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I. Introduction 
C++11 introduced a comprehensive mechanism to manage generation of random numbers in the 

<random> header file (including distributions, pseudo random and non-deterministic generators).  

Since C++ 11 standard, vendors hardware (HW) has been significantly improved (e.g. 256-bits/512-bits 

Advanced Vector Extensions instruction sets were introduced on CPU) and many studies and researches 

has been published in the random number generation science (e.g.: [1], [2], etc.). The list of C++ random 

number generators has not been updated since 2011 year, and modern generators broadly used in 

different applications and benefit from HW advances are not covered by the standard.   

The request to review the current existing list of engines was raised during the discussion of the 

P1068R2 paper. Contents of the paper are independent and can be considered separately. 

We propose to extend the list of the random number generators in C++ standard and seek for feedback 

on the list of proposed engines. 

II. Revision history 
• N/A 

III. Motivation and Scope 
Random number generators (engines) are at the heart of Monte Carlo simulations [3] used in many 

applications such as physics simulations, finance, statistical sampling, cryptography, noise generation 

and others. 

Random number generators are characterized by the different aspects:  

• Quality of the produced sequences. Quality of the random numbers (randomness of the 

produced values) is analyzed theoretically and checked by the different test suites. For example, 

TestU01 with BigCrash battery [5] that includes about 160 statistical tests is one of the most 

popular test systems for random number generators.  

• Generation speed and sequence period. Random number generation is a bottleneck in many 

use cases, in particular in the large-scale Monte Carlo simulations ([4]) that require large 

amount of the random number are produced. Therefore, period of the random number 

sequence and generation speed are the important aspects for the random number generators. 

• Vectorization and parallelization opportunities. Performant and statistically correct support for 

parallel Monte Carlo simulations is one of the main requirements to the random number 

generators when random sequences should be generated independently on the different 

computing nodes. Support for vectorization is another requirement to the random number 

generators that allows using HW capabilities and impact on the generation speed. 

Each of the C++11 random number generators has own advantages and disadvantages in terms of 

described criteria, e.g. linear congruential generators, the simplest generators with 32-bit state, have a 
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quite short generation period (2^32) and weak statistical properties while Mersenne Twister 19937 

generator has long generation period and strong statistical properties relying a big vector state 

underneath; in its turn, this state impacts on the effective support of parallel Monte Carlo simulations. 

C++ random number generators do not support additional use cases such as quasi Monte Carlo 

simulations. 

This paper formulates a proposal on extensions of the C++ random number generators that enable 

additional use cases, own good statistical properties and actively exploit HW advances. The base for this 

proposal – analysis of the latest results in random number generation area. 

Extension and/or modification of the list of supported distribution random number generators is out of 

the scope of this proposal. 

IV. Libraries and other languages 
Random number generators are presented in many libraries. Examples: 

* Intel(R) Math Kernel Library (Intel® MKL) 

  - 9 pseudo-random 2 quasi-random and 1 non-deterministic generators with C[6]/Fortran APIs 

* MathWorks 

  - 9 pseudo-random and 2 pseudo-random generators with MatLab APIs 

* NVIDIA* cuRAND 

  - 5 pseudo-random 1 quasi-random (4 different versions) with Cuda interfaces 

Intel MKL is the example of the collection of engines which are highly vectorized for modern CPUs. 

Additionally, most of Intel MKL engines (10 of 12) effectively support parallel random number 

generation via blocking techniques or family of generators.  

V. Problem description 
C++11 introduced support for the following engine types: 

• linear_congruential. This class is a common implementation of the linear congruential 

generators. This generator type used to be broadly used in the past but due to not good 

statistical properties (56 tests are failed in TestU01 BigCrash) and low period (~ 2^31) it has 

many competitors among the other generators. 

 

• mersenne_twister. This class is an implementation of Mersenne Twister 19937 32- and 64-bits 

generators. These generators have good statistical properties – passed TestU01 BigCrash (other 

sources – two tests are failed conditionally) and long period (~ 2^19937). However, Mersenne 

Twister 19937 has big vector state (624 x 32 bits) so that it cannot be supported on the different 

device: e.g., NVIDIA Cuda does not support device API for this generator (Host API only). In 

addition, this generator is difficult to parallelize – big computation overhead is need for state 

adjustment. 

 

• subtract_with_carry. Ranlux48, ranlux48_base, ranlux24, ranlux24_base generators can be 

included in this group. These generators have good statistical properties but generation speed is 

significantly lower in comparison for example with Mersenne Twister family.  

 

• random_device. Non-deterministic generator type is also known as true random generator - in 

C++ standard it is presented as random_device. This generator is HW dependent. 



One observes significant advances in the random number generation area since the C++ 11 standard 

was established:  

• new efficient generators (counter-based family) have been introduced 

• a lot of research connected to the statistical properties of the generators have been published 

• quasi-random number generation is a de-factor standard instrument for simulations in various 

areas such as finance.  

Considering those aspects is important for C++ standard to extend and provide up-to-date high quality 

performant random number generators used for solution of modern challenging problems in various 

areas. 

VI. Possible approaches to address the problem 
We completed analysis of the broadly used random number generators and defined the following 

groups: 

• Counter based generators.  At the first time, counter based generators were introduced in [7]. 

All counter-based generators have small state (e.g. Philox4x32-10 has 4 x 32-bits counter and 2 x 

32-bits keys) and quite long period (not less than 2^130). The generators have quite a small 

internal state and effectively support parallel simulations vi block-splitting techniques and are 

enable a broad HW spectrum including CPU/GPU/FPGA/etc.  

 

• Mersenne Twister generators. Mersenne Twister family includes wide set of the generators: 

Mersenne Twister 19937 (implemented in C++ standard), Mersenne Twister 2203 (version of the 

generator with 69 x 32-bits state – easily parallelized on CPU), MTGP (special version for GPU 

devices), etc. All of these versions have pros and cons in terms of state size, generation speed 

and statistical properties. 

 

• Recursive/congruential generators. This group contains wide set of generators: including the 

simplest one (linear congruential) and different extensions and modifications. This group also 

includes Multiple Recursive generators (introduced by Pierre L’Ecuyer in [8]) – generators family 

with good statistical properties (all tests from TestU01 BigCrash are passed) and short state. 

Now Multiple Recursive generators are broadly used in Monte Carlo benchmarks.  

 

• Xor/shift generators. Generators in this group are mostly based on XOR and SHIFT operations: 

generalized/linear feedback shift register and Xorwow generators. Linear feedback shift register 

generators can be easily implemented in HW – so that they are used a lot in deferent world 

standard, e.g. CDMA, USB 3.0, IEEE 802.11a, GPS/GLONASS, etc.  

 

• Quasi-random number generators. Those generators produce highly uniform predefined 

sequence of numbers with low discrepancy. Main use case of such generators is quasi-Monte 

Carlo simulations. Sobol, Niederreiter, Faure are examples of the quasi-random number 

generators.  

We propose the following criteria to be used as the base for recommended extensions of the list of C++ 

random number generators:  

• Usage scenarios. Generators shall be broadly used in Monte Carlo simulations, associated with 

industry standards, etc. 

• Statistical properties. Generators shall demonstrate good statistical properties confirmed by 

theoretical studies and empirical testing.* 



• HW friend-ness. Generators shall enable the latest advances available in the modern HW 

(vector registers, cache sizes, number of processing elements etc) 

*TestU01 BigCrash battery can be used as well for the generators differentiation in terms of statistical 

properties. 

Based on the research and mentioned criteria we recommend the following generators for adding to 

C++ standard: 

a) Counter based generators – Philox/Threefry 
Philox and Threefry are counter based pseudo random number generators. Philox generator uses 

multiplication instructions that compute the high and low halves of the product of word-sized operands, 

Threefry generator is based on a symmetric-key tweakable block cipher algorithm - Threefish. 

First time these generators were introduced in [7] and now they are integrated to the many RNG 

libraries (Intel MKL, rocRand, cuRand, MatLab, tensorflow, etc.). Also based on [7] Threefry and Philox 

pseudo random number generators are the fastest generators on CPU and GPU respectively.  

Counter based generators are commonly used in financial sphere (e.g. [9]) and can effectively support 

different devices (CPU/GPU/FPGA/etc.).  

b) Multiple recursive generator (MRG) 
MRG generator meets the requirements for the modern RNGs, such as a good multidimensional 

uniformity and a long period [10]. This generator is statistically more robust than linear congruential 

generators and successfully passes all tests in TestU01 BigCrash battery. 

Due to long period (2^191), good opportunities for vectorization and parallelization this generator is 

commonly used in random number benchmarks (e.g. [11]) and implemented in many libraries (Intel 

MKL, NAG, GSL, R, rocRand, cuRand, MatLab). 

c) Linear feedback shift register 
Tauss88, LFSR113 and LFSR258 are the main representors of the linear feedback shift register 

generators. These generators are commonly used in biophysics sphere and in world technical standards, 

like CDMA, USB 3.0, IEEE 802.11a, GPS/GLONASS, etc. because they can be easily implemented in HW. 

Tauss88, LFSR113 and LFSR258 have long period (2^88/2^113/2^258 respectively), but fail some tests in 

TestU01 BigCrash battery. 

d) Quasi random number generator – Sobol 
Quasi-random number generators are used in mathematical finance simulations as a low discrepancy 

sequence, especially in pricing and risk management with quasi Monte Carlo simulations (e.g. [12]), 

where pseudo random number generators cannot be used.  

Sobol generators outperform all the generators in both speed and accuracy. Despite of long generator 

state this generator is supported in many RNG libraries (Intel MKL, NAG, rocRand, cuRand, BRODA, 

MatLab, etc.) and can be quite easily vectorized and parallelized.  

VII. Design considerations 
All proposed generators can be introduced as template classes with several instantiations for the 

particular generators.  

a) Counter based generators – Philox/Threefry 
In С++, standard Philox can be easily introduced by the generators family: Philox4x32-10, Philox2x64-20, 

Threefry4x64-20, etc. can be supported here.  



b) Multiple recursive generator (MRG) 
Broadly used MRG generators can be supported throw the one template class: Mrg32k3a, Mrg31k3, etc. 

c) Linear feedback shift register 
Taus88, LFSR113 and LFSR258 have different number of elements in states. All these generators can be 

supported by using the template class with the initialization lists as parameters. 

d) Quasi random number generator – Sobol 
Sobol generator is highly dependent on the direction numbers, so that several instantiations can be 

supported: sobol_joe_kuo ([13]), sobol_bratley_fox ([14]), etc. 

VIII. Impact on the Standard 
This is a library-only extension. It adds new engines classes but does not change any existing functions, 

nor enforce adding data members or virtual functions. It can, therefore, be ABI compatible with existing 

implementations. 

IX. Summary of changes 
New random number generators are proposed to be added to the C++ standard: 

• Counter based generators – Philox/Threefry 

o Philox4x32-10 

o Philox2x64-20  

o Threefry4x64-20 

o etc.  

• Multiple recursive generator 

o Mrg32k3a 

o Mrg31k3p 

o etc.  

• Linear feedback shift register 

o Taus88 

o LFSR113 

o LFSR258 

• Quasi random number generator – Sobol 

o sobol_joe_kuo  

o sobol_bratley_fox 

o etc.  

The future revision of this proposal will include exact sections, details and APIs for the proposed random 

number generators. Existing library components do not depend on the proposed change, only new APIs 

added. 
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