6.X Unanticipated Exceptions from Library Routines [HJW]
6.X.0 Status and History

2009-04-04—JWM: Performed “accept changes” on draft provided by Clive

2009-20-03 – Updated by Clive Pygott after editor’s teleconference 18th Feb

2009-16-02 – Updated by Clive Pygott after editor’s teleconference 28th Jan

2009-05-01 – Proposed by Clive Pygott

6.X.1 Description of application vulnerability

A library in this context is taken to mean a set of software routines produced outside the control of the main application developer, usually by a third party, and where the application developer may not have access to the source. In such circumstances the application developer has limited knowledge of the library functions, other than from their behavioural interface.

Whilst the use of libraries can present a number of vulnerabilities, the focus of this vulnerability is any undesirable behaviour that a library routine may exhibit, in particular the generation of unexpected exceptions.

6.X.2 Cross reference
MISRA C++: 15-3-1, 15-3-2, 17-0-4

MISRA C: 3.6, 20.3

JSF++:

 Rule 208

6.X.3 Mechanism of failure

In some languages, unhandled exceptions lead to implementation dependant behaviour. This can include immediate termination, without for example, releasing previously allocated resources. If a library routine throws an unanticipated exception, this undesirable behaviour may result.
It should be noted that the considerations of NZN, Returning Error Status, are also relevant here.

6.X.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

1. can link previously developed library code (where the developer and compiler don’t have access to the library source)

2. languages that permit exceptions to be thrown but do not require handlers for them

6.X.5 Avoiding the vulnerability or mitigating its effects

All library calls should be wrapped within a ‘catch-all’ exception handler (if the language supports such a construct), so that any unanticipated exceptions can be caught and handled appropriately. This wrapping may be done for each library function call or for the entire behaviour of the program, e.g. having the exception handler in main for C++. However, note that the later isn’t a complete solution, as static objects are constructed before main in entered and are destroyed after it has been exited. Consequently, MISRA C++ bars class constructors and destructors from throwing exceptions (unless handled locally).
An alternative approach would be to use only library routines for which all possible exceptions are specified.
6.X.6 Implications for standardization

Languages that provide exceptions should provide a mechanism for catching all possible exceptions (i.e. a ‘catch-all’ handler). The behaviour of the program when encountering an unhandled exception should be fully defined.

Languages should provide a mechanism to determine which exceptions might be thrown by a called library routine.

6.X.7 Bibliography

[None]

