
P1838R0: Modules User-Facing Lexicon and File Extensions
ISO/IEC JTC1 SC22/WG21 - Programming Languages - C++

Authors:

Bryce Adelstein Lelbach <brycelelbach@gmail.com>
Boris Kolpackov <boris@codesynthesis.com>

Audience:
Tooling (SG15)

Motivation
C++20 modules introduces a new compilation model for C++; as with any new large feature,
we need a number of new words to discuss it. This paper seeks to define and bikeshed a
user-facing lexicon for modules.

This paper does NOT seek to bikeshed terminology in the C++ International Standard. It is
solely concerned with modules terminology that will be used by the broader C++ community
(C++ programmers, C++ library implementors, build system implementors, tooling
implementors, compiler implementors, etc).

In addition to terminology, modules introduces new types of C++ source files and new types
of C++ build artifacts. This paper additionally seeks to recommend conventions for the file
extensions that should be used for these new file types.

The content of this paper is intended for the C++ Modules Ecosystem Technical Report.

For each item, we need to answer two questions:

● Do we want to define this term/file extension in the Technical Report?
● If we do want to define it, what should the name and definition be?

Terminology

Term Definition

Built Module Interface (BMI) The artifact created by a compiler to represent a
module unit or header unit. The format for this
representation is implementation specific and holds
C++ entities, which can be represented in the form of
compiler specific data structures (e.g. ASTs,
metadata, etc), machine code (object files) or any
intermediate representation chosen by the
implementer.

mailto:brycelelbach@gmail.com
mailto:boris@codesynthesis.com

PRIOR ART:

● Compiled Module Interface (CMI)
○ Modules Are Coming, Core C++

2019, Bryce Adelstein Lelbach
● Binary Module Interface (BMI)

○ The vast majority of pre 2019
modules content

BMI Configuration The set of characteristics at translation time that
identify compatible BMI/CMIs. These traits are
implementation defined and it's recommended that
for BMI/CMI to have the same configuration (and be
reusable) they should at least maintain ABI and ODR
compatibility.

Precompilation
or
Module Compilation

The act of creating a BMI/CMI from a module unit or
header unit, possibly as a distinct step from
translation of said unit.

PRIOR ART:

● Precompiled headers
● Clang/LLVM's --precompile flag
● Modules Are Coming, Core C++ 2019, Bryce

Adelstein Lelbach

Dependency Scanner A tool which parses C++ source files and outputs
their dependency metadata. Such a tool might be a
standalone utility or an option that can be enabled in
a C++ compiler driver.

PRIOR ART:

● clang-scan-deps
○ clang-scan-deps, LLVM Euro 2019,

Alex Lorenz, Michael Spencer
● P1689: Format for Describing Dependencies

of Source Files, Ben Boeckel

Dependency Metadata
or
Dependency Information

Information about the translation units and textual
includes of a C++ source file. This includes the name
of the module the source file exports, the modules
that it imports, the files it textually includes, and other
metadata.

PRIOR ART:

● P1689: Format for Describing Dependencies
of Source Files, Ben Boeckel

Dependency Metadata Format
or
Dependency Information Format

A structured file format that describes dependency
metadata.

https://www.youtube.com/watch?v=bDTm6y6fNSU
https://www.youtube.com/watch?v=bDTm6y6fNSU
https://www.youtube.com/watch?v=bDTm6y6fNSU
https://www.youtube.com/watch?v=bDTm6y6fNSU
https://llvm.org/devmtg/2019-04/slides/TechTalk-Lorenz-clang-scan-deps_Fast_dependency_scanning_for_explicit_modules.pdf
https://llvm.org/devmtg/2019-04/slides/TechTalk-Lorenz-clang-scan-deps_Fast_dependency_scanning_for_explicit_modules.pdf
https://llvm.org/devmtg/2019-04/slides/TechTalk-Lorenz-clang-scan-deps_Fast_dependency_scanning_for_explicit_modules.pdf
https://wg21.link/P1689
https://wg21.link/P1689
https://wg21.link/P1689
https://wg21.link/P1689

PRIOR ART:
● P1689: Format for Describing Dependencies

of Source Files, Ben Boeckel

Implicit Module Builds Modules build mode where the compiler knows how
to build all components for a module and its
dependencies without requiring the user to explicitly
invoke the compiler for building specific parts or said
dependencies. In this mode the compiler
incorporates some of the roles of a build system.

Explicit Module Builds Modules build mode where components of a module
and its dependencies are built separately, with
explicit compiler invocations being used to build each
piece. In this mode, some external system is
responsible for computing dependencies and
schedule build order for the components.

Strong Module Ownership An entity with external linkage which belongs to a
module will be a different entity from, and will not
conflict with, an entity with the same name in the
global module.

Weak Module Ownership An entity with external linkage which belongs to a
module will conflict with (or simply be the same entity
as) an entity with the same name in the global
module.

Importable Headers [module.unit] p5 s3

Include Translation [cpp.include] p7

Translation Units

Kind of Translation Unit Definition

Non-Modular Translation Unit

Translation units that are not module
units or header units. Prior to C++20,
we just called these translation units.

PRIOR ART:

● Modules Are Coming, Core C++
2019, Bryce Adelstein Lelbach

Synthesized Header Translation Unit Translation unit formed by a header.
[module.import] p5

https://wg21.link/P1689
https://wg21.link/P1689
http://eel.is/c++draft/module.unit#5
http://eel.is/c++draft/cpp.include#7
https://www.youtube.com/watch?v=bDTm6y6fNSU
https://www.youtube.com/watch?v=bDTm6y6fNSU
http://eel.is/c++draft/module#import-5

Primary Module Interface Translation Unit [module.unit] p2

Module Partition Interface Translation Unit [module.unit] p3

Module Implementation Translation Unit [module.unit] p2

Module Partition Implementation Translation Unit [module.unit] p3

The following diagram describes the less specific terms that can be used to refer to types of
translation units. "Translation Unit" or "Unit" can be appended to the end of any of these
terms.

File Extensions

Extension File Type

.cpp

.cppm

.ixx

.mpp

.mxx

.cmi

Module interface unit.

export module ...;
...

PRIOR ART:

● Modules Are Coming, Core C++ 2019, Bryce
Adelstein Lelbach

● build2 (.mpp/.mxx)
● MSVC (.ixx)
● Clang/LLVM (.cppm)
● GCC (.cpp)

http://eel.is/c++draft/module#def:primary_module_interface_unit
http://eel.is/c++draft/module#def:module_partition
http://eel.is/c++draft/module#def:module_implementation_unit
http://eel.is/c++draft/module#def:module_partition
https://www.youtube.com/watch?v=bDTm6y6fNSU
https://www.youtube.com/watch?v=bDTm6y6fNSU

.pcm

.gcm / .gcmu / .gcms

.ifc

.bmi

BMI.

PRIOR ART:

● .bmi:
○ Modules Are Coming, Core C++

2019, Bryce Adelstein Lelbach
● .pcm:

○ Clang/LLVM
● .gcm:

○ GCC
● .ifc:

○ MSVC

Prior Art
Conference Talks

● clang-scan-deps, LLVM Euro 2019, Alex Lorenz, Michael Spencer
● Modules Are Coming, Core C++ 2019, Bryce Adelstein Lelbach

ISO C++ Committee Papers

● P1689: Format for Describing Dependencies of Source Files, Ben Boeckel

Blog Posts

● C++ Modules Might Be Dead-on-Arrival, January 2019, vector-of-bool

https://www.youtube.com/watch?v=bDTm6y6fNSU
https://www.youtube.com/watch?v=bDTm6y6fNSU
https://llvm.org/devmtg/2019-04/slides/TechTalk-Lorenz-clang-scan-deps_Fast_dependency_scanning_for_explicit_modules.pdf
https://llvm.org/devmtg/2019-04/slides/TechTalk-Lorenz-clang-scan-deps_Fast_dependency_scanning_for_explicit_modules.pdf
https://www.youtube.com/watch?v=bDTm6y6fNSU
https://wg21.link/P1689
https://vector-of-bool.github.io/2019/01/27/modules-doa.html

