A Better bulk_schedule
P2224r0

Michael Garland (mgarland@nvidia.com) Lee Howes (Iwh@fb.com)
Jared Hoberock (jhoberock@nvidia.com)

September 14, 2020

1 Introduction

The paper P2181r0 (“Correcting the Design of Bulk Execution”) introduces two fundamental interfaces for
bulk execution:

e bulk_execute: an interface for eager work submission, and
e bulk_schedule: an interface for lazy work submission.

After extensive discussion, we have concluded that both the implementation and usability of bulk_schedule
would be improved by a different formulation of its interface.

This paper summarizes our improved design for the bulk_schedule interface. We propose that a specification
for an interface of this form be used in the next revision of P2181, while leaving its specification of

bulk_execute unchanged, with the aim of correcting the specification of bulk execution in a future revision
of P0443.

2 Interface

The originally proposed interface for bulk_schedule, which was presented to SG1 in August 2020, looked
like this:

// Interface proposed in P2181r0

template<executor E, sender P>

sender auto bulk_schedule(E ex,
executor_shape_t<E> shape,
P&& prologue);

The returned object was a sender representing the initiation of the computation to be performed in each
of the agents in the index domain given by shape. The caller was then responsible for constructing from
this returned object another sender representing the actual computation to be performed in each agent.
This interface left unspecified how a subsequent computation to be performed after the bulk section was
complete could be attached to these senders, although a possible bulk_join operation was discussed in the
SG1 meeting.

We propose to replace this interface with one of the following form:

// Interface proposed in this paper

template<scheduler E, invocable F, class... Ts>
sender_of<Ts...> auto bulk_schedule(sender_of<Ts...> auto&& prologue,
E ex,

executor_shape_t<E> shape,
F&& factory);

The returned object is a sender representing the entire computation of the bulk section. It is analogous to
the envisioned result of bulk_join in the old interface.

mailto:mgarland@nvidia.com
mailto:lwh@fb.com
mailto:jhoberock@nvidia.com
http://wg21.link/p2181r0

The invocable factory is responsible for constructing a sender that represents the computation to be
performed in each agent of the bulk launch. The signature for this is a sender-factory and should be of the
form:

auto factory(sender_of<executor_shape_t<E>, Ts&...>) -> sender_of<void>

The factory is called with a single parameter: a sender representing the initiation of each agent. This sender
delivers to its receiver both an agent index and the values (if any) provided by prologue. The factory must
return a sender_of<void> representing the entire computation to be performed by each agent.

The argument to the factory corresponds to the object returned by bulk_schedule in P2181r0 and its
returned object corresponds to the sender constructed by operations applied subsequently by the caller of
bulk_schedule. Thus, where the interface in P2181r0 would be used like so:

// P2181r0 approach to perform A in each of N agents, to be followed by B
// once the bulk section is complete.
auto S = bulk_schedule(ex, N, prologue) | ..A.. | bulk_join() | ..B..;

our new interface would be used like so:

// A better approach to specify the same computation
auto S = bulk_schedule(prologue, ex, N,
[] (auto begin) { return begin | ..A..; })
| ..B..;

3 Rationale

In this section, we review the most salient reasons to prefer our new design of the bulk_schedule interface.

As discussed during the presentation of P2181r0 to SG1, its design for bulk_schedule would have required a
separate bulk_join operator for chaining dependent work after the bulk section. Our improved interface
eliminates the need for this additional (as yet unspecified) operator.

Significant challenges arise in the implementation of P2181r0 due to the separation of bulk_schedule and
bulk_join, which nevertheless must carefully coordinate their operation. A complete implementation of the
interface described in this paper is substantially simpler.

The specification of bulk_schedule in P2181r0 required a new many_receiver_of concept. Another variant
of bulk_schedule, explored in P2209r0, required both new many_sender and many_receiver concepts. In
contrast, our improved interface requires no new concepts beyond those present in P0443.

The approach described in P2209r0 introduced a new set_next receiver protocol. This results in the need for
new “bulk” variants of combinators such as bulk_transform. Our proposal requires no such new algorithms
and composes cleanly with existing sender-based combinators such as transform.

4 Discussion

The interface proposed in P2181 used the executor concept, since it defines the operation of bulk_schedule
in terms of bulk_execute. The interface proposed here uses the scheduler concept for consistency with the
schedule interface. Since every executor is by definition a scheduler, as per P0443r13, this does not exclude
any code that would have been valid under the prior definition. The definition of the scheduler concept in
P0443 will need to be updated appropriately to include bulk_schedule.

We have also altered the order of arguments to bulk_schedule, placing the prologue argument first rather
than last. Placing it last left room for convenience overloads making it optional, but this is no longer possible
with the factory function being the last parameter. Leaving the executor/scheduler first makes the syntax
consistent with method calls such as ex.bulk_schedule(...); whereas, placing the prologue first makes
the interface consistent with the range-style operator| chaining syntax. We have chosen the latter form of
consistency in this paper.

http://wg21.link/p2209r0
http://wg21.link/p0443r13

	Introduction
	Interface
	Rationale
	Discussion

