
Document Number: P1473R0
Date: 2019-01-21
Audience: Library Evolution Working Group
Author: Casey Carter
Reply to: casey@carter.net

Shadow namespaces

1 Abstract
Usage of using namespace std; means we break existing code in every new C++ standard. Our mechanisms
for name collision avoidance reduce but do not eliminate the potential for collisions, do so by reducing the
quality of the Standard Library, and are not sustainable. Instead of demanding that users pay the cost of
avoiding name collisions by typing std:: everywhere we should provide an alternative mechanism that is
equally convenient. This paper proposes such a mechanism in a familiar guise:

using namespace std::cpp17;

Table 1 — Tony Table

Before After
using namespace std;
using span = int[42];
vector<int> vec;
// ill-formed; ambiguous:
span x;

using namespace std::cpp17;
using span = int[42];
vector<int> vec;
// Ok:
span x;

#include <range/v3/core.hpp>
using namespace std;
// ill-formed; ambiguous:
auto first = ranges::begin(vec);

#include <range/v3/core.hpp>
using namespace std::cpp17;
// Ok:
auto first = ranges::begin(vec);

1.1 Revision History
1.1.1 Revision 0

— Sprang fully formed from the forehead of Zeus.

2 Problem description
Name collisions between the Standard Library and user programs that pull the entire standard library into
their namespaces - or the global namespace - via using namespace std; are a perennial problem for C++.
WG21 is divided as to whether we should be responsible for avoiding such collisions. On the one hand no one
wants to break existing code, and on the other no one wants to pessimize name choices in the library. This is
a constant source of problems for us, with the typical result being that big companies with loud voices in the
committee are insulated from name collisions and Joe Programmer is left out in the cold.
We use two mechanisms to avoid collisions: either replace the good name1 with a bad name - which is
problematic for obvious reasons - or relocate the good name into a subnamespace of std - which is problematic
for less obvious reasons. Subnamespaces make it harder for people who do fully qualify names to use the
standard library - they’re paying for what they don’t use.
Neither mechanism avoids collions entirely: the replacement name may be less likely to cause collisions, but
the potential is still there. Neither mechanism is sustainable: as the body of C++ code grows over time,

1) Perhaps “chosen name” would be a better term than “good name” to describe the output of LEWG.

1



and more names are added to the standard library, the supply of usable names gradually dwindles. We’ll
eventually run out of names to use directly in std either as replacements or subnamespace names, and have
to start increasing the nesting depth of subnamespaces rendering the library unusable without namespace
gymnastics.
For a recent example, consider P0631R4 “Math Constants” [1] which adds definitions of common mathematical
constants to the standard library like pi and e. The consensus opinion on the reflector was to move the
constants into std::math to avoid collisions. Note that math is far from an uncommon name; we’ve traded
one problem for another.
There have even been rumbles in LEWG about deprecating using namespace std; to force users to fully
qualify names they use from the standard library or write using declarations for individual names. It’s hard
to envision this kind of adversarial tactic being well-received by users. What if, instead of harming ease of
use by trying to get users to stop doing this thing we want them to not do, we gave them an alternative that
doesn’t require them to do more work?

3 Proposal
If users won’t write using declarations for the standard library names they want to use unqualified, why don’t
we do it for them? This paper proposes adding nested namespace std::cpp17 and std::cpp20. within
these nested namespaces std::cppX (where X is either 17 or 20) there shall be a shadow of the entire name
structure of the standard library as it was defined in C++ version X.
To be precise, in each standard library header:

— For each namespace std::· · · ::N defined in that header in C++X, there shall be a corresponding
shadow namespace std::cppX::· · · ::N .

— For each namespace alias std::· · · ::A defined in that header in C++X that denotes a namespace
std::· · · ::N , there shall be a corresponding shadow namespace alias std::cppX::· · · ::A that denotes
namespace std::cppX::· · · ::N .

— Each other name E in namespace std::· · · ::N defined in that header in C++X shall have a corre-
sponding using-declaration in std::cppX::· · · ::N :

using ::std::· · · ::N::E;

— Each enumerator E of unscoped enumeration type T defined in namespace std::· · · ::N in that header
in C++X shall have a corresponding using-declaration in std::cppX::· · · ::N :

using ::std::· · · ::N::E;

The end result is that std::cppX in each header mirrors the structure and content that existed in that
header in std in C++X. The meaning of those names may change in future revisions of C++, but the set of
visible names will not.
How can this prevent name collisions for programs that using namespace std;? Simple - it can’t. It can
prevent name collisions from names newly added in C++20 for programs that using namespace std::cpp17;,
however, and prevent name collisions from names newly added in C++23 for programs that using namespace
std::cpp20;. These shadow namespaces are exactly the mechanism required. Replacing using namespace
std; with using namespace std::cpp17; requires almost no additional effort from users - it’s 7 more
keytrokes per TU, rather than 5 keystrokes per reference to the standard library - and the replacement is
easily toolable - a sed script could update an entire source tree in no time with almost no chance for error.
The simultaneous presence of multiple shadow namespaces has the additional benefit of allowing for gradual
transition of a codebase from an old standard library to a new one. If you replace using namespace std;
with using namespace std::cpp17;, your program is substantially more likely to compile after throwing
the C++20 compiler switch. You are then free to add references to / using-declarations for fully-qualified
names in std to get at new features without touching the rest of the TU, change 17 to 20 TU-by-TU, or
even stay at cpp17 indefinitely while continuing to upgrade compilers and core language versions in the
expectation that your standard library implementation will continue to support std::cpp17.

2



3.1 What about Argument Dependent Lookup?
Argument Dependent Lookup ([basic.lookup.argdep]) pokes some holes in the proposal. For example, this
C++20 program:

#include <vector>
using namespace std::cpp20;
int frobnozzle(vector<int>&) { /∗∗/ }
int main() {

vector<int> vec;
frobnozzle(vec);

}

would be broken if we add a function with the signature std::frobnozzle(vector<int>&) in C++23. Since
std::cpp20::vector and std::vector are the same template, ADL for the unqualified call to frobnozzle
in main will find the new signature in std - shadow namespaces or not - resulting in overload resolution
ambiguity. This proposal greatly reduces the surface for name collisions, but doesn’t eliminate them completely
when ADL is a factor.
There is ongoing work in both EWG and LWG to address issues with ADL which will likely help with this
problem if not solve it outright.

3.2 Messaging
Together with making this change, we as a community need to change our messaging on using-directives.
The Standard should provide normative encouragement for implementations to diagnose using namespace
std; as a dangerous practice and suggest using namespace std::cppX instead. WG21 should change its
guidance from “never write using namespace std” and/or “write using namespace std; in CPP files” to
“write using namespace std::cppX in CPP files if you like, and never ever write using namespace std;
or we will gleefully break your program.”

3.3 Brains...
We should simultaneously zombify all names matching the regular expression cpp\d+ for past and future
standardization to defend against macroization. This both prevents defining cpp23 in C++20 programs which
would then fail to compile in C++23, and allows vendors to indefinitely maintain support for older versions of
the standard in e.g. std::cpp11 or std::cpp98.2

3.4 How many versions?
How far back should the required shadow namespaces go? The proposal above obviously suggests at least
coverage of “current” and “previous” Standard revisions. Should we go back further? Should we start at
two and grow to N? Grow indefinitely? This seems to be a question of (a) the cost to implementations to
maintain (or implement, for fresh implementations) old shadow namespaces and (b) the cost to WG21 to
maintain the specifications of such in the IS.

3.5 IS Maintenance
WG21 maintenance costs depend on the form of wording for this feature that’s acceptable to LWG and the
Editor. Wording could be as simple as listing the above bullets that describe the proposal in the library front
matter and indicating the number of required shadow namespaces, which would require no maintenance, or
as detailed as realizing the complete set of required declarations concretely in each header. The latter would
require per-IS-cycle maintenaince in which we strike the oldest shadow namespace from each header synopsis
- if we choose not to maintain them indefinitely - and duplicate the most recent shadow namespace into the
shadow namespace for the current standard. It would also require careful monitoring by LWG to ensure that
each proposal that adds a new name to std simultaneously adds that same name to the current shadow
namespace.

3.6 Painting the bikeshed
Obviously std::cppX is not the only possible naming scheme for the shadow namespaces. stdX has already
been suggested to the author, which has two benefits:
— those namespaces have been reserved since C++17, and

2) At least until 2098 when WG21 will need to decide whether to drop support for C++98 or define the new shadow namespace
as std::cpp2098, but hey - that’s not my problem!

3

http://eel.is/c++draft/basic.lookup.argdep
https://i.imgflip.com/2n1mwr.jpg
https://i.imgflip.com/2n1mwr.jpg


— using namespace std17; is 5 keystrokes shorter than using namespace std::cpp17;

although it seems a shame to paint ourselves into a corner and kill the dream of std2 die completely.

4 Technical specifications
Wording for this proposal will be straightforward - but possibly voluminous - once LWG and the Editor
decide what form the wording should take. Rather than proving page upon page of wording for alternative
forms here which would only contribute to the word cloud for the pre-meeting mailing, the author awaits
direction on the desired form.

Bibliography
[1] Lev Minkovsky and John McFarlane. P0631R4: Math constants, 08 2018. https://wg21.link/p0631r4.

4

https://wg21.link/p0631r4

	1 Abstract
	1.1 Revision History

	2 Problem description
	3 Proposal
	3.1 What about Argument Dependent Lookup?
	3.2 Messaging
	3.3 Brains...
	3.4 How many versions?
	3.5 IS Maintenance
	3.6 Painting the bikeshed

	4 Technical specifications
	Bibliography

