Document number: P1882R0

Date:

Project:

26th September 2019

Addition of a filter to recursive_directory_iterator Standard Proposal

Reply-to: Noel Tchidjo Moyo (noel.tchidjomoyo@murex.com)

Table of Contents

[Introductionl 2
I Motivationand Scope|. 4
I DesignDecisions| 4
V ImpactOntheStandard| 10
Technical Specifications|. 10

I Acknowledgements| 15

[Bibliography| 16

I Introduction

With the constant increase of complex applications, which have several years of
life, it becomes necessary for the tools processing the files of these applications
to be able to quickly list the types of files that interest them.

The object type recursive_directory_iterator introduced in the C++ 17 standard,
allows to list the entries of a directory and its subdirectories. Its use is usually
coupled with a test to check if the extension of the file corresponds to that which
interests us. This use can in some complex projects suffer of performance issues
since we will provide to users many unwanted entries. This is the reason why
we have investigated two API changes that allow to pass directly a filter as

parameter of recursive_directory_iterator constructor.
That is :

e The addition of a new recursive_directory_iterator constructor with a reg-
ular expression parameter

e The addition of a new recursive_directory_iterator constructor with a user-
provided lambda parameter.

Analysis of code expressiveness and time performance in both approaches, shows
that the user-provided lambda version provides significant benefits to C++ com-
munity. Finally these results justify our choice to propose for the standardization
the addition of a predicate concept as filter to recursive_directory_iterator con-
structor.

Need & Prior Art

The recursive_directory_iterator object type is an Inputlterator that allows to
iterate over the entries of a directory, and recursively over all entries of its sub-
directories. It is defined under <filesystem> header and has seven constructors.

recursive_directory_iterator () noexcept;

recursive_directory_iterator (
const recursive_directory_iterator& rhs);

recursive_directory_iterator (
recursive_directory_iterator&& rhs) noexcept;

explicit recursive_directory_iterator (

const std::filesystem :: path& p);

recursive_directory_iterator (
const std:: filesystem :: path& p,
std :: filesystem :: directory_options options);

recursive_directory_iterator (

const std::filesystem :: path& p,

std :: filesystem :: directory_options options,
std :: error_code& ec);

recursive_directory_iterator (
const std::filesystem :: path& p,
std :: error_code& ec);

Unfortunately, none of these constructors allows to provide a filter, that can
be apply systematically on each entry, in order to provide user with entries that
directly satisfy the filter. Currently, users rely on a i f statement in a for loop in
order to apply their filter (as in below code).

for (auto& entry:
std :: filesystem :: recursive_directory_iterator (folder))

auto extension = entry.path (). extension();

auto ext = extension.c_str ();
if (strcmp(ext, ".c") ==

'l stremp(ext, ".h") == 0

Il strcmp(ext, ".cpp") == 0
Il strcmp(ext, ".hpp") == 0)
{

do_some_work (entry . path (). filename (). c_str ());

}

However, filter could be complex, and in huge projects, with very large files set
this usage could suffer from performance issues.

II Motivation and Scope

Why is this important? What kinds of problems does it
address?

The motivation for the addition of a filter to recursive_directory_iterator is to
provide better code expressiveness and improve time performance when using
recursive_directory_iterator to list entries on a complex project.

What is the intended user community?

The intended community is anyone interested in operating on entries of complex
project with very large entries set.

III' Design Decisions

In order to evaluate what could be the best approach, we have implemented a
new constructor with a regex, and another one with a std :: function in two
compilers: GCC7-3 and Clang5. The resulting signature of
recursive_directory_iterator with a user-provided lambda is

explicit recursive_directory_iterator (

const std::filesystem :: path& __p,

const std :: function<bool(const charx)> lambda,
const std::filesystem:: entry_restriction& po)

The parameter std : filesystem :: entry_restriction is also added in order to spe-
cify the type of entry on which the filter should be apply. This corresponds also
to the type of entry to be returned by the iterator. The definition of this type is

enum class entry_restriction

{
file ,
directory,
symlink ,
none

b

When transforming the above sample example by using this new signature, we

obtain this

auto filter = [](const charx filename)

{

const charx ext = get_filename_ext(filename);
return strcmp(ext, ".c") == 0

Il stremp(ext, ".h") == 0

'l strcmp(ext, ".cpp") == 0

'l strcmp(ext, ".hpp") == 0;

5

for (auto& entry

std :: filesystem :: recursive_directory_iterator (folder,
filter ,
std :: filesystem :: entry_restriction :: file))

{

do_some_work (entry . path (). filename (). c_str ());

)

We also assess the possibility to add a regular expression as filter with the
below signature

explicit recursive_directory_iterator (

const std::filesystem ::path& __p,

const std::regex& reg,

const std::filesystem :: entry_restriction& po)

The above sample example will become

for (auto& entry:

std :: filesystem :: recursive_directory_iterator (folder,
std ::regex(".x\\.h|.x\\.c|.*x\\.cpp|.*\\.hpp"),
std :: filesystem :: entry_restriction :: file))

{

do_some_work (entry.path (). filename (). c_str ());
}
Expressiveness

Clearly both transformations improve code readability.

Time performance

For time performance measurements, we have run a directory traverser program
over several large open source file sets. We choose to present here time perform-
ance on three of them: Linux project file set, Gecko project file set and Hadoop
project file set.

We chose to present the results when running on these 3 projects because they
allow to have benchmarks in the case where we have a majority of entries that
pass the filter (Linux), the case where we have a majority of entries that do not
pass the filter (Hadoop), and where there is some balance between those who
pass and those who do not pass the filter (Gecko). Also, note that these tests have
been performed on Unix (for GCC implementation) and Windows (for CLANG
implementation) platforms.

Tests program code and compiler’s patches are available on
https:/ /github.com /bonpiedlaroute/cppcon2018

Here are some results on Unix platform (Smallest bar is the faster)

800 2
25% faster than current

600 - 2
400 |- 2

200 |- 8

Ratio (elpased time / noop time)

jen)

|
current regex lambda

Figure 1: Unix - Executions over Gecko file set

https://github.com/bonpiedlaroute/cppcon2018

Ratio (elpased time / noop time)

Ratio (elpased time / noop time)

80

60

40

20

200

150

100

20

26% faster than current -
I 38% faster than current

current regex lambda

Figure 2: Unix - Executions over Hadoop file set

| |
almost no difference

l l 17% faster than current

current regex lambda

Figure 3: Unix - Executions over Linux file set

Running the same tests on windows platform provides the below results

46% slower than current

800 |- 10% faster-than-eurrent

600

400 |- -

200 + -
0

current regex lambda

—_
[\
o
o

I

f)
S
S

|

Ratio (elpased time / noop time)

Figure 4: Windows - Executions over Gecko file set

18% slower than current

100 |- -
19% faster than current
Q0 -
60 -
40 - -
20 -
0

current regex lambda

Ratio (elpased time / noop time)

Figure 5: Windows - Executions over Hadoop file set

250 35% slower than current

200 ¥
150 |- 8
100 |-
50 |- 8
0 \

current regex lambda

Ratio (elpased time / noop time)

Figure 6: Windows - Executions over Linux file set

Analysis and Discussions

Above results show that the lambda version has always better time performance
than the regex version. This in fact makes sense since the user-provided lambda
is already tuned to the user specific need. When comparing to the current version
the lambda version has generally better time performance, except in rare cases
as Figure|fl where the gain is not significant.

We compared the implementations of both versions on Windows in order to
understand the reason for the poor performance of the regex version on Win-
dows. After many measurements, the significant difference in execution time
appeared during calls of std :: regex_match compared to calls to the lambda.
A call to std :: regex_match took 1000 times more execution time than a call
to the lambda on Windows. Thus, the poor performance of the regex ver-
sion on Windows compare to Unix is due to std :: regex_match Windows visual
studio implementation. We also note that adding std :: regex as parameter to
std :: recursive_directory_iterator also add a dependency between <filesystem>
and <regex>. The last point that justifies the choice of a lambda (that we have
finally generalized to a predicate concept) over a regular expression is that with
the lambda version the filter can easily evolve and be more complex. Users can
for example check for file last modification time, or for the presence of a specific
pattern in the contents of the file etc. This will satisfy more community users
need.

10

Passing a path or passing const char* to the predicate concept

When sending the first draft proposal, we have proposed a new constructor
with filter as a predicate concept on a std :: filesystem :: path. Some community
members argue that we have not performed profiling with a lambda taking
std :: filesystem :: path as a parameter (profiling was done with a lambda with
const charx), and that using a std :: filesystem :: path instead of const charx
will reduce performance gain. We have then realized profiling on
recursive_director_iterator constructor with a lambda that takes a

std :: filesystem :: path to check if constructing a path has negligible cost. Results
show that, for actual compilers implementation, the cost of constructing a path
is not negligible.

That is the reason why we proposed both solutions: the addition of a new
recursive_directory_iterator constructor with a filter as a predicate concept on
std :: filesystem :: path (for more generality), and the addition of
recursive_directory_iterator constructor with a filter as predicate concept on
const char * (mostly for performance gain)

IV Impact On the Standard

Although we only investigated on recursive_directory_iterator, the filter ad-
dition will work in the same way for directory_iterator object type. Thus,
this proposal implies new constructors for each existing standard object types
recursive_directory_iterator and directory_iterator.

It is also worth mentioning that adding a filter with a predicate concept does not
add any dependency to <filesystem> standard module, since concepts are core
language feature. Also, note that the usage of a predicate concept implies that
the filter cannot have a mutable state.

V Technical Specifications

template <class F>

concept EntryPredicate =
CopyConstructible <F> &&
Predicate<F&, const charx*>;

class recursive_directory_iterator |
public:
template <EntryPredicate P>

explicit recursive_directory_iterator (
const std::filesystem :: path& path,
P predicate);

template <EntryPredicate P>

explicit recursive_directory_iterator (
const std::filesystem :: path& path,

P predicate,

std :: error_code& ec);

template <EntryPredicate P>

explicit recursive_directory_iterator (

const std::filesystem :: path& path,

P predicate,

const std::filesystem :: directory_options& options);

template <EntryPredicate P>

explicit recursive_directory_iterator (

const std::filesystem :: path& path,

P predicate,

const std::filesystem :: directory_options& options,
std :: error_code& ec);

b

class directory_iterator ({
public:

template <EntryPredicate P>
explicit directory_iterator (
const std::filesystem :: path& path,
P predicate);

template <EntryPredicate P>
explicit directory_iterator (
const std::filesystem :: path& path,
P predicate,

std :: error_code& ec);

template <EntryPredicate P>

explicit directory_iterator (

const std::filesystem :: path& path,

P predicate,

const std::filesystem :: directory_options& options);

template <EntryPredicate P>

explicit directory_iterator (

const std::filesystem :: path& path,

P predicate,

const std::filesystem :: directory_options& options,
std :: error_code& ec);

b

template <class F>

concept EntryPathPredicate =
CopyConstructible <F> &&

Predicate <F&, const std::filesystem :: path&>;

class recursive_directory_iterator |{
public:

template <EntryPathPredicate P>
explicit recursive_directory_iterator (
const std::filesystem :: path& path,

P predicate);

template <EntryPathPredicate P>
explicit recursive_directory_iterator (
const std::filesystem :: path& path,

P predicate,

std :: error_code& ec);

template <EntryPathPredicate P>

explicit recursive_directory_iterator (

const std::filesystem :: path& path,

P predicate,

const std::filesystem :: directory_options& options);

template <EntryPathPredicate P>
explicit recursive_directory_iterator (
const std::filesystem :: path& path,

12

P predicate,
const std::filesystem :: directory_options& options,
std :: error_code& ec);

b

class directory_iterator |
public:

template <EntryPathPredicate P>
explicit directory_iterator (
const std::filesystem :: path& path,
P predicate);

template <EntryPathPredicate P>
explicit directory_iterator (
const std::filesystem :: path& path,
P predicate,

std :: error_code& ec);

template <EntryPathPredicate P>

explicit directory_iterator (

const std::filesystem :: path& path,

P predicate,

const std::filesystem :: directory_options& options);

template <EntryPathPredicate P>

explicit directory_iterator (

const std::filesystem :: path& path,

P predicate,

const std::filesystem :: directory_options& options,
std :: error_code& ec);

b

enum class directory_options {
none = 0 /xunspecified */,
follow_directory_symlink,
skip_permission_denied ,

/x Addition x/

filter _only_file ,

13

14

filter_only_directory,
filter_only_symlink
b

| Name Value Meaning |

apply filter on files and provide
only entries that are files
apply filter on directories and
provide only entries that are directories
apply filter on symlinks and
provide only entries that are symlinks

filter_only_file 3

filter_only_directory 4

)]

filter_only_symlinks

Table 1: Meaning of new values for enum class directory_options

Usage example

auto filter = [](const charx entry)

{

auto ext = get_filename_ext(entry);

return strcmp(ext, ".c") == 0
'l strcmp(ext, ".h") == 0

'l stremp(ext, ".cpp") == 0
Il stremp(ext, ".hpp") == 0;

}/

for (auto& entry :

std :: filesystem :: recursive_directory_iterator (folder,
filter ,

std :: filesystem :: directory_options :: filter _only_file))
{

auto filename = entry.path (). filename ();
do_some_work(filename.c_str ());

)

15

VI Acknowledgements

I would like to thank my colleagues: Jeremy Demeule, Jonathan Boccara, Fre-
deric Tingaud, Georges Schumacher, and all C++ community members for their
insightful comments and encouragements in the writing of this proposal.

Bibliography

[1] cppreference.com , Cpp Reference recursive_directory_iterator, 2018.

[2] Noel Tchidjo Moyo, Feedback on practical use of
std :: recursive_directory_iterator , Poster, CppCon, September 2018.

16

https://en.cppreference.com/w/cpp/filesystem/recursive_directory_iterator/recursive_directory_iterator

	Introduction
	Motivation and Scope
	Design Decisions
	Impact On the Standard
	Technical Specifications
	Acknowledgements
	Bibliography

