Skeleton template for use in proposing vulnerabilities

	8.<x> Unchecked Array Indexing

8.<x>.1 Description of application vulnerability

Unchecked array indexing occurs when an unchecked value is used as an index into a buffer.

8.<x>.2 Cross reference

CWE: 

129. Unchecked Array Indexing 

8.<x>.3 Categorization

See clause 5.?. <Replace this with the categorization according to the analysis in Clause 5. At a later date, other categorization schemes may be added.>
8.<x>.4 Mechanism of failure

A single fault could allow both an overflow and underflow of the array index.

An index overflow exploit might use buffer overflow techniques, but this can often be exploited without having to provide "large inputs."

Array index overflows can also trigger out-of-bounds read operations, or operations on the wrong objects; i.e., "buffer overflows" are not always the result.

Unchecked array indexing, depending on its instantiation, can be responsible for any number of related issues. Most prominent of these possible flaws is the buffer overflow condition. Due to this fact, consequences range from denial of service, and data corruption, to full blown arbitrary code execution. The most common condition situation leading to unchecked array indexing is the use of loop index variables as buffer indexes. If the end condition for the loop is subject to a flaw, the index can grow or shrink unbounded, therefore causing a buffer overflow or underflow. Another common situation leading to this condition is the use of a function's return value, or the resulting value of a calculation directly as an index in to a buffer.

Availability: Unchecked array indexing will very likely result in the corruption of relevant memory and perhaps instructions, leading to a crash, if the values are outside of the valid memory area

Integrity: If the memory corrupted is data, rather than instructions, the system will continue to function with improper values.

Access Control: If the memory corrupted memory can be effectively controlled, it may be possible to execute arbitrary code, as with a standard buffer overflow.

8.<x>.5 Possible ways to avoid the vulnerability

Requirements specification: The choice could be made to use a language that is not susceptible to these issues.

Implementation: Include sanity checks to ensure the validity of any values used as index variables. In loops, use greater-than-or-equal-to, or less-than-or-equal-to, as opposed to simply greater-than, or less-than compare statements.

8.<x>.6 Assumed variations among languages

This vulnerability description is intended to be applicable to languages with the following characteristics:

<Replace this with a bullet list summarizing the pertinent range of characteristics of languages for which this discussion is applicable. This list is intended to assist readers attempting to apply the guidance to languages that have not been treated in the language-specific annexes.>
8.<x>.7 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

<Replace this with a bullet list summarizing various ways in which programmers can avoid the vulnerability or contain its bad effects. Begin with the more direct, concrete, and effective means and then progress to the more indirect, abstract, and probabilistic means. 


