
Document Number: WG21 N4858
Date: 2020-03-20

Reply To: Barry Hedquist
Perennial, Inc.

beh@peren.com

Disposition of Comments
for

CD Ballot, ISO/IEC CD 14882

Template for comments and secretariat observations Date:2020-02-15 Document: Project: 14882

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 25 of 99

US
094

 11.10.01

4 te Class types can have strong structural equality

even if their operator== is deleted (since overload
resolution "succeeds" even if it finds a deleted

function).

Say "that is defaulted in the definition of C and is
not defined as deleted".

Rejected

There was no consensus
to adopt this change.

US
095

 12.02

1 ge A declaration redeclares a constrained function if
its requires-clause is equivalent. No atomic

constraint expression can be equivalent to any
other unless it is accessed via a concept (even

within a single translation unit); for functions with
no template parameters, all requires-clauses are

functionally equivalent to either "requires true" or
"requires false". In either case, the program is ill-

formed NDR because of constructs that are
functionally equivalent but not equivalent.

Document these severe restrictions, change the
definition of (functionally) equivalent for atomic

constraints to rely on the ODR, and/or eagerly
evaluate non-dependent (portions of) constraints.

Accepted with
Modification

See P1971

CA
096

 12.02
[over.dcl]

Paragraph 1 te Declaration matching ([over.dcl]) is based upon
whether trailing requires-clauses are equivalent;
however, equivalent, with respect to expressions

([temp.over.link]), is defined only for expressions
involving template parameters.

Extend the definitions of equivalent and
functionally equivalent to cover expressions
subject to normalization in general (not just those
involving template parameters).
Further, make the determination of expression
equivalence treat concept definitions as opaque
by adding a condition that an expression that may
be subject to constraint normalization is
functionally equivalent only if each qualified-
concept-name that may be expanded by
normalization would be considered to name the
same type if, instead of a concept, a class
template was named.

Accepted with
Modification

See P1980

US
097

 13 1 Te It does not seem useful to allow a type-constraint
of Concept<> (directly, rather than via pack
expansion).

Make the template-argument-list non-optional.

Rejected

There was no consensus
to adopt this change.

US
098

 13 6 Ge It is surprising that the single syntax Concept<X>

can be a type-constraint (which becomes
Concept<T,X>, not the Concept<X><T> that

would result from adding <T> as for the other
kind of type-constraint) or a very different id-

expression.

Add a syntactic disambiguator, perhaps in the

trivial form of Concept<,X> for the type-constraint
case.

Rejected

There was no consensus
to adopt this change.

https://wg21.link/p1971
https://wg21.link/p1980

Template for comments and secretariat observations Date:2020-02-15 Document: Project: 14882

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 26 of 99

US
099

 13.01

01.6

Te

"When a non-type template-parameter of non-

reference and non-class type is used as an
initializer for a reference, a temporary is always

used."

follows from its prvalue status.

Strike the sentence.

Accepted - Editorial

US
100

 13.01

04.1

Te Reference types (of which there are no glvalues)
seem to vacuously have strong structural
equality, which would allow an rvalue reference
(which is a literal type) as a template parameter.

Explicitly exclude all reference types from strong

structural equality.

Accepted with
Modification

See P1907

US
101

 13.01

04.1

Ge It is surprising that "template<int&,char&> int t;" is

allowed, but that "struct S {int &i; char &f; bool
operator==(const S&)=default/*delete*/;};

template<S> int t;" is not.

Don't use == to define the equivalence of class-

type non-type template arguments

(see comment on [temp.type]/1.5).

Accepted

US
102

 13.01

04.1

Ge If it is decided not to use == to define equivalence
of class-type non-type template arguments (just

as it is not used for references and pointers to
members), some of the uncertainty surrounding

non-type template parameters of floating-point
type will no longer pertain, whereas the (very

real) availability of undesirable workarounds
involving std::bit_cast<int>(-0.f) will persist.

Apply P1714R1 (as already approved by EWG
and CWG).

Accepted with
Modification

See P1907

PL
103

 13.01
[temp.para
m]

 te The current syntax for constrained type template
parameters, especially after the recent change of
the naming convention for the standard library,
causes confusion about the difference between
the following two templates (one takes a value
parameter, the other takes a constrained type
parameter):

template<bool B> struct foo {};

template<std::boolean B> struct foo {};

This is also inconsistent with the requirement to
use the keyword `auto` for variable and
parameter declarations with deduced constrained
type:

In [temp.param]/1, replace the definition of the
production rule type-parameter with:

type-parameter:
 type-constraintopt type-parameter-key ...opt
identifieropt

 type-constraintopt type-parameter-key
identifieropt = type-id

 template-head type-parameter-key ...opt
identifieropt

 template-head type-parameter-key identifieropt =
id-expression

Rejected

There was no consensus
to adopt this change.

https://wg21.link/p1907
https://wg21.link/p1714r1
https://wg21.link/p1907

Template for comments and secretariat observations Date:2020-02-15 Document: Project: 14882

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 27 of 99

template<std::boolean auto B> struct foo {};

The author of this comment believes that,
regardless of what the naming convention for
standard library concepts ends up being, this is
going to be confusing in real life code, and
introduce a place where the knowledge of
whether a name designates a type or a concept
is necessary to be able to tell the *kind* of a
template parameter. Therefore, this comment
proposes that the second definition above would
have to be written as following

template<std::boolean class B> struct foo {};

In the future, if we decide that the perceived
possible confusion between the first two
definitions in this comment is not actually a
problem, this can be further relaxed to allow the
current syntax, simiarly to how `Concept auto
foo` is expected to be possible to relax in the
future if the committee finds that to be desirable.

Throughout the rest of the draft, replace all uses
of `ConceptName TypeParameterName` with
`ConceptName class TypeParameterName` (or

`ConceptName typename TypeParameterName`).

CA
104

 13.04
[temp.const
r]

 te The interaction between constraints and
substitution has been the subject of some
confusion. Declaration matching and partial
ordering may require substitution that is not
otherwise required to determine satisfaction;
however, the wording does not make this clear in
an accessible manner.

Add a least a note, likely with examples, indicating
that declaration matching and partial ordering may
require substitution into constraints. Since these
substitutions are not being performed as part of
determining viability of candidates for overload
resolution, the SFINAE process does not apply.

Accepted

See P2103

US
105

 13.04.1

2 te Nothing prohibits forming a pointer to a non-
overloaded non-template function whose
constraints are not satisfied.

Extend [over.over] to perform trivial overload

resolution even when a function is named without
a target type, obviating the need for

[dcl.fct.def.delete]/2.

Accepted with
Modification

See P1972

US
106

 13.04.1.2
[temp.constr
.atomic]

 ed Concepts use the term "atomic", which is already
a term of art within the C++ standard, as
evidenced by clause [atomics].

Use a term other than "atomic" for concepts. Rejected

There was no consensus
to adopt this change.

CA
107

 13.04.1.4
[temp.const
r.atomic]

Paragraph 2 te The rules in 13.6.6.1 that the subject paragraph
defers to does not handle parameter mapping for
type template parameters, template template
parameters, and non-type template parameters
where substitution has made the expression non-

For non-dependent (after substitution) members
of the parameter mapping, consider types by type
identity, and expressions by type and value.
P1624 describes a treatment for dependent cases
that defer to the declaration matching rules

Accepted

See P2103

https://wg21.link/p2103
https://wg21.link/p1972
https://wg21.link/p2103

Template for comments and secretariat observations Date:2020-02-15 Document: Project: 14882

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 28 of 99

dependent. through alias template and variable template
proxies.

US
108

 13.04.2

2 Ed The possibility of type-constraints appearing in a

parameter-type-list

is omitted (until /3.3.3).

Mention it alongside "template-parameter-list". Accepted - Editorial

US
109

 13.04.2

3 Te Only templates are described as having
associated constraints, but

 [over.match.viable]/3 and

(via [temp.constr.order]/3) [over.match.best]/2.6

 need them for non-template functions.

Replace "template" with "declaration"; other
declarations will simply always match one of the

first two bullets.

Accepted

See P1971

CA
110

 13.04.2
[temp.const
r.decl]

Paragraph 3 te Overload resolution ([over.match.best]) asks us
to prefer a more constrained non-template
function using rules that order declarations based
on their associated constraints
([temp.constr.order]), but “associated constraints”
are defined for templates ([temp.constr.decl]) and
not for functions.

Add the following as a new paragraph before the
subject paragraph:

The associated constraints of a non-
template function is the normal form of
the constraint-expression introduced by
the trailing requires-clause, if any;
otherwise, the function has no
associated constraints.

Accepted with
Modification

See P1971

US
111

 13.04.3

1 Ge It is surprising that the very special "pseudo)"
evaluation semantics of && and || are not

extended to !, and in particular that !A || !B is not
at all the same as !(A && B) in case of

substitution failure or for subsumption.

Assuming there is a rationale for the omission,
add it as a note along with an example illustrating

the failure of ! to invert a substitution failure.

Accepted with
Modification

See P1971

CA
112

 13.04.4
[temp.const
r.order]

 te How template parameters from one template is to
be matched against template parameters in
another template when they appear in substituted
parameter mappings is not clearly defined.

In 13.6.6.2 [temp.func.order], candidates that are
specializations of function templates should be
ordered based on their constraints only when the
templates have the same name (including for
conversion-function-ids), parameter-type-list, and
template parameter lists.

Accepted with
Modification

See P2113

US
113

 13.05

01.5

Te The == operator is inappropriate for comparing

non-type template arguments of enumeration
type, since it may be overloaded for them.

Compare the values of the underlying type. Rejected

There was no consensus
to adopt this change.

US
114

 13.05 01.5 Te The == operator is inappropriate for template
arguments of a class type with a member of

Approach #1: Forbid class types with members of
such types (to make operator== equivalent to

Accepted with
Modification

https://wg21.link/p1971
https://wg21.link/p1971
https://wg21.link/p1971
https://wg21.link/p2113

Template for comments and secretariat observations Date:2020-02-15 Document: Project: 14882

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 29 of 99

 enumeration or pointer-to-member type (and for
object pointers would be incompatible with

plausible extensions to [temp.arg.nontype]/2; see
CWG 2043).

template-argument equivalence).

Approach #2:

Apply a suitable revision of P1837R0 that reverts

not only P0732R2 but also part of P1185R2.

Approach #3: Define equivalence of class-type
non-type template arguments directly in terms of

the (template-argument) equivalence of their base
class subobjects and non-static data members

(which allow to be references, but not mutable or
volatile). Remove the definition of strong

structural equality; restore from C++17's
[temp.param]/4 bullets 1, 2, 4, and 5, or else use

"a literal non-class type C for which, given an
glvalue...". Directly forbid non-type template

parameters of union-like class types.

See P1907

US
115

 13.06.4

[temp.friend
]

 te Hidden friends that are non-templates currently
cannot have a requires-clause, but this
functionality is important and used throughout
Ranges.

Change [temp.friend]/9 to refer only to those
friend declarations that are not any kind of
templated entity.

Accepted with
Modification

See P2103

US
116

 13.06.6.1

6 Te There is no specification for equivalence among
constraint-expressions.

Presumably, define it in terms of /5's expression
equivalence.

Rejected

There was no consensus
to adopt this change.

US
117

 13.06.6.1

6 Te Types and type-constraints are supposed to be
compared by /5, but it handles only dependent

expressions.

Generalize /5 to support type-ids (by recursive
decomposition). Compare non-dependent types

by identity; compare non-dependent type-
constraints according to the rules in [temp.type].

Accepted with
Modification

See P2103

US
118

 13.07

8 Te No reasonable implementation needs the

freedom extended by making uninstantiable
templates ill-formed with no diagnostic required.

With the exception of the last (long) bullet, specify

instead that it is unspecified whether the program
is ill-formed (with a required diagnostic) when the

conditions pertain.

Rejected

There was no consensus
to adopt this change.

US
119

 13.09.2.4

8 Te The check that "deduction succeeds for a given

type" suggests that each P/A pair is considered

Directly define "at least as specialized" in terms of

the overall deduction succeeding, as seems to be

Rejected

There was no consensus

https://wg21.link/p1837
https://wg21.link/p0732r2
https://wg21.link/p1185r2
https://wg21.link/p1907
https://wg21.link/p2103
https://wg21.link/p2103

Template for comments and secretariat observations Date:2020-02-15 Document: Project: 14882

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 30 of 99

 separately, contradicting [temp.deduct.type]/2.

the implementation consensus.

to adopt this change.

US
120

 14.04.1.2

2 Te There is no specification for which template
parameters in (the template arguments in) one

parameter mapping are "the same template
parameter" (from [temp.over.link]/5) as those in

another parameter mapping.

Use the mappings obtained by the partial-ordering
deduction (which is required to have succeeded),

augmented by matching by position for template
parameters of the same kind that were not

deduced per [temp.deduct.partial]/12 (to support
constrained function templates like

std::make_unique).

Accepted with
Modification

See P2113

US
121

 15 te P1703 requested in a change such that import
declarations of header units were lexed as
preprocessing directives – those for named
modules were not.
 Import declarations (of either kind) are now
preprocessing directives that result in tokens
passed through to the C++ parser proper. The
rationale for covering all import declaration was
to permit source scanners operating in a non-
standard preprocessing mode to extract module
dependencies.
 This goal is not achieved.
To achieve this goal, module declarations too
must be treated as preprocessing directives.
Without that, such scanners will not be able, in
general, to detect module unit creation, only
consumption.

Either: a) revert the changes inspired by p1703, or
b) extend the changes inspired by p1703 to
module-declarations, module-private-partitions
and the global-module-fragment introducer.

Accepted with
Modification

See P1857

US
122

 15 te P1703 resulted in the creation of a preprocessing
directive that does not begin with ‘#’. This is likely
to confuse users, as the restricted lexing
requirements come without the mnemonic ‘#’
marker. It will also complicate code formatting
tools, such as editors.

Revert the changes inspired by p1703 Rejected

There was no consensus
to adopt this change.

.

US
123

 15 te Source scanners that do not use the complete
preprocessing algorithm employ heuristics to
approximate that. They will fail in some cases,
whatever the standard specifies. Users of such
source scanners already have to constrain the
format of pieces of code to permit the scanner to
function. The p1703 approach enshrines a
particular scanning heuristic, with its own
particular set of failing cases. For instance, when

Revert the changes inspired by p1703 Rejected

There was no consensus
to adopt this change.

https://wg21.link/p2113
https://wg21.link/p1703
https://wg21.link/p1703
https://wg21.link/p1703
https://wg21.link/p1857
https://wg21.link/p1703
https://wg21.link/p1703
https://wg21.link/p1703

Template for comments and secretariat observations Date:2020-02-15 Document: Project: 14882

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 31 of 99

the scanner reaches an explicit header unit
import, it will need to read the exported macros of
that header unit. Correctly doing this requires
reading the header’s Compiled Module Interface.
This may be done in several ways, amongst
which are: 1) reading it directly, or 2) determining
the CMI’s exported macro set by processing the
header unit’s source file, or 3) approximating the
exported set by reading the header unit’s source
file and discarding non-directive text, within the
current scan. #1 requires interleaving of source
scanning and compilation. The motivation of
source scanners was to not do that.#2 is
essentially implementing a macro-only module
system inside the source scanner, which is liable
to be both complex and/or inaccurate. #3 is an
approximation, as it will observe macro
definitions and undefinitions that are not
exported. It will also incorrectly determine the
prevailing macro definition algorithm of 15.3 in
certain circumstances. A proposal to specify
prevailing macro more in keeping with traditional
#include ordering (p1174) was rejected. Thus
approach #3 has been deemed undesirable.
Alternative approaches of scanners
overestimating the set of imports, but permitting
failures, have been described more than once at
meeting.

US
124

 15 te P1703 relaxes the context sensitivity of the
import keyword. Surrounding braces are no
longer relevant – only the formatting of the line
beginning with the import token (and possible
preceding ‘export’ token). Previous drafts of the
standard recognized the import keyword only
outside of any braces (other than extern “C”
linkage blocks). This requirement was motivated
by p0795, which pointed out that ‘import’ and
‘module’ were used in the user interfaces of
significant software. However, the import
declaration’s C++ grammar is unchanged, and it
must appear at the outermost scope. The scope-
agnostic lexing of the preprocessing directive will
result in a) confusing errors at the parser level,

Revert the changes inspired by p1703 Rejected

There was no consensus
to adopt this change.

.

https://wg21.link/p1703
https://wg21.link/p0795
https://wg21.link/p1703

Template for comments and secretariat observations Date:2020-02-15 Document: Project: 14882

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 32 of 99

and b) frustration that such uses of ‘import’ must
be locally protected from the preprocessor.

US
125

 15 te The control-line changes to make import

declarations be a directive were insufficient to
achieve the stated goals of that change

Apply changes from P1857 Accepted with
Modification

See P1857

GB
126

 15 Te P1703R1 should be part of the Modules Tooling

Technical Report, not part of the standard

P1703R1 removed important features from

import declarations:

the context-sensitivity no longer takes braces into

account and instead matches all lines starting
'import' (breaking compatibility with existing code

— a codesearch.isocpp.org search for "import"
finds many cases that will be broken by the new

rule), and
- line continuations are now required when import

declarations span multiple lines (making use of
attributes on import declarations ugly and

awkward).

There is also evidence that the proposal does not

fully solve the problem that it aims to solve, as it
does not cover module declarations.

Extend the new rules to also cover module

declarations, allow import declarations to span
multiple lines without backslash line continuations,

and consider whether the context-sensitivity can
be improved so that it doesn't reject the cases

found by code search.

Alternatively, revert P1703R1 from the C++

standard draft and instead establish a direction to
include the rules from P1703R1 in the modules

tooling technical report (as guidance on how to
write code that supports dependency extraction

from the widest possible set of tools).

Accepted with
Modification

See P1857

US
127

 15

[cpp]

❡1 te The import contextual keyword's context is too
broad and breaks real code such as import-
>doImport(); .

Add one addtional token of context. See P1857r0
for details.

Accepted with
Modification
See P1857

US
128

 15.01

 te A control line of the form ‘[export] import ...’, is
intended to be passed through to the C++ parser,
after lexing and header-unit macro importation.
However, this is never specified. The closest we
get is in 15.3 where, for header unit imports, we
specify that the ‘import’ keyword is replaced by a
special token.

Specify (in 15.1, a new subsection, or make 15.3
more general) that these tokens are passed
through.

Accepted with
Modification

See P1857

US
129

 15.01

p1 TE While the __has_cpp_attribute feature was under
development in WG21, WG14 added C++-
compatible attribute support to C2x and that was
not taken into consideration for this feature.
WG14 is considering adopting the same
functionality for C but are having difficulties with
the identifier chosen by WG21.

Rename __has_cpp_attribute to __has_attribute
or some other language-agnostic name, or
alternatively, keep the name __has_cpp_attribute
and introduce a second, language-agnostic name
as a synonym.

Rejected

There was no consensus
to adopt this change.

https://wg21.link/p1857
https://wg21.link/p1857
https://wg21.link/p1857
https://wg21link/p1857
https://wg21.link/p1857
https://wg21.link/p1857

Template for comments and secretariat observations Date:2020-02-15 Document: Project: 14882

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 33 of 99

While WG14 could always pick a name like
__has_c_attribute, such a solution is unsatisfying
because users would have to write twice as much
code. C and C++ do not need separate
preprocessor conditional inclusion features for
this functionality – a single feature will suffice.
e.g.,

#if __has_cpp_attribute(something)
#define SOMETHING [[something]]
#elif __has_c_attribute(something)
#define SOMETHING [[something]]
#endif

is exactly equivalent to the shorter:

#if __has_attribute(something)
#define SOMETHING [[something]]
#endif

in cases where the code in question is shared
between C and C++ compilers.

US
130

 15.01
[cpp.cond]

19 Te Producing a token that might be reparsed as a
'defined' operator during macro replacement has
undefined behavior. Undefined behavior lexing
the program has no place in a modern standard,
and this should either be a diagnosable error, or
(perhaps conditionally) supported behavior to
become that 'defined' operator.

Make this either a diagnosable error, or (perhaps
conditionally) supported behavior to become that
'defined' operator.

Rejected

There was no consensus
to adopt this change.

US
131

 15.02
[cpp.include
]

4 Te It is undefined behavior for token replacement to
produce an include directive that does not match
either of the two well-defined forms in the
grammar. Undefined behavior lexing the program
has no place in a modern standard, and this
should be a diagnosable error.

Make this a diagnosable error Rejected

There was no consensus
to adopt this change.

.

US
132

 15.03

 te Header units may provide macro definitions and
undefinitions to their importers. These are
#define and #undefs (of imported macros) that
are encountered ‘when preprocessing each
translation unit’. There is ambiguity as to whether
this includes: a) macros defined on the command
line, b) macros defined by the implementation
(including indirectly via command line option), c)

 Add wording to explicitly exclude these macro
definitions (as there can be no imported macros
visible at the point they are defined, explicit
undefinitions are irrelevant).

Accepted with
Modification

See P1971

https://wg21.link/p1971

Template for comments and secretariat observations Date:2020-02-15 Document: Project: 14882

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 34 of 99

macros defined in forced headers. Mailing list
discussion concluded that such macros should
NOT be exported.

US
133

 15.03

 te It is not clear whether header-unit source code
can contain internal-linkage entities. For
example the iostream header can contain:

 static ios_base::Ioinit __ioinit;

 Is that permitted, or does it make the header file
incompatible with being a header unit?

Preference for internal linkage entities to be an
error. Thus library implementors will need an
(implementation-defined) mechanism to know
whether the header file is being textually
included, or whether it is being processed to
create a header-unit.

Accepted with
Modification

See P1815

US
134

 15.03

 te It is not clear whether header-unit source code
can contain definitions of external linkage
entities. For example:
 int version () { return 5;}

1) Does that emit a definition of ‘version’ to an
object file associated with the header-unit? 2) Is it
ill-formed? 3) Does it emit ‘version’ in the object
file of each importer. #3 will lead to multiple-
definition linker errors.
At least 2 implementors of module compilers had
differing understandings of this. Users will need
to know whether an object file is a possibility.

Have a slight preference for permitting emission of
an object file when creating a header-unit. i.e.
option #1. However, option #2 would also be
acceptable. Option #3 does not seem a good
choice.

Accepted with
Modification

See P1815

DE
135

 15.03

paragraph 2 te "import" is not a language keyword to allow for
backward compatibility with existing pre-modules
source code, where "import" might be used as an
identifier.
The current status does not achieve the desired
goal;
for example "import->module = ENV;" on a line is
considered
as an (ill-formed) module import and cannot be
parsed as an
expression-statement.

Revert P1703R1. Document syntax restrictions to
aid tools
in the form of recommendations, outside of the
C++ language
standard.

Rejected

There was no consensus
to adopt this change.

US
136

 15.04

 te The optional ‘export’ keyword of a module
declaration must come from source file inclusion,
as it is part of the pp-balanced-token-sequence. It
may come from macro expansion. The first
restriction is clearly an error. The second
leniency is probably a difficulty for scanners.

Change the pp-global-module-fragment reduction
to: module ; pp-balanced-token-seq export-opt
module

Accepted with
Modification

See P1857

US
137

 15.04

 te The post-phase-4 token sequences for module
declarations specify that the module keyword

Either: 1) add an example showing such empty
expansion is valid or 2) add text restricting the use

Accepted with
Modification

https://wg21.link/p1815
https://wg21.link/p1815
https://wg21.link/p1857

Template for comments and secretariat observations Date:2020-02-15 Document: Project: 14882

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 35 of 99

 must not come from macro expansion. (And if
other comments are accepted, this will be true in
more cases, and for the export keyword too.)
 There is no restriction of interspersing NULL
macro expansions, which again conflicts with the
needs of source scanners. For instance:
 module;
 #define empty
 empty export empty module empty foo;
Is this acceptable?

of such use See P1857

US
138

 15.04

 te The global module fragment grammar defines a
pp-balanced-token-sequence. It is unclear
whether the tokens of an import control line
passed through to the c++ parser are part of the
balanced sequence. (And therefore naked import
control lines cannot appear in the GMF, and the
effect of any unbalanced token sequence it might
contain extends beyond the control line.)

Clarify that: a) the tokens of an import control line
are, and b) the tokens of other control lines are
not (because they do not emit pp-tokens). Note:
Implementations might emit tokens to pass a
pragma directive through, but the effect is as-if
that is a single internal token.

Accepted with
Modification

See P1857

US
139

 15.04 & 6.5

 te When there is no Global Module Fragment, a
module declaration’s tokens may be the result of
macro expansion. When a GMF is present [10.4],
the module token of the module declaration must
not be the product of macro expansion. There is
no restriction on the module keyword introducing
a private module fragment in either case. This is
at best inconsistent, and believed to be an error
in conveying design intent. It presents difficulty
with source scanners, that must therefore
perform complete preprocessing to detect the
module declaration in the non-GMF case.
Therefore there is nothing to gain by the
restrictions placed on the GMF.However,
scanners could gain advantage if the restriction
was applied to all module declarations. There is
no implementation difficulty with either approach
when compiling as specified in the std, it is purely
for processing source code in an extra-standard
manner. Compilers may have implementation
difficulty detecting erroneous macro expansion
generation as currently specified, when being
given already-preprocessed tokens, as they

Either: a) The export & module tokens of a
module-declaration, private module-fragment &
global module fragment introducers must all never
be the product of macro expansion, or b) No
restriction on producing any export & module
tokens from macro expansion.

Accepted with
Modification

See P1857

https://wg21.link/p1857
https://wg21.link/p1857
https://wg21.link/p1857

Template for comments and secretariat observations Date:2020-02-15 Document: Project: 14882

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 36 of 99

usually cannot tell whether tokens are the result
of macro expansion in that case (i.e. -
fpreprocessed). This is compiling source in a
manner outside the standard, so arguably not a
defect.

US
140

 15.04/1

 te The requirements here apply only to files that

lexically start with module; which means they
have no effect for files where on entry to phase 7,

the first token sequence forms a module
declaration. Among other things, this allows a

module declaration to come from an #include or
macro expansion.

Require that TUs that don't start with module;
either start with a module declaration at the start
of phase 4, or they shall not contain any module
declaration in phase 7. This would also be
addressed by the changes in P1857

Accepted with
Modification

See P1857

US
141

 15.05
[cpp.replace
]

11 Te It is undefined behavior to have a preprocessing
directive inside the parens of a macro
invocation. Undefined behavior lexing the
program has no place in a modern standard, and
this should be a diagnosable error, or (perhaps
conditionally) supported behavior to immediately
apply that directive. For example, existing
practice on many compilers is to allow an if-
section, although at least one compiler is known
to diagnose an error in this case.

Make this either a diagnosable error, or (perhaps
conditionally) supported behavior to immediately
apply that directive.

Rejected

There was no consensus
to adopt this change.

US
142

 15.05.2
[cpp.
stringize]

2 Te It is undefined behavior for token pasting
with # to produce anything that is not a valid
string literal. Undefined behavior lexing the
program has no place in a modern standard, and
this should be a diagnosable error.

Make this a diagnosable error Rejected

There was no consensus
to adopt this change.

US
143

 15.05.3
[cpp.concat]

3 Te It is undefined behavior for token pasting
with ## to produce anything that is not a valid
preprocessing token. Undefined behavior lexing
the program has no place in a modern standard,
and this should be a diagnosable error.

Make this a diagnosable error Rejected

There was no consensus
to adopt this change.

US
144

 15.06
[cpp.line]

3 Te If a #line directive is given a digit sequence
outside the range 1..2,147,483,647 the behavior
is undefined. Undefined behavior lexing the
program has no place in a modern standard, and
this should be a diagnosable error.

Make this a diagnosable error Rejected

There was no consensus
to adopt this change.

.

US
145

 15.06
[cpp.line]

5 Te If, after macro replacement, a #line directive does
not exactly match one of the two supported
forms, the behavior is undefined. Undefined

Make this a diagnosable error Rejected

There was no consensus

https://wg21.link/p1857

Template for comments and secretariat observations Date:2020-02-15 Document: Project: 14882

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 37 of 99

 behavior lexing the program has no place in a
modern standard, and this should be a
diagnosable error.

to adopt this change.

GB
146

 15.10 Te Concepts are missing a feature test macro

There is no feature test macro for the concepts

language facility.

Add a suitable definition of __cpp_concepts to
[tab:cpp.predefined.ft]

Accepted with
Modification

See P1902

GB
147

 15.10 Te Add a feature-test macro for consteval Add __cpp_consteval to Table 17

[tab:cpp.predefined.ft].

Accepted with
Modification

See P1902

US
148

 15.10
[cpp.
predefined]

4 Te If a user attempts to #undef or #define a macro
named 'defined', the behavior is
undefined. Undefined behavior lexing the
program has no place in a modern standard, and
this should be a diagnosable error.

Make this a diagnosable error Rejected

There was no consensus
to adopt this change.

US
149

 15.10
[cpp.
predefined]

4 Te If a user attempts to #undef or #define a
predefined macro named in this clause, the
behavior is undefined. Undefined behavior lexing
the program has no place in a modern standard,
and this should be a diagnosable error.

Make this a diagnosable error Rejected

There was no consensus
to adopt this change.

US
150

 15.10

[cpp.

predefined]

Table 17 GE Familiar template syntax for generic lambdas
should have a feature test macro: it is a
significant enough feature

Add __cpp_lambda_template_parameters Accepted with
Modification

See P1902

US
151

 16 - 32

Library

 ge Please address open LWG issues. Appropriate action would include making changes
to the CD, identifying an issue as not requiring a
change to the CD, or deferring the issue to a later
point in time.

Accepted

US
152

 16.03.4
[defns.
comparison]

 Te This definition should be updated to
accommodate the new 3-way comparison
operator (7.6.8 [expr.spaceship]) as well.

Update the definition Accepted

See LWG Issue 3395

US
153

 16.04.1.3

[structure.re
quirements]

(library)

5 ed P0898 applied a Cpp98 prefix (which was
editorially changed to Cpp17) to all named
requirements, in order to avoid ambiguity with
library-defined concepts that had the same
names. The named requirements are frequently
part of user-facing library documentation, so
changing their spelling carries a substantial

Delete the Cpp17 prefix from all named
requirements, and update [structure.requirements]
(16.4.1.3) paragraph 5 to reflect that change.

Rejected

There was no consensus
to adopt this change.

https://wg21.link/p1902
https://wg21.link/p1902
https://wg21.link/p1902
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-active.html
https://cplusplus.github.io/LWG/issue3395
https://wg21.link/P0898

Template for comments and secretariat observations Date:2020-02-15 Document: Project: 14882

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 38 of 99

educational cost. But after the application of
P1754, the standard consistently uses capital
letters in the spelling of all named requirements,
and consistently avoids capital letters in the
names of library-defined concepts, so the prefix
is no longer necessary for disambiguation. In
short, the benefits of the Cpp17 prefix have
evaporated, but the costs remain.

US
154

 16.04.1.3
[structure.re
quirements]
and many
others

n/a ed P0898R3 applied a "Cpp98" prefix (which was
editorially changed to "Cpp17") to all named
requirements, in order to avoid ambiguity with
library-defined concepts that had the same
names. The named requirements are frequently
part of user-facing library documentation, so
changing their spelling carries a substantial
educational cost. But after the application of
P1754R1, the standard consistently uses capital
letters in the spelling of all named requirements,
and consistently avoids capital letters in the
names of library-defined concepts, so the prefix
is no longer necessary for disambiguation. In
short, the benefits of the "Cpp17" prefix have
evaporated, but the costs remain.

Delete the "Cpp17" prefix from all named
requirements, and update 16.4.1.3/p5 to reflect
that change.

Rejected

There was no consensus
to adopt this change.

GB
155

 16.04.1.4

 Ed Consider renaming the "Expects:" and "Ensures:"
elements in Library wording

The choice of Expects: and Ensures: for library
preconditions and postconditions was done for

consistency with the C++ Contracts feature.
Since Contracts are not in C++20, and if they

return there's no guarantee that "expects" and
"ensures" will be used, we should consider

reverting to more conventional terms such as
"preconditions" and "postconditions".

Change "Expects:" to "Preconditions:" and
"Ensures:" to "Postconditions:" everywhere.

Accepted - Editorial

US
156

 16.04.2.2.6

2 te The text reads "The type of a customization point
object shall model semiregular." However, the
type of a customization point objecct is very likely
to be const, and const types do not model
semiregular. We should instead be testing the cv-
unqualified type.

Should read, "The type of a customization point
object ignoring cv-qualifiers shall
satisfy semiregular."

See https://cplusplus.github.io/LWG/issue3285

Accepted

See LWG Issue 3285

US 16.05.1.2
[headers]

4 Te The header <cstddef> should be added to the set
of importable C++ library headers. It contains

Add <cstddef> to the list of importable headers. Rejected

https://wg21.link/P1754
https://wg21.link/p0898r3
https://cplusplus.github.io/LWG/issue3285
https://cplusplus.github.io/LWG/issue3285

Template for comments and secretariat observations Date:2020-02-15 Document: Project: 14882

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 39 of 99

157

 important C++ features
like std::byte and std::nullptr_t that are more than
just C compatibility. Likewise, the C compatibility
layer is essentially important vocabulary typedefs
that the C++ standard library relies on and are
not otherwise exported from importable C++
library header units.

There was no consensus
to adopt this change.

US
158

 16.05.1.3

[compliance
]

 te <coroutine> is listed as a freestanding header,
however, it includes <compare>, which is not
freestanding. Please ensure that <coroutine> is a
freestanding header.

One possible resolution would be to make
<compare> a freestanding header by adopting
P1855. If that is not possible, <coroutine> could
be modified to remove the dependency on
<compare>. We do not consider making
<coroutine> non-freestanding an acceptable
solution.

Accepted with
Modification

See P1855

US
159

 16.05.1.3

[compliance
]

 te Please ensure that <compare> is a freestanding
header.

Adopt P1855. Accepted with
Modification

See P1855

GB
160

 16.05.1.3

 Te <compare> should be in freestanding
implementations.

The <compare> header is closely tied to a
language feature, and should be defined even for
freestanding implementations.

Add <compare> to tab:headers.cpp.fs in
[compliance].

Accepted with
Modification

See P1855

PL
161

 16.05.1.3
[compliance
]

 te <compare> is currently not a freestanding
header. This causes two problems:

1. It is impossible to use the spaceship operator
functionality in a minimal freestanding
implementation.

2. The <coroutine> header, which is freestanding,
uses <compare>, which is not.

Adopt P1855.
Accepted with
Modification

See P1855

US
162

 16.05.3.5
[allocator.
requirement
s]

[tab:allocato
r.req.var]

Te The default behavior for a.destroy is now to
call destroy_at

Replace "default" entry with:
destroy_at(c)

Accepted

US
163

 16.05.3.5
[allocator.
requirement

[tab:allocato
r.req.var]

Te The default behavior for a.construct is now to
call construct_at

Replace "default" entry with:
construct_at(c, std::forward<Args>(args)...)

Accepted

https://wg21.link/P1855
https://wg21.link/p1855
https://wg21.link/P1855
https://wg21.link/p1855
https://wg21.link/p1855
https://wg21.link/p1855

Template for comments and secretariat observations Date:2020-02-15 Document: Project: 14882

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 40 of 99

 s]

FR
164

 16.05.4.9

 te While char8_t, char16_t and char32_t are

assumed to encode utf-8, utf-16 and utf-32 code

units respectively, the encoding of u8string,

u16string and u32string objects is not specified.

Adopt P1880 Rejected

There was no consensus
to adopt this change.

DE
165

 16.05.5.4

 te It is unclear whether friend functions declared in
a class are intended to be found via argument-
dependent lookup only (and not via regular
unqualified lookup), or whether the
implementation is permitted to add declarations
of that function that would allow unqualified
lookup to succeed.

For an example, see 17.11.2.2.

Clarify in the vicinity of 16.5.5.4 that friend
functions are found via argument-dependent
lookup only, unless a synopsis (but not a detailed
specification, 16.4.1.4) expressly shows a
namespace-scope declaration of that function.

For existing friend functions, move non-trivial
definitions from the synopses to regular
descriptive elements.

Accepted with
Modification

See P1965

GB
166

 17.03.1

 Te The new library span does not have a feature test
macro

Add a definition of __cpp_lib_span to

[tab:support.ft]

Accepted with
Modification

See P1917

US
167

 17.03.1

Applies to
Table 36
Standard
Library
Feature
Test Macros
[tab:support
.ft]

Table 36 te We forgot another feature test macro. Add a new entry to the table:

__cpp_lib_nonmember_signed_size | 201907L |
<iterator>

Accepted with
Modification

See P1902

DE
168

 17.03.1

Table 36 te No consistent policy is applied to feature-test
macros
involving "constexpr" annotations and related
features
in the standard library.

Currently, we have

__cpp_lib_array_constexpr (note naming
deviation)

Apply a consistent policy to constexpr-related
library features:
Either provide a single feature-test macro and
remove all others, or
create separate ones for each feature.

Accepted with
Modification

See P1902

https://wg21.link/p1965
https://wg21.link/p1917
https://wg21.link/p1902
https://wg21.link/p1902

Template for comments and secretariat observations Date:2020-02-15 Document: Project: 14882

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 41 of 99

__cpp_lib_constexpr
__cpp_lib_constexpr_dynamic_alloc
__cpp_lib_constexpr_invoke
__cpp_lib_constexpr_string
__cpp_lib_constexpr_swap_algorithms
__cpp_lib_constexpr_vector

Some approved papers adding "constexpr"
instructed to
increase the value of the generic
__cpp_lib_constexpr
macro, others introduced separate macros.

Paper P0202R3 instructed to add
__cpp_lib_constexpr_algorithms,
but that was apparently never reflected in the
C++ Working Draft.
Paper P1424R1 resolved to use
__cpp_lib_constexpr for all
constexpr-related library features, but that was
apparently
incompletely implemented.

DE
169

 17.08.2

paragraph 3 te The expectation of the note that a default
argument expression
involving current() causes a source_location to
be constructed
that refers to the site of a function call where that
default
argument is needed has no basis in normative
text.
In particular, 9.2.3.6 paragraph 5 seems to imply
that the
name "current" and its semantics are bound
where it appears
lexically in the function declaration.

Add normative text to express the desired
semantics.

Rejected

There was no consensus
to adopt this change.

US
170

 17.11

[cmp]

 te The strong_equality and weak_equality
comparison categories don’t make sense now
that we split equality from ordering. It doesn’t
make sense to declare an operator<=> that
returns one of these – they just add needless
complexity.

Remove strong_equality and weak_equality.
Simplify three_way_comparable{,_with} to only
deal with the ordering categories.

Accepted with
Modification

See P1959

US 17.11.02.1 4 te Substitutability is ill-defined because it circularly Either clarify the definition of substitutability, or Rejected

https://wg21.link/p1959

Template for comments and secretariat observations Date:2020-02-15 Document: Project: 14882

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 42 of 99

171

 depends on “comparison-salient state” and it is
itself used to determine the correct return time of

comparisons. Comparisons define what is
“comparison-salient”, and if f can distinguish

between a and b, it must be examining state that
the comparison did not consider salient.

eliminate the distinctions between strong and
weak comparisons, which are the only place that
definition is used.

There was no consensus
to adopt this change.

US
172

 17.11.02.1

4 Ge The concept of "substitutability" is meaningless:
beyond issues like failing to require that f is pure

and referring to "public const members" of
something that might not be a class type, the only

plausible definition of "comparison-salient state"
is "any member of any notional tuple whose

comparison is equivalent to that of the type", in
which case everything has the property

tautologically.

Replace the paragraph:

"For the purposes of this subclause, a type T is

said to exhibit substitutability if, given two values
of type T such that a == b is true, a and b

represent the same abstract value (as defined by
T).".

Alternatively, remove the definition as well as
std::weak_equality and std::weak_ordering (which

tellingly are never used except to propagate their
use in user classes) and consider renaming

std::strong_equality to std::equality and
std::strong_ordering to std::total_ordering.

Rejected

There was no consensus
to adopt this change.

CA
173

 17.11.02.2
[cmp.weake
q]

 te With the separation of <=> and ==,
weak_equality has lost its primary use (of being a
potential return type of <=>). Currently
weak_equality serves no useful purpose in the
standard (i.e., nothing in std acts on it), and just
causes confusion (what’s the difference between
weak and strong, when should I use which?)
The difference between the two is ill-defined
(involving substitutability and “salient” properties,
which are also vaguely defined). The best
definition of equality for a type is the type’s own
== operator. We should not try to sub-divide the
concept of equality.

Remove weak_equality and all references to it.
Rename strong_equality to just equality.
(New wording probably requires a paper,
forthcoming).

Accepted with
Modification

See P1959

GB
174

 17.11.04

 Te It's confusing for equality_comparable[_with] and
totally_ordered[_with] to be in a completely

different clause to three_way_comparable[_with].
We recommend moving [cmp.concept] to the

same location as the others.

Move [cmp.concept] to Clause 18
[concepts.compare] and rename the sub-clause

as [concepts.threewaycomparable] and have it
included in <concepts>.

Rejected

There was no consensus
to adopt this change.

GB
175

 17.11.06

 Te Move [cmp.object] to [comparisons]

While it's nice to have <compare>, fragmenting

Move [cmp.object] to be a sub-clause of
[comparisons] and have it (additionally) included

Agreed - Editorial

https://wg21.link/p1959

Template for comments and secretariat observations Date:2020-02-15 Document: Project: 14882

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 43 of 99

 function objects makes library organisation
difficult. It would be good to migrate this type to

[comparisons], where it will be with types that are
similar.

in <functional>.

US
176

 17.11.06
[cmp.object]

20.14.7
[comparison
s]

20.14.8
[range.cmp]

 Te The library defines a consistent total order for
pointers in three places, but demands that only
two of them be consistent. The total order in
[comparisons] should be required to be the same
total order as the other two subclauses. Ideally,
this wording on the total order could be
consolidated into one place, possibly in the
clause 16 library-wide wording, and cross-
referenced from these three places, simplifying
the wording.

Make a consistent definition in a single place, and
have all three uses refer to it.

Accepted

See P1961

JP5
177

 17.11.07

p1.3 ed "ISO/IEC/IEEE 60599" is a typo. ISO/IEC/IEEE 60559 Accepted - Editorial

CA
178

 17.11.07
[cmp.alg]

 te std::strong_order, weak_order, and partial_order
have special cases for floating point, but are
missing special casing for pointers (whereas
compare_three_way and std::less have the
special casing for pointers)

1. Change [cmp.alg] bullet 1.4 from
"Otherwise, strong_ordering(E <=> F) if it is a
well-formed expression."
to
"Otherwise,
strong_ordering(compare_three_way()(E, F)) if it
is a well-formed expression."

2. Change [cmp.alg] bullet 2.4 from
"Otherwise, weak_ordering(E <=> F) if it
is a well-formed expression."
to
"Otherwise,
weak_ordering(compare_three_way()(E, F)) if it is
a well-formed expression."

3. Change [cmp.alg] bullet 3.3 from
"Otherwise, partial_ordering(E <=> F) if
it is a well-formed expression."
to
"Otherwise,
partial_ordering(compare_three_way()(E, F)) if it
is a well-formed expression."

Accepted

See LWG Issue 3324

https://wg21.link/p1961
https://cplusplus.github.io/LWG/issue3324

Template for comments and secretariat observations Date:2020-02-15 Document: Project: 14882

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 44 of 99

FR
179

 17.12.03.2

 te coroutine_handle::from_address
and coroutine_handle::address
limit future evolutions while providing limited
benefits

Remove the functions

coroutine_handle::from_address

and coroutine_handle::address

Rejected

There was no consensus
to adopt this change.

BG4
180

P 524 17.12.05

1 ge (Related to BG2) The code example uses the
void-returning variant of await_suspend().

Change suspend_never::await_suspend() to
return its argument and change
suspend_always::await_suspend() to return
nullptr.

Rejected

There was no consensus
to adopt this change.

US
181

 17-32 Te The spaceship operator<=> is typically not
usable unless the library header <compare> is
directly included by the user. Many standard
library headers provide overloads for this
operator. Worse, several standard classes have
replaced their existing definition for comparison
operators with a reliance on the spaceship
operator, and existing code will break if the
necessary header is not (transitively) included. In
a manner similar to the mandated library headers
transitively #include-ing <initializer_list> in
C++11, these headers should mandate a
transitive #include <compare>.

Add:
#include <compare>
to the header synopsis for each of the following
headers:
<array>
<chrono>
<coroutine>
<deque>
<forward_list>
<filesystem>
<iterator>
<list>
<map>
<memory>
<optional>
<queue>
<ranges>
<regex>
<set>
<stack>
<string>
<string_view>
<system_error>
<thread>
<tuple>
<type_index>
<unordered_map>
<unordered_set>
<utility>
<variant>
<vector>

Accepted

See LWG Issue 3330

https://cplusplus.github.io/LWG/issue3330

Template for comments and secretariat observations Date:2020-02-15 Document: Project: 14882

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 45 of 99

US
182

 18

[concepts]

 te P1754 changed the naming convention for
concepts in standard library from PascalCase to
snake_case. Using snake_case for standard
library concepts creates confusion for users
about which standard library facilities are
concepts and which are concrete types. For
example:

● function (type) & invocable (concept).
● iterator (type) & range (concept).
● iterator (type) & input_iterator (concept).
● bool (type) & boolean (concept).

Please consider better ways of disambiguating
standard library concepts from types, functions,
and other kinds of things.

Possible resolutions include:

● Place all standard library concepts into a nested
namespace, such as std::concepts.

● Add a Hungarian-notation-style prefix or suffix to
standard library concepts, e.g. c_* or *_c.

● Be stricter about requiring that concept names
be adjectives not nouns (for example, range is a
noun).

● Use a different casing style for standard library
concepts.

Rejected

There was no consensus
to adopt this change.

GB
183

 18 Te Adopt P1716

We're currently in a partial state between the old

std::relation and what's currently in the CD.

We should adopt P1716 to move to complete the

change.

See P1716 Accepted

See P1716

GB
184

 18 Te `object` should be a concept

is_object_v is used in multiple places around the
content that ranges introduces; it feels like a

fundamental core concept, and we should
probably introduce this as a concept so as to not

shoot ourselves in the foot.

Add to [concepts]:

template<class T>
concept object = is_object_v<T>;

Respecify movable so that it subsumes object.

Respecify incrementable_traits, cond-value-type,

iterator_traits, empty_view, single_view, ref_view,
filter_view, transform_view, take_while_view,

drop_while_view, and semiregular-box, to require
object<T> instead of is_object_v<T>.

Rejected

There was no consensus
to adopt this change.

US
185

 18.02

[concepts.

equality]

 te This section talks about “implicit expression
variations” but it isn’t actually clear what any of
this wording means or how it is intended to be
used.

See also:
https://github.com/ericniebler/stl2/issues/536 and
https://github.com/ericniebler/stl2/issues/537

Clarify the meaning of the wording and its
intended use.

Accepted with
Modification

See P2102

GB
186

 18.02 Te Rename "equality preserving"

The term "equality preserving" is often called

Consider changing occurrences of "equality
preserving" and "equality-preserving" and

Rejected

There was no consensus

https://wg21.link/P1754
https://wg21.link/p1716
https://github.com/ericniebler/stl2/issues/536
https://github.com/ericniebler/stl2/issues/537
https://wg21.link/p2102

Template for comments and secretariat observations Date:2020-02-15 Document: Project: 14882

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 46 of 99

 "deterministic" in other contexts. Is there a better
name here, particularly considering the negative

of "not required to be equality preserving".

"equality-preservation" to something better,
possibly based on 'deterministic'.

Affects the following (sub)subclauses:

[concept.convertible]

[concept.commonref]
[concept.swappable]

[concept.equalitycomparable]
[concept.invocable]

[concept.regularinvocable]
[range.cmp]

[iterator.synopsis]
[iterator.concept.readable]

[iterator.concept.writable]
[iterator.concept.winc]

[iterator.concept.output]
[range.range]

to adopt this change.

Two different vectors can
have different capacities.

GB
187

 18.02

 Te What does equality-preservation imply for user-
defined concepts?

Expressions declared in a requires-expression in

this document are required to be equality-
preserving, except for those annotated with the

comment "not required to be equality-preserving."

While the wording concerns itself with standard

concepts, it does not say anything about user-
defined concepts. Should it be considered

standard practice for user-defined requirements
to be equality-preserving unless otherwise

specified too?

Example:

template<typename T>
concept spaceship_example_dont_use_me =

 std::regular<T> and
 std::totally_ordered<T> and

 requires(std::remove_reference_t<T> const& x,
 std::remove_reference_t<T> const& y) {

 x <=> y; // is this required to be equality-
preserving too?

 };

Provide clarification for whether or not user-
defined concepts are required to be equality-

preserving unless otherwise specified.

Rejected

There was no consensus
to adopt this change.

GB
188

 18.02

 Te Is there a possible issue with stating that
replacing a constant lvalue with a non-constant

 Rejected

There was no consensus

Template for comments and secretariat observations Date:2020-02-15 Document: Project: 14882

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 47 of 99

 lvalue should work?

What if this involves binding to a const reference,

where a non-const lvalue would fail (eg. a deleted
overload)?

to adopt this change.

US
189

 18.02

1 Ge The "equal" relation used to define equality
preservation (and modification) is completely

unspecified (except implicitly when
std::equality_comparable must be modeled),

even for scalar types. It is useful for application
code to rely on different definitions (e.g.,

comparing pointers or through them) for different
algorithm calls; see also comment on

[concept.moveconstructible]/1.

Specify that the relation (or the abstract value) is
implicitly chosen by the program for each use of

the library and that the library produces results
consistent with the definition (so long as the

associated

semantic requirements are satisfied). Specify the

(strongest) notion of equality supported by each
language and library type that models the

appropriate concepts.

Rejected

There was no consensus
to adopt this change.

US
190

 18.02

2 Ge Defining "domain" in terms of a requirement
denies using it as a property of a type (e.g., in

[concept.equalitycomparable]/1.1).

Treat separately the set of values supported and
the set of values used (which are just the input

values to an algorithm and any values it
computes).

Rejected

There was no consensus
to adopt this change.

GB
191

 18.04.13

01.2

Te Clean up definition of "equal"

Should English phrases such as (1.1) "u is equal
to u2" be replaced by a definition using

assertions on == or strong equality. What does
"equal" mean for types with no == or <=>

defined?

How does this relate to equality_comparable?

Consider stronger wording for the definition of

"equal" (e.g. "representationally equal").

Rejected

There was no consensus
to adopt this change.

US
192

 18.04.13

1 Ge With, for example, non-empty std::unique_ptr
objects for which "equal" is defined by

operator==, the move_constructible semantic
requirements are vacuous since there is no equal

u2 to consult.

Replace "equal" in [concepts.equality]/1 with an
equally abstract notion of "value" (that is defined

by the program and propagated by the library).

Rejected

There was no consensus
to adopt this change.

US
193

 18.04.7

[concepts.

arithmetic]

 te C++20 lacks a concept for arithmetic types. This
omission is surprising, as this is a fairly common
use case. For example, suppose I wish to write a
function that squares a number. Pre C++20, I
might write:

Change [concepts.arithmetic] (18.4.7) as follows:

template<class T>
 concept integral = is_integral_v<T>;
template<class T>
 concept signed_integral = integral<T>

Rejected

There was no consensus
to adopt this change.

Template for comments and secretariat observations Date:2020-02-15 Document: Project: 14882

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 48 of 99

template <typename T>

auto square(T x) {

 return x * x;

}

In C++20, it would seem natural to be able to
write:

auto square(std::arithmetic auto x) {

 return x * x;

}

However, such a standard library concept is
missing! Instead, we must write the more
verbose:

template <typename T>

 requires std::is_arithmetic_v<T>

auto square(T x) {

 return x * x;

}

 && is_signed_v<T>;
template<class T>
 concept unsigned_integral = integral<T>
 && !signed_integral<T>;
template<class T>
 concept floating_point =
 is_floating_point_v<T>;
template<class T>
 concept arithmetic = is_arithmetic_v<T>;

GB
194

 18.04.7

 Te Respecify integral and floating_point

Types that model integral or floating_point also
model regular, and should refine regular at a

minimum. To avoid overload resolution
ambiguity, we should reconsider the definition of

both concepts, and introduce two additional
concepts: scalar and arithmetic, which form the

basis of integral and floating_point.

It was noted that this approach now causes there

to be three times as many template instantiations
for all integral and floating-point types. Given that

there are a relatively small and finite number of
integral and floating-point types, the author is not

particularly concerned with this cost, especially
as we move into a world of modules.

It is unclear to the author whether or not the

Minimal change:

template<class T>
 concept scalar = is_scalar_v<T> && regular<T>;

template<class T>
 concept arithmetic =

 is_arithmetic_v<T> &&
 scalar<T> &&

 totally_ordered<T>;
template<class T>

 concept integral = is_integral_v<T> &&
arithmetic<T>;

template<class T>
 concept floating_point = is_floating_point_v<T>

&& arithmetic<T>;

The preferred change is the same as the above,

Rejected

There was no consensus
to adopt this change.

Template for comments and secretariat observations Date:2020-02-15 Document: Project: 14882

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 49 of 99

proposed change can be made after C++20
ships.

but refines arithmetic slightly further, to account
for spaceship.

template<class T>

 concept arithmetic =
 is_arithmetic_v<T> &&

 scalar<T> &&
 totally_ordered<T> &&

 three_way_comparable<T>;

US
195

 18.05.2

 te The boolean concept is over-complicated and
fails to capture what it intends because doing so
would require it to be recursive (i.e., b satisfies
boolean iff the expression b && b also satisfies
boolean, etc.). LEWG decided in Cologne that
the boolean concept should be removed and all
uses of it in the library be replaced with
convertible_to<bool>.

Remove the boolean concept and replace all uses
of it with convertible_to<bool>.

Accepted with
Modification

See P1964

US
196

 18.05.2

[concept.

boolean]

 te The boolean concept is super complicated. Even
still, it is possible to have two types that
separately model boolean that still can’t be used
together. A simpler formulation would be easier
to understand.

Consider the formulation:
template <typename T>
 concept boolean =
integral<remove_cvref_t<T>>;

This won’t accept true_type/false_type but at least
means you can write conditions without bool casts
throughout.

Accepted with
Modification

See P1964

.

GB
197

 18.05.2

 Te Remove concept `boolean`, replace that
requirement with `convertible_to<bool>`

The concept boolean simultaneously:

- has an overly-complex specification

- is costly to check

- doesn't achieve what it was designed to do

ericniebler/stl2 #389 expands on more of this
problem.

The best solution forward is to remove
std::boolean and replace it with

std::convertible_to<bool>.

Strike [concept.boolean].

Replace all occurrences of boolean in the CD with

convertible_to<bool>. Known occurrences:

[cmp.concept]

[concept.equalitycomparable]

[concept.totallyordered]

[concept.predicate]

Accepted with
Modification

See P1964

US
198

 18.05.2

1 Ge It is meaningless to have two different values b1

and b2 in the definition of the concept.

Rename b1 to b; remove b2 and use b (again)

instead.

Accepted with
Modification

See P1964

https://wg21.link/p1964
https://wg21.link/p1964
https://wg21.link/p1964
https://wg21.link/p1964

Template for comments and secretariat observations Date:2020-02-15 Document: Project: 14882

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 50 of 99

GB
199

 18.05.3

 Te Should equality-preservation concern itself with

volatile or data races?

Note text: should this mention volatile as well? Or

data races?

Add a mention of volatile and/or data races to the

note

Rejected

There was no consensus
to adopt this change.

GB
200

 18.05.3

7 Ed Example (7.2) is incomplete and doesn’t show all

of the combinations of pairs or arguments: there
are 6 possible pairs but only 4 are shown. b == d

and a == c are missing. Similarly, the a = c
examples are incomplete.

Account for the missing examples. Rejected

There was no consensus
to adopt this change.

US
201

 18.05.4

 te The totally_ordered_with<T, U> redundantly
requires both common_reference_with<const
remove_reference_t<T>&, const
remove_reference_t<U>&>
and equality_comparable_with<T, U> (which also
has the common_reference_with requirement).
The redundant requirement should be removed.

Change the definition of totally_ordered_with to:

template<class T, class U>
 concept totally_ordered_with =
 totally_ordered<T> && totally_ordered<U> &&
 equality_comparable_with<T, U> &&
 totally_ordered<
 common_reference_t<
 const remove_reference_t<T>&,
 const remove_reference_t<U>&>> &&
 requires(const remove_reference_t<T>& t,
 const remove_reference_t<U>& u) {
 [...as before...]

Accepted

See LWG Issue 3329

GB
202

 18.05.4

 Te Define `totally_ordered[_with]` in terms of

//`partially-ordered-with`//

This will simplify the definition of both concepts

(particularly totally_ordered_with), and make
them in-line with equality_comparable[_with].

Now that we've defined partially-ordered-with for
[cmp.concept], we should consider utilising it in

as many locations as possible.

template<class T> concept totally_ordered =

equality_comparable<T> && partially-ordered-
with<T, T>;

template<class T, class U>

concept totally_ordered_with =

totally_ordered<T> &&
totally_ordered<U> &&

common_reference_with<const
remove_reference_t<T>&, const

remove_reference_t<U>&> &&
totally_ordered<

common_reference_t<
const remove_reference_t<T>&,

const remove_reference_t<U>&>> &&
equality_comparable_with<T, U> &&

Accepted

See LWG Issue 3331

https://cplusplus.github.io/LWG/issue3329
https://cplusplus.github.io/LWG/issue3331

Template for comments and secretariat observations Date:2020-02-15 Document: Project: 14882

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 51 of 99

partially-ordered-with<T, U>;

GB
203

 18.05.4

 Te `common_reference_with` requirement in

`totally_ordered_with` is redundant.

This is already required by

equality_comparable_with, so by reshuffling the
requirements, we can simplify the definition of

totally_ordered_with.

Change totally_ordered_with to:

template<class T, class U>
 concept totally_ordered_with =

 totally_ordered<T> && totally_ordered<U> &&
 equality_comparable_with<T, U> && // moved

up
 totally_ordered<

 common_reference_t<
 const remove_reference_t<T>&,

 const remove_reference_t<U>&>> &&
 requires(const remove_reference_t<T>& t,

 const remove_reference_t<U>& u) {
 { t < u } -> boolean;

 { t > u } -> boolean;
 { t <= u } -> boolean;

 { t >= u } -> boolean;
 { u < t } -> boolean;

 { u > t } -> boolean;
 { u <= t } -> boolean;

 { u >= t } -> boolean;
 };

Accepted

See LWG Issue 3329

FR
204

 18.06

1 te The concepts semiregular and regular require

default constructibility. While default

constructibility can be convenient in some cases,

it can also be very harmful when there is no

obvious default value for a type.

Providing a default constructor for those types is

a well known source of hard to find bugs, where

the initial and meaningless value can be used as

if it were a real one. Type with meaningless

default constructor are even worse than use of

uninitialized data, because this use can be

detected by tools, while the use of meaningless

data cannot.

Regular is a nice name for something that should

be fairly common, and adding a default

constructibility requirement for regular will lead to

many user types being default-constructible with

no good reasons.

Remove the semiregular concept

Change the definition of regular to:

template<class T>

concept regular = copyable<T> &&

equality_comparable<T>;

Adjust the text in some places, such as:

16.4.2.2.6: The type of a customization point

object shall model default_constructible and

default constructible

An alternative would be to totally remove both

semiregular and regular from the standard, since

anyways these concepts are not used much.

Rejected

There was no consensus
to adopt this change.

https://cplusplus.github.io/LWG/issue3329

Template for comments and secretariat observations Date:2020-02-15 Document: Project: 14882

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 52 of 99

See also

https://quuxplusone.github.io/blog/2018/05/10/reg

ular-should-not-imply-default-constructible/ for a

more detailed discussion on this subject

GB
205

 18.07.3

 Te The regular_invocable name is potentially
misleading as being related to the regular

concept.

Suggest pure_invocable or similar to indicate that

neither the function or the arguments are
changed. Since this is only a semantic difference

from invocable then a clear name would help

If the “equality preserving” term were changed to

deterministic (or similar) then
deterministically_invocable might be suitable

(and contrasts nicely in meaning with
non_deterministically_invocable).

Possible alternatives to regular_invocable:

pure_invocable

consistent_invocable

Or

deterministically_invocable
deterministic_invocable

If regular_invocable is renamed to either of these
latter two, consider also renaming invocable to

non_deterministic(ally)_invocable.

Rejected

There was no consensus
to adopt this change.

GB
206

 18.07.3

 Te What is the intention for regular_invocable?

The definition of regular_invocable states that

calling invoke is equality-preserving and that
neither the function object, nor its arguments are

modified. A chat with Casey Carter in Cologne
about why the function object can't also be const-

qualified revealed that the intention of
regular_invocable is to refine invocable so that

it's equality-preserving. The author is not
convinced that the current wording is in sync with

this hallway discussion (by one of its designers).

Examples:

auto eq1 = [](auto const x) { return x * x; };
auto eq2 = [](auto& x) { x *= x; };

auto eq3 = [&x]{ x *= x; };

The author's understanding is that all three of

these lambdas are equality-preserving, but only
decltype(eq1) models regular_invocable.

Please confirm that the definition of
regular_invocable is correct.

If it is correct, please consider requiring that the
function object also be const-qualified (this will

help to prevent changes to the function object).

Rejected

There was no consensus
to adopt this change.

US
207

 19.05.2.5
[syserr.errc
at.objects]

 te The lifetime of the objects returned by functions
like std::system_category() is unclear. Because
these objects are meant to be referred to by
std::error_code values, issues over the lifetime of
the error category objects exposes use of

Provide a convenient mechanism to establish the
lifetime of all similar error category objects
associated with the implementation in one shot
(perhaps in the style of
[iostream.objects.overview]). Encourage

Rejected

There was no consensus
to adopt this change.

https://quuxplusone.github.io/blog/2018/05/10/regular-should-not-imply-default-constructible/
https://quuxplusone.github.io/blog/2018/05/10/regular-should-not-imply-default-constructible/

Template for comments and secretariat observations Date:2020-02-15 Document: Project: 14882

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 53 of 99

std::error_codes during program termination
([basic.start.term]) to undefined behavior.

implementations to allow references to the
associated objects as-if their lifetime began during
constant initialization before that of any object with
a non-trivial destructor.

DE
208

 20.02.1
[utility.syn]

 te Comparing and converting numbers of different
numeric types is, should
be a trivial task, but it's not because of implicit
conversion

P0586 was voted in Cologne, it adds free
functions for comparing
different numeric types as if they where signed
types.

Adopt P0586 as discussed in Cologne and
commented on GitHub
(https://github.com/cplusplus/papers/issues/259)

Accepted
See P0586

US
209

 20.04.2

[string.view]

 te string_view should be made to be constructible
from any contiguous character range in the new
Ranges world.

Adopt P1391 Accepted

See P1394

See P1391

CA
210

 20.05
[tuple], 20.7
[variant], 31
[atomics],
Annex D
[depr.*]

 te Deprecate some uses of volatile in the standard
library.

Adopt P1831. Accepted with
Modification

See P1831

US
211

 20.05
[tuple], 20.7
[variant], 31
[atomics],
Annex
D[depr.*]

 te Deprecate the library uses of volatile which were
voted for deprecation by LEWG.

Adopt P1831R0. Accepted with
Modification

See P1831

US
212

 20.07.3.1

[variant.ctor]

 te Resolve LWG 3228: surprising variant
construction

Resolve LWG 3228 Accepted with
Modification

See P1957

US
213

 20.10.08.2

17 te uninitialized_construct_using_allocator should
use construct_at instead of operator new

Effects: Equivalent to:
return ::new(static_cast<void*>(p)) construct_at(p,

 T(make_obj_using_allocator<T>(alloc,
std::forward<Args>(args)...)));

Accepted

See LWG Issue 3321

US
214

 20.10.10 1 te propagation traits for std::allocator are
inconsistent: POCMA and POCS should never

Add to allocator class definition: Rejected

There was no consensus

https://github.com/cplusplus/papers/issues/259
https://wg21.link/p0586
https://wg21.link/p1391
https://wg21.link/p1394
https://wg21.link/p1391
https://wg21.link/p1831
https://wg21.link/p1831r0
https://wg21.link/p1831
https://wg21.link/p1957
https://cplusplus.github.io/LWG/issue3321

Template for comments and secretariat observations Date:2020-02-15 Document: Project: 14882

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 54 of 99

 differ using propagate_on_container_move_assignment
= true_type;
using propagate_on_container_swap = true_type;
using is_always_equal = true_type;

to adopt this change.

US
215

 20.10.11
[specialized.

algorithms]

6 TE The ‘voidify’ change introduced in ‘The One
Ranges Proposal’ damages const correctness.

Delete voidify, and change places using voidify
back to static_cast<void*>.

Rejected

There was no consensus
to adopt this change.

US
216

 20.11.08

[util.smartpr.
atomic]

31

[atomics]

 ed Please move the section specifying the
atomic<shared_ptr<T>> and
atomic<weak_ptr<T>> specializations from
[utilities] (Clause 20) to [atomics] (Clause 31) so
that it is located within the same section as the
rest of atomic<T>. If this text is not relocated, it is
more likely that the atomic<shared_ptr<T>>
specializations will be overlooked in future
changes to atomic<T>. We have encountered
this same issue in the past with the <numeric>
algorithms, which previously lived in [numerics],
and were frequently overlooked when updates
were made to [algorithms]. Moving the section
that the text is in is purely an editorial change and
does NOT imply changing which header the
specializations are in.

Move [util.smartptr.atomic] (20.11.8) from [utilities]
(Clause 20) to right after [atomics.types.memop]
(31.8.5) in [atomics] (Clause 31). E.g. Make
[util.smartptr.atomic] 31.8.6. The stable tag should
not be changed.

Accepted - Editorial

US
217

 20.12.03 &
20.12.3.2

 2 te polymorphic_allocator::allocate_object and
new_object should be [[nodiscard]]

Add [[nodiscard]] in front of the return type for
allocate_object and new_object in class
declaration and in member-function description for
polymorphic_allocator template.

Accepted

See LWG Issue 3312

JP6
218

 20.12.03.2

p1 ed It's better to use a C++ property than C standard
library macro, SIZE_MAX.

Replace "SIZE_MAX" with
"numeric_limits<size_t>::max()"

Accepted with
Modification

See LWG Issue 3310

JP7
219

 20.12.03.2

p8.1 ed It's better to use a C++ property than C standard
library macro, SIZE_MAX.

Replace "SIZE_MAX" with
"numeric_limits<size_t>::max()"

Accepted with
Modification

See LWG Issue 3310

US
220

 20.14.08

2 Te The implementation-defined total order should be

the same as that used by [comparisons].

State so.

Accepted with
Modification

See P1961

https://cplusplus.github.io/LWG/issue3312
https://cplusplus.github.io/LWG/issue3310
https://cplusplus.github.io/LWG/issue3310
https://wg21.link/p1961

Template for comments and secretariat observations Date:2020-02-15 Document: Project: 14882

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 55 of 99

US
221

 20.14.08

3, 7 Ge Requiring the conversions to be equality-
preserving is meaningless absent a definition of

equality for the pointer type (which serves to
constrain the definition for the parameter types).

Define it: in this case, in terms of the
implementation-defined total order.

Rejected

There was no consensus
to adopt this change.

FR
222

 20.15.10 te std::is_constant_evaluated is easily misused,

since it will always be true in if constexpr

conditions,

Make std::is_constant_evaluated a language

feature by adopting P1938 (if consteval {})

Rejected

There was no consensus
to adopt this change.

GB
223

 20.20.02

 Te What does "not a format string" mean?

std::format throws when the relevant argument "is
not a format string", but [format.string] doesn't

clearly say when a given input is "not a format
string". Is "{a}" a format string consisting of those

verbatim characters (because it doesn't match
the grammar for a replacement field) or is it not a

format string?

Define how "errors" in a format string are treated. Rejected

There was no consensus
to adopt this change.

GB
224

 20.20.02

 Te Format string grammar is in terms of narrow
characters only

The BNF grammar for format strings is specified
in terms of char literals like '{' but it's not clear

what that means for wide character strings such
as L"{}".

Clarify the (obvious) mapping from wide
characters to terminals in the grammar, i.e. L'{' is

equivalent to '{' etc.

Consider using the same grammar style as the

core language, instead of a modified BNF.

Rejected

There was no consensus
to adopt this change.

GB
225

 20.20.02.2

 Ed std::format() alignment specifiers should be
independent of text direction

The align specifiers for formatting standard

integer and string types are expressed in terms of
"left" and "right". However, "left alignment" as

currently defined in the format() specification
might end up being right-aligned when the

resulting string is displayed in a RTL or
bidirectional locale.

This ambiguity can be resolved by removing "left"
and "right" and replacing with "start" and "end",

without changing any existing implementation
and without changing the intent of the feature.

In [tab:format.align]:

Forces the field to be left-aligned

within <ins>aligned to the start of</ins> the
available space

and

Forces the field to be right-aligned

within <ins>aligned to the end of</ins> the
available space

Accepted

See LWG Issue 3327

https://cplusplus.github.io/LWG/issue3327

Template for comments and secretariat observations Date:2020-02-15 Document: Project: 14882

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 56 of 99

GB
226

 20.20.02.2

 Te Make locale-dependent formats for std::format()
congruent with default formatting

The design of format() prefers "locale-
independent" formatting options for performance

reasons. It provides very limited support for
locale-dependent formatting via the 'n' specifier.

It's particularly problematic that the 'n' specifier
for floating point numbers is specifically limited to

the chars_format::general presentation. It would
be very useful to have access to

chars_format::scientific and chars_format::fixed
formatting with locale-dependent presentation.

Adding these features to std::format() at this
stage would require significant wording changes

that are too large to contain in a comment.
However, one approach that could be taken in

the future would be to make 'n' be an additional
suffix that could be added to format specifiers,

rather than being a lone format specifier. This
would enable locale-dependent formatting of any

of the conversions of any of the arithmetic types.

In order to keep the design space open for

making this change in a future version of the
standard, it would be ideal for 'n' conversions to

always be congruent with the default conversion.
It provides an intuitive semantic: 'n' is the same

as "no specifier", but with locale-dependent
presentation.

The integer and charT presentation types
currently specify 'n' conversions that are

congruent with the default conversion.

The bool and floating-point presentation types

have 'n' conversions that are not congruent with
the default conversion.

For C++20:

- Remove the 'n' conversion for bool.

auto s format("{:n}", 1);
// Committee Draft: s contains "1"

// Proposed: ill-formed format string

Making the 'n' conversion for floating-point match

In [tab:format.type.bool]: Remove n.

In [tab:format.type.float]: Replace the 'Meaning' of

the n specifier with:

If precision is specified, equivalent to

to_chars(first, last, value, chars_format::general,
precision), where precision is the specified

formatting precision; equivalent to to_chars(first,
last, value) otherwise. The context's locale is used

to insert the appropriate digit group and decimal
radix separator characters.

Accepted with
Modification

See P1892

https://wg21.link/p1892

Template for comments and secretariat observations Date:2020-02-15 Document: Project: 14882

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 57 of 99

the default conversion, i.e. dependent on whether
a precision is specified.

auto s format("{:n} {:2n}", 12.345678, 12.345678);
// Committee Draft: s contains "12,3456 12,34"

// Proposed: s contains "12,345678 12,34"

These changes are the minimum necessary to

allow enhanced support for locale-dependent
formatting in the standard library to be added in a

backwards-compatible way in a future edition of
C++.

US
227

 20.20.02.2
[format.

string.std]

5

 Table 59

te We believe that the lack of a way to suppress the
negative sign on numbers which are rounded up
to zero by the specified precision is a defect
which will affect most users of format string.

Add: “'z' Indicates that a sign should not be used
for negative numbers that display as zero (after
rounding to the formatting precision).” To table 59.
The details of the change will be proposed in
P1496R1 in the pre-Belfast mailing. A “D” version
of this paper was discussed in Kona this year.

Rejected

There was no consensus
to adopt this change at
this time. The feature will
be resubmitted for the
next revision of C++.

US
228

 20.20.02.2
[format.strin
g.std]

Paragraph
7,
Paragraph 9

te Units of width and precision are not specified
which causes an ambiguity for strings in variable-
length encodings.

Width and precision for strings should be
computed based on fixed operating system
dependent encodings. If the operating system is
capable of displaying Unicode text in a terminal
both ordinary and wide encodings are Unicode
encodings such as UTF-8 and UTF-16,
respectively. [Note: this is the case for Windows-
based and many POSIX-based operating
systems. -- end note] Otherwise encodings are
implementation-defined. For the given encoding,
display width of a string is the number of column
positions needed to display the string in a terminal
[Note: This is similar to the semantics of the
POSIX wcswidth function with a fixed encoding.
—]

Accepted with
Modification

See P1868

GB
229

 20.20.03

 Te Formatting functions don't allow throwing on
incorrect arguments

std::format is only allowed to throw if fmt is not a
format string, but the intention is it also throws for

errors during formatting, e.g. there are fewer
arguments than required by the format string.

Allow exceptions even when the format string is
valid. Possibly state the _Effects:_ more precisely.

Rejected

There was no consensus
to adopt this change.

DE
230

 21.03.2.1

 te Because string::reserve() can no longer shrink
the capacity,

add string::reserve() at the end of §4.2 Rejected

https://wg21.link/p1868

Template for comments and secretariat observations Date:2020-02-15 Document: Project: 14882

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 58 of 99

 it should be added at the end of §4.2
as one function where a non-const member
function can not invalidate
referencess, pointers, and iterators, if it does not
grow the capacity

There was no consensus
to adopt this change.

DE
231

 21.03.3.5
([string.eras
ure])
22.3.8.5
([deque.era
sure])
22.3.9.7
([forward.list
.erasure])
22.3.10.6
([list.erasure
])
22.3.11.6
([vector.era
sure])
22.4.4.5
([map.erasu
re])
22.4.5.4
([multimap.e
rasure])
22.4.6.3
([set.erasur
e])
22.4.7.3
([multiset.er
asure])
22.5.4.5
([unord.map
.erasure])
22.5.5.4
([unord.mult
imap.erasur
e])
22.5.6.3
([unord.set.
erasure])
22.5.7.3

 te The free erase/_if functions were moved from
LFTSv2 to the IS, but P1115
 fell through the cracks. It would be awkward to
ship a version of free
 erase()/erase_if() with a known API issue
(returning void instead of the
 number of elements removed), and then fix it
up in a source-incompatible
 way in C++23.

Adopt P1115. Accepted with
Modification
See P1115

https://wg21.link/p1115

Template for comments and secretariat observations Date:2020-02-15 Document: Project: 14882

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 59 of 99

([unord.mult
iset.erasure]
)

US
232

 21.04.2
[string.view]

 Te Make string_view constructible from contiguous
ranges of character type. This is an important
integration with the new ranges facility, and
should not be deferred to a later standard.

We believe having basic_string_view be properly
constructible from a range should be viewed not
as a new feature but as fixing a “missing
constructor” defect resulting from the integration
of ranges and therefore feel this is in scope for
NB comments.

Apply p1391 Accepted

See p1391

US
233

 21.07.3

[views.span]

 te span’s constructors should be harmonized with
the new Ranges concepts of contiguous_range
and contiguous_iterator, needs to be done now.

Adopt P1394 Accepted

See P1394

GB
234

 22 Te Adopt P1115R0 for C++20

P1209R0 added erase and erase_if functions for
the containers. P0646R1 changed the remove

members of list and forward_list to return the
number of removed elements. We failed to

coordinate these changes, meaning the non-
member erase functions discard the useful

information now returned by forward_list::remove.

P1115R0 proposed to fix this, but isn't in the CD.

Adopt P1115R0 as an obvious defect in the new
erase and erase_if functions.

Note this affects multiple locations in clause 22

Accepted with
Modification

See P1115

US
235

 22.02.7

[unord.reg]

11

17

Table 70

Te C++20 design fix: the use
of Hash::transparent_key_equal to enable
heterogeneous lookup for unordered associative
containers deviates from prior art, does not
address the incompatibility concerns raised in the
original LEWG review, and adds more subtle and
confusing corner cases and will likely surprise
and confuse the user.

For details on the problem, see
https://isocpp.org/files/papers/P1690R1.html#des
ign-minimize-confusion

P1690R0 proposed a fix that was reviewed by

See: P1690r1

For details on the problem, see
https://isocpp.org/files/papers/P1690R1.html#desi
gn-minimize-confusion

Accepted

See P1690

https://wg21.link/p1391
https://wg21.link/p1391
https://wg21.link/p1394
https://wg21.link/p1394
https://wg21.link/p1115
https://isocpp.org/files/papers/P1690R1.html#design-minimize-confusion
https://isocpp.org/files/papers/P1690R1.html#design-minimize-confusion
https://wg21.link/p1690r0
https://wg21.link/p1690r1
https://isocpp.org/files/papers/P1690R1.html#design-minimize-confusion
https://isocpp.org/files/papers/P1690R1.html#design-minimize-confusion
https://wg21.link/p1690

Template for comments and secretariat observations Date:2020-02-15 Document: Project: 14882

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 60 of 99

LEWG in Cologne, which was forwarded to LWG
for C++20 (poll results below) with a suggestion

to prioritize as it would be a break to do later;
unfortunately LWG ran out of time before getting

to it.
SF F N A SA
5 6 7 0 0

US
236

 22.02.7

[unord.req]
et. al.

n/a te The working paper has an implementation of
heterogeneous lookup that differs substantially
from existing practice. Once we ship the design
currently in the CD, we will have a difficult time
retrofitting the design in P1690.

LEWG reviewed and approved P1690 for C++20
in Cologne, but limited LWG review time
prevented this from being moved.

Merge P1690 into the working paper Accepted

See P1690

PL
237

 22.02.7
[unord.req]

 te Heterogenous lookup for unordered containers
requires hasher to provide the
transparent_key_equal nested type that denotes
the predicate. This design is inconsistent with the
method used for the ordered containers and
existing non-standard implementations, that
checks for nested is_transparent type.
Furthermore, it prevents the implementation of
generic hashers to be combined with dedicated
type predicate. Finally, it overrides std::equal_to
equality predicate, even in a situation when it is
explicitly provided by the user.

Adopt P1690R0.

Accepted with
Modification

See P1690

US
238

 22.02.7
[unord.req]
[N4810]

11, 17

Table 70.

te C++20 design fix: the use
of Hash::transparent_key_equal to enable
heterogeneous lookup for unordered associative
containers deviates from prior art, does not
address the incompatibility concerns raised in the
original LEWG review, and adds more subtle and
confusing corner cases and will likely surprise
and confuse the user.

 For details on the problem, see
https://isocpp.org/files/papers/P1690R1.html#des
ign-minimize-confusion

P1690R0 proposed a fix that was reviewed by
LEWG in Cologne, which was forwarded to LWG

For proposed wording, see p1690R1 Accepted

See P1690

https://wg21.link/p1690
https://wg21.link/p1690
https://wg21.link/p1690
https://wg21.link/p1690
https://wg21.link/p1690
https://isocpp.org/files/papers/P1690R1.html#design-minimize-confusion
https://isocpp.org/files/papers/P1690R1.html#design-minimize-confusion
https://wg21.link/p1690r0
https://wg21.link/p1690r1
https://wg21.link/p1690

Template for comments and secretariat observations Date:2020-02-15 Document: Project: 14882

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 61 of 99

for C++20 (poll results below) with a suggestion
to prioritize as it would be a break to do later;
unfortunately LWG ran out of time before getting
to it.
SF F N A SA
 5 6 7 0 0

US
239

 22.03.7.1

2 Te There is no specification of whether std::array
has strong structural equality.

Specify that it has no non-static data members
other than the obvious array (and see also

comment on [class.compare.default]/4.2.1).

Rejected

There was no consensus
to adopt this change.

FR
240

 22.07

 te span::index_type’s name is inconsistent with the

convention used by other containers and views,

notably string_view

Rename span::index_type to span::size_type

Accepted with
Modification

See P1872

US
241

 22.07

 te Rename std::dynamic_extent to std::dyn, as
repeatedly using such a long name in the
upcoming mdspan proposal (P0009, slated for
Library Fundamentals V3) is unnecessarily
unwieldly.

Replace dynamic_extent with dyn throughout the
subsections of 22.7.

Rejected

There was no consensus
to adopt this change.

US
242

 22.07
 [views]

 Ed This early view type should be editorially
consolidated into the new section for views in
general, rather than lying in the containers
clause.

Move into 24 [Ranges] Rejected

There was no consensus
to adopt this change.

FR
243

 22.07.2

 te Both std::extent and the proposed

std::static_extent are type traits, while

std::dynamic_extent is not, which is surprising

and inconsistent

Rename std::dynamic_extent to

std::dynamic_extent_tag
Rejected

There was no consensus
to adopt this change.

FR
244

 22.07.2

 te std::as_bytes and std::as_writable_bytes

encourage undefined behavior

Consider removing these functions. Rejected

There was no consensus
to adopt this change.

US
245

 22.07.3

 te P1227R2 changed the size and indexing
operations in span from the signed type ptrdiff_t
to the unsigned type size_t. The typedef should

Replace index_type with size_type as per
P1872R0.

Accepted

See P1872

https://wg21.link/p1872
https://wg21.link/P0009
https://wg21.link/P1227R2
https://wg21.link/P1872R0
https://wg21.link/p1872

Template for comments and secretariat observations Date:2020-02-15 Document: Project: 14882

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 62 of 99

 be changed from index_type to size_type to be
consistent and interoperable with the rest of the
standard library.

US
246

 22.07.3
 [views.span
]

 Te Span should be constructible from a contiguous
forwarding range or iterators thereof, and not just
"Container" types with a data() member function.
As this has the possibility of affecting overload
resolution and SFINAE, it may not be possible to
repair std::span in a later standard.

Apply P1394 Accepted

See P1394

PL
247

 22.07.3
[views.span]

 te span<T> provides a const-qualified begin()
method and cbegin() method that produces a
different result if T is not const-qualifed:

1) begin() produces mutable iterator over T (as if
T*)

2) cbegin() preduces const iterator over T (as if T
const*)

As consequence for the object s of type
span<T>, the call to the
std::cbegin(s)/std::ranges::cbegin(s) produces
different result than s.cbegin().

Change span<T> members
cbegin()/cend()/crbegin()/crend()/const_iterator to

be equivalent to
begin()/end()/rbegin()/rend()/iterator respectivelly.

Accepted

See LWG Issue 3320

PL
248

 22.07.3
[views.span]

 te std::span uses the name `index_type` instead of
`size_type` for the return type of its `size`
function. There is a historical reason for this;
std::span used to have a signed return type of
`size`. This typedef is also used as a type for
"index" or "count" parameters, but since they are
all unsigned at this point, it seems like an
unwarranted inconsistency with the rest of the
standard library.

Either:
1. Rename std::span::index_type to size_type.

2. Add an additional alias, size_type, aliasing
index_type, to std::span.

Accepted with
Modification

See P1872

US
249

 22.07.3.1

te Remove const_pointer and const_reference from
span, as they are unused.

using const_pointer = const element_type*;
using reference = element_type&;

using const_reference = const element_type&;

Rejected

There was no consensus
to adopt this change.

PL
250

 22.07.3.2
[span.cons]

 te The resolution of the LWG3101 prevents
accidental undefined behavior caused by size
mismatch between the range and constructed
span, e.g.:

void processFixed(span<int, 5>);
void processDynamic(span<int>);

Add 'explicit(extent != dynamic_extent)' specifier
to the following constructors in [span.cons]:

constexpr span(pointer ptr, index_type count);

Accepted with
Modification

See P1976

https://wg21.link/p1394
https://wg21.link/p1394
https://cplusplus.github.io/LWG/issue3320
https://wg21.link/p1872
https://wg21.link/p1976

Template for comments and secretariat observations Date:2020-02-15 Document: Project: 14882

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 63 of 99

std::vector<int> v;

processFixed(v); // ILL-FORMED after 3103, UB
if v.size() != 5 before

processDynamic(v); // OK

However, the resolution does not prevent similar
problems in the situation when the (ptr, len) or
(ptr, ptr) constructor is used:

processFixed({v.data(), v.size()}); // WELL-
FORMED, UB if v.size() != 5

processFixed({v.data(), v.data() + v.size()}); //
WELL-FORMED, UB if v.size() != 5

Morover, currently, the code remains ill-formed
even if explicit cast is performed by the user:

processFixed(span<int, 5>(v)); // ILL-FORMED

To resolve the issue, the construction of fixed-
size span from dynamic-sized range should be
explicit:

processFixed(v); // ILL-FORMED

processFixed({v.data(), v.size()}); // ILL-FORMED

processFixed({v.data(), v.data() + v.size()}); //
ILL-FORMED

processFixed(span<int, 5>(v)); // WELL-
FORMED

processFixed(span<int, 5>{v.data(), v.size()}); //
WELL-FORMED

processFixed(span<int, 5>{v.data(), v.data() +
v.size()}); // WELL-FORMED

To summarize:

Source | Destination | Constructor

Fixed | Fixed | Implicit, ill-formed if size-mismatch

Fixed | Dynamic | Implicit

Dynamic | Dynamic | Implicit

Dynamic | Fixed | Explicit

constexpr span(pointer first, pointer last);

In the specification of constructors:

template<class Container> constexpr
span(Container& cont);

template<class Container> constexpr span(const
Container& cont);

* Add 'explicit(extent != dynamic_extent)' specifier.

* Remove 'extent == dynamic_extent is true'
([span.cons]p 14.1) from Constrains element.

* Add 'If extent is not equal to dynamic_extent,
then size(cont) is equal to extent.' to Expects

element.

In the specification of constructor:

template<class OtherElementType, size_t
OtherExtent>

constexpr span(const span<OtherElementType,
OtherExtent>& s) noexcept;

* Add 'explicit(extent != dynamic_extent &&
OtherExtent == dynamic_extent)' specifier.

* Replace the 'Extent == dynamic_extent || Extent
== OtherExtent is true' constrain with 'Extent ==
dynamic_extent || OtherExtent == dynamic_extent

|| Extent == OtherExtent is true'.

* Add 'If extent is not equal to dynamic_extent,

Template for comments and secretariat observations Date:2020-02-15 Document: Project: 14882

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 64 of 99

then s.size() is equal to extent.' to Expects
element.

PL
251

 22.07.3.2
[span.cons]

 te C++20 introduced both std::contiguous_range
and std::continous_iterator concepts, that are the
generalization of the pointer to continuous
sequence of objects, and type erased view for
such ranges in form of std::span.

However, these two features are not integrated
together, as consequence std::span cannot be
directly constructed from ranges that models
std::contiguous_range and std::sized_range, nor
from the pair of std::continous_iterator:

std::vector v{...};

std::span s = v; // OK

std::span s = v | std::take_view(10); // ILL-
FORMED

std::span s(std::to_address(v.begin()), 2); //OK

std::span s(std::to_address(v.begin()),
std::to_address(v.begin() + 2)); //OK

std::span s(v.begin(), 2); // IMPLEMENTATION-
DEFINED

std::span s(v.begin(), .begin() + 2); //
IMPLEMENTATION-DEFINED

Adopt P1394R3.
Accepted

See P1394

CA
252

 22.07.3.7
[span.object
rep]

 te as_writable_bytes standardizes UB. In particular,
pointer interconvertibility between an object and
its object representation (in array form) is not
established. We should not hide reinterpret_cast
inside another std function.

Also, as_writable_bytes and as_bytes should not

be free functions unless we plan on applying

them to other std types (e.g., vector). Free

functions should be designed as function

overload sets or as functions acting on a concept

(i.e., all containers or all views, etc.—not

necessarily a C++ Concept).

Preferred: Remove as_writable_bytes and move
as_bytes to be a member function of span.

Alternative: Rename as_writable_bytes to
something including the word “reinterpret”, such
as reinterpret_as_bytes, and make it a member
function (along with as_bytes as a member
function).

Rejected

There was no consensus
to adopt this change.

US 23 te The adoption of P1207 (movability of single-pass Revert P1207, restoring the copyability Rejected

https://wg21.link/p1394
https://wg21.link/p1207
https://wg21.link/p1207

Template for comments and secretariat observations Date:2020-02-15 Document: Project: 14882

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 65 of 99

253

24

25

iterators) has left the working paper in an
inconsistent state. Many places both
in [range.adaptors] and [algorithms] assume
copyability of input and output iterators, an
assumption P1207 invalidated by permitting input
(but not forward) and output iterators to be move-
only.

For instance, here are three issues in filter_view
alone:

In [range.filter.iterator]/p5, the current_ member
of a filter_view::iterator is copied:
 constexpr iterator_t<V> base() const;
 Effects: Equivalent to: return current_;

In [range.filter.iterator]/p7 has the same problem:
 constexpr iterator_t<V> operator->() const
 requires has-arrow <iterator_t<V>>;
 Effects: Equivalent to: return current_;

In [range.filter.iterator]/p8, we are copying out of
the current_ member in a call to find_if:
 constexpr iterator& operator++();
 Effects: Equivalent to:
 current_ = ranges::find_if(++current_,
ranges::end(parent_->base_), ref(*parent_-
>pred_));
 return *this;

As an example from the [algorithms] clause, here
is [alg.rotate]/p11, which is shown erroneously
copying a potentially move-only output iterator:
 template<forward_range R,
weakly_incrementable O>
 requires indirectly_copyable<iterator_t<R>, O>
 constexpr
ranges::rotate_copy_result<safe_iterator_t<R>,
O>
 ranges::rotate_copy(R&& r, iterator_t<R>
middle, O result);
 Effects: Equivalent to:
 return ranges::rotate_copy(ranges::begin(r),
middle, ranges::end(r), result);

requirement to the weakly_incrementable
concept.

There was no consensus
to adopt this change.

https://wg21.link/p1207

Template for comments and secretariat observations Date:2020-02-15 Document: Project: 14882

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 66 of 99

P1207 introduced an unknown but likely large
number of bugs into the working paper. Tracking
them all down would take time and leave us with
little confidence that we had found them all.

In addition, p1456 (Move-only views) was _not_
merged to the working draft, leaving us in the
oddly inconsistent state where iterators could be
move-only but views could not. This has caused
yet more bugs. For instance,
views::counted(first,n) returns a view that holds
an iterator by value. If the iterator is move-only,
then the resulting view is not a view because it
fails to satisfy the copyability requirement of the
view concept.

GB
254

 23 Te Most of the ranges iterator operations should be
marked [[nodiscard]]

These are equality-preserving operations that
return values always intended to be used. The
library should reflect this.

Add [[nodiscard]] to the following operations.

ranges::iter_move

ranges::distance
ranges::next

ranges::prev

Rejected

There was no consensus
to adopt this change.

GB
255

 23 Te output_iterator and output_range shouldn't be
concepts

Very little uses these concepts, and it's not clear
if they're actually necessary at all, since they're

explicitly omitted in N3351 (see §3.7). The
author's understanding is that they were added to

mitigate potential confusion among users familiar
with STL output iterators.

We should be judicious about the concepts that
we introduce. If an output_iterator concept proves

itself to be useful, then we can probably add it in
C++23.

Proposed Change:

Strike [iterator.concept.output] and associated
references.

Strike output_range from [range.refinements] or
transform it into an exposition-only output-iterator.

Re-specify the following algorithms so that they
require weakly_incrementable && writable instead
of output_iterator, or to require output-iterator (an

exposition-only concept):

replace_copy

replace_copy_if
fill

fill_n

Rejected

There was no consensus
to adopt this change.

GB
256

 23 Te iterator concepts belong in namespace ranges

This will (hopefully) help solidify that the iterator
concepts introduced by C++20 aren't a one-to-
one mapping between STL iterators and ranges

Move all concepts in [iterators] into namespace

ranges.

Rename input_or_output_iterator to iterator.

Rejected

There was no consensus
to adopt this change.

https://wg21.link/p1207
https://wg21.link/p1426

Template for comments and secretariat observations Date:2020-02-15 Document: Project: 14882

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 67 of 99

iterators (similarly to how ranges algorithms
aren't identical to std algorithms).

It'll also let us use the name iterator instead of
input_or_output_iterator.

US
257

 23.02

and

 24.2

 te Two of the ranges opt-in variable templates are
negative and checked against, the other is
positive and checked for. Double negatives are
needlessly difficult to understand. Make all the
opt-in variable templates enable_meow instead
of disable_meow.

Adopt P1871. Accepted

See P1871

US
258

 23.03.1
[iterator.
requirement
s.general]

10 Ed It is unhelpful for the library to overload the
definition of reachable with the core language
definition of reachable for modules. Based on
usage throughout this clause, suggest including
the following 'from' in the defined words of power.
This is consistent with every intended use of the
current term, and no subsequent usage requires
(nor uses) italics on either word.

Change font to italics on the word 'from':
is called reachable from an iterator i
to
is called reachable from an iterator i

Accepted - Editorial

US
259

 23.03.2.3

03.3

te Types satisfying input_iterator but not
equality_comparable look like C++17 output
iterators. This issue is discussed in detail
in LWG#3283.

Adopt the proposed resolution
at https://cplusplus.github.io/LWG/issue3283

Rejected

There was no consensus
to adopt this change at
this time. LWG Issue
3283 has been opened
for future consideration,
post C++20.

US
260

 23.03.2.3/p
4
23.5.4.2/p1
24.7.4.3/p3
24.7.7.3/p3
24.7.8.3
24.7.8.5/p1

 te It is currently impossible to non-intrusively opt-out
of conformance to the C++17 iterator concepts
without also opting out of conformance to the
C++20 iterator concepts. This is a corner case
that was missed when the Ranges TS was
merged into namespace std. The issue is
discussed in depth in LWG#3289.

Adopt the proposed resolution
in https://cplusplus.github.io/LWG/issue3289

Rejected

There was no consensus
to adopt this change at
this time. LWG Issue
3289 has been opened
for future consideration,
post C++20.

US
261

 23.03.4.13

02.6

te The expression ++(a + D(n - 1)) is erroneously
applying pre-increment to an rvalue iterator. This
is not required to be valid for random access
iterators.

Replace with either [](I c){ return ++c; }(a + D(n -
1)) or with next(a + D(n - 1)).

See https://cplusplus.github.io/LWG/issue3277

Accepted with
Modification

See P1917

https://wg21.link/p1871
https://wg21.link/p1871
https://cplusplus.github.io/LWG/issue3283
https://cplusplus.github.io/LWG/issue3283
https://cplusplus.github.io/LWG/issue3283
https://cplusplus.github.io/LWG/issue3283
https://cplusplus.github.io/LWG/issue3289
https://cplusplus.github.io/LWG/issue3289
https://cplusplus.github.io/LWG/issue3289
https://cplusplus.github.io/LWG/issue3289
https://cplusplus.github.io/LWG/issue3277
https://wg21.link/p1917

Template for comments and secretariat observations Date:2020-02-15 Document: Project: 14882

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 68 of 99

US
262

 23.03.4.13

02.7

te The semantic constraints of the
random_access_iterator concept is accidentally
promoting the difference type using unary
negate.

Change (b += -n) to (b += D(-n)).

See https://cplusplus.github.io/LWG/issue3284

Accepted

See LWG Issue 3284

US
263

 23.03.4.2

 te In the current spec, shared_ptr<int> is readable,
but shared_ptr<int>& is not. That is because
readable_traits is not stripping top-level
references before testing for nested typedefs.

Change every occurance of iter_value_t<In> in
the definition of the readable concept
with iter_value_t<remove_reference_t<In>>.

See https://cplusplus.github.io/LWG/issue3279

Accepted

See P1878

US
264

 23.03.4.2

 te The readable concept is both under- and over-
constrained. It is under-constrained in that it
permits its associated types (iter_value_t,
iter_reference_t, etc) to differ depending on
whether the type is const-qualified or not. It
might make sense for iter_reference_t to be
sensitive to const-ness if, for example, it is our
intention for a type like optional to satisfy
readable. Generally we use readable to constrain
types that are logical indirections; e.g., pointers
(smart and dumb) and iterators. For those, top-
level cv-qualification should not matter.

readable is over-constrained because it only
requires operator* to be valid on a (non-const)
lvalue.

See discussion
at https://github.com/ericniebler/stl2/issues/514

Change the definition of the readable concept to
correct these problems.

Accepted

See P1878

FR
265

 23.03.4.6

 te input_or_output_iterator does not denote

input_iterator<It> || output_iterator<It>, which

sets a bad precedent for concept naming and

may not match the user intent.

It is also at odds with the naming used for

decades including most literature and Stepanov’s

work.

Rename it to general_iterator Rejected

There was no consensus
to adopt this change.

US
266

 23.03.5.3

Table 85 Te What does it mean for an output iterator to be
incrementable after any number of increments?

Add a note explaining the satisfaction of the
property from [iterator.concept.winc]/13, provide

an alternate definition, or remove the Ensures

Rejected

There was no consensus
to adopt this change.

https://cplusplus.github.io/LWG/issue3284
https://cplusplus.github.io/LWG/issue3284
https://cplusplus.github.io/LWG/issue3279
https://wg21.link/p1878
https://github.com/ericniebler/stl2/issues/514
https://wg21.link/p1878

Template for comments and secretariat observations Date:2020-02-15 Document: Project: 14882

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 69 of 99

US
267

 23.03.6.2

indirectcalla
ble.

indirectinvo
cable,

others

 te The ranges compare algorithms are over-
constrained. LEWG approved P1716 with the
correct fix, but LWG ran out of time to review it.
Without P1716, safe and correct programs will be
erroneously rejected.

Adopt the proposed resolution in P1716, which
has already passed LEWG design review.

Accepted

See P1716

US
268

 23.03.7.4

 te The indirectly_swappable concept is over-
constrained: it requires only that iter_swap is
callable with lvalue iterators. It should be possible
to call iter_swap with rvalues as well.

See discussion at
https://github.com/ericniebler/stl2/issues/578.

Change the concept to require iter_swap to be
callable with both lvalue and rvalue iterators.

Accepted

See P1878

DE
269

 23.07
Range
access

Paragraph:
18

te There are ranges that model
std::ranges::sized_range, but do not provide a
.size() member function. (Also) for this reason
std::ranges::size() was introduced with slightly
different semantics than std::size().

Now we are introducing std::ssize() with the
semantics of std::size() + signed-ness. This
means we get three size functions that each have
different deficiencies and none that works for all
sized ranges and is signed.

Preferred: Make std::ssize() resolve to
std::ranges::size() + signed-ness.

Alternative: Also add std::ranges::ssize().

Accepted with
Modification

See P1970

GB
270

 24 Te P1207 provided an opportunity for us to weaken
input iterators so that they don't need to be
copyable. While the author thinks that this is a
step in the correct direction, P1207 has left us in
a partial state where iterators don't need to be
copyable, but views do. Given that views have
underlying iterators, we need to address this
problem before C++20 ships.

Either apply P1456 and evaluate all standard
range adaptors to determine if they're affected

(and then apply changes to bring them into
accordance with P1207 and P1456), or

completely roll back P1207.

Accepted

See P1862

See P1456

GB
271

 24 Te Many operations in namespace ranges should be
marked nodiscard

These are equality-preserving operations that
return values always intended to be used. The
library should reflect this intention in the strongest
way possible.

Add [[nodiscard]] to the following operations.
ranges::begin

ranges::end
ranges::cbegin

ranges::cend
ranges::rbegin

Rejected

There was no consensus
to adopt this change.

https://wg21.link/p1716
https://wg21.link/p1716
https://wg21.link/p1716
https://wg21.link/p1716
https://github.com/ericniebler/stl2/issues/578
https://wg21.link/p1878
https://wg21.link/p1970
https://wg21.link/p1862
https://wg21.link/p1456

Template for comments and secretariat observations Date:2020-02-15 Document: Project: 14882

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 70 of 99

ranges::rend
ranges::crbegin

ranges::crend
ranges::size

ranges::empty
ranges::data

ranges::cdata

Add [[nodiscard]] to the following view_interface

member functions.

empty

data
size

front
back

operator[]

Add [[nodiscard]] to the following subrange

member functions.

begin

end
empty

Size

US
272

 24

Applies to
§24 Ranges
[ranges]

§24.4.2
Ranges
[range.rang
e];

§24.6.1.2
Class
template
empty_view
[range.empt
y.view];

§24.6.3
Class
template
iota_view[ra
nge.iota.vie
w];

§24.7.6.4

te Due to the ranges API being more or less fixed
after shipment, API-breaking fixes have to be
scheduled now rather than shipped in C++23.
The papers p1664 and p1739 represent
important and ultimately source-breaking
changes to the ranges API. Unless shipped,
these API optimizations will result in source code
breaking at a later date if attempted to be fixed
later, and also makes it impossible to reliably
simplify the return value of ranges for a wide
variety of current and future adaptors and
algorithms. These changes are imperative for
developing better APIs and it would be
unfortunate to not be able to do them post-C++20
due to source breaking changes. All of the
changes except for p1664's two new exposition-
only concepts have been approved by LEWG
during review of p1739. However, p1664 was
discussed as part of p1739's approval and this
comment was to be expected.

The fix and its motivations have been formalized
in two papers, [p1664 - Reconstructible Ranges]
and [p1739 - Type preservation for forwarding
Ranges for "subrange-y" views]. Further fixes are
applied through Corentin Jabot's and Casey
Carter's [p1391] and [p1394].

Accepted with
Modification

See P1739

https://wg21.link/p1664
https://wg21.link/p1739
https://wg21.link/p1664
https://wg21.link/p1739
https://wg21.link/p1664
https://wg21.link/p1739
https://wg21.link/p1664
https://wg21.link/p1739
https://wg21.link/p1391
https://wg21.link/p1394
https://wg21.link/p1739

Template for comments and secretariat observations Date:2020-02-15 Document: Project: 14882

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 71 of 99

views::take
[range.take.
adaptor];

§24.7.8.3
views::drop
[range.drop.
adaptor].

US
273

 24.02

 Te all_view is not a view like the others. For the
other view types, foo_view{args...} is a valid way
to construct an instance of type foo_view.
However, all_view is just an alias to the type of
view::all(arg), which could be one of several
different types. all_view feels like the wrong
name.

Suggest renaming all_view to all_t and moving it
into the views:: namespace.

Accepted

See LWG Issue 3335

GB
274

 24.02

 Te Add range_size_t

LEWG asked that range_size_t be removed from

P1035, as they were doing a good job of being
neutral w.r.t whether or not size-types were

signed or unsigned at the time.

Now that we've got a policy on what size-types

are, and that P1522 and P1523 have been
adopted, it makes sense for there to be a

range_size_t.

Add to [ranges.syn]:

 template<range R>

 using range_difference_t =
iter_difference_t<iterator_t<R>>;

+ template<sized_range R>
+ using range_size_t =

decltype(ranges::size(declval<R&>()));

Accepted

See P2091

GB
275

 24.03

 Te ranges::begin and ranges::end should not accept

arrays of unknown bound

The current definitions of ranges::begin and

ranges::end mean that an array of unknown
bound is treated as an empty range. The

expressions E+0 and E+extent_v<T> are both
well-formed for an array of unknown bound (with

extent_v<T> equal to zero).

Make ranges::begin(E) and ranges::end(E) ill-

formed when E is an array of unknown bound.

Accepted with
Modification

See P2091

US
276

 24.03.1

24.3.2

24.5.3

24.7.3.1

24.6.3.2

several

01.3

1.3

te Several of the range views define non-template
friend function begin/end overloads taking
rvalues to satisfy the exposition-only forwarding-
range concept. These have a couple of problems.
First, the ones for subrange take subrange&&.
That means that a const rvalue subrange fails to
satisfy forwarding-range, which causes
cbegin(subrange{...}) to be ill-formed.

In [range.access.begin]/p1.3, change the poison-

pill overloads from:

template<class T> void begin(T&&) = delete;

template<class T> void
begin(initializer_list<T>&&) = delete;

...to:

Accepted with
Modification

See P1870

https://cplusplus.github.io/LWG/issue3335
https://wg21.link/p2091
https://wg21.link/p2091
https://wg21.link/p1870

Template for comments and secretariat observations Date:2020-02-15 Document: Project: 14882

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 72 of 99

The bigger problem is that since these functions
are non-templates, whenever they get added to
the overload set, the compiler will try conversions
to these types (subrange, ref_view). The
attempted conversions could lead to errors in
theory.

Finally, class iota_view has iterator that can
safely outlive the view that created them, so it too
should be given begin/end friend functions that
accept rvalues following the same pattern.

template<class T> void begin(T&&) = delete;

template<class T> void begin(initializer_list<T>) =

delete;

To the synopsis in [range.subrange]/p1, add:

template<class A, class B>

concept same-ish = // exposition only

 same_as<A const, B const>;

In the class synopsis of subrange (same section),

change the `begin`/`end` friend functions from:

friend constexpr I begin(subrange&& r) { return

r.begin(); }

friend constexpr S end(subrange&& r) { return

r.end(); }

...to:

friend constexpr I begin(same-ish<subrange>

auto && r) { return r.begin(); }

friend constexpr S end(same-ish<subrange> auto

&& r) { return r.end(); }

In the synopsis of `ref_view` in [range.ref.view]/p1,
change the `begin`/`end` friend functions from

this:

friend constexpr iterator_t<R> begin(ref_view r)

{ return r.begin(); }

friend constexpr sentinel_t<R> end(ref_view r)

{ return r.end(); }

...to this (editors note: the use of same_as here
instead of same-ish is intentional; likewise for the

use of pass-by-value):

friend constexpr iterator_t<R>
begin(same_as<ref_view> auto r)

Template for comments and secretariat observations Date:2020-02-15 Document: Project: 14882

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 73 of 99

{ return r.begin(); }

friend constexpr sentinel_t<R>

end(same_as<ref_view> auto r)

{ return r.end(); }

To the class synopsis of iota_view in

[range.iota.view], add the following `begin`/`end`
friend functions:

friend constexpr W begin(same-ish<iota_view>
auto && r) { return r.begin(); }

friend constexpr auto end(same-ish<iota_view>
auto && r) { return r.end(); }

See https://github.com/ericniebler/stl2/issues/592.

GB
277

 24.04

 Te Adopt P1456 or change istream_view's
requirements

P1456 weakens view so that it does not require
copyable. Without this, istream_view is unable to

process non-copyable types as input.

LEWG approved P1456 in Kona, but it seems

that it didn't make it in time for LWG in Cologne. I
don't think this is something that can be fixed in

C++23.

Apply the proposed wording in P1456 to the

International Standard.

Accepted with
Modification

See P1456

GB
278

 24.04

 Te Rename viewable_range to viewable

The name viewable_range doesn't communicate
its intended purpose very clearly. Consider
renaming to viewable, which very clearly reflects
its description, and thus intended purpose. You
can't convert a non-range to a view anyway.

Rename viewable_range to viewable. Affects:

[ranges.syn]
[range.adaptor.object]

[range.filter.view]
[range.transform.view]

[range.take.view]
[range.join.view]

[range.common.view]
[range.reverse.view]

Rejected

There was no consensus
to acopt this change.

US
279

 24.04.2

[range.

range]

 te The forwarding-range concept opt-in is too subtle
and just adds complexity to overload resolution.
The other range concepts use variable templates
to opt-in, this one should do.

Adopt P1870. Accepted with
Modification

See P1870

https://github.com/ericniebler/stl2/issues/592
https://wg21.link/p1456
https://wg21.link/p1870
https://wg21.link/p1870

Template for comments and secretariat observations Date:2020-02-15 Document: Project: 14882

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 74 of 99

GB
280

 24.04.2

 Ed forwarding-range is too-easily confused with
forward_range

Please find an alternative name for forwarding-
range, as it is extremely similar to forward_range,

which is (a) different in definition, and (b) a user-
facing concept.

Accepted

See P1870

FR
281

 24.04.4

 te The View concept requires copy-ability. There

are reasons why this is overly restrictive - for

example a predicate might not be copyable or a

view might need to hold a coroutine_handle

which should not be copied.

As concepts are hardly modifiable after the

publication of the standard, it is important to relax

this constraint while we still can

Adopt P1456 which was approved by LEWG

Accepted with
Modification

See P1456

DE
282

 24.04.4

 te "Since the difference between range and view is
largely semantic, the
two are differentiated with the help of
enable_view." (§3)

enable_view is designed as on opt-in trait to
specify that a type is a
view. It defaults to true for types derived from
view_base (§4.2) which
is clearly a form of opt-in. But it also employs a
heuristic assuming
that anything with iterator == const_iterator is
also view (§4.3). This
is a very poor heuristic, the same paragraph
already needs to define six
exceptions from this rule for standard library
types (§4.2).

Experience in working with range-v3 has
revealed multiple of our own
library types as being affected from needing to
opt-out from the
"auto-opt-in", as well. This is counter-intuitive:
something that was
never designed to be a view shouldn't go through
hoops so that it isn't
treated as a view.

Make enable_view truly be opt-in by relying only
on explicit
specialisation or inheritance from view_base. This
means removing 24.4.4
§4.2 - §4.4 and introducing new §4.2 "Otherwise,
false".

Double-check if existing standard library types like
basic_string_view
and span need to opt-in to being a view now.

Accepted
See LWG Issue 3286

US
283

 24.05.1

 te The exposition-only has-arrow concept is ill-
formed. It has a constrained template parameter,
which is not valid C++20.

Change the concept to:

template<class I>

Accepted with
Modification

https://wg21.link/p1870
https://wg21.link/p1456
https://cplusplus.github.io/LWG/issue3326

Template for comments and secretariat observations Date:2020-02-15 Document: Project: 14882

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 75 of 99

 concept has-arrow = // exposition only
 input_iterator && (is_pointer_v<I> || requires(I i) {
i.operator->(); });

See P1983

US
284

 24.05.3

 te Conversion from pair-like types to subrange is a
silent semantic promotion. Just because a pair is
holding two iterators does not mean those two
iterators denote a valid range. Permitting that pair
to be implicitly converted to a subrange is error
prone.

In the synopsis of subrange, strike the definition of
the exposition-only _pair-like-convertible-to_
concept, and the following two subrange
constructors:

template<not-same-as<subrange> PairLike>
 requires pair-like-convertible-to<PairLike, I, S>
constexpr subrange(PairLike&& r) requires
(!StoreSize);

template<pair-like-convertible-to<I, S> PairLike>
constexpr subrange(PairLike&& r, make-
unsigned-like-t(iter_difference_t<I>) n)
 requires (K == subrange_kind::sized);

See https://cplusplus.github.io/LWG/issue3281

Accepted

See LGW Issue 3281

US
285

 24.05.3

1 te The subrange converting constructors permit
derived-to-base slicing errors. See detailed
discussion of this issue in LWG#3282.

Adopt the proposed resolution
at https://cplusplus.github.io/LWG/issue3282

Accepted with
Modification

See LWG Issue 3282

US
286

 24.06.3.2

[range.iota.

view]

 te Iota_view is currently under-constrained and
does not behave as a forwarding-range.

Adopt LWG 3292, and add the correct opt-in for
forwarding-range (dependent on earlier NB
comment)

Accepted with
Modification

See P1870

US
287

 24.06.3.3

 te iota_view::iterator has the wrong
iterator_category. Depending on the capabilities
of the template parameter W, the category could
be anything from input_iterator_tag to
random_access_iterator_tag. However,
according to the _Cpp17InputIterator_
requirements, iota_view::iterator cannot satisfy
any of the old iterator concepts stronger than
input. That is because its operator* returns a
prvalue.

Adopt the proposed resolution
in https://cplusplus.github.io/LWG/issue3291.

Accepted

See LWG Issue 3291

DE
288

 24.07

 te By fully specifying the types returned by view
adaptors, the standard forces the return type of
multiple chained view operations to be an
increasingly nested template.

1. Adopt P1739 and in this context also P1391
and P1394 which are strongly suggested by
P1739. All three papers have been seen and
approved by LEWG. P1739 cannot be adopted

Accepted with
Modification

See P1739

https://wg21.link/p1983
https://cplusplus.github.io/LWG/issue3281
https://cplusplus.github.io/LWG/issue3281
https://cplusplus.github.io/LWG/issue3282
https://cplusplus.github.io/LWG/issue3282
https://cplusplus.github.io/LWG/issue3282
https://wg21.link/p1870
https://cplusplus.github.io/LWG/issue3291
https://cplusplus.github.io/LWG/issue3291
https://wg21.link/p1739

Template for comments and secretariat observations Date:2020-02-15 Document: Project: 14882

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 76 of 99

In general this is not avoidable, but for
certain combinations of input ranges and view
adaptors, one can simply create a modified
object of the original type (e.g. with different
bounds).
Not addressing this is a design flaw that
needlessly complicates working with views.

after C++20 without breaking API.

2. Discuss whether P1664 (or parts of it) should
also be adopted. P1664 generalises the notion of
"reconstructible ranges" (those affected by
P1739).

3. Evaluate whether any other combinations of
range and view adaptor should get special
treatment; any such changes after C++20 are
breaking.generalises the notion of "reconstructible
ranges" (those affected by P1739).

4. Evaluate whether any other combinations of
range and view adaptor should get special
treatment; any such changes after C++20 are
breaking.

DE
289

 24.07.1

 te "Given an additional range adaptor closure object
D, the expression C |
D is well-formed and produces another range
adaptor closure object"

Experience in combining range-v3 with our
library's views has revealed
that it is very difficult to satisfy the above
requirement in a generic
way since it is not defined how code can identify
"range adaptor closure
objects" and which entity is responsible for
combining the two closures
into one.
This leads to incompatible implementations and
conflicting overloads. It
may even become impossible for developers to
target different standard
library implementations at the same time --
depending on how these chose
to implement the above rule.

1) Introduce a boolean trait called
enable_range_adaptor_closure that
must be specialised for the type of all range
adaptor closure objects.

2) Specify that the standard library implements the
aforementioned
combining of two-into-one in an implementation-
defined manner (e.g. a
free function operator| that works on any two
objects whose types
satisfy enable_range_adaptor_closure and that
returns the respective
combined closure object).

[Note that this only affects operator| for combining
two closure objects
-- not for piping a range into a closure object. The
trait would however
also enable the standard library to provide a
generic implementation of
the latter so that users need only provide
operator() for their closure
objects. This in turn could make it possible to
create closure objects

Rejected

There was no consensus
to adopt this change.

Template for comments and secretariat observations Date:2020-02-15 Document: Project: 14882

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 77 of 99

from lambdas.]

US
290

 24.07.10

 te The strange
is_reference_v<iter_reference_t<iterator_t<V>>>
|| view<iter_value_t<iterator_t<V>>> constraint
was correct before P0970 and the forwarding-
range concept. Now it is inexact and wordy. What
we are really looking for is a forwarding-range;

that is, a range on which we can call view::all to
get a view which we can store within the
join_view cheaply.

Change the requirements on the join_view class
template from:

template<input_range V>
 requires view<V> &&
input_range<range_reference_t<V>> &&
 (is_reference_v<range_reference_t<V>> ||
view<range_value_t<V>>)
class join_view;

to:

template<input_range V>
 requires view<V> &&
input_range<range_reference_t<V>> &&
 forwarding-
range<iter_reference_t<iterator_t<V>>>
class join_view;

Rejected

There was no consensus
to adopt this change.

US
291

 24.07.10.2

 te The non-const join_view::begin() returns
iterator<simple-view<V>>. If simple-view<V> is
true, then the iterator stores a const join_view*
named parent_. iterator::satisfy() will try to write
to parent_->inner_ if ref_is_glvalue is false. That
doesn't work because the inner_ field is not
marked mutable.

In [range.join.view], change the
join_view<V>::inner_ member to be mutable. This
is safe because this exposition-only member is
only used when the join_view is single-pass and
only modified by operations that invalidate other
iterators.

See https://cplusplus.github.io/LWG/issue3278

Accepted with
Modification

See P1983

US
292

 24.07.10.2

 te join_view::iterator's constructor is incorrect. In
join_view<V>::iterator<Const>, we see the
constructor:

 constexpr iterator(Parent& parent, iterator_t<V>
outer)

V above is the non-const-qualified view template
parameter. We will then try to initialize the outer_
data member with outer, which has type
iterator_t<Base>, where Base is const V when
Const is true, and V otherwise. This is broken;
there is no required conversion if the types are
different. Fixing this will probably require changes
also to join_view's begin() and end() members.

In [range.join.view], change the
join_view<V>::inner_ member to be mutable. This

is safe because this exposition-only member is
only used when the join_view is single-pass and

only modified by operations that invalidate other
iterators.

See https://cplusplus.github.io/LWG/issue3278

Accepted with
Modification

See P1983

http://wg21.link/P0970
https://cplusplus.github.io/LWG/issue3278
https://wg21.link/p1983
https://cplusplus.github.io/LWG/issue3278
https://wg21.link/p1983

Template for comments and secretariat observations Date:2020-02-15 Document: Project: 14882

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 78 of 99

US
293

 24.07.10.2

 te join_view is missing a base() member for
returning the underlying view. All the other range
adaptors provide this.

To the join_view class template add the member:

 constexpr V base() const { return base_; }

Accepted

See LWG Issue 3322

US
294

 24.07.10.3

14,15 te join_view::iterator::operator-- is improperly
constrained. In the Effects clause in paragraph
14, we see the statement:

 inner_ = ranges::end(*--outer_);

However, this only well-formed when end returns
an iterator, not a sentinel. This requirement is not
reflected in the constraints of the function(s).

Change join_view::iterator::operator--() and
operator--(int) to the following:

constexpr iterator& operator--()
requires ref_is_glvalue &&
bidirectional_range<Base> &&
bidirectional_range<range_reference_t<Base>>
&&
common_range<range_reference_t<Base>>;

constexpr iterator operator--(int)
requires ref_is_glvalue &&
bidirectional_range<Base> &&
bidirectional_range<range_reference_t<Base>>
&&
common_range<range_reference_t<Base>>;

Accepted

See LWG Issue 3313

US
295

 24.07.10.3

2,3 ed Paras 2.1 and 3.2 do not say what the
iterator_(category|concept) should be if neither of
the two sub-bullets hold. Presumably the author
intended those bullets to fall through to p2.2 and
p3.3 respectively, but I don't think it works that
way.

Add a 2.1.3 that reads, "Otherwise,
iterator_concept denotes input_iterator_tag."
Add a 3.2.3 that reads, "Otherwise,
iterator_category denotes input_iterator_tag.“

Accepted - Editorial

US
296

 24.07.11.3

 te split_view::outer_iterator converting constructor is
slightly wrong. In split_view::outer_iterator<V,
Pattern>, when V is not const-iterable, we must
avoid forming the type iterator_t<const V> since it
will fail to compile.

For the converting constructor:

constexpr outer_iterator(outer_iterator<!Const> i)
 requires Const && ConvertibleTo<iterator_t<V>,
iterator_t<const V>>;

change the requirement to:

 requires Const && ConvertibleTo<iterator_t<V>,
iterator_t<Base>>;

Accepted with
Modification

See P1983

US
297

 24.07.11.4

 te The value_type of the split_view iterator is a
view; however, unlike all the other view types in
the ranges clause, this one does not inherit from
view_interface. This is an oversight. This must be

Change the synopsis of split_view's outer_iterator
to show struct split_view<V,
Pattern>::outer_iterator<Const>::value_type
inheriting from view_interface<value_type>.

Accepted with
Modification

See P1972

https://cplusplus.github.io/LWG/issue3322
https://cplusplus.github.io/LWG/issue3313
https://wg21.link/p1983
https://wg21.link/p1972

Template for comments and secretariat observations Date:2020-02-15 Document: Project: 14882

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 79 of 99

corrected now as doing so later would change
ABI.

See https://cplusplus.github.io/LWG/issue3276

US
298

 24.07.13.3

01.1

Te The behavior of views::common cannot depend
on modeling a concept.

Change "models" to "satisfies". Accepted

See P2101

GB
299

 24.07.16.2

 Te has-tuple-element helper concept needs
convertible_to

The exposition-only has-tuple-element concept
(for elements_view) is defined as

template<class T, size_t N>
concept has-tuple-element = exposition only

requires(T t) {

 typename tuple_size<T>::type;
 requires N < tuple_size_v<T>;

 typename tuple_element_t<N, T>;
 { get<N>(t) } -> const tuple_element_t<N, T>&;

};

However, the return type constraint for {

get<N>(t) } is no longer valid under the latest
concepts changes

Change to:

template<class T, size_t N>

concept has-tuple-element = exposition only

requires(T t) {
 typename tuple_size<T>::type;

 requires N < tuple_size_v<T>;
 typename tuple_element_t<N, T>;

 { get<N>(t) } -> convertible_to<const
tuple_element_t<N, T>&>;

};

Accepted

See LWG Issue 3323

US
300

 24.07.2

1 Te The behavior of semiregular-box cannot depend
on modeling a concept.

Change "model{s,ed}" to "satisfie{s,d}". Add
semantic constraints on the use of semiregular-

box if necessary.

Accepted

See P2101

GB
301

 24.07.4.2

 Te filter_view has no pred() member

Other views taking predicates (take_while_view

and drop_while_view) have a pred() member
returning (a const reference to) the contained

predicate object, but filter_view does not

In [range.filter.view], add

constexpr const Pred& pred() const;

Effects: Equivalent to: return *pred_;

Accepted with
Modification

See P1983

US
302

 24.07.4.2
24.7.5.2
24.7.6.2
24.7.10.2
24.7.11.2
24.7.14.2

 te Several of the view class templates in
the [range.adaptors] section have converting
constructors from compatible ranges. These were
originally added in a misguided effort to support
CTAD, but as described in LWG#3280, these
constructors can cause recursion in the type
constraints, leading to spurious compile errors.

Adopt the proposed resolution
in https://cplusplus.github.io/LWG/issue3280

Accepted

See LWG Issue 3280

https://cplusplus.github.io/LWG/issue3276
https://wg21.link/p2101
https://cplusplus.github.io/LWG/issue3323
https://wg21.link/p2101
https://wg21.link/p1983
https://cplusplus.github.io/LWG/issue3280
https://cplusplus.github.io/LWG/issue3280
https://cplusplus.github.io/LWG/lwg-active.html#3280

Template for comments and secretariat observations Date:2020-02-15 Document: Project: 14882

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 80 of 99

US
303

 24.07.5.2

 Te The transform_view does not constrain the return
type of the transformation function. It is invalid to
pass a void-returning transformation function to
the transform_view, which would cause its
iterators’ operator* member to return void.

Change the constraints on transform_view to the
following:

template<input_range V, copy_constructible F>
 requires view<V> && is_object_v<F> &&
 regular_invocable<F&, range_reference_t<V>>
&&
 can-reference<invoke_result_t<F&,
range_reference_t<V>>>
class transform_view

Accepted

See LWG Issue 3286

US
304

 24.07.6.2
24.5.3.1/p6

 te On an input (but not forward) range, begin(rng) is
not required to be an equality-preserving
expression (24.4.2 [range.range]/3.3). If the
range is also sized, then it is not valid to call

size(rng) after begin(rng) (24.4.3
[range.sized]/2.2). In several places in the ranges
clause, this precondition is violated. A trivial re-
expression of the effects clause fixes the
problem.

Adopt the proposed resolution
in https://cplusplus.github.io/LWG/issue3286

Accepted

See LWG Issue 3286

FR
305

 25 The range version of some algorithms are
missing

Adopt P1243 Accepted with
Modification

See P1243

US
306

 25

[algorithms]

 te The ranges comparison algorithms are
overconstrained – they require symmetric
comparison functions even though the algorithm
doesn’t need them. The constraints should be
lowered.

See also
https://github.com/ericniebler/stl2/issues/610

Adopt P1716 Accepted

See P1716

US
307

 25

[algorithms]

 te Some algorithms do not have ranges::
counterparts.

Adopt P1243. Accepted with
Modification

See P1243

https://cplusplus.github.io/LWG/lwg-active.html#3286
https://wg21.link/range.range
https://wg21.link/range.sized
https://cplusplus.github.io/LWG/issue3286
https://cplusplus.github.io/LWG/lwg-active.html#3286
https://wg21.link/p1243
https://github.com/ericniebler/stl2/issues/610
https://wg21.link/p1716
https://wg21.link/p1716
https://wg21.link/p1243
https://wg21.link/p1243

Template for comments and secretariat observations Date:2020-02-15 Document: Project: 14882

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 81 of 99

GB
308

 25 Te All half ranges should be fully rangified

It seems odd that we're not offering full ranges for
the ranges that we write to. We can potentially

eliminate a class of error by requiring all ranges
have bounds, and implementations can optimise

for the unreachable_sentinel_t case.

This is already the case for the uninitialised

memory algorithms.

Redesign all ranges algorithms with half-ranges

so that they're fully bounded.

Example:

// Current
template<input_iterator I, sentinel_for<I> S,

weakly_incrementable O>
 requires indirectly_copyable<I, O>

 constexpr ranges::copy_result<I, O>
ranges::copy(I first, S last, O result);

template<input_range R, weakly_incrementable
O>

 requires indirectly_copyable<iterator_t<R>, O>
 constexpr

ranges::copy_result<safe_iterator_t<R>, O>
ranges::copy(R&& r, O result);

// Proposed

template<input_iterator I, sentinel_for<I> S1,

 input_or_output_iterator O, sentinel_for<O>
S2>

 requires indirectly_copyable<I, O>
 constexpr ranges::copy_result<I, O>

ranges::copy(I first, S1 last, O result, S2
result_last);

template<input_range R, range O>
 requires indirectly_copyable<iterator_t<R>,

iterator_t<O>>
 constexpr

ranges::copy_result<safe_iterator_t<R>,
safe_iterator_t<O>> ranges::copy(R&& r, O&&

result);

Rejected

There was no consensus
to adopt this change.

GB
309

 25 Te Strike ranges::*_n algorithms

Most *_n algorithms become unnecessary in the
wake of counted_iterator, and relevant range

adaptors.

Remove the following ranges algorithm overloads:

copy_n
fill_n

generate_n

(Note: search_n omitted, as it appears to be

different to the others.)

Rejected

There was no consensus
to adopt this change.

GB
310

 25 Te Some new algorithms should be marked
[[nodiscard]] Add [[nodiscard]] to the following ranges::

algorithms.

Rejected

There was no consensus

Template for comments and secretariat observations Date:2020-02-15 Document: Project: 14882

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 82 of 99

 These algorithms are equality-preserving, and
are ultimately read operations. They should be

marked as [[nodiscard]] to reflect that their result
is always intended to be used.

Consider similar change for
lexicographical_compare_three_way.

All algorithms in [alg.nonmodifying].

remove (not a read operation, but the result
should rarely be discarded)

remove_if (not a read operation, but the result
should rarely be discarded)

is_sorted
is_sorted_until

All algorithms in [alg.binarysearch].

is_parititoned
partition_point

includes
is_heap

All algorithms in [alg.min.max].

lexicographical_compare

Possibly also add nodiscard to
lexicographical_compare_three_way.

to adopt this change.

CZ
311

 25 24.5 te Due to the ranges API being more or less fixed
after shipment, API-breaking fixes have to be
scheduled now rather than shipped in C++23.
Currently, many of the new algorithms in
std::ranges algorithms copy their boolean-
returning predecessors by returning a single
boolean value. And while this makes perfect
sense as an independent unit, individuals
composing these algorithms with iterators that
are bidirectional or worse sometimes need to
perform additional actions around and because of
the return of one of these boolean-returning
algorithms. For example, if an iterator is
advanced to its corresponding "last" value by
std::equal, that advancement is lost upon
returning just a boolean from the algorithm. Any
work that wanted to continue from the "last" value
supplied into the algorithm must re-increment the
iterator, resulting in duplicated work.

The algorithms (the new ones in std::ranges)
should be changed to have a result type which is
(explicitly) convertible to boolean and also retains
the Iterator value at its state. If the algorithm is
"successful" (e.g., std::equal returns true), the
iterator must point at the end. Otherwise, the
value of the returned iterator is unspecified.
Purportedly, an upcoming paper P1877 will
handle this.

Rejected

There was no consensus
to adopt this change.

PL
312

 25
[algorithms]

 te The ranges::is_permutation, ranges::unique,
ranges::unique_copy algorithm are currently Adopt P1716R2.

Accepted

See P1716

https://wg21.link/p1877
https://wg21.link/p1716

Template for comments and secretariat observations Date:2020-02-15 Document: Project: 14882

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 83 of 99

 underconstrained, as they do not require supplied
functor to model equivalence relation.

Other compare algorithms (like ranges::equal,
ranges::mismatch, ranges::search), are
overconstrained. They require supplied functor to
model relation<T, U> concept instead of
predicate<T, U>, where T and U are reference
types of supplied ranges. As consequence,
supplied functor needs to be callable with four
combinations of arguments: (T, U), (U, T), (U, U),
(U, U), instead of just (T, U). This makes them
less general than existing non-range overloads,
and complicates code migration.

US
313

 25.02
[algorithms.
requirement
s]

 Ge This subclause describes general purpose
wording that applies to all algorithms in the
standard, without defining algorithm. It generally
applies such definitions to algorithms "in this
clause", but the wording for specialized
algorithms in 20.10.11 [specialized.algorithms]
relies on this wording too, especially to provide
definitions for its ranges overloads.

Revise this subclause to include a definition
of algorithm, so that all the wording that applies to

this subclause instead applies to all algorithms.
Reasonable definitions of algorithm (for the
purposes of the standard library) might be all
function templates in clause 25, and clause
20.10.11, or some definition constructed around
function templates having arguments of iterator or
range type. The former is likely a simpler fix for
C++20, the latter would avoid having to update
the list of locations for algorithms in the future,

Accepted with
Modification

See P1963

JP8
314

 25.03.1

 ed Notes in terminological entries should start with
different element, namely,
"Note # to entry", according to Clauses 24 and
16.5.9 in the Directives Part 2.

Replace "[Note:" with "[Note 1 to entry:". Accepted - Editorial

GB
315

 25.04

 Te next_permutation_result has no conversion

operators

The other *_result classes have conversion

operators defined (for the case where the range-
based overload returns dangling) but

next_permutation_result does not. It is also
missing the [[no_unique_address]] attribute for its

iterator member.

In [algorithm.syn], change

template<class I>
struct next_permutation_result {

 bool found;
 [[no_unique_address]] I in;

 template <class I2>
 requires convertible_to<const I&, I2>

 operator next_permutation_result<I2>() const & {
 return {found, in};

 }
 template <class I2>

 requires convertible_to<I, I2>
 operator next_permutation_result<I2>() && {

Accepted with
Modification

See P2106

https://wg21.link/p1963
https://wg21.link/p2106

Template for comments and secretariat observations Date:2020-02-15 Document: Project: 14882

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 84 of 99

 return {found, std::move(in)};
 }

};

GB
316

 25.04

 Te Algorithm result types should be distinct types;

not aliases

Each algorithm should have its own result type

(that might be derived from some common
exposition-only type).

It will be probably be confusing for a diagnostic to
report copy_result as the return type when a user

is using move_backward, or for mismatch_result
to appear when a user is using swap_ranges!

Add three exposition-only types:

template<class I1, class I2>
struct in1-in2-result {

 [[no_unique_address]] I1 in1;
 [[no_unique_address]] I2 in2;

 template<class II1, class II2>
 requires convertible_to<const I1&, II1> &&

convertible_to<const I2&, II2>
 operator in1-in2-result<II1, II2>() const & {

 return {in1, in2};
 }

 template<class II1, class II2>
 requires convertible_to<I1, II1> &&

convertible_to<I2, II2>
 operator in1-in2-result<II1, II2>() && {

 return {std::move(in1), std::move(in2)};
 }

};

template<class I, class O>
struct in-out-result {

 [[no_unique_address]] I in;
 [[no_unique_address]] O out;

 template<class I2, class O2>
 requires convertible_to<const I&, I2> &&

convertible_to<const O&, O2>
 operator in-out-result<I2, O2>() const & {

 return {in, out};
 }

 template<class I2, class O2>
 requires convertible_to<I, I2> &&

convertible_to<O, O2>
 operator in-out-result<I2, O2>() && {

 return {std::move(in), std::move(out)};
 }

};

template<class I1, class I2, class O>

Accepted with
Modification

See P2106

https://wg21.link/p2106

Template for comments and secretariat observations Date:2020-02-15 Document: Project: 14882

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 85 of 99

struct in1-in2-out-result {
 [[no_unique_address]] I1 in1;

 [[no_unique_address]] I2 in2;
 [[no_unique_address]] O out;

 template<class II1, class II2, class OO>
 requires convertible_to<const I1&, II1> &&

 convertible_to<const I2&, II2> &&
convertible_to<const O&, OO>

 operator in1-in2-out-result<II1, II2, OO>()
const & {

 return {in1, in2, out};
 }

 template<class II1, class II2, class OO>
 requires convertible_to<I1, II1> &&

 convertible_to<I2, II2> && convertible_to<O,
OO>

 operator in1-in2-out-result<II1, II2, OO>() &&
{

 return {std::move(in1), std::move(in2),
std::move(out)};

 }
};

Each of the algorithm_result types should be
privately derived from the relevant exposition-only

type, with the members being made publicly
available.

next_permutation_result should be renamed to
permutation_result. (Note that for_each_result,

partition_copy_result, minmax_result, and
next_permutation_result don't have an exposition-

only type, since their use-cases are mostly
unique.)

FR
317

 25.06.14

 te The names of shift_left and shift_right will be
misleading when specialized for bit proxy
iterators (shift_left will call the bitwise right shift
operator >>, and shift_right will call the bitwise
left shift operator <<). As a result, the names of
the algorithms shift_left and shift_right would
benefit from being adjusted to less misleading
names.

Alternatives include having only one shift

algorithm taking a signed integer for the shift

amount, and shifting to the beginning for a

negative amount, and to the end for a positive

amount. Changing names is another alternative:

shift_next/shift_prev,

backshift/foreshift, back_shift/fore_shift,

shift_forward/shift_backward,

shift_front/shift_back,

Rejected

There was no consensus
to adopt this change.

Template for comments and secretariat observations Date:2020-02-15 Document: Project: 14882

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 86 of 99

shift_begin/shift_end

US
318

 25.06.14

[alg.shift]

 te Currently, shift by a negative value is simply
ignored. This runs totally counter to user
expectation. Make it a precondition to provide a
non-negative value. This would be a behaviour
change so needs to be done now.

Adopt P1243.

If not that, adopt P1233.

Accepted with
Modification

See P1243

JP9
319

 25.07.8

p22 ed "Let X be the return type. Returns Xx, y, where
..." needs braces for constructing the value. In
addition, other descriptions for "Returns" doesn't
specify the return type explicitly. It would be
better to make consistent.

{x, y}, where ... Accepted - Editorial

US
320

 25.08

[numeric.

ops.

overview]

 te We made lots of algorithms constexpr, but not
the ones in <numeric>. We really should be more
thorough and not just forget these.

Adopt P1645. Accepted

See P1645.

FR
321

 25.09

 All non-allocating algorithms have been made
constexpr except for the ones in numeric, which
seems like an oversight

Adopt P1645 Accepted

See P1645.

PL
322

 25.09
[numeric.op
s]

 te ● The specification of GENERALIZED_*_SUM is
overly restrictive and suggests that a serial cutoff
is not allowed.

● The intermediate type for numeric algorithms is
unclear.

● The type requirements for numeric algorithms

Adopt P0571.
Rejected

There was no consensus
to adopt this change.

https://wg21.link/p1243
https://wg21.link/p1233
https://wg21.link/p1243
https://wg21.link/p1645
https://wg21.link/p1645
https://wg21.link/p1645

Template for comments and secretariat observations Date:2020-02-15 Document: Project: 14882

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 87 of 99

are unclear.

● The requirements on function objects for
numeric algorithms are overly restrictive.

FR
323

 26.05

 te The current wording of low level bit manipulation
functions specified by "P0553R4: Bit operations"
and by "P0556R3: Integral power-of-2
operations" make these functions unusable with
std::byte. Since the whole purpose of the
introduction of std::byte was to break the
ambiguity between pure integers vs memory
storage, the incompatibility between low level bit
functions and std::byte reintroduces this pre-
C++17 ambiguity for users. The current design
may make future evolution of the <bit> header
more complicated.

Introduce a machine word “concept” as well as

related type traits (binary_digits, is_word) that

unsigned integers, extended unsigned integers,

and std::byte satisfy. This mechanism should also

constitute a customization point for advanced

users who want to provide their own words types.

Have the low-level bit operations take machine

words as inputs and not only unsigned integers.

See paper P1856R1.

Rejected

There was no consensus
to adopt this change.

US
324

 26.05

Applies to
§26.5
Numerics
Library, Bit
manipulatio
n [bit]

§26.5.4
Integral
powers of 2
[bit.pow.two
];

§26.5.5
Rotating
[bit.rotate];

§26.5.6
Counting
[bit.count]

te By strict interpretation of the wording, none of
these new bit-oriented interfaces work with
std::byte. Given the discussion in the minutes it
seems like this was something intentionally left
out, to be patched later. A cast to unsigned
integral type for std::byte makes a type which
already suffers from lack of math operations and
similar even more verbose when working with
operations it is absolutely supposed to apply to.
This is not a useful restriction.

For sections §26.5.4 Integral powers of 2
[bit.pow.two]; §26.5.5 Rotating [bit.rotate]; §26.5.6
Counting [bit.count], change the "Remarks" text to
be as follows -- "Remarks: This function shall not
participate in overload resolution unless T is an
unsigned integer type ([basic.fundamental]) or
byte ([cstddef.syn]). If T is byte, then the
expression is equivalent to std::
???(static_cast<underlying_type_t<byte>>(value))
." Substitute the name of each function from the
section for ???.

Rejected

There was no consensus
to adopt this change.

US
325

 26.05 [bit]

 Ed The contents of the header <bit> relate to
inspecting and manipulating memory patterns
directly, rather than numeric operations. It better
belongs under clause 20, general utilities.

Move 26.5 [bit] to a new subsection under class
20 [utilities]

Rejected

There was no consensus
to adopt this change.

PL
326

 26.05 [bit]

 te The name of std::log2p1 clashes with an IEEE-
754 algorithm of the same name, which has been
included in a C TS meant for inclusion in a future
C standard (and probably also in C++). There is
no ambiguity between the overloads, however
having a name overloaded for two completely
different mathematical formulas is not a good
thing. For reference, the log2p1 algorithm from
the CD is `log2p1(x) = (x == 0) ? 0 : 1 +
floor(log2(x))`, while the log2p1 algorithm from

Rename `std::log2p1` to `std::bit_length`.
Accepted with
Modifications

See P1956

https://wg21.link/p1956

Template for comments and secretariat observations Date:2020-02-15 Document: Project: 14882

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 88 of 99

IEEE-754 `log2p1(x) = log2(1 + x)`.

Additionally, the function the CD calls log2p1 is
commonly - at the very least in Python, Ruby,
Java, and Dart - called `bit_length`. To the author
of this comment, it seems preferable to follow the
name that is used in other languages, to make it
easier for programmers to communicate and
reason about code across the different
languages.

US
327

 26.05.4
[bit.pow.two
]

 ed `log2p1` collides with an IEEE-754 operation.

Rename `log2p1`. We suggest a different
semantically meaningful name such as `bit_width`
or `base2digits`.

Accepted with
Modifications

See P1956

US
328

 26.05.4
[bit.pow.two
]

 ed `ceil2` and `floor2`'s names are unintuitive.
Meaning that most programmers reading the
code won't know what's meant.

Rename `ceil2` and `floor2`. Accepted with
Modifications

See P1956

US
329

 26.05.4
[bit.pow.two
]

 te The behavior of `ceil2` and `floor2` at 0 is unlikely
to be something programmers use correctly.

Change the constraints for both functions around
0.

Rejected

There was no consensus
to adopt this change.

US
330

 26.05.4
[bit.pow.two
]

 ed The specification says: "The minimal value `y`
such that `ispow2(y)` is `true` and `y >= x`; if `y`
is not representable as a value of type `T`, the
result is an unspecified value.“ `y` is an argument
to `ispow2(y)`. It is necessarily representable.

Note - the above words are not in the CD, SC22
N5410 (WG21 N4830). See 26.5.4

Rephrase. Better wording might be "if no such `y`
exists", but that doesn't seem particularly useful:
how does one differentiate "no such `y`" from a
real answer?

Rejected

There was no consensus
to adopt this change.

GB
331

 26.05.4

3,4,5,6 Te std::ceil2() & std::floor2() produce conceptual
confusion

std::ceil() is a linear operation, but std::ceil2() is
an exponential operation. The '2' suffix does not

provide any hint as to its fundamental difference
from the std::ceil() function.

std::floor2() suffers from the same defect.

Spell out what the operations are exactly by

renaming to ceil_power_of_two() and
floor_power_of_two().

Rename std::ceil2() to std::ceil_power_of_two().

Rename std::floor2() to std::floor_power_of_two().

Accepted with
Modifications

See P1956

https://wg21.link/p1956
https://wg21.link/p1956
https://wg21.link/p1956

Template for comments and secretariat observations Date:2020-02-15 Document: Project: 14882

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 89 of 99

GB
332

 26.05.4

7, 8 Te std::log2p1() from P0556 introduces a possible
name collision.

It is defined as:

log2p1(x) = (x == 0) ? 0 : 1 + floor(log2(x))

In IEEE754-2008, and WG14 TS 18661-4a
(targeted for C2X):

log2p1(x) = log2(1+x)

The intention of P0556's log2p1() function is to

facilitate bit manipulation algorithms by
computing the number of bits needed to

represent an unsigned integer. Give it a more
descriptive name, such as std::bits_needed().

Rename std::log2p1() to std::bits_needed(). Accepted with
Modifications

See P1956

GB
333

 27.02.2.1

 Te UTC epoch is not correctly defined

UTC has an officially recorded epoch of 1/1/1972

00:00:00 and is 10 seconds behind TAI.

This can be confirmed through reference to the

BIPM (the body that oversees international
metrology)

https://www.bipm.org/cc/CCTF/Allowed/18/CCTF

_09-32_noteUTC.pdf

Specifically page 6

"The defining epoch of 1 January 1972, 0 h 0 m 0
s UTC was set 10 s behind TAI, accumulated

difference between TAI and UT1 since the
inception of TAI in 1958, and a unique fraction of

a second adjustment was applied so that UTC
would differ from TAI by an integral number of

seconds. The recommended maximum departure
of UTC from UT1 was 0.7 s. The term “leap

second” was introduced for the stepped second."

utc_clock and utc_timepoint should correctly
report relative to the official UTC epoch.

27.2.2.1 footnote 1 should read

In contrast to sys_time, which does not take leap

seconds into account, utc_clock and its
associated time_point, utc_time, count time,

including leap seconds, since 1972-01-01
00:00:00 UTC.

[Example:

clock_cast<utc_clock>(sys_seconds{sys_days{19

72y/January/1}}).time_since_epoch() is 0s.

clock_cast<utc_clock>(sys_seconds{sys_days{20

00y/January/1}}).time_since_epoch()

is 883'612'822, which is 10’197 * 86’400s + 22s.

— end example]

Accepted

See LWG Issue 3316

US
334

 27.05.10

[time.

duration.io]

 te operator<< for floating-point durations always
produces output with six digits after the decimal
point, and doesn’t use the stream’s locale either.

Rewrite the specification to not rely on to_string()
for floating-point formatting.

Accepted

See LWG Issue 3317

GB
335

 27.07.1.1

 Wording for clocks should be unified unless they
are intended to behave differently

Unify the wording Accepted

See LWG issue 3318

https://wg21.link/p1956
https://cplusplus.github.io/LWG/issue3316
https://cplusplus.github.io/LWG/issue3317
https://cplusplus.github.io/LWG/issue3318

Template for comments and secretariat observations Date:2020-02-15 Document: Project: 14882

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 90 of 99

 In 27.7.1.1 note 1 for system_clock it is stated

"Objects of type system_clock represent wall

clock time from the system-wide realtime clock.
Objects of

type sys_time<Duration> measure time since
(and before) 1970-01-01 00:00:00 UTC"

The express statement of "since (and before)" is
important given the time epoch of these clocks. If

all the clocks support time prior to their zero-time
then this should be stated explicitly. If not then

likewise that should be noted. No change is
proposed yet, clarification required over the

intended behaviour when using values prior to a
given clock's epoch is needed before the

appropriate change can be suggested.

GB
336

 27.07.4

 Te Use of specific clocks may create expectations
that are not which was the approximate delivered

(GPS)

The "gps" clock has nothing to do with the GNSS

service known as GPS except for sharing a
common anchor point (epoch) there is no

calibration, no feed, no expectation that the
"clock" correlates to GPS data streams. It seems

a very niche use and given some of the other
issues around its interpretation I would suggest it

is removed.

delete gps_clock Rejected

There was no consensus
to adopt this change.

GB
337

 27.07.4

 Te gps_clock is a unilateral reference to a US
service and has no place alone in the ISO

standard

The GPS GNSS service is owned, maintained

and controlled by the US government and while
Satellite timing and position usage has become

all but ubiquitous in many applications a modern
GNSS receiver is capable of receivng updates

from multiple GNSS constellations to ensure
coverage and security. If GPS is represented

then other national and interenationally
maintained services should be included, Glonass,

Beidou, Galileo to name but 3. Each of these

Remove gps_clock Rejected

There was no consensus
to adopt this change.

Template for comments and secretariat observations Date:2020-02-15 Document: Project: 14882

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 91 of 99

have different operating parameters, most
notably the epoch and the application or not of

leap seconds.

https://gssc.esa.int/navipedia/index.php/Time_Re
ferences_in_GNSS

While Galileo and Beidou do not respect leap
seconds, GLONASS does and GLONASS

transmits at a constant offset of 3 hours relative
to UTC (being Russian standard time).

Other features of gps, such as the week rollover
(an epoch defining event and which occurs every

19 years, the most recent being this April 2019)
are not represented in the gps_clock. If one

purpose of providing a gps_clock is to allow the
comparison of gps data to other clocks then

epoch rollover probably ought to be recognised,
though hopefully it will become a thing of the past

as increasingly gps satellites are upgrading to a
large week counter)

JP1
0
338

 27.08.3.3

p10 ed This is different from the declaration in 27.2. constexpr chrono::day operator""d(unsigned long
long d) noexcept;

Accepted – Editorial

JP1
2
339

 27.08.4.2

p14 ed Class name is not required. constexpr explicit month::operator unsigned()
const noexcept;

Accepted – Editorial

JP1
3
340

 27.08.4.2

p15 ed Class name is not required. constexpr bool month::ok() const noexcept; Accepted – Editorial

JP1
1
341

 27.08.4.2

p2 ed Class name is not required. constexpr month& month::operator++() noexcept; Accepted – Editorial

GB
342

 27.08.4.3

 Te std::chrono::month is the only duration-like type
without a UDL, which makes constructing objects

such as this look a little off.

chrono::year_month_day{1815y,

chrono::month{12}, 10d}}

Add operator""month, which behaves similarly to
operator""y.

The earlier expression could then read as:

Rejected

There was no consensus
to adopt this change.

Template for comments and secretariat observations Date:2020-02-15 Document: Project: 14882

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 92 of 99

chrono::year_month_day{1815y, 12month, 10d}}

JP1
4
343

 27.08.5.3

p10 ed This is different from the declaration in 27.2. constexpr chrono::year operator""y(unsigned long
long y) noexcept;

Accepted – Editorial

DE
344

 27.11.01

paragraph 1 ge This paragraph says
"27.11 describes an interface for accessing the
IANA Time Zone database described in RFC
6557, ..."

However, RFC 6557 does not describe the
database itself; it only describes
the maintenance procedures for that database,
as its title implies
(quoted in clause 2).

Add a reference to a specification of the database
itself, or
excise all references to the IANA time zone
database.

Accepted with
Modification
Reference to IANA time
zone database.

DE
345

 27.11.08

 te The class name "leap" to designate a UTC leap
second event
is too generic and not sufficiently descriptive.

Rename the class to
 "utc_leap"
or
 "utc_leap_second",

Consistent with the naming of
 "utc_clock"
and
 "utc_time"
for other UTC-related classes.

Accepted with
Modification

See P1981

DE
346

 27.11.09

 te The class name "link" to designate an alias for a
named
time zone is too generic and not sufficiently
descriptive.

Rename the class to "zone_link", consistent with
the fact that all other classes related to time zones
contain "zone" in their name.

Accepted with
Modification

See P1982

FR
347

 27.12.10 local_time_format should use optional<string>
and optional<seconds> instead of pointers

change

 local_time_format signature

to

 local_time_format(local_time<Duration> time,

optional<string> = {},

optional<seconds> offset_sec = {});

Rejected

There was no consensus
to adopt this change.

JP1
5
348

 29.10.01

 ed The default template arguments are missing. template<class charT, class traits =
char_traits<charT>, class Allocator =
allocator<charT>>

Accepted – Editorial

https://wg21.link/p1981
https://wg21.link/p1982

Template for comments and secretariat observations Date:2020-02-15 Document: Project: 14882

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 93 of 99

 class basic_syncbuf;
template<class charT, class traits =
char_traits<charT>, class Allocator =
allocator<charT>>
class basic_osyncstream;

JP1
6
349

 29.10.02.1

 ed The default template arguments are missing. template<class charT, class traits =
char_traits<charT>, class Allocator =
allocator<charT>>
class basic_syncbuf : public
basic_streambuf<charT, traits> {

Accepted – Editorial

JP1
7
350

 29.10.03.1

 ed The default template arguments are missing. template<class charT, class traits =
char_tratis<charT>, class Allocator =
allocator<charT>>
class basic_osyncstream : public
basic_ostream<charT, traits> {

Accepted – Editorial

US
351

 31
[atomics]

 te Atomic initialization has been broken since
C++11.

Adopt P0883R1. Accepted with
Modification

See P0883

US
352

 31

[atomics]

 te It is not possible to include C’s <stdatomic.h> in
C++ today, which makes it difficult to use atomics
in code that needs to be compiled as both C and
C++. C++ should support inclusion of
<stdatomic.h>.

Adopt P0943. Rejected

There was no consensus
to adopt this change.

CA
353

 31 [atomics] te Atomic initialization doesn’t work as expected. Adopt P0883R1. Accepted with
Modification

See P0883

US
354

 31.03

[atomics.

alias]

 Te In P1135r3, the atomic_int_fast_wait_t and
atomic_uint_fast_wait_t type aliases were
removed. The paper’s changelog explains why:

Removed atomic_int_fast_wait_t and
atomic_uint_fast_wait_t, because LEWG at San
Diego 2018 felt that the use case was
uncommon and the types had high potential for
misuse.

We think this decision warrants reconsideration.
On some platforms, certain implementation
strategies for wait/notify are only available for
certain sized integer types (for example, Linux’s
futex is for int only)

Re-add P1135r2’s atomic_int_fast_wait_t and
atomic_uint_fast_wait_t.

Rejected

There was no consensus
to adopt this change.

https://wg21.link/p0883r1
https://wg21.link/p0883
https://wg21.link/P0943
https://wg21.link/p0883
https://wg21.link/P1135r3
https://wg21.link/P1135r2

Template for comments and secretariat observations Date:2020-02-15 Document: Project: 14882

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 94 of 99

US
355

 31.07

[atomics.ref.
generic]

31.7.1

[atomics.ref.
operations]

31.7.2

[atomics.ref.

int]

31.7.3

[atomics.ref.

float]

31.7.4

[atomics.ref.
pointer]

25-28

1

1

1

te atomic_ref<T>::notify_one and
atomic_ref<T>::notify_all should be const
member functions (in the generic class and all
the specializations), since it is the atomic object
that is (conceptually) modified, not the
atomic_ref<T> object.

Make atomic_ref<T>::notify_one and
atomic_ref<T>::notify_all const.

Accepted with
Modification

See P1960

US
356

 31.07.1

[atomics.ref.
operations]

10 te atomic_ref::is_lock_free should require that the
result only depend on the type of the object, not
the specific object. The current specification is
inconsistent with atomic<T>. (See
[atomics.lockfree] 31.5p3.) This test is primarily
useful to determine whether a particular algorithm
can or should be used. If the result can vary
based on object identity, that is not possible.
There is no way to ask whether the property
holds for all relevant objects until all of the
objects are actually available for testing. Note
that is_always_lock_free does not fully serve this
purpose, since is_lock_free() may vary at run
time depending on hardware characteristics,
while still being consistent per type. This was the
subject of recent reflector discussion.

Apply the PR for LWG3249, and replicate the
equivalent wording here.

Possibly consider making the is_lock_free
member function static. That appears to make the
member function behavior less surprising, at the
cost of an inconsistency with the C-constrained
free function.

Accepted with
Modification

See P1960

US
357

 31.07.2
[atomics.ref.

int]

31.8.2

[atomics.

1

1

ed The note at the end of [atomics.ref.int] (31.7.2)
paragraph 1:

[Note: For the specialization atomic_ref<bool>,
see 31.7. — end note]

refers to [atomics.ref.generic](31.7). There is no
mention of atomic_ref<bool> in that subclause,

Change the note at the end of [atomics.ref.int]
(31.7.2) paragraph 1 as follows:

[Note: For the specialization atomic_ref<bool>,
see 31.7. — end note]

[Note: The specialization atomic_ref<bool> is
based on the primary template

Accepted - Editorial

https://wg21.link/p1960
https://wg21.link/p1960

Template for comments and secretariat observations Date:2020-02-15 Document: Project: 14882

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 95 of 99

types.int]

so the reason for the cross reference is not
obvious.

The note at the end of [atomics.types.int] (31.8.2)
paragraph 1:

[Note: For the specialization atomic<bool>,
see 31.8. -- end note]

has a similar issue. [atomics.types.generic]
(31.8) does mention atomic<bool>, but not in a
way that makes the reason for the cross
reference obvious.

([atomic.ref.generic]), and is not included among
the integer-specific specializations. — end note]

Change the note at the end of [atomics.types.int]
(31.8.2) paragraph 1 as follows:

[Note: For the specialization atomic<bool>, see
31.8. -- end note]

[Note: The specialization atomic<bool> is

based on the primary template
([atomics.types.generic]), and is not included
among the integer-specific specializations. --
end note]

US
358

 31.07.3

[atomics.ref.

float]

1 te In the atomic_ref<floating-point> synopsis in
[atomic.ref.float] (31.7.3) paragraph 1:

floating-point operator=(floating-point)
noexcept;

should be a const member function, like all other
atomic_ref<T> assignment operators.

Change the atomic_ref<floating-point> synopsis in
[atomic.ref.float] (31.7.3) paragraph 1 as follows:

floating-point operator=(floating-point) const
noexcept;

Accepted with
Modification

See P1960

US
359

 31.07.5

[atomics.ref.
memop]

1-4 ed In the specification of member operations
common to atomic_ref<integral> and
atomic_ref<T*> specializations in
[atomics.ref.memop] (31.7.5), all of the member
functions are specified to return T*, which is only
correct for the atomic_ref<T*>. The
corresponding member operations for
atomic<integral> and atomic<T*> in
[atomics.types.memop] (31.8.5) return T.

Additionally, there is an extra int parameter in the
specification of the second operator--. That
declaration is supposed to be the predecrement
operator, not the postdecrement operator.

Change the specification of member operations
common to atomic_ref<integral> and
atomic_ref<T*> specializations in
[atomics.ref.memop] (31.7.5) as follows:

T* operator++(int) const noexcept;

 Effects: Equivalent to: return fetch_add(1);

T* operator--(int) const noexcept;

 Effects: Equivalent to: return fetch_sub(1);

T* operator++() const noexcept;

 Effects: Equivalent to: return fetch_add(1) + 1;

T* operator--(int) const noexcept;

 Effects: Equivalent to: return fetch_sub(1) - 1;

Alternatively, we could consider rewording these
member operations entirely for both atomic<T>
and atomic_ref<T>. For example, we could just
add them to both the integer and pointer
specializations, which would be clearer, but would
duplicate the wording.

Accepted with
Modification

See P1960

GB 32 Te Too many new headers Consolidate them into a single <sync> header or

similar.
Rejected

https://wg21.link/p1960
https://wg21.link/p1960

Template for comments and secretariat observations Date:2020-02-15 Document: Project: 14882

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 96 of 99

360

The CD includes new headers <stop_token>,
<semaphore>, <latch>, and <barrier>. It seems

unhelpful to split the synchronization utilities
across so many different headers.

There was no consensus
to adopt this change.

GB
361

 32.04.3

 Te Rename jthread

The name jthread, while concise, is cryptic. By

expanding the j, the 'smart-thread' type will be in
sync with its smart-pointer cousins.

Proposed Change:

Consider expanding jthread into a name that more

directly represents its intention. Examples include,
but are not limited to:

joining_thread
join_thread

Rejected

There was no consensus
to adopt this change.

JP1
8
362

 32.04.3.5

 ed This is different from the declaration in 32.4.3. [[nodiscard]] unsigned hardware_concurrency()
noexcept;

Accepted - Editorial

PL
363

 32.06.4
[thread.con
dition.condv
arany]

 te The conditition_variable_any::wait_until that
accepts lock and stop_token, is inconsistent with
the [thread.req.timing] p4, that reserves '_until'
suffix for functions that accepts time_point.
Furthermore, all interruptible waits functions, are
accepting stop_token as the last argument,
following the predicate, thus making them harder
to format in situations when lambda is passed as
a predicate.

Change the interruptible waits interface as
proposed in P1869R0.

Accepted with
Modification

See P1869

US
364

 32.07.2

Paragraph
13

te The phrasing of the spurious failure case of
semaphore try_acquire can confuse readers, who
may parse it as being about blocking guarantees
or a statement about QoI, rather than capturing
various memory model subtleties as intended.
Better would be to word this case similarly to
mutex try_lock. The proposed change does so.

Replace with "Effects: Attempts to atomically
check if the counter is positive and decrement it
by one if so, without blocking. If the counter is not
decremented, there is no effect and try_acquire
immediately returns. An implementation by fail to
decrement the counter even if it is positive. [Note:
This spurious failure is normally uncommon, but
allows interesting implementations based on a
simple compare and exchange ([atomic]). -- end
note] An implementation should ensure that
try_acquire() does not consistently return false in
the absence of contending semaphore
operations.“

Accepted with
Modification

See P1960

US
365

 32.08

[thread.

coord]

 te latch and barrier currently take a ptrdiff_t as their
expected count parameter and thus must support
any expected count (larger than or equal to 0)
that will fit in a ptrdiff_t. This limits implementation
freedom; some platforms can provide a much

Adopt P1865, which adds a static constexpr
ptrdiff_t max() noexcept; member to both classes
that returns the expressible range of the object,
like the one on counting_semaphore.

Accepted with
Modification

See P1865

https://wg21.link/p1869
https://wg21.link/p1960
https://wg21.link/p1865
https://wg21.link/p1865

Template for comments and secretariat observations Date:2020-02-15 Document: Project: 14882

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 97 of 99

 more efficient implementation of latch and barrier
if they can restrict the maximum possible
expected count.

CA
366

 32.08.1
[thread.latc
h]

 ed Subclauses 32.8.2 [latch.syn] and 32.8.3
[thread.latch.class] should be subclauses of
subclause 32.8.1 [thread.latch] instead of at the
same level (e.g., to be consistent with subclause
32.8.4 [thread.barriers]).

Make subclauses 32.8.2 and 32.8.3 subclauses of
32.8.1.

Accepted - Editorial

US
367

 6-15 ge Requirements that a header be included before a
language feature is functional should also allow
for importing that header (unit), While we will file
additional comments for the cases we identify,
this is a catch-all comment to adopt the principle
and similarly fix any places we miss.

When a header be included before a language
feature is functional should also allow for
importing that header (unit).

Accepted with
Modification

See P1971

US
368

 6-15 ge Undefined behavior lexing and tokenizing the
program text has no place in a modern standard.
Unnecessary undefined behaviour in our
standard raises a wide variety of concerns, not
least with the security community, and all
concerns related to turning source code into
tokens for subsequent analysis should be either
diagnosable errors, or (conditionally) supported
behavior. This comment is a principle statement
for more detailed comments that follow, and as a
catch-all for any further occurrences that were
missed.

Remove Undefined Behavior lexing and
tokenizing the program text.

Rejected

There was no consensus
to adopt this change.

BG3
369

P 118 7.06.2.3

6 ge (Related to BG2) The code example uses the
void-returning variant of await_suspend().

Change the return type of
my_future::await_suspend() and
awaiter::await_suspend() to coroutine_handle.

Rejected

There was no consensus
to adopt this change.

US
370

 All clauses
affected by
P0912R5

Beh ???

9.04.4

et al

n/a ge WG21 has received four independent usage
reports on efforts to adopt Coroutines in
production code: P0054, P0973, P1471, and
P1745. All of these early adopters identified
major problems that could not be fixed in a
backwards-compatible way; the problems
identified in P0054 were addressed via
incompatible changes, and the problems in the
other papers remain unaddressed in the CD. On
the basis of this experience, we believe it would

Revert the application of P0912R5 (Merge
Coroutines TS into C++20 working draft).

Rejected

There was no consensus
to adopt this change.

CHECK THIS

https://wg21.link/p1971
https://wg21.link/p0054
https://wg21.link/p0973
https://wg21.link/p1471
https://wg21.link/p1475
https://wg21.link/p1475
https://wg21.link/p0054
https://wg21.link/p0912r5

Template for comments and secretariat observations Date:2020-02-15 Document: Project: 14882

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 98 of 99

be premature to standardize Coroutines.

RU
371

 All the
library
clauses

 ge Apply all the wordings from all the “Mandating the
Standard Library” papers.

Apply wordings from P1505, P1622, P1686,
P1718-P1723.

Accepted

See

P1505 is superceeded
by P1723.

P1622

P1686

P1718

P1719

P1720

P1721

P1722

Are all accepted.

US
372

 Annex C
[c.compat]

 te C and C++ atomics haven't worked together
properly since first being standardized, even if
the intent was for them to interoperate.

Adopt P0943R4.

Rejected
There was no consensus
to adopt this change.

JP1
9
373

 C.5.01

p2.6 ed It's good to have a reference as in p2.1 to p2.5 Add a reference to 7.5.7. Accepted - Editorial

NL
374

3 Cross
references
from ISO

C ++ 2017"

 ed Typo ‘fmtflatgs’ should be ‘fmtflags’. Change to ‘fmtflags’ Accepted - Editorial

NL
375

2 D.19
[depr.fs.pat
h.factory]

Sub 4 te Example in deprecated section implies that
std::string is the type to use for utf8 strings.

[Example: A string is to be read from a database
that is encoded in UTF-8, and used to create a

directory using the native encoding for filenames:

namespace fs = std::filesystem;

std::string utf8_string = read_utf8_data();

fs::create_directory(fs::u8path(utf8_string));

Add clarification that std::string is the wrong type
for utf8 strings

Accepted

See LWG Issue 3328

https://wg21.link/p1505
https://wg21.link/p1723
https://wg21.link/p1622
https://wg21.link/p1686
https://wg21.link/p1718
https://wg21.link/p1719
https://wg21.link/p1720
https://wg21.link/p1721
https://wg21.link/p1722
https://wg21.link/p0943r4
https://cplusplus.github.io/LWG/lwg-active.html#3328

Template for comments and secretariat observations Date:2020-02-15 Document: Project: 14882

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 99 of 99

JP2
0
376

 D.7 p1 ed 9.4 is less appropriate as a reference for "these
implicit definitions could become deleted"

Replace 9.4 with 9.4.3. Accepted - Editorial

CA
377

 General te C / C++ interop for atomics is buggy. Adopt P0943. Rejected

There was no consensus
to adopt this change.

CA
378

 General ge How constraints work with non-templated
functions is still under heavy construction during
this late stage in the process. While we have
provided various comments that build in a
direction where supporting such constructs
(including ordering between multiple constrained
functions based on their constraints) would
become possible, we acknowledge that WG 21
might not find a solution with consensus in time
for the DIS. We ask WG 21 to evaluate the risk of
shipping the feature in such a state and consider
removing the ability to declare such functions.

 Accepted with
Modification

See P1971

Programming languages -- C++

https://wg21.link/p1971

