

ISO/IEC JTC 1/SC 22/WG 23 N 0279
Prototype table summarizing vulnerabilities

Date 10 September 2010
Contributed by Jim Moore
Original file name
Notes Responds to Action Item 14-04

[This is draft 2—incorporating some suggestions from Clive Pygott—of a table that would
summarize vulnerabilities. Only a few vulnerabilities are treated in this prototype.]

Annex <whatever>
(Informative)

Summary of Language Vulnerabilities

[The table would actually be produced in landscape format. I’ve left this prototype in portrait
format for ease of review.]

Code Vulnerability General C Ada
AJN Choice of

filenames and
external
identifiers

Risk
• External names have

to be compatible with
the naming system of
all languages and OS

 Mitigation
• Use only portable file

names

BJL Namespace
issues

BQF Unspecified

behaviour
 Risk

• 54 instances listed in
Annex J.1 of standard

Risk
• Listed by index

entries for
“unspecified” and
“bounded error” in
standard

 Mitigation
• Avoid them

Mitigation
• Avoid them

BRS Obscure
language
features

 Risk
• Library routines
• Semantics of goto

Risk
• Semantics of tasking

and exceptions
 Mitigation

• Understand unfamiliar
library routines before
using

• Avoid goto

Mitigation
• Use pragma
Restrictions
except for qualified
programmers

EWF Undefined
behaviour

 Risk
• 191 instances listed in

Annex J.2 of standard

Risk
• Listed by index

entries for “erroneous
execution” in
standard

 Mitigation
• Avoid them

Mitigation
• Avoid them

Code Vulnerability General C Ada
FAB Implementation

-defined
behaviour

 Risk
• 112 instances listed in

Annex J.3 of standard

Risk
• Listed in Annex M of

standard
 Mitigation

• Document instances
Mitigation
• Avoid them

IHN Type system Risk
• Implicit conversion

may lead to
unexpected results

Risk
• None (See Note 1)

aside from computed
or input values falling
outside a range check

 Mitigation
• Pay attention to the

rules for conversion
• Use explicit casts

Mitigation
• Provide an exception

handler for
Constraint_Error

MEM Deprecated
language
features

 Risk
• gets
• Backword

compatibility options
of compilers

Risk
• Documented in

Annex J of standard

 Mitigation
• Avoid them

Mitigation
• Avoid them

NAI Choice of clear
names

Risk
• Some characters (e.g

“I” and “1”) look
alike

Risk
• Some compilers only

pay attention to the
beginning of the name

• Two underscores in a
row look like a single
underscore

 Mitigation
• Avoid differentiation

using characters that
are visually confused

• Apply a consistent
project style guide

Mitigation
• Use short names that

are distinguishable in
the first few
characters

• Don’t use two
underscores together

NMP Pre-processor
directives

 Risk
• Function-like macros

look like functions but
have different
semantics

Code Vulnerability General C Ada
 Mitigation

• Prefer inline functions
to function-like
macros

• Fully parenthesize
macro arguments and
body

• Avoid embedding
directives and using
side-effects in a
function-like macro

STR Bit
representation

 Risk
• Bit operations are

permitted even where
the standard does not
specify bit
representation

 Mitigation
• Use bit operations

only on unsigned
types

• Pay attention to
endian; it may be
different internal and
external to the
machine

• Avoid shifts larger
than the variable’s
size

XYR Unused
variables

Risk
• Unused variables

may indicate a design
or implementation
flow

 Mitigation
• Resolve all compiler

warnings

Mitigation
• If using GCC, use the

“unused” attribute for
intentionally unused
variables

YOW Identifier name
reuse

Risk
• Block-structured

languages permit
names in an inner
scope to hide the
same name in an
enclosing scope.
Deleting the inner
declaration may lead
to unexpected results.

Risk
• Some compilers only

pay attention to the
beginning of the name

Code Vulnerability General C Ada
 Mitigation

• Apply naming
conventions that
avoid name reuse

Mitigation
• Use short names that

are distinguishable in
the first few
characters

Notes:

1. In Ada, the strong typing system prevents the occurrence of many of the vulnerabilities.
The language does provide capabilities for circumventing the type system. However, the
use of those capabilities is not typical, is clearly marked, and can be disabled with
pragma restrictions.

	ISO/IEC JTC 1/SC 22/WG 23 N 0279

