed, leading to memon
leaks.To avoid these situations, it is recommended that memory be allocated and freed at the same level
of abstraction, and ideally in the same code module.

i Storage pools are a specialized memory mechanism where all of the memory associated with a class of
objects is allocated from a specific bounded regidhen used with strong typing one can ensure a
strong relationship between pointers and the space accessed such that storage exhaustion in one pool
does not affect the code operating on other memory.

1 Memoryleaks can be eliminated by avoiding the use of dynamically allocated storage entirely, or by doing
initial allocation exclusively and never allocating once the main execution commences. Focgabety
systems and long running systems, the use of dyioanemory is almost always prohibited, or restricted
to the initialization phase of execution. |

© ISTIEC2012 ¢ All rights reserved 89

WG 23/N 086 Baseline Edition 2TR 24772

1 Use static analysisvhich can sometimes detesthenallocated storage is no longer used and has not
been freed.

6.41.6 Implications for standardization
In future standardizatioractivities the following items should be considered:

1 Languages can provide syntax and semantics to guarantee pregidarthat dynamic memory is not
used (such as the configuratipmagmas feature offered by some prognaming languagés

1 Languages can document or specify that implementations must document choices for dynamic memory
management algorithms, to hope designers decide on appropriate usage patterns and recovery
techniques as necessary

6.42 Templates and Generics [SYM]

6.42.1 Description of application vulnerability

Many languages provide a mechanism that allows objects and/or functions to be defined paramebgrizeed

and then instantiated for specifictypes. ING+¥ R NBf I G SR f I y3dzZ 3Sasx GKBalSy R NS
Adaand Java & 3 $ yd8 Adidchaving to keep writitgli SYLJX 6 Sak ISy SNA OaQr Ay (K.
referred to collectively as generics.

Used well, generics can make code clearer, more predictable and easier to malssaith badly, they can have
the reverse effect, making code difficult to few and maintain, leading to the possibility of program error.

6.42.2 Cross reference

JSF AV Rules: 101, 102, 103, 104, and 105
MISRA C++ 20084-6-1, 146-2, 147-1 to 147-3, 148-1, and 148-2
Ada Quality and Style Guide: 8.3.1 through 8.3.8, and 8.4.2

6.42.3 Mechanism of failure

The value of generics comes from having a single piece of code that supports some behaviour in a type
independent manner. This simplifies development and maintenance of the dodbould also assist in the
understanding oftie code during review and maintenance, by providing the same behaviour for all types with
which it is instantiated.

Problems arise when the use of a generic actually makes the code harder to understand during review and
maintenance, by not providing contst behaviour.

In most cases, the generic definition will have to make assumptions about the types it can legally be instantiated
with. For example, a sort function requires that the elements to be sorted can be copied and compared. If these
assumptionsare not met, the result is likely to be a compiler erréior example if the sort function is instantiated
GAGK | dzaSNJ RSTAYSR (8L {KIKSNR SBWARIIZZAKI B S2 F INBS 3 il
error, this can be regarded aglavelopment issue, and not a software vulnerability.

90 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 086

Confusion, and hence potential vulnerability, can arise where the instantiated code is apparealily but

R2Say Qi NBadz (i Fdrgkaniple, @ BeYidrih dass Mafiesa\sBtastibers, a subset of which rely

on a particular property of the instantiation type (such as a generic container class with a sort member function,
only the sort function relies on the instantiating type having a defined relational operdtogome languges,
suchasC& AF GKS 3ISYSNAO A& AyaldlyaAlridSR gAGK | (&L
never subsequently makes use of the subset of members that rely on the property of the instantiating type, the
code will compileand execute (for example, the generic container is instantiated with a user defined class that

R2Say Qi RSTAYS I NBflLGA2yLFf 2LISNI G§2NE 0dzi (Whén LINZ 3
the code is reviewed the generic class will dpgé] G2 NBFSNBY OS | YSYOSNI 2F (KS
exist.

The problem as described in the two prior paragraphs can be reduced by a language feature (sucioseibis
language feature being designed by the C++ committee).

Similar confusiomran arise if the language permits specific elements of a generic to be explicitly defined, rather
than using the common code, so that behaviour is not consistent for all instantiattrsexample, for the same
generic container class, the sort membermally sorts the elements of the container into ascending order. In
flIy3dzad 3Sa &4dzOK | a /bbb I WALISOAILIE OFaSQ OFy 06S ONB
C2NJ SEI YLX ST GKS &2NI YSYo SN efiadddolprovidd diffdréntib@haviodrysayt A y
sorting the elements into descendingorddr.LISOA I f AT I GA2Yy G(GKIFIG R2Say Qi | FF&
instantiation is not an issueAgain, for C++, there are some irregularities in the semantics ofsaaray pointers

that can lead to the generic having different behaviour for different, but apparently very similar, tipsach

cases, specialization can be used to enforce consistent behaviour.

6.42.4 Applicable language characteristics
This vulnerabity is intended to be applicable to languages with the following characteristics:

1 Languages that permit definitions of objects or functions to be parameterized by type, for later
instantiation with specific types, such as:
0 Templatesn C+
0 Generics in Ada, Java.

6.42.5 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

1 Document the properties of an instantiating type necessary for a geteelie valid.

1 If an instantiating type has the required properties, the whole of the generic should be ensured to be
valid, whether actually used in the program or not.

T t NEFTSNIofé | g2ART odzi G €S
I aLISOAFTAO GelwlS R2SayQi o0SK

1 O NEBiFioftaritidted Rith O dzY ¢
I.

|.
| a A0 R2Sa TFT2NJ z

o <

a
0
6.42.6 Implications for standardization

In future standardization activities, the following items should be considered:

© ISTIEC2012 ¢ All rights reserved 91

WG 23/N 086 Baseline Edition 2TR 24772

9 Language specifiers should standardize on a commomramiferminology to describe
generics/templates so that programmers experienced in one language can reliably learn and refer to the
type system of another language that has the same concept, but with a different name.

1 Language specifiers should design g@&ein such a way that any attempt to instantiate a generic with
constructs that do not provide the required capabilities results in a contipile error.

1 Language specifiers should provide an assertion mechanism for checking propertiegiateufor those
properties that canot be checked at compile timdt should be possible to inhibit assertion checking if
efficiency is a concern.

6.43 Inheritance [RIP]

6.43.1 Description of application vulnerability

Inheritance the ability to create enhanced and/or restricted object classes based on existing object classes can
introduce a number of vulnerabilities, both inadvertent and malicious. Because Inherdadoas the overriding

of methods of the parent class and because object oriented systems are designed to separate and encapsulate
code and data, it can be difficult to determine where in the hierarchy an invoked method is actually defined. Also,
since aroverriding method does not need to call the method in the parent class that has been overridden,
essential initialization and manipulation of class data may be bypassed. This can be especially dangerous during
constructor and destructor methods.

Languagethat allow multiple inheritance add additional complexities to the resolution of method invocations.
Different object brokerage systems may resolve the method identity to different classes, based on how the
inheritance tree is traversed.

6.43.2 Cross reference

JSF AV Rules: 86 to 97
MISRA C++ 2008:1012, 83-1, 161-1 to 161-3, and 163-1 to 10-3-3
AdaQualityand Style Guide: 9 (complete clause)

6.43.3 Mechanism of failure

The use of inheritance can lead to an exploitable application vulnéyadi negatively impact system safety in
several ways:

9 Execution of malicious redefinitions, this can occur through the insertion of a class into the class hierarchy
that overrides commonly called methods in the parent classes.

1 Accidental redefinition, Wwere a method is defined that inadvertently overrides a method that has already
been defined in a parent class.

9 Accidental failure of redefinition, when a method is incorrectly named or the parameters are not defined
properly, and thus does not overridenaethod in a parent class.

9 Breaking of class invariants, this can be caused by redefining methods that initialize or validate class data
without including that initialization or validation in the overriding methods.

92 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 086

These vulnerabilities can increase drainally as the complexity of the hierarchy increases, especially in the use
of multiple inheritance.

6.43.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:
1 Languages that allow single and multiple inheritances.

6.43.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

1 Avoid the use of multiple inheritance wherevpossible.

1 Provide complete documentation of all encapsulated data, and how each method affects that data for
each object in the hierarchy.

9 Inherit only from trusted sources, and, whenever possible, check the version of the parent classes during
compilaion and/or initialization.

1 Provide a method that provides versioning information for each class.

6.43.6 Implications for standardization
In future standardization activities, the following items should be considered:

1 Language specification should incluthe definition of a common versioning method.
1 Compilers should provide an option to report the class in which a resolved method resides.
1 Runtime environments should provide a trace of all runtime method resolutions.

6.44 Extra Intrinsics [LRM]

6.44.1 Description of application vulnerability

Most languages define intrinsic procedures, which are easily available, or always "simply available", to any
translation unit. If @ranslator extends the set of intrinsics beyond those defined by the standard, and the
standard specifies that intrinsics are selected before procedures of the same signature defined by the application
a different procedure may be unexpectedly used whestching between translators.

6.44 .2 Cross reference
[None]
6.44.3 Mechanism of failure

Most standard programming languages define a set of intrinsic procedures which may be used in any application
Some language standards allow a translator to extensl bt of intrinsic proceduressome language standards
specify that intrinsic procedures are selected ahead of an application procedure of the same sigmatangay

cause a different procedure to be used whasitching between translators.

© ISTIEC2012 ¢ All rights reserved 93

WG 23/N 086 Baseline Edition 2TR 24772

For examplemost languages provide a routine to calculate the square root of a number, usually sgm@gd .
If a translator also provided, as an extension, a cube root routine, say nelong}l , that extension may
override an application defined procedure of thense signature. If the two differertbrt() routines chose
different branch cuts when applied to complex arguments, the application could unpredictably go wrong.

If the language standard specifies that application defined procedures are selected ahethsitiprocedures
of the same signature, the use of the wrong prdare may mask a linking error.

6.44.4 Applicable language characteristics
This vulnerability description is intended to be applicable to languages with the following characteristics:

1 Any hnguage where translators may extend the set of intrinsic procedures and where intrinsic
procedures are selected ahead of application defined (or external library defined) procedures of the same
signature.

6.44.5 Avoiding the vulnerability or mitigating it s effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

1 Use whatever language features are available to mark a procedure as language defined or application
defined.

1 Be aware of the documentation for ewetranslator in use and avoid using procedure signatures matching
those defined by the translatas extending the standard set.

6.44.6 Implications for standardization
In future standardization activities, the following items should be considered:

1 Qearlystate whether translatorganextend the set of intrinsic procedures or not

1 Qearly state what the precedence is for resolving collisions

1 Qearly provide ways to mark a procedure signature as being the intrinsic or an application provided
procedure

1 Require that a diagnostic is issued when an application procedure matches tredwigrof an intrinsic
procedure.

6.45 Argument Passing to Library Functions [TRJ]

6.45.1 Description of application vulnerability

Libraries that supply objects or functions are in most cases not required to check the validity of parameters
passed to them. In those cases where parameter validaticegisired there might not be adequate parameter
validation.

6.45.2 Cross reference

| CWE:

94 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 086

114. Process Control
JSF AV Rules 16, 18, 19, 20, 21, 22, 23, 24, and 25
MISRA C 20020.2, 20.3, 20.4, 20.6, 20.7, 20.8, 20.9, 20.10, 20.11, and 20.12

MISRA C++ 268017-0-1, 170-5, 180-2, 180-3, 180-4, 182-1, 187-1 and 270-1
CERT C guiliiges: INTOC and STReCZ

6.45.3 Mechanism of failure

When calling a library, either the calling function or the library may make assumptions about paranketers.
examplejt may be assumed by a library that a parameter is-nero so division by that parameter is performed
without checking the valueSometimes some validation is performed by the calling function, but the library may
use the parameters in ways that were unigipated by the calling function resulting in a potential vulnerability.
Even when libraries do validate parameters, their response to an invalid parameter is usually undefined and can
cause unanticipated results.

6.45.4 Applicable language characterist ics

This vulnerability description is intended to be applicable to languages with the following characteristics:

1 Languageproviding or usingjbraries that do not validate the parameters accepted by functions,
methods and objects.

6.45.5 Avoiding the vuln erability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

Libraries should be defined so that as many parameters as possible are validated.

Libraries should be defined to validedaay values passed to the library before the value is used.
Develop wrappers around library functions that check the parameters before calling the function.
Demonstrate statically that the parameters are never invalid.

Use only libraries known to have bedaveloped with consistent and validated interface requirements.

= =4 =4 =4 =4

It is noted that several approachean be taken, some work best if used in conjunction with each other.
6.45.6 Implications for standardization
In future standardizatiomctivities the folbwing items should be considered:

1 All languages that define a support library should consider removing most if not all cases of undefined
behaviour from the librarglauses.

1 Languages should define libraries that provide the capability to validate parasrmeng compilation,
during execution or by static analysis.

© ISTIEC2012 ¢ All rights reserved 95

WG 23/N 086 Baseline Edition 2TR 24772

6.46 Inter -language Calling [DJS

6.46.1 Description of application vulnerability

When an aplication is developed using more than one programming language, complications arise. The calling
conventions, data layout, error handing and return conventions all differ between languages; if these are not
addressed correctly, stack overflow/underflodata corruption, and memory corruption are possible.

In mult-language development environments it is also difficult to reuse data structures and object code across
the languages.

6.46.2 Cross reference
[Nong
6.46.3 Mechanism of failure

When calling a fuction that has been developed using a language different from the calling language, the call
convention and the return convention used must be taken into account. If these conventions are not handled
correctly, there is a good chance the calling stackbeilcorrupted, see [OTR]. The call convention covers how
the language invokes the call, see [CJS], and how the parameters are handled.

Many languages restrict the length of identifiers, the type of characters that can be used as the first character,
andthe case of the characters used. All of these need to be taken into account when invoking a routine written in
a language other than the calling language. Otherwise the identifiers might bind in a manner different than
intended.

Character and aggregate t@datypes require special treatmeint a multilanguage development environment. The
data layout of all languages that are to be used must be taken into consideration; this includes padding and
alignment. If these data types are not handled correctly,data could be corrupted, the memory could be
corrupted, or both may become corrupt. This can happen by writing/reading past either end of the data
structure, see [HCB]. For exampldascabTRINGdata type

VAR str: STRING(10);
correspands to a C structure
struct {
int length;

char str [10];
2

andnot to the C structure

char str [10]

wherelength contains the actual length @TRING. The second C construct is implemented with a physical
length that is different from physical lengtif the PascabTRINGand assumes a null terminator.

96 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 086

Most numeric data typs have counterparts across languages, but again the layout should be understood, and
only those types that match the languages should be used. For example, in some implemeofafensa

signed char

would match a Fortran
integer(1)

and would match a Pascal

PACKED- 128..127

These correspondences can be implementatilefiined and should be verified.
6.46.4 Applicable language characteristics

The vulnerability is applicable to lgmages with the following characteristics:

1 All high level programming languages and low level programming languages are susceptible to this
vulnerability when used in a mulainguage development environment.

6.46.5 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

1 Use the intedlanguage methods and syntax specified by the applicable language standard(s). For
example, Fortran and Ada specify how to cdlii@tions.
1 Understand the calling conventions of all languages used.
1 For items comprising the intdanguage interface:
0 Understand the data layout of all data types used.
0 Understand the return conventions of all languages used.
o0 Ensure that the language which error check occurs is the one that handles the error.
0 Avoid assuming that the language makes a distinction between upper case and lower case letters
in identifiers.
Avoid using a special character as the first character in identifiers.
o0 Avoid using Ing identifier names.

o

6.46.6 Implications for standardization
In future standardization activities, the following items should be considered:

1 Standards committees should consider developing standard provisions fodaniguage calling with
languages mostften used with their programming language.

© ISTIEC2012 ¢ All rights reserved 97

WG 23/N 086 Baseline Edition 2TR 24772

6.47 Dynamically -linked Code and Self-modifying Code [NYY]

6.47.1 Description of application vulnerability

Code that is dynamically linkeday be different from the code that was tested. This may be the result of
replacing a library with another of the same name or by altering an envieotivariable such as
LD_LIBRARY_PATHon UNIXplatforms so that a different directory is searched for the library file. Executing
code that is different than thawvhich was tested may lead to unanticipated errors or intentional malicious
activity.

On some platforms, and in some languages, instructions can modify other instructions in the code space.
Historically selnodifying code was needed for software that was required to run on a platform with very limited
memory. Itis now primarily use(or misused) to hide functionality of software and make it more difficult to
reverse engineer or for specialty applications such as graphics where the algorithm is tuned at runtime to give
better performance. Selfhodifying code can be difficult to wetcorrectly and even more difficult to test and
maintain correctly leading to unanticipated errors.

6.47.2 Cross reference
JSF AV Rule: 2
6.47 .3 Mechanism of failure

Through the alteration of a library file or environment variable, the code that is dym@dlynimked may be
different from the code which was tested resulting in different functionality.

On some platforms, a pointdo-data can erroneously be given an address value that designates a location in the
instruction space. If subsequently a moditioa is made through that pointer, then an unanticipated behaviour
can result.

6.47.4 Applicable language characteristics
This vulnerability description is intended to be applicable to languages with the following characteristics:
1 Languages that allow a paer-to-data to be assigned an address value that designates a location in the
instruction space
9 Languages that allow executionadde that exists inlata space

1 Languages that permit the use of dynamically linked or shared libraries
1 Languagethat executeon an OS that permits program memory to be both writable and executable.

6.47.5 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:
91 Verify that the dyamically linked or shared code being used is the same as that which was tested.

1 Do not write seHmodifying code except in extremely rare instances. Most software applications should
never have a requirement for satiodifying code.

98 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 086

1 Inthose extremely ra instances where its use is justified, selbdifying code should be very limited and
heavily documented.

6.47.6 Implications for standardization
In future standardizatiomctivities the following items should be considered:

1 Languages should consider piding a means so that a program can either automatically or manually
check that the digital signaturef a library matches the one in the compile/test environment.

6.48 Library Signature [NSQ

6.48.1 Description of application vulnerability

Programs written in modern languages may use libraries written in other languages than the program
implementation language. If the library is larges #ffort of adding signatures for all of the functions use by
hand may be tedious and errgrone. Portable crosknguage signatures will require detailed understanding of
both languages, which a programmer may lack.

Integrating two or more programmingtguages into a single executable relies upon knowing how to interface
the function calls, argument list and global data structures so the symbols match in the object code during linking

Byte alignment can be a source of data corruption if memory bouaddrétween the programming languages
are different. Each language may also align structure data differently.

6.48.2 Cross reference

MISRA C 2004: 1.3
MISRA C++ 2008:012

6.48.3 Mechanism of failure

When the library and the application in which it ssie used are written in different languages, the specification
of signatures is complicated by intemguage issues.

As used in this vulnerability description, the term library includes the interface to the operating system, which
may be specified onlyof the language used to code the operating system itself. In this case, any program written
in any other language faces the inl@anguage interoperability issue of creating a fdllpctional signature.

When the application language and the library laage are different, then the ability to specify signatures
according to either standard may not exist, or be very difficult. Thus, a trandlgtivanslator solution may be
needed, which maximizes the probability of incorrect signatures (since the solatist be recreated for each
translator pair). Incorrect signatures may or may not be caught during the linking phase.

6.48.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the follawargcteristics:

© ISTIEC2012 ¢ All rights reserved 99

WG 23/N 086 Baseline Edition 2TR 24772

9 Languages that do not specify how to describe signatures for subprograms written in other languages.
6.48.5 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effedisariollowing ways:

i Use tools to create the signatures.
9 Avoid using translator options or language features to reference library subprograms without proper
signatures.

6.48.6 Implications for standardization
In future standardization activities, the folwing items should be considered:

1 Provide correct linkage even in the absence of correctly specified procedure signatures. (Note that this
may be very difficult where the original source code is unavailable.)
1 Provide specified means to describe the sigmes of subprograms.

6.49 Unanticipated Exceptions from Library Routines [HIW]

6.49.1 Description of applic ation vulnerability

A library in this context is taken to mean a set of software routines produced outside the control of the main
application developer, usually by a third party, and where the application developer may not have access to the
source. In sch circumstances the application developer has limited knowledge of the library functions, other than
from their behavioural interface.

Whilst the use of libraries can present a number of vulnerabilities, the focus of this vulnerability is any undesirable
behaviour that a library routine may exhibit, in particular the generation of unexpected exceptions.

6.49.2 Cross reference

JSFAV Rule208

MISRA Q004 3.6, 20.3

MISRA C+2008 153-1, 153-2, 1704
AdaQualityand Style Guide: 5.8 and 7.5

6.49.3 Mechanism of failure

In some languages, unhandled exceptions leadhjglementationdefinedbehaviour. This can include immediate
termination, without for example, releasing previously allocated resourtfes library routineraisesan
unanticipaed exception, this undesirable behaviour may result.

It should be noted that the considerations[@YB, IgnoredError Statusand Unhandled Exceptionare also
relevant here.

100 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 086

6.49.4 Applicable language characteristics

This vulnerability description istended to be applicable to languages with the following characteristics:

 Languagesthadl y f Ay {1 LINBGA2dzate RS@OSt2LISR fAONINE O2
access to the library source)
1 Languages that permit exceptions to be throwntlolo not require handlers for them

6.49.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

T 1ff fAONINE OF ffa acka df RptiasEaieNi thalaSgRagesshppdttd sfichl W C
construct), so that any unanticipated exceptions can be caught and handled appropriBtedywrapping
may be done for each library function call or for the entire behaviour optlogram,for example having
the exception handler in main for C+However, note thatthe laS NJ A ay Qd | O2 YLX Sid S
objects are constructed before maimdantered and are destroyed after it has been exité&bnsequently,
MISRA C+H#.6] bars class constructors and destructors from throwing exceptions (unless handled locally).
1 An alternative approach would be to use only library routines for which all possible exceptions are
specified.

6.49.6 Implications for standardization

In future standardization activities, the following items should be considered:

9 Languages that provide exceptions should provide a mechanism for catching all possible ex¢fptions
example} W@ i @K Klhe/beHaBohdnfdhengram when encountering an unhandled
exception should be fully defined.

1 Languages should provide a mechanism to determine which exceptions might be thrown by a called
library routine.

6.50 Pre-processor Directives [NMP]

6.50.1 Description of application vulnerability

Preprocessor replacements happen before any source code syntax check, therefore there is no type ehecking
this is especially importarih functionlike macro parameters.

If great care is not taken in the writing of macros, the expanded macro can have an unexpected meaning. In
many cases if explicit delimiters are not added around the macro text and around all macro arguments within th
macro text, unexpected expansion is the result.

Source code that relies heavily on complicated-precessor directives may result in obscure and hard to
maintain code since the syntax they expect may be different from the expressions programmersyegudact
in a given programming language.

© ISTIEC2012 ¢ All rights reserved 101

WG 23/N 086 Baseline Edition 2TR 24772

6.50.2 Cross reference

Holzmannr8

JSFAV Rules: 26, 27, 28, 29, 30, 31, and 32

MISRA C 2004: 191.7, 19.8, and 19.9

MISRA C++ 2008:-D&3, 160-4, and 160-5

CERT C guidelines: PREQPREGEZ, PREXQ, anl PRE3L

6.50.3 Mechanism of failure

Readability and maintainability may be greatly decreased Hppoeessing directives are used instead of language
features.

While static analysis can identify many problems early; heavy use of thgrpcessor cantit the effectiveness
of many static analysis tools, which typically work on them@cessed source code.

In many cases where complicated macros are used, the program doés mdtat is intended. For example:

define a macro as follows,
#define CD(x, y)(x+y - 1Dly

whose purpose is to divide. Then suppose it is used as follows
a=CD (b & c, sizeof (int));

which expands into
a = (b & ¢ + sizeof (int) - 1)/ sizeof (int);

which most times will not do what is intended. Defining the maaso
#define CD(x, y) ((x) + (y) - D/(y)

will provide the desired result.
6.50.4 Applicable language characteristics
This vulnerability description is intended to be applicable to languages with the following characteristics:

Languages that have a lealtlevel preprocessor.

Languages that allow unintended groupings of arithmetic statements.
Languages that allow cascading macros.

Languages that allow duplication of side effects.

Languages that allow macros that reference themselves.

Languages that allv nested macro calls.

Languages that allow complicated macros.

=A =4 =4 =4 =4 4 =4

102 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 086

6.50.5 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

1 Where it is possible to achievhd desired functionality without the use of pprocessor directives, this
should be done in preference to the use of yp@cessodirectives

6.50.6 Implications for standardization
In future standardization activities, the following items should be @wred:

i Standardsshould reduce or eliminate dependence on lexdeakl preprocessors for essential
functionality (such as conditional compilation).

9 Standards should consider providing capabilities to inline functions and procedure calls, to reduce the
need for preprocessor macros.

6.51 Suppression of Language-defined Run -time Checking [MXB]

6.51.1 Description of application vulnerability

Some languages include the provision for runtime checking to prevent vulnerabilities to @asenical
examples are bounds or length checks on array operations owalule checks upon dereferencing pointers or
references. In most cases, the reaction to a failed check is the raising of a lardpfags exception.

As runtime checking requires execution time and as some project guidelines exclude the use of exceptions,
languages may define a way to optionally sumsreuch checking for regions of the code or for the entire
program. Analogously, compiler options may be used to achieve this effect.

6.51.2 Cross reference
[None]
6.51.3 Mechanism of Failure

Vulnerabilities that could have been prevented by the-time checks are undetected, resulting in memory
corruption, propagation of incorrect values or unintended execution paths.

6.51.4 Applicable language characteristics
This vulnerability description is intended to be applicable to languages with the followamgatéristics:

9 Languages that define runtime checks to prevent certain vulnerabilities and

1 Languages that allow the above checks to be suppressed,

1 Languages or compilers that suppress checking by default, or whose compilers or interpreters provide
optionsto omit the above checks

© ISTIEC2012 ¢ All rights reserved 103

WG 23/N 086 Baseline Edition 2TR 24772

6.51.5 Avoiding the vulnerability
Software developers can avoid the vulnerability or mitigate ieffidicts in the following ways:

9 Do not suppress checks at all or restrict the suppression of checks to regions of the codevéhbeba
proved to be performanceritical.

If the default behaviour of the compiler or the language is to suppress checks, then enable them.
Where checks are suppressed, verify that the suppressed checks could not have failed.

Clearly identify code sectisnwhere checks are suppressed.

Do not assume that checks in code verified to satisfy all checks could not fail nevertheless due to
hardware faults.

=A =4 =4 =9

6.51.6 Implications for standardization

[None]

6.52 Provision of Inherently Unsafe Operations [SKL]

6.52.1 Description of application vulnerability

Languages define semantic rules to be obeyeddnformingprograms. Compiles enforce these ruleand
diagnoseviolating programs.

A canonical example are the rules of type checking, intended among other reasons to prevent semantically
incorrect assignments, such as characters to pointers, meter to feet, euro to dollar, reakrsitolbooleans, or
complex numbers to twalimensional coordinates.

Occasionally there arises a need to step outside the rules of the type model to achieve needed funct@nally.
suchsituation is the casting of memory as part of the implementatioa bkap allocator to the type of object for

which the memory is allocatedA typesafe assignment is impossible for this functionalifjus, a capability for

dzy OKSO1 SR aiiel)lS OFadAay3dé o0SGoSSy I NDA (G NindtBssatydutlSa o 2
inherently unsafe operation, without which the tygafe albcator cannot be programmed.

Another example is the provision of operations known to be inherently unsafe, such as the deallocation of heap
memory without prevention of danglingferences.

A third example is any interfacing with another language, since the checks ensurirgpfgpess rarely extel
across language boundaries.

These inherently unsafe operations constitute a vulnerability, since they can (and will) be usedraynpnegs in
situations where their use is neither necessary nor appropriate.

The vulnerability is eminently exploitaktie violate program security.
6.52.2 Cross reference

[None]

104 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 086

6.52.3 Mechanism of Failure

The use of inherently unsafe operations or the prgssion of checkingircumventshe features that are
normally applied to ensure safe execution. Control flow, data values, and memory accesses can be corrupted as
consequence. See the respective vulnerabilities resulting from such corruption.

6.52.4 Applicable lan guage characteristics
This vulnerability description is intended to be applicable to languageghétfollowing characteristics:

1 Languages that allow compitane checks for the prevention of vulnerabilities to be suppressed by
compiler or nterpreter options or by language constructs, or
1 Languages that provide inherently unsafe operations

6.52.5 Avoiding the vulnerability
Software developers can avoid the vulnerability or mitigate ieffiicts in the following ways:

1 Restrict the suppregsn of compiletime checks to where the suppression is functionally essential.

9 Use inherently unsafe operations only when they are functionally essential.

1 Clearly identify program code that suppresses checks or uses unsafe operations. This permitggiing fo
of review effort to examine whether the function could be performed in a safer manner.

6.53 Obscure Language Features [BRY

6.53.1 Description of application vulnerability

Every programming language has features that are obscure, difficult to understand or difficult to use correctly.
The problem is compounded if a software design must be reviewed by people who may not be language experts,
suchas, hardware engineers, humdactors engineers, or safety officergven if the design and code are initially
correct, maintainers of the software may not fully understand the intéflhe consequences of the problem are

more severe if the software is toe used in trusted applications, such as safety or mission critical ones.

Misunderstood language features or misunderstood code sequences can lead to application vulnerabilities in
development or in maintenance.

6.53.2 Cross reference

JSF AV Rules: 84, 88, and 97

MISRA C 2004: 3.2, 10.2, 13.1, 12066:20.12, and 12.10
MISRA C++ 2008:201, 23-1, and 121-1

CERT C guiliiees: FIO0XL, MSCOE, MSC3C, and MSC3C.
ISO/IEC TR 15942:2000: 5.4.2,5.6.2 and 5.9.3

6.53.3 Mechanism of failure

The useof obscure language features can lead to an application vulnerability in several ways:

© ISTIEC2012 ¢ All rights reserved 10E

WG 23/N 086 Baseline Edition 2TR 24772

i The original programmer may misunderstand the correct usage of the feature and could utilize it
incorrectly in the design or code it incorrectly.

1 Reviewers of the desigand code may misunderstand the intent or the usage and overlook problems.

1 Maintainers of the code cannot fully understand the intent or the usage and could introduce problems
during maintenance.

6.53.4 Applicable language characteristics
This vulnerabity description is intended to be applicable to any language.
6.53.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

1 Individual programmers should avdite use of language features that are obscure or difficult to use,
especially in combination with other difficult language featur@sganizations should adopt coding
standards that discourage use of such features or show how to use them correctly.

1 Organzations developing software with critically important requirements should adopt a mechanism to
monitor which language features are correlated with failures during the development process and during
deployment.

9 Organizations should adopt or develop stengaital idioms for the use of difficult language features,
codify them in organizational standards, and enforce them via review processes.

9 Avoid the use of complicated features of a language.

1 Avoid the use of rarely used constructs that could be diffiarlehtry-level maintenance personnel to
understand.

i Static analysis can be used to find incorrect usage of some language features.

It should be noted that consistency in coding is desirable for each of review and mainteddrezefore, the
desirability d the particular alternatives chosen for inclusion in a coding standard does not need to be empirically
proven.

6.53.6 Implications for standardization
In future standardization activities, the following items should be considered:

1 Language designers shdudonsider removing or deprecating obscure, difficult to understand, or difficult
to use features.
1 Language designers should provide language directives that optionally disable obscure language features.

6.54 Unspecified Behaviour [BQF]

6.54.1 Description of application vulnerability

The external behaviour of a program whose source code contains one or more instances of constructs having
unspecified behavioumay not be fully predictable when the source code is (re)compiled or (re)linked.

106 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 086

6.54.2 Cross reference

JSF AV Rules:-2%

MISRA C 2004:3,1.5,3.13.3,3.4,17.3,1.2,5.1, 18.2, 19.2, and 19.14
MISRA C++ 2008061, 52-6, 7-2-1, and 163-1

CERT Quglelines: MSC1&

See Undefined Behaviour [EWF] and Implementatiefined Behaviour [FAB]

6.54.3 Mechanism of failure

Language specifications do not always uniquely define the behaviour of a construct. When an instance of a
construct that is not uniqug defined is encountered (this might be at any of compile, link, or run time)
implementations are permitted to choose from the set of behaviours allowed by the language specifiddten.
term 'unspecified behaviour' is sometimes applied to such behasjdlanguage specific guidelines need to
analyze and document the terms used by their respective language).

A developer may use a construct in a way that depends on a subset of the possible behaviours octhering.
behaviour of a program containing suahlusage is dependent on the translator used to build it always selecting
the 'expected' behaviour.

Many language constructs may have unspecified behaviour and unconditionally recommending against any use
these constructs may be impracticdtor instarce, in many languages the order of evaluation of the operands
appearing on the leftand righthand side of an assignment is unspecified, but in most cases the set of possible
behaviours always produce the same result.

The appearance of unspecified behavién a language specificationrescognitionby the language designers that
in some cases flexibility is needed by software developers and provides a worthwhile benefit for language
translators; this usage is not a defect in the language.

The important chracteristic is not the internal behaviour exhibited by a construct (such as the sequence of
machine code generated by a translator) but its external behaviour (that is, the one visible to a user of a
program). If the set of possible unspecified behavisyrermitted for a specific use of a construct all produce the
same external effect when the program containing them is executed, then rebuilding the program cannot result in
a change of behaviour for that specific usage of the construct.

For instance, whél the following assignment statement contains unspecified behaviour in many langitiagies
is, it is possible to evaluate either theor B operand first, followed by the other operand)

A =B;

in most cases the order in whighandB are evaluated doesat affect the external behaviour of a program
containing this statement.

6.54.4 Applicable language characteristics

This vulnerability is intended to be applicable to languages with the following characteristics:

© ISTIEC2012 ¢ All rights reserved 107

WG 23/N 086 Baseline Edition 2TR 24772

1 Languages whose specification allows d@diset of more than one behaviour for how a translator
handles some construct, where two or more of the behaviours can result in differences in external
program behaviour.

6.54.5 Avoiding the vulnerability or mitigating its effects
Software developers caavoid the vulnerability or mitigate its ill effects in the following ways:

1 Use language constructs that have specified behaviour.

1 Ensure that a specific use of a construct having unspecified behaviour produces a result that is the same
for all of the posle behaviours permitted by the language specification.

1 When developing coding guidelines for a specific language all constructs that have unspecified behaviour
should be documented and for each construct the situations where the set of possible beaisasanu
vary should be enumerated.

6.54.6 Implications for standardization
In future standardization activities, the following items should be considered:

1 Languages should minimize the amount of unspecified behaviours, minimize the number of possible
behavours for any given "unspecified" choice, and document what might be the difference in external
effect associated with different choices.

6.55 Undefined Behaviour [EWF]

6.55.1 Description of application vulnerability

The external behaviour of a program containing an instance of a construct having undefined behaviour, as defined
by the language specification, is not predictable.

6.55.2 Cross reference

JSF AV Rules:-2%

MISRA C 2004:3, 1.5, 3.13.3,3.4,17.3,1.2,5.1, 18.2, 19.2, and 19.14
MISRA C++ 2008:13-1, 52-2, 162-4, and 162-5

CERT C guiliiges: MSC1&

See Unspecified Bhaviour [BQFhnd Implementatiordefined Bhaviour [FAB]

6.55.3 Mechanism of failure

Language specifications may categorizelibbaviourof a language construct as undefined rather than as a
semantic violation (that is, an erroneous use of the language) because of the potentially high implementation cost
of detecting and diagnosgnall occurrences of it. In this case no specific behaviour is required and the translator
or runtime system is at liberty to do anything it pleases (which may include issuing a diagnostic).

108 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 086

Thebehaviourof a program built from successfully translatedisme code containing a construct having
undefinedbehaviouris not predictable. For example, in some languages the value of a variable is undefined
before it is initialized.

6.55.4 Applicable language characteristics
This vulnerability is intended to beplicable to languages with the following characteristics:

1 Languages that do not fully define the extent to which the use of a particular construct is a violation of
the language specification.

1 Languages that do not fully define the behaviour of constrdating compile, link and program
execution.

6.55.5 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

9 Ensuring that undefined language constructs areus#d.

1 Ensuring that a use of a construct having undefined behaviour does not operate within the domain in
which the behaviour is undefinedVhen it is not possible to completely verify the domain of operation
during translation a runtime check may neexdle performed.

1 When developing coding guidelines for a specific language all constructs that have untefiaetbur
should be documented. The items on this list might be classified by the extent to whibkhhgiouris
likely to have some critical ipact on the externabehaviourof a program (the criticality may vary
between different implementations, for example, whether conversion between object and function
pointers has well definedehaviouy.

6.55.6 Implications for standardization

In future standardization activities, the following items should be considered:

1 Language designers should minimize the amount of undefeddviourto the extent possible and
practical.

9 Language designers should enumerate all the cases of undefined behaviour.

9 Languagealesigners should provide mechanisms that permit the disabling or diagnosing of constructs that
may produce undefined behaviau

6.56 Implementation -defined Behaviour [FAB]
6.56.1 Description of application vulnerability

Some constructs in programming languages are not fully defined (see UnspBefiedioufBQF]) and thus
leave compiler implementations to decide how the construct wikigpe. Thebehaviourof aprogram,whose
source code contains one or more instances of constructs having implementiforedbehaviour can change
when the source code is recompiled or relinked.

© ISTIEC2012 ¢ All rights reserved 10¢

WG 23/N 086 Baseline Edition 2TR 24772

6.56.2 Cross reference

JSF AV Rules:-2%

MISRA C 2004:3,1.5,3.13.3,3.4,17.3,1.2,5.1, 18.2, 19.2, and 19.14
MISRA C++ 2008:29, 53-3, 7-3-2, and 95-1

CERT C guiliiees: MSC1&

ISO/IEC TR 15942:2000: 5.9

AdaQualityand Style Guide: 7.1.5 and 7.1.6

See UnspecifiedBehaviou[BQFJand Unafined BehavioufEWF].

6.56.3 Mechanism of failure

Language specifications do not always uniquely defindo#teviourof a construct.When an instance of a
construct that is not uniquely defined is encountered (this might be at any of translatio#iniek or program
execution) implementations are permitted to choose from a sdietiavious. The only difference from
unspecifiedoehaviouris that implementations are required to document how they behave.

A developer may use a construct in a way thagpeleds on a particular implementatieshefinedbehaviour
occurring. Thebehaviourof a program containing such a usage is dependent on the translator used to build it
always selecting the 'expecteoéhaviout

Some implementations provide a mechanism foarging an implementation's implementatiaiefined

behaviour(for example, use giragmas in source code). Use of such a change mechanism creates the potential
for additional human error in that a developer may be unaware that a changehafviourwas requestectarlier

in the sourcecode and may write code that depends the implementationdefinedbehaviourthat occurred

prior to that explicit change diehaviour.

Many language constructs may have implementatitaiinedbehaviourand uncoulitionally recommending
against any use of these constructs may be completely impractcalinstance, in many languages the number
of significant characters in an identifier is implementatiefined. Developers need to choose a minimum
number of chaacters and require that only translators supporting at least that numNgof characters be used.

The appearance of implementatiafefinedbehaviourin a language specification is recognition by the language
designers that in some cases implementatiaxitility provides a worthwhile benefit for language translators;
this usage is not a defect in the language.

6.56.4 Applicable language characteristics

This vulnerability is intended to be applicable to languages with the following characteristics:

1 Languaes whose specification allows some variation in how a translator handles some construct, where
reliance on one form of this variation can result in differences in external progedraviour

1 Language implementations may not be required to provide a meshafor controlling implementation
definedbehaviout

110 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 086

6.55.5 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

1 Document the set of implementatiedefinedfeatures an application depends upon, so that upon a
change of translator, development tools, or target configuration it can be ensured that those
dependencies are still met

1 Ensure that a specific use of a construct having implementatefinedbehaviourproduces an external
behaviourthat is the same for all of the possitidehavious permitted by the language specification.

1 Only use a language implementation whose implementatiefinedbehavious are within a known
subset of implementatiofefinedbehaviours. The known subset should be chosen so that the 'same
externalbehaviout condition described above is met.

1 Create highly visible documentation (perhaps at the start of a source file) that the default
implementationdefinedbehaviouris changed witin the current file.

1 When developing coding guidelines for a specific language all constructs that have implementation
definedbehaviourshall be documented and for each construct, the situations where the set of possible
behavious can vary shall be enwrated.

1 When applying this guideline on a project the functionality provided by and for changing its
implementationdefinedbehaviourshall be documented.

1 Verify code behaviour using at least two different compilers with two different technologies.

6.56.6 Implications for standardization

In future standardization activities, the following items should be considered:

9 Portability guidelines for a specific language should provide a list of common implemerdafioed
behavious.

9 Language specifiers shouldwenerate all the cases of implementatiatefined behaviour

1 Language designers should provide language directives that optionally disable obscure language feature:s

6.57 Deprecated Language Features [MEM]

6.57.1 Description of application vulnerability

All code should conform to the current standard for the respective language. In reality though, a language
standard may change during the creatioha software system or suitable compilers and development
environments may not be available for the new standard for some period of time after the standard is published.
Tosmooth the process of evolution, features that are no longer needed or whisle serthe root cause of or
contributing factor for safety or security problems are often deprecated to temporarily allow their continued use
but to indicate that those features may be removed in the future. The deprecation of a feature is a strong
indicaton that it should not be used. Other features, although not formally deprecated, are rarely used and there
exist other more common ways of expressing the same function. Use of these rarely used features can lead to
problems when others are assigned ttask of debugging or modifying the code containing those features.

© ISTIEC2012 ¢ All rights reserved 111

WG 23/N 086 Baseline Edition 2TR 24772

6.57.2 Cross reference

JSF AV Rules: 8 and 11

MISRA C 2004: 1.1, 4.2, and 20.10

MISRA C++ 2008:0-1, 23-1, 25-1, 27-1, 52-4, and 180-2
AdaQualityand Style Guide: 7.1.1

6.57.3 Mechanism of failure

Most languages evolve over time. Sometimes new features are added making other features extraneous.
Languages may have features that are frequently the basis for security or safety problems. The deprecation of
these features inaiates that there is a better way of accomplishing the desired functionality. However, there is
always a time lag between the acknowledgement that a particular feature is the source of safety or security
problems, the decision to remove or replace the f@atand the generation of warnings or error messages by
O2YLWAESNE (KIG GKS FSIFGdNBE aKz2dzZ RyQli 0SS dzaSRo DA@S
possible and even likely that a language standard will change causing some of thedemed to be suddenly
deprecated. Modifying the software can be costly and time consuming to remove the deprecated features.
However, if the schedule and resources permit, this would be prudent as future vulnerabilities may result from
leaving the depecated features in the code. Ultimately the deprecated features will likely need to be removed
when the features are removed

6.57.4 Applicable language characteristics
This vulnerability description is intended to be applicable to languages with tlovfiolj characteristics:

1 All languageshat have standards, though some only have defacto standards.
1 All languages that evolve over time and as such could potentially have deprecated features at some point.

6.57.5 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

1 Adhere to the latest published standard for which a suitable complier and development environment is
available.

1 Avoid the use of deprecated featurefa language.

1 Stay abreast of language discussions in language user groups and standards groups on the Internet.
Discussions and meeting notes will give an indication of problem prone features that should not be used
or should beused with caution.

6.57.6 Implications for standardization
In future standardization activities, the following items should be considered:

1 Obscure language features for which there are commonly used alternatives should be considered for
removal from the language standard.

112 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 086

1 Obscue language features that have routinely been found to be the root cause of safety or security
vulnerabilities, or that are routinely disallowed in software guidance documents should be considered for
removal from the language standard.

1 Language designerbauld provide language mechanisms that optionally disable deprecated language
features.

7. Application Vulnerabilities

7.1 General

This clause provides descriptions of selected application vulnerabilities which have been found and exploited in &
number ofapplications and which have well known mitigation techniques, and which result from design decisions
made by coders in the absence of suitable language library routines or other mechahisnibese
vulnerabilities, each description provides:

1 a summanpof the vulnerability,

1 typical mechanisms of failure, and

i techniques that programmers can use to avoid the vulnerability

7.2 Terminology

These vulnerabilities are applicatioelated rather than languageelated. They are written in a language
independant manner, and there are no corresponding sections in the annexes.

7.3 Unspecified Functionality [BVQ)]

7.3.1 Description of application vulnerabil ity

Unspecified functionalitis code that may be executed, but whose behaviour does not contribute to the
requirements of the applicatior? KAt S GKA& YI & 06S y2 Y2NB GKFYy |y | Y
in a spreadsheetit does raise questions about the level of control of the development process.

InasecurityONR GAOFET SY@ANRYYSyYyd LI NIAOdZ I NI e&sx RESNRSAHZ P
illegitimate access to the system on ieh it is eventually executed, irrespective of whether the application has
obvious security requirements.

7.3.2 Cross reference

JSF AV Rule: 127
MISRA C 2004: 2.2,2.3, 2.4, and 14.1
XYQDead and Deactivated code. ‘

7.3.3 Mechanism of failure

Unspecifiedunctionalityis not a software vulnerability per se, but more a development issue. In some cases,
unspecified functionality may be added by a developer without the knowledge of the development organization.

© ISTIEC2012 ¢ All rights reserved 113

WG 23/N 086 Baseline Edition 2TR 24772

In other cass, typically Easter Eggs, the functionality is unspecified as far as the user is concerned (nobody buys a
spreadsheet expecting to find it includes a flight simulator), but is specified by the development organization. In
effect they only reveal asubseFo 1 KS LINPINI YQa O0SKF@A2dzNJ 12 (GKS dza SNE

In the first case, one would expect a well managed development environment to discover the additional
functionality during validation and verification. In the second case, the user is relying on the supplier not to
release harmful code.

Ly STFFSOGZ | LINRPINIYQAa NBIldZANBYSyida INBE WiKS LINEINI
¢tKS WIYyR R2 y2iKAy3a StaSQ OfldAaS A& 2FGSy yz2i SELX A

7.3.4 Avoiding the vulnerability or mitigating its effects
End usergan avoid the vulnerability or mitigate its ill effects in the following ways:

1 Programs and development tools that are to be used in critical applications should come from a
developer who uses a recognizadd audited development process for the development of those
programs and toold-or example: ISO 9001 or CMMI®.

1 The development process should generate documentation showing traceability from source code to
NEBIjdZANBYSyidas Ay STHFIAGH 2Fy D2 RER WiHferduispeRifietl N2 HANL & Kd
functionality is there for a legitimate reason (such as diagnostics required for developer maintenance or
enhancement), the documentation should also record thiss not unreasonable for customers of
bespoke critical code to ask to see such traceability as part of their acceptance of the application.

7.4 Distinguished Values in Data Types [KLK]

7.4.1 Description of application vulnerability

Sometimes, in a type representation, certain values are distinguished as not being members of the type, but
rather as providing auxiliary informatioreExamples include special characters uasdtring terminators,

distinguished values used to indicate out of type entrieS@i(Structured Query Languageitabase fields, and
sentinels used to indicate the bounds of queues or other data structuMsenthe usage pattern of code

containing distinguished values is changed, it may happen that the distinguished value happens to coincide with a
legitimate intype value. In such a case, the value is no longer distinguishable frortygpeinalue and the

software will no longer produce the intended results.

7.4.2 Cross reference

CWE:
20. Improper input validation
‘ 137. Representation errors
JSFAV Rule151

7.4.3 Mechanism of failure
I GRAAGAYIAdZAAKSR Ot f dz§5¢ 2N | b YaltygeAniyht fedayed © Nepyresdnyoutli K S

of-type information. Some examples include the following:

‘ 114 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 086

 Theuseofaspecialcodichasinné¢ > G2 AYRAOIFIGS GKS GSN¥YAYLFGAZ2Y
f The use of a special valumich ast ppdh X pé = | & that KSacthayvRIe Gleithdr Boy'known or
is invalid.

If the use of the software is later generalized, the ospecial value can become indistinguishable from valid
data. Note that the problem may occur simply if the pattern of usage of the softwareanged from that
FYGAOALI GSR o0& (GKS az2Fidgl NBEQa RSaAIYySNERD® LG YI & | f

An example of a change in the pattern of usage is this: An organization logs visitors to its buildings by recording
their namesand national identity numbers or social security numbers in a datab@$eourse, some visitors

f SAAGAYIGSE @ R2y QU KIFI@S 2N R2y Qi (1y26 GKSANI a20A1lf
0 KS 02 Y LldziRedéptisniste dittneut RAYy 3 KI @S I R2LIGSR (KS 62y gdSyl
ppppé G2 RS&aA Iyl (i SReCeptibrisiR AtBnsthe? HuildiBgvhade @sed3he dagne code to
designate foreign nationalsVhen the databases are merged, the children are reclassiifidreign nationals or
viceversa depending on which set of receptionists are using the newly merged database.

An example of an unanticipated change due to reuse is this: Suppose a software component analyzes radar date
recording data every degree of amith from 0 to 359.Packets of data are sent to other components for

processing, updating displays, recording, and so%ince all degree values are npagative, a distinguished

value of-1 is used as a signal to stop processing, compute summaryadliade, files, and so orMany of the
components are to be reused in a new system with a new radar analysis compdimmever the new

component represents direction by numbers in the rarty@0 degrees to 179 degree®¥hen an azimuth value

of -1 is proviled, the downstream components will interpret that as the indication to stop proces#iiige

magic value is changed to, sa§99, the software is still at risk of failing when future enhancements (say,

counting accumulated degrees on complete revalns) bring-999 into the range of valid data.

Distinguished values should be avoided. Instead, the software should be designed to use distinct variables to
encode the desired oudf-type information. For example, the length of a character string mighebeoded in a
dope vector and validity of data entries might be encoded in distinct Boolean values.

7.4.4 Avoiding the vulnerability or mitigating its effects
End usergan avoid the vulnerability or mitigate its ill effects in the following ways:

1 Use audiary variables (perhaps enclosed in variant records) to encodeftype information.

1 Use enumeration types to convey category informati@o not rely upon large ranges of integers, with
distinguished values having special meanings.

9 Use named constaatto make it easier to change distinguished values.

7.5 Adherence to Least Privilege [XYN]

7.5.1 Description of application vulnerability

Falure to adhere to the principle of least privilege amplifies the risk posed by other vulnerabilities.

© ISTIEC2012 ¢ All rights reserved 11E

WG 23/N 086 Baseline Edition 2TR 24772

7.5.2 Cross reference

CWE:
250. Design Principle Violation: Failure to Use Least Privilege
CERT C guililees: POSOEZ

7.5.3 Mechanism of failure

This vuherability type refers to cases in which an application grants greater access rights than necessary.
Depending on the level of access granted, this may allow a user to access confidential inforfratierample,
programs that run with root privileges fia caused innumerabléNIXsecurity disasters. It is imperative that you
carefully review privileged programs for all kinds of security problems, but it is equally important that privileged
programs drop back to an unprivileged state as qyiell possibléo limit the amount of damage that an
overlooked vulnerability might be able to cause. Privilege management functions can behave in setmanless
obvious ways, and they have different quirks on different platforfisese inconsistencies aparticularly
pronounced if you are transitioning from one nooot user to another.Signal handlers and spawned processes
run at the privilege of the owning process, so if a process is running as root when a signal fires-praceshis
executed, thesignal handler or suprocess will operate with root privilege#n attacker may be able to leverage
these elevated privileges to do further damagko grant the minimum access level necessary, first identify the
different permissions that an applicaticor user of that application will need to perform their actions, such as file
read and write permissions, network socket permissions, and so faitlen explicitly allow those actions while
denying all else.

7.5.4 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

1 Very carefully manage the setting, management and handling of privileges. Explicitly manage trust zones
in the software.
1 Follow the principle oleast privilege when assigning access rights to entities in a software system.

7.6 Privilege Sandbox Issues [XY(

7.6.1 Description of application vulnerability

A variety of vulnerabilities occur with improper handling, assignment, or management of privilEgese are
especially present in sandbox environments, although it could be argued that any privilege problem occurs within
the context of sme sort of sandbox.

7.6.2 Cross reference

CWE:
266. Incorrect Privilege Assignment
267. Privilege Defined With Unsafe Actions
268. Privilege Chaining
269. Privilege Management Error

116 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 086

270. Privilege Context Switching Error
272. Least Privilege Violation
273 Failure to Check Whether Privileges were Dropped Successfully
274. Failure to Handle Insufficient Privileges
276. Insecure Default Permissions
732 Incorrect Permission Assignment for Critical Resource
CERT C guililees: POS3€

7.6.3 Mechanism of failu re

The failure to drop system privileges when it is reasonable to do so iswag@icationvulnerability by itself. It
does, however, serve to significantly increase the severity of other vulnerabilfissording to the principle of

least privilegeaccess should be allowed only when it is absolutely necessary to the function of a given system,
and only for the minimal necessary amount of timeny further allowance of privilege widens the window of

time during which a successful exploitation of #ystem will provide an attacker with that same privilege.

Many situations could lead to a mechanism of failure:

T
)l

1

A product could incorrectly assign a privilege to a particular entity.

A particular privilege, role, capability, or right could be used to perfonsafe actions that were not
intended, even when it is assigned to the correct entiMote that there are two separate stiategories
here: privilege incorrectly allows entities to perform certain actions; and the object is incorrectly
accessible t@ntities with a given privilege.)

Two distinct privileges, roles, capabilities, or rights could be combined in a way that allows an entity to
perform unsafe actions that would not be allowed without that combination.

The software may not properly managevileges while it is switching between different contexts that
cross privilege boundaries.

A product may not properly track, modify, record, or reset privileges.

In some contexts, a system executing with elevated permissions will hand off a processither

objectto another process/userlf the privileges of an entity are not reduced, then elevated privileges are
spread throughout a system and possibly to an attacker.

The software may not properly handle the situation in which it has insufficienigges to perform an
operation.

A program, upon installation, may set insecure permissions for an object.

7.6.4 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the folgpways:

1

The principle of least privilege when assigning access rights to entities in a software system should be
followed. The setting, management and handling of privileges should be managed very cargpdly.
changing security privileges, one shoaltsure that the change was successful.

Consider following the principle of separation of privilegRequire multiple conditions to be met before
permitting access to a system resource.

© ISTIEC2012 ¢ All rights reserved 117

WG 23/N 086 Baseline Edition 2TR 24772

il

Trust zones in the software should be explicitly manadédt allpossible, limit the allowance of system
privilege to small, simple sections of code that may be called atomically.

As soon as possible after acquiring elevated privilege to call a privileged function sicb@§) |, the
program should drop root privilegand return to the privilege level of the invoking user.

In newer Windows implementations, make sure that the gggtoken has the SelmpersonBté&vilege

7.7 Executing or Loading Untrusted Code XYY

7.7.1

Description of application vulnerability

Executing commands or loading libraries from an untrusted source or in an untrusted environmeatisaran
application to execute malicious commands (and payloads) on behalf of an attacker

7.7.2

\ CWE:

Cross reference

114. Process Control
‘ 306. Missing Authentication for Critical Function
CERT C guiliies: PREOZ, ENVOZ, and ENVGG

7.7.3

Mechanism of failure

Process control vulnerabilities take two forms:

1

An attacker can change the command that the program executes so that the attacker explicitly controls
what the command is.

An attacker can change the environment in which the command executdmsthe attacker implicitly
controls what the command means.

Considering only the first scenario, the possibility that an attacker may be able to control the command that is
executed, process control vulnerabilities occur when:

T
f
1

7.7.4

Data enters the applicatiofrom a sourcethat is not trusted

The data is used as or as part of a string representing a command that is executed by the application.
By executing the command, the application gives an attacker a privilege or capability that the attacker
would not othewise have.

Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

1

118

Libraries that are loaded should be well understood and come from a trusted soutca digjital
signature. The application can execute code containedative libraries, which often contain calls that
are susceptible to other security problems, such as bufferflows or command injection.

All native libraries should be validated

Determine if the application requires the use of the native librargalh bevery difficult to determine
what these libraries actually do, and the potential for malicious code is high.

© ISQIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 086

1 To help prevent buffer overflow attacks, validate all input to ratials for content and length.
1 If the native library does not come from a trusted source, review the source code of the lilitaey.
library should be built from the reviewed source before using it.

7.7.5 Implications for standardization
In future standardiz@ion activities, the following items should be considered:

1 Language independent ARts code signing and data signisljould be defined, allowing each
Programming Language to define a binding.

7.8 Memory Locking [XZX]

7.8.1 Description of application vulnerability

Sensitive data stored in memory that was not locked or that has been improperly locked may be written to swap
files on disk by the virtual memory manager.

7.8.2 Cross reference

CWE:
591. Sensitive Data Storage in Improperly Locked Memory
CERT C guililes: MEMO&C

7.8.3 Mechanism of failure

Sensitive data that is not kept cryptographically secoray become visible to an attacker by any of several
mechanisms.Some operating systems may write memory to swap or page files that may be visible to an attacker.
Some operating systems may provide mechanisms to examine the physical memory of themytstemirtual

memory of another applicationApplication debuggers may be able to stop the target application and examine or
alter memory.

7.8.4 Avoiding the vulnerability or mitigating its effects

In almost all cases, these attacks require elevatedppropriate privilege.
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

1 Remove debugging tools from production systems.

1 Log and audit all privileged operations.

1 Identify data that needs to be protected amnde appropriate cryptographic and other data obfuscation
technigues to avoid keeping plaintext versions of this data in memory or on disk.

9 If the operating systenallows, clear the swap file on shutdown.

Note: Several implementations of the PO&i&ck() and the Microsoft Window¥irtualLock()
functions will prevent the named memory region from being written to a swap or pagefoeever, such
usage is not portable.

© ISTIEC2012 ¢ All rights reserved 11¢

WG 23/N 086 Baseline Edition 2TR 24772

Systems that provide a ltbernate” facility (such as laptops) will write all of physical memory to a file that may be
visible to an attacker on resume.

7.8.5 Implications for standardization

In future standardization activities, the following items should be considered:

1 Languagendependent APIs fanemory lockingshould be defined, allowing each Programming Language
to define a binding.

7.9 Resource Exhaustion [XZP]

7.9.1 Description of application vulnerability

The application is susceptible to generating and/or accepting an excessive number of requests that could
potentially exhaust limited resources, such as memory, file system storage, database connection pool entries, or
CPU.Thiscould ultimately lead to a denial of service that could prevent any other applications from accessing
these resources.

7.9.2 Cross reference

CWE
400. Resource Exhaustion

7.9.3 Mechanism of failure

There are two primary failures associated with resevezhaustion The most common result of resource
exhaustion is denial of servicén some cases an attacker or a defect may cause a system to fail in an unsafe or
insecure fashion by causing an application to exhaust theadblaitesources.

Resource exhaustion issues are generally understood but are far more difficult to préaking advantage of
various entry points, an attacker could craft a wide variety of requests that would cause the site to consume
resources.Databae queries that take a long time to process are gbo&(Denial of Service) targeté&\n

attacker would only have to write a few lines of Perl code to generate enough traffic to exceed the site's ability to
keep up. This wold effectively prevent authorized users from using the site at all.

Resources can be exhausted simply by ensuring that the target machine must do much more work and consume
more resources$o service a request than the attacker must do to initiate a requ@&sevention of these attacks
requires either that the target system either recognizes the attack and denies that user further access for a given
amount of time or uniformly throttles all requeste make it more difficult to consume resources more quickl

than they can again be freed he first of these solutions is an issue in itself though, since it may allow attackers

to prevent the use of the system by a particular valid usethe attacker impersonates the valid user, he may be
able to prevent tle user from accessing the server in questidine second solution is simply difficult to

effectively institute and even when properly done, it does not provide a full solutissimply makes the attack
require more resources on the part of the attacker

120 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 086

The final concern that must be discussed about issues of resource exhaustion is that of systems which "fail open
This means that in the event of resource consumption, the system fails in such a way that the state of the system
T and possibly the secity functionality of the system arecompromised.A prime example of this can be

found in old switches that were vulnerable to "mataftacks (so named for a tool developed by Dug3ong

These attacks flooded a switch with randorfitiernet Protocolland MAQMedia Access Contraddress
combinations, therefore exhausting the switch's cache, which held the information of which port corresponded to
which MAC addresse®nce this cache was exhaustelde tswitch would fail in an insecure way and would begin

to act simply as a hub, broadcasting all traffic on all ports and allowing for basic sniffing attacks.

7.9.4 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the veitability or mitigate its ill effects in the following ways:

1 Implement throttling mechanisms into the system architectufiéhe best protection is to limit the
amount of resources that an application can cause to be expendestrong authentication andcaess
control model will help prevent such attacks from occurring in the first pldde authentication
application should be protected against denial of service attacks as much as poksibteng the
database access, perhaps by caching result satshelp minimize the resources expendda further
limit the potential for a denial of service attack, consider tracking the rate of requests received from users
and blocking requests that exceed a defined rate threshold.
1 Ensure that applications haveexific limits of scale placed on them, and ensure that all failures in
resource allocation cause tlapplication to fail safely.

7.10 Unrestricted File Upload [CBH

7.10.1 Description of application vulnerability

A first step often used to attack is to get an executable on the system to be attacked. Then the attack only needs
to execute this code. Many times this first step is accomplished by uiutestk file upload. In many of these

attacks, the malicious code can obtain the same privilege of access as the application, or even administrator
privilege.

7.10.2 Cross reference

CWE:
434.Unrestricted Upload of File with Dangerous Type

7.10.3 Mechanism of failure
There are several failures associated with an uploaded file:

Executing arbitrary code.

Phishing page added to a website.
Defacing a website.

Creating a vulnerability for other attacks.
Browsing the file system.

=A =4 =4 =4 =4

© ISTIEC2012 ¢ All rights reserved 121

WG 23/N 086 Baseline Edition 2TR 24772

1 Creating a denial of service.
1 Uploading a malicious executable to a server, which could be executed with administrator privilege.

7.10.4 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

Allow only certain file extensions, commonly known aghate-list.

Disallow certain file extensions, commonly known ddagklist.

Use a utility to check the type of the file.

Check the contentype in the header iformation of all files that are uploadedlhe purpose of the

content-type field is to describe the data contained in the body completely enough that the receiving

agent can pick an appropriate agent or mechanism to present the data to the user, or ctbet@al with

the data in an appropriate manner.

1 Use a dedicated location, which does not have execution privileges, to store and validate uploaded files,
and then serve these files dynamically.

1 Require a unique file extension (named by the application kbgex), so only the intended type of the file
is used for further processing. Each upload facility of an application could handle a unique file type.

1 Remove all Unicode characters and all control charatfess the filename and the extensions.

1 Set aimit for the filename length; including the file extension. INNIFF§New Technology File System)
partition, usually a limit of 255 characters, without path information will suffice.

1 Set upper and lower limits diile size. Setting these limits can help in denial of service attacks.

=A =4 =4 =2

All of the above have some short comings, for example, & @fFfile may contain a frelorm comment field,

and therefore a sanity check of the files contents is naiags possible. An attacker can hide code in a file
segment that will still be executed by the application or server. In many cases it will take a combination of the
techniques from the above list to avoid this vulnerability.

7.10.5 Implications for stan dardization
In future standardization activities, the following items should be considered:

1 Language independent APIs for file identification should be defined, allowing each Programming
Language to define a binding.

7.11 Resource Names[HTS]

7.11.1 Description of application vulnerability

Interfacing with the directory structure or other external identifiers on a system on which software executes is
very common. Diff@nces in the conventions used by operating systems can result in significant changes in
behaviourwhen the same program is executed under different operating systems. For instance, the directory
structure, permissible characters, case sensitivity, anfbb can vary among operating systems and even

S Seehttp://www.ascii.cl/controkcharacters.htm

122 © ISTIEC2012 ¢ All rights reserve

http://www.ascii.cl/control-characters.htm

Baseline Editiol2 TR 24772 WG 23/N 086

among variations of the same operating systefiar exampleMicrosoftLINR K A 0 AF(édF Boukl K2YesT 6 dzi
Linux and OS ¥peratingd @ 8 1 SYa +ftt2¢6 Fye OKIFINIOGSNI SEOSLII F2NJ
filename.

Some operating systems are case sensitive while others are not. Gresersensitive operating systems,
depending on the software being used, the same filenandztoR 6 S RA &AL I @ SRX & daFAf
GCL[9b!a9¢ FyR Itf g2df R NBFSNI G2 GdKS alryYS FAtSo

Some operating systems, particularly older ones, only rely on the significance of timediratacters of the file
name. n can be unexpectedly small, suchths first 8 characters in the case of Windghitectures which would
Ol dzaS GFAfSYIlI YSMEZT GFAESYlIYSHE YR aFAESYylYSoé¢ G2

Variations in the filename, named resource or external identifier being referenaetiethe basis for various
kinds of problems.Such mistakesr ambiguity can be unintentionady intentional, and in either case they can be
potentially exploited, iburreptitious behaviour is a goal.

7.11.2 Crossreference

JSF AV Rules: 46, 51, 53,5%},and 56
MISRA C 2004: 1.4 and 5.1
CERT C guililees: MSCOZ and MSC1Q

7.11.3 Mechanism of Failure

The wrong named resource, such as a file, may be used within a program in a form that provides access to a
resource that was not intended to be accedseAttackers could exploit this situation to intentionally misdirect
access of a named resource to another named resource.

7.11.4 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its la#f in the following ways:

1 Where possible, use an API that provides a known common set of conventions for naming and accessing
external resources, such as POSIX, ISO/IEC 9945:2003 (IEEE St00093.1

1 Analyze the range of intended target systems, depel suitable API for dealing with them, and
document the analysis

1 Ensure that programs adapt thdiehaviourto the platform on which they are executing, so that only the
intended resources are accessed. The means that information on such charastesstie directory
separator string and methods of accessing parent directories need to be parameterized and not exist as
fixed strings within a program.

9 Avoid creating resource names that are longer than the guaranteed unique length of all potential targe

platforms.

Avoid creating resources, which atiferentiatedonly by the case in their names.

Avoidall Unicode characters and all control characténdilenamesand the extensions.

=a =

6 Seehttp://www.ascii.cl/controkcharacters.htm

© ISTIEC2012 ¢ All rights reserved 123

http://www.ascii.cl/control-characters.htm

WG 23/N 086 Baseline Edition 2TR 24772

7.11.5 Implications for standardization
In future standardizationivities, the following items should be considered:

1 LanguageéndependentAPIs for interfacing with external identifiers shoulddefined, allowing each
Programming Language to define a binding

7.12 Injection [RST]

7.12.1 Description of application vulnerability

Injection problems span a wide range of instantiatiom$ie basic form of this weakness involves the software
allowing injection of additional data in input data alter the control flow of the processCommand injection

problems are a subset of injection problem, in which the process can be tricked into calling external processes of
Fy Faadlr 01 SNRa OK2A0S UGUKNRAAK (GKS AMWRBOIGAZ2Y 2F O2YYl
leading/internal/trailing special elements injected into an application through input can be used to compromise a
system. As data is parsed, improperly handled multiple leading special elements may cause the process to take
unexpected actions that sult in an attack.Software may allow the injection of special elements that are-non
typical but equivalent to typical special elements with control implicatiofisis frequently occurs when the

product has protected itself against special element in@tt Software may allow inputs to be fed directly into

an output file that is later processed as codach as library file or template Line or section delimiters injected

into an application can be used to compromise a system.

Many injection attackvolve the disclosure of important informatian in terms of both data sensitivity and
usefulness in further exploitation. In some cases injectable code controls authentication; this may lead to a
remote vulnerability.Injection attacks are characterizéy the ability to significantly change the flow of a given
process, and in some cases, to the execution of arbitrary cBdea injection attacks lead to loss of data integrity
in nearly all cases as the contglhne data injected is always incidentaldata recall or writing Often the

actions performed by injected control code are not logged.

SQL injection attacks are a common instantiation of injection attack, in which SQL commands are injected into
input to effect the execution of predefined SQLnomands. Since SQL databases generally hold sensitive data,
loss of confidentiality is a frequent problem with SQL injection vulnerabilitfgsoorly implemented SQL

commands are used to check user names and passwords, it may be possible to conrsycttémmaas another

user with no previous knowledge of the passwolflauthorization information is held in a SQL database, it may

be possible to change this information through the successful exploitation of the SQL injection vulnerability. Just
as it my be possible to read sensitive information, it is also possible to make changes or even delete this
information with a SQL injection attack.

Injection problems encompass a wide variety of issueal mitigated in very different waysThe most important
issue to note is that all injection problems share one thing in commadhey allow for the injection of control

data into the user controlled dataThis means that the execution of the process may be altered by sending code
in through legitimate data chinels, using no other mechanisrivhile buffer overflows and many other flaws
involve the use of some further issue to gain execution, injection problems need only for the data to be parsed.
Many injection attacks involve the disclosure of important infation in terms of both data sensitivity and

124 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 086

usefulness in further exploitation. In some cases injectable code controls authentication, this may lead to a
remote vulnerability.

7.12.2 Cross reference

CWE: |
74. Failure to Sanitize Data into a Different RIginjection’)
76. Failure to Resolve Equivalent Special Elements into a Different Plane
TYy® CILAfdzZNB G2 {FyAGATS s5FGF AyaG2 y h{ /2YYlIYyR
89: Improper Neutralization of Special Elements used in an SQL Command (‘'SQL Injection")
on® ClLAfdzNB G2 {FyAGATS S5FGF AydG2 [5!'t vdsSNARSa o
91. XML Injection (aka Blind XPath Injection)
92. Custom Special Character Injection
95. Insufficient Control of Directives in Dynamically Code Evaluated Code (aka 'Eval Injection’)
97.Failure to Sanitize Serv&ide Includes (SSI) Within a Web Page
Py ® LyadzFFAOASY(d /2y iGNRBEt 2F CAftSylYS F2NJ LyOf dzRS
hPpd LYyadzFFAOASYG /2y iNRt 2F wS&az2d2NOS LRSYUGATFASNE
144 Failure to Sanitize Line Delimiters
145. Failure to Sanitize Section Delimiters
161. Failure to Sanitize Multiple Leading Special Elements
163. Failure to Sanitize Multiple Trailing Special Elements
165. Failure to Sanitize Multiple Internal Special Elasien
166. Failure to Handle Missing Special Element
167. Failure to Handle Additional Special Element
168. Failure to Resolve Inconsistent Special Elements
564. SQL Injection: Hibernate
CERT C guililees: FIO36C

7.12.3 Mechanism of failure

A software systenthat accepts and executes input in the form of operating system commandb @s

system() ,exec() ,open()) could allow an attacker with lesser privileges than the target software to execute
commands with the elevated privileges of the executing proc€snmand injection is a common problem with
wrapper programs.Often, parts of the command to be run are controllable by the end uBex.malicious user
injects a character (such as a sarolon) that delimits the end of one command and the beginningnatther, he

may then be able to insert an entirely new and unrelated command to do whatever he pleases.

Dynamically generating operating system commands that include user input as parameters can lead to commanc
injection attacks.An attacker can insertperating system commands or modifiers in the user input that can cause
the request to behave in an unsafe mann&uch vulnerabilities can be very dangerous and lead to data and
system compromiself no validation of the parameter to the exec commandsexian attacker can execute any
command on the system the application has the privilege to access.

There are two forms of command injection vulnerabilitiés) attacker can change the command that the
program executes (the attacker explicitly controlsavthe command is) Alternatively, an attacker can change

© ISTIEC2012 ¢ All rights reserved 12E

WG 23/N 086 Baseline Edition 2TR 24772

the environment in which the command executes (the attacker implicitly controls what the command means).
The first scenario where an attacker explicitly controls the command that is execute¢canvehen:

1 Data enters the application from an untrusted source.

1 The data is part of a string that is executed as a command by the application.

1 By executing the command, the application gives an attacker a privilege or capability that the attacker
would na otherwise have.

Eval injection occurs when the software allows inputs to be fed directly into a funstioh @s'eval”) that

dynamically evaluates and executes the input as code, usually in the same interpreted language that the product
uses. Eval ifection is prevalent in handler/dispatch procedures that might want to invoke a large number of
functions, or set a large number of variables.

A PHBHAile inclusion occurs when a PHP product useglire orinclude statements, or equivalent
statements, that use attackezontrolled data to identify code ddiTML(HyperText Markup Language)be
directly processed by the PHP interpreter before inclusion in the script.

A resource injection issue occurs whee fiollowing two conditions are met:

1 An attacker can specify the identifier used to access a system resource. For example, an attacker might be
able to specify part of the name of a file to be opened or a port number to be used.

1 By specifying the resourcthe attacker gains a capability that would not otherwise be permittedr
example, the program may give the attacker the ability to overwrite the specified file, run with a
configuration controlled by the attacker, or transmit sensitive information tbied-party server.Note:
Resource injection that involves resources stored on the file system goes by the name path manipulation
and is reported in separate categorgeePath Traversal [EWRgscription for further details of this
vulnerability. Allowing user input to control resource identifiers may enable an attacker to access or
modify otherwise protected system resources.

Line or section delimiters injected into an application can be used to compromise a sys$etata is parsed, an
injected/absent/malformed delimiter may cause the process to take unexpected actions that result in an attack.
One example of a section delimiter is the boundary string in a multf&vtE (Multipurpose Internet Mail
Extensionsmessage. In many cases, doubled line delimiters can serve as a section delimiter.

7.12.4 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

1 Asame all input is maliciousJse an ppropriate combination of blacksts and whitelists to ensure only
valid, expected and appropriate input is processed by the system.

1 Narrowly define the set of safe characters ed®n the expected values of the parameter in the request.

91 Developers should anticipate that delimiters and special elements would be
injected/removed/manipulated in the input vectors of their software system and appropriate
mechanisms should be put in p&to handle them.

1 Implement SQL strings using prepared statements that bind variaBlepared statements that do not
bind variables can be vulnerable to attack.

126 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 086

1 Use vigorous whitdist style checking on any user input that may be used in a SQL comiRatiter than
escape metacharacters, it is safest to disallow them entirely since the later use of data that have been
entered in the database may neglect to escape naHaracters before use.

91 Follow the principle of least privilege when creating usepaats to a SQL databas&lsers should only
have the minimum privileges necessary to use their account. If the requirements of the system indicate
that a user can read and modify their own data, then limit their privileges so they cannot read/write
others'data.

1 Assign permissions to the software system that prevents the user from accessing/opening privileged files.

1 Restructure code so that there is not a need to usedtal() utility.

7.13 Cross-site Scripting [XYT]

7.13.1 Description of application vulnerability

Crosssite scriptingXS$occurs when dynamically generated web pages display input, such amfognation

that is not properly validated, allowing an attacker to embed malicious scripts into the generated page and then
execute the script on the machine of any user that views the site. If successfulsiteossripting vulnerabilities

can be exploited to manipate or steal cookies, create requests that can be mistaken for those of a valid user,
compromise confidential information, or execute malicious code on the end user systems for a variety of
nefarious purposes.

7.13.2 Cross reference

CWE:
79. Failure to Reserve Web Page Structure (‘'Cra#g Scripting')
80. Failure to Sanitize ScrRelated HTML Tags in a Web Page (Basic XSS)
81. Failure to Sanitize Directives in an Error Message Web Page
82. Failure to Sanitize Script in Attributes of IMG Tags in aREgb
83. Failure to Sanitize Script in Attributes in a Web Page
84. Failure to Resolve Encoded URI Schemes in a Web Page
85. Doubled Character XSS Manipulations
86. Invalid Characters in Identifiers
87. Alternate XSS Syntax

7.13.3 Mechanism of failure

Crosssite scripting (XSS) vulnerabilities occur when an attacker uses a web application to send malicious code,
generally JavaScriptio a different end userWhen a web application uses input from a user in the output it
generates withait filtering it, an attacker can insert an attack in that input and the web application sends the
attack to other usersThe end user trusts the web application, and the attacks exploit that trust to do things that
would not normally be allowedAttackess frequently use a variety of methods to encode the malicious portion of
the tag, such as using Unicode, so the request looks less suspicious to the user.

XSS attacks can generally be categorized into two categories: stored and reflgtieet] attacks i@ those
where the injected code is permanently stored on the target servers in a database, message forum, visitor log,

© ISTIEC2012 ¢ All rights reserved 127

WG 23/N 086 Baseline Edition 2TR 24772

and so forth. Reflected attacks are those where the injected code takes another route to the victim, such as in an
email message, or asome other serverWhen a user is tricked into clicking a link or submitting a form, the
injected code travels to the vulnerable web server, which reflects the attack back to the user's browser. The
browser then executes the code because it came fromustéd' server.For a reflected XSS attack to work, the
victim must submit the attack to the serverhis is still a very dangerous attack given the number of possible

ways to trick a victim into submitting such a malicious request, including clickimgan a malicious Web site, in

an email, or in amter-office posting.

XSS flaws are very common in web applications, as they require a great deal of developer discipline to avoid them
in most applications. It is relatively easy for an attacker to XK&&b vulnerabilitiesSome of these vulnerabilities

can be found using scanners, and some exist in older web application servers. The consequence of an XSS attack
the same regardless of whether it is stored or reflected.

The difference is in how the plad arrives at the server. XSS can cause a variety of problems for the end user
that range in severity from an annoyance to complete account comprorniike.most severe XSS attacks involve
disclosure of the user's session cookie, which allows an attackgjack the user's session and take over their
account. Other damaging attacks include the disclosure of end user files, installation of Trojan horse programs,
redirecting the user to some other page or site, and modifying presentation of content.

Crasssite scripting (XSS) vulnerabilities occur when:

1 Data enters a Web application through an untrusted source, most frequently a web request. The data is
included in dynamic content that is sent to a web user without being validated for malicious code.

9 The malicious content sent to the web browser often takes the form of a segment of JavaBatiptay
also include HTML, Flash or any other type of code that the browser may ex@héeariety of attacks
based on XSS is almost limiebut they commonly include transmitting private data like cookies or
other session information to the attacker, redirecting the victim to web content controlled by the
attacker, or performing other malicious operations on the user's machine under tise glithe
vulnerable site.

Crosssite scripting attacks can occur wherever an untrusted user has the ability to publish content to a trusted
web site. Typically, a malicious user will craft a cliside script, whicht when parsed by a web browser

performs some activity (such as sending all site cookies to a gareaikaddress)lIf the input is unchecked, this
script will be loaded and run by each user visiting the web Siace the site requesting to run the script has
access to the cookies irugstion, the malicious script does alsbhere are several other possible attacks, such as
running "Active X" controls (under Microsoft Internet Explorer) from sites that a user perceives as trustworthy;
cookie theft is however by far the most commoAl of these attacks are easily prevented by ensuring that no
script tagst or for good measure, HTML tags attallre allowed in data to be posted publicly.

Specific instances of XSS are:

1 'Basic' XSS involves a complete lack of cleansing of any speciaitets including the most fundamental
XSS elements such as'"">", and '&".

1 A web developer displays input on an error pagigch as customized 403 Forbidden pagdfan
attacker can influence a victim to view/request a web page that causes an trem the attack may be
successful.

128 © ISTIEC2012 ¢ All rights reserve

|l

Baseline Editiol2 TR 24772 WG 23/N 086

A Web application that trusts input in the form of HTML IMG tags is potentially vulnerable to XSS attacks.
Attackers can embed XSS exploits into the values for IMG attritatieb @sSRC) that is streamed and
then executed in a victim's browsemote that when the page is loaded into a user's browser, the exploit
will automatically execute.

The software does not filterBvaSript:" or other URIs (Uniform Reource Identifierfrom dangerous
attributes within tags, such asmmouseover , onload , onerror , orstyle

The web application fails to filter input for executable script disguised with URI encodings.

The web application fails to filter input for executableript disguised using doubling of the involved
characters.

The software does not strip out invalid characters in the middle of tag names, schemes, and other
identifiers, which are still rendered by some web browsers that ignore the characters.

The softwae fails to filter alternate script syntax provided by the attacker.

Crosssite scripting attacks may occur anywhere that possibly malicious users are allowed to post unregulated
material to a trusted web site for the consumption of other valid us@iiee most common example can be found
in bulletin-board web sites that provide web based mailingdigtle functionality. The most common attack
performed with crosssite scripting involves the disclosure of information stored in user cookiesome
circumstances it may be possible to run arbitrary code on a victim's computer whensitessripting is

combined with other flaws.

7.13.4 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate liesfiécts in the following ways:

il

7.14

Carefully check each input parameter against a rigsnpositive specification (whitkst) defining the
specificcharacters and format allowed.

All input should be sanitized, not just parameters that tiser is supposed to specify, but all data in the
request, including hidden fields, cookies, head#rs,URL(Uniform Resource Locatdt¥elf, and so

forth.

A common mistake that leads to continuing XSS vulnerabilgi¢o validate only fields that are expected
to be redisplayed by the site.

Data is frequently encountered from the request that is reflected by the application server or the
application that the development team did not anticipatalso, a field thatd not currently reflected may
be used by a future developefherefore, validating ALL parts of tHd TP(Hypertext Transfer Protocpl
request is recommended.

Unquoted Search Path or Element [XZQ)]

7.14.1 Description of application vulnerability

Strings injected into a software system that are not quoted can permit an attacker to executarbit
commands.

7.14.2 Cross reference

CWE:

© ISTIEC2012 ¢ All rights reserved 12¢

WG 23/N 086 Baseline Edition 2TR 24772

428. Unquoted Search Path or Element
CERT C guitilees: ENVOL

7.14.3 Mechanism of failure

The mechanism of failure stems from missing quoting of strings injected into a software sysjeatiowing
white-spa@s in identifiers, an attacker could potentially exezarbitrary commandsThis vulnerability covers
"C:\ Program Files " and spacén-searchpath issues.Theoretically this could apply to otheperating
systemsbesides Windows, especially those thatkeat easy for spaces to be in fiemesor foldersnames

7.14.4 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

1 Software should quote the input dataat can be potentially executed on a system.
1 Use a programming language that enforces the quoting of strings.

7.15 Improperly Verified Signature [XZR]

7.15.1 Description of application vulnerability

The software does not verify, or improperly verifies, the cryptographic signature for data. By not adequately
performing the verification step, the data being received should not be trustedradbe corrupted or made
intentionally incorrect by an adversary.

7.15.2 Cross reference

CWE:
347. Improperly Verified Signature

7.15.3 Mechanism of failure

Data is signed using techniques that assure the integrity of the ddttere are two ways that th integrity can be
intentionally compromised. The exchange of the cryptol&gigs may have been compromised so that an
attacker could provide encrypted data that has been altered. Alternatively, the cryptologic verification could be
flawed so that the encryptionf the data is flawed which again allows an attacker to alter the data.

7.15.4 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effiectise following ways:

1 Use data signatures to the extent possible to help ensure trust in data.
1 Use builtin verifications for data.

7.15.5 Implications for standardization

In future standardization activities, the following items should be considered:

130 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 086

1 Language independent APIs for data signing should be defined, allowing each Programming Language to
define a binding.

7.16 Discrepancy Information Leak [XZL]

7.16.1 Description of application vulnerability

A discrepancy information leak is an information leak in which the product behaves differently, or sends different
responses, in a way that reveals securiilevant information about the statof the product, such as whether a
particular operation was successful or not.

7.16.2 Cross reference

CWE:
203. Discrepancy Information Leaks
204. Response Discrepancy Information Leak
206. Internal Behavioural Inconsistency Information Leak
207. ExternbBehavorial Inconsistency Information Leak
208. Timing Discrepancy Information Leak

7.16.3 Mechanism of failure

A response discrepancy information leak occurs when the product sends different messages in direct response ft
an attacker's request, in a walyat allows the attacker to learn about the inner state of the produthe leaks
can be inadvertenfbug) or intentional (design).

A behavioural discrepancy information leak occurs when the product's actions indicate important differences
based on (1) ta internal state of the product or (2) differences from other products in the same ofdtxcks

such as OS fingerprinting rely heavily on both behavioural and response discrepaatiaternal behavioural
inconsistency information leak is the situatiwhere two separate operations in a product cause the product to
behave differently in a way that is observable to an attacker and reveals semigtant information about the
internal state of the product, such as whether a particular operation wasessful or notAn external
behavioural inconsistency information leak is the situation where the software behaves differently than other
products like it, in a way that is observable to an attacker and reveals sepelgtyant information about which
product is beingised, or its operating state.

A timing discrepancy information leak occurs when two separate operations in a product require different
amounts of time to complete, in a way that is observable to an attacker and reveals seelaitsint iformation
about the state of the product, such as whether a particular operation was successful or not.

7.16.4 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the follomayg:

1 Compartmentalizéhe system to have "safe" areas where trust boundaries can be unambiguously drawn.
1 Do not allow sensitive data to go outside of the trust boundary and always be careful when interfacing
with a compartment outside of the safe area

© ISTIEC2012 ¢ All rights reserved 131

WG 23/N 086 Baseline Edition 2TR 24772

7.17 Sensitive Information Uncleared Before Use[XZK]

7.17.1 Description of application vulnerability

The softwae does not fully clear previously used information in a data structure, file, or other resource, before
making that resource available to another party that did not have access to the original information.

7.17.2 Crossreference

\ CWE:
226. Sensitive Infonation Uncleared Before Release
CERT C guiliies: MEMO3C

7.17.3 Mechanism of failure

This typically involves memory in which the new dataupies less memory thdhe old data, which leaves
portions of the old data still available ("memory disclosyirdHowever, equivalent errors can occur in other
situations where the length of data is variable but the associated data structure i§hit.can overlap with
cryptographic errors and crodgmundary cleansing infmation leaks.

Dynamic memory managers are not required to clear freed memory and generally do not because of the
additional runtime overheadFurthermore, dynamic memory managers are free to reallocate this same memory.
As a result, it is possible to accidentally lsaksitive information if it is not cleared before calling a function that
frees dynamic memoryProgrammers should not and c@rely on memory being cleared during allocation.

7.17.4 Avoiding the vulnerability or mitigating its effects
Software developes can avoid the vulnerability or mitigate its ill effects in the following ways:

9 Use library functions and or programming language feat{gsash as destructors or finalization
procedures}hat provide automatic clearing of freed buffers or the functiatyalo clear buffers.

7.18 Path Traversal [EWR]

7.18.1 Description of application vulnerability

The software constructs a path that contains relative traversal sequsinde as ".." or an absolute path sequence
such as "/path/here." Attackers run the software in a particular directory so that the hard link or symbolic link
used by the software accesses a file that the attacker has under their control. In doing thatier may be
able to escalate their privilege level to that of the running process.

7.18.2 Cross reference

| CWE:
22. Path Traversal
24. Path Traversal.../filedir’
25. Path Traversal: '/../filedir'

132 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 086

Hc® tFOK ¢NFFSNEIfY UKRANKDPOKTFALSYlF YSQ
27. Path Treersal: 'dir/../../flename'
28. Path Traversal:\filename'
29. Path Traversak.\filename'
30. Path Traversakdir\..\filename'
31. Path Traversal: 'dir\filename'
32. Path Traversal: "..." (Triple Dot)
33. Path Traversal: "...." (Multiple Dot)
34. Path Traversal: "..../I"
35. Path Traversal: ".../..II"
oT® tFGK ¢NFYISNEIfY Wkl oaz2fdziSkLI 0Ky YSKkKSNBQ
oy ® t I K \absdt&pathidErmak 8 N8B Q
39. Path Traversal: 'C.dirname’
40. Path Traversak\UNGshardnama' (Windows UNC Share)
61.UNIXSymbolic Link (Symlink) Following
62. UNIX Hard Link
64. Windows Shortcut Following (.LNK)
65. Windows Hard Link
CERT C guililees: FIO0ZL

7.18.3 Mechanism of failure

There are two primary ways that an attacker can orchestrate an attack using path aavirshe first, the
attacker alters the path being used by the software to point to a location that the attacker has control over.
Alternatively, the attacker has no control over the path, but can alter the directory structure so that the path
points o a location that the attacker dodgmvecontrol over.

For instance, a software system that accepts input in the form diléname’, \. \filename',

‘[directory/../filename’, 'directory/../../filename’, '\filename', \. \filename', \directory\. \filename’,
‘directory\. \. \filename', "...", "...." (multiple dots), "....//", or "...[.../I' without appropriate validation can allow an
attacker to traverse the file system to access an arbitrary file. Note that '.." is ignored if the current working
diredory is the root directory.Some of these input forms can be used to cause problems for systems that strip
out "..' from input in an attempt to remove relative path traversal.

There are several common ways that an attacker can point a file accessetohe flttacker has under their
control. A software system that accepts input in the form of '/absolute/pathname/here’ or

‘\absolutd pathnamahere' without appropriate validation can also allow an attacker to traverse the file system
to unintended locatios or access arbitrary filegin attacker can inject a drive letter or Windows volume letter
(‘'C:dirname’) into a software system to potentially redirect access to an unintended location or arbitra#y file.
software system that accepts input in the fooha backslash absolute path without appropriate validation can
allow an attacker to traverse the file system to unintended locations or access arbitraryAilestitacker can

inject a Windows UNQ@Jniversal Naming Convention or Uniform Naming Convensibaje

(\\UNGsharaname") into a software system to potentially redirect access to an unintended location or arbitrary
file. A software system that allows UNdymbolic links (symlinkas part of paths whether in internal code or
through user input can allow an attacker to spoof the symbolic link and traverse the file system to unintended

© ISTIEC2012 ¢ All rights reserved 133

WG 23/N 086 Baseline Edition 2TR 24772

locations or access arbitrary fileShe symbolic link capermit an attacker to read/write/corrupt a file that they
originally did not have permissions to access. Failure for a system to check for hard links can result in vulnerability
to different types of attacksFor example, an attacker can escalate theivifgges if he/she can replace a file

used by a privileged program with a hard link to a sensitive file, for exaetplpasswd . When the process

opens the file, the attacker can assume the privileges of that process.

A software system that allows Windowhkortcuts (.LNK) as part of paths whether in internal code or through user
input can allow an attacker to spoof the symbolic link and traverse the file system to unintended locations or
access arbitrary filesThe shortcut (file with thelnk extension)can permit an attacker to read/write a file that
they originally did not have permissions to access.

Failure for a system to check for hard links can result in vulnerability to different types of attacks. For example, an
attacker can escalate their priviles if he/she can replace a file used by a privileged program with a hard link to a
sensitive file guch astc/passwd). When the process opens the file, the attacker can assume the privileges of
that process or possibly prevent a program from accurgtebcessing data in a software system.

7.18.4 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

1 Assume all input is maliciougttackers can insert pathiato input vectors and traverse the file system.

1 Use an ppropriate combination of blacksts and whitelists to ensure only valid and expected input is
processed by the system.

T 1! alFyAGATAy3a YSOKIFIyAayY Oy NBY2 J&quitel br8dmOéxQdid & dzC
An attacker can try to fool the sanitizing mechanism into "cleaning" data into a dangerousSonppose
GKS GdF O1 SNJ Ay 2 S Gay ssenbi.tiveFibell) arfd thé damtiing ImechakisnSrghtoveSthed
characterresulting in the valid filename, "sensitiveFildf the input data are now assumed to be safe,
then the file may be compromised.

91 Files can often be identified by other attributes in addition to the file name, for example, by comparing

file ownership or reation time. Information regarding a file that has been created and closed can be

stored and then used later to validate the identity of the file when it is reoper@amparing multiple
attributes of the file improves the likelihood that the file is thepected one.

Follow the principle of least privilege when assigning access rights to files.

Denying access to a file can prevent an attacker from replacing that file with a link to a sensitive file.

Ensure good compartmentalization in the system to pilevprotected areas that can be trusted.

When two or more users, or a group of users, have write permission to a directory, the potential for

sharing and deception is far greater than it is for shared access to a fewTiles/ulnerabilities that

resultfrom malicious restructuring via hard and symbolic links suggest that it is best to avoid shared
directories.

1 Securely creating temporary files in a shared directory is error prone and dependent on the version of the
runtime library used, the operating ggsn, and the file systemCode that works for a locally mounted
file system, for example, may be vulnerable when used with a remotely mounted file system.

9 The mitigation should be centered on converting relative paths into absolute paths and then gerifyin
that the resulting absolute path makes sense with respect to the configuration and rights or pensissi

= =4 =4 =

134 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 086

This may include checkimghite-lists andblacklists, authorized super user status, access control lists,
other fully trusted status

7.19 Missing Required Cryptographic Step [XZ]

7.19.1 Description of application vulnerability

Cryptographic implementations should fml the algorithms that define them exactlytherwise encryptiorcan
be faulty.

7.19.2 Cross reference

CWE: |
325. Missing Required Cryptographic Step
327. Use of a Broken or Risky Cryptographic Algorithm ‘

7.19.3 Mechanism of failure

Not following the algorithms that define cryptographic implementations exactly can lead to weak encryption.
This could be the result of many factors such as a programmer missing a required cryptographic step or using
weak randomization algorithms.

7.19.4 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

1 Implement cryptographic algorithms precisely.
1 Use system functions and libraries rather than writing thecfion.

7.20 Insufficiently Protected Credentials [XYM]

7.20.1 Description of application vulnerability

This weakness occurshen the application transmits or stores authentication credentials and uses an insecure
method that is susceptible to unauthorized interception and/or retrieval.

7.20 .2Cross reference

CWE:
256. Plaintext Storage of a Password
257. Storing Passwords irR&coverable Format

7.20.3 Mechanism of failure

Storing a password in plaintext may result in a system compronkiassword management issues occur when a
password is stored in plaintext in an application's properties or configurationAilgcogrammeican attempt to
remedy the password management problem by obscuring the password with an encoding function, such as

© ISTIEC2012 ¢ All rights reserved 13E

WG 23/N 086 Baseline Edition 2TR 24772

Base64 encoding, but this effort does not adequately protect the passwstaring a plaintext password in a
configuration file allows any@nwho can read the file access to the passwprdtected resource.Developers
sometimes believe that they cannot defend the application from someone who has access to the configuration,
but this attitude makes an attacker's job easi€ood password mamgment guidelines require that a password
never be stored in plaintext.

The storage of passwords in a recoverable format makes them subject to password reuse attacks by malicious
users. If a system administrator can recover the password directly or useite force search on the information
available to him, he can use the password on other accounts.

The use of recoverable passwords significantly increases the chance that passwords will be used maliiciously.
fact, it should be noted that recoverable @ypted passwords provide no significant benefit over ptaixt
passwords since they are subject not only to reuse by malicious attackers but also by malicious insiders.

7.20.4 Avoiding the vulnerability or mitigating its effects

Software developers carvaid the vulnerability or mitigate its ill effects in the following ways:

Avoid storing passwords in easily accessible locations.

Never store a password in plaintext.

Ensure that strong, nereversible encryption is used to protect stored passwords.

Consier storing cryptographic hashes of passwords as an alternative to storing in plaintext.

=A =4 =4 =2

7.21 Missing or Inconsistent Access Control [XZN]

7.21.1 Description of application vulnerability
The software does not perform access control checks in a consistent manner across all potential execution paths.
7.21.2 Cross reference

CWE:

285. Missing or Inconsistent Access Control

352 CrossSite Request Forgery (C3RF

807. Reliance on Untrusted Inputs in a Security Decision
CERT C guililees: FIO0&

7.21.3 Mechanism of failure

For web applications, attackers can issue a request directly to a page (URL) that they may not beeduthoriz
access.If the access control policy is not consistently enforced on every page restricted to authorized users, then
an attacker could gain access to and possibly corrupt these resources

7.21.4 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

136 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 086

1 For web applications, make sure that the access control mechanism is enforced correctly at the server
side on every pageUsers should not be able to access/ informationsimply by requesting direct access
to that page, if they do ndbaveauthorization Ensure that all pages containing sensitive information are
not cached, and that all such pages restrict access to requests that are accompanied byeaaratti
authenticated session token associated with a user who has the required permissions to access that page

7.22 Authentication Logic Error [XZQ]

7.22.1 Description of application vulnerability
The software does not properly ensure that the user has proven their identity
7.22.2 Cross reference

CWE:
287. Improper Authentication
288. Authentication Bypass by Alternate Path/Channel
289. Authenication Bypass by Alternate Name
290. Authentication Bypass by Spoofing
294. Authentication Bypass by Captusplay
301. Reflection Attack in an Authentication Protocol
302. Authentication Bypass by Assuratnutable Data
303. Improper Implementation ofuthentication Algorithm
305. Authentication Bypass by Primary Weakness

7.22.3 Mechanism of failure

There are many ways that an attacker can potentially bypass the validation of a user. Some of the ways are
means of impersonating a legitimate user whilbets are means of bypassing the authentication mechanisms
that are in place. In either case, a user who should not have access to the software system gains access.

Authentication bypass by alternate path or channel occurs when a product requires auttiemtjdout the
product has an alternate path or channel that does not require authenticatMute that this is often seen in web
applications that assume that access to a partic@&(CommonGateway Interfaceprogram can only be
obtained through a 'font" screen, but this problem is not just in wabplications

Authentication bypass by alternate name occurs when the software performs authentication based on the name
of the resource being accessed, but there are multiple names for the resourceptiatl names are checked.

Authentication bypass by captureplay occurs when it is possible for a malicious user to sniff network traffic and
bypass authentication by replaying it to the server in question to the same effect as the original messaitfe (or w
minor changes).Messages sent with a capturelay attack allow access to resources that are not otherwise
accessible without proper authenticatiolCapturereplay attacks are common and can be difficult to defeat
without cryptography.They are a duset of network injection attacks that regn listening in on previously sent

valid commands, then changing them slightly if necessary and resending the same commands to theSgsrger.
any attacker who can listen to traffic can see sequence numheésspécessary to sign messages with some kind

© ISTIEC2012 ¢ All rights reserved 137

WG 23/N 086 Baseline Edition 2TR 24772

of cryptography to ensure that sequence numbers are not simply doctored along with content.

Reflection attacks capitalize on mutual authentication schetoasck the target into revealing the secret shared
between it and another valid usetn a basic mutuahuthentication scheme, a secret is known to both a valid

user and the server; this allows them to authenticate. In order that they may verify this shared secret without
sending it plainly over the wir¢hey utilize a DiffieHellmanstylescheme in which they each pick a value, then
request the hash of that value as keyed by the shared secret. In a reflection attack, the attacker claims to be a
valid user and requests the Hasf a random value from the servewhen the server returns this value and
requests its own value to be hashed, the attacker opens another connection to the s&hisrtime, the hash
requested by the attacker is the value that the server requestdtarfirst connection.When the server returns

this hashed value, it is used in the first connection, authenticating the attacker successfully as the impersonated
valid user.

Authentication bypass by assumé@dmutable data occurs when the authenticatiocheme or implementation
uses key data elements that are assumed to be immutable, but can be controlled or modified by the aftacker,
example if a web application relies on a cookiguthenticated=1 .

Authentication logic error occurs when the authearaiion techniques do not follow the algorithms that define
them exactly and so authentication can be jeopardized. For instance, a malformed or improper implementation of
an algorithm can weaken the authorization technique.

An authentication bypass by prary weakness occurs when the authentication algorithm is sound, but the
implemented mechanism can be bypassed as the result of a separate weakness that is primary to the
authentication error.

7.22.4 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

9 Funnel all access through a single choke point to simplify how users can access a rdsouesery
access, perform a check to determine if the user has pgioms to access the resourc&void making
decisions based on names of resourdes éxample files) if those resaees can have alternate names.

1 Canonicalize the name to match that of the file system's representation of the name. This can sometimes
be achieved with an available ARd(examplejn Win32 theGetFullPathName function).

9 Utilize some sequence or time stamping functionality along with a checksum that takes this into account
to ensure that mesages can be parsed only once.

1 Use different key$or the initiator and responder or of a different type of challenge for the initiator and
responder.

7.23 Hard-coded Password [XYP]

7.23.1 Description of application vulnerability

Hard coded passwords may compromise system security in a way that cannot be easily rerttddirdver a
good idea to hardcode a passworNot only does hard coding a password allow all of the project's developers to

138 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 086

view the pasword, it also makes fixing the problem extremely difficlince the code is in production, the
password cannot be changed without patching the softwdfehe account protected by the password is
compromised, the owners of the system will be forceathmose between security and availability.

7.23.2 Cross reference

CWE: |
259. HardCoded Password
798. Use of Harecoded Credentials |

7.23.3 Mechanism of failure

The use of a hardoded password has many negative implicatigtise most significant of theskeing a failure

of authentication measures under certain circumstanc®s many systems, a default administration account
exists which is set to a simple default password that is ftadked into the program or devicel his hardcoded
password is the samfer each device or system of this type and often is not changed or disabled by end Ifisers.
a malicious user comes across a device of this kind, it is a simple matter of looking up the default password (whic
is likely freely available and public on timéernet) and logging in with complete acceds.systems that

authenticate with a baclend service, hardoded passwords within closed source or dinggolution systems
require that the baclend service use a password that can be easily discovetizht-side systems with hard

coded passwordpresenteven more of a threat, since the extraction of a password from a binary is exceedingly
simple. If hardcoded passwords are used, it is almost certain that unauthorized users will gain access through
the account in question.

7.23.4 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

1 Rather than hard code a default username and password for first time lagilize a "first login" mode
that requires the user to enter a unique strong password.
1 For frontend to backend connections, there are the solutions that may be used.
1. Use of generated passwords that are changed automatically and must be enteredratigiee
intervals by a system administratof.hese passwords will be held in memory and onlyéddil
for the time intervals.
2. The passwords used should be limited at the back end to only performing actions for the front
end, asopposed to having full acces
3. The messages sent should be tagged and checksummed with time sensitive values so as to
prevent replay style attacks.

8. New Vulnerabilities

8.1 General

This claus@rovides languagendependent descriptions ofulnerabilitiesunder consideration for inasion in the
next edition d this InternationalTechnical Reportlt is intended that revisions of these descriptions will be

© ISTIEC2012 ¢ All rights reserved 13¢

WG 23/N 086 Baseline Edition 2TR 24772

incorporated into Clauses 6 and 7 of the next edition and that they will be treated in the langpagiic
annexes of that edition

8.2 Terminology

The following descriptions are written in a languagdependent manner except whespecific languages are
used in examples.

This clause will, in general, use the terminology that is most natural to the description of each individual
vulnerablity. Hence the terminology may differ from description to description.

8.3 Concurrency z Activation [CGA]

8.3.1 Description of application vulnerability

A wlnerability can occur if an attempt has been made to activate a thread, but a programming error or the lack of
some resource prevents the activation from completifigne activating thread may not have sufficient visibility or
awareness into the executiaof the activated thread to determine ihe activation has been successfilhe
unrecognized activation failure can cause a protocol failure in the activating thread or in other threads that rely
upon some action by the unactivated threatdlhis may cawsthe other thread(s) to wait forever for some event

from the unactivated thread, or may cause an unhandled event or exception in the other threads.

8.3.2 Cross References

CWE:
364. Signal Handler Race Condition
Hoare A., Communicating Sequential Process®rentice Hall, 1985
Holzmann G.,The SPIN Model Checker: Principles and Reference NMahddison Wesley Professional. 2003
UPPAAL, available from www.uppaal.com,
Larsen, Peterson, Wandyibdel Checking for Re@ime Systenis Proceedings of the ¥0nternational
Conference on Fundamentals of Computation Theory, 1995
Ravenscar Tasking Profigpecified in ISO/IEC 8652:1995 Ada with TC 1:2001 and AM 1:2007

8.3.3 Mechanism of Failure

The context of the problem is that all threads except the mainddrare activated by program steps of another

thread. The activation of each thread requires that dedicated resources be created for that thread, such as a
thread stack, thread attributes, and communication porisinsufficient resources remain when tlaetivation

attempt is made, the activation will faiSimilarly, if there is a program error in the activated thread or if the

activated thread detects an error that causes it to terminate before beginning its main work, then it may appear

to have failedduring activation2 KSy GKS | OGAGFGA2y Aa aaidliA0eés NBazd
failure because of a lack of resources will not ocdtiowever errors may occur for reasons other than resource
allocation and the results of an activai failure will be similar.

If the activating thread waits for each activated thread, then the activating thread will likely be notified of
activation failures (if the particular construct or capability supports activation failure notification) and can be

140 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 086

programmed to take alternate actiorif notification occurs but alternate action is not programmed, then the
program will execute erroneouslyf the activating thread is loosely coupled with the activated threads, and the
activating thread does not reoces notification of a failure to activate, then it may wait indefinitely for the
unactivatedthreadto do its work, or may make wrong calculations because of incomplete data.

Activation of a single threaid a special case of activations of collecsiafi threads simultaneouslyThis

paradigm (activation of collections of threads) can be used in languages that parallelise calculations and create
anonymous threads to execute each slice of data. In such situations the activating thread is unlildilyidaaity
monitor each activated thread, so a failure of some to activate without explicit notification to the activating
thread can result in erroneous calculations.

If the rest of the application is unaware that an activation has failed, an incorrecuggn of the application
algorithm may occur, such as deadlock of threads waiting for the activated thread, or possibly causing errors or
incorrect calculations.

8.3.4 Applicable language characteristics

This vulnerability is intended to be applicabldanguages with the following characteristics:

1 All languages that permit concurrency within the language, or that use support libraries and operating
systems (such as PO8PWindows that provide concurrency control mechamis. In essence all
traditional languages on fully functional operating systems (such as RO@&pfiant OS or Windows) can
access the Ofrovided mechanisms.

8.3.5 Avoiding the vulnerability or mitigatin gits effects

Software developers can avoid the vetability or mitigate its ill effects in the following ways:

1 Always check return codes on operating system command, library provided or language thread activation
mechanisms.

1 Handle errors and exceptions that occur on activation.

1 Create explicit synchrazration protocols, to ensure that all activations have occurred before beginning
the parallel algorithm, if not provided by the language or by the threading subsystem.

1 Use programming language provided features that couple the activated thread with tivata thread
to detect activation errors so that errors can be reported and recovery made.

9 Use static activation in preference to dynamic activation so that static analysis can guarantee correct
activation of threads.

8.3.6 Implications for standardizat ion
In future standardization activities, the following items should be considered:

1 Consider including automatic synchronization of thread initiation as part of the concurrency model.
1 Provide a mechanism permitting query of activation success.

© ISTIEC2012 ¢ All rights reserved 141

WG 23/N 086 Baseline Edition 2TR 24772

8.4 Concurr ency z Directed termination [CGT]

8.4.1 Description of application vulnerability

This discussion is associated with the effects of unssfakor late termination of a thread-or a discussion of
premature termination, seCG$Concurrency; Premature Termination.

When a thread is working cooperatively with other threads and is directed to terminate, there are a number of
error situationsthat may occur that can lead to compromise of the systdrhe termination directing thread may
request that one or more other threads abort or terminate, but the terminated thread(s) may not be in a state
such that the termination can occur, may ignohe tdirection, or may take longer to abort or terminateaththe
application can tolerate. In any case, on most systems, the thread will not terminate until it is next scheduled for
execution.

Unexpectedly delayed termination or the consumption of resoareg the termination itself may cause a failure
to meet deadlines, which, in turn, may lead to other failures.

8.4.2 Cross references

CWE

364.Signal Handler Race Condition
Hoare C.A.R.Communicating Sequential Process&entice Hall, 1985
Holzmaon G., The SPIN Model Checker: Principles and Reference Maiddison Wesley Professional. 2003
Larsen, Peterson, Wangdviddel Checking for RedimeSystem', Proceedings of the 10th International
Conference on Fundamentals of Computation Theory5199
The Ravenscar Tasking Profdpecified in ISO/IEC 8652:1995 Ada with TC 1:2001 and AM 1:2007

8.4.3 Mechanism of failure

The abort of a thread may not happen if a thread is in an atleférred region and does not leave that region
(for whatever reasonafter the abort directive is giverSimilarly, if abort is implemented as an event sentto a
thread and it is permitted to ignore such events, then the abort will not be obeyed.

The termination of a thread may not happen if the thread ignores the dire¢t terminate, or if the finalization
of the thread to be terminated does not complete.

If the termination directing thread continues on the false assumption that termination has completed, then any
sort of failure may occur

8.4.4 Applicable language ch aracteristics
This vulnerability is intended to be applicable to languages with the following characteristics:

1 All languages that permit concurrency within the language, or support libraries and opergsitegs
(such as POSPdémpliantor Windowsoperating systemysthat provide hooks for concurrency control.

142 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 086

8.4.5 Avoiding the vulnerability or mitigating its effect
Software developers can avoid the vulnerability or mitigate itfféicts in the following ways:

1 Use mechanisms of the language or systerddatermine that aborted threads or threads directed to
terminate have successfully terminate&uch mechanisms may include direct communication, runtime
level checks, explicit dependenmsiationships, or progress counters in shared communication code to
verify progress.

1 Provide mechanisms to detect and/or recover from failed termination.

1 Use static analysis techniques, such as CSP or robdeking to show that thread termination is safely
handled.

1 Where appropriate, use scheduling models where threadsenérminate.

8.4.6 Implications for standardization
In future standardization activities, the folldmg items should be considered:

1 Provide a mechanism (either a language mechanism or a servicecthal either another threadr an
entity that canbe queried by other threads when a thread terminates.

8.5 Concurrent Data Access [CGX]

8.5.1 Description of application vulnerability

Concurrency presents a sifjoant challenge to program correctly, and has a large number of possible ways for
failures to occur, quite a few known attack vectors, and many possible but undiscovered attack victors.
particular, data visible from more than one thread and not proeeicby a sequential access lock can be corrupted
by outof-order accessesThis, in turn, can lead to incorrect computation, premature program termination,
livelock, or system corruption

8.5.2 Cross references

CWE:
214 Information Exposure Through PraseEnvironment
362 Concurrent Execution using Shared Resource with Improper Synchronization ('"Race Condition’)
366. Race Condition Within a Thread
368. Context Switching Race Conditions
413 Improper Resource Locking
764. Multiple Locks of a Critical Ragce
765. Multiple Unlocks of a Critical Resource
821 Missing Synchronization
821 Incorrect Synchronization

ISO IEC 86Frogramming Language Adeaith TC 1:2001 and AM 1:2007.
Burns A. and Wellings A., Language Vulnerabilifie§ i1 Q& y 2 (i eh& NBETAW 14/ 2208.0 dzNNJ
C.A.R Hoare, A model for communicating sequential processes, 1980

© ISTIEC2012 ¢ All rights reserved 143

WG 23/N 086 Baseline Edition 2TR 24772

8.5.3 Mechanism of failure

Shared data can be monitored or updated directly by more than one thneassibly circumventing any access
lock protocol in operationSome concurrent programs do not use access lock mechanisms but rely upon other
mechanisms such as timing or other program state to determine if shared data can be read or updated by a
thread. Regardless, direct visibility to shared data permits direct access to such data concuriehifsary
behaviour of any kind can result.

8.5.4 Applicable language characteristics
The vulnerability is intended to be applicable to

1 All languageshat provide concurrent execution and data sharing, whether as part of the language or by
use of underlying operation system facilities, including facilities such as event handlers and interrupt
handlers.

8.5.5 Avoiding the vulnerability or mitigating its effect
Software developers can avoid the vulnerability or mitigate its effects in the following ways.

1 Place all data in memory regions accessible to only one thread at a time.
1 Use languages and those language feasithat provide a robust sequential protection paradigm to
protect against data corruptionFor example, Ada's protected objects and Java's Protected class, provide
a safe paradigm when accessing objects that are exclusive to a single program.
1 Use operéing system primitives, such as the POSIX locking primitives for synchronization to develop a
LINR G202t SljdA @t Syid G2 GKS ' RF aLINRPGSOGSRéE yR V
1 Where order of access is important for correctness, implement blocking and releasadjgas, or
provide a test in the same protected region to check for correct order and generate errors if the test fails.

For example, the following structure in Ada could be used to implement an enforced order.
8.5.6 Implications for standardization

In future standardisation activities, the folldmg items should be considered:

9 Languages that do not presently consider concurrency shoathsider creating primitives that let
applications specify regions of sequential access to dsliechansms such as protected regiortépare
monitors or synchronous message passing between threads result in significantly fewer resource access
mistakesm a program.

Provide the possibility of selecting alternative concurrency models that support static analysis, such as one of the
models that are known to have safe properti¢sor examples, se®]} [10],and [17].

144 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 086

8.6 Concurrency z Premature Termination [CGS]

8.6.1 Description of application vulnerability

When a thread is working cooperatively with other threads and terminates premigtéwewhatever reason but
unknown to other threads, then the portion of the interaction protocol between the termeddhread and other
threads is damagedThis may result in:

1 indefinite blocking of the other threads as they wait for the terminatiecbad if the interaction protocol
was synchronous;

9 other threads receiving wrong or incomplete results if the interaction was asynchronous; or

1 deadlock if all other threads were depending upon the terminated thread for some aspect of their
computation kefore continuing.

8.6.2 Cross references

CWE

364. Signal Handler Race Condition
Hoare C.A.R.Communicating Sequential Process&entice Hall, 1985
Holzmann G.,The SPIN Model Checker: Principles and Reference Mahadison Wesley Professialn 2003
Larsen, Peterson, Wangvibdel Checking for Re@ime SystenisProceedings of the 10th International
Conference on Fundamentals of Computation Theory, 1995
The Ravenscar Tasking Profdpecified in ISO/IEC 8652:1995 Ada with TC 1:2001 and288171.:

8.6.3 Mechanism of failure

If a thread terminates prematurely, threads that depend upon services from the terminated thread (in the sense
of waiting exclusively for a specific action before continuing) may wait forever since held locks may be left in
locked state resulting in waiting threads never being released or messages or events expected from the
terminated thread will never be received.

If a thread depends on the terminating thread and receives notification of termination, but the dependeatthr
ignores the termination notification, then a protocol failure will occur in the dependent thré&amt.asynchronous
termination events, an unexpected event may cause immediate transfesrdfol from the executiorf the
dependent thread to another @@ssible unknownlocation, resulting in corrupted objects or resources; or may
cause terminatiorin the master thread.

These conditions can result in

premature shutdown of the system;
corruption or arbitrary execution of code;
livelock;

deadlock;

=A =4 =4 =2

”This may cause the failure toqpagate to other threads.

© ISTIEC2012 ¢ All rights reserved 14E

WG 23/N 086 Baseline Edition 2TR 24772

depending upon how other threads handle the termination errors.

If the thread termination is the result of an abort and the abort is immediate, there is nothing that can be done
within the aborted thread to prepare data for return to master tasks, exceptipbsthe management threg (or
operating system) notifyingther threads that the event occurredf the aborted thread was holding resources or
performing active updates when aborted, then any direct access by other threads to such locks, resources or
memory may result in corruption of those threads or of the complete system, up to and including arbitrary code
execution.

8.6.4 Applicable language characteristics

This vulnerability is intended to be applicable to languages with the following characteristic

1 Languages that permit concurrency within the language, or support libraries and operating systems (such
as POSEompliant or Windows operating systems) that provide hooks for concurrency control.

8.6.5 Avoiding the vulnerability or mitigating its effec t
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

1 Use concurrency mechanisms that are known to be robust.

1 At appropriate times use mechanisms of the language or system to determine that necessary Hreeads
still operating. Such mechanisms may be direct communication, rurdievel checks, explicit
dependency relationships, or progress counters in shared communication code to verify progress.

1 Handle events and exceptions from termination.

1 Provide managethreads to monitor progress and to collect and recover from improper terminations or
abortions of threads.

1 Use static analysis techniques, such as model checking, to show that thread termination is safely handled.

8.6.6 Implications for standardization
In future standardization activities, the following items should be considered:

1 Provide a mechanism to preclude the abort of a thread from another thread during critical pieces of code.
Some languages (for examphgja or Reallime Javpaprovide a notion of an abodeferred region.

1 Provide a mechanism to signal another thread (or an entity that can be queried by other threads) when a
thread terminates.

1 Provide a mechanism that, within critical pieces of code, defers the delivaxgyathronous exceptions
or asynchronous transfers of control.

8.7 Protocol Lock Errors [CGM]

8.7.1 Description of application vulnerability

Concurrent programs use @ocols to control

146 © ISTIEC2012 ¢ All rights reserve

=A =4 =4 =4 =4 =4

Baseline Editiol2 TR 24772 WG 23/N 086

The way that threads interact with each other,

How to schedule the relative rates of progress,

How threads participate in the generation and consumption of data
The allocation of threads to the various rales

The preservation of datmtegrity, and

The detection and correction of incorrect operations.

When protocols ar@ot correct, or when a vulnerability lets an exploit destroy a protocol, then the concurrent
portions fail to work ceoperatively and the system behaves incorrectly.

This vulnerability is related to [CGX] Shared Data Access and Corruption, which discusses situations where the
protocol to control access to resources is explicitly visible to the participating partners and makes use of visible
shared resources. In compsoin, this vulnerability discusses scenarios where such resources are protected by
protocols, and considers ways that the protocol itself may be misused.

8.7.2 Cross references

CWE

413 Improper Resource Locking
414 Missing Lock Check
609. Double Checketocking
667. Improper Locking
821 Incorrect Synchronization
833. Deadlock
C.A.RHoare, A model for communicating sequential processes, 1980

Larsen, K.G., Petterssen, P, Wang, Y, UPPAAL in a nutshell, 1997

8.7.3 Mechanism of failure

Threads use locks amaotocols to schedule their work, control access to resources, exchange data, and to effect
communication with each otherProtocol errors occur when the expected rules forogeration are not
followed, or when the order of lock acquisitions and releaaases the threads to quit working togetherhese
errors can be as a result of:

=A =4 =4 =4

deliberate termination of one or more threaggrticipating in the protocol,
disruption of messages or integtons in the protocol,

errors or exceptions raised in threadarficipating in the protocol, or

errors in the programming of one or more threads participating in the protocol.

In such situations, there are a number of possible consequences

)l

deadlock where every thread eventually quits computing asaits for results from another threado
further progress in the system is made,

livelock where one or more threads commandeer all of the computing resource and effectively lock out
the other portions, no further progress in the systésrmade,

data may be corrupted or lack currency (timeliness), or

© ISTIEC2012 ¢ All rights reserved 147

WG 23/N 086 Baseline Edition 2TR 24772

9 one or more threads detect an error associated with the protocol and terminate prematurely, leaving the
protocol in an unrecoverable state.

The potential damage from attacks on protocols de@s upon the nature of the system using the protocol and

the protocol itself. Selfcontained systems using private protocols can be disrupted, but it is highly unlikely that
predetermined executions (including arbitrary code execution) can be obtai@&dhe other extremethreads
communicating openly between systems using weitumented protocols can be disrupted in any arbitrary

fashion with effects such as the destruction of system resources (such as a database), the generation of wrong but
plausibk data, or arbitrary code executiorin fact, many documented cliessierver based attacks consist of some
abuse of a protocol such as SQL transactions.

8.7.4 Applicable language characteristics
The vulnerability is intended to be applicable to languagitis thie following characteristics:

Languages that support concurrency directly.

Languages that permit calls to operating system primitives to obtain concurrent behaviours.
Languages that permit 10 or other interaction with external devices or services.

Larguages that support interrupt handling directly or indirectly (via the operating system).

=A =4 =4 =4

8.7.5 Avoiding the vulnerability or mitigating its effect
Software developers can avoid the vulnerability or mitigate its effects in the following ways

1 Consider thause of synchronous protocols, such as define€By, Petri Nets or by thela rendezvous
protocol since these can be statically shown to be free from protocol errors such as deadlock and livelock.

1 Consider the use of simple asynchronous protocols thelusively use concurrent thagls and protected
regions such as defined by the Ravenscar Tasking Profile, that can also be shown statically to have correct
behaviour using model checking technologies, as showAg)y [

1 When static verification is not posde, consider the use of detection and recovery techniques using
simple mechanisms and protocols that can be verified independently from the main concurrency
environment. Watchdog timers coupled with checkpoints constitute one such approach.

1 Use higHevelsynchronization paradigms, for example monitoendezvous, or critical regions.

9 Design the architecture of the application to ensure that some threads or tasks never block, and can be
available for detection of concurrency error conditions and for recgwnitiation.

1 Use model checkers to model the concurrent behaviour of the complete application and check for states
where progress failsPlace all locks and releases in the same subprograms, and ensure that the order of
calls and releases of multipledks are correct.

8.7.6 Implications for standardization
In future standardization activities, the following items should be considered:

1 Raise the level of abstraction for concurrency services.
91 Provide services or mechanisms to detect and recover frortopab lock failures.

148 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 086

9 Design concurrency services that help to avoid typical failures such as deadlock.
8.8 Inadequately Secure Communication of Shared Resources [CGY]

8.8.1 Description of application vulnerability

A resource that is directly visible from more than one process (at the same approximate time) and is not
protected by access locks can be tijad or used to corrupt, control or change the behaviour of other processes
in the system.Many vulnerabilities that are associated with concurrent access to files, shared memory or shared
network resources fall under this vulnerability, including researaccessed via stateless protocols such as HTTP
and remote file protocols.

8.8.2 Cross references

CWE:
15. External Control of System or Configuration Setting
642 External Control of Critical State Data
Burns A. and Wellings A., Language Vulnerabilife§ 4 Q& y 24 FT2NAHSG / 2y OdzNNBy Oeé =

8.8.3 Mechanism of failure

Any time that a shared resource is open to general inspection, the resource can be monitored by a foreign proce:
to determine usage patterns, timing patterns, and access pattermetermine ways that a planned attack can
succeed. Such monitoring could be, but is not limited to:

1 Reading resource values to obtain information of value to the applications.

1 Monitoring access time and access thread to determine when a resourdeecaccessed undetected by
other threads (for example, Tirref-CheckTimeOf-Use attacks rely upon a daminable amount of time
between the check on a resource and the use of the resource when the resource could be modified to
bypass the check).

1 Monitoring a resource and modification patterns to help determine the protocols in use.

9 Monitoring access times and patterns to determine quiet times in the access to a resource that could be
used to find successful attack vectors.

This monitoring can then be used tonstruct a successful attack, usually in a later attack.
Any time that a resource is open to general update, the attacker can plan an attack by performing experiments to

1 Discover how changes affect patterof usage, timing, and access
9 Discover how pplication threads detect and respond to forged values.

8 Such monitoring is almost always possible by a process executing with system privilege, but even small slips in actseaadontro
permissions lesuch resources be seen from other (non system level) processes. Even tea@xist the resource, its size, or its access |
RFiSakiAYySa yR KA&Gl2NER 04dzOK +a aflad O00SaasSR GaySeo Oly 3AA

© ISTIEC2012 ¢ All rights reserved 14¢

WG 23/N 086 Baseline Edition 2TR 24772

Any time that a shared resource is open to shared update by a thread, the resource can be changed in ways to
further an attack once it is initiated=or example, in a well known attack, a process toos a certain change to
a known file and then immediately replaces a virus free file with an infected file to bypass virus checking software.

With careful planning, similar scenarios can result in the foreign process determining a weakness of thel attacke
process leading to an exploit consisting of anything up to and including arbitrary code execution.

8.8.4 Avoiding the vulnerability or mitigating its effect
Software developers can avoid the vulnerability or mitigate its effects in the following ways.

1 Phce all shared resources in memory regions accessible to only one process at a time.

1 Protect resources that must be visible with encryption or with checksums to detect unauthorized
modifications.

9 Protect access to shared resources using permissions, ammesel, or obfuscation.

Have and enforce clear rules with respect to permissions to change shared resources.

9 Detect attempts to alter shared resources and take immediate action.

=

150 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 086

Annex A
(informative)
Vulnerability Taxonomy and List

A.1General

This Tebnical Report is a catalog that will continue to evolve. For that reason, a scheme that is distinct from sub
clause numbering has been adopted to identify the vulnerability descriptigash description has been assigned

an arbitrarily generated, uniquiaree-letter code. These codes should be used in preference todabse

numbers when referencing descriptions because they will not change as additional descriptions are added to
future editions of this Technical Repoitlowever, it is recognized thadéaders may need assistance in locating
descriptions of interest.

This annex provides a taxonomical hierarchy of vulnéitads, which users may find to belpful in locating
descriptions of interestA.2 is a taxonomy of the programming language vuiimlities described in Clau$eand
A.3is a taxonomy of the application vulnerabilities described in ClZuge4 lists the vulnerabilities in the
alphabetical order of their thre¢etter codes and provides a cressference to the relevant sublause.

A.2 Outline of Programming Language Vulnerabilities

A2.1. Types
A.2.1.1. Representation
A.2.1.1.1. [IHN] Type System
A2.1.1.2. [STR] Bit Representations
A.2.1.2. Floatingpoint
A.2.1.2.1 [PLF] Floatingoint Arithmetic
A.2.1.3. Enumerated Types
A.2.13.1. [CCB] Enumerator Issues
A.2.1.4. Integers
A.2.1.41. [A.C] Numeric Conversion Errors
A.2.1.5. Characters and strings
A.2.1.5.1 [CIMJString Termination
A.2.1.6. Arrays
A.2.1.61. HCB Buffer Boundary Violation (Buffer Overflow)
A.2.1.62. [XYZ] Unaktked Array Indexing
A.2.1.63. [XYW] Unchecked Array Copying
A2.1.7. Pointers
A2.1.71. [HFC] Pointer Casting and Pointer Type Changes
A2.1.72. [RVG] Pointer Arithmetic
A2.1.7.3. [XYH] Null Pointer Dereference
A2.1.74. [XYK] Dangling ReferenceHeap
A2.2. Type Conversions/Limits
A2.2.1. [FIF ArithmeticWrap-around Error
A.2.2.1 [PIK] Using Shift Operations for Multiplication and Division
A2.2.2.[XZI] Sign Extension Error
A2.3. Declarations and Definitions
A2.3.1. [NAI] Choice of Clear Mas
A.2.3.2. [WXQ] Dead store

© ISTIEC2012 ¢ All rights reserved 151

WG 23/N 086 Baseline Edition 2TR 24772

A2.3.3. [YZ$Unused Variable
A2.3.4. [YOW] Identifier Name Reuse
A2.3.5. [BJL] Namespace Issues
A2.3.6. [LAVY Initialization of Variables
A2.4. Operators/Expressions
A2.4.1. [JCW] OperatorrBcedence/Order of Evaluain
A2.4.2. [SAM] Sideffects and Order of Evaluation
A2.4.3. [KQ\] Likely Incorrect Expression
A2.4.4. [XYJ] Dead and Deactivated Code
A2.5. Control Flow
A25.1. Conditional Statements
A2.51.1. [CLL] Switch Statements and Static Analysis
A2.5.1.2.[EQJ] Demarcation of Control Flow
A25.2. Loops
A2.5.2.1. [TEX] Loop Control Variables
A2.5.2.2. [XZH] Ofby-one Error
A2.5.3. Subroutines (Functions, Procedures, Subprograms)
A2.5.3.1.[EWD] Structured Programming
A2.5.3.2. [CSJ] Passing Paramgtend Return Values
A2.53.3. [DCM] Dangling References to Stack Frames
A2.53.4. [OTRBubprogram Signature Mismatch
A2.53.5. [GDL] Recursion
A2.536. [OYBIgnoredError Statusind Unhandled Exceptions
A2.5.4. Termination Strategy
A2.54.1.[REU] Termination Strategy
A2.6. MemoryModels
A2.6.1. [AMV] Typébreaking Reinterpretation of Data
A2.6.2. [XYL] Memory Leak
A2.7. Templates/Generics
A2.7.1. [SYM] Templates and Generics
A2.7.2. [RIP] Inheritance
A2.8. Libraries
A2.8.1 [LRM] Exa Intrinsics
A2.8.2 [TRJ] Argument Passing to Library Functions
A.2.8.3. [DJS] Intdanguage Calling
A2.8.4. [NYY] Dynamicatinked Code and Sethodifying Code
A2.8.5. [NSQ] Library Signature
A2.8.6. [HIW] Unanticipated Exceptions from Libraoytihes
A2.9. Macros
A2.9.1. [NMP] Preprocessor Directives
A.2.10. Compile/Run Time
A.2.10.1 MXH Provision of Inherently Unsafe Operations
A.2.10.2 EKIL. Suppression of Languadrefined Rurnlime Checking

A2.11.Language Specification Issues
A2.11.1.[BRS] Obscure Language Features
A2.11.2. [BQF] Unspecified Behaviour
A2.11.3. [EWF] Undefined Behaviour
A2.11.4. [FAB]mplementationdefined Behaviour
A2.115. [MEM] Deprecated Language Features

152

© ISQIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 086

A.3Outline of Application Vulnerabilities

A3.1 Desig Issues
A3.1.1 [BVQ] Unspecified Functionality
A3.1.2 [KLK] Distinguished Values in Data Types
A3.2. Environment
A3.2.1. [XYN] Adherence to Least Privilege
A3.2.2. [XYQO] Privilege Sandbox Issues
A3.2.3. [XYS] Executing or Loading Untrusted Code
A.3.3. Resource Management
A3.31. Memory Management
A3.3.1.1. [XZX] Memory Locking
A3.3.1.2. [XZP] Resource Exhaustion
A3.3.2. Input
A.3.3.2.1 [CBF] Unrestricted filepload
A.3.3.2.2[HTS] Resource names
A3.32.3. [RST] Injection
A3.3.24. [XYT] fosssite Scripting
A3.3.25. [XZQ] Unquoted Search Path or Element
A3.3.26. [XZR] Improperly Verified Signature
A3.3.2.7. [XZL] Discrepancy Information Leak
A3.3.3. Output
A3.33.1. [XZK] Sensitive Information Uncleared Before Use
A3.34. Files
A3.3.4.1. [EWR] Path Traversal
A.3.4. Concurrency
A.3.4.1 [CGA] Concurrengyctivation
A.3.4.2[CGT] ConcurrenayDirected termination
A.3.4.3[CGS] ConcurrengyPremature Termination
A.3.4.4[CGX] Concurrent Data Access
A.3.4.5[CGY] Inadequately Secutemmunication of Shared Resources
A.3.4.6 [CGMProtocal Lock Errors
A4.4. Flaws in Security Functions
A4.4.1. [XZS] Missing Required Cryptographic Step
A4.4.2. Authentication
A4.4.2.1. [XYM] Insufficiently Protected Credentials
A4.4.2.2. [XZN] Missg or Inconsistent Access Control
A4.4.2.3. [XZO] Authentication Logic Error
A4.4.2.4. [XYP] Hardoded Password

A4 Vulnerability List

Code Vulnerability Name Subclause Page
[AMV] | Type - breaking Reinterpretation of Data 6.40 86

[BJIL] Namespace Issues 6.23 58

[BQF] | Unspecified Behaviour 6.54 106
[BRS] | Obscure Language Features 6.53 105

[BV Q] | Unspecified Functionality 7.3 113

[CBF] | Unrestricted File Upload 7.10 121

© ISTIEC2012 ¢ All rights reserved 153

WG 23/N 086 Baseline Edition 2TR 24772

[CCB] | Enumerator Issues 6.6 33
[CGA] | Concurrency - Activation 8.3 140
[CGM] | Protocol Lock Errors 8.7 146
[CGS] | Concurrency - Premature Termination 8.6 145
[CGT] | Concurrency - Directed termination 8.4 142
[CGX] | Concurrent Data Access 8.5 143
[CGY] | Inadequately Secure Communication of Shared Resources 8.8 149
[CIM] | String Termination 6.8 37
[CLL] | Switc h Statements and Static Analysis 6.29 69
[CSJ] | Passing Parameters and Return Values 6.34 75
[DCM] | Dangling References to Stack Frames 6.35 78
[DJS] | Inter -lan guage Calling 6.46 96
[EQJ] | Demarcation of Control Flow 6.30 70
[EWD] | Structured Programming 6.33 74
[EWF] | Undefined Behaviour 6.55 108
[EWR] | Path Traversal 7.18 132
[FAB] | Implementation - defined Behaviour 6.56 109
[FIF] Arithmetic Wrap - around Error 6.16 48
[FLC] | Numeric Convers ion Errors 6.7 35
[GDL] | Recursion 6.37 81
[HCB] | Buffer Boundary Violation (Buffer Overflow) 6.9 38
[HFC] | Pointer Casting and Pointer Type Changes 6.12 43
[HIW] | Unanticipated Exceptions from Library Routines 6.49 100
[HTS] | Resource Names 7.11 122
[IHN] | Type System 6.3 27
[JCW] | Operator Precedence/Order of Evaluation 6.25 62
[KLK] | Distinguished Values in Data Types 7.4 114
[KOA] | Likely Incorrect Expression 6.27 65
[LAV] | Initialization of Variables 6.24 60
[LRM] | Extra Intrinsics 6.44 93
[MEM] | Deprecated Language Features 6.57 111
[MXB] | Suppression of Language - defined Run - time Checking 651 103
[NAI] | Choice of Clear Names 6.19 52
[NMP] | Pre - processor Directives 6.50 101
[NSQ] | Library Signature 6.48 99
[NYY] | Dynamically - linked Code and Self - modifying Code 6.47 98
[OTR] | Subprogram Signature Mismatch 6.36 80
[OYB] | Ignored Error Status and Unhandled Exceptions 6.38 83
[PIK] Using Shift Operations for Multiplication and Division 6.17 50
[PLF] | Floating - point Arithmetic 6.5 31
[REU] | Termination Strategy 6.39 85
[RIP] Inherit ance 6.43 92
[RST] | Injection 7.12 124
[RVG] | Pointer Arithmetic 6.13 44
[SAM] | Side - effects and Order of Evaluation 6.26 63
[SKL] | Provision of Inherently Unsafe Operations 6.52 104
[STR] | Bit Representations 6.4 29
[SYM] | Templates and Generics 6.42 90
[TEX] | Loop Control Variables 6.31 71
[TRJ] | Argument Passing to Library Functions 6.45 94
[WXQ)] | Dead Store 6.20 54
[XYH] | Null Pointer Dereference 6.14 45
[XYK] | Dangling Reference to Heap 6.15 46
[XYL] | Memory Leak 6.41 88

154 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 086

[XYM] | Insufficiently Protected Credentials 7.20 135
[XYN] | Adherence to Least Privilege 7.5 115
[XYQ] | Privilege Sandbox Issues 7.6 116
[XYP] | Hard - coded Password 7.23 138
[XYQ] | Dead and Deactivated Code 6.28 67
[XYS] | Executing or Loading Untrusted Code 7.7 118
[XYT] | Cross - site Scripting 7.13 127
[XYW] | Unchecked Array Copying 6.11 42
[XYZ] | Unchecked Array Indexing 6.10 40
[XZH] | Off - by- one Error 6.32 73
[XZI] Sign Extension Error 6.18 51
[XZK] | Sensitive Information Uncleared Before Use 7.17 132
[XZL] | Discrepancy Information Leak 7.16 131
[XZN] | Missing or Inconsistent Access Control 7.21 136
[XZO] | Authentication Logic Error 7.22 137
[XZP] | Resource Exhaustion 7.9 120
[XZQ] | Unquoted Search Path or Element 7.14 129
[XZR] | Improperly Verified Signature 7.15 130
[XZS] | Missing Required Cryptogr aphic Step 7.19 135
[XZX] | Memory Locking 7.8 119
[YOW] | Identifier Name Reuse 6.22 56
[YZS] | Unused Variable 6.21 55

© ISTIEC2012 ¢ All rights reserved 15E

WG 23/N 086 Baseline Edition 2TR 24772

Annex B
(informative)
Language Specific Vulnerability Template

Each languagspecific annex should have the following heading information and initial sections:

Annex <language>
(Informative)
Vulnerability descriptions for language <language>

<language>.1 Idenfiication of standards

[This sukclause should list the relevant language standards and other documents that describe the languat
treated in the annex. It need not be simply a list of standaittishould do whatever is required to describe the
language hhat is the baseline.]

<language>.2 General terminology and concepts

[This sukclause should provide an overview of general terminology and concepts that are utilized througho
annex.]

Every vulnerability description of Clause 6 of the main documenlsl be addressed in the annex in the same
order even if there is simply a notation that it is not relevant to the language in quediaah vulnerability
description should have the following format:

<language>.<x> <Vulnerability Name> [<3 letter tag>]

<language>.<x>.0 Status, history, and bibliography

[Revision history. This clause will eventually be removed.]

<language>.<x>.1 Applicability to language

[This section describes what the language does or does not do in order to deal with the vulnefrability
<language>.<x>.2 Guidance to language users

[This section describes what the programmer or user should do regarding the vulnerability.]

In those cases where a vulnerability is simply not applicable to the language, the following format should be used
instead:

<language>.<x> <Vulnerability Name> [<3 letter tag>]

This vulnerability is not applicable to <language>.

156 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 086

Following the final vulnerability description, there should be a singlectailse as follows:

<language>.<x> Implications for standardization

[This section provides the opportunity to discuss changes anticipated for future versions of the language
specification.]

© ISTIEC2012 ¢ All rights reserved 157

WG 23/N 086 Baseline Edition 2TR 24772

Annex C
(informative)
Vulnerability descriptions for the language C

C.1lldentification of standards and associated documents

ISO/IEC 98920111 Programming LanguagesC

ISO/IEAQR 247341:2007t1 Extensions to the C library Part 1: Boundghecking interfaces
ISO/IEC TR 247212010t Extensions to the C libmat Part 2: Dynamic Allocation Functions
ISO/IEC 9899:1999/Cdr.2001t Programming languages C

ISO/IEC 9899:1999/C@:2004t Programming languages C

ISO/IEC 9899:1999/C@:2007t Programming languages C

Db! t NP2SOG v-0 diamyp/gccadeil.drg/ubshiyhi#nonbugs (2009).

C2 General terminology and concepts

access An executiontime action, to read or modify the value of an object. Where only one of two actions is
meant,reador modify. Modify includes the case where the new value being stored is the same as the previous
value. Expressions that are not evaluated do not access objects.

alignment Therequirement that objects of a particular type be located on storage boundariesadiihesses
that are particular multiples of a byte address

argument
actualargument Theexpression in the commseparated list bounded by the parentheses in a function call

expression, or a sequence of preprocessing tokens in the ceseparated list boundedy the parentheses in a
function-like macro invocation.

behaviour Anexternal appearance or action

implementationR S U Wéh&viour Thedzy & LJS li@hauidiiihere each implementation documents hdhe
choice is made Anexample of implementatiofR S U yb&hRviouris the propagation of the highrder bitwhen a
signed integer is shifted right.

localespeO A héRaviour The behaviouthat depends on local conventions of nationalityjture, and language
that eachimplementation documents An examplelpocaled LIS ®éhaliduris whether theislower()
function returns true forcharacters other than the 2@wer case Latin letters.

dzy R S beh&Rur Theuse of a norportable or erroneous program construct or of erroneous dédawhich
the C standardmposes no requirementsUy R S U lgeBaRiourranges from ignoring the situation completely
with unpredictale results, to behaving during translation or program execution in a documented manner
characteristic of theenvironment (with or without the issuance of a diagnostic message), to terminating a

158 © ISTIEC2012 ¢ All rights reserve

http://gcc.gnu.org/bugs.html

Baseline Editiol2 TR 24772 WG 23/N 086

translation orexecution (with the issuance of a diagnostiessage).An example ofgdzy’ R S bgh&viouris the
behaviourz y Ay GS3ISNI 23SNb2gd

dzy & LISehaliduithedza S 2 F |y dzy & LIS BehdViSurRvhetethe @3%ahdard providado 6rNJ
more possibilities and imposes no further requirements on which is chosen imstapce For example,
dzy & LJS kekavi&uis the order in which the arguments to a function asaluated.

bit: Theunit of data storage in the execution environment large enough to hold an object thaheayone of
two values It need not be possible to expse the address of each individual bit of an object.

byte: Theaddressable unit of data storage large enough to holdraeynber of the basic characteet of the
execution environmentlt is possible to express the address of each individual byte of &ctalmiquely. Abyte

is composed of a contiguosgquence of bits, the number of which is implementatiors Uy S Redst ¢ K S
AAAYAUOI yi lowkoiderbitili KOS Y 2S3R1 (8KAST y A Uniyhofdérbib A G A& OF f £ SR
character Anabstractmember of a set of elements used for the organization, aantr representation of

data

singlebyte character The bit representation that fits in a byte.

multibyte character Thesequence of one or more bytes representing a member of the extended character set
of either the source or the execution environmentTheextended character set is a superset of the basic
character set.

wide character Thebit representation thawill t in an objectcapable of representing argharacter in the
current locale The C Standard uses the type namuhar_t for this object.

correctly rounded result Therepresentation in the result format that is nearest in value, subject to the current
roundingmode, to what the result would be givemlimited range and precision

diagnostic message Themessage belonging to an implementatitnS Uy SR &ddzoaSid 2F GKS A
messageutput. The C Standard requires diagnostic messages for all consti@ations.

implementation A particular set of software, running in a particular translation environment under particular
control options, that performs translation of programs fand supports execution déinctions in, a particular
execution enviroment.

implementation limit Therestriction imposed upon programs by the implementation

memory locationEither an object of scalétype, or a maximal sequence of adjacentfigids all havinghonzero

width. Abit-field- and an adjacent nobit-Ueld member are in separate memory locatioffhe samepplies to

two bit-fieldsU>X A F 2yS A& RSOfIFINBR AYyaARS | ySalddwara i NdzO G
separated by a zertength bitUeld declaration,or if theyare separated by a nebit-Ueld memberdeclaration. It

is not safe to concurrently update twait-field-U Ay G KS &l YS & { NHzO lbdeMBn therh aré f f

9 Integer types, Floating types and Pointer types are collectively cadidrtypes in the C Standard.

© ISTIEC2012 ¢ All rights reserved 15¢

WG 23/N 086 Baseline Edition 2TR 24772

also bitUelds no matter what the sizes of those intervening-bilds happen to be. For example atructure
declared as

struct {

char a;
int b:5, ¢:11, :0, d:8;
struct { int ee:8; } e;

}

contains four separate memory locations: The memdgand bitUeldsd ande.ee are separatememory
f20FGA2yasz yR Ol ywishGut iM&i&ingivhrrach @&hédziilNBdghiahd c together
constitute the fourth memory locationThe bitUeldsb andc O I Ye&dbdncurrentlyy 2 R A U ShiRahda gcdribe
concurrently modified

object Theregion of data storage in the execoti environment, the contents of which can represeatues
Whenreferenced, an object may be interpreted as having a particular type.

parameter

formal parameter The2 0 2S00 RSOf I NBR & LI NG 2F | Fdzy Olim2y RS
SYGNE (2 GKS TFdzy Ol A2y s -sephkhtdd Yist bouRgf iy @ itieseN@mediatelys 02 Y
following the macro name in a functidike Y ON2 RSUyYyAGA2Yy

recommended practice Aa LJISOAUOF GA2Yy GKFG Aa &aidNEP ywth @e inidBtORRhe Y Sy R
C $andard, but that may be impractical for some implementations

runtime-constraint Arequirement on a program when calling a library function

value Theprecise meaning of the contents of an object when interpreted as havihg®a® A U.0 1 & LIS

implementationRS Uy S R Ar@itﬁédzﬁ% OAUSR @I f dz§ 6 KSNBE S| Otlke chodisr S Y S Yy o]
the valueis selected.

indeterminate value ISSA G KSNJ 'y dzyalLISOAUSR @ fdzS 2NJ I GNJF LI NBLN

dzy & LIS O A [TBeRaliddvalfe dzfe relevant type wheréhe CStandard imposes nequirements on which
value is chosen in arigstance Andzy &8 LISOAUSR @It dzS OFyy2i 06S | (NILI NB

trap representation An object representation that need not represent a value of the object type

blockstructured languageA language that has a syntax for enclosing structures betweaokieted keywords,
such as aif statement bracketed bif andendif, asinFORTRAMNr a code section bracketed BEGIN
andEND as inPL/1.

comb-structured languas: Alanguage that haan ordered set okeywords to define separate sections within
a block, analogous to the multiple teeth or prongs in a comb separating sections of the comb. For example, in
Ada a block is a4pronged comb with keyworddeclare |, begi n, exception ,end, and theif statementin
Ada is a $ronged comb with keywordi§ ,then , else , end if

160 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 086

C.3Type System [IHN]

C.3.1 Applicability to language

C is a statically typed language. In some ways C is both strongly and weakly typed as & adiquareables to be
typed, but sometimes allows implicit or automatic conversion between types. For example, C will implicitly
convert along int to anint and potentially discard many significant digits. Note that integer sizes are
implementation defined so that in some implementations, the conversion frolarag int ~ to anint cannot

discard any digits since they are the same size. In some implementations, all integer types could be implementel
as the same size.

C allows implicit conversions as in flelowing example:

short a = 1023;
int b;
b=a;

If an implicit conversion could result in a loss of precision such as in a conversion from aB2tbita 16 bit
short int

int a = 100000;
short b;
b=a

most compilers will issue a warning megsa

C has a set of rules to determine how conversion between data types will occur. For instance, every integer type
has an integer conversion rank that determines how conversions are performed. The ranking is based on the
concept that each integer typeontains at least as many bits as the types ranked below it.

The integer conversion rank is used in thsaial arithmetic conversions to determine what conversions need to
take place to support an operation on mixed integer types.

Other conversion rules estifor other data type conversions. So even though there are rules in place and the
rules are rather straightforward, the variety and complexity of the rules can cause unexpected results and
potential vulnerabilities. For example, though there is a piibed order in which conversions will take place,
determining how the conversions will affect the final result can be difficult as in the following example:

long foo (short a, int b, int ¢, long d, long e, long f) {
return (b +f) *d T a+e)/c)
}

The implicit conversions performed in theturn statement can be nontrivial to discern, but can greatly impact
whether any of the intermediate values wrap around during the computation.

C.3.2 Guidance to language users

1 Consideration of the rules foyping and conversions will assist in avoiding vulnerabilities.

© ISTIEC2012 ¢ All rights reserved 161

WG 23/N 086 Baseline Edition 2TR 24772

1 Make casts explicit to give the programmer a clearer vision and expectations of conversions.

C.4Bit Representations [STR]

C.4.1 Applicability to language

C supports a variety of sizes fotaégers such ashort int ,int ,longint andlong long int . Each

may either be signed or unsigned. C also supports a variety of bitwise operators that make bit manipulations easy
such as left and right shifts and bitwise operators. These bit manipusatian cause unexpected results or
vulnerabilities through miscalculated shifts or platform dependent variations.

Bit manipulations are necessary for some applications and may be one of the reasons that a particular application
was written in C. Although amy bit manipulations can be rather simple in C, such as masking off the bottom

three bits in an integer, more complex manipulations can cause unexpected results. For instance, right shifting a
signed integer is implementation defined in C, while shifiggan amount greater than or equal to the size of the

data type is undefined behaviour. For instance, on a host wherstans of size 32 bits,

unsigned int foo(const int k) {
unsigned inti= 1,
return i << k;

}

is undefined for values d&f greater than or equal to 32.

The storage representation for interfacing with external constructs can cause unexpected results. Byte orders
may be in littleendian or bigendian format and unknowingly switching between the two can unexpectedly alter
values.

C.4.2 Guidance to language users

1 Only use bitwise operators on unsigned integer values as the results of some bitwise operations on signed
integers are implementation defined.

1 Use commonly available functions sucth&anl() , htons() ,ntohl() andntohs() to convert
from host byte ordetto network byte order and vice versa. This would be needed to interface between
an i80x86 architecture where the Least Significant Byte is first with the network byte order, as used on
the Internet, where the Most Significant Byte is firdtote: functions such as these are not part of the C
standard and can vary somewhat among different platforms.

1 In cases where there is a possibility that the shift is greater than the size of the variable, perform a check
as the following example shows, or a modulouetion before the shift:
unsigned int i;
unsigned int k;
unsigned int shifted_i;
é

if (k < sizeof(unsigned int)*CHAR_BIT)
shifted_i =i << k;
else

162 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 086

/I handle error condition
X

C.5Floating -point Arithmetic [PLF]

C.5.1 Applicability to language

Cpermits the floatingpoint data types float, double and long double. Due to the approximate nature of fleating
point representations, the use of float and double data types in situations where equality is needed or where
rounding could accumulate over rtiple iterations could lead to unexpected results and potential vulnerabilities
in some situations.

As with most data types, C is flexible in hitmat , double andlong double can be used. For instance, C
allows the use of floatingoint types to be useds loop counters and in equality statements. Even though a loop
may be expected to only iterate a fixed number of times, depending on the values contained in the fpasting
type and on the loop counter and termination condition, the loop could exefoitever. For instance iterating a
time sequence using 10 nanoseconds as the increment:

float f;
for (f=0.0; f1=1.0; f+=0.00000001)
é

may or may not terminate after 10,000,000 iterations. The representations usédaiod the accumulated
effect of many iterations may caudeto not be identical to 1.0 causing the loop to continue to iterate forever.

Similarly, the Boolean test

float f=1.336f;
float g=2.672f;

if (f == (9/2))

é

may or may not evaluate to true. Given tHaandg are constant valuest is expected that consistent results will

be achieved on the same platform. However, it is questionable whether the logic performs as expected when a
float that is twice that of another is tested for equality when divided by 2 as above. This camldapéhe

values selected due to the quirks of floatipgint arithmetic.

C.5.2 Guidance to language users

1 Do not use a floatingoint expression in a Boolean test for equality. In C, implicit casts may make an
expression floatingpoint even though the pogrammer did not expect it.

9 Check for an acceptable closeness in value instead of a test for equality when using floats and doubles tc
avoid rounding and truncation problems.

1 Do not convert a floatingoint number to an integer unless the conversion ipacsfied algorithmic
requirement or is required for a hardware interface.

© ISTIEC2012 ¢ All rights reserved 163

WG 23/N 086 Baseline Edition 2TR 24772

C.6Enumerator Issues [CCB]

C.6.1 Applicability to language

The enum type in C comprises a set of named integer constant values as in the example:
enum abc {A,B,C,D,E,F,G,H} var_abc ;

The values of the contents abc would beA=0, B=1, C=2, etc. C allows values to be assigned to the
enumerated type as follows:

enum abc {A,B,C=6,D,E,F=7,G,H} var_abc;
This would result in:
A=0, B=1,C=6, D=7,E=8, F=7,G=8 H=9
yielding both gaps ithe sequence of values and repeated values.

If a poorly constructe@numtype is used in loops, problems can arise. Consider the enumeratedlype
defined above used in a loop:

int x[8];
é
for (i=A; i<=H; i++) {
t = X[i];
é

}

Because the enumeratdgipe abc has been renumbered and because some numbers have been skipped, the
array will go out of bounds and there is potential for unintentional gaps in the use of

C.6.2 Guidance to language users

1 Use enumerated types in the default form startingdaand incrementing by 1 for each member if
possible. The use of an enumerated type is not a problem if it is well understood what values are
assigned to the members.

1 Use an enumerated type to select from a limited set of choices to make possible tbétosds to detect
omissions of possible values such as in switch statements.

1 Use the following format if the need is to start from a value other than 0 and have the rest of the values
be sequential:

enum abc {A=5,B,C,D,E,F,G,H} var_abc;

1 Use the following format if gaps are needed or repeated values are desired and so as to be explicit as to
the values in thenum, then:

enum abc {
A=0,

164 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 086

1 |U|(|.|)UU
NoF

n
N ®

0
(o]

H=9
} var_abc;

C.7Numeric Conversion Errors [FLC]

C.7.1 Applicability to language

C permits implicit conversions. That is, C will automatically perform a conversion without an explicit cast. For
instance, C allows

inti;

float f=1.25f;

i=f

This implicit conversion will discard the fractional parf afnd seti to 1. If the value of is greater than
INT_MAX then the assignment df toi would be undefined.

The rules for implicit conversions in C are defined in the C standard. For instance, integer types smaiier than
are promoted when an operation is performed them. If all values of Boolean, character or integer type can be
represented as amt , the value of the smaller type is converted toiah ; otherwise, it is converted to an
unsignednt .

Integer promotions are applied as part of the usual arithmetinversions to certain argument expressions;
operands of the unary, - , and~ operators, and operands of the shift operators. The following code fragment
shows the application of integer promotions:

char cl, c2;
cl=cl+c2;

Integer promotions requiréghe promotion of each variable{ andc2) toint size. The twint values are
added and the sum is truncated to fit into tichar type.

Integer promotions are performed to avoid arithmetic errors resulting from the overflow of intermediate values.
For exanple:

signed char cresult, c1, c2, c3;

¢l =100;
c2=3;
c3 =4,

cresult=cl*c2/c3;
In this example, the value ofl is multiplied byc2. The product of these values is then divided by the valuwSof
(according to operator precedence rules). é®ing that signed char is represented as apit8salue, the product

© ISTIEC2012 ¢ All rights reserved 16E

WG 23/N 086 Baseline Edition 2TR 24772

of c1 andc2 (300) cannot be represented. Because of integer promotions, howe%eiG2, andc3 are each
converted toint , and the overall expression is successfully evaluated. Theingsualue is truncated and stored
incresult . Because the final result (75) is in the range of the sighed type, the conversion fronmt back
to signed char does not result in lost data. It is possible that the conversion could result in a lossof da
should the data be larger than the storage location.

A loss of data (truncation) can occur when converting from a signed type to a signed type with less precision. For
example, the following code can result in truncation:

signed long int sl = LONG_MAX;
signed char sc = (signed char)sl;

The C standard defines rules for integer promotions, integer conversion rank, and the usual arithmetic
conversions. The intent of the rules is to ensure that the conversions result in the same numerical values, and that
these values minimize surprises in the rest of the computation.

C.7.2 Guidance to language users

1 Check the value of a larger type before converting it to a smaller type to see if the value in the larger type
is within the range of the smaller type. Aognversion from a type with larger precision to a smaller
precision type could potentially result in a loss of data. In some instances, this loss of precision is desired.
Such cases should be explicitly acknowledged in comments. For example, thenfpliode could be
used to check whether a conversion from an unsigned integer to an unsigned character will result in a loss
of precision:

unsigned int i;
unsigned char c;
é
if (i <= UCHAR_MAX) { // check against the maximum value for an object
of type unsigned char
¢ = (unsigned char) i;

}
else {
/l handle error condition
}
é

1 Close attention should be given to all warning messages issued by the compiler regarding multiple casts.
Making a cast in C explicit will both remove tharming and acknowledge that the change in precision is
on purpose.

C.8String Termination [CJM]

C.8.1 Applicability to language

A string in C is composed of a contiguous sequence of characters terminated by and including a null character (a
byte with all bits set to 0). Therefore strings in C cannot contain the null character except as the terminating

166 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 086

character. Inserting a null character in a string either through a bug or through malicious action can truncate a
string unexpectedly. Alternatively, notifting a null character terminator in a string can cause actions such as
string copies to continue well beyond the end of the expected string. Overflowing a string buffer through the
intentional lack of a null terminating character can be used to expufeemation or to execute malicious code.

C.8.2 Guidance to language users

1 Use safer and more secure functions for string handling from the ISO TR24ERtensions to the C
library ¢ Part 1: Boundghecking interfacé$ or the ISO TR2473t Part Il: Dynamic allocation
functions Both of these Technical Reports define mi&ive string handling library functions to the
existing Standard C Library. The functions verify that receiving buffers are large enough for the resulting
strings being placed in them and ensure that resulting strings are null terminated. One imfd&oren
of these functions has been released as the Safe C Library.

C.9Buffer Boundary Violation (Buffer Overflow) [HCB]

C.9.1 Applicability to language

A buffer boundary violation condition occurs when an array is indexed outside its bounds, or paitmiercic
results in an access to storage that occurs outside the bounds of the object accessed.

In C, the subscript operaty is defined such thaE1[E2] is identical to(*((E1)+(E2))) , SO that in either
representation, the value in locatiqie1+E2) is returned. C does not perform bounds checking on arrays, so
the following code:

int foo(const int i) {
int x[] = {0,0,0,0,0,0,0,0,0,0};
return x[i];

}

will return whatever is in locatior[i] even if,i were equal to-10 or 10 (assuming eitheubscript was still
within the address space of the program). This could be sensitive information or even a return address, which if
altered by changing the value ®f - 10] or x[10] , could change the program flow.

The following code is more appropriate awduld not violate the boundaries of the array

int foo(constint i) {
int X[X_SIZE] ={ 0}
if i<0]li>=X_SIZE) {
return ERROR_CODE;
}
else {
return X][i];

}

10O.Jrrently this is an optionally normative annex in the WG 14 working draft.

© ISTIEC2012 ¢ All rights reserved 167

WG 23/N 086 Baseline Edition 2TR 24772

}

A buffer boundary violation may also occur when copying, initializing, writing dinga buffer if attention to
the index or addresses used are not taken. For example, in the following move operation there is a buffer
boundary violation:

char buffer _src[]={fAabcdefgodo};
char buffer_dest[5]={0};
strepy(buffer_dest, buffer_src);

the buffer _src is longer than théuffer_dest , and the code does not check for this before the actual copy
operation is invoked. A safer way to accomplish this copy would be:

char buffer _src[loF{fAabcdefg
char buffer_dest[5]={0};
strncpy(buffer_dest, buffer_src , Sizeof(buffer_dest) -1);

this would not cause a buffer bounds violation, however, because the destination buffer is smaller than the
42dzNDOS o60dzFFSNE G(GKS RSadAyl ﬁ‘alény!ntcﬁmﬁa'ﬁ'ra@bmuld hotdthenlt 4 K2 f R
character.

C9.2 Guidance to language users

Validate all input values.

Check any array index before use if there is a possibility the value could be outside the bounds of the
array.

Use length restrictive functions suchstsncpy() instead ofstrcpy()

Use stack gualing addons todetectoverflows of stack buffers.

Do not use the deprecated functiows other language features such gsts()

Be aware that the use of all of these measures may still not be able to stop all buffer overflows from
happening. However, thuse of them can make it much rarer for a buffer overflow to occur and much
harder to exploit it.

1 Use alternative functions as specified in ISO/IEC TR 242807 or TR 24732:2010. These

Technical Reports provides alternative functions for the C hilfess defined in ISO/IEC 9899:1999)

that promotes safer, more secure programming. The functions verify that output buffers are large
enough for the intended result and return a failure indicator if they are not. Optionally, failing

Fdzy Ol A 2 Y & mexbnbtiaint haindbeyEzy G2 NB L2 NI GKS SNNBNXW 5F4F A
end of an array. All string results are null terminated. In addition, the functions in ISO/IEC TR
247311:2007 are reentrant: they never return pointers to static objects ownedthg function.

ISO/IEC TR 247312007 also contains functions that address insecurities with the C-oydput

facilities.

=A =

=A =4 =4 =4

168 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 086

C.10 Unchecked Array Indexing [XYZ]

C.10.1 Applicability to language

C does not perform bounds checking on arrays, so thoughsamay be accessed outside of their bounds, the
value returned is undefined and in some cases may result in a program termination. For example, in C the
following code is valid, though, for example, ifias the value 10, the result is undefined:

intfoo(constinti) {
int t;
int x[] = {0,0,0,0,0};
t = Xx[i];
return t;

}

The variablg will likely be assigned whatever is in the location pointed tx[i)] (assuming thak[10] is
still within the address space of the program).

C.10.2 Guidance to language users

1 Perform range checking before accessing an array since C does not perform bounds checking
automatically. In the interest of speed and efficiency, range checking only needs to be done when it
cannot be statically shown that an access outside of the araayot occur.

1 Use safer and more secure functions for string handling from the 1ISO TR24F8tensions to the C
libraryc- Part 1. Boundshecking interfaces. These are alternative string handling library functions to the
existing Standard C Libraryhéelfunctions verify that receiving buffers are large enough for the resulting
strings being placed in them and ensure that resulting strings are null terminated. One implementation
of these functions has been released as the Safe C Library.

C.11 Unchecked Array Copying [XYW]

C.11.1 Applicability to language

A buffer overflow occurs when some number of bytes (or other units of storage) is copied from one buffer to
another and the amount being copied is greater than is allocated for the destination buffer.

In the interest of ease and efficiency, C library functions sucheascpy(void * restrict s1,

const void * restrict s2, size_tn) andmemmove(void *s1, const void *s2,

size_tn) are used to copy the contents from one area to anothiglemcpy() andmemmové€) simply copy
memory and no checks are made as to whether the destination area is large enough to accommodataite

of data being copied. It is assumed that the calling routine has ensured that adequate space has been provided
the destination. Problems can arise when the destination buffer is too small to receive the amount of data being
copied or if the indices being used for either the source or destination are not the inténdiegs.

© ISTIEC2012 ¢ All rights reserved 16¢

WG 23/N 086 Baseline Edition 2TR 24772

C.11.2 Guidance to language users

1 Perform range checking before calling a memory copying function sutlemspy() andmemmove().
These functionslo not perform bounds checking automatically. In the interest of speed and efficiency,
range checking only needs to be done when it canmostatically shown that an access outside of the
array cannot occur.

C.12 Pointer Casting and Pointer Type Changes [HFC]

C.12.1 Applicability to language

C allows casting the value of a pointer to and from another data type. These conversions can eapeetad
changes to pointer values.

Pointers in C refer to a specific type, such as integesizdbf(int) is 4 bytes, angtr is a pointer to

integers that contains the value 0x5000, thetn++ would makeptr equal to 0xX5004. However,gfr were a
pointer to char, therptr++ would makeptr equal to 0x5001. It is the difference due to data sizes coupled with
conversions between pointer data types that cause unexpected results and potential vulnerabilities. Due to
arithmetic operations, pointers may haaintain correct memory alignment or may operate upon the wrong
memory addresses.

C.12.2 Guidance to language users

1 Maintain the same type to avoid errors introduced through conversions.

1 Heed compiler warnings that are issued for pointer conversioraireg#s. The decision may be made to
F@2AR Iff O2y@SNEA2YA a2 lFyeé gl NYyAy3da Ydzad oS IR
pointers will most likely not generate a compiler warning as this is valid in C.

C.13 Pointer Arithmetic [RVG]

C.13.1 Applicability to language

When performing pointer arithmetic in C, the size of the value to add to a pointer is automatically scaled to the
size of the type of the pointetb object. For instance, when adding a value to the byte address -tiyted

integer, the value is scaled by a factor 4 and then added to the pointer. The effect of this scaling is that if a pointer
P points to thei - th element of an array object, thef®) + N will point to thei+n - th element of the array.

Failing to understand how poiet arithmetic works can lead to miscalculations that result in serious errors, such

as buffer overflows.

In C, arrays have a strong relationship to pointers. The following example will illustrate arithmetic in C involving a
pointer and how the operatiorsidone relative to the size of the pointer's target. Consider the following code
snippet:

int buf[5];
int *buf_ptr = buf;

170 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 086

where the address diuf is 0x1234, after the assignmelotif ptr points tobuf[0] . Adding 1 tdouf ptr

will result inbuf_ptr beingequal to 0x1238 on a host where ant is 4 bytesb uf_ptr will then point to

buf[1l] . Not realizing that address operations will be in terms of the size of the object being pointed to can lead
to address miscalculations and undefined behaviour.

C.13.2 Guidance to language users

1 Consider an outright ban on pointer arithmetic due to the error prone nature of pointer arithmetic.
1 Verify that all pointers are assigned a valid memory address for use.

C.14 Null Pointer Dereference [XYH]

C.14.1 Applicability to language

C allows memory to be dynamically allocated primarily through the useatibc() ,calloc() ,and

realloc() . Each will return the address to the allocated memory. Due to a variety of situations, the memory
allocation may not occur as expectadd a null pointer will be returned. Other operations or faults in logic can
result in a memory pointer being set to null. Using the null pointer as though it pointed to a valid memory
location can cause a segmentation fault and other unanticipated tsitus

Space for 10000 integers can be dynamically allocated in C in the following way:
int *ptr = malloc(10000*sizeof(int)); // allocate space for 10000 ints

malloc() will return the address of the memory allocation or a null pointer if insufficient nrgniavailable
for the allocation. It is good practice after the attempted allocation to check whether the memory has been
allocated via anf test againsNULL

if (ptr '= NULL) /I check to see that the memory could be allocated

Memory allocations usub succeed, so neglecting this test and using the memory will usually work. That is why
neglecting the null test will frequently go unnoticed. An attacker can intentionally create a situation where the
memory allocation will fail leading to a segmentatifault.

Faults in logic can cause a code path that will use a memory pointer that was not dynamically allocated or after
memory has been deallocated and the pointer was set to null as good practice would indicate.

C.14.2 Guidance to language users

1 Check whether a pointer is null before dereferencing it. As this can be overly extreme in many cases
(such as in or loop that performs operations on each element of a large segment of memory),
judicious checking of the value of the pointer at keyatgic points in the code is recommended.

© ISTIEC2012 ¢ All rights reserved 171

WG 23/N 086 Baseline Edition 2TR 24772

C.15 Dangling Reference to Heap [XYK]
C.15.1 Applicability to language

C allows memory to be dynamically allocated primarily through the ussatibc() , calloc() , and

realloc() . C allows a considerable amountfigfedom in accessing the dynamic memory. Pointers to the
dynamic memory can be created to perform operations on the memory. Once the memory is no longer needed,
it can be released through the usefode() . However, freeing the memory does not preveme tuse of the

pointers to the memory and issues can arise if operations are performed after memory has been freed.

Consider the following segment of code:

int foo() {
int *ptr = malloc (100*sizeof(int));/* allocate space for 100 integers*/
if (ptr 1= NULL) { /* check to see that the memory could be allocated */
/* perform some operations on the dynamic memaory */
free (ptr); /* memory is no longer needed, so free it */
[* program continues performing other operations */
ptr[0] = 10; * ERROR 1 memory being used after released */
é
}
é
}

The use of memory in C after it has been freed is undefined. Depending on the execution path taken in the
program, freed memory may still be free or may haverbatlocated via anothamalloc() or other dynamic

memory allocation. If the memory that is used is still free, use of the memory may be unnoticed. However, if the
memory has been reallocated, altering of the data contained in the memory can resulircaatption.

Determining that a dangling memory reference is the cause of a problem and locating it can be difficult.

Setting and using another pointer to the same section of dynamically allocated memory can also lead to
undefined behaviour. ConsiderdHollowing section of code:

int foo() {
int *ptr = malloc (100*sizeof(int));/* allocate space for 100 integers */
if (ptr '= NULL) { /* check to see that the memory
could be allocated */
int ptr2 = &ptr[10]; /¥ set ptr2 to point to the 10 th
element of the allocated memory */
é /* perform some operations on th e
dynamic memory */
free (ptr); /* memoryis no longer needed */
ptr = NULL; /* set ptr to NULL to prevent ptr
from being used again */
é /* program continues performing
other operations */
ptr2[0] = 10; [* ERRORiI memory is being used

172 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 086

after it has been released via ptr2 */
é
}

return (0);

}

Dynamic memory was allocated vianalloc() and then later in the codeptr2 was used to point to an
address in the dynamically allocated memory. After the memory was freed fusa(gtr) and the good
practice of settingptr to NULLwas followed to avoid a dangling referencefiy later in the code, a dangling
reference §ll existed usingtr2 .

C.15.2 Guidance to language users

1 Set a freed pointer to null immediately aftefr@e() call, as illustrated in the following code:
free (ptr);
ptr = NULL;

1 Do not create and use additional pointers to dynamically allocated memor

1 Only reference dynamically allocated memory using the pointer that was used to allocate the memory.

C.16 Arithmetic Wrap -around Error [FIF]

C.16.1 Applicability to language

Given the limited size of any computer data type, continuously adding one tattaetype eventually will cause
the value to go from a the maximum possible value to a small value. C permits this to happen without any
detection or notification mechanism.

C is often used for bit manipulation. Part of this is due to the capabiliti€std mask bits and shift them.

Another part is due to the relative closeness C has to assembly instructions. Manipulating bits on a signed value
can inadvertently change the sign bit resulting in a number potentially going from a large positiveovallaedge
negative value.

For example, consider the following code fashert int containing 16 bits:
int foo(shortinti) {
i++;
return i;

}

Callingfoo with the value of 32767 would cause undefineehaviour, such as wrapping 182768. Manipulating
a value in this way can result in unexpected results such as overflowing a buffer.

In C, bit shifting by a value that is greater than the size of the data type or by a negative number is undefined. Tt
following code, where @t is 16 bis, would be undefined whej is greater than or equal to 16 or negative:

int foo(inti, constint) {
return i>>j;

© ISTIEC2012 ¢ All rights reserved 173

WG 23/N 086 Baseline Edition 2TR 24772

}

C.16.2 Guidance to language users

1 Be aware that any of the following operators have the potential to wrap in C:

a+b ai b a*b a++ a-- a+=b
a-=ba*b a<<b a>>b -a

1 Use defensive programming techniques to check whether an operation will overflow or underflow the
receiing data type. These techniques can be omitted if it can be shown at compile time that overflow or
underflow is not possible.

1 Only conduct bit manipulations on unsigned data types. The number of bits to be shifted by a shift
operator should lie between &nd (n1), where n is the size of the data type.

C.17 Using Shift Operations for Multiplication and Division [PIK]

C17.1 Applicability to language
The issues for C are well defined in the main body of this document in [PIK]. Also see, C.16.
C17.2 Guidance to language users

The guidance for C users is well defined in the main body of this document in [PIK]. Also see, C16.
C.18 Sign Extension Error [XZI]

Does not apply to C, since instead of conversion routines, C uses direct casts and implicit conveéhésoalbows
the compiler to pick the correct signedness.

C.19 Choice of Clear Names [NAI]

C.19.1 Applicability to language

C is somewhat susceptible to errors resulting from the use of similarly appearing names. C does require the
declaration of variales beforethey are used. However,allow scoping so that a variable that is not declared
locally may be resolved to some outer block and a human reviewer may not notice that resolution. Variable
name length is implementation specific and so one im@atation may resolve names to one length whereas
another implementation may resolve names to another length resulting in unintended behaviour.

As with the general case, calls to the wrong subprogram or references to the wrong data element (when missed
by human review) can result in unintended behaviour.

C.19.2 Guidance to language users

Use names that are clear and noanfusing.

Use consistency in choosing names.

Keep names short and concise in order to make the code easier to understand.
Choose names thiare rich in meaning.

= =4 =4 =4

174 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 086

Keep in mind that code will be reused and combined in ways that the original developers never imagined.

Make names distinguishable within the first few characters due to scoping in C. This will also assist in

averting problems witltompilers resolving to a shorter name than was intended.

91 Do not differentiate names through only a mixture of case or the presence/absence of an underscore
character.

T ' 92AR RAFTFSNBY(GAFGAYy3a GKNRBAdAK OKF NI O ¥NRE WnkQzi Wi
OFrasS WwW[Quz wtQ o60FLAGIE WLQOL YR WmMQI W{Q YR

1 Coding guidelines should be developed to define a common coding style and to avoid the above

dangerous practices.

C20 Dead Store [WXQ)]

=a =4

C.20.1 Applicabilit y to Language

Because C is an imperative language, programs in C can contain dead stores. This can result from an error in th
initial design or implementation of a program, or from an incomplete or erroneous modification of an existing
program.

A store ito a volatilequalified variable generally should not be considered a dead store because accessing such «
variable may cause additional side effects, such as input/output (memeayped I/O) or observability by a
debugger or another thread of execution.

C.20.2 Guidance to Language Users

1 Use compilers and analysis tools to identify dead stores in the program.
91 Declare variables as volatile when they are intentional targets of a store whose value does not appear to
be used.

C.21 Unused Variable [YZS]
C.21.1 Applicability to language

Variables may be declared, but never used when writing code or the need for a variable may be eliminated in the
code, but the declaration may remain. Most compilers will report this as a warning and the warning can be easily
resolved by removing the unused variable.

C.21.2 Guidance to language users

1 Resolve all compiler warnings for unused variables. This is trivial in C as one simply needs to remove the
declaration of the variable. Having an unused variable in code indidsésither warnings were turned
off during compilation or were ignored by the developer.

C.22 Identifier Name Reuse [YOW]

C.22.1 Applicability to language

C allows scoping so that a variable that is not declared locally may be resolved to some outandltickt
resolution may cause the variable to operate on an entity other than the one intended.

© ISTIEC2012 ¢ All rights reserved 17E

WG 23/N 086 Baseline Edition 2TR 24772

Because the variable nanvarl was reused in the following example, the printed valueafl may be
unexpected.

int varl; /* declaration in outer scope *
varl = 10;
{
int var2;
int varl; /* declaration in nested (inner) scope */
var2 = 5;
varl =1; /* varlininner scopeis 1 */
}
print (Avamwd,=%dar I*) wi | | print Avarl1l=100 a* varl
/* to varlinthe outer scope */

Removing the declaratioofvar2 will result in a diagnostic message being generated making the programmer
aware of an undeclared variable. However, removing the declaratisardf in the inner block will not result in

a diagnostic asarl will be resolved to the declaration ithe outer block and a programmer maintaining the
code could very easily miss this subtlety. The removing of inner éwik will result in the printing of

varl=1 ¢ Ay a v81=P &4 A

C.22.2 Guidance to language users

1 Ensure that a definition of armdity does not occur in a scope where a different entity with the same
name is accessible and can be used in the same context. A largp@gjéc project coding convention
can be used to ensure that such errors are detectable with static analysis.

1 Ensurethat a definition of an entity does not occur in a scope where a different entity with the same
name is accessible and has a type that permits it to occur in at least one context where the first entity can
occur.

1 Ensure that all identifiers differ withirhe number of characters considered to be significant by the
implementations that are likely to be used, and document all assumptions.

C.23 Namespace Issues [BJL]

Does not apply to C.

C.24 Initialization of Variables [LAV]

C.24.1 Applicability to language

Local, automatic variables can assume unexpected values if they are used before they are initialized. The C
Standard specifies, "If an object that has automatic storage duration is not initialized explicitly, its value is
indeterminate”. In the common s&, on architectures that make use of a program stack, this value defaults to
whichever values are currently stored in stack memory. While uninitialized memory often contains zeros, this is
not guaranteed. Consequently, uninitialized memory can causegrgm to behave in an unpredictable or
unplanned manner and may provide an avenue for attack.

Assuming that an uninitialized variable is 0 can lead to unpredictable program behaviour when the variable is
initialized to a value other than O.

176 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 086

Many implemenations will issue a diagnostic message indicating that a variable was not initialized.
C.24.2 Guidance to language users

1 Heed compiler warning messages about uninitialized variables. These warnings should be resolved as
recommended to achieve a clean cpite at high warning levels.

1 Do not use memory allocated by functions suchremloc() before the memory is initialized as the
memory contents are indeterminate.

C.25 Operator Precedence/Order of Evaluation [JCW]

C.25.1 Applicability to language

The orderof evaluation of the operands in C is clearly defined, as is the order of evaluation.

Mixed logical operators are allowed without parentheses.
C.25.2 Guidance to language users

1 Use parenthesesry time mixed logical operators are used.

C.26 Side-effects and Order of Evaluation [SAM]

C.26.1 Applicability to language

C allows expressions to have side effects. If two or more side effects modify the same expression as in:

intv[10 ;
inti;

[* é& *
| = V[i++];

0KS 0SKIFI@A2dzNJ Aa dzyRSFAYSR I yR 5
FaaAIy=Viyd Ha LISNF2NX¥SR FANROGOD . SO dza
functiondity of the code, this can greatly impact portability.

There are several situations in C where the order of evaluation of subexpressions or the order in which side
effects take place is unspecified including:

9 The order in which the arguments to a functiare evaluated (C99, Section 6.5.2.2,"Function calls").
1 The order of evaluation of the operands in an assignment statement (C99, Section 6.5.16,"Assignment
operators").
9 The order in which any side effects occur among the initialization list expressiarmspiscified. In
particular, the evaluation order need not be the same as the order of subobject initialization (C99, Section
cCPT Py S ALYAGAFEATFdA2YboO
Because these are unspecified behaviours, testing may give the false impression that the code is wdrking a
portable, when it could just be that the values provided cause evaluations to be performed in a particular order
that causes side effects to occur as expected.

© ISTIEC2012 ¢ All rights reserved 177

WG 23/N 086 Baseline Edition 2TR 24772

C.26.2 Guidance to language users

9 Expressions should be written so that the same effecliso@cur under any order of evaluation that the C
standard permits since side effects can be dependent on an implementation specific order of evaluation.

C.27 Likely Incorrect Expression [KOA]

C.27.1 Applicability to language

C has several instances of ogrs which are similar in structure, but vastly different in meaning. This is so
O02YY2y GKIG GKS / SEFYLX S 2F ORNFKHzZARKYSEE KB T y2RF v&S Wi
as an example among programming languages. Using an expréssigntechnically correct, but which may just

be a null statement can lead to unexpected results.

C is also provides a lot of freedom in constructing statements. This freedom, if misused, can result in unexpected
results and potential vulnerabilities.

The flexibility of C can obscure the intent of a programmer. Consider:

int x,y;
[* & *
if(x=y) {
[* & *|

}

A fair amount of analysis may need to be done to determine whether the programmer intended to do an
assignment as part of thé statement (pefectly valid in C) or whether the programmer made the common

YAAOGEF 1S 2= Az AYiBHRYy 2& Yyl 2A0RSN) (12 LINBGSyild (GKAa O2y7¥dz
in contexts that are easily misunderstood be moved outside of the Booleae®sipn. This would change the

example code to:

int x,y;

/[* é */|/
X=Y,;
if (x ==0) {
[* é */|/
}

This would clearly state what the programmer meant and that the assignment of y to x was intended.

Programmers can easily get in the habit of insertingdghe a G+ G SYSyd GSNXYAYFG2N G
However, inadvertently doing this can drastically alter the meaning of code, even though the code is valid as in
the following example:

int a,b;

[* é *

if (@ ==b); // the semi - colon will make this a null statement
{

178 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 086

}

Because of the misplaced seodlon, the code block following thé will always be executed. In this case, it is
extremely likely that the programmer did not intend to put the seznlon there.

C.27.2 Guidance to language users

1 Simplify statements with interspersed comments to aid in accurately programming functionality and help
future maintainers understand the intent and nuances of the code. The flexibility of C permits a
programmer to create extremely complex expressio

1 Assignments embedded within other statements can be potentially problematic. Each of the following
would be clearer and have less potential for problems if the embedded assignments were conducted

outside of the expressions:

int a,b,c,d;

[* e *|

if((a==b)||(c=(d - 1)) [* the assignment to ¢ may not
occur if aisequaltob */

or:

int a,b,c;

[* e *|

foo (a=b, c);

Each is a valid C statement, but each may have unintended results.
1 Null statements should have a source line of theino This, combined with enforcement by static
analysis, would make clearer the intention that the statement was meant to be a null statement.

C.28 Dead and Deactivated Code [XYQ)]

C.28.1 Applicability to language

As with any programming language that cantabranching statements, C programs can potentially contain dead
code. Itis of concern primarily since dead code may reveal a logic flaw or an unintentional mistake on the part of
the programmer. Sometimes statements can be inserted in C programdeasie programming such as adding

a default case to a switch statement even though the expectation is that the default can never be reacttiéd
through some twist of logic or through modifications to the code the notifying error message reveals the
surprising event. These types of defensive statements may be able to be shown to be computationally impossibls
and thus are dead code. Those are not the focus. The focus is on those statements which are not defensive anc
which are unreachable. It is imggible to identify all such cases and therefore only those which are blatant and
that indicate deeper issues of flawed logic may be able to be identified and removed.

C uses some operators that can be confused with other operators. For instance, the sonistake of using an
assignment operator in a Boolean test as in:

int a,b;
[* é& */|/

© ISTIEC2012 ¢ All rights reserved 17¢

WG 23/N 086 Baseline Edition 2TR 24772

if (a = b)
é

can cause portions of code to become dead code since ublear contain the value O, thelse portion of the
if ~statement cannot be reached.

C.28.2 Guidance to language users

1 Eliminate dead code to the extent possible from C programs.

9 Use compilers and analysis tools to assist in identifying unreachable code.

T ' ad éa O2YYSyil aeyixyeE ARMYSYRI 2R yd+FE (G2 F @2AR (KS
out sections of code.

1 Delete deactivated code from programs due to the possibility of accidentally activating it.

C.29 Switch Statements and Static Analysis [CLL]

C.29.1 Applicability to language

Because of the way in which the switchse statement in C is gtitured, it can be relatively easy to
unintentionally omit thebreak statement between cases causing unintended execution of statements for some
cases.

C contains awitch statement of the form:

char abc;

[* é& * /|

switch (abc) {
case 1:

sval

break;
case 2:
sval
break;
case 3:
sval = fico;
break;
default:
printf (Al nvalidno®glbecti on

I}
o
b}
o

1]
o}
o
o

LT GKSNB AayQid || RSTFlLdA G OFrasS IyR (GKS asAiG0OKSR SELN
to the next satement after the switch statement block. Unintentionally omittingreaak statement between

two cases will cause subsequent cases to be executed umiilak or the end of the switch block is reached.

This could cause unexpected results.

C.29.2 Guidance to language users
1 Only a direct fall through should be allowed from one case to another. That is, every noreasety

statement should be terminated withlareak statement as illustrated in the following example:

180 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 086

inti;
[* & *
switch (i) {
case 1:
case 2:
i ++; [* fall through from case 1 to 2 is permitted */
break;
case 3:
jtt;
case 4. /* fall through from case 3 to 4 is not permitted */
[* asitis not a direct fall through due to the */
[* j++ statement */

}

1 Allswitch statements should hava default value if only to indicate that there could exist a case that
was unanticipated and thought impossible by the developers. The only exception is for switches on an
enumerated type where all possible values can be exhausted. Even in the casenefated types, it is
suggested that a default be inserted in anticipation of possible code changes to the enumerated type.

C.30 Demarcation of Control Flow [EOJ]

C.30.1 Applicability to language

C is a blocktructured language, while languages such aa &wdPascahre combstructured languages.
Therefore, it may not be readily apparent which statements are part of a loop constructibor astatement.

Consider the following section of code:

int foo(int a, const int *b) {
int i=0;
[* e *|
a=0;
f or (i=0; i<10; i++);
{
a=a+bli;
}
}

At first it may appear that will be a sunof the number$[0] to b[9] . However, even though the code is

&0 NHzZOG dzZNB Ra=a2 b[ili KI 4i QKBS aA a & i NHzO(didBR2 #1203 ¢ tithie®Bniddf) & A
thefor adGF GSYSyd OFdzaSa GKS 228002 ya&RSabX la ydA G a8y 8
to only be executed once. In this case, this mistake may be readily apparent during development or testing.
More subtle cases may not las readily apparent leading to unexpected results.

If adFdSYSyda Ay [/ IINB ftaz2 adzaOSLIA6tS (2 O2y iNRf 1
be anelse statement for everyf statement. Arelse statementin C always belong to theost recentif

© ISTIEC2012 ¢ All rights reserved 181

WG 23/N 086 Baseline Edition 2TR 24772

statement without arelse . However, the situation could occur where it is not readily apparent to which if
statement an else due to the way the code is indented or aligned.

C.30.2 Guidance to language users

1 Enclose the bodies df , else ,while ,for , etc. in braces. This will reduce confusion and potential
problems when modifying the software. For example:

int a,b,i;

[* ée *|

if (i = 10) {
a=>5; /* this is correct */
b = 10;
}
else
a=10; /* this is incorrect -- thea ssignmentstob */
/* were added later and were expected to */
b=5; /* be part of the if and else and indented */
[* as such, but did not become part of the else *
f Use afinaklse statement or a comment stating why the firebe A 2 y Qi y S (fSandelsd® A Yy

if statements.

C.31 Loop Control Variables [TEX]

C.31.1 Applicability to language

C allows the modification of loop control variables within a loopou@ih this is usually not considered good
programming practice as it can cause unexpected problems, the flexibility of C expects the programmer to use
this capability responsibly.

Since the modification of a loop control variable within a loop is infredyesricountered, reviewers of C code
may not expect it and hence miss noticing the modification. Modifying the loop control variable can cause
unexpected results if not carefully done. In C, the following is valid:
int a,i;
for (i=1; i<10; i++){
é
if(a>7)
i=10;

}

which would cause théor loop to exit once is greater than 7 regardless of the number of loops that have
occurred.

182 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 086

C.31.2 Guidance to language users

1 Do not modify a loop control variable within a loop. Even though thaloiify exists in C, it is still
considered to be a poor programming practice.

C.32 Off-by-one Error [XZH]

C.32.1 Applicability to language

Arrays are a common place for off by one errors to manifest. In C, arrays are indexed starting at 0, causing the
common mistake of looping from 0 to the size of the array as in:

int foo() {
int a[10];
inti;
for (i=0, i<=10, i++)
e
return (0);

}

Strings in C are also another common source of errors in C due to the need to allocate space for and account for
the stringsentinel value. A common mistake is to expect to store an n length string in an n length array instead of
f SYya3dkK ybm (2 O0QRNdey i LYANINFKDAYIY GAYIEKE 2@ KSNJ £ | y3Idz
strings can also lead to an off bye error.

C does not flag accesses outside of array bounds, so an off by one error may not be as detectable in C as in son
other languages. Several good and freely available tools for C can be used to help detect accesses beyond the
bounds of arrays thiaare caused by an off by one error. However, such tools will not help in the case where only
a portion of the array is used and the access is still within the bounds of the array.

Looping one more or one less is usually detectable by good testing.oDe structure of the C language, this
may be the main way to avoid this vulnerability. Unfortunately some cases may still slip through the developmen
and test phase and manifest themselves during operational use.

C.32.2 Guidance to language users

9 Use careful programming, testing of border conditions and static analysis tools to detect off by one errors
in C.

C.33 Structured Programming [EWD]
C.33.1 Applicability to language

It is as easy to write structured programs in C as it is not to. Cineriteegoto statement, which can create
unstructured code. Also, C heasntinue , break , andreturn that can create a complicated control flow,

when used in an undisciplined manner. Spaghetti code can be more difficult for C static analyzers to adalyze a
is sometimes used on purpose to intentionally obfuscate the functionality of software. Code that has been

© ISTIEC2012 ¢ All rights reserved 183

WG 23/N 086 Baseline Edition 2TR 24772

modified multiple times by an assortment of programmers to add or remove functionality or to fix problems can
be prone to become unstructured.

Beause unstructured code in C can cause problems for analyzers (both automated and human) of code,
problems with the code may not be detected as readily or at all as would be the case if the software was written
in a structured manner.

C.33.2 Guidance to language users

1 Write clear and concise structured code to make code as understandable as possible.

1 Restrict the use ofioto , continue , break andreturn to encourage more structured programming.

1 Encourage the use of a single exit point from a function. Aggirthis guidance can have the opposite
effect, such as in the case of #éin check of parameters at the start of a function that requires the
remainder of the function to be encased in tlie statement in order to reach the single exit point. If, for
exanple, the use of multiple exit points can arguably make a piece of code clearer, then they should be
used. However, the code should be able to withstand a critique that a restructuring of the code would
have made the need for multiple exit points unnecegsa

C.34 Passing Parameters and Return Values [CSJ]

C.34.1 Applicability to language

C usegall by valugoarameter passing. The parameter is evaluated and its value is assigned to the formal
parameter of the function that is being called. A formal partanéehaves like a local variable and can be
modified in the function without affecting the actual argument. An object can be modified in a function by
passing the address to the object to the function, for example

void swap(int *x, int *y) {
intt=* X;
*y = *y;
*y = t;

}

Wherex andy are integer pointer formal parameters, arid and*y in theswap() function body dereference

the pointers to access the integers.

C macros use eall by namegparameter passing; a call to the macro replaces the magrthe body of the macro.

This is calinacro expansionMacro expansion is applied to the progmesource text andamounts to the

substitution ofthe formal parameters with thactual parameter expressiong-ormal parameters are often
parenthesized to oid syntax issues after the expansion. Call by name parameter passing reevaluates the actual
parameter expression each time the formal parameter is read.

C.34.2 Guidance to language users

1 Use cautiorfor reevaluation of function calls in parameters wittacros

184 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 086

1 Use caution when passing the address of an object. The object passed could belan alias

C.35 Dangling References to Stack Frames [DCM]

C.35.1 Applicability to language

C allows the address of a variable to be stored in a variable. ShoudthNA | 6 f SQ& | RRNB&a 0 8§
address of a local variable that was part of a stack frame, then using the address after the local variable has beel
deallocated can yield unexpected behaviour as the memory will have been made available fordliotetion

and may indeed been allocated for some other use. Any use of perishable memory after it has been deallocated
can lead to unexpected results.

C.35.2 Guidance to language users

1 Do not assign the address of an object to any entity which peisitgsthe object has ceased to exist.
This is done in order to avoid the possibility of a dangling reference. Once the object ceases to exist, thel
so will the stored address of the object preventing accidental dangling references.

1 Long lived pintersthat contain blockocal addresses should be assigned the null pointer value
before executing a return from the block.

C.36 Subprogram Signature Mismatch [OTR]

C.36.1 Applicability to language

Functions in C may be called with more or less than the numbearaimeters the receiving function expects.
However, most C compilers will generate a warning or an error about this situation. If the number of arguments
does not equal the number of parameters, the behaviour is undefined. This can lead to unexgscieziwhen

the count or types of the parameters differs from the calling to the receiving function. If too few arguments are
sent to a function, then the function could still pop the expected number of arguments from the stack leading to
unexpected rests.

C allows a variable number of arguments in function calls. A good example of an implementation of this is the
printf() function. This is specified in the function call by terminating the list of parameters with an ellipsis (

). After the commano information about the number or types of the parameters is supplied. This can be a
useful feature for situations such psintf () , but the use of this feature outside of special situations can be
the basis for vulnerabilities.

Functions may or may ndie defined with a function definition. The function definition may or may not contain a
parameter type list. If a function that accepts a variable number of arguments is defined without a parameter

type list that ends with the ellipsis notation, the kehour is undefined.

If the calling and receiving functions differ in the type of parameters, C will, if possible, do an implicit conversion
such as the call teqrt() that expects a double:

11 An alias is a variable or formal parameter that refers to the same location as another variable or formal parameter.

© ISTIEC2012 ¢ All rights reserved 18E

WG 23/N 086 Baseline Edition 2TR 24772

double sqrt(double)
the call:
root2 = sqrt(2);
coerces the integr 2 into the double value 2.0.

C.3%.2 Guidance to language users

1 Use a function prototype to declare a function with its expected parameters to allow the compiler to
check for a matching count and types of the parameters. The prototype contains jusiine of the
function and its parameters without the body of code that would normally follow.

1 Do not use the variable argument feature except in rare instances. The variable argument feature such as
is used irprintf() is difficult to use in a type safe maer.

C.37 Recursion [GDL]

C.37.1 Applicability to language

C permits recursive calls both directly and indirectly through any chain of other functions. However, recursive
functions must be implemented carefully in C,C does not have protective mechahahteuld avert serious
problems such as an overly large consumption of resources or an overrun of buffers. Since C is frequently cited
for its high performance efficiency, the use of recursion in C can be counter to this as recursion can be inefficient
both in execution time and memory usage. Some of the modern compilers perforoaliagiptimization to make
recursion efficient and resourefeiendly.

As with many languages, the high consumption of resources for recursive calls can apply to i@icuttisod

predict the complete range of values that a recursive function can execute that will lead to a manageable
consumption of resources. Part of this difficulty is that the range of values can change depending on the current
load of the host. Mamiulation of the input values to a recursive function can result in an intentional exhaustion

of system resources leading to a denial of service.

C.37.2 Guidance to language users

1 Only use recursion in rare instances. Although recursion can shorterepriegronsiderably, there is a
high performance penalty which is contrary to the usual high efficiency of C.

1 Only use recursion if it can be proven that adequate resources exist to support the maximum level of
recursion possible.

C.38 Ignored Error Status and Unhandled Exceptions [OYB]
C.38.1 Applicability to language

The C standard does not include exception handling, therefore only error status will be covered.

C provides the include fileewrno.h> that defines the macroEDONMEILSEQ and ERANGEwhich expand to
integer constant expressions with tyjpg , distinct positive values and which are suitable for us#ifin

186 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 086

preprocessing directives. C also provides the integero that can be set to a nonzero value by any library
function (if the use oérrno is not documented in the description of the function in the C Standartho

could be used whether or not there is an error). Though these values are defined, inconsistencies in responding
to error conditions can lead to vulnerabilities.

C.38.2 Guidance to language users

1 Check the returned error status upon return from a function. The C standard library functions provide an
error status as the return value and sometimes in an additional global error value.

1 Seterrno to zero before a library function call in situatiowbere a program intends to cheekrno
before a subsequent library function call.

1 Useerrno_t to make it readily apparent that a function is returning an error code. Often a function
that returns anerrno error code is declared as returning a valudygfeint . Although syntactically
correct, it is not apparent that the return code isamno error code. TR 2473l introduced the new
typeerrno_t in <errno.h> that is defined to be typent .

C.39 Termination Strategy [REU]

C.39.1 Applicability to lang uage

Choosing when and where to exit is a design issue, but choosing how to perform the exit may result in the host
being left in an unexpected state. C provides several ways of terminating a program inekit{ing ,

_Exit() ,andabort() . Areturn from the initial call to themain function is equivalent to calling the

exit() function with the value returned by thmain function as its argument (this is if the return type of the
main function is a type compatible witimt , otherwise the termination statuseturned to the host environment
Ad dzyalJSOATASRO 2thdt térrhivatelf tRemaiiSfunQiehiefuihs aivElE: ofd.Y

All of the termination strategies in C have undefined, unspecified, and/or implementation defined behaviour
associated withhem. For example, if more than one call to #ndgt() function is executed by a program, the
behaviour is undefined. The amount of clegmthat occurs upon termination such as the removal of temporary
files or the flushing of buffers varies and mayitmplementation defined.

Acallto exit() or_ Exit() will terminate a program normally. Abnormal program termination will occur
whenabort() is used to exit a program (unless the siggBBABRTIis caught and the signal handler does not
return). Unlikea call toexit() , when either_Exit() orabort() are used to terminate a program, it is
implementation defined as to whether open streams with unwritten buffered data are flushed, open streams are
closed, or temporary files are removed. This can leavesi@igyin an unexpected state.

C provides the functioatexit() that allows functions to be registered so that at normal program termination,
the registered functions will be executed to perform desired functions. C99 requires the capability to ragister
least32 functions. Implementations expecting more than 32 registered functions may yield unexpected results.

C.39.2 Guidance to language users
1 Use areturn from thenain() program as it is the cleanest way to exit a C program.

I Useexit() to quickly &it from a deeply nested function.

© ISTIEC2012 ¢ All rights reserved 187

WG 23/N 086 Baseline Edition 2TR 24772

1 Useabort() in situations where an abrupt halt is neededalhort() is necessary, the design should
protect critical data from being exposed after an abrupt halt of the program.

1 Become familiar with the undefinedngpecified and/or implementation aspects of each of the
termination strategies.

C.40 Type-breaking Reinterpretation of Data [AMV]

C.40.1 Applicability to language

The primary way in C that a reinterpretation of data is accomplished is througloa whichmay be used to
interpret the same piece of memory in multiple ways. If the use of the union members is not managed carefully,
then unexpected and erroneous results may occur.

C allows the use of pointers to memory so that an integer pointer could betasadnipulate character data.
This could lead to a mistake in the logic that is used to interpret the data leading to unexpected and erroneous
results.

C.40.2 Guidance to language users

1 Avoid the use of unions as it is relatively easy for there td exisinexpected program flow that leads to
a misinterpretation of the union data.

C.41 Memory Leak [XYL]

C.41.1 Applicability to language

C can allow memory leaks as many programs use dynamically allocated memory. C relies on manual memory
management ratbr than a built in garbage collector primarily since automated memory management can be
unpredictable, impact performance and is limited in its ability to detect unused memory such as memory that is
still referenced by a pointer, but is never used.

Memoryis dynamically allocated in C using the library caliloc() ,calloc() , andrealloc() . When

the program no longer needs the dynamically allocated memory, it can be released using the libfeeg@all .

Should there be a flaw in the logic of the pram, memory continues to be allocated but is not freed when it is

no longer needed. A common situation is where memory is allocated while in a function, the memory is not freed
before the exit from the function and the lifetime of the pointer to the membias ended upon exit from the

function.

C.41.2 Guidance to language users

1 Use debugging tools such as leak detectors to help identify unreachable memory.

1 Allocate and free memory in the same module and at the same level of abstraction to makeriteasie
determine when and if an allocated block of memory has been freed.

1 Userealloc() only to resize dynamically allocated arrays.

1 Use garbage collectors that are available to replace the usual C library calls for dynamic memory
allocation which allod@ memory to allow memory to be recycled when it is no longer reachable. The use

188 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 086

of garbage collectors may not be acceptable for some applications as the delay introduced when the
allocator reclaims memory may be noticeable or even objectionable leadipgrformance degradation.

C.42 Templates and Generics [SYM]
Does not apply to C.

C.43 Inheritance [RIP]
Does not apply to C.

C.44 Extra Intrinsics [LRM]
Does not apply to C.

C.45 Argument Passing to Library Functions [TRJ]

C.45.1 Applicability to languag e

t I NI YSGSNI LI aaAy3a Ay / Aa SAGKSNI LI aa o0& NBFSNByOS
passed will be verified by either the calling or receiving functions. So values outside of the assumed range may |
received by a functio resulting in a potential vulnerability.

A parameter may be received by a function that was assumed to be within a particular range and then an
operation or series of operations is performed using the value of the parameter resulting in unanticipatksl resu
and even a potential vulnerability.

C.45. Guidance to language users

1 Do not make assumptions about the values of parameters.

1 Do not assume that the calling or receiving function will be range checking a parameter. It is always
safest to not makeny assumptions about parameters used in C libraries. Because performance is
sometimes cited as a reason to use C, parameter checking in both the calling and receiving functions is
considered a waste of time. Since the calling routine may have bettevikdge of the values a
parameter can hold, it may be considered the better place for checks to be made as there are times wher
I LI NF YSGSNI R2SayQi ySSR (2 0S OKSO{1SR aAyoS 2i
the receiving routine nderstands how the parameter will be used and it is good practice to check all
inputs, it makes sense for the receiving routine to check the value of parameters. Therefore, in C itis
difficult to create a blanket statement as to where the parameter chedttould be made and as a result,
parameter checks are recommended in both the calling and receiving routines unless knowledge about
GKS OFfftAy3 2NJ NSOSAGAY3I NRdziAySa RAOGIGSA GKIG

C.46 Inter -language Calling [DJS]

The C Standard defindse calling conventions, data layout, error handing and return conventimesied to use
C from another language. Ada and Fortran have developed a guideline to call C using the Standard.

© ISTIEC2012 ¢ All rights reserved 18¢

WG 23/N 086 Baseline Edition 2TR 24772

C.47 Dynamically -linked Code and Self-modifying Code [NYY]

C.47.1 Applicability to language

Most loaders allow dynamically linked libraries also known as shared libraries. Code is designed and tested using
a suite of shared libraries which are loaded at execution time. The process of linking and loading is outside the
scope of the C standard.

CcanallowseN2 RAFe@Ay3a O2RS® Ly / GKSNB AayQi | RAAGAYyOn?
commands can be altered as desired during the execution of the program. Althoughcskffjing code may be
easy to don C, it can be difficult to understand, test and fix leading to potential vulnerabilities in the code.

Seltmodifying code can be done intentionally in C to obfuscate the effect of a program or in some special
situations to increase performance. Becau$é¢he ease with which executable code can be modified in C,
accidental (or maliciously intentional) modification of C code can occur if pointers are misdirected to modify code
space instead of data space or code is executed in data space. Accidentatatiodiisually leads to a program
crash. Intentional modification can also lead to a program crash, but used in conjunction with other
vulnerabilities can lead to more serious problems that affect the entire host.

C.47.2 Guidance to language users

1 Use signatures to verify that the shared libraries used are identical to the libraries with which the code
was tested.

1 Do not use selnodifying code except in rare instances. In those rare instancesnedifying code in C
can and should be consireed to a particular section of the code and well commented.

C.48 Library Signature [NSQ]

C.48.1 Applicability to language

Integrating C and another language into a single executable relies on knowledge of how to interface the function
calls, argument listand data structures so that symbols match in the object code during linking. Byte alignments
can be a source of data corruption.

For instance, when calling Fortran from C, several issues arise. Neither C nor Fortran check for mismatch
argument types oeven the number of arguments. C passes arguments by value and Fortran passes arguments
by reference, so addresses must be passed to Fortran rather than values in the argument list. Multidimensional
arrays in C are stored in row major order, whereasfaorstores them in column major order. Strings in C are
terminated by a null character, whereas Fortran uses the declared length of a string. These are just some of the
issues that arise when calling Fortran programs from C. Each language has éaaifewrith C, so different

issues arise with each interface.

Writing a library wrapper is the traditional way of interfacing with code from another language. However, this
can be quite tedious and error prone.

190 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 086

C.48.2 Guidance to language users

1 Use atooljf possibleto automaticallycreate the interface wrappers.

1 Minimizethe use of those issues known to be error pravieen interfacing from Csuch as passing
character stringspassingnulti-dimensional arrays ta colunn major language, interfacing witither
parameter formas such as call by reference or naarereceivingreturn codes.

C.49 Unanticipated Exceptions from Library Routines [HIW]

C.49.1 Applicability to language

Calling software routines produced outside of the control of the main apicateveloper puts all of the code at
the mercy of the called routines. An unanticipated exception generated from a library routine could have
devastating consequences.

C.49.2 Guidance to language users

1 Check the values of parameters to ensure appropriatieles are passed to libraries in order to reduce or
eliminate the chance of an unanticipated exception

C.50 Pre-processor Directives [NMP]

C.50.1 Applicability to language

The C preorocessor allows the use of macros that are tetlaced before compitéon.

Functiontlike macros look similar to functions but have different semantics. Because the arguments are text
replaced, expressions passed to a funciiie macro may be evaluated multiple times. This can result in
unintended and undefined behawioif the arguments have side effects or are ypr@cessor directives as
described by C99 §6.10]. Additionally, the arguments and body of functilike macros should be fully
parenthesized to avoid unintended and undefined behaviour [2].

The followingcode example demonstrates undefined behaviour when a fundil@macro is called with
arguments that have sideffects (in this case, the increment operator) [2]:

#define CUBE(X) ((X) * (X) * (X))

> ... %
inti=2;
inta=81/ CUBE(++i);

The above eample could expand to:
inta=81/ ((++0) * (+0) * (++0));
this is undefined behaviour so this macro expansion is difficult to predict.

Another mechanism of failure can occur when the arguments within the body of a fudié@macro are not
fully parenthesized. The following example shows @dBEmacro without parenthesized arguments [2]:

© ISTIEC2012 ¢ All rights reserved 191

WG 23/N 086 Baseline Edition 2TR 24772

#define CUBE(X) (X * X * X)
[* .
inta=CUBE(2 + 1);

This example expands to:

inta=(2+1*2+1*2+1)
which evaluates to 7 instead of the intended 27.

C.50.2 Guidance to language users

This vulnerability can be avoided or mitigated in C in the following ways:

1 Replacamacrclike functions with inline functions where possible. Although making a function inline only
suggests to the compiler that the &ato the function be as fast as possible, the extent to which this is
done is implementatiordefined. Inline functions do offer consistent semantics and allow for better
analysis by static analysis tools.

1 Ensure that if a functiotike macro must be s, that its arguments and body are parenthesized.

1 Do not embed preprocessor directives or sigeffects such as an assignment, increment/decrement,
volatile access, or function call in a functilike macro.

C.51 Suppression of Language-defined Run -time Checking [MXB]
Does not apply to C.

C.52 Provision of Inherently Unsafe Operations [SKL]
Does not apply to C.

C.53 Obscure Language Features [BRS]

C.53.1 Applicability to language

C is a relatively small language with a limited syntax set lacking m#my odmplex features of some other
languages. Many of the complex features in C are not implemented as part of the language syntax, but rather
implemented as library routines. As such, most of the available features in C are used relatively frequently.

Common use across a variety of languages may make some features less obscure. Because of the unstructured
code that is frequently the result of usiggto Q & >gotd Kttement is frequently restricted, or even outright
banned, in some C development enviroents. Even though thgoto is encountered infrequently and the use

of it considered obscure, because it is fairly obvious as to its purpose and since its use is common to many other
languages, the functionality of it is easily understood by even the juo®r of programmers.

The use of a combination of features adds yet another dimension. Particular combinations of features in C may
be used rarely together or fraught with issues if not used correctly in combination. This can cause unexpected
resultsand potential vulnerabilities.

192 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 086

C.53.2 Guidance to language users

1 Organizations should specify coding standards that restrict or ban the use of features or combinations of
features that have been observed to lead to vulnerabilities in the operationat@mmient for which the
software is intended.

C.54 Unspecified Behaviour [BQF]

C.54.1 Applicability to language

The C standard has documented, in Annex J.1, 54 instances of unspecified behaviour. Examples of unspecified
behaviour are:

9 The order in which theperands of an assignment operator are evaluated
1 The order in which any side effects occur among the initialization list expressions in an initializer
1 The layout of storage for function parameters

Reliance on a particular behaviour that is unspecifieddda portability problems because the expected
behaviour may be different for any given instance. Many cases of unspecified behaviour have to do with the
order of evaluation of subexpressions and side effects. For example, in the function call

fi(f2(x) , f3(x));

the functionsf2 andf3 may be called in any order possibly yielding different results depending on the order in
which the functions are called.

C.54.2 Guidance to language users

1 Do not rely on unspecified behaviour because the behaviour can change at each instance. Thus, any coc
that makes assumptions about the behaviour of something that is unspecified should be replaced to make
it less reliant on a particular installation @more portable.

C.55 Undefined Behaviour [EWF]

C.55.1 Applicability to language

The C standard does not impose any requirements on undefined behaviour. Typical undefined behaviours incluc
doing nothing, producing unexpected results, and terminatingpragram.

The C standard has documented, in Annex J.2, 191 instances of undefined behaviour that exist in C. One exam)|
of undefined behaviour occurs whehd value of the second operand of theor %operator is zero This is

generally not detectable ttough static analysis of the code, but could easily be prevented by a check for a zero
divisor before the operation is performed. Leaving this behaviour as undefined lessens the burden on the
implementation of the division and modulo operators.

Other exanples of undefined behaviour are:

1 Referring to an object outside of its lifetime

© ISTIEC2012 ¢ All rights reserved 193

WG 23/N 086 Baseline Edition 2TR 24772

9 The conversion to or from an integer type that produces a value outside of the range that can be
represented
1 The use of two identifiers that differ only in nagnificant chaacters

Relying on undefined behaviour makes a program unstable angbodable. While some cases of undefined
behaviour may be consistent across multiple implementations, it is still dangerous to rely on them. Relying on
undefined behaviour can resuft errors that are difficult to locate and only present themselves under special
circumstances. For example, accessing memory deallocatideby() or realloc() results in undefined
behaviour, but it may work most of the time.

C.55.2 Guidance to language users

1 Eliminate to the extent possible all cases of undefined behaviour from a program

C.56 Implementation -defined Behaviour [FAB]

C.56.1 Applicability to language

The C standard has documented, in Annex J.3, 112 instances of implemexqtigdiioed behaviou Examples of
implementationdefined behaviour are:

9 The number of bits in a byte

1 The direction of rounding when a floatimpint number is converted to a narrower floatipgint
number

9 The rules for composing valid file names

Relying on implementatiodefined behaviour can make a program less portable across implementations.
However, this is less true than for unspecified and undefined behaviour.

The following code shows an example of reliance upon implemental@dimed behaviour:

unsigned int x = 50;
X+=(x<<2)+1; / X=5x+1

Since the bitwise representation of integers is implementatigfined, the computation ox will be incorrect for
AYLE SYSYy(GlFGA2ya 6KSNB AYyGiS3ISNE NB y2d NBLNBaSydaSR
C.56.2 Guidance to language users
9 Eliminate to the extent possible any reliance on implementatiefined behaviour from programs in
order to increase portability. Even programs that are specifically intended for a particular

implementation may in the future be ported to anothervgronment or sections reused for future
implementations.

194 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 086

C.57 Deprecated Language Features [MEM)]

C.57.1 Applicability to language

C has deprecated one function, the functigets() . Thegets() function copies a string from standard input
into a fixedsizearray. There is no safe way to ugets() because it performs an unbounded copy of user
input. Thus, every use of gets constitutes a buffer overflow vulnerability.

C has deprecated several language features primarily by tightening the requiremertie feature:

Implicitint declarations are no longer allowed.

Functions cannot be implicitly declared. They must be defireddrb use or have a prototype.

The use of the functionngetc () at the beginning of a binary file is deprecated.

The deprecation odliased array parameters has been removed.

1 Areturn without expression is not permitted in a function that returns a value (and vice versa).

= =4 =4 =4

Violating any of these features will generate a diagnostic message.
C.57.2 Guidance to language users

9 Although backward compatibility is sometimes offered as an option for compilers so one can avoid
changes to code to be compliant with current language specifications, updating the ledfaaredo the
current standard is a better option.

C.58 Implications for standardization

Future standardization efforts should consider:

1 Moving in the direction over time to being a more strongly typed language. Much of the use of weak
typing is simply convenience to the developer in not having to fully consider the types and uses of
variables. Stronger typing forces good programmirsgigline and clarity about variables while at the
same time removing many unexpected run time errors due to implicit conversions. This is not to say that
C should be strictly a strongly typed langugg®mme advantages of C are due to the flexibility that
weaker typing provides. It is suggested that when enforcement of strong typing does not detract from
the good flexibility that C offerddr example adding an integer to a character to step through a sequence
of characters) and is only a conveniencedmrgrammersfor example adding an integer to a floating
point number), then the standard should specify the stronger typed solution.

1 A common warning in Annex | should be added for floaioimt expressions being used in a Boolean test
for equality.

1 Modifying or deprecating many of the C standard library functions that make assumptions about the
occurrence of a string termination character.

1 Define a string construct that dsenot rely on the null termination character.

91 Defining an array type that does automatic bounds checking.

91 Deprecating less safe functions suctstispy() andstrcat() where a more secure alternative is
available.

91 Defining safer and more secure repéament functions such asemncpy() andmemncmp() to
complement thememcpy() andmemcmp() functions (see in Implications for standardization.XYW).

© ISTIEC2012 ¢ All rights reserved 19E

WG 23/N 086 Baseline Edition 2TR 24772

f
il

=A =4 =4 =4

il

Defining an array type that does automatic bounds checking.

Defining functions that contain an extra parametemiemcpy() andmemmove() for the maximum

number of bytes to copy. In the past, some have suggested that the size of the destination buffer be used
as an additional parameter. Some critics state that this solution is easy to circumvent by simply repeating
the parameer that was used for the number of bytes to copy as the parameter for the size of the
destination buffer. This analysis and criticism is correct. What is needed is a failsafe check as to the
maximum number of bytes to copy. There are several reasangdating new functions with an

additional parameter. This would make it easier for static analysis to eliminate those cases where the
memory copy could not be a problem (such as when the maximum number of bytes is demonstrably less
than the capacity ofhe receiving buffer). Manual analysis or more involved static analysis could then be
used for the remaining situations where the size of the destination buffer may not be sufficient for the
maximum number of bytes to copy. This extra parameter mayrafwmin determining which copies

could take place among objects that overlap. Such copying is undefined according to the C standard. Itis
suggested that safer versions of functions that include a restrictia®_n on the number of bytes to

copy for example,void *memncpy(void * restrict s1,const void * restrict

s2,size_t n), const size_t max_n) be added to the standard in addition to retaining the

current corresponding function$dr example memcpy(void * restrict s1,const void *

restrict s2,size tn))). The additional parameter would be consistent with the copying

function pairs that have already been created sucBtaspy() /strncpy() and

strcat() /strncat() . This would allow a safer version of memory copying functions for those
applications that want to use them in to facilitate both safer and more secure code and more efficient

and accurate static code reviews.

Restrictions on pointer arithmetic that could eliminate common pitfalls. Pointer arithmetic is error prone
and the flexibility that it offers is useful, but some of the flexibility is simply a shortcut that if restricted
could lessen the chance of a ptér arithmetic based error.

Modifying the librarnfree(void *ptr) so that it setgptr to NULLto prevent reuse optr .

Defining a standard way of declaring an attribute to indicate that a variable is intentionally unused.

A common warning in Annesshould be added for variables with the same name in nested scopes.
Creating a few standardized precedence orders. Standardizing on a few precedence orders will help to
eliminate the confusingntricaciesthat exist between languages. This would ndeeff current languages

as altering precedence orders in existing languages is too onerous. However, this would set a basis for
0KS FdzidzNBE a yS¢ fly3adzad 3Sa NS ONBFGSR FyR FR2L
2NRSNJ ! ¢ ¢ 2 dzerRhardh8vingza $dll duit theNehtifieforecedence order that differs in a
conceptually minor way from some other languages, but in a major way when programmers attempt to
switch between languages.

Deprecating thejoto statement. The use of thgoto constuct is often spotlighted as the antithesis of

good structured programming. Though its deprecation will not instantly make all C code structured,
deprecating thegoto and leaving in place the restrictggbto variations for examplepreak and

continue) andpossibly adding other restrictegbto Qa O2dzZ R | 4aAad Ay Sy 02 dzN.
secure C programming in general.

S5STFAYAYI | aFlfftiGKNHzZE O2yaidNdzOid GKIFG Attt SELX AC

13 This has been addressed by WG 14 in an optionally normative annex in the current working paper

196

© ISQIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 086

need for thebreak statement. he default would be for a case to break instead of falling through to the
next case. Granted this is a major shift in concept, but if it could be accomplished, less unintentional
errors would occur.

1 Defining an identifier type for loop control that canrtme modified by anything other than the loop
control construct would be a relatively minor addition to C that could make C code safer and encourage
better structured programming.

1 Defining a standardized interface package for interfacing C with many of the top programming languages

and a reciprocal package should be developed of the other top languages to interface with C.

9 Joining with other languages in developing a standaddsst of mechanisms for detecting and treating
error conditions so that all languages to the extent possible could use them. Note that this does not
mean that all languages should use the same mechanisms as there should be a variety (label parameter
auxiliary status variables), but each of the mechanisms should be standardized.

9 Since fault handling and exiting of a program is common to all languages, it is suggested that common
terminology such as the meaning of fail safe, fail hard, fail soft, etc. along with a core API set such as
exit ,abort , etc. be standardized and coordiied with other languages.

91 Deprecating unions. The primary reason for the use of unions to save memory has been diminished
considerably as memory has become cheaper and more available. Unions are not statically type safe an
are historically known toda common source of errors, leading to many C programming guidelines
specifically prohibiting the use of unions.

1 Creating a recognizable naming standard for routines such that one version of a library does parameter
checking to the extent possible anda@her version does no parameter checking. The first version would
be considered safer and more secure and the second could be used in certain situations where
performance igriticaland the checking is assumed to be done in the calling routine. A gastdandard
could be made such that the library that does parameter checking could be named as usual, say
Gt AONI NBgYE&T ¢ FyR Iy SldA@ltSyid OSNaEAZ2Y GKIFG R2
Gf AOGNI NBYERT pLE o 2 A Uak tRisizi consideyableruryitigr ofwiadteyl &/tleNRRill b dzC
conducted doing a double check of parameters or even worse, no checking will be done in both the calling
and receiving routines as each is assuming the other is doing the checking.

1 Creating an Annex that lists deprecated features. |

© ISTIEC2012 ¢ All rights reserved 197

WG 23/N 086 Baseline Edition 2TR 24772

Annex Ruby
(informative)
Vulnerability descriptions for the language Ruby

Ruby.1 Identific ation of standards and associated documents
IPA Ruby Standardization WG Diaftugust 25, 2010
Ruby.2 General Terminology and Concepts

block A procedure which is passed to a method invocation.
class An object which defines the behaviour of a set of athbjects called its instances.
class variableA variable whose value is shared by all the instances of a class.

constant A variable which is defined in a class or a module and is accessible both inside and outside the class or
module. The value of a cetant is ordinarily expected to remain unchanged during the execution of a program,
but IPA Ruby Standardization Draft does not force it.

exception An object which represents an exceptional event.
global variable A variable which is accessible everywhiara program.

implementationdefined Possibly differing between implementations, but defined for every implementation.

instance methodA method which can be invoked on all the instances of a class.

instance variableA variable that exists in a set @&friable bindings which every object has.

local variable A variable which is accessible only in a certain scope introduced by a program construct such as a
method definition, a block, a class definition, a module definition, a singleton class definititwe, tp level of a
program.

method A procedure which, when invoked on an object, performs a set of computatiothe object.

method visibility An attribute of a method which determines the conditions under which a method invocation is
allowed.

module An object which provides features to be included into a class or another module.

object A computational entity which has states and behaviour. The behaviour of an object is a set of methods
which can be invoked on the object.

singleton classAn objectwhich can modify the behaviour of its associated object.

singleton methodAn instance method of a singleton class.

198 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 086

unspecified behaviouPossibly differing between implementations, and not necessarily defined for any particular
implementation.

variable A computational entity that refers to an object, which is called the value of the variable.

variable binding An association between a variable and an object which is referred to by the variable.

Ruby.3 Type System [IHN]

Ruby.3.1 Applicability to language

wdzo & SYLX 2@a | ReylYAO (&L & &anissystdritteclhss ér typefffad NN
object is less important than the interface, or methods, it defines. Two different classes may respond to the same
methods,which meannstancesof each class will handle the same method call. Usually an object is not implicitly
changed into another type.

Automatic conversion occurs for some buiiittypes in certain situations. For example with the addition of a float
and an integer, the integewill be converted automatically to a floatn the esamples belovithie result of an
operation is indicated by a Ruby comment starting with

a=2
b=20
a+b #=>4.0

Another instance of automatic conversion is when an integer becomes tge tarfit within a machine word. On

a 32bit machine Rub¥ixnums have the range2* to 2°>-1. When an integer becomes such that it no longer fits
within said range it is converted toBignum . Bignums are arbitrary length integers bounded only by memory
limitations.

Explicit conversion methods exist in Ruby to convert between types. The integer class contains the toethods
andto_f which return the integer represented ass&ting object andfloat object, respectively.

10.to_s #=> A100
10.to_f #=> 1 0.0

Strings likewise support conversion to integer and float objects.

50. t o#=S5
50. t o#=45.0

S 1

Duck typing grants programmers of Ruby great flexibility. Strict typing is not imposed by the language, but if a
programmer chooses, he or she cantemirograms such that methods mandate the class of the objects on which
they operate. This is discouraged in Ruby. If an object is called with a method it does wotknexception will

be raised.

© ISTIEC2012 ¢ All rights reserved 19¢

WG 23/N 086 Baseline Edition 2TR 24772

Ruby.3.2 Guidance to language users

1 Knowledge of the tyes or objects used is a must. Compatible types are ones which can be intermingled
and convert automatically when necessary. Incompatible types must be converted to a compatible type
before use.

1 Do not check for specific classes of objects unless tegead justification.

9 Provide code to catch exceptions resulting frommmasches between objects and methods.

Ruby.4 Bit Representations [STR]

Ruby.4.1 Applicability to language

Ruby abstracts internal storage of integers. Users do not need to concamséhees about the size (in bits) of an
integer. Since integers grow as needed the user does not need to worry about overflow. Ruby provides a
mechanism to inspect specific bits of an integer through[themethod. For example to read the ®®it of a
number:

number = 42
number[10] #=>0
number = 1024
number[10] #=>1

Note that the bits returned are not required to correspond to the internal representation of the number, just that
it returns a consistent representation of the number in that implemermati

Ruby supports a variety of bitwise operators. These inctufleot), & (and),| (or),” (exclusive or)<< (shift left),
and>> (shift right). Each of these operators works with integers of any size.

Ruby offers a pack method for the Array cla&s (ay#pack) which produces a binary sequence dictated by the
user supplied template. In this way members of an array can be converted to different bit representations. For
instance an option for numbers is to store them in one of three ways: natinan, bi-endian, and littleendian.

In this way bit sequences can be constructed for a particular interaction or purpose. There is a similar unpack
method which will extract data given a template and bit sequence.

Ruby.4.2 Guidance to language users

1 For values created within Ruby the user need not concern themselves with the internal representation of
data. In most situations using specific binary representations makes code harder to read and understand.

1 Network packets that go on the wire are ®oase where bit representation is important. In situations like
this be sure to use thArray#pack to produce network endian data

1 Binary files are another situation where bit representation matters. The file format description should
indicate bigendian or little-endian preference.

15 Network APIs use bigndian data.

200 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 086

Ruby.5 Floating -point Arithmetic [PLF]

Ruby.5.1 Applicability to language

Ruby supports the use of floatigapint arithmetic with the Float class. The precision of floats in Ruby is
implementation defined, however if the uedlying system supports IEC 60559, the representation of floats shall
be the 64bit double format as specified in IEC 60559, 3.2.2.

Floatingpoint numbers are usually approximations of real numbers and as such some precision is lost. This is
problematic vihen performing repeated operations. For example adding small values to numbers sometimes
results in accumulation errors. Testing numbers for equality is sometimes unreliable as well. For this reason
floating-point numbers should not be used to terminatefus.

Ruby.5.2 Guidance to language users
1 The guidance in clauge5applies here ‘

Ruby.6 Enumerator Issues [CCB]

Ruby.6.1 Applicability to language

Ruby does notprovide enumerations. Instead providegaility for named symbolsThesesymbolsare unique
representatiors with no value associatedn Ruby, symbols are lightweight objects which need not be defined
ahead of time. For example,

travel(:north)

is a valid use of the symbwlorth ® owdzo&Qa ftAGSNIf adydlrE T2N ddYvYoz2f
danger ofaccidentdleé 3ISGUGAYy3a (2 GKS @l fdzS¢ 2F Iy SydzYSNIY A2

travel(:north + :south)
is not allowed. Symbols do not support addition, or any method which alters the symbol.

Sometimes it is helpful to have values associated with enumerations. In Ruby this @aeecobgplished by using a
hash. For example,

traffic_light = {

:green => figoo
:yell ow => ficautiono
:red => fAstopo}

traffic_light[:yellow]

In this way values can be associated with the symbols. Members of a hash are accessed using the same bracket
syntax as members of arrays. Note only integers can be used in array indexing, thsiendard use of a symbol
as an array index will raise an exception.

© ISTIEC2012 ¢ All rights reserved 201

WG 23/N 086 Baseline Edition 2TR 24772

Ruby.6.2 Guidance to language users

1 Use symbols for enumeratorather than named constants
1 Do nd define named constants to represent enumerators

Ruby.7 Numeric Conversion Errors [FLC]

Ruby.7.1 Applicability to language

LYGiS3aSNaA Ay (GKS wdzeée fFy3da 3IS INB 2F dzyoz2dzyRSR f Sy 3
When an integer exals the word size for the machine there is no rollover and no errors occur. Instead Ruby
converts the integer from one type to another. When possible, integers in Ruby are stor&ikimuan object.

Fixnum is a class which has limited integer range, yabig to store the number efficiently in one machine

word. Typically on a 3Bit machine the range is usual® to 2°°-1. These ranges are implementation defined

Once calculations exceed this range, integers are stored in a Bignum object. Bignuasti@lasany length
OYSY2NE LINBQGARAY3IO AY(GIS3ISNI ¢KAA I f (TheldsqtdfanyBigniudS & A
calculation may be returned as an integer if the value can be represented as an integer.

Ruby convertsintegerstoflogtid L2 Ay i 6AGK GKS dzaSNDa SELX AOAG Ayd S
a large magnitude integer to a floating point number. This does not generate an error.

Ruby.7.2 Guidance to language users
1 Be aware that use of Bignums can have performance and storage implications
Ruby.8 String Termination [CJM]
This vulnerability is not applicable to Ruby since strings are not tatedrby a special character
Ruby.9 Buffer Boundary Violation (Buffer Overflow) [HCB]
This vulnerability is not applicable to Ruby since array indexing is checked
Ruby.10 Unchecked Array Indexing [XYZ]
This vulnerability is not applicable to Ruby sinaawindexing is checked.
Ruby.11 Unchecked Array Copying [XYW]
This vulnerability is not applicable to Ruby since arrays grow.
Ruby.12 Pointer Casting and Pointer Type Changes [HFC]

This vulnerability is not applicable to Ruby since users cannot manipdateers.

202 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 086

Ruby.13 Pointer Arithmetic [RVG]

This vulnerability is not applicable to Ruby since users cannot manipulate pointers.

Ruby.14 Null Pointer Dereference [XYH]

This vulnerability is not applicable to Ruby since usarmnotcreate or derefeence null pointers.

Ruby.15 Dangling Reference to Heap [XYK]

This vulnerability is not applicable to Ruby since users cannot explicitly allocate and explicitly deallocate memory
Ruby.16 Arithmetic Wrap -around Error [FIF]

This vulnerability is not applicédto Ruby since integers are unbounded.

Ruby.17 Using Shift Operations for Multiplication and Division [PIK]

This vulnerability is not applicable to Ruby since logic shifts on integers will not modify the sign bit or lose
significant bits if the size ohé value grows.

Ruby.18 Sign Extension Error [XZI]

This vulnerability is not applicable to Ruby since users cannot explicitly convert a signed integer to a larger intege
without modifying the value.

Ruby.19 Choice of Clear Names [NAI]

Ruby.19.1 Applicabi lity to language

Ruby is susceptible to errors resulting from similar looking names. Ruby provides scoping of local variables.
However, this can be confusing. Local variables cannot be accessed from another method, but local variables ca
be accessed frora block. Ruby features variable prefixes for #ocal variables. The dollar sign signifies a global

B NRI of S@® Be¥dEHI GABYATASA | GFENARAIFIofS a02LSR G2 (K
wide variable, accessible from angiance of said class.

Ruby.19.2Guidance to language users

1 Use names that are clear and visually unambiguous
9 Be consistent in choosing names

© ISTIEC2012 ¢ All rights reserved 203 ‘

WG 23/N 086 Baseline Edition 2TR 24772

Ruby.20 Dead Store [WXQ)]

Ruby.20.1Applicability to language

Ruby is susceptible to errors of accidental assignments resulting from typos of variable names. Since variables do
not need to declared before use such an assignment may go unnoticed. Such belmiidigative of
programmer error.

Ruby.20.2Guidance to language users

1 Check that each assignment is made to the intended variable identifier
1 Use static analysis tools, as they become available, to mechanically identify dead stores in the program

Ruby.21 Unused Variable [YZS]

Ruby.21.1 Applicability to language

Ruby is susceptible to this vulnerabifity wdzo& R2Sa y20 LISNXYAG GKS RSOf I NI
parameters, which might never be read or written, hence providing storage spafd ts an attacker.

Ruby.21.2 Quidance to language users

1 Enable detection of unused variables in the processor

Ruby.22 Identifier Name Reuse [YOW]

Ruby.22.1Applicability to language

Ruby employs various levels of scope which allow users to name variables in different scopes vaithethe s
name. This can cause confusion in situations where the user is unaware of the scoping rules, especially in the use
of blocks.

Modules provide a way to group methods and variables without the need for a dlassse these module and
method names mudbe completely specified. For example:

Base64::encode(text)
However modules can be included, thus putting the contents of the module within the current scope. So:

include Base64
encode(text)

can cause clashes with names already in scope. When thissabeucurrent scope takes precedence, but the
user may not realize this resultingumknown errors.

Ruby.22.2Guidance to language users

1 Ensure that a definition does not occur in a scope where a different definition is accessible.

204 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 086

1 Know what a module defines before including. If any definitions conflict, do not include the module,
instead use the fully qualified name to refer to anyidifons in the module.

Ruby.23 Namespace Issues [BJL]

Ruby.23.1 Applicability to language

This is indeed an issue for Rubfjhe interpreter will resolve names to the most recent definition as the one to
use, possibly redefining a variable. Scoping pes/igbme means of protection, but there are some cases where
confusion arisesA method definition cannot access local variables defined outside of its scope, yet a block can
access these variables. For example:

x =50
def power(y)
puts x**y
end
power(2) #=> NameError : undefined | ocal variabl e or

But the following can access the x variable as defined:

X =50
def execute_block(y)

yield y
end
execute_block(2) {ly| x**y} #=> 2500

Ruby.23.2Guidance to language users

1 Avoid unnecessamcludes
1 Do not access variables outside of a block without justification

Ruby.24 Initialization of Variables [LAV]
This vulnerability is not applicable to Ruby since variables cannot be read before they are assigned.

Ruby.25 Operator Precedence/Order o f Evaluation [JCW]

Ruby.25.1 Applicability to language

Ruby provides a rich set of operators containing over fifty operators and twenty levels of preced@mdesion
arises especially with operators which mean something similar, but are for differepppes. For example,

x=flag_aorflag b
The Ruby language understands this as equivalent to:

(x =flag_a) or flag_b

© ISTIEC2012 ¢ All rights reserved 205

WG 23/N 086 Baseline Edition 2TR 24772

The above assigns the valueflalj_a to x. Ifflag_a evaluates to false, then the value of the entire
expression iflag_b . The intentof the programmer was most likely assign true to x if eitlesyy_a or
flag_b are true:

x =flag_a|| flag_b
Ruby.25.2 Guidance to language users

1 Use parenthesis around operators which are known to cause confusion and.errors
1 Break complex expressioitdo simpler ones, storing suéxpressions in variables as needed

Ruby.26 Side-effects and Order of Evaluation [SAM]

Ruby.26.1Applicability to language

In Rubymethod invocations can change the state of the reeeipbject whose method is invoked). This occurs

not just for input and output for which sideffects are unavoidable, but also for routinperationssuch as

mutating strings, modifying arrays, or defining methods. Ruby has adopted a naming conventibrindidates
destructive methods (those which modify the receiver) instead of creating a new object which is a modified copy.
For example,

array = [1, 2, 3] #=>11, 2, 3]
array.slice(1..2) #=>[2, 3]

array #=>[1, 2, 3]
array.slice!(1..2) #=>[2, 3]
array #=>[1]

The method name with the exclamation signifies the object itself will be modified, whereas the other method
does not modify it. Sometimes though the method is understood by the user to modify the object or cause side
effects. For examp,

array = [1, 2, 3]
array.concat([4, 5, 6])
array #=>11, 2, 3, 4, 5, 6]

These behaviours are documented and with little effort the user will be able recognize which methods cause side
effects and what those effects are.

The order of evaluation in Ry is left to right. Order of evaluation and order of precedence are different.
Precedence allows the familiar order of operations for expressions. For example,

a+b*c

a is evaluated, followed bl andc, then the value ob and the value of are muliplied and added to the value
of a. This is a subtle point which matters onlg b, orc cause side effects. The following illustrates this:

def a; print AAOQ; 1; end
def b; print ABO; 2; end

206 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 086

def c¢; print ACO; 3; end
atb*c #=> 7, and AABCO tostangardioutpute d

Ruby.26.2Guidance to language users

1 Read method documentation to be aware of seféects
1 Do not depend on sideffects of a term in the expression itself

Ruby.27 Likely Incorrect Expression [KOA]

Ruby.27.1 Applicability to language

Ruby has operators which are typographically simylatr which have different meanings. The assignment
operator and comparison operators are examples of these. Both are expressions and can be used in conditional
expressions.

a 3 then #6é
a == 3 then #6é

i f

i f
The first example assigns the value 3 to theable a. 3 evaluates to true and the conditional is executed. The
second checks that the varialdds equal to the value 3 and executes the conditional if true.
Another instance is the use of assignments in Boolean expressions. For instance,

a=xorb =y

This expression assigns the vakum a. Ifx is false then the value of y will be assignedbtd his should be
avoided as the second assignment will not always occur. This could possibly be the intention of the programmer,
but a more clear way to site the code which accomplishes that is:

a=x
b=yifa

There is no confusion here as the second assignment clearly hamadiffer. This is common and well
understood in the Ruby language.

Ruby.27.2 Guidance to language users

1 Avoid assignments in conditions
1 Do not perform assignments within Boolean expressions

Ruby.28 Dead and Deactivated Code [XYQ)]

Ruby.28.1Applicability to language

Dead and deactivated, as in any programming language with code branching, can beeenproBuby. The
existence of code which can never be reached is not a problem itself. Its existence indicates the possibility of a
coding error. Code coverage tools can help analyze which portions of code can and cannot be reached.

© ISTIEC2012 ¢ All rights reserved 207

WG 23/N 086 Baseline Edition 2TR 24772

In particular the devaper should ensure each branch can evaluate to true or false. If a condition only ever
evaluates to true, then only one branch will be taken. This situation creates dead code.

Ruby.28.2Guidance to language users
1 Use analysis tools to identify unreachable code

Ruby.29 Switch Statements and Static Analysis [CLL]

Ruby.29.1Applicability to language

wdzo &8 LINPGARSA || OlasS aidlrdaSYySyildo ¢KAA O2yaidNHzOd Aa a
differences/ aSa R2 y20 aFf2¢ 0GKNRdAZAKEé FTNRY 2yS G2 (GKS yS
be provided, but is not required. If no cases match then the value of the case statement is nil.

Ruby.29.2Guidance to language users

9 Include an elselause, unless the intention of cases not covered is to return the value nil
1 Multiple expressions (separated by commas) may be served by the same when clause

Ruby.30 Demarcation of Control Flow [EOJ]
This vulnerability is not applicable to Ruby sincetm constructs require an explicit termination symbol.

Ruby.31 Loop Control Variables [TEX]

Ruby.31.1Applicability to language

Ruby allows the modification of loop control variables from within the body of the loop. This is usually not
performed, as thexact results are not always clear.

Ruby.31.2Guidance to language users

1 Do not modify loop control variables inside the loop body

Ruby.32 Off-by-one Error [XZH]

Ruby.32.1 Applicability to language

Like any programming language which supplies equality operators and array indexing, Ruby is vulnerable to off
by-one-errors. Thes errors occur when the developer creates an incorrect test for a number range or does not
index arrays starting at zero.

Some looping constructs of the language alleviate the problem, but not all of them. For example this code
foriin1..5

print i
end#=> 12345

208 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 086

In addition to this is the usual confusion associated between <, <=, >, and >=in a test
Also unique to Ruby is the confusion of these particular loop constructs:
5.times {|x| p x}
and
1.upto(5) {Ix| p x}

Each loop executes the code bldale times. However the values passed to the block differ. Wiiimes the
loop starts with the valu® and the last value passed to the blockisHowever in the case dfupto(5) it
starts by passingj, and ends by passirtg

Ruby.32.2 Guidance to language users

9 Use careful programming practice when programming border cases

9 Use static analysis tools to detect-tf§-one errors as they become available

1 Instead of writing a loop to iterate all the elements of a contaimgeethe each method supplied byhe
202S00GqQa Oflaa

Ruby.33 Structured Programming [EWD]

Ruby.33.1Applicability to language

Ruby makes structured programming easy for the user. Its objeehted nature encourages at least a minimum
amount of structure. However, it is still possibtewrite unstructured code. One feature which allows this is the
break statement. The statement ends the execution of the current innermost loop. Excessive use of this may be
confusing to others as it is not standard practice.

Ruby.33.2Guidance to language users

While there are some cases where it might be necessary to use relatively unstructured programming methods,
they should generally be avoided. The following ways help avoid the above named failures of structured
programming:

1 Instead of using multigl return statements, have a single return statement which returns a variable
that has been assigned the desired return value

1 In most cases a break statement can be avoided by using another looping construct. These are
abundant in Ruby.

1 Use classes andodules to partition functionality

© ISTIEC2012 ¢ All rights reserved 209

