
ISO/IEC JTC 1/SC 22/WG 23 N 0311 1

Proposed revision of LAV in Ada annex 2

 3
Date 21 March 2011
Contributed by Erhard Ploedereder
Original file name AI-16-13-LAV-Ada.doc
Notes See AI 16-13

 4
 5
I have shortened the vulnerability LAV in the Ada Annex considerably and removed 6

all the redundant stuff about unsafe programming. Sorry that I did not do it in change 7

mode to make the changes apparent. (retroactive comparison produced a stupid 8

change version.) 9

Ada.23 Initialization of Variables [LAV] 10

Ada.23.1 Applicability to language 11

As in many languages, it is possible in Ada to make the mistake of using the value of 12

an uninitialized variable. However, as described below, Ada prevents some of the 13

most harmful possible effects of using the value. 14

 15

Pointer variables are initialized to null by default, and every dereference of a pointer 16

is checked for a null value. Therefore the vulnerability does not exist for pointer 17

variables (or constants). 18

 19

The mandated checks (described elsewhere) to prevent memory corruption or 20

operations on invalid values for given subtypes apply to the use of uninitialized 21

variables as well. Use of an out-of-bounds value in relevant contexts causes an 22

exception, regardless of the origin of the faulty value. Thus, no vulnerability exists 23

beyond the potential use of a faulty but subtype-conformant value of an uninitialized 24

variable, since it is technically indistinguishable from a value legitimately computed 25

by the application. 26

 27

For record types, default initializations may be specified as part of the type definition. 28

 29

For controlled types (those descended from the language-defined type Controlled or 30

Limited_Controlled), the user may also specify an Initialize procedure which is invoked 31

on all default-initialized objects of the type. 32

 33

The pragma Normalize_Scalars can be used to ensure that scalar variables are always 34

initialized by the compiler in a repeatable fashion. This pragma is designed to 35

initialize variables to an out-of-range value if there is one, to avoid hiding errors. 36

 37

Lastly, the user can query the validity of a given value. The expression X‟Valid yields 38

true if the value of the scalar variable X conforms to the subtype of X and false 39

otherwise. Thus, the user can protect against the use of out-of-bounds uninitialized or 40

otherwise corrupted scalar values. 41

 42

Ada.23.2 Guidance to language users 43

 44

This vulnerability can be avoided or mitigated in Ada in the following ways: 45

 If the compiler has a mode that detects use before initialization, then this mode should be 46
enabled and any such warnings should be treated as errors. 47

 Where appropriate, explicit initializations or default initializations can be specified. 48

 The pragma Normalize_Scalars can be used to as for out-of-range default initializations. 49

 The „Valid attribute can be used to identify out-of-range values caused by the use of 50
uninitialized variables, without incurring the raising of an exception. 51

One supposed mitigation that should be avoided is to perform a “junk initialization” of 52

variables. Initializing a variable with an inappropriate default value such as zero can 53

result in hiding underlying problems, because the compiler or other static analysis 54

tools will then be unable to identify use before correct initialization. 55

