Skeleton template for use in proposing vulnerabilities

	8.<x> Missing or Inconsistent Access Control

8.<x>.1 Description of application vulnerability

The software does not perform access control checks in a consistent manner across all potential execution paths. 

8.<x>.2 Cross reference

CWE: 

285. Missing or Inconsistent Access Control

8.<x>.3 Categorization

See clause 5.?. <Replace this with the categorization according to the analysis in Clause 5. At a later date, other categorization schemes may be added.>
8.<x>.4 Mechanism of failure

For web applications, attackers can issue a request directly to a page (URL) that they may not be authorized to access. If the access control policy is not consistently enforced on every page restricted to authorized users, then an attacker could gain access to and possibly corrupt these resources. 

8.<x>.5 Possible ways to avoid the vulnerability

For web applications, make sure that the access control mechanism is enforced correctly at the server side on every page. Users should not be able to access any information that they are not authorized for by simply requesting direct access to that page. Ensure that all pages containing sensitive information are not cached, and that all such pages restrict access to requests that are accompanied by an active and authenticated session token associated with a user who has the required permissions to access that page. 

8.<x>.6 Assumed variations among languages

This vulnerability description is intended to be applicable to languages with the following characteristics:

<Replace this with a bullet list summarizing the pertinent range of characteristics of languages for which this discussion is applicable. This list is intended to assist readers attempting to apply the guidance to languages that have not been treated in the language-specific annexes.>
8.<x>.7 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

<Replace this with a bullet list summarizing various ways in which programmers can avoid the vulnerability or contain its bad effects. Begin with the more direct, concrete, and effective means and then progress to the more indirect, abstract, and probabilistic means. 


