Skeleton template for use in proposing vulnerabilities

	8.<x> Privilege Sandbox Issues

8.<x>.1 Description of application vulnerability

A variety of vulnerabilities occur with improper handling, assignment, or management of privileges. These are especially present in sandbox environments, although it could be argued that any privilege problem occurs within the context of some sort of sandbox.

8.<x>.2 Cross reference

CWE: 

266. Incorrect Privilege Assignment

267. Unsafe Privilege

268. Privilege Chaining
269. Privilege Management Error
270. Privilege Context Switching Error
272. Least Privilege Violation
273. Failure to Check Whether Privileges were Dropped Successfully
274. Insufficient Privileges
276. Insecure Default Permissions

8.<x>.3 Categorization

See clause 5.?. <Replace this with the categorization according to the analysis in Clause 5. At a later date, other categorization schemes may be added.>
8.<x>.4 Mechanism of failure

The failure to drop system privileges when it is reasonable to do so is not a vulnerability by itself. It does, however, serve to significantly increase the severity of other vulnerabilities. According to the principle of least privilege, access should be allowed only when it is absolutely necessary to the function of a given system, and only for the minimal necessary amount of time. Any further allowance of privilege widens the window of time during which a successful exploitation of the system will provide an attacker with that same privilege.

There are many situations that could lead to a mechanism of failure.  A product could incorrectly assign a privilege to a particular entity.  A particular privilege, role, capability, or right could be used to perform unsafe actions that were not intended, even when it is assigned to the correct entity. (Note that there are two separate sub-categories here: privilege incorrectly allows entities to perform certain actions; and the object is incorrectly accessible to entities with a given privilege.)  Two distinct privileges, roles, capabilities, or rights could be combined in a way that allows an entity to perform unsafe actions that would not be allowed without that combination.  The software may not properly manage privileges while it is switching between different contexts that cross privilege boundaries.  A product may not properly track, modify, record, or reset privileges.  In some contexts, a system executing with elevated permissions will hand off a process/file/etc. to another process/user. If the privileges of an entity are not reduced, then elevated privileges are spread throughout a system and possibly to an attacker.  The software may not properly handle the situation in which it has insufficient privileges to perform an operation.  A program, upon installation, may set insecure permissions for an object. 

8.<x>.5 Possible ways to avoid the vulnerability

The principle of least privilege when assigning access rights to entities in a software system should be followed.  The setting, management and handling of privileges should be managed very carefully.  Upon changing security privileges, one should ensure that the change was successful.

Consider following the principle of separation of privilege. Require multiple conditions to be met before permitting access to a system resource.

Trust zones in the software should be explicity managed.  If at all possible, limit the allowance of system privilege to small, simple sections of code that may be called atomically.

As soon as possible after acquiring elevated privilege to call a privileged function such as chroot(), the program should drop root privilege and return to the privilege level of the invoking user.

In newer Windows implementations, make sure that the process token has the SeImpersonatePrivilege.

8.<x>.6 Assumed variations among languages

This vulnerability description is intended to be applicable to languages with the following characteristics:

<Replace this with a bullet list summarizing the pertinent range of characteristics of languages for which this discussion is applicable. This list is intended to assist readers attempting to apply the guidance to languages that have not been treated in the language-specific annexes.>
8.<x>.7 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

<Replace this with a bullet list summarizing various ways in which programmers can avoid the vulnerability or contain its bad effects. Begin with the more direct, concrete, and effective means and then progress to the more indirect, abstract, and probabilistic means. 


