ISO/IEC JTC 1/SC 22/OWGV N0092r
Template for Language-Independent Descriptions of Vulnerabilities

Version 6.1
Edited by Jim Moore, 24 July 2007

Revised by Jim Moore, 26 November 2007: the typeface of the template was changed to Arial
This version was created based on Version 5 of the template contained in N0072. It contains changes decided at Meeting #5 of OWGV.

Skeleton template for use in proposing vulnerabilities

[Please note that the box is NOT part of the template. It is used simply to delimit the template in this document.]

	6.x <unique immutable identifier> <short title>

<No text should appear here—in the space between 6.x and 6.x.1. This is simply an explanation of the header.>

<Exception: Some vulnerabilities—those judged to be application vulnerabilities rather than programming language vulnerabilities—will have a clause number of 7 rather than 6.>

<The number "x" depends on the order in which the vulnerabilities are listed in Clause 6. It will be assigned by the editor.>

<The "unique immutable identifier" is intended to provide an enduring identifier for each of the vulnerability descriptions, even if their order is changed in the document. It is invented by the proposer as a unique three-letter alphabetic code; airport codes work nicely. A new code is to be manufactured when proposed vulnerability descriptions are merged or subdivided.>

<The "short title" should be a noun phrase summarizing the description of the application vulnerability.> 
6.x.0 Status and history

<This is a temporary section used only during consideration of the vulnerability proposal. It will not be included in the final Technical Report.>

<The first line should read simply: In, Out or Pending. It indicates whether the vulnerability is presumptively "in" the TR, "out" of the TR, or "pending" decision. When proposed, this line should read "Pending".>

<Successive lines should depict a history of the proposal with the most recent history coming first. Each entry should be something like one of the following examples:

2007-07-19, edited by Jim Moore

2007-07-19, created by merging ESP and PDQ

2007-07-19, created as a subdivision of SOP

>
6.x.1 Description of application vulnerability

<Replace this with a brief description of the application vulnerability. It should be a short paragraph.>
6.x.2 Cross reference

CWE: <Replace this one or more CWE identifiers—both number and short title. At a later date, other cross-references may be added.>
6.x.3 Categorization

See clause 5.?. <Replace this with the categorization according to the analysis in Clause 5. At a later date, other categorization schemes may be added.>
6.x.4 Mechanism of failure

<Replace this with a brief description of the mechanism of failure. This description provides the link between the programming language vulnerability and the application vulnerability. It should be a short paragraph.>
6.x.5 Range of language characteristics considered

<Exception: This section is omitted from vulnerability descriptions in Clause 7. The subsequent subclauses are, of course, to be renumbered.>
This vulnerability description is intended to be applicable to languages with the following characteristics:

<Replace this with a bullet list summarizing the pertinent range of characteristics of languages for which this discussion is applicable. This list is intended to assist readers attempting to apply the guidance to languages that have not been treated in the language-specific annexes.>
6.x.6 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

<Replace this with a bullet list summarizing various ways in which programmers can avoid the programming language vulnerability, break the chain of causation to the application vulnerability, or contain the bad effects of the application vulnerability. Begin with the more direct, concrete, and effective means and then progress to the more indirect, abstract, and probabilistic means.>

6.x.7 Implications for standardization

<Recommendations for other working groups will be recorded here. For example, we might record suggestions for changes to language standards or API standards.>
6.x.8 Bibliography
<Insert numbered references for other documents cited in your description. These will eventually be collected into an overall bibliography for the TR. So, please make the references complete. Someone will eventually have to reformat the references into an ISO-required format, so please err on the side of providing too much information rather than too little. Here [1] is an example of a reference:

[1] Greg Hoglund, Gary McGraw, Exploiting Software: How to Break Code, ISBN-0-201-78695-8, Pearson Education, Boston, MA, 2004

>


Worked example of a template

	6.x LOL Out of bounds array element access

6.x.0 Status and history

Out
2007-07-24, edited by Jim Moore
2007-05-05, edited by Jim Moore

6.x.1 Description of application vulnerability

Unpredictable behaviour can occur when accessing the elements of an array outside the bounds of the array.

6.x.2 Cross reference

CWE 125: Out of bounds read

6.x.3 Categorization

See clause 5.3, Predictable execution.

6.x.4 Mechanism of failure

Arrays are defined, perhaps statically, perhaps dynamically, to have given bounds. In order to access an element of the array, index values for one or more dimensions of the array must be computed. If the index values does not fall within the defined bounds of the array, then access might occur to the wrong element of the array, or access might occur to storage that is outside the array. A write to a location outside the array may change the value of other data variables or may even change program code.

The vulnerability can be avoided by not using arrays, by using whole array operations, by checking and preventing access beyond the bounds of the array, or by catching erroneous accesses when they occur. The compiler might generate appropriate code, the run-time system might perform checking, or the programmer might explicitly code appropriate checks.

6.x.5 Range of language characteristics considered

This vulnerability description is intended to be applicable to languages with the following characteristics:

· The size and bounds of arrays and their extents might be statically determinable or dynamic. Some languages provide both capabilities. 

· Language implementations might or might not statically detect out of bound access and generate a compile-time diagnostic. 

· At run-time the implementation might or might not detect the out of bounds access and provide a notification at run-time. The notification might be treatable by the program or it might not be. 

· Accesses might violate the bounds of the entire array or violate the bounds of a particular extent. It is possible that the former is checked and detected by the implementation while the latter is not. 

· The information needed to detect the violation might or might not be available depending on the context of use. (For example, passing an array to a subroutine via a pointer might deprive the subroutine of information regarding the size of the array.) 

· Some languages provide for whole array operations that may obviate the need to access individual elements. 

· Some languages may automatically extend the bounds of an array to accommodate accesses that might otherwise have been beyond the bounds. (This may or may not match the programmer's intent.) 

6.x.6 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

· If possible, utilize language features for whole array operations that obviate the need to access individual elements. 

· If possible, utilize language features for matching the range of the index variable to the dimension of the array. 

· If the compiler can verify correct usage, then no mitigation is required beyond performing the verification. 

· If the run-time system can check the validity of the access, then appropriate action may depend upon the usage of the system (e.g. continuing degraded operation in a safety-critical system versus immediate termination of a secure system). 

· Otherwise, it is the responsibility of the programmer: 

· to use index variables that can be shown to be constrained within the extent of the array; 

· to explicitly check the values of indexes to ensure that they fall within the bounds of the corresponding dimension of the array; 

· to use library routines that obviate the need to access individual elements; or 

· to provide some other means of assurance that arrays will not be accessed beyond their bounds. Those other means of assurance might include proofs of correctness, analysis with tools, verification techniques, etc. 

6.x.7 Implications for standardization

It is recommended that WG42 should change its standard [1] for the OGLE language so that it requires that references to arrays should be checked at runtime to ensure that they are within the bounds of the array. Example wording is shown in [2].
6.x.8 Bibliography
 [1] ISO/IEC 42042:2005, Information Technology—Programming Languages—OGLE.

[2] Jim Moore, "OGLE for Dummies," Insane Press, Washington, DC, 2007, ISBN-0-201-78695-8.


