
1

ISO/IEC JTC 1/SC 22/WG 23 N 0275
Draft language-specific annex for SPARK

Date 2 September 2010
Contributed by SC 22/WG 9
Original file name N502, SPARK_Annex Draft 1, 16 Aug 2010.doc
Notes

1

2

Annex SPARK – Final 1

Draft 2

SPARK.Specific 3

information for 4

vulnerabilities 5
 6
Status and History 7
September 2009: First draft from SPARK 8
team. 9
November 2009: Second draft following 10
comments from HRG. 11
May 2010: Updates to be consistent with 12
Ada Annex and new vulnerabilities in the 13
parent TR. 14
June 2010: Updates following review 15
comments from HRG. 16
July 2010: Submit to WG9. 17

SPARK.1 Identification of 18
standards and associated 19
documentation 20

See Ada.1, plus the references below. In the 21
body of this annex, the following documents 22
are referenced using the short abbreviation 23
that introduces each document, optionally 24
followed by a specific section number. For 25
example “[SLRM 5.2]” refers to section 5.2 26
of the SPARK Language Definition. 27
 28
[SLRM] SPARK Language Definition: 29
“SPARK95: The SPADE Ada Kernel 30
(Including RavenSPARK)” Latest version 31
always available from www.altran-32
praxis.com. 33
 34
[SB] “High Integrity Software: The SPARK 35
Approach to Safety and Security.” John 36
Barnes. Addison-Wesley, 2003. ISBN 0-321-37
13616-0. 38
 39
[IFA] “Information-Flow and Data-Flow 40
Analysis of while-Programs.” Bernard Carré 41
and Jean-Francois Bergeretti, ACM 42
Transactions on Programming Languages 43
and Systems (TOPLAS) Vol. 7 No. 1, 44
January 1985. pp 37-61. 45
 46
[LSP] “A behavioral notion of subtyping.” 47
Barbara Liskov and Jeannette Wing. ACM 48

Transactions on Programming Languages 49
and Systems (TOPLAS), Volume 16, Issue 6 50
(November 1994), pp. 1811 - 1841. 51
 52

SPARK.2 General terminology 53
and concepts 54

The SPARK language is a contractualized 55
subset of Ada, specifically designed for high-56
assurance systems. SPARK is designed to 57
be amenable to various forms of static 58
analysis that prevent or mitigate the 59
vulnerabilities described in this TR. 60
 61
This section introduces concepts and 62
terminology which are specific to SPARK 63
and/or relate to the use of static analysis 64
tools. 65
 66
Soundness 67
This concept relates to the absence of false-68
negative results from a static analysis tool. A 69
false negative is when a tool is posed the 70
question “Does this program exhibit 71
vulnerability X?” but incorrectly responds 72
“no.” Such a tool is said to be unsound for 73
vulnerability X. A sound tool effectively finds 74
all the vulnerabilities of a particular class, 75
whereas an unsound tool only finds some of 76
them. 77
 78
The provision of soundness in static analysis 79
is problematic, mainly owing to the presence 80
of unspecified and undefined features in 81
programming languages. Claims of 82
soundness made by tool vendors should be 83
carefully evaluated to verify that they are 84
reasonable for a particular language, 85
compilers and target machines. Soundness 86
claims are always underpinned by 87
assumptions (for example, regarding the 88
reliability of memory, the correctness of 89
compiled code and so on) that should also 90
be validated by users for their 91
appropriateness. 92
 93
Static analysis techniques can also be 94
sound in theory – where the mathematical 95
model for the language semantics and 96
analysis techniques have been formally 97
stated, proved, and reviewed – but 98
unsound in practice owing to defects in the 99
implementation of analysis tools. Again, 100
users should seek evidence to support any 101
soundness claim made by language 102

http://www.praxis-his.com/sparkada/publications_tech.asp�

3

designers and tool vendors. A language 1
which is unsound in theory can never be 2
sound in practice. 3
 4
The single overriding design goal of SPARK 5
is the provision of a static analysis 6
framework which is sound in theory, and 7
as sound in practice as is reasonably 8
possible. 9
 10
In the subsections below, we say that 11
SPARK prevents a vulnerability if supported 12
by a form of static analysis which is sound in 13
theory. Otherwise, we say that SPARK 14
mitigates a particular vulnerability. 15
 16
SPARK Processor 17
We define a “SPARK Processor” to be a tool 18
that implements the various forms of static 19
analysis required by the SPARK language 20
definition. Without a SPARK Processor, a 21
program cannot reasonably be claimed to be 22
SPARK at all, much in the same way as a 23
compiler checks the static semantic rules of 24
a standard programming language. 25
 26
In SPARK, certain forms of analysis are said 27
to be mandatory – they are required to be 28
implemented and programs must pass these 29
checks to be valid SPARK. Examples of 30
mandatory analyses are the enforcement of 31
the SPARK language subset, static 32
semantic analysis (e.g. enhanced type 33
checking) and information flow analysis 34
[IFA]. 35
 36
Some analyses are said to be optional – a 37
user may choose to enable these additional 38
analyses at their discretion. The most 39
notable example of an optional analysis in 40
SPARK is the generation of verification 41
conditions and their proof using a theorem 42
proving tool. Optional analyses may provide 43
greater depth of analysis, protection from 44
additional vulnerabilities, and so on, at the 45
cost of greater analysis time and effort. 46
 47
Failure modes for static analysis 48
Unlike a language compiler, a user can 49
always choose not to, or might just forget to 50
run a static analysis tool. Therefore, there 51
are two modes of failure that apply to all 52
vulnerabilities: 53
 54

1. The user fails to apply the 55
appropriate static analysis tool to 56
their code. 57

2. The user fails to review or mis-58
interprets the output of static 59
analysis. 60

 61

SPARK.3.BRS Obscure 62
Language Features [BRS] 63

SPARK mitigates this vulnerability. 64

SPARK.3.BRS.1 Terminology 65
and features 66

As in Ada.3.BRS.1. 67

SPARK.3.BRS.2 Description of 68
vulnerability 69

As in Ada.3.BRS.2. 70

SPARK.3.BRS.3 Avoiding the 71
vulnerability or mitigating its 72
effects 73

The design of the SPARK subset avoids 74
many language features that might be said 75
to be “obscure” or “hard to understand”, 76
such as controlled types, unrestricted 77
tasking, anonymous access types and so 78
on. 79
 80
SPARK goes further, though, in aiming for a 81
completely unambiguous semantics, 82
removing all erroneous and implementation-83
dependent features from the language. This 84
means that a SPARK program should have 85
a single meaning to programmers, 86
reviewers, maintainers and all compilers. 87
 88
SPARK also bans the aliasing, overloading, 89
and redeclaration of names, so that one 90
entity only ever has one name and one 91
name can denote at most one entity, further 92
reducing the risk of mis-understanding or 93
mis-interpretation of a program by a person, 94
compiler or other tools. 95

SPARK.3.BRS.4 Implications 96
for standardization 97

None. 98

4

SPARK.3.BRS.5 Bibliography 1

None. 2

SPARK.3.BQF Unspecified 3
Behaviour [BQF] 4

SPARK prevents this vulnerability. 5

SPARK.3.BQF.1 Terminology 6
and features 7

As in Ada.3.BQF.1. 8

SPARK.3.BQF.2 Description of 9
vulnerability 10

As in Ada.3.BQF.2. 11

SPARK.3.BQF.3 Avoiding the 12
vulnerability or mitigating its 13
effects 14

SPARK is designed to eliminate all 15
unspecified language features and bounded 16
errors, either by subsetting to make the 17
offending language feature illegal in SPARK, 18
or by ensuring that the language has neutral 19
semantics with regard to an unspecified 20
behaviour. 21
 22
“Neutral semantics” means that the program 23
has identical meaning regardless of the 24
choice made by a compiler for a particular 25
unspecified language feature. 26
 27
For example: 28

• Unspecified behaviour as a result of 29
parameter-passing mechanism is 30
avoided through subsetting (no 31
access types) and analysis to make 32
sure that formal and global 33
parameters do not overlap and 34
create a potential for aliasing [SLRM 35
6.4]. 36

 37
• Dependence on evaluation order is 38

prevented through analysis so that 39
all expressions in SPARK are free of 40
side-effects and potential run-time 41
errors. Therefore, any evaluation 42
order is allowed and the result of the 43
evaluation is the same in all cases 44
[SLRM 6.1]. 45

 46

• Bounded error as a result of 47
uninitialized variables is prevented 48
by application of static information 49
flow analysis [IFA]. 50

 51

SPARK.3.BQF.4 Implications 52
for standardization 53

None. 54

SPARK.3.BQF.5 Bibliography 55

None. 56

SPARK.3.EWF Undefined 57
Behaviour [EWF] 58

SPARK prevents this vulnerability. 59

SPARK.3.EWF.1 Terminology 60
and features 61

As in Ada.3.EWF.1. 62

SPARK.3.EWF.2 Description of 63
vulnerability 64

As in Ada.3.EWF.2. 65

SPARK.3.EWF.3 Avoiding the 66
vulnerability or mitigating its 67
effects 68

SPARK prevents all erroneous behaviour, 69
either through subsetting or static analysis 70
[SB 1.3]. 71

SPARK.3.EWF.4 Implications 72
for standardization 73

None. 74

SPARK.3.EWF.5 Bibliography 75

None. 76

SPARK.3.FAB Implementation-77
Defined Behaviour [FAB] 78

SPARK mitigates this vulnerability. 79

5

SPARK.3.FAB.1 Terminology 1
and features 2

As in Ada.3.FAB.1. 3

SPARK.3.FAB.2 Description of 4
vulnerability 5

As in Ada.3.FAB.2. 6

SPARK.3.FAB.3 Avoiding the 7
vulnerability or mitigating its 8
effects 9

SPARK allows a number of implementation-10
defined features as in Ada. These include: 11
 12

• The range of predefined integer 13
types. 14

• The range and precision of 15
predefined floating-point types. 16

• The range of System.Any_Priority 17
and its subtypes. 18

• The value of constants such as 19
System.Max_Int, System.Min_Int 20
and so on. 21

• The selection of T’Base for a user-22
defined integer or floating-point type 23
T. 24

• The rounding mode of floating-point 25
types. 26

 27
In the first four cases, static analysis tools 28
can be configured to “know” the appropriate 29
values [SB 9.6]. Care must be taken to 30
ensure that these values are correct for the 31
intended implementation. In the fifth case, 32
SPARK defines a contract to indicate the 33
choice of base-type, which can be checked 34
by a pragma Assert. In the final case, 35
additional static analysis of numerical 36
precision must be performed by the user to 37
ensure the correctness of floating-point 38
algorithms. 39

SPARK.3.FAB.4 Implications for 40
standardization 41

None. 42

SPARK.3.FAB.5 Bibliography 43

None. 44

SPARK.3.MEM Deprecated 45
Language Features [MEM] 46

SPARK is identical to Ada with respect to 47
this vulnerability and its mitigation. See 48
Ada.3.MEM. 49

SPARK.3.NMP Pre-Processor 50
Directives [NMP] 51

SPARK is identical to Ada with respect to 52
this vulnerability and its mitigation. See 53
Ada.3.NMP. 54

SPARK.3.NAI Choice of Clear 55
Names [NAI] 56

SPARK is identical to Ada with respect to 57
this vulnerability and its mitigation. See 58
Ada.3.NAI. 59

SPARK.3.AJN Choice of 60
Filenames and other External 61
Identifiers [AJN] 62

SPARK is identical to Ada with respect to 63
this vulnerability and its mitigation. See 64
Ada.3.AJN. 65

SPARK.3.XYR Unused Variable 66
[XYR] 67

SPARK mitigates this vulnerability. 68

SPARK.3.XYR.1 Terminology 69
and features 70

As in Ada.3.XYR.1. 71

SPARK.3.XYR.2 Description of 72
vulnerability 73

As in Ada.3.XYR.2. 74

SPARK.3.XYR.3 Avoiding the 75
vulnerability or mitigating its 76
effects 77

As in Ada.3.XYR.3. Also, SPARK is 78
designed to permit sound static analysis of 79
the following cases [IFA]: 80
 81

• Variables which are declared but not 82
used at all. 83

6

• Variables which are assigned to, but 1
the resulting value is not used in any 2
way that affects an output of the 3
enclosing subprogram. This is called 4
an “ineffective assignment” in 5
SPARK. 6

SPARK.3.XYR.4 Implications for 7
standardization 8

None. 9

SPARK.3.XYR.5 Bibliography 10

None. 11

SPARK.3.YOW Identifier Name 12
Reuse [YOW] 13

SPARK prevents this vulnerability. 14

SPARK.3.YOW.1 Terminology 15
and features 16

As in Ada.3.YOW.1. 17

SPARK.3.YOW.2 Description of 18
vulnerability 19

As in Ada.3.YOW.2. 20

SPARK.3.YOW.3 Avoiding the 21
vulnerability or mitigating its 22
effects 23

This vulnerability is prevented through 24
language rules enforced by static analysis. 25
SPARK does not permit names in local 26
scopes to redeclare and hide names that are 27
already visible in outer scopes [SLRM 6.1]. 28

SPARK.3.YOW.4 Implications 29
for standardization 30

None. 31

SPARK.3.YOW.5 Bibliography 32

None. 33

SPARK.3.BKL Namespace 34
Issues [BJL] 35

SPARK is identical to Ada with respect to 36
this vulnerability and its mitigation. See 37
Ada.3.BJL. 38

SPARK.3.IHN Type System 39
[IHN] 40

SPARK mitigates this vulnerability. 41

SPARK.3.IHN.1 Terminology 42
and features 43

SPARK’s type system is a simplification of 44
that of Ada. Both Explicit and Implicit 45
conversions are permitted in SPARK, as is 46
instantiation and use of 47
Unchecked_Conversion [SB 1.3]. 48
 49
A design goal of SPARK is the provision of 50
static type safety, meaning that programs 51
can be shown to be free from all run-time 52
type failures using entirely static analysis. If 53
this optional analysis is achieved, a SPARK 54
program should never raise an exception at 55
run-time. 56

SPARK.3.IHN.2 Description of 57
vulnerability 58

As in Ada.3.IHN.2 for 59
Unchecked_Conversion. 60

SPARK.3.IHN.3 Avoiding the 61
vulnerability or mitigating its 62
effects 63

Vulnerabilities relating to value conversions, 64
exceptions, and assignments are mitigated 65
by static analysis. Vulnerabilities relating to 66
the use of Unchecked_Conversion are as in 67
Ada. 68

SPARK.3.IHN.4 Implications for 69
standardization 70

None. 71

SPARK.3.IHN.5 Bibliography 72

None. 73

7

SPARK.3.STR Bit 1
Representation [STR] 2

SPARK mitigates this vulnerability. 3

SPARK.3.STR.1 Terminology 4
and features 5

As in Ada.3.STR.1. 6

SPARK.3.STR.2 Description of 7
vulnerability 8

SPARK is designed to offer a semantics 9
which is independent of the underlying 10
representation chosen by a compiler for a 11
particular target machine. Representation 12
clauses are permitted, but these do not 13
affect the semantics as seen by a static 14
analysis tool [SB 1.3]. 15

SPARK.3.STR.3 Avoiding the 16
vulnerability or mitigating its 17
effects 18
As in Ada.3.STR.4. 19

SPARK.3.STR.4 Implications for 20
standardization 21

None. 22

SPARK.3.STR.5 Bibliography 23

None. 24

SPARK.3.PLF Floating-point 25
Arithmetic [PLF] 26

SPARK is identical to Ada with respect to 27
this vulnerability and its mitigation. See 28
Ada.3.PLF. 29

SPARK.3.CCB Enumerator 30
Issues [CCB] 31
SPARK is identical to Ada with respect to 32
this vulnerability and its mitigation. See 33
Ada.3.CCB. 34

SPARK.3.FLC Numeric 35
Conversion Errors [FLC] 36

SPARK prevents this vulnerability. 37

SPARK.3.FLC.1 Terminology 38
and features 39

As in Ada.3.FLC.1. 40

SPARK.3.FLC.2 Description of 41
vulnerability 42

As in Ada.3.FLC.2. 43

SPARK.3.FLC.3 Avoiding the 44
vulnerability or mitigating its 45
effects 46

SPARK is designed to be amenable to static 47
verification of the absence of predefined 48
exceptions, and in particular all cases 49
covered by this vulnerability [SB 11]. All 50
numeric conversions (both explicit and 51
implicit) give rise to a verification condition 52
that must be discharged, typically using an 53
automated theorem-prover. 54

SPARK.3.FLC.4 Implications for 55
standardization 56

None. 57

SPARK.3.FLC.5 Bibliography 58

None. 59

SPARK.3.CJM String 60
Termination [CJM] 61

SPARK is identical to Ada with respect to 62
this vulnerability and its mitigation. See 63
Ada.3.CJM. 64

SPARK.3.XYX Boundary 65
Beginning Violation [XYX] 66

SPARK prevents this vulnerability. 67

SPARK.3.XYX.1 Terminology 68
and features 69

As in Ada.3.XYX.1. 70

SPARK.3.XYX.2 Description of 71
vulnerability 72

As in Ada.3.XYX.2. 73

8

SPARK.3.XYX.3 Avoiding the 1
vulnerability or mitigating its 2
effects 3

SPARK is designed to permit static analysis 4
for all such boundary violations, through 5
techniques such as theorem proving or 6
abstract interpretation [SB 11]. 7
 8
SPARK programs that have been subject to 9
this level of analysis can be compiled with 10
run-time checks suppressed, supported by a 11
body of evidence that such checks could 12
never fail, and thus removing the possibility 13
of erroneous execution. 14

SPARK.3.XYX.4 Implications for 15
standardization 16

None. 17

SPARK.3.XYX.5 Bibliography 18

None. 19

SPARK.3.XYZ Unchecked Array 20
Indexing [XYZ] 21

SPARK prevents this vulnerability. 22

SPARK.3.XYZ.1 Terminology 23
and features 24

As in Ada.3.XYZ.1. 25

SPARK.3.XYZ.2 Description of 26
vulnerability 27

As in Ada.3.XYZ.2. 28

SPARK.3.XYZ.3 Avoiding the 29
vulnerability or mitigating its 30
effects 31

As per SPARK.3.XYX.3 – this vulnerability is 32
eliminated in SPARK by static analysis using 33
the same techniques. 34

SPARK.3.XYZ.4 Implications for 35
standardization 36

None. 37

SPARK.3.XYZ.5 Bibliography 38

None. 39

SPARK.3.XYW Unchecked 40
Array Copying [XYW] 41

SPARK prevents this vulnerability. 42

SPARK.3.XYW.1 Terminology 43
and features 44

As in Ada.3.XYW.1. 45

SPARK.3.XYW.2 Description of 46
vulnerability 47

As in Ada.3.XYW.2. 48

SPARK.3.XYW.3 Avoiding the 49
vulnerability or mitigating its 50
effects 51

Array assignments in SPARK are only 52
permitted between objects that have 53
statically matching bounds, so there is no 54
possibility of an exception being raised [SB 55
5.5, SLRM 4.1.2]. Ada’s “slicing” and 56
“sliding” of arrays is not permitted in SPARK, 57
so this vulnerability cannot occur. 58

SPARK.3.XYW.4 Implications 59
for standardization 60

None. 61

SPARK.3.XYW.5 Bibliography 62

None. 63

SPARK.3.XZB Buffer Overflow 64
[XZB] 65

SPARK prevents this vulnerability. 66

SPARK.3.XZB.1 Terminology 67
and features 68

As in Ada.3.HCF.1. 69

SPARK.3.XZB.2 Description of 70
vulnerability 71

As in Ada.3.XZB.2. 72

9

SPARK.3.XZB.3 Avoiding the 1
vulnerability or mitigating its 2
effects 3

As per SPARK.3.XYX.3 – this vulnerability is 4
eliminated in SPARK by static analysis using 5
the same techniques. 6

SPARK.3.XZB.4 Implications for 7
standardization 8

None. 9

SPARK.3.XZB.5 Bibliography 10

None. 11

SPARK.3.HCF Pointer Casting 12
and Pointer Type Changes 13
[HCF] 14

SPARK prevents this vulnerability. 15

SPARK.3.HCF.1 Terminology 16
and features 17

As in Ada.3.HCF.1. 18

SPARK.3.HCF.2 Description of 19
vulnerability 20

As in Ada.3.HCF.2. 21

SPARK.3.HCF.3 Avoiding the 22
vulnerability or mitigating its 23
effects 24

This vulnerability cannot occur in SPARK, 25
since the SPARK subset forbids the 26
declaration or use of access (pointer) types 27
[SB 1.3, SLRM 3.10]. 28

SPARK.3.HCF.4 Implications for 29
standardization 30

None. 31

SPARK.3.HCF.5 Bibliography 32

None. 33

SPARK.3.RVG Pointer 34
Arithmetic [RVG] 35

SPARK prevents this vulnerability. 36

SPARK.3.RVG.1 Terminology 37
and features 38

As in Ada.3.RVG.1. 39

SPARK.3.RVG.2 Description of 40
vulnerability 41

As in Ada.3.RVG.2. 42

SPARK.3.RVG.3 Avoiding the 43
vulnerability or mitigating its 44
effects 45

This vulnerability cannot occur in SPARK, 46
since the SPARK subset forbids the 47
declaration or use of access (pointer) types 48
[SLRM 3.10]. 49

SPARK.3.RVG.4 Implications 50
for standardization 51

None. 52

SPARK.3.RVG.5 Bibliography 53

None. 54

SPARK.3.XYH Null Pointer 55
Dereference [XYH] 56

SPARK prevents this vulnerability. 57

SPARK.3.XYH.1 Terminology 58
and features 59

As in Ada.3.XYH.1. 60

SPARK.3.XYH.2 Description of 61
vulnerability 62

As in Ada.3.XYH.2. 63

SPARK.3.XYH.3 Avoiding the 64
vulnerability or mitigating its 65
effects 66

This vulnerability cannot occur in SPARK, 67
since the SPARK subset forbids the 68

10

declaration or use of access (pointer) types 1
[SLRM 3.10]. 2

SPARK.3.XYH.4 Implications for 3
standardization 4

None. 5

SPARK.3.XYH.5 Bibliography 6

None. 7

SPARK.3.XYK Dangling 8
Reference to Heap [XYK] 9

SPARK prevents this vulnerability. 10

SPARK.3.XYK.1 Terminology 11
and features 12

As in Ada.3.XYK.1. 13

SPARK.3.XYK.2 Description of 14
vulnerability 15

As in Ada.3.XYK.2. 16

SPARK.3.XYK.3 Avoiding the 17
vulnerability or mitigating its 18
effects 19

This vulnerability cannot occur in SPARK, 20
since the SPARK subset forbids the 21
declaration or use of access (pointer) types 22
[SLRM 3.10]. 23

SPARK.3.XYK.4 Implications for 24
standardization 25

None. 26

SPARK.3.XYK.5 Bibliography 27

None. 28

SPARK.3.SYM Templates and 29
Generics [SYM] 30

At the time of writing, SPARK does not 31
permit the use of generics units, so this 32
vulnerability is currently prevented. In future, 33
the SPARK language may be extended to 34
permit generic units, in which case section 35
Ada.3.SYM applies. 36

SPARK.3.RIP Inheritance [RIP] 37

SPARK mitigates this vulnerability. 38

SPARK.3.RIP.1 Terminology 39
and features 40

As in Ada.3.RIP.1. 41

SPARK.3.RIP.2 Description of 42
vulnerability 43

As in Ada.3.RIP.1. 44

SPARK.3.RIP.3 Avoiding the 45
vulnerability or mitigating its 46
effects 47

SPARK permits only a subset of Ada’s 48
inheritance facilities to be used. Multiple 49
inheritance, class-wide operations and 50
dynamic dispatching are not permitted, so all 51
vulnerabilities relating to these language 52
features do not apply to SPARK [SLRM 3.8]. 53
 54
SPARK is also designed to be amenable to 55
static verification of the Liskov Substitution 56
Principle [LSP]. 57

SPARK.3.RIP.4 Implications for 58
standardization 59

None. 60

SPARK.3.RIP.5 Bibliography 61

None. 62

SPARK.3.LAV Initialization of 63
Variables [LAV] 64

SPARK prevents this vulnerability. 65

SPARK.3.LAV.1 Terminology 66
and features 67

As in Ada.3.LAV.1. 68

SPARK.3.LAV.2 Description of 69
vulnerability 70

Ada in Ada.3.LAV.2. 71

11

SPARK.3.LAV.3 Avoiding the 1
vulnerability or mitigating its 2
effects 3

This vulnerability is entirely prevented by 4
use of static information flow analysis [IFA]. 5

SPARK.3.LAV.4 Implications for 6
standardization 7

None. 8

SPARK.3.LAV.5 Bibliography 9

None. 10

SPARK.3.XYY Wrap-around 11
Error [XYY] 12

See Ada.3.XYY. In addition, SPARK 13
mitigates this vulnerability through static 14
analysis to show that a signed integer 15
expression can never overflow at run-time 16
[SB 11]. 17

SPARK.3.XZI Sign Extension 18
Error [XZI] 19

SPARK is identical to Ada with respect to 20
this vulnerability and its mitigation. See 21
Ada.3.XZI. 22

SPARK.3.JCW Operator 23
Precedence/Order of Evaluation 24
[JCW] 25

SPARK is identical to Ada with respect to 26
this vulnerability and its mitigation. See 27
Ada.3.JCW. 28

SPARK.3.SAM Side-effect and 29
Order of Evaluation [SAM] 30

SPARK prevents this vulnerability. 31

SPARK.3.SAM.1 Terminology 32
and features 33

As in Ada.3.SAM.1. 34

SPARK.3.SAM.2 Description of 35
vulnerability 36

As in Ada.3.SAM.2. 37

SPARK.3.SAM.3 Avoiding the 38
vulnerability or mitigating its 39
effects 40

SPARK does not permit functions to have 41
side-effects, so all expressions are side-42
effect free. Static analysis of run-time errors 43
also ensures that expressions evaluate 44
without raising exceptions. Therefore, 45
expressions are neutral to evaluation order 46
and this vulnerability does not occur in 47
SPARK [SLRM 6.1]. 48

SPARK.3.SAM.4 Implications 49
for standardization 50

None. 51

SPARK.3.SAM.5 Bibliography 52

None. 53

SPARK.3.KOA Likely Incorrect 54
Expression [KOA] 55

SPARK is identical to Ada with respect to 56
this vulnerability and its mitigation (see 57
Ada.3.KOA) although many cases of “likely 58
incorrect” expressions in Ada are forbidden 59
in SPARK. 60

SPARK.3.XYQ Dead and 61
Deactivated Code [XYQ] 62

SPARK mitigates this vulnerability. 63

SPARK.3.XYQ.1 Terminology 64
and features 65

As in Ada.3.XYQ.1. 66

SPARK.3.XYQ.2 Description of 67
vulnerability 68

As in Ada.3.XYQ.2. 69

SPARK.3.XYQ.3 Avoiding the 70
vulnerability or mitigating its 71
effects 72

In addition to the advice of Ada.3.XYQ.3, 73
SPARK is amenable to optional static 74
analysis of dead paths. A dead path cannot 75
be executed in that the combination of 76

12

conditions for its execution are logically 1
equivalent to false. Such cases can be 2
statically detected by theorem proving in 3
SPARK. 4

SPARK.3.XYQ.4 Implications 5
for standardization 6

None. 7

SPARK.3.XYQ.5 Bibliography 8

None. 9

SPARK.3.CLL Switch 10
Statements and Static Analysis 11
[CLL] 12

As in Ada.3.CLL, this vulnerability is 13
prevented by SPARK. The vulnerability 14
relating to an uninitialized variable and the 15
“when others” clause in a case statement is 16
also prevented – see SPARK.3.LAV. 17

SPARK.3.EOJ Demarcation of 18
Control Flow [EOJ] 19

SPARK is identical to Ada with respect to 20
this vulnerability and its mitigation. See 21
Ada.3.EOJ. 22

SPARK.3.TEX Loop Control 23
Variables [TEX] 24

SPARK prevents this vulnerability in the 25
same way as Ada. See Ada.3.TEX. 26

SPARK.3.XZH Off-by-one Error 27
[XZH] 28

SPARK is identical to Ada with respect to 29
this vulnerability and its mitigation. See 30
Ada.3.XZH. Additionally, any off-by-one 31
error that gives rise to the potential for a 32
buffer-overflow, range violation, or any other 33
construct that could give rise to a predefined 34
exception, will be detected by static analysis 35
in SPARK [SB 11]. 36

SPARK.3.EWD Structured 37
Programming [EWD] 38

SPARK mitigates this vulnerability. 39

SPARK.3.EWD.1 Terminology 40
and features 41

As in Ada.3.EWD.1 42

SPARK.3.EWD.2 Description of 43
vulnerability 44

As in Ada.3.EWD.2 45

SPARK.3.EWD.3 Avoiding the 46
vulnerability or mitigating its 47
effects 48

Several of the vulnerabilities in this category 49
that affect Ada are entirely eliminated by 50
SPARK. In particular: the use of the goto 51
statement is prohibited in SPARK [SLRM 52
5.8], loop exit statements only apply to the 53
most closely enclosing loop (so “multi-level 54
loop exits” are not permitted) [SLRM 5.7], 55
and all subprograms have a single entry and 56
a single exit point [SLRM 6]. Finally, 57
functions in SPARK must have exactly one 58
return statement which must the final 59
statement in the function body [SLRM 6]. 60

SPARK.3.EWD.4 Implications 61
for standardization 62

None. 63

SPARK.3.EWD.5 Bibliography 64

None. 65

SPARK.3.CSJ Passing 66
Parameters and Return Values 67
[CSJ] 68

SPARK mitigates this vulnerability. 69

SPARK.3.CSJ.1 Terminology 70
and features 71

As in Ada.CSJ.1. 72

SPARK.3.CSJ.2 Description of 73
vulnerability 74

As in Ada.CSJ.3. 75

13

SPARK.3.CSJ.3 Avoiding the 1
vulnerability or mitigating its 2
effects 3

SPARK goes further than Ada with regard to 4
this vulnerability. Specifically: 5
 6

• SPARK forbids all aliasing of 7
parameters and names [SLRM 6]. 8

 9
• SPARK is designed to offer 10

consistent semantics regardless of 11
the parameter passing mechanism 12
employed by a particular compiler. 13
Thus this implementation-dependent 14
behaviour of Ada is eliminated from 15
SPARK. 16

 17
Both of these properties can be checked by 18
static analysis. 19

SPARK.3.CSJ.4 Implications for 20
standardization 21

None. 22

SPARK.3.CSJ.5 Bibliography 23

None. 24

SPARK.3.DCM Dangling 25
References to Stack Frames 26
[DCM] 27

SPARK prevents this vulnerability. 28

SPARK.3.DCM.1 Terminology 29
and features 30

As in Ada.3.DCM.1. 31

SPARK.3.DCM.2 Description of 32
vulnerability 33

As in Ada.3.DCM.2. 34

SPARK.3.DCM.3 Avoiding the 35
vulnerability or mitigating its 36
effects 37

SPARK forbids the use of the ‘Address 38
attribute to read the address of an object 39
[SLRM 4.1]. The ‘Access attribute and all 40

access types are also forbidden, so this 41
vulnerability cannot occur. 42

SPARK.3.DCM.4 Implications 43
for standardization 44

None. 45

SPARK.3.DCM.5 Bibliography 46

None. 47
 48

SPARK.3.OTR Subprogram 49
Signature Mismatch [OTR] 50

SPARK mitigates this vulnerability. 51

SPARK.3.OTR.1 Terminology 52
and features 53

See Ada.3.OTR.1. 54

SPARK.3.OTR.2 Description of 55
vulnerability 56

See Ada.3.OTR.2. 57

SPARK.3.OTR.3 Avoiding the 58
vulnerability or mitigating its 59
effects 60

Default values for subprogram are not 61
permitted in SPARK [SLRM 6], so this case 62
cannot occur. SPARK does permit calling 63
modules written in other languages so, as in 64
Ada.3.OTR.3, additional steps are required 65
to verify the number and type-correctness of 66
such parameters. 67
 68
SPARK also allows a subprogram body to 69
be written in full-blown Ada (not SPARK). In 70
this case, the subprogram body is said to be 71
“hidden”, and no static analysis is performed 72
by a SPARK Processor. For such hidden 73
bodies, some alternative means of 74
verification must be employed, and the 75
advice of Annex Ada should be applied. 76

SPARK.3.OTR.4 Implications 77
for standardization 78

None. 79

14

SPARK.3.OTR.5 Bibliography 1

None. 2

SPARK.3.GDL Recursion [GDL] 3

SPARK does not permit recursion, so this 4
vulnerability is prevented [SLRM 6]. 5

SPARK.3.NZN Returning Error 6
Status [NZN] 7

SPARK is identical to Ada with respect to 8
this vulnerability and its mitigation. See 9
Ada.3.NZN. 10

SPARK.3.REU Termination 11
Strategy [REU] 12

SPARK mitigates this vulnerability. 13

SPARK.3.REU.1 Terminology 14
and features 15

As in Ada.3.REU.1. 16

SPARK.3.REU.2 Description of 17
vulnerability 18

As in Ada.3.REU.2. 19

SPARK.3.REU.3 Avoiding the 20
vulnerability or mitigating its 21
effects 22

SPARK permits a limited subset of Ada’s 23
tasking facilities known as the “Ravenscar 24
Profile” [SLRM 9]. There is no nesting of 25
tasks in SPARK, and all tasks are required 26
to have a top-level loop which has no exit 27
statements, so this vulnerability does not 28
apply in SPARK. 29
 30
SPARK is also amenable to static analysis 31
for the absence of predefined exceptions 32
[SB 11], thus mitigating the case where a 33
task terminates prematurely (and silently) 34
owing to an unhandled predefined 35
exception. 36
 37

SPARK.3.REU.4 Implications 38
for standardization 39

None. 40

SPARK.3.REU.5 Bibliography 41

None. 42

SPARK.3.LRM Extra Intrinsics 43
[LRM] 44

SPARK prevents this vulnerability in the 45
same way as Ada. See Ada.3.LRM. 46

SPARK.3.AMV Type-breaking 47
Reinterpretation of Data [AMV] 48

SPARK mitigates this vulnerability. 49

SPARK.3.AMV.1 Terminology 50
and features 51

As in Ada.3.AMV.1. 52

SPARK.3.AMV.2 Description of 53
vulnerability 54

As in Ada.3.AMV.2. 55

SPARK.3.AMV.3 Avoiding the 56
vulnerability or mitigating its 57
effects 58

SPARK permits the instantiation and use of 59
Unchecked_Conversion as in Ada. The 60
result of a call to Unchecked_Conversion is 61
not assumed to be valid, so static 62
verification tools can then insist on re-63
validation of the result before further 64
analysis can succeed [SB 11]. 65
 66
At the time of writing, SPARK does not 67
permit discriminated records, so 68
vulnerabilities relating to discriminated 69
records and unchecked unions are 70
prevented. 71

SPARK.3.AMV.4 Implications 72
for standardization 73

None. 74

SPARK.3.AMV.5 Bibliography 75

None. 76

15

SPARK.3.XYL Memory Leak 1
[XYL] 2

SPARK prevents this vulnerability. 3

SPARK.3.XYL.1 Terminology 4
and features 5

As in Ada.3.XYL.1. 6

SPARK.3.XYL.2 Description of 7
vulnerability 8

As in Ada.3.XYL.2. 9

SPARK.3.XYL.3 Avoiding the 10
vulnerability or mitigating its 11
effects 12

SPARK does not permit the use of access 13
types, storage pools, or allocators, so this 14
vulnerability cannot occur [SLRM 3]. In 15
SPARK, all objects have a fixed size in 16
memory, so the language is also amenable 17
to static analysis of worst-case memory 18
usage. 19

SPARK.3.XYL.4 Implications for 20
standardization 21

None. 22

SPARK.3.XYL.5 Bibliography 23

None. 24

SPARK.3.TRJ Argument 25
Passing to Library Functions 26
[TRJ] 27

SPARK mitigates this vulnerability. 28

SPARK.3.TRJ.1 Terminology 29
and features 30

See Ada.3.TRJ.1. 31

SPARK.3.TRJ.2 Description of 32
vulnerability 33

See Ada.3.TRJ.2. 34

SPARK.3.TRJ.3 Avoiding the 35
vulnerability or mitigating its 36
effects 37

SPARK includes all of the mitigations of Ada 38
with respect to this vulnerability, but goes 39
further, allowing preconditions to be checked 40
statically by a theorem-prover. The language 41
in which such preconditions are expressed 42
is also substantially more expressive than 43
Ada’s type system. 44

SPARK.3.TRJ.4 Implications for 45
standardization 46

None. 47

SPARK.3.TRJ.5 Bibliography 48

None. 49

SPARK.3.NYY Dynamically-50
linked Code and Self-modifying 51
Code [NYY] 52

SPARK prevents this vulnerability in the 53
same way as Ada. See Ada.3.NYY. 54

SPARK.3.NSQ Library 55
Signature [NSQ] 56

SPARK prevents this vulnerability in the 57
same way as Ada. See Ada.3.NSQ. 58

SPARK.3.HJW Unanticipated 59
Exceptions from Library 60
Routines [HJW] 61

SPARK prevents this vulnerability in the 62
same way as Ada. See Ada.3.HJW. SPARK 63
does permit the use of exception handlers, 64
so these may be used to catch unexpected 65
exceptions from library routines. 66
 67

	ISO/IEC JTC 1/SC 22/WG 23 N 0275
	Annex SPARK – Final Draft
	SPARK.Specific information for vulnerabilities
	SPARK.1 Identification of standards and associated documentation
	SPARK.2 General terminology and concepts
	SPARK.3.BRS Obscure Language Features [BRS]
	SPARK.3.BRS.1 Terminology and features
	SPARK.3.BRS.2 Description of vulnerability
	SPARK.3.BRS.3 Avoiding the vulnerability or mitigating its effects
	SPARK.3.BRS.4 Implications for standardization
	SPARK.3.BRS.5 Bibliography
	SPARK.3.BQF Unspecified Behaviour [BQF]
	SPARK.3.BQF.1 Terminology and features
	SPARK.3.BQF.2 Description of vulnerability
	SPARK.3.BQF.3 Avoiding the vulnerability or mitigating its effects
	SPARK.3.BQF.4 Implications for standardization
	SPARK.3.BQF.5 Bibliography
	SPARK.3.EWF Undefined Behaviour [EWF]
	SPARK.3.EWF.1 Terminology and features
	SPARK.3.EWF.2 Description of vulnerability
	SPARK.3.EWF.3 Avoiding the vulnerability or mitigating its effects
	SPARK.3.EWF.4 Implications for standardization
	SPARK.3.EWF.5 Bibliography
	SPARK.3.FAB Implementation-Defined Behaviour [FAB]
	SPARK.3.FAB.1 Terminology and features
	SPARK.3.FAB.2 Description of vulnerability
	SPARK.3.FAB.3 Avoiding the vulnerability or mitigating its effects
	SPARK.3.FAB.4 Implications for standardization
	SPARK.3.FAB.5 Bibliography
	SPARK.3.MEM Deprecated Language Features [MEM]
	SPARK.3.NMP Pre-Processor Directives [NMP]
	SPARK.3.NAI Choice of Clear Names [NAI]
	SPARK.3.AJN Choice of Filenames and other External Identifiers [AJN]
	SPARK.3.XYR Unused Variable [XYR]
	SPARK.3.XYR.1 Terminology and features
	SPARK.3.XYR.2 Description of vulnerability
	SPARK.3.XYR.3 Avoiding the vulnerability or mitigating its effects
	SPARK.3.XYR.4 Implications for standardization
	SPARK.3.XYR.5 Bibliography
	SPARK.3.YOW Identifier Name Reuse [YOW]
	SPARK.3.YOW.1 Terminology and features
	SPARK.3.YOW.2 Description of vulnerability
	SPARK.3.YOW.3 Avoiding the vulnerability or mitigating its effects
	SPARK.3.YOW.4 Implications for standardization
	SPARK.3.YOW.5 Bibliography
	SPARK.3.BKL Namespace Issues [BJL]
	SPARK.3.IHN Type System [IHN]
	SPARK.3.IHN.1 Terminology and features
	SPARK.3.IHN.2 Description of vulnerability
	SPARK.3.IHN.3 Avoiding the vulnerability or mitigating its effects
	SPARK.3.IHN.4 Implications for standardization
	SPARK.3.IHN.5 Bibliography
	SPARK.3.STR Bit Representation [STR]
	SPARK.3.STR.1 Terminology and features
	SPARK.3.STR.2 Description of vulnerability
	SPARK.3.STR.3 Avoiding the vulnerability or mitigating its effects
	SPARK.3.STR.4 Implications for standardization
	None.
	SPARK.3.STR.5 Bibliography
	None.
	SPARK.3.PLF Floating-point Arithmetic [PLF]
	SPARK.3.CCB Enumerator Issues [CCB]
	SPARK.3.FLC Numeric Conversion Errors [FLC]
	SPARK.3.FLC.1 Terminology and features
	SPARK.3.FLC.2 Description of vulnerability
	SPARK.3.FLC.3 Avoiding the vulnerability or mitigating its effects
	SPARK.3.FLC.4 Implications for standardization
	SPARK.3.FLC.5 Bibliography
	SPARK.3.CJM String Termination [CJM]
	SPARK.3.XYX Boundary Beginning Violation [XYX]
	SPARK.3.XYX.1 Terminology and features
	SPARK.3.XYX.2 Description of vulnerability
	SPARK.3.XYX.3 Avoiding the vulnerability or mitigating its effects
	SPARK.3.XYX.4 Implications for standardization
	SPARK.3.XYX.5 Bibliography
	SPARK.3.XYZ Unchecked Array Indexing [XYZ]
	SPARK.3.XYZ.1 Terminology and features
	SPARK.3.XYZ.2 Description of vulnerability
	SPARK.3.XYZ.3 Avoiding the vulnerability or mitigating its effects
	SPARK.3.XYZ.4 Implications for standardization
	SPARK.3.XYZ.5 Bibliography
	SPARK.3.XYW Unchecked Array Copying [XYW]
	SPARK.3.XYW.1 Terminology and features
	SPARK.3.XYW.2 Description of vulnerability
	SPARK.3.XYW.3 Avoiding the vulnerability or mitigating its effects
	SPARK.3.XYW.4 Implications for standardization
	SPARK.3.XYW.5 Bibliography
	SPARK.3.XZB Buffer Overflow [XZB]
	SPARK.3.XZB.1 Terminology and features
	SPARK.3.XZB.2 Description of vulnerability
	SPARK.3.XZB.3 Avoiding the vulnerability or mitigating its effects
	SPARK.3.XZB.4 Implications for standardization
	SPARK.3.XZB.5 Bibliography
	SPARK.3.HCF Pointer Casting and Pointer Type Changes [HCF]
	SPARK.3.HCF.1 Terminology and features
	SPARK.3.HCF.2 Description of vulnerability
	SPARK.3.HCF.3 Avoiding the vulnerability or mitigating its effects
	SPARK.3.HCF.4 Implications for standardization
	SPARK.3.HCF.5 Bibliography
	SPARK.3.RVG Pointer Arithmetic [RVG]
	SPARK.3.RVG.1 Terminology and features
	SPARK.3.RVG.2 Description of vulnerability
	SPARK.3.RVG.3 Avoiding the vulnerability or mitigating its effects
	SPARK.3.RVG.4 Implications for standardization
	SPARK.3.RVG.5 Bibliography
	SPARK.3.XYH Null Pointer Dereference [XYH]
	SPARK.3.XYH.1 Terminology and features
	SPARK.3.XYH.2 Description of vulnerability
	SPARK.3.XYH.3 Avoiding the vulnerability or mitigating its effects
	SPARK.3.XYH.4 Implications for standardization
	SPARK.3.XYH.5 Bibliography
	SPARK.3.XYK Dangling Reference to Heap [XYK]
	SPARK.3.XYK.1 Terminology and features
	SPARK.3.XYK.2 Description of vulnerability
	SPARK.3.XYK.3 Avoiding the vulnerability or mitigating its effects
	SPARK.3.XYK.4 Implications for standardization
	SPARK.3.XYK.5 Bibliography
	SPARK.3.SYM Templates and Generics [SYM]
	SPARK.3.RIP Inheritance [RIP]
	SPARK.3.RIP.1 Terminology and features
	SPARK.3.RIP.2 Description of vulnerability
	SPARK.3.RIP.3 Avoiding the vulnerability or mitigating its effects
	SPARK.3.RIP.4 Implications for standardization
	SPARK.3.RIP.5 Bibliography
	SPARK.3.LAV Initialization of Variables [LAV]
	SPARK.3.LAV.1 Terminology and features
	SPARK.3.LAV.2 Description of vulnerability
	SPARK.3.LAV.3 Avoiding the vulnerability or mitigating its effects
	SPARK.3.LAV.4 Implications for standardization
	SPARK.3.LAV.5 Bibliography
	SPARK.3.XYY Wrap-around Error [XYY]
	SPARK.3.XZI Sign Extension Error [XZI]
	SPARK.3.JCW Operator Precedence/Order of Evaluation [JCW]
	SPARK.3.SAM Side-effect and Order of Evaluation [SAM]
	SPARK.3.SAM.1 Terminology and features
	SPARK.3.SAM.2 Description of vulnerability
	SPARK.3.SAM.3 Avoiding the vulnerability or mitigating its effects
	SPARK.3.SAM.4 Implications for standardization
	SPARK.3.SAM.5 Bibliography
	SPARK.3.KOA Likely Incorrect Expression [KOA]
	SPARK.3.XYQ Dead and Deactivated Code [XYQ]
	SPARK.3.XYQ.1 Terminology and features
	SPARK.3.XYQ.2 Description of vulnerability
	SPARK.3.XYQ.3 Avoiding the vulnerability or mitigating its effects
	SPARK.3.XYQ.4 Implications for standardization
	SPARK.3.XYQ.5 Bibliography
	SPARK.3.CLL Switch Statements and Static Analysis [CLL]
	SPARK.3.EOJ Demarcation of Control Flow [EOJ]
	SPARK.3.TEX Loop Control Variables [TEX]
	SPARK.3.XZH Off-by-one Error [XZH]
	SPARK.3.EWD Structured Programming [EWD]
	SPARK.3.EWD.1 Terminology and features
	SPARK.3.EWD.2 Description of vulnerability
	SPARK.3.EWD.3 Avoiding the vulnerability or mitigating its effects
	SPARK.3.EWD.4 Implications for standardization
	SPARK.3.EWD.5 Bibliography
	SPARK.3.CSJ Passing Parameters and Return Values [CSJ]
	SPARK.3.CSJ.1 Terminology and features
	SPARK.3.CSJ.2 Description of vulnerability
	SPARK.3.CSJ.3 Avoiding the vulnerability or mitigating its effects
	SPARK.3.CSJ.4 Implications for standardization
	SPARK.3.CSJ.5 Bibliography
	SPARK.3.DCM Dangling References to Stack Frames [DCM]
	SPARK.3.DCM.1 Terminology and features
	SPARK.3.DCM.2 Description of vulnerability
	SPARK.3.DCM.3 Avoiding the vulnerability or mitigating its effects
	SPARK.3.DCM.4 Implications for standardization
	SPARK.3.DCM.5 Bibliography
	SPARK.3.OTR Subprogram Signature Mismatch [OTR]
	SPARK.3.OTR.1 Terminology and features
	SPARK.3.OTR.2 Description of vulnerability
	SPARK.3.OTR.3 Avoiding the vulnerability or mitigating its effects
	SPARK.3.OTR.4 Implications for standardization
	SPARK.3.OTR.5 Bibliography
	SPARK.3.GDL Recursion [GDL]
	SPARK.3.NZN Returning Error Status [NZN]
	SPARK.3.REU Termination Strategy [REU]
	SPARK.3.REU.1 Terminology and features
	SPARK.3.REU.2 Description of vulnerability
	SPARK.3.REU.3 Avoiding the vulnerability or mitigating its effects
	SPARK.3.REU.4 Implications for standardization
	SPARK.3.REU.5 Bibliography
	SPARK.3.LRM Extra Intrinsics [LRM]
	SPARK.3.AMV Type-breaking Reinterpretation of Data [AMV]
	SPARK.3.AMV.1 Terminology and features
	SPARK.3.AMV.2 Description of vulnerability
	SPARK.3.AMV.3 Avoiding the vulnerability or mitigating its effects
	SPARK.3.AMV.4 Implications for standardization
	SPARK.3.AMV.5 Bibliography
	SPARK.3.XYL Memory Leak [XYL]
	SPARK.3.XYL.1 Terminology and features
	SPARK.3.XYL.2 Description of vulnerability
	SPARK.3.XYL.3 Avoiding the vulnerability or mitigating its effects
	SPARK.3.XYL.4 Implications for standardization
	SPARK.3.XYL.5 Bibliography
	SPARK.3.TRJ Argument Passing to Library Functions [TRJ]
	SPARK.3.TRJ.1 Terminology and features
	SPARK.3.TRJ.2 Description of vulnerability
	SPARK.3.TRJ.3 Avoiding the vulnerability or mitigating its effects
	SPARK.3.TRJ.4 Implications for standardization
	SPARK.3.TRJ.5 Bibliography
	SPARK.3.NYY Dynamically-linked Code and Self-modifying Code [NYY]
	SPARK.3.NSQ Library Signature [NSQ]
	SPARK.3.HJW Unanticipated Exceptions from Library Routines [HJW]

