Skeleton template for use in proposing vulnerabilities

	8.<x> OS Command Injection

8.<x>.1 Description of application vulnerability

Command injection problems are a subset of injection problem, in which the process can be tricked into calling external processes of an attackers choice through the injection of command syntax into the data plane.  

8.<x>.2 Cross reference

CWE: 

78. OS Command Injection 

8.<x>.3 Categorization

See clause 5.?. <Replace this with the categorization according to the analysis in Clause 5. At a later date, other categorization schemes may be added.>
8.<x>.4 Mechanism of failure

A software system that accepts and executes input in the form of operating system commands (e.g. system(), exec(), open()) could allow an attacker with lesser privileges than the target software to execute commands with the elevated privileges of the executing process.

Command injection is a common problem with wrapper programs. Often, parts of the command to be run are controllable by the end user. If a malicious user injects a character (such as a semi-colon) that delimits the end of one command and the beginning of another, he may then be able to insert an entirely new and unrelated command to do whatever he pleases. The most effective way to deter such an attack is to ensure that the input provided by the user adheres to strict rules as to what characters are acceptable. As always, white-list style checking is far preferable to black-list style checking.

Dynamically generating operating system commands that include user input as parameters can lead to command injection attacks. An attacker can insert operating system commands or modifiers in the user input that can cause the request to behave in an unsafe manner. Such vulnerabilities can be very dangerous and lead to data and system compromise. If no validation of the parameter to the exec command exists, an attacker can execute any command on the system the application has the privilege to access.

Command injection vulnerabilities take two forms: an attacker can change the command that the program executes (the attacker explicitly controls what the command is); or an attacker can change the environment in which the command executes (the attacker implicitly controls what the command means). In this case we are primarily concerned with the first scenario, in which an attacker explicitly controls the command that is executed. Command injection vulnerabilities of this type occur when: 1. Data enters the application from an untrusted source. 2. The data is part of a string that is executed as a command by the application. 3. By executing the command, the application gives an attacker a privilege or capability that the attacker would not otherwise have. 

8.<x>.5 Possible ways to avoid the vulnerability

Assign permissions to the software system that prevents the user from accessing/opening privileged files. 

8.<x>.6 Assumed variations among languages

This vulnerability description is intended to be applicable to languages with the following characteristics:

<Replace this with a bullet list summarizing the pertinent range of characteristics of languages for which this discussion is applicable. This list is intended to assist readers attempting to apply the guidance to languages that have not been treated in the language-specific annexes.>
8.<x>.7 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

<Replace this with a bullet list summarizing various ways in which programmers can avoid the vulnerability or contain its bad effects. Begin with the more direct, concrete, and effective means and then progress to the more indirect, abstract, and probabilistic means. 


