
Eliminating heap-allocations in sender/receiver with connect()/start()
as basis operations

Document #: P2006R1
Date: 2020-03-02
Project: Programming Language C++
Audience: SG1
Reply-to: Lewis Baker

<lbaker@fb.com>
Eric Niebler
<eniebler@fb.com>
Kirk Shoop
<kirkshoop@fb.com>
Lee Howes
<lwh@fb.com>

1 Abstract
The “Unified executors” paper, [P0443R11], was recently updated to incorporate the sender/receiver concepts as
the basis for representing composable asynchronous operations in the standard library.

The basis operation for a sender as specified in [P0443R11] is execution::submit(), which accepts a sender and
a receiver, binds the receiver to the sender and launches the operation. Once the operation is launched, the sender
is responsible for sending the result of the operation to the receiver by calling one of the completion-signalling
operations (set_value(), set_error() or set_done()) when the operation eventually completes.

In order to satisfy this contract the submit() function needs to ensure that the receiver, or a move-constructed
copy of the receiver, remains alive until the operation completes so that the result can be delivered to it. This
generally means that a sender that completes asynchronously will need to heap-allocate some storage to hold a
copy of the receiver, along with any other state needed from the sender, so that it will remain valid until the
operation completes.

While many composed operations can avoid additional allocations by bundling their state into a new receiver
passed to a child operation and delegating the responsibility for keeping it alive to the child operation, there will
still generally be a need for a heap-allocation for each leaf operation.

However, the same is not true with the design of coroutines and awaitables. An awaitable type is able to inline
the storage for its operation-state into the coroutine-frame of the awaiting coroutine by returning a temporary
object from its operator co_await(), avoiding the need to heap-allocate this object internally.

We found that, by taking a similar approach with sender/receiver and defining a basis operation that lets the
sender return its operation-state as an object to the caller, the sender is able to delegate the responsibility for
deciding where the operation-state object should be allocated to the caller instead of having to heap-allocate it
itself internally.

This allows the caller to choose the most appropriate location for the operation-state of an operation it’s invoking.
For example, an algorithm like sync_wait() might choose to store it on the stack, an operator co_await()
algorithm might choose to store it as a local variable within the coroutine frame, while a sender algorithm like
via() might choose to store it inline in the parent operation-state as a data-member.

The core change that this paper proposes is refining the sender concept to be defined in terms of
two new basis operations:

1

mailto:lbaker@fb.com
mailto:eniebler@fb.com
mailto:kirkshoop@fb.com
mailto:lwh@fb.com

— connect(sender auto&&, receiver auto&&) -> operation_state
Connects a sender to a receiver and returns the operation-state object that stores the state of that operation.

— start(operation_state auto&) noexcept -> void
Starts the operation (if not already started). An operation is not allowed to signal completion until it has
been started.

There are several other related changes in support of this:

— Retain and redefine the submit() operation as a customizable algorithm that has a default implementation
in terms of connect() and start().

— Add an operation_state concept.
— Add two new type-traits queries:

connect_result_t<S, R>
is_nothrow_receiver_of_v<R, An...>

In addition to these changes, this paper also incorporates a number of bug fixes to wording in [P0443R11]
discovered while drafting these changes.

2 Motivation
This paper proposes a refinement of the sender/receiver design to split out the submit() operation into two
more fundamental basis operations; connect(), which takes a sender and a receiver and returns an object that
contains the state of that async operation, and start(), which is used to launch the operation.

There are a number of motivations for doing this, each of which will be explored in more detail below:

— It eliminates the need for additional heap-allocations when awaiting senders within a coroutine, allowing
the operation-state to be allocated as a local variable in the coroutine frame.

— It allows composed operations to be defined that do not require any heap allocations. This should allow
usage of a reasonable subset of async algorithms in contexts that do not normally allow heap-allocations,
such as embedded or real-time systems.

— It allows separating the preparation of a sender for execution from the actual invocation of that operation,
satisfying one of the desires expressed in [P1658R0].

— It makes it easier and more efficient to satisfy the sender/receiver contract in the presence of exceptions
during operation launch.

2.1 Lifetime impedance mismatch with coroutines
The paper “Unifying asynchronous APIs in the C++ standard library” [P1341R0] looked at the interoperability
of sender/receiver with coroutines and showed how senders could be adapted to become awaitables and how
awaitables could be adapted to become senders.

However, as [P1341R0] identified, adapting between sender/awaitable (in either direction) typically incurs an
additional heap-allocation. This is due to senders and awaitables generally having inverted ownership models.

2.1.1 The existing sender/receiver ownership model

With the submit()-based asynchronous model of sender/receiver, the submit() implementation cannot typically
assume that either the sender or the receiver passed to it will live beyond the call to submit(). This means for
senders that complete asynchronously the implementation of submit() will typically need to allocate storage
to hold the receiver (so it can deliver the result) as well as any additional state needed by the sender for the
duration of the operation. This state is often referred to as the “operation state”.

See Example 2 in Appendix A.

Note that some senders may be able to delegate the allocation of the operation-state to a child operation’s
submit() implementation by wrapping up the the receiver and other state into a new receiver wrapper and
passing this wrapper to the submit() call of the child operation.

2

See Example 1 in Appendix A.

This delegation can be recursively composed, potentially allowing the state of an entire chain of operations to be
aggregated into a single receiver object passed to the leaf operation. However, leaf-operations will typically still
need to allocate as, by definition of being a leaf operation, they won’t have any other senders they can delegate
to.

In this model, the leaf operation allocates and owns storage required to store the operation state and the leaf
operation is responsible for ensuring that this storage remains alive until the operation completes.

So in the sender/receiver model we can coalesce allocations for a chain of operations and have the the allocation
performed only by the leaf-operation. Note that for an operation that is composed of multiple leaf operations,
however, it will still typically require multiple heap-allocations over the lifetime of the operation.

2.1.2 The coroutine ownership model

With coroutines the ownership model is reversed.

An asynchronous operation is represented using an awaitable object when using coroutines instead of a sender.
The user passes the awaitable object to a co_await expression which the compiler translates into a sequence of
calls to various customization points.

The compiler translates the expression ‘co_await expr’ expression into something roughly equivalent to the
following (some casts omitted for brevity):

// 'co_await expr' becomes (roughly)
decltype(auto) __value = expr ;
decltype(auto) __awaitable = promise.await_transform(__value);
decltype(auto) __awaiter = __awaitable.operator co_await();
if (!__awaiter.await_ready()) {

// <suspend-coroutine>
__awaiter.await_suspend(coroutine_handle<promise_type>::from_promise(promise));
// <return-to-caller-or-resumer>

}
// <resume-point>
__awaiter.await_resume(); // This produces the result of the co_await expression

When a coroutine is suspended at a suspension point, the compiler is required to maintain the lifetime of any
objects currently in-scope - execution returns to the caller/resumer without exiting any scopes of the coroutine).
The compiler achieves this by placing any objects whose lifetime spans a suspension point into the coroutine-frame,
which is typically allocated on the heap instead of on the stack, and thus can persist beyond the coroutine
suspending and returning execution to its caller/resumer.

The important thing to note in the expansion of a co_await expression above is that the awaitable object has
the opportunity to return an object from its operator co_await() method and this return-value becomes a
temporary object whose lifetime extends until the end of the full-expression (ie. at the next semicolon). By
construction this object will span the suspend-point (await_ready() is called before the suspend-point and
await_resume() is called after the suspend-point) and so the compiler will ensure that storage for the awaiter
object is reserved in the coroutine frame of the awaiting coroutine.

Implementations of awaitable types that represent async operations can use this behaviour to their advantage to
externalize the allocation of the operation-state by storing the operation-state inline in the awaiting coroutine’s
coroutine-frame, thus avoiding the need for an additional heap-allocation to store it.

See Example 4 in Appendix A which shows an implementation of a simple allocation-free executor that uses this
technique.

This same strategy of inlining storage of child operation’s state into the storage for parent operation also occurs
when the compiler applies the coroutine heap-allocation elision optimization (see [P0981R0]). This optimization

3

works by allowing the compiler to elide heap-allocations for child coroutine-frames whose lifetimes are strictly
nested within the lifetime of the caller by inlining the allocation into storage space reserved for it in the parent
coroutine-frame.

Taken to its limit, this strategy tends towards a single allocation per high-level operation that
contains enough storage for the entire tree of child operations (assuming the storage requirements of
the child operations can be statically calculated by the compiler).

2.1.3 Comparing Sender/Receiver and Coroutine Lifetime Models

Taking a step-back we can make some comparisons of the differences of ownership/lifetime models in submit()-
based sender/receiver and coroutines/awaitables:

Sender/Receiver Coroutines/Awaitables
Coalesces allocations/state into child operations by
wrapping receivers.

Coalesces allocations into parent operations by
returning state from operator co_await() and by
HALO inlining child coroutine-frames.

Tends towards a single allocation for each leaf-level
operation.

Tends towards a single allocation per top-level
operation.

Type of operation-state is hidden from consumer - an
internal implementation detail.

Type of operation-state is exposed to caller allowing
its storage to be composed/inlined into parent
operation-state.

Producer is responsible for keeping operation-state
alive until the operation completes and destroying
the operation-state after it completes.

Consumer is responsible for keeping the
operation-state alive until the operation completes
and destroying the operation-state after it completes.

Often requires moving state of higher-level operations
between operation-states of different leaf operations
many times as different leaf operations come and go.

Allows storing state of higher-level operations in a
stable location (the higher-level operation-state) and
passing references to that operation-state into child
operations (eg. via the coroutine_handle)

Higher-level operations will often need a number of
separate heap-allocations over its lifetime as different
leaf operations come and go. Allows dynamically
adjusting memory usage over time, potentially
reducing overall memory pressure.

Higher-level operations tend to allocate a single
larger allocation, reducing the overall number of
allocations, but some of this storage may go unused
during some parts of the operation, potentially
leading to higher memory pressure in some cases.

2.1.4 Adapting between sender/receiver and coroutines

One of the goals for the sender/receiver design has been to integrate well with coroutines, allowing applications
to write asynchronous code in a synchronous style, using the co_await keyword to suspend the coroutine until
the asynchronous operation completes.

The paper [P1341R0] showed that it is possible to adapt typed-senders to be awaitable and that it’s possible to
adapt awaitables to become senders. It also discussed how the inverted ownership model resulted in the overhead
of an extra heap-allocation whenever we do this.

When we adapt an awaitable to become a sender we need to heap-allocate a new coroutine-frame that can
co_await the awaitable, get the result and then pass the result to a receiver. This coroutine-frame is not generally
eligible for the heap-allocation elision optimization (HALO) as the lifetime of the coroutine is not nested within
the lifetime of the caller.

4

When we adapt a sender to become an awaitable, the sender will generally need to heap-allocate the operation-
state at the leaf-operation as the sender does not know that the coroutine will implicitly keep the sender and
receiver passed to submit() alive beyond the call to submit().

The paper [P1341R0] thus proposed to make the core concept for representing asynchronous operations a Task,
which required implementations to provide both the sender and awaitable interfaces so that tasks could be used
either in code that used senders or in code that used coroutines interchangeably. Implementations could provide
one of the implementations and the other would have a default implementation provided, albeit with some
overhead, or it could provide native implementations of both sender and awaitable interfaces to achieve better
performance.

There were a few downsides to this approach, however.

— It forced a dependency of the core concepts on coroutines (operator co_await() and coroutine_handle
type) and this meant that implementers that may not be able to initially implement coroutines for their
platforms would be unable to implement the core asynchronous concepts.

— To achieve the best performance for both sender/receiver and coroutines would require implementing every
algorithm twice - once under sender/receiver using its ownership model and once under coroutines for its
ownership model.
This would not only be required for your algorithm but for the entire closure of algorithms that your
algorithm is built on.
Having to implement two versions of each algorithm places a high burden on implementers of these
algorithms.

Thus, we no longer recommend pursuing the Task concept that requires both coroutines and sender/receiver
interfaces to be implemented.

The changes proposed by this paper change the ownership model of sender/receiver to be the same as that of
coroutines. This allows us to instead build a generic implementation of operator co_await() that can work
with any typed_sender and that does not require any additional heap-allocations.

This eliminates the need to implement async algorithms twice to be able to get efficient usage with both
coroutines and senders. An async algorithm can just implement the sender-interface and can rely on the default
operator co_await() implementation for senders to allow it to be efficiently used in co_await expressions.

Note that a particular type that implements the sender concept can still choose to provide a custom implementation
of operator co_await() if desired.

2.2 Simplifying exception-safe implementations of sender algorithms
The semantics of the submit() method as described in [P0443R11] required that the implementation of submit()
would eventually call one of the receiver methods that indicates completion of the operation if submit() returns
normally.

While the specification was silent on the semantics if submit() were to exit with an exception, the intent was
that submit() would not subsequently invoke (or have successfully invoked) any of the completion-signalling
functions on the receiver.

This allows the caller to catch the exception thrown out of submit() if desired and either handle the error or
pass the error onto the caller’s receiver by calling set_error().

However, implementations of algorithms that are themselves senders must be careful when implementing this
logic to ensure that they are able to correctly handle an exception propagating from the call to submit(). If it
naively moves its receiver into the receiver wrapper it passes to a child operation’s submit() function then if that
submit() function invocation throws then the caller may be left with its receiver now being in a moved-from
state and thus not being able to deliver a result to its receiver.

A good demonstration of the problem is in the implementation of a sequence() algorithm that takes two senders
and launches the two operations in sequence - only calling submit() on the second sender once the first sender
has completed with set_value().

5

Example 1 in Appendix B highlights the problem with a naive implementation of this algorithm.

One strategy for implementing a correct, exception-safe implementation is for the caller to store its receiver in a
stable location and then only pass a pointer or reference to that receiver to the receiver-wrapper passed to the
child operation’s submit() function.

However, under the sender/receiver design described in [P0443R11], getting access to a stable location for the
receiver would typically require a heap-allocation.

Example 2 in Appendix B shows a solution that makes use of a shared_ptr to to allow correctly handling
exceptions that might be thrown from the second sender’s submit().

The changes to the sender/receiver design proposed by this paper provides a solution to this that does not require
a heap-allocation to store the receiver. The receiver can be stored in the operation-state object returned from
connect(), which the caller is required to store in a stable location until the operation completes. Then we can
pass a receiver-wrapper into the child operation that just holds a pointer to this operation-state and can get
access to the receiver via that pointer.

Example 3 in Appendix B shows the alternative connect()/start()-based implementation of the sequence()
algorithm for comparison.

This allows some algorithms to further reduce the number of heap-allocations required to implement them
compared to the submit()-based implementation.

2.3 Ability to separate resource allocation for operation from launch
The paper [P1658R0] “Suggestions for Consensus on Executors” suggested factoring submit() into more basic
operations - a finalize() and a start().

[P1658R0] makes the observation that the submit() operation signals that the sender is 1. ready for execution
and 2. may be executed immediately, and suggests that it would be valuable to be able to decouple the cost of
readying a sender from its launch.

Examples of expensive finalization mentioned in [P1658R0] include:

— Memory allocation of temporary objects required during execution
— Just-in-time compilation of heterogeneous compute kernels
— Instantiation of task graphs
— Serialization of descriptions of work to be executed remotely

Being able to control where the expensive parts of launching an operation occurs is important for performance-
conscious code.

Splitting the submit() operation up into a connect() and start() operations should make this possible.

3 Proposed Wording
This wording change is described as a delta to [P0443R11].

[Editor’s note: Update subsection “Header <execution> synopsis” as follows:]

// Customization points
inline namespace unspecified {

inline constexpr unspecified set_value = unspecified ;
inline constexpr unspecified set_done = unspecified ;
inline constexpr unspecified set_error = unspecified ;
inline constexpr unspecified execute = unspecified ;
inline constexpr unspecified connect = unspecified ;
inline constexpr unspecified start = unspecified ;
inline constexpr unspecified submit = unspecified ;

6

inline constexpr unspecified schedule = unspecified ;
inline constexpr unspecified bulk_execute = unspecified ;

}

template<class S, class R>
using connect_result_t = invoke_result_t<decltype(connect), S, R>;

template<class, class> struct as-receiver ; // exposition only
template<class, class> struct as-invocable ; // exposition only

// Concepts:
template<class T, class E = exception_ptr>

concept receiver = see-below ;

template<class T, class... An>
concept receiver_of = see-below ;

template<class R, class... An>
inline constexpr bool is_nothrow_receiver_of_v =

receiver_of<R, An...> &&
is_nothrow_invocable_v<decltype(set_value), R, An...>;

template<class O>
concept operation_state = see-below ;

template<class S>
concept sender = see-below ;

template<class S>
concept typed_sender = see-below ;

... as before

// Sender and receiver utilities type
class sink_receiver;

namespace unspecified { struct sender_base {}; }
using unspecified ::sender_base;

template<class S> struct sender_traits;

[Editor’s note: Change 1.2.2 “Invocable archetype” as follows:]

The name execution::invocable_archetype is an implementation-defined type that, along with any
argument pack, models invocablesuch that invocable<execution::invocable_archetype&> is true.

A program that creates an instance of execution::invocable_archetype is ill-formed.

[Editor’s note: Change 1.2.3.4 execution::execute, bullet 3 as follows:]

Otherwise, if F is not an instance of as-invocable <R, E> for some type R, and invocable<remove_cvref_t<F>&>
&& sender_to<E, as-receiver <remove_cvref_t<F>, E>> is true, execution::submit(e, as-receiver <
remove_cvref_t<F>, E>({std::forward<F>(f))}) if E and as-receiver <F> model sender_to, where
as-receiver is some implementation-defined class template equivalent to:

7

template<invocableclass F, class>
struct as-receiver {
private:

using invocable_type =std::remove_cvref_t;
invocable_typeF f_;

public:
explicit as-receiver (invocable_type&& f)

: f_(move_if_noexcept(f)) {}
explicit as-receiver (const invocable_type& f) : f_(f) {}
as-receiver (as-receiver && other) = default;
void set_value() noexcept(is_nothrow_invocable_v<F&>) {

invoke(f_);
}
[[noreturn]] void set_error(std::exception_ptr) noexcept {

terminate();
}
void set_done() noexcept {}

};

[Editor’s note: Before subsection 1.2.3.5 “execution::submit”, add the following two subsections, and renumber
the subsequent subsections.]

1.2.3.x execution::connect

The name execution::connect denotes a customization point object. The expression execution::connect(S, R)
for some subexpressions S and R is expression-equivalent to:

— S.connect(R), if that expression is valid, if its type satisfies operation_state, and if the type of S
satisfies sender.

— Otherwise, connect(S, R), if that expression is valid, if its type satisfies operation_state, and if
the type of S satisfies sender, with overload resolution performed in a context that includes the
declaration

void connect();

and that does not include a declaration of execution::connect.

— Otherwise, as-operation {S, R}, if R is not an instance of as-receiver <F , S> for some type F, and
if receiver_of<T> && executor-of-impl <U, as-invocable <T, S>> is true where T is the type of
R without cv-qualification and U is the type of S without cv-qualification, and where as-operation is
an implementation-defined class equivalent to

struct as-operation {
U e_;
T r_;
void start() noexcept try {

execution::execute(std::move(e_), as-invocable <T, S>{r_});
} catch(...) {

execution::set_error(std::move(r_), current_exception());
}

};

and as-invocable is a class template equivalent to the following:
template<class R, class>
struct as-invocable {

R* r_ ;

8

explicit as-invocable (R& r) noexcept
: r_(std::addressof(r)) {}

as-invocable (as-invocable && other) noexcept
: r_(std::exchange(other.r_, nullptr)) {}

~as-invocable () {
if(r_)

execution::set_done(std::move(*r_));
}
void operator()() & noexcept try {

execution::set_value(std::move(*r_));
r_ = nullptr;

} catch(...) {
execution::set_error(std::move(*r_), current_exception());
r_ = nullptr;

}
};

— Otherwise, execution::connect(S, R) is ill-formed.

1.2.3.x execution::start

The name execution::start denotes a customization point object. The expression execution::start(O)
for some lvalue subexpression O is expression-equivalent to:

— O.start(), if that expression is valid.

— Otherwise, start(O), if that expression is valid, with overload resolution performed in a context that
includes the declaration

void start();

and that does not include a declaration of execution::start.

— Otherwise, execution::start(O) is ill-formed.

[Editor’s note: Change 1.2.3.5 “execution::submit” in recognition of the fact that submit is a customizable
algorithm that has a default implementation in terms of connect/start as follows:]

The name execution::submit denotes a customization point object.

A receiver object is submitted for execution via a sender by scheduling the eventual evaluation of one of the
receiver’s value, error, or done channels.

For some subexpressions s and r, let S be a type such that decltype((s)) is S and let R be a type such
that decltype((r)) is R. The expression execution::submit(s, r) is ill-formed if R does not model
receiver, or if S does not model either sender or executorsender_to<S, R> is not true. Otherwise, it is
expression-equivalent to:

— s.submit(r), if that expression is valid and S models sender. If the function selected does not submit
the receiver object r via the sender s, the program is ill-formed with no diagnostic required.

— Otherwise, submit(s, r), if that expression is valid and S models sender, with overload resolution
performed in a context that includes the declaration

void submit();

and that does not include a declaration of execution::submit. If the function selected by overload
resolution does not submit the receiver object r via the sender s, the program is ill-formed with no
diagnostic required.

9

— Otherwise, execution::execute(s, as-invocable <R>(forward<R>(r))) if S and as-invocable <R>
model executor, where as-invocable is some implementation-defined class template equivalent to:

template<receiver R>
struct as-invocable {
private:

using receiver_type = std::remove_cvref_t<R>;
std::optional<receiver_type> r_ {};
void try_init_(auto&& r) {

try {
r_.emplace((decltype(r)&&) r);

} catch(...) {
execution::set_error(r, current_exception());

}
}

public:
explicit as-invocable (receiver_type&& r) {

try_init_(move_if_noexcept(r));
}
explicit as-invocable (const receiver_type& r) {

try_init_(r);
}
as-invocable (as-invocable && other) {

if(other.r_) {
try_init_(move_if_noexcept(*other.r_));
other.r_.reset();

}
}
~as-invocable () {

if(r_)
execution::set_done(*r_);

}
void operator()() {

try {
execution::set_value(*r_);

} catch(...) {
execution::set_error(*r_, current_exception());

}
r_.reset();

}
};

— Otherwise, execution::start((new submit-receiver <S, R>{s,r})->state_), where submit-receiver
is an implementation-defined class template equivalent to

template<class S, class R>
struct submit-receiver {

struct wrap {
submit-receiver * p_;
template<class...As>

requires receiver_of<R, As...>
void set_value(As&&... as) && noexcept(is_nothrow_receiver_of_v<R, As...>) {

execution::set_value(std::move(p_->r_), (As&&) as...);
delete p_;

}

10

template<class E>
requires receiver<R, E>

void set_error(E&& e) && noexcept {
execution::set_error(std::move(p_->r_), (E&&) e);
delete p_;

}
void set_done() && noexcept {

execution::set_done(std::move(p_->r_));
delete p_;

}
};
remove_cvref_t<R> r_;
connect_result_t<S, wrap> state_;
submit-receiver (S&& s, R&& r)

: r_((R&&) r)
, state_(execution::connect((S&&) s, wrap{this}))

{}
};

[Editor’s note: Change 1.2.3.6 execution::schedule as follows:]

The name execution::schedule denotes a customization point object. For some subexpression s, let S be a
type such that decltype((s)) is S. The expression execution::schedule(Ss) for some subexpression S is
expression-equivalent to:

— Ss.schedule(), if that expression is valid and its type N models sender.

— Otherwise, schedule(Ss), if that expression is valid and its type N models sender with overload
resolution performed in a context that includes the declaration

void schedule();

and that does not include a declaration of execution::schedule.

— Otherwise, decay-copy (S) if the type S models sender.

— Otherwise, as-sender <remove_cvref_t<S>>{s} if S satisfies executor, where as-sender is an
implementation-defined class template equivalent to

template<class E>
struct as-sender {
private:

E ex_;
public:

template<template<class...> class Tuple, template<class...> class Variant>
using value_types = Variant<Tuple<>>;

template<template<class...> class Variant>
using error_types = Variant<std::exception_ptr>;

static constexpr bool sends_done = true;

explicit as-sender (E e)
: ex_((E&&) e) {}

template<class R>
requires receiver_of<R>

connect_result_t<E, R> connect(R&& r) && {
return execution::connect((E&&) ex_, (R&&) r);

}
template<class R>

11

requires receiver_of<R>
connect_result_t<const E &, R> connect(R&& r) const & {

return execution::connect(ex_, (R&&) r);
}

};

— Otherwise, execution::schedule(Ss) is ill-formed.

[Editor’s note: Merge subsections 1.2.4 and 1.2.5 into a new subsection “Concepts receiver and receiver_of”
and change them as follows:]

XXX TODO The receiver concept. . . A receiver represents the continuation of an asynchronous operation.
An asynchronous operation may complete with a (possibly empty) set of values, an error, or it may be
cancelled. A receiver has three principal operations corresponding to the three ways an asynchronous
operation may complete: set_value, set_error, and set_done. These are collectively known as a receiver’s
completion-signal operations.

// exposition only:
template<class T>
inline constexpr bool is-nothrow-move-or-copy-constructible =

is_nothrow_move_constructible<T> ||
copy_constructible<T>;

template<class T, class E = exception_ptr>
concept receiver =

move_constructible<remove_cvref_t<T>> &&
constructible_from<remove_cvref_t<T>, T> &&
(is-nothrow-move-or-copy-constructible <remove_cvref_t<T>>) &&
requires(remove_cvref_t<T>&& t, E&& e) {

{ execution::set_done((T&&)tstd::move(t)) } noexcept;
{ execution::set_error((T&&)tstd::move(t), (E&&) e) } noexcept;

};

template<class T, class... An>
concept receiver_of =

receiver<T> &&
requires(remove_cvref_t<T>&& t, An&&... an) {

execution::set_value((T&&)tstd::move(t), (An&&) an...);
};

The receiver’s completion-signal operations have semantic requirements that are collectively known as the
receiver contract, described below:

— None of a receiver’s completion-signal operations shall be invoked before execution::start has
been called on the operation state object that was returned by execution::connect to connect that
receiver to a sender.

— Once execution::start has been called on the operation state object, exactly one of the receiver’s
completion-signal operations shall complete non-exceptionally before the receiver is destroyed.

— If execution::set_value exits with an exception, it is still valid to call execution::set_error or
execution::set_done on the receiver.

Once one of a receiver’s completion-signal operations has completed non-exceptionally, the receiver contract
has been satisfied.

[Editor’s note: Before 1.2.6 “Concepts sender and sender_to,” insert a new section 1.2.x “Concept
operation_state” as follows:]

12

1.2.x Concept operation_state

template<class O>
concept operation_state =

destructible<O> &&
is_object_v<O> &&
requires (O& o) {

{ execution::start(o) } noexcept;
};

An object whose type satisfies operation_state represents the state of an asynchronous operation. It is the
result of calling execution::connect with a sender and a receiver.

execution::start may be called on an operation_state object at most once. Once execution::start has
been called on it, the operation_state must not be destroyed until one of the receiver’s completion-signal
operations has begun executing, provided that invocation will not exit with an exception.

The start of the invocation of execution::start shall strongly happen before [intro.multithread] the invocation
of one of the three receiver operations.

execution::start may or may not block pending the successful transfer of execution to one of the three
receiver operations.

[Editor’s note: Change 1.2.6 “Concepts sender and sender_to” as follows:]

XXX TODO The sender and sender_to concepts. . .

Let sender-to-impl be the exposition-only concept

template<class S, class R>
concept sender-to-impl =

requires(S&& s, R&& r) {
execution::submit((S&&) s, (R&&) r);

};

Then,

template<class S>
concept sender =

move_constructible<remove_cvref_t<S>> &&
sender-to-impl <S, sink_receiver>;
!requires {

typename sender_traits<remove_cvref_t<S>>::__unspecialized; // exposition only
};

template<class S, class R>
concept sender_to =

sender<S> &&
receiver<R> &&
sender-to-impl <S, R>;
requires (S&& s, R&& r) {

execution::connect((S&&) s, (R&&) r);
};

None of these operations shall introduce data races as a result of concurrent invocations of those functions
from different threads.

An sender type’s destructor shall not block pending completion of the submitted function objects. [Note: The
ability to wait for completion of submitted function objects may be provided by the associated execution >

13

context. –end note]

In addition to the above requirements, types S and R model sender_to only if they satisfy the requirements
from the Table below.~~

In the Table below,

— s denotes a (possibly const) sender object of type S,
— r denotes a (possibly const) receiver object of type R.

Expression Return Type Operational semantics
execution::submit(s, r) void If execution::submit(s, r)

exits without throwing an
exception, then the
implementation shall invoke
exactly one of
execution::set_value(rc, values...),
execution::set_error(rc, error)
or execution::set_done(rc)
where rc is either r or an object
moved from r. If any of the
invocations of set_value or
set_error exits via an exception
then it is valid to call to either
set_done(rc) or
set_error(rc, E), where E is
an exception_ptr pointing to an
unspecified exception
object.submit may or may not
block pending the successful
transfer of execution to one of the
three receiver operations.The
start of the invocation of submit
strongly happens before
[intro.multithread] the invocation
of one of the three receiver
operations.

[Editor’s note: In subsection 1.2.7 “Concept typed_sender”, change the definition of the typed_sender concept
as follows:]

template<class S>
concept typed_sender =

sender<S> &&
has-sender-types<sender_traits<remove_cvref_t<S>>>;

[Editor’s note: Change 1.2.8 “Concept scheduler” as follows:]

XXX TODO The scheduler concept. . .

template<class S>
concept scheduler =

copy_constructible<remove_cvref_t<S>> &&
equality_comparable<remove_cvref_t<S>> &&
requires(E&& e) {

14

execution::schedule((S&&)s);
}; // && sender<invoke_result_t<execution::schedule, S>>

None of a scheduler’s copy constructor, destructor [. . . as before]

[. . .]

execution::submit(N, r),execution::start(o), where o is the result of a call to execution::connect(N, r)
for some receiver object r, is required to eagerly submit r for execution on an execution agent that s creates
for it. Let rc be r or an object created by copy or move construction from r. The semantic constraints on
the sender N returned from a scheduler s’s schedule function are as follows:

— If rc’s set_error function is called in response to a submission error, scheduling error, or other
internal error, let E be an expression that refers to that error if set_error(rc, E) is well-formed;
otherwise, let E be an exception_ptr that refers to that error. [Note: E could be the result of calling
current_exception or make_exception_ptr — end note] The scheduler calls set_error(rc, E)
on an unspecified weakly-parallel execution agent ([Note: An invocation of set_error on a receiver
is required to be noexcept — end note]), and

— If rc’s set_error function is called in response to an exception that propagates out of the invocation
of set_value on rc, let E be make_exception_ptr(receiver_invocation_error{}) invoked from
within a catch clause that has caught the exception. The executor calls set_error(rc, E) on an
unspecified weakly-parallel execution agent, and

— A call to set_done(rc) is made on an unspecified weakly-parallel execution agent. [Note: An
invocation of a receiver’s set_done function is required to be noexcept — end note]

[Note: The senders returned from a scheduler’s schedule function have wide discretion when deciding which
of the three receiver functions to call upon submission. — end note]

[Editor’s note: Change subsection 1.2.9 Concepts “executor and executor_of” as follows to reflect the fact
that the operational semantics of execute require a copy to be made of the invocable:]

XXX TODO The executor and executor_of concepts. . .

Let executor-of-impl be the exposition-only concept

template<class E, class F>
concept executor-of-impl =

invocable<remove_cvref_t<F>&> &&
constructible_from<remove_cvref_t<F>, F> &&
move_constructible<remove_cvref_t<F>> &&
copy_constructible<E> &&
is_nothrow_copy_constructible_v<E> &&
is_nothrow_destructible_v<E> &&
equality_comparable<E> &&
requires(const E& e, F&& f) {

execution::execute(e, (F&&) f);
};

Then,

template<class E>
concept executor =

executor-of-impl <E, execution::invocable_archetype>;

template<class E, class F>
concept executor_of =

executor<E> &&
executor-of-impl <E, F>;

15

[Editor’s note: Remove subsection 1.2.10.1 “Class sink_receiver”.]

[Editor’s note: Change subsection 1.2.10.2 “Class template sender_traits” as follows:]

The class template sender_traits can be used to query information about a sender; in particular, what
values and errors it sends through a receiver’s value and error channel, and whether or not it ever calls
set_done on a receiver.

template<class S>
struct sender-traits-base {}; // exposition-only

template<class S>
requires (!same_as<S, remove_cvref_t<S>>)

struct sender-traits-base
: sender_traits<remove_cvref_t<S>> {};

template<class S>
requires same_as<S, remove_cvref_t<S>> &&
sender<S> && has-sender-traits<S>

struct sender-traits-base<S> {
template<template<class...> class Tuple,

template<class...> class Variant>
using value_types =

typename S::template value_types<Tuple, Variant>;
template<template<class...> class Variant>

using error_types =
typename S::template error_types<Variant>;

static constexpr bool sends_done = S::sends_done;
};

template<class S>
struct sender_traits : sender-traits-base<S> {};

The primary sender_traits<S> class template is defined as if inheriting from an implementation-defined
class template sender-traits-base <S> defined as follows:

— Let has-sender-types be an implementation-defined concept equivalent to:
template<template<template<class...> class, template<class...> class> class>

struct has-value-types ; // exposition only

template<template<template<class...> class> class>
struct has-error-types ; // exposition only

template<class S>
concept has-sender-types =

requires {
typename has-value-types <S::template value_types>;
typename has-error-types <S::template error_types>;
typename bool_constant<S::sends_done>;

};

If has-sender-types <S> is true, then sender-traits-base is equivalent to:
template<class S>

struct sender-traits-base {
template<template<class...> class Tuple, template<class...> class Variant>

16

using value_types = typename S::template value_types<Tuple, Variant>;
template<template<class...> class Variant>

using error_types = typename S::template error_types<Variant>;
static constexpr bool sends_done = S::sends_done;

};

— Otherwise, let void-receiver be an implementation-defined class type equivalent to
struct void-receiver { // exposition only

void set_value() noexcept;
void set_error(exception_ptr) noexcept;
void set_done() noexcept;

};

If executor-of-impl <S, as-invocable <void-receiver , S>> is true, then sender-traits-base
is equivalent to

template<class S>
struct sender-traits-base {

template<template<class...> class Tuple, template<class...> class Variant>
using value_types = Variant<Tuple<>>;

template<template<class...> class Variant>
using error_types = Variant<exception_ptr>;

static constexpr bool sends_done = true;
};

— Otherwise, if derived_from<S, sender_base> is true, then sender-traits-base is equivalent to
template<class S>

struct sender-traits-base {};

— Otherwise, sender-traits-base is equivalent to
template<class S>

struct sender-traits-base {
using __unspecialized = void; // exposition only

};

[Editor’s note: Change 1.5.4.5 “static_thread_pool sender execution functions” as follows:]

In addition to conforming to the above specification, static_thread_pool executors schedulers’ senders
shall conform to the following specification.

class C
{

public:
template<template<class...> class Tuple, template<class...> class Variant>

using value_types = Variant<Tuple<>>;
template<template<class...> class Variant>

using error_types = Variant<>;
static constexpr bool sends_done = true;

template<class Receiverreceiver_of R>
voidsee-below submitconnect(ReceiverR&& r) const;

};

C is a type satisfying the typed_sender requirements.

17

template<class Receiverreceiver_of R>
voidsee-below submitconnect(ReceiverR&& r) const;

Returns: An object whose type satisfies the operation_state concept.

Effects: Submits When execution::start is called on the returned operation state, the receiver r is
submitted for execution on the static_thread_pool according to the the properties established for *this.
lLet e be an object of type exception_ptr,; then static_thread_pool will evaluate one of set_value(r),
set_error(r, e), or set_done(r).

18

4 Appendix A - Examples of status quo lifetime/ownership
4.1 Example 1: Delegating responsibility for allocating storage to a child sender

template<typename Func, typename Inner>
struct transform_sender {

Inner inner_;
Func func_;

template<typename Receiver>
struct transform_receiver {

Func func_;
Receiver receiver_;

template<typename... Values>
void set_value(Values&&... values) {

receiver_.set_value(std::invoke(func_, (Values&&)values...));
}
template<typename Error>
void set_error(Error&& error) {

receiver_.set_error((Error&&)error);
}
void set_done() {

receiver_.set_done();
}

};

template<typename Receiver>
void submit(Receiver r) {

// Here we delegate responsibility for storing the receiver, 'r'
// and a copy of 'func_' to the implementation of inner_.submit() which
// is required to store the transform_receiver we pass to it.
inner_.submit(transform_receiver<Receiver>{func_, std::move(r)});

}
};

19

4.2 Example 2: A simple execution context that shows the allocation necessary
for operation-state for the schedule() operation.

class simple_execution_context {
struct task_base {

virtual void execute() noexcept = 0;
task_base* next;

};

class schedule_sender {
simple_execution_context& ctx;

public:
explicit schedule_sender(simple_execution_context& ctx) noexcept : ctx(ctx) {}

template<std::receiver_of Receiver>
void submit(Receiver&& r) {

class task final : private task_base {
std::remove_cvref_t<Receiver> r;

public:
explicit task(Receiver&& r) : r((Receiver&&)r) {}

void execute() noexcept override {
try {

std::execution::set_value(std::move(r));
} catch (...) {

std::execution::set_error(std::move(r), std::current_exception());
}
delete this;

}
};

// Allocate the "operation-state" needed to hold the receiver
// and other state (like storage of 'next' field of intrusive list,
// vtable-ptr for dispatching type-erased implementation)
task* t = new task{static_cast<Receiver&&>(r));

// Enqueue this task to the executor's linked-list of tasks to execute.
ctx.enqueue(t);

}
};

class scheduler {
simple_execution_context& ctx;

public:
explicit scheduler(simple_execution_context& ctx) noexcept : ctx(ctx) {}
schedule_sender schedule() const noexcept { return schedule_sender{ctx}; }

};
public:

scheduler get_scheduler() noexcept { return scheduler{*this}; }

// Processes all pending tasks until the queue is empty.
void drain() noexcept {

while (head != nullptr) {
task_base* t = std::exchange(head, head->next);

20

t->execute();
}

}

private:
void enqueue(task_base* t) noexcept {

t->next = std::exchange(head, t);
}

task_base* head = nullptr;
};

21

4.3 Example 3: The same simple_execution_context as above but this time with
the schedule() operation implemented using coroutines and awaitables.

Note that this does not require any heap allocations.
class simple_execution_context {

class awaiter {
friend simple_execution_context;
simple_execution_context& ctx;
awaiter* next = nullptr;
std::coroutine_handle<> continuation;

public:
explicit awaiter(simple_execution_context& ctx) noexcept : ctx(ctx) {}

bool await_ready() const noexcept { return false; }
void await_suspend(std::continuation_handle<> h) noexcept {

continuation = h;
ctx.enqueue(this);

}
void await_resume() noexcept {}

};

class schedule_awaitable {
simple_execution_context& ctx;

public:
explicit schedule_awaitable(simple_execution_context& ctx) noexcept : ctx(ctx) {}
// Return an instance of the operation-state from 'operator co_await()'
// This is will be placed as a local variable within the awaiting coroutine's
// coroutine-frame and means that we don't need a separate heap-allocation.
awaiter operator co_await() const noexcept {

return awaiter{ctx};
}

};

class scheduler {
simple_execution_context& ctx;

public:
explicit scheduler(simple_execution_context& ctx) noexcept : ctx(ctx) {}
schedule_awaitable schedule() const noexcept { return schedule_awaitable{ctx}; }

};

public:
scheduler get_scheduler() noexcept { return scheduler{*this}; }

// Processes all pending awaiters until the queue is empty.
void drain() noexcept {

while (head != nullptr) {
awaiter* a = std::exchange(head, head->next);
a->execute();

}
}

private:
void enqueue(awaiter* a) noexcept {

22

a->next = std::exchange(head, a);
}

awaiter* head = nullptr;
};

23

4.4 Example 4: The same simple_execution_context but this time implemented
using the connect/start refinements to the sender/receiver.

This uses similar techniques to the coroutine version above; i.e., returning the operation-state to the caller and
relying on them to keep the operation-state alive until the operation completes.
class simple_execution_context {

struct task_base {
virtual void execute() noexcept = 0;
task_base* next;

};

class schedule_sender {
simple_execution_context& ctx;

public:
explicit schedule_sender(simple_execution_context& ctx) noexcept : ctx(ctx) {}

template<typename Receiver>
class operation_state final : private task_base {

simple_execution_context& ctx;
std::remove_cvref_t<Receiver> receiver;

void execute() noexcept override {
try {

std::execution::set_value(std::move(receiver));
} catch (...) {

std::execution::set_error(std::move(receiver), std::current_exception());
}

}

public:

explicit operation_state(simple_execution_context& ctx, Receiver&& r)
: ctx(ctx), receiver((Receiver&&)r) {}

void start() noexcept & {
ctx.enqueue(this);

}
};

// Returns the operation-state object to the caller which is responsible for
// ensuring it remains alive until the operation completes once start() is called.
template<std::receiver_of Receiver>
operation_state<Receiver> connect(Receiver&& r) {

return operation_state<Receiver>{*this, (Receiver&&)r};
}

};

class scheduler {
simple_execution_context& ctx;

public:
explicit scheduler(simple_execution_context& ctx) noexcept : ctx(ctx) {}
schedule_sender schedule() const noexcept { return schedule_sender{ctx}; }

};
public:

24

scheduler get_scheduler() noexcept { return scheduler{*this}; }

// Processes all pending tasks until the queue is empty.
void drain() noexcept {

while (head != nullptr) {
task_base* t = std::exchange(head, head->next);
t->execute();

}
}

private:
void enqueue(task_base* t) noexcept {

t->next = std::exchange(head, t);
}

task_base* head = nullptr;
};

25

5 Appendix B - Exception-safe sender adapters
5.1 Example 1: A naive sender-adapter that executes two other senders sequen-

tially with submit() as the basis
This is difficult to get right because of the potential for the submit() method to throw. This code snippet shows
the problem with a naive approach.
template<typename First, typename Second>
class sequence_sender {

First first;
Second second;

template<typename Receiver>
class first_receiver {

Second second;
Receiver receiever;

public:
explicit first_receiver(Second&& second, Receiver&& recevier)

noexcept(std::is_nothrow_move_constructible_v<Second> &&
std::is_nothrow_move_constructible_v<Receiver>)

: second((Second&&)second), receiver((Receiver&&)receiver) {}

void set_value() && noexcept {
try {

execution::submit(std::move(second), std::move(receiver));
} catch (...) {

// BUG: What do we do here?
//
// We need to signal completion using 'receiver' but now
// 'receiver' might be in a moved-from state and so we
// cannot safely invoke set_error(receiver, err) here.

}
}

template<typename Error>
void set_error(Error&& e) && noexcept {

execution::set_error(std::move(receiver), (E&&)e);
}

void set_done() && noexcept {
execution::set_done(std::move(receiver));

}
};

public:
explicit sequence_sender(First first, Second second)

noexcept(std::is_nothrow_move_constructible_v<First> &&
std::is_nothrow_move_constructible_v<Second>)

: first((First&&)first), second((Second&&)second)
{}

template<typename Receiver>
void submit(Receiver receiver) && {

26

// If this call to submit() on the first sender throws then
// we let the exception propagate out without calling the
// 'receiver'.
execution::submit(

std::move(first),
first_receiver<Receiver>{std::move(second), std::move(receiver)});

}

};

27

5.2 Example 2: An improved sender-adaptor for sequencing senders using
submit() as a basis

This shows a more correct implementation that makes use of shared_ptr to allow recovery in the case that the
submit() on the second sender throws. We pass a copy of the shared_ptr into submit() and also retain a copy
that we can use in case submit() throws an exception.
template<typename Receiver>
class shared_receiver {

std::shared_ptr<Receiver> receiver_;

public:
explicit shared_receiver(Receiver&& r)

: receiver_(std::make_shared<Receiver>((Receiver&&)r))
{}

template<typename... Values>
requires value_receiver<Receiver, Values...>

void set_value(Values&&... values) && noexcept(
is_nothrow_invocable_v<decltype(execution::set_value), Receiver, Values...>) {
execution::set_value(std::move(*receiver_), (Values&&)values...);

}
template<typename Error>

requires error_receiver<Receiver, Error>
void set_error(Error&& error) && noexcept {

exection::set_error(std::move(*receiver_), (Error&&)error);
}

void set_done() && noexcept requires done_receiver<Receiver> {
execution::set_done(std::move(*receiver_));

}
};

template<typename First, typename Second>
class sequence_sender {

First first;
Second second;

template<typename Receiver>
class first_receiver {

Second second;
shared_receiver<Receiver> receiver;

public:
explicit first_receiver(Second&& second, Receiver&& recevier)

noexcept(std::is_nothrow_move_constructible_v<Second> &&
std::is_nothrow_move_constructible_v<Receiver>)

: second((Second&&)second), receiver((Receiver&&)receiver) {}

void set_value() && noexcept {
try {

execution::submit(std::move(second), std::as_const(receiver));
} catch (...) {

// We only copied the receiver into submit() so we still have access
// to the original receiver to deliver the error.

28

//
// Note that we must assume that if submit() throws then it will not
// have already called any of the completion methods on the receiver.
execution::set_error(std::move(receiver), std::current_exception());

}
}

template<typename Error>
void set_error(Error&& e) && noexcept {

execution::set_error(std::move(receiver), (E&&)e);
}

void set_done() && noexcept {
execution::set_done(std::move(receiver));

}
};

public:
explicit sequence_sender(First first, Second second)

noexcept(std::is_nothrow_move_constructible_v<First> &&
std::is_nothrow_move_constructible_v<Second>)

: first((First&&)first), second((Second&&)second)
{}

template<typename Receiver>
requires std::execution::sender_to<Second, shared_receiver<Receiver>>

void submit(Receiver receiver) && {
// If this call to submit() on the first sender throws then
// we let the exception propagate out without calling the
// 'receiver'.
execution::submit(

std::move(first),
first_receiver<Receiver>{std::move(second), std::move(receiver)});

}
};

29

5.3 Example 3: Implementation of the sequence() algorithm using connect()/start()-
based senders

Notice that this implementation does not require any heap-allocations to implement correctly.
// Helper that allows in-place construction of std::variant element
// using the result of a call to a lambda/function. Relies on C++17
// guaranteed copy-elision when returning a prvalue.
template<std::invocable Func>
struct __implicit_convert {

Func func;
operator std::invoke_result_t<Func>() && noexcept(std::is_nothrow_invocable_v<Func>) {

return std::invoke((Func&&)func);
}

};
template<std::invocable Func>
__implicit_convert(Func) -> __implicit_convert<Func>;

template<typename First, typename Second>
class sequence_sender {

template<typename Receiver>
class operation_state {

class second_receiver {
operation_state* state_;

public:
explicit second_receiver(operation_state* state) noexcept : state_(state) {}
template<typename... Values>

requires std::execution::receiver_of<Receiver, Values...>
void set_value(Values&&... values) noexcept(std::is_nothrow_invocable_v<

decltype(std::execution::set_value), Receiver, Values...>) {
std::execution::set_value(std::move(state_->receiver_), (Values&&)values...);

}

template<typename Error>
requires std::execution::receiver<Receiver, Error>

void set_error(Error&& error) noexcept {
std::execution::set_error(std::move(state_->receiver_), (Error&&)error);

}

void set_done() noexcept {
std::execution::set_done(std::move(state_->receiver_));

}
};

class first_receiver {
operation_state* state_;

public:
explicit first_receiver(operation_state* state) noexcept : state_(state) {}

void set_value() noexcept {
auto* state = state_;
try {

auto& secondState = state->secondOp_.template emplace<1>(
__implicit_convert{[state] {

return std::execution::connect(std::move(state->secondSender_),

30

first_receiver{state});
}});

std::execution::start(secondState);
} catch (...) {

std::execution::set_error(std::move(state->receiver_), std::current_exception());
}

}

template<typename Error>
requires std::execution::receiver<Receiver, Error>

void set_error(Error&& error) noexcept {
std::execution::set_error(std::move(state_->receiver_), (Error&&)error);

}

void set_done() noexcept {
std::execution::set_done(std::move(state_->receiver_));

}
};

explicit operation_state(First&& first, Second&& second, Receiver receiver)
: secondSender_((Second&&)second)
, receiver_((Receiver&&)receiver)
, state_(std::in_place_index<0>, __implicit_convert{[this, &first] {

return std::execution::connect(std::move(first),
first_receiver{this});

}})
{}

void start() & noexcept {
std::execution::start(std::get<0>(state_));

}

private:
Second secondSender_;
Receiver receiver_;

// This operation-state contains storage for the child operation-states of
// the 'first' and 'second' senders. Only one of these is active at a time
// so we use a variant to allow the second sender to reuse storage from the
// first sender's operation-state.
std::variant<std::execution::connect_result_t<First, first_receiver>,

std::execution::connect_result_t<Second, second_receiver>> state_;
};

public:
explicit sequence_sender(First first, Second second)
: firstSender_((First&&)first)
, secondSender_((Second&&)second)
{}

template<typename Receiver>

operation_state<std::remove_cvref_t<Receiver>> connect(Receiver&& r) && {

31

return operation_state<std::remove_cvref_t<Receiver>>{
std::move(first_), std::move(second_), (Receiver&&)r};

}
private:

First firstSender_;
Second secondSender_;

};

6 References
[P0443R11] Jared Hoberock, Michael Garland, Chris Kohlhoff, Chris Mysen, Carter Edwards, Gordon Brown,

David Hollman, Lee Howes, Kirk Shoop, Eric Niebler. 2019. A Unified Executors Proposal for C++.
https://wg21.link/p0443r11

[P0981R0] Richard Smith, Gor Nishanov. 2018. Halo: coroutine Heap Allocation eLision Optimization: the joint
response.
https://wg21.link/p0981r0

[P1341R0] Lewis Baker. 2018. Unifying Asynchronous APIs in the Standard Library.
https://wg21.link/p1341r0

[P1658R0] Jared Hoberock, Bryce Adelstein Lelbach. 2019. Suggestions for Consensus on Executors.
https://wg21.link/p1658r0

32

https://wg21.link/p0443r11
https://wg21.link/p0981r0
https://wg21.link/p1341r0
https://wg21.link/p1658r0

	Abstract
	Motivation
	Lifetime impedance mismatch with coroutines
	The existing sender/receiver ownership model
	The coroutine ownership model
	Comparing Sender/Receiver and Coroutine Lifetime Models
	Adapting between sender/receiver and coroutines

	Simplifying exception-safe implementations of sender algorithms
	Ability to separate resource allocation for operation from launch

	Proposed Wording
	Appendix A - Examples of status quo lifetime/ownership
	Example 1: Delegating responsibility for allocating storage to a child sender
	Example 2: A simple execution context that shows the allocation necessary for operation-state for the schedule() operation.
	Example 3: The same simple_execution_context as above but this time with the schedule() operation implemented using coroutines and awaitables.
	Example 4: The same simple_execution_context but this time implemented using the connect/start refinements to the sender/receiver.

	Appendix B - Exception-safe sender adapters
	Example 1: A naive sender-adapter that executes two other senders sequentially with submit() as the basis
	Example 2: An improved sender-adaptor for sequencing senders using submit() as a basis
	Example 3: Implementation of the sequence() algorithm using connect()/start()-based senders

	References

