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Unleashing the Power of  
Allocator-Aware Software Infrastructure 

NOTE: This white paper (i.e., this is not a proposal) is intended to motivate continued 
investment in developing and maturing better memory allocators in the C++ Standard as 
well as to counter misinformation about allocators, their costs and benefits, and whether 
they should have a continuing role in the C++ library and language. 

Abstract 
Local (arena) memory allocators have been demonstrated to be effective at 
improving runtime performance both empirically in repeated controlled 
experiments and anecdotally in a variety of real-world applications. The initial 
development and subsequent maintenance effort of implementing bespoke data 
structures using custom memory allocation, however, are typically substantial 
and often untenable, especially in the limited timeframes that urgent business 
needs impose. To address such recurring performance needs effectively across 
the enterprise, Bloomberg has adopted a consistent, ubiquitous allocator-aware 
software infrastructure (AASI) based on the PMR-style1 plug-in memory 
allocator protocol pioneered at Bloomberg and adopted into the C++17 
Standard Library. 

In this paper, we highlight the essential mechanics and subtle nuances of 
programing on top of Bloomberg’s AASI platform. In addition to delineating how 
to obtain performance gains safely at minimal development cost, we explore 
many of the inherent collateral benefits — such as object placement, metrics 
gathering, testing, debugging, and so on — that an AASI naturally affords. After 
reading this paper and surveying the available concrete allocators (provided in 
Appendix A), a competent C++ developer should be adequately equipped to 
extract substantial performance and other collateral benefits immediately using 
our AASI. 

Introduction 
Bloomberg’s allocator-aware software infrastructure (AASI) allows clients to 
readily customize memory allocation strategies to improve runtime 
performance – often substantially and sometimes dramatically. Let’s explore 

                                       
1 polymorphic memory resource model 
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how to exploit this infrastructure through a couple of examples before diving 
into the technical details. 

A Simple Example 

Consider a simple unique_chars() function, which returns the number of 
unique bytes in its string argument: 

bsl::size_t unique_chars(const bsl::string& s) 
{ 
    bsl::set<char> uniq; 
    uniq.insert(s.begin(), s.end()); 
    return uniq.size(); 
} 

All of the temporary memory used by the set container is allocated from the 
general-purpose heap. We observe, however, that the set is built up 
monotonically and destroyed all at once, which is the ideal use pattern for a 
sequential allocator (as described later in the “bdlma::SequentialAllocator 
and Its Variants” section). Using a sequential allocator is as simple as passing 
one to the set constructor:   

bdlma::SequentialAllocator alloc; 
bsl::set<char> uniq(&alloc); 

This one-line change yields a 75–78% reduction in execution time with our 
sample input data set. Yet instrumentation might point us to a way to do even 
better. Let’s count the number of bytes allocated by interposing a counting 
allocator between the set and the sequential allocator: 

bdlma::SequentialAllocator alloc; 
bdlma::CountingAllocator   countingAlloc(&alloc); 
bsl::set<char> uniq(&countingAlloc); 

For our data set, we observe that a total of less than 2KB is typically allocated 
by the set. This amount of memory can be allocated painlessly from the stack 
using a LocalSequentialAllocator instead of a plain SequentialAllocator: 

bdlma::LocalSequentialAllocator<2048> alloc; 
bsl::set<char> uniq(&alloc); 

This trivial change cuts another 3–4% from the original execution time (a 15% 
reduction compared to the SequentialAllocator version). In total, we’ve cut 
execution time by over 80% simply by measuring and experimenting with a 
small, local change. 

A More Realistic Example 

The previous example is artificially simple for illustrative purposes. Let’s now 
turn our attention to a more realistic example abstracted from large-scale data 
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processing software that Bloomberg’s DataLayer team developed. We begin by 
declaring a function that must allocate memory in its implementation: 

bsl::string_view findInstrument(bsl::string_view  wholeTopic, 
                                bslma::Allocator *transient = 0); 

In the Bloomberg’s DataLayer software, the transient argument name implies 
that the memory allocated from this allocator is transient, i.e., will be returned 
to the allocator before the function returns. Exposing this function’s use of 
memory through this implicitly documented interface can reasonably be called 
a leaky abstraction, but its pervasive use in DataLayer has been shown to 
preserve modularity in all other respects and is thus a reasonable engineering 
compromise. The findInstrument function is called within a loop in the run 
function: 

void processInstrument(bsl::string_view instrument); 
 
void run(const bsl::vector<bsl::string>& topics) 
{ 
    bdlma::SequentialAllocator loopAlloc; 
    for (topic_iter topic = topics.begin(); 
         topic != topics.end(); ++topic) { 
        loopAlloc.rewind(); 
        bsl::string_view instrument = findInstrument(*topic, &loopAlloc); 
        processInstrument(instrument); 
    } 
} 

The SequentialAllocator defined in the first line of the run function is well 
suited for allocating transient memory, especially when repeated allocate-
deallocate-reallocate cycles are rare (i.e., when allocation is done in the 
function body and most deallocation occurs only at the end). The sequential 
allocator uses the global heap sparingly, allocating ever larger pools of memory 
from which client blocks are carved, thus preserving locality among the 
allocated blocks. A final, critical attribute of SequentialAllocator (and all 
BDE2 managed allocators, as described in “The bslma Allocator Infrastructure,” 
the next major section) is the rewind method, which logically puts the allocator 
in its freshly created state, except that any memory blocks already retrieved 
from the global heap remain associated with the allocator. Additional use of the 
allocator after calling rewind() will reuse these blocks of memory, reducing 
global heap interaction even further and keeping allocated blocks hot in the 
cache. 

Completing our example, the findInstrument function uses the transient 
allocator to build a vector: 

                                       
2 Bloomberg Development Environment 
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void loadInstrumentPattern(bdlpcre::RegEx *regex); 
 
bsl::string_view findInstrument(bsl::string_view  wholeTopic, 
                                bslma::Allocator *transient) 
{ 
    static bdlpcre::RegEx pattern(bslma::Default::globalAllocator()); 
    BSLMT_ONCE_DO { loadInstrumentPattern(&pattern); } 
 
    bsl::vector<bsl::string_view> matches(transient); 
    matches.reserve(pattern.numSubPatterns() + 1); 
    pattern.matchRaw(&matches, wholeTopic.data(), wholeTopic.size()); 
    return matches.empty() ? wholeTopic : matches[0]; 
} 

The transient allocator is used to provide memory for the vector, which is 
destroyed (and therefore releases all of its memory) at the end of the function.  
The call to reserve minimizes or eliminates the allocate-deallocate-reallocate 
cycle that vectors are known for when they grow one element at a time. 

Note the use of the global allocator in the first line of findInstrument. The 
object being initialized has static storage duration and will thus outlive the 
function call. In a test scenario, it might also outlive the default allocator. The 
global allocator should be used for any allocator-aware object with static 
lifetime (see the “Choosing an Allocator Type for Optimal Performance” section 
later in this paper). 

Lessons from the findInstrument Example 

The top-to-bottom example in the previous section illustrates 

1) the creation of an AA object (a vector) with a custom-selected allocator, 

2) the use of sequential allocators for performance gain, 

3) engineering tradeoffs (abstraction versus customization) sometimes 
needed to take advantage of an AASI, 

4) the use of the global allocator for static objects, and 

5) the overall simplicity of employing Bloomberg’s AASI to use and 
experiment with allocators. 

The fifth point deserves some elaboration. How do we know that 
bdlma::SequentialAllocator provides the best performance? We don’t. The 
guidelines in the “Choosing an Allocator Type for Optimal Performance” section 
certainly help, and profiling showed excellent (if not optimal) performance 
benefits, but we might still do better. For example, we might increase 
performance further by replacing the SequentialAllocator with a 
LocalSequentialAllocator. Fortunately, choosing a different allocator is trivial: 
Simply replace the allocator type with a different allocator type and profile the 
code again to see the performance gain or loss. 
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The DataLayer team at Bloomberg has benchmarked its codebase using both 
the default (new/delete) allocator and ubiquitous use of sequential allocators 
and found that sequential allocators provided an order of magnitude speedup 
in practice. Microbenchmarks similarly achieved up to a 12x speedup for large 
data sets where elements are reused intensively.3 The mechanics of using an 
allocator are simple; experimentation with different types of allocators is 
feasible because the cost of such experimentation is so low. 

The DataLayer code, from which this example is distilled, needs this attention 
to detail because it is running near-real-time software in a resource-
constrained environment, i.e., the client PC, where we have no control of the 
CPU or memory specifications. We cannot “throw hardware at the problem”; we 
must optimize. Higher up the stack, e.g., at points in the application that run 
at user interaction frequency rather than streaming data frequency, custom 
allocators would make little difference in performance; the programmer can 
pretend that allocators don’t exist and use the infrastructure defaults. 

The advantages of having an AASI go beyond performance gains,4 delivering 
important collateral benefits such as the ability to  

1) place entire objects within an arbitrary memory arena, 

2) instrument (and gather metrics for) individual regions of arbitrarily large 
systems, 

3) compose with other allocators that implement triggers and alarms (e.g., 
when a fixed-size buffer overflows), and 

4) ensure that memory allocation is properly implemented (e.g., using our 
bslma::TestAllocator facility5). 

An Overview of This Paper 

In this paper, we aim to demonstrate how an application-level developer can 
fully exploit the many benefits afforded by a pre-existing AASI platform without 
necessarily creating AA types themselves. Specifically, this paper treats 
allocator pointers as if they were opaque tokens passed from client code into 
AASI classes; we defer the description of how to create an AA class that 
actually allocates and deallocates memory using an allocator to a companion 
paper.6 

We begin by introducing the pure abstract bslma::Allocator interface (also 
called a protocol) and, in particular, the concept of a managed allocator, i.e., 

                                       
3 lakos16; see Section 8, “Benchmark II: Variation in Locality (Long Running),” pp. 28–47. 
4 See “Collateral Benefits” in halpern20a. 
5 A version of the test allocator has been proposed for the C++ Standard Library [feher18]. 
6 halpern20b provides a detailed description of how to create reusable AA library components. 
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one having an additional release method (a useful but dangerous tool that we 
will discuss near the end of the paper). We then present a short description of 
each of the allocators that BDE has provided and opine on how best to choose 
an appropriate allocator in various situations. Next, we describe how to 
associate a particular allocator with an AA object — including a Standard-
Library container — at construction. Finally, we discuss some advanced topics, 
including how to use release to extract every last cycle out of the deallocation 
process. Along the way, we will alert the reader to common allocator-related 
errors and how to avoid them. In Appendix A, we go into additional detail about 
the off-the-shelf BDE allocators. 

The bslma Allocator Infrastructure 
The pure abstract class bslma::Allocator defines a protocol for allocating and 
deallocating memory. It stands at the root of a hierarchy of allocator classes, 
with concrete classes at the leaves, as shown in the figure below. 

 

 

 

A managed allocator manages a pool of memory and returns it to the general 
heap (or to the upstream allocator, as described later) upon destruction or 
upon a call to the release method. This pooling improves performance by 
providing locality for objects that are used together. Typically, a managed 
allocator is created for a limited scope (which nevertheless can be long lived) to 
construct objects used only within that scope. When the memory pool is 
released on destruction, any blocks that have not been returned to the 
allocator are automatically freed. This bulk deallocation can be useful for the 

bslma::Allocator 
(pure abstract) 

bdlma::ManagedAllocator 
(pure abstract) bslma::NewDeleteAllocator …

ç

bdlma::LocalSequentialAllocator 

bdlma::MultipoolAllocator …
ç

bdlma::BufferedSequentialAllocator 

bdlma::SequentialAllocator 
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advanced techniques of winking out and localized garbage collection, both of 
which are described near the end of this paper. A managed allocator should be 
derived from the bdlma::ManagedAllocator pure abstract class.  

Allocators are typically designed such that an instance can be accessed safely 
by only one thread at a time (i.e., they are not thread aware) since having 
multiple threads allocate and deallocate from the same pool would destroy 
locality. That does not mean that they cannot be used in multithreaded 
programs. On the contrary, single-threaded access is ideal for avoiding 
synchronization overhead when objects are created, used, and destroyed all 
within a single thread. Moreover, an allocator that is not thread aware can still 
be effective if a set of objects moves to a new thread, as long as the allocator 
moves with them and is never used in an interleaved fashion by more than one 
thread. 

There are two allocators that are known globally throughout the program: the 
default allocator and the global allocator. As its name implies, the default 
allocator is used to allocate memory when no other allocator is specified. The 
global allocator is reserved for constructing objects of static duration, including 
objects at global scope. In rare cases when creating an AA object of static 
duration is absolutely necessary, the developer must explicitly pass 
bslma::Default::globalAllocator() to its constructor to prevent improperly 
using the default allocator. Typically, both default and global allocators refer to 
the bslma::NewDeleteAllocator singleton. Changing either of them to refer to a 
different allocator is a task deferred to the developer in charge of the program 
as a whole (i.e., the owner of main()) and is described in the “Advanced Topics” 
section of this paper. 

With rare exceptions, the allocators in the BDE collection of package groups 
are designed to allow chaining, whereby an allocator may be constructed with a 
pointer to another upstream allocator. When the first allocator runs out of its 
own private storage, it obtains memory from its upstream allocator. If an 
upstream allocator is not provided, the current default allocator is used. 

Chaining allows the features of multiple allocators to be combined. For 
example, a multipool allocator can be made to use a preallocated buffer by 
choosing a buffered sequential allocator as its upstream allocator. Similarly, 
memory usage by multiple locally managed allocators can be monitored for 
efficiency and correctness by choosing a test allocator as their upstream 
allocator. 

Three Off-the-Shelf Allocators 
In this section, we introduce three BDE-provided allocators that every user 
should be aware of when tuning the memory-allocation performance of their 
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program. Also see the “Allocator Types that Provide Nonperformance Collateral 
Benefits” section later in this paper and in Appendix A, where we list briefly 
other allocators included in the BDE library. 

bslma::NewDeleteAllocator 

The new-delete allocator simply forwards allocation requests to global operator 
new and deallocation requests to global operator delete. It is the default 
default allocator, i.e., a singleton of type bslma::NewDeleteAllocator is the 
default allocator unless some other default is set. To explicitly obtain this 
singleton, call bslma::NewDeleteAllocator::singleton(). The new-delete 
allocator is thread aware and always available. When the performance of the 
global new and delete is adequate, bslma::NewDeleteAllocator is an effective 
way to insulate code from changes to the default allocator. 

bdlma::MultipoolAllocator 

A bdlma::MultipoolAllocator object consists of an array of pools, one for each 
geometrically increasing request size in a range up to some specified 
maximum. Each time a block is requested, it is provided from the most 
appropriately sized pool, and is returned to that pool when that block is freed. 
When a pool is exhausted, the allocator replenishes it using chunks obtained 
from the upstream allocator (typically the default allocator), with such chunks 
having increasingly larger size up to a built-in limit. Requests that exceed the 
maximum pool size pass directly through to the upstream allocator. The design 
of bdlma::MultipoolAllocator makes allocations fast (because finding the 
best-fit free block is so efficient and because there is no thread 
synchronization), eliminates fragmentation, and maximizes locality (i.e., 
minimizes diffusion). 

A bdlma::MultipoolAllocator is ideal for node-based containers with frequent 
insertions and deletions. When using this allocator within a loop, create the 
bdlma::MultipoolAllocator in the scope outside of the loop, so that the blocks 
obtained from the upstream allocator can be re-used efficiently. 

bdlma::SequentialAllocator and Its Variants 

A bdlma::SequentialAllocator supplies memory from a contiguous block 
sequentially until the block is exhausted and then dynamically allocates new 
blocks of geometrically increasing size from the upstream allocator (usually the 
default allocator). Returning memory to a bdlma::SequentialAllocator is a no-
op; any deallocated memory remains unavailable for reuse until it is explicitly 
released (via the release or rewind methods) or the allocator object itself is 
destroyed. No allocator is faster for allocating memory than a 
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bdlma::SequentialAllocator, nor does any other allocator provide better 
locality for allocated blocks of disparate sizes.  

A bdlma::SequentialAllocator is ideal for data structures that get built up 
monotonically (elements are added but not removed), used, and then 
destroyed. Since a no-op deallocate means that object destructors do not 
return memory to the allocator, the developer, when using a sequential 
allocator in a loop, must take special care to prevent the allocator from 
consuming memory blocks of ever-increasing size, without bound, from its 
upstream allocator. The bdlma::SequentialAllocator provides a rewind 
method that logically frees all allocated memory but, unlike release, retains 
the pool of blocks obtained from the upstream allocator for reuse in 
subsequent allocations. A well-constructed loop using a 
bdlma::SequentialAllocator would call rewind in every iteration: 

bdlma::SequentialAllocator alloc; 
for (int i = 0; i < N; ++i) { 
    alloc.rewind();  // Don't forget to do this! 
    // ... use alloc ... 
} 
alloc.release();  // optional (if alloc won't be destroyed soon) 

In the loop above, memory is allocated from the upstream allocator (the default 
allocator, in this case) only if an iteration requests more memory from alloc 
than any prior iteration. Eventually, memory consumption will reach a high-
water mark and subsequent uses of alloc will be extremely efficient. 

A bdlma::BufferedSequentialAllocator is a variation of 
bdlma::SequentialAllocator that is constructed with an initial buffer, avoiding 
allocation from the upstream allocator unless the initial buffer is exhausted. 
Another variant is bdlma::LocalSequentialAllocator<SIZE>, which has an 
initial buffer of specified SIZE built into the allocator’s footprint, making it ideal 
for allocating memory directly from a fixed-sized buffer on the program stack: 

// No allocation from the heap unless tempStr grows larger than 128 bytes 
bdlma::LocalSequentialAllocator<128> stackAlloc; 
bsl::string tempStr(&stackAlloc); 
// Code that builds up tempStr 

Choosing an Allocator Type for Optimal Performance 
Before choosing an allocator for constructing a set of AA objects, consider 
whether custom allocation is truly needed. The main reasons for needing 
custom allocation are listed here. 

1) To reduce time spent on allocation and deallocation: Profilers such 
as Quantify, gprof, and the Callgrind plugin for Valgrind will reveal where 
a program is consuming CPU resources. If allocation and deallocation are 
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consuming significant CPU time, sequential and multipool allocators can 
drastically improve performance. 

2) To reduce memory diffusion: Diffusion occurs when memory blocks in 
the working set7 are spread throughout physical memory, causing cache 
misses and page faults. Vtune and Valgrind can help diagnose this 
problem. Local (managed) allocators can significantly improve locality, 
thus improving cache and virtual-memory effectiveness. 

3) To exploit non-performance-related collateral benefits: To instrument 
code to track memory use or to place objects into specific parts of 
memory, an allocator is the best option. 

The remainder of this section focuses on performance (reasons 1 and 2). If 
allocators are likely to improve the application’s performance, the following 
guidelines will help determine which allocator (or combination of allocators) to 
use. The developer should profile the application before and after altering the 
code and be willing to experiment; easy experimentation is one of the main 
benefits of pluggable allocators. 

• When constructing an AA object of static duration (i.e., a static variable, 
static member variable, global variable, or namespace-scoped variable) or 
thread duration (a thread-local variable), use the global allocator 
(obtained by calling bslma::Default::globalAllocator()). Developers  
can use a custom allocator if they can ensure that it will exist for the 
entire lifetime of the object.8 Do not use the default allocator for static 
objects (e.g., by not specifying an allocator) because such use causes the 
default allocator to be set to the “default default” for the duration of the 
program (i.e., frozen, explained more in the “Changing the Default and 
Global Allocators” section) and thus interferes with the owner of main 
being able to set the default allocator after static objects are constructed. 

• When constructing an AA object that is a member of another AA object or 
which is logically part of another AA object (i.e., when creating an AA 
class), use the same allocator as the containing object. We cover creating 
AA classes in detail in a subsequent paper.9 

• When constructing an AA object that will be swapped with or moved into 
another AA object, use the allocator retrieved from the object into which 
the result will be moved or swapped. To retrieve the allocator from object 
X, call X.allocator() or (for types that come from the Standard Library) 
X.get_allocator().mechanism(). Matching the other object’s allocator 

                                       
7 The working set of a process is the collection of information referenced by the process in a 
specific period of time [denning68]. 
8 Defining objects with global, namespace, class, or file scope that require initialization is a 
design violation, irrespective of the allocator. 
9 halpern20b 
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ensures that the move or swap operation will take constant time and will 
not throw an exception. 

• Do not use the allocator retrieved from an object to construct a nonowned 
variable unless that local variable is intended to be swapped or moved 
into the object or one of its members, as described in the previous 
bulleted item. The allocator imbued into an object is intended for use 
only by members of that object; other uses could exhaust or fragment the 
object’s memory pool.10 

• When constructing an object that will be modified by multiple threads in 
an interleaved fashion, choose a thread-aware allocator, such as the 
global allocator or bslma::NewDeleteAllocator::singleton(). 

• When constructing a short-lived AA object, such as a temporary string on 
the stack, consider using bdlma::LocalSequentialAllocator, which can 
often avoid accessing the global heap entirely. 

• When constructing a large data structure that will be built up 
monotonically (elements added, but rarely, if ever, individually removed), 
consider using bdlma::SequentialAllocator or 
bdlma::BufferedSequentialAllocator. If the object being constructed is 
a vector, string, or unordered set/map, we strongly recommend calling 
reserve with the expected or maximum size of the container or string 
(before inserting the first element) to avoid allocating memory blocks that 
become unused during a container resize. 

• When constructing a data structure that will experience numerous 
insertions and deletions, consider using bdlma::MultipoolAllocator to 
enable efficient memory reuse with robust locality. Chaining a 
bdlma::SequentialAllocator upstream from a 
bdlma::MultipoolAllocator sometimes yields a noticeable performance 
benefit over either one alone. As always, measure and experiment; do not 
simply trust intuition or some rule of thumb. 

• When creating local AA objects within a deep (possibly recursive) call 
hierarchy, consider creating a top-level bdlma::MultipoolAllocator and 
passing it down the call chain. Local AA objects in each function can use 
the passed-in allocator such that, as each function frame is popped from 
the call stack, local-variable destructors return memory blocks to the 
pool. Those newly freed blocks, while still hot in cache, can be 
immediately reused by AA variables in the next function call. 

                                       
10 For the same reason, a local allocator should never be chained to the allocator retrieved from 
an object, even within that object’s constructors or member functions. 
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Using Allocators with the BDE AASI 
If allocators provide the service of allocating memory, then instances of AA 
types are the clients of that service. The BDE library provides a large number of 
general-purpose classes as well as classes that have specific applicability to 
Bloomberg’s business. Not all of those classes allocate memory, but those that 
do allocate give the programmer the option of customizing that allocation by 
providing an allocator on object construction. 

The first step as a programmer using a BDE AA type is to determine whether 
custom allocation is desirable at all. Just because a type allows choosing a 
custom allocator doesn’t mean that one is necessary; unless the default 
allocation strategy is deemed unacceptable (e.g., as indicated by profiling), the 
programmer can simply construct the object without supplying an allocator: 

bdlc::BitArray ba(96);  // bit array of length 96 using default allocation 

To customize the bit array’s allocation strategy requires creating an instance 
(i.e., defining a variable) of the chosen allocator type and passing its address as 
an additional argument to the AA type’s constructor. Using 
LocalSequentialAllocator as an example, let’s create a bit array that allocates 
the first 128 bytes of memory from a local stack buffer: 

bdlma::LocalSequentialAllocator<128> alloc; 
bdlc::BitArray ba(96, &alloc); // Bit array using custom allocation 

In this example, the bit array will fit entirely within the stack buffer and, in 
fact, can grow quite a bit larger without going to the global heap for memory. 

Note that the constructed AA object (ba in this case) retains a pointer to the 
allocator. Returning an AA object by value (usually a bad idea; see the 
“Copying, Moving, Inserting, and Returning AA Objects” section) or returning a 
pointer to a dynamically allocated AA object will result in a dangling pointer if 
the returned object was constructed using a local allocator. 

Once constructed, the allocator pointer associated with an object is stable 
throughout the AA object’s lifetime. This behavior is similar to that of a 
polymorphic object’s vtbl pointer; once the constructor completes execution, it 
never changes until the destructor is invoked, even if the object is assigned to.  

Copying, Moving, Inserting, and Returning AA Objects 
The copy constructor of a BDE-style AA type never uses the allocator of the 
copied-from object. Instead, the newly constructed copy is imbued with the 
address of the currently installed default allocator. In contrast, the move 
constructor (C++11 and later or simulated in C++03 with bslmf::MovableRef) 
of an AA type does imbue the new object with the allocator of the moved-from 



Page 13 of 25 

object, achieving the same end result as if the moved-from object had been 
initially constructed directly at the new location. 

An AA type provides an extended copy constructor and an extended move 
constructor that generally do the same job as the copy and move constructors, 
respectively, but allow the programmer to provide the address of an allocator 
via a trailing argument: 

bsl::vector<int> vec(10, 8);                     // original (w/default allocator) 
bdlma::SequentialAllocator alloc2; 
bsl::vector<int> vec1(vec, &alloc2);             // extended copy ctor 
bsl::vector<int> vec2(std::move(vec), &alloc2);  // extended move ctor (C++11) 
bsl::vector<int> vec3(bslmf::MovableRefUtil::move(vec), 
                      &alloc2);                  // extended move ctor (C++03) 

In the case of the extended move constructor, if the supplied allocator is the 
same as the one used by the moved-from object, the behavior is identical to the 
(nonextended) move constructor; otherwise, the behavior is identical to the 
extended copy constructor. Thus, the extended move constructor automatically 
optimizes the move when possible while giving the programmer control over the 
constructed object’s allocator.  

The bsl package group contains (BDE-style) AA versions of most of the 
standard containers (bsl::vector, bsl::set, bsl::unordered_map, etc.). 
Include the bsl variants of standard headers (e.g., #include <bsl_vector.h> 
instead of #include <vector>) to get the versions that follow all of the AA rules 
described here. 

When an AA object is inserted into an AA container, the container uses the 
object’s extended copy or move constructor to construct the new element, 
passing its own allocator as the trailing argument, which ensures that all of the 
elements have the same allocator as the container itself. The performance and 
collateral benefits of the allocator are thus seamlessly extended to the entire 
container and its contained elements.  

Try to structure self-contained subsystems such that items being move-
assigned or swapped with each other are constructed with the same allocator. 
As mentioned in the previous section, the allocator pointer for an object 
remains constant throughout the object’s lifetime. An operation such as move 
assignment or swap, which would normally simply move pointers, 
“degenerates” to a copy operation if the objects being assigned or swapped use 
different allocators. (In fact, the standard requires that standard containers 
have the same allocator when calling member swap. The BDE library currently 
relaxes this requirement but might not do so forever.) A move assignment 
manifesting as a copy is actually quite rare in practice because the most 
common uses of move assignment and swap are within container operations 
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such as insert or erase or when calling sorting or shuffling algorithms on 
sequences within a container. Since all of the elements in a container have the 
same allocator as the container (and therefore as one another), the issue of 
assigning or swapping between elements with different allocators is moot for 
the vast majority of oft-repeated (i.e., performance-critical) operations. 

Returning AA types by value is contraindicated; a better practice is passing 
these types by address so that the caller can configure the allocator 
appropriately for the caller’s purposes. Consider an application function, 
makeIntSequence, that fills a vector with the integers 1 to n where n is a 
function argument. The vector result is passed to the function by address, 
allowing the caller to benefit from an optimized allocation strategy: 

void makeIntSequence(bsl::vector<int> *v, int n) { 
    v->reserve(n); 
    for (int x = 1; x <= n; ++x) { 
        v->push_back(x); 
    } 
} 
 
bdlma::LocalSequentialAllocator<300> mySeqAllocator; 
bsl::vector<int> seq(&mySeqAllocator); 
makeIntSequence(&seq, 60); 

“Returning” AA types via a pointer argument pays huge performance dividends 
when calling a function within a loop. If the object is returned by value, it 
needs to be constructed and destroyed each time through the loop. Conversely, 
if the object is passed in by address, it can be created (once) outside the loop 
and then reused every time through. For containers like vector, such 
construction/destruction avoidance can eliminate a lot of allocations and 
deallocations since the vector grows to some high-water mark and stays there 
until the loop terminates.11 

Aside from performance concerns, returning an AA type by value can cause 
issues with correctness. Because of copy and move elision, the object received 
by the caller of a return-by-value function will end up capturing the allocator 
specified on construction of the return value rather than the (expected) default 
allocator. This behavior can be both surprising and dangerous as shown in the 
following rewrite of the makeIntSequence example in which the function author 
is attempting (incorrectly) to optimize the vector allocation. 

bsl::vector<int> makeIntSequence(int n) { 
    bdlma::LocalSequentialAllocator<512> mySeqAllocator; 
    bsl::vector<int> ret(&mySeqAllocator); 
    ret.reserve(n); 

                                       
11 The benefit of returning a value via a pointer is not limited to AA types; any type that 
allocates memory or has an expensive constructor or destructor benefits from this treatment. 
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    for (int x = 1; x <= n; ++x) { 
        ret.push_back(x); 
    } 
    return ret; 
} 
 
bsl::vector<int> seq = makeIntSequence(60); // Disaster waiting to happen 

In the code above, the variable ret will be constructed with a buffered 
sequential allocator even though the caller never intended that. Worse than 
that, the allocator itself has gone out of scope. Worse still, the error is unlikely 
to be detected until much later, when reading seq returns random data from 
the stack or modifying seq corrupts the stack. If returning an AA type by value 
is absolutely necessary, then it is safest either to construct it using the default 
allocator or (in the case of some factory functions) to allow the caller to pass 
the result allocator as an (optional) argument. 

Allocator Types that Provide Nonperformance  
Collateral Benefits 
The benefits of pluggable allocators extend beyond performance. In this 
section, we describe two important allocator types that provide the collateral 
benefits of instrumentation and object placement, respectively. 

bslma::TestAllocator 

As its name implies, the test allocator is used for testing. It gathers metrics and 
provides debugging facilities related to the program’s use of memory. The most 
common use of a test allocator is in the test driver of an AA component. The 
use of a test allocator for validating the operation of an AA type and the use of 
a test allocator as an upstream allocator to test other allocators are covered in 
subsequent papers.12  

For application programmers, the test allocator can help ensure that the 
program is using allocators correctly. If a program is experiencing mysterious 
crashes, a test allocator can be inserted into the allocator chain to detect 
memory leaks and logic errors in which the program writes beyond the start or 
end of an allocated block.  

The test allocator provides the following features: 

• keeps track of the amount of memory (in bytes and blocks) allocated and 
deallocated, 

• detects memory leaks, 

                                       
12 halpern20b; weis20 
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• detects attempts to deallocate the same block twice, 

• detects certain overrun and underrun errors, 

• dumps information about allocations and deallocations to the console 
under program control, and 

• throws an exception after a configurable number of allocation operations. 
This advanced feature is used to test the exception safety of AA types. 

Pass a test allocator to an AA object constructor to gather data on the number 
and size of allocations and high-water marks in memory usage. Pass a test 
allocator as the upstream allocator to another allocator to test whether that 
allocator is being used correctly. For example, creating a sequential allocator 
outside of a loop but using it inside the loop will cause unbounded growth in 
the use of the upstream allocator, which can be detected during testing by 
using a test allocator as the upstream allocator. In some cases, temporarily 
setting the default allocator to a test allocator may be appropriate to facilitate 
counting allocations and deallocations from the default allocator in a specific 
region of code. 

Shared Memory Allocators 

An allocator can also be used to place objects into special memory regions.  An 
example would be an allocator that manages memory in memory-mapped 
pages.13 

To work correctly, every part of the object, including the footprint of the object 
itself, must be allocated using the memory-mapping allocator; a programmer 
should never construct a static- or automatic-lifetime object with this type of 
allocator. One way to allocate an object from an allocator is to pass the 
allocator (not the allocator’s address) to the placement-style operator new.  
Note that, when using operator new in this way, the programmer must also 
pass the allocator’s address to the object’s constructor. To delete an object 
allocated in this way, call the allocator’s deleteObject method. 

typedef bsl::vector<bsl::string> VecType; 
bslma::Allocator& alloc = my_MemoryMappingAllocator::singleton(); 
VecType v1(&alloc);  // BAD IDEA: object footprint not in mapped memory 
VecType *v2_p = new(alloc) VecType(&alloc); // OK: mapped footprint 
v2_p->push_back("hello");  // string element in mapped memory 
// ... 

                                       
13 Bloomberg’s Big environment is one of several very large, multifunction processes that run 
on Bloomberg’s servers and execute terminal functions on behalf of users. The user’s state is 
stored in a memory-mapped file, which is mapped into whichever Big process a user is 
temporarily assigned to. All objects created in that file are allocated using a Bloomberg internal 
allocator called a_bdema_GmallocAllocator.  
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alloc.deleteObject(v2_p);  // Don’t forget to free the memory. 

 

Using Allocators with Shared and Managed Pointers 
An allocator can occupy several different roles in a single instance of one of the 
smart pointer types, bsl::shared_ptr<T> or bslma::ManagedPtr<T>: 

• as the source of memory for the managed object’s footprint; 

• as the deleter to destroy and deallocate the managed object. Although it 
can be specified independently, in a correct program the deleter must 
agree with (refer to the same allocator as) the source of the object’s 
memory. 

• as a constructor argument to the managed object, used by that object to 
allocate memory outside of its footprint; 

• as the source of memory for the internal representation of the shared 
pointer itself (bsl::shared_ptr only). 

In most cases, the same allocator should appear in all of these roles. To avoid 
inadvertent divergence, manually constructing these smart pointers and 
supplying allocators for each role is discouraged in favor of using the factory 
functions, bsl::allocate_shared<T> or 
bslma::ManagedPtrUtil::allocateManaged<T>, each of which take a single 
allocator argument and use it consistently: 

bsl::shared_ptr<bsl::string> sharedStr =  
    bsl::allocate_shared<bsl::string>(&alloc1, "hello"); 
bslma::ManagedPtr<bsl::string> managedStr = 
    bslma::ManagedPtrUtil::allocateManaged<bsl::string>(&alloc1, "hello"); 

The load methods of both pointer types are similarly subject to inadvertent 
divergence in the use of allocators. Instead, call the factory functions above and 
assign the result: 

sharedStr = bsl::allocate_shared<bsl::string>(&alloc2, "world"); 
managedStr = 
    bslma::ManagedPtrUtil::allocateManaged<bsl::string>(&alloc2, "world"); 

The shared internal representation of a bsl::shared_ptr and the deleter for 
both bsl::shared_ptr and bslma::ManagedPtr logically belong to the pointed-to 
object and have the same lifetime as the pointed-to object, i.e., they are 
destroyed (and the shared representation is deallocated) when the last smart 
pointer referring to the pointed-to object is destroyed. Smart pointers are often 
used when tracking the lifetime of the pointed-to object is difficult or 
impossible; choosing allocators having global scope when constructing them is 
advisable. 
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A common cause of confusion for smart pointer users is that, although the 
interface to bsl::shared_ptr and bslma::ManagedPtr have constructors that 
accept allocator arguments, smart pointers are not AA objects. The smart-
pointer templates do not have extended copy and extended move constructors, 
nor do they have an allocator() (or get_allocator()) method. Unlike AA 
types, copying or moving a smart pointer, either by copy construction or by 
copy/move assignment, will result in the target of the copy or move having the 
same allocator as the original. The allocator associated with a smart pointer 
can change over the lifetime of the pointer instance, i.e., through assignment, 
in contradiction of the rule for AA types that the allocator never changes:  

bsl::shared_ptr<int> p1 = bsl::allocate_shared<int>(&alloc1, 1); 
bsl::shared_ptr<int> p2 = bsl::allocate_shared<int>(&alloc2, 2); 
bsl::shared_ptr<int> p3(p1);  // copy-constructed p3 uses alloc1 
p1 = p2;                      // p1 uses alloc2 after assignment 

Finally, because the smart-pointer classes do not define the 
bslma::UsesBslmaAllocator type trait that identifies classes as being AA, a 
container of smart pointers does not imbue its allocator into its elements. 
Thus, most of the qualities of an AA type do not hold for either smart-pointer 
type. 

Advanced Topics 
Since this paper is about using the BDE AASI effectively, to be thorough we 
explain the features and techniques for getting every last ounce of value from 
it. The topics in this section are advanced but accessible to anyone with a 
moderate amount of experience using allocators. 

Changing the Default and Global Allocators 

The typical reason to explicitly configure the global or default allocator is for 
testing. In production code, the default and global allocators are almost never 
changed from their initial value of bslma::NewDeleteAllocator::singleton(). 
The direct mechanism for setting the default or global allocator is to call 
bslma::Default::setDefaultAllocator or 
bslma::Default::setGlobalAllocator, respectively. Only the owner of main() 
should call these functions. The arguments to these functions should have 
static lifetime. Once the default allocator has been used, it cannot be changed 
using setDefaultAllocator. In practice, this means that any variable of AA 
type that is constructed without an explicit allocator argument before main 
runs will freeze the default allocator. 

Once frozen, the default allocator can still be changed for a limited scope, e.g., 
to install a counting or test allocator for a region of code. This temporary 
replacement can be accomplished by employing the 
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bslma::DefaultAllocatorGuard class, which installs a new default allocator 
and then automatically reverts to the previously installed allocator when the 
guard goes out of scope. Note the default (or global) allocator should never be 
changed if more than one thread is running. The guard is primarily intended 
for validating correct behavior of AA classes in test drivers. 

For more information about changing the default allocator, including full usage 
examples, see the component-level documentation for the bslma_default and 
bslma_defaultallocatorguard components. 15 

Winking Out 

A managed allocator, such as bdlma::SequentialAllocator or 
bdlma::MultipoolAllocator, will reclaim all allocated memory on destruction 
or when the release() or rewind() method is called. Releasing memory in this 
way does not call any destructors and thus avoids accessing individual blocks 
unnecessarily. A specific optimization technique, called winking out, involves 
reclaiming memory for a container, especially one that holds other AA objects, 
without invoking the container’s destructor and thus the destructors for its 
elements. To wink out a container, first create a managed allocator and then 
allocate the container itself from the allocator rather than creating it on the 
stack. That way, when the allocator goes out of scope, the container and all of 
its allocated memory are freed all at once: 

{ 
    bdlma::MultipoolAllocator alloc; 
    bsl::vector<bsl::list<bdlt::Calendar> >& data = 
        *new(alloc) bsl::vector<bsl::list<bdlt::Calendar> >(&alloc); 
    // ... Build up and use 'data' here ... 
    // When 'alloc' goes out of scope, 'data' gets winked out; 
    // no need to call 'alloc.deleteObject(&data)'. 
} 

In the example above, data is a reference to a vector allocated from the 
allocator (using the placement-style operator new, as described in the “Shared 
Memory Allocators” section). The vector’s destructor is never called, but all 
allocated memory blocks are returned to the heap when alloc goes out of 
scope.16 

Winking out is a powerful technique but is also dangerous. It can be used to 
successfully reclaim a data structure’s memory only if (1) every subpart of the 

                                       
15 bloomberga. bloombergb 
16 The C++ Standard states that an object’s lifetime ends when “. . . the storage which the 
object occupies is released, or is reused by an object that is not nested within [it]” [cpp17, 
section 6.8, paragraph 1.4, p. 74]. Thus, freeing an object without invoking its destructor is 
well-defined (valid) C++. 
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data structure that allocates memory uses the provided allocator and (2) no 
part of the data structure has a destructor with side effects other than 
releasing memory to the allocator. (Nonsemantic side effects in destructors, 
such as logging, will not happen, but that should cause no additional issues.) 
In particular, if a destructor releases a nonmemory resource, then that type is 
not a candidate for winking out because failing to run its destructor would 
result in a resource leak. For this reason, winking out is inappropriate in 
generic (template) code unless the template arguments are carefully 
constrained. 

Local Garbage Collection 

As a final example of the expressive design power that managed allocators 
provide, let’s look at winking out as a technique not for improving performance 
(though it does that, too) but for simplifying the correct implementation of a 
data structure. Consider the problem of managing memory for an arbitrary 
graph (possibly with cycles). Representing a graph in such a way that nodes 
can be reclaimed without leaks or double deletions is notoriously difficult. 
Using a managed allocator, however, the nodes can be leaked without negative 
consequences because the entire graph is reclaimed when the allocator is 
destroyed: 

struct GraphNode { 
    bsl::string              d_payload; 
    bsl::vector<GraphNode *> d_outgoingEdges; 
    GraphNode(const bsl::string& payload, bslma::Allocator *alloc); 
    ~GraphNode() { } 
}; 
 
GraphNode::GraphNode(const bsl::string& payload, bslma::Allocator *alloc) 
  : d_payload(payload, alloc), d_outgoingEdges(alloc) { 
    d_outgoingEdges.reserve(2);  // Typical fan-out is 2. 
} 
// ... 
{ 
    bdlma::SequentialAllocator alloc; 
    GraphNode *start = new(alloc) GraphNode("start", &alloc); 
    // ... 
    GraphNode *n = new(alloc) GraphNode(nodename, &alloc); 
    start->d_outgoingEdges.push_back(n); 
    n->d_outgoingEdges.push_back(start); // cycles are no problem 
    // ... 
    // 'alloc' destructor calls 'alloc.release()' 
} 

Note that no GraphNode object is ever individually destroyed or deallocated in 
the example above. Instead, the entire graph is deallocated when the allocator 
goes out of scope. Not only is this code simpler than using, e.g., reference-
counted pointers (for which cycles are a huge problem), but it is likely more 
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efficient. Large graphs created with shared pointers have been known to 
overflow the call stack on destruction because each node’s destructor 
recursively calls the destructor for the next node in the graph. 

Conclusion 
Customized local memory allocation can improve the runtime performance of 
most applications, sometimes dramatically. Writing custom data structures, 
however, is inherently costly and often impractical in real-world applications. 
Having a consistent and ubiquitous AASI based on the BDE/C++17-PMR style 
enables every application developer to realize essentially all of the benefits of 
custom memory allocation with minimal effort and much reduced time to 
product than would otherwise be possible. 

The BDE AASI comes with a rich supply of allocators that can be used off-the-
shelf to effectively address a wide variety of application design patterns and 
scenarios. By following a few simple rules, these patterns can be identified and 
allocators can be applied safely and effectively to improve performance. What’s 
more, with some additional effort, these allocators can be tuned to extract 
nearly every cycle that might be available. 

The potential to improve runtime performance alone is compelling. Yet 
maximizing the value of our ubiquitously interoperable AASI will be achieved 
only by applying knowledge of the many convenient and productive ways — 
beyond mere performance — by which such a robust infrastructure can be 
exploited: 

• placing objects at a particular location in memory, e.g., on the stack or in 
file-mapped memory, 

• measuring and reporting per-object memory usage, 

• testing correctness of allocation, and 

• implementing efficient local garbage collection, e.g., in graph data 
structures. 

By applying our recommendations, developers can benefit from the power of 
AASI. 
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Appendix A: Other Allocators in the BDE library 
Table 1 is a short list of other allocator types that the BDE infrastructure 
library provides. More information about each allocator type is found in its 
component-level documentation.17 

 

Table 1: Additional BDE allocators 

Allocator Type Purpose 
bslma::MallocFreeAllocator Uses the C library functions malloc and 

free to manage memory. Useful for 
bypassing a user-defined replacement 
for global operator new. 

bdlma::AligningAllocator Allows clients to specify both size and 
alignment of blocks to allocate. (Note 
that most containers cannot take 
advantage of this feature.) 

bdlma::ConcurrentMultipoolAllocator Similar to a 
bdlma::MultipoolAllocator but safe for 
concurrent allocation/deallocation. 

bdlma::ConcurrentPoolAllocator A concurrent allocator optimized for 
blocks of a single size. 

bdlma::CountingAllocator Counts the number of bytes allocated 
from the upstream allocator. (A mini 
version of the test allocator, with less 
overhead.) 

bdlma::GuardingAllocator Uses virtual memory faults to detect 
buffer overruns for debugging. 

bdlma::HeapBypassAllocator Allocates memory directly from the OS, 
without calling new/delete or 
malloc/free. 

 

                                       
17 bloombergc 
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Appendix B: Mapping BDE Names to C++17 Names 
Through Bloomberg’s efforts, much of the BDE allocator system was adopted 
as the PMR section of the C++17 Standard, using C++ standard naming 
conventions.  Table 2 shows an approximate mapping of BDE types and free 
functions to their C++17 equivalents. All BDE names are in namespace 
BloombergLP, and all C++17 names are in namespace std. 

 

Table 2: BDE to C++17 name mappings 

BDE Name Approximate C++17 Equivalent 
bslma::Allocator pmr::memory_resource 

bdlma::ManagedAllocator no equivalent18 

bsl::allocator<T> pmr::polymorphic_allocator<T> 

bslma::NewDeleteAllocator::singleton() pmr::new_delete_resource() 

bdlma::MultipoolAllocator pmr::unsynchronized_pool_resource 

bdlma::SequentialAllocator or  
bdlma::BufferedSequentialAllocator 

pmr::monotonic_resource 

bdlma::LocalSequentialAllocator no equivalent 
bslma::Default::defaultAllocator() pmr::get_default_resource() 

bslma::Default::setDefaultAllocator() pmr::set_default_resource() 

bslma::Default::globalAllocator() no equivalent 
bslma::Default::setGlobalAllocator() no equivalent 
bsl::string 
bsl::vector<T> 
bsl::list<T> 
bsl::set<T> 
bsl::map<K,V> 
bsl::unordered_set<T,H,E> 
bsl::unordered_map<K,V,H,E> 

pmr::string 
pmr::vector<T> 
pmr::list<T> 
pmr::set<T> 
pmr::map<K,V> 
pmr::unordered_set<T,H,E> 
pmr::unordered_map<K,V,H,E> 

 

	  

                                       
18 Although the ManagedAllocator base class has no equivalent, the standard pooling and 
monotonic resources adhere to a managed allocator concept in that they have a release() 
method. 
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