
Document number:​ P2074R0
Date:​ 2020-01-13 (pre-Prague mailing)
Reply To:​ Dmitry Duka (​dduka@nvidia.com​)
Contributors: ​Marco Foco (​mfoco@nvidia.com​)
Audience:​ WG21, Tooling Study Group SG15

Asynchronous callstacks & coroutines

Abstract

Discussion

Problem

Other languages
Python
JavaScript
C#

Possible solution

Abstract
This paper discusses “asynchronous” callstacks. A chain of asynchronous calls expressed
with coroutines differs to a chain of synchronous calls expressed with regular functions.
While debugging, the former are not supported in the tooling, while the latter is. We present
a possible solution allowing to mitigate the absence of tooling support for asynchronous
callstacks.

Discussion
Regular functions being called in a particular way organize callstacks. To such callstacks we
will refer as “synchronous”. Coroutines on the other hand organize both “synchronous” and
“asynchronous” callstacks. A coroutine calling a regular function is not different from a
regular function calling another regular function. A coroutine calling another coroutine though
creates parent-child relationship of a different sort, because coroutines may execute
asynchronously. Thus we call such callstacks “asynchronous”. To put it shortly, in general,
setting a breakpoint inside a coroutine will not yield a callstack showing a parent coroutine.
Instead it’ll show an execution context resuming the child coroutine. This largely depends on
the particular implementation of the Awaiter/promise_type interfaces for C++ coroutines.
Programmers debugging asynchronous code based on coroutines will likely need
asynchronous callstacks far more frequently than synchronous callstacks. Because of the
asynchronous nature of C++ coroutines, it is important to understand which coroutine is the
parent of a given running coroutine. Without such ability debugging coroutines is going to be
quite tedious and unreliable exercise.

mailto:dduka@nvidia.com
mailto:mfoco@nvidia.com

Problem
The code below illustrates 3 coroutines ​op, add ​and ​log​. ​op ​calls ​add​, which in turn calls
log​.

In practice coroutines may live in different compile units and/or namespaces, so
relationships between them may not be as clear. Now, if we want to debug ​log​, we can set a
breakpoint and this may yield the following callstack in the debugger:

In this example the coroutine support library uses thread pool to execute coroutines. It is
implemented such that a coroutine is always started, suspended and resumed from a thread
from the thread pool. As shown in the image, the synchronous callstack just shows that the
log​ coroutine has been called from an execution context, a thread pool in our case. The
information about which coroutine or function scheduled the execution of this coroutine is not
available. This is expected and such synchronous callstack of course has value in their own
right. However, we don’t have information available to understand which coroutine or regular
function scheduled the execution of the ​log ​coroutine in the first place. This information is
even more valuable in asynchronous environment compared to a synchronous one.

Other languages

Python
Callstacks generated in Python 3 using coroutines (as provided by asyncio library and the
language itself) do yield expected results. Python coroutines are stackful. Callstacks include
both top-level synchronous portions (​loop.run_until_complete(coro())​) as well as
asynchronous functions which called the current coroutine.

JavaScript
Node.js and different browsers implement asynchronous callstacks differently. Chrome
browser for instance does present asynchronous callstacks correctly even if the breakpoint
is after a suspend point of a coroutine. Node.js on the other hand only present asynchronous
callstack if a coroutine was not suspended yet. Firefox browser behaves similarly.

C#
Microsoft did some work in the implementation of C# runtime, such that it does yield
asynchronous callstacks. ​https://github.com/dotnet/corefx/issues/24627

Possible solution
We can store a pointer to the parent coroutine ​promise_type ​object and this yields the
following debugging experience.

Asynchronous callstack:

https://github.com/dotnet/corefx/issues/24627

The image above illustrates that because we added a pointer to the parent coroutine
promise_type ​object, we can now unfold the callstack in the form of a linked list chained
through ​mParentPromise ​pointer. In the absence of the possibility to get a
coroutine_handle​ from the currently running coroutine, we first need to break on a line
which uses new keywords (​co_await​, ​co_yield ​or ​co_return​) and step inside the coroutine
support library to get the ​promise_type ​object related to the current coroutine. This solution
presents callstacks as data in the sense that to view such a callstack one would use a watch
in the debugger.

Of course it would be nice for the tooling to explicitly support a notion of asynchronous
callstacks, but this is a major change and it’s not clear how to make this solution general
enough and compatible with majority of possible ​promise_type ​/ ​Awaiter ​interface
implementations, where coroutines execution may be lazy or eager or even both.

When and if standard executors will be integrated together with coroutines, this problem will
become increasingly noticeable and coroutine support libraries implemented by vendors
should probably consider having a pointer to the parent coroutine in a form that is
discoverable in the debugger.

As discussed in “Debugging C++ coroutines” paper (p2073r0), if:

● it would be possible to get a ​coroutine_handle ​object from the currently running
coroutine, and

● it would be possible to get ​promise_type ​object from such handle

then:

● there will be no need to add a separate pointer like ​mParentPromise
● instead it will be possible to unfold the asynchronous callstack through

coroutine_handle ​objects. Of course this still depends on a particular
implementation of ​promise_type ​/ ​Awaiter ​interfaces, but in the majority of cases it

is expected that ​promise_type ​will hold a handle to the parent coroutine serving as
continuation.

