
Contracts That Work
Document #: P1429R0
Date: 2019-01-22
Project: Programming Language C++
Audience: EWG
Reply-to: Joshua Berne <jberne4@bloomberg.net>

John Lakos <jlakos@bloomberg.net>
Abstract

In a number of papers ([P1332R0], [P1333R0], [P1334R0]) we have proposed a re-envisioning
of how to structure the semantics of C++ contracts both to clarify their behavior and to enable
solutions for important real-world use cases that come up immediately when attempting to
introduce contracts into existing production codebases. Here, we aim to present *only* the
fundamental changes (taken from those proposals) that are absolutely essential to making
contracts work properly in as concise and direct a way as possible.

Contents
1 Overview 2

2 CCS Semantics 2
2.1 Ignore . 3
2.2 Assume . 3
2.3 Check (Never Continue) . 3
2.4 Check (Maybe Continue) . 3

3 CCS Syntax 4

4 Assigning Semantics to Levels (At Build Time) 4

5 Formal Wording 5

6 Disabling Contract Checking Entirely 6
6.1 Additional Formal Wording . 6

7 Making All Semantics Available Explicitly 7
7.1 Additional Formal Wording . 7

8 Conclusion 7

9 References 8

1

mailto:jberne4@bloomberg.net
mailto:jlakos@bloomberg.net

A Continuing After Violation 9
A.1 The Scary Case for Check (Maybe Continue) . 9
A.2 The Scary Case for Check (Always Continue) . 10

1 Overview

Contracts as originally specified in [P0542R5] consist of an attribute-like syntax for specifying contract
-checking statements (CCSs) within the language. This syntax allows for specifying contracts as
assertions (with assert), preconditions (with expects), or postconditions (with ensures). Each
CCS contains a conditional-expression (or predicate) that is expected to be true when control flow
reaches it. The current working paper (WP) fully captures how these different types of CCSs relate
to code meaning, so we will focus only on how CCSs behave in relation to their surrounding code
and other contracts by limiting our discussion to the assert “flavor” of CCSs.

The anticipated C++ contract checking facility (CCF) also introduce a violation handler that an
implementation is allowed to let users define for themselves (more restrictive implementations are
given the freedom to restrict the violation handler to one provided by the implementation). Our
semantics seek to make behavior of a CCS independent of the violation handler. A violation handler
may always choose to throw or to call std::terminate, but to be the easiest to use for novices, we
recommend that the default violation handler should “log” information (a stack trace, etc.) about
the problem and return, leaving control flow up to the semantic in effect (for that specific CCS) at
the call site.

What we seek to change is the way in which the behavior of a CCS is defined and determined, both
in code and at translation time. That is what the rest of this paper will focus on.

2 CCS Semantics

There are 4 semantics that are essential to the definition of the C++ CCF. Here, we are merely
giving names to the same semantics already accepted into the current draft of the working paper
(WP) — all for the sake of improving clarity. As a brief aside, we reprise how history arrived at the
semantics we are proposing here for C++.

• C’s assert macro allowed for 2 fundamental behaviors — do nothing (compile out, or
completely ignore) or abort on a failed check (which we call check_never_continue).

• Prior assertion facilities ([N3604], or Bloomberg’s BSLS_ASSERT) often enabled pluggable
behaviors for failed checks, including simply logging and continuing — we call this behavior
check_maybe_continue.

• With the adoption of contracts as a language-level facility ([P0542R5]) the option for an
even more powerful way to leverage contracts became available by not checking contracts but
allowing the compiler to treat a contract failure as language undefined behavior — a semantic
which we call assume. This was an option not achievable by any of the previous library-only
solutions.

2

• The nuances related to how continuing after a violation handler should be treated are
complicated and subtle. We discuss details of how check_maybe_continue might be improved
and another semantic, check_always_continue in appendix A.

Putting concise, clear definitions of the universe of possible CCS semantics into the WP for C++20
would improve future discussions of how other features of the language interact with contracts.
Behavior can be discussed and defined in terms of the semantics directly instead of always having
to specify the exact combination of translation options and code needed to indicate the behavior
being discussed.

By adopting this terminology directly in the standard, we obviate copious redefinition and convoluted
explanation in terms of arcane/baroque compiler-flags and build modes.

2.1 Ignore

The simplest semantic is to do nothing.

A CCS having the ignore semantic must be valid syntactically, but will otherwise never be evaluated
— as if it was embedded in an unevaluated context.

2.2 Assume

A CCS having the assume semantic will be syntactically checked and may (might) be assumed
(by the compiler) to be true. It is undefined behavior if the predicate were to be evaluated and it
returned false. Notably, the expression is never evaluated (and thus functions used in the expression
need not be defined for the program to be well-formed). Note also that there is no obligation on an
implementation to actually do anything with this information, and a conforming implementation
can freely treat this semantic identically to the ignore semantic.

2.3 Check (Never Continue)

A CCS having the check_never_continue semantic will evaluate the expression and if it is false
will invoke the violation handler. If the violation handler returns, std::terminate will be invoked.
This guarantees that control flow will never continue if the predicate is false, so as a byproduct of
that behavior the predicate can be known to be true after the CCS.

2.4 Check (Maybe Continue)

A CCS having the check_maybe_continue semantic will evaluate the expression, and if it is false,
will invoke the violation handler. If the violation handler returns control flow continues as normal.

The specifics of what the compiler is (and is not) allowed to conclude after a violation handler
returns normally can be very subtle and allow for a wide variety of different expectations with
different trade-offs. We will go into details of how this definition might be further refined and discuss
an additional, subtly different semantic, check_always_continue, in appendix A.

3

3 CCS Syntax

The current working paper allows each CCS to take an optional level (i.e., default, audit, or
axiom), and if none is specified, default is assumed. A level serves a place holder for the actual
semantic (e.g., ignore, check_never_continue, check_maybe_continue). That mapping is performed
(for each TU) at build time.

[P1334R0] proposes a way to cut out the middle man and specify the intended semantic directly in
the CCS itself. Explicit semantics like this bring us two useful properties:

• The CCS behavior is (almost — see section 6) independent of build mode.

• The semantic of each CCS is independent of every other CCS in the same TU. It is this
critically important property that allows staging a check that is new and unverified in the
same TU as checks that are already fully enforced (or possibly even assumed). Note: The
absolute requirement of having differing semantics for CCSs (e.g., even those on the same
level) has been independently observed at larger software companies such as Google (e.g., by
Richard Smith) and Bloomberg (e.g., by John Lakos).

Allowing an explicit check_maybe_continue CCS is a way to get a simple version of the “review”
role discussed in-depth in [P1332R0]. A contract that is going to be a default level contract can
be introduced first with the check_maybe_continue semantic, and it will then run “safely” without
risking bringing down systems which previously were violating it in a “benign” fashion.

In the wording, where previously a contract-attribute-specifier contained an optional contract-level,
now we would let that level be either a contract-level or a contract-semantic, and encapsulate
that by defining a new grammar non-terminal contract-mode. The allowed explicit semantic,
check_maybe_continue, needs to be added to [lex.name]/2 — identifiers with special meaning.

4 Assigning Semantics to Levels (At Build Time)

The current WP provides a build level and violation continuation mode that together control which
semantics each level gets in a particular TU.

We propose a vastly simpler and more powerful direct approach in which each level (default, audit,
or axiom can be assigned (independently) any semantics valid for that level. Although the current
WP does not allow axiom to be changed from it’s default assume semantic, we propose that axiom
level be allowed to take on exactly two semantics: assume (by default) and ignore.

Section 4.1 of [P1332R0] goes into extensive consideration of which of the 32 (or 50 with the addition
of the fifth semantic) possible semantics are ’safe’ and worth allowing, and more reasons to include
levels not justified there have been discussed elsewhere. A restrictive subset could be adopted, but
to provide freedom to do what users might want to do we suggest allowing all such mappings (with
possible future notes to warn against permutations that might be highly likely to lead to misuse).

4

5 Formal Wording

In [gram.dcl] the following is changed:
contract-attribute-specifier

[[expects optcontract-level optcontract-mode : conditional-expression]]
[[ensures optcontract-level optcontract-mode optidentifier : conditional-expression
]]
[[assert optcontract-level optcontract-mode: conditional-expression]]

contract-mode
contract-level
explicit-contract-semantic

explicit-contract-semantic
check_maybe_continue

In [lex.name], one identifier, check_maybe_continue, is added to the table Identifiers with special
meaning.

[dcl.attr.contract.check] gets replaced by the following (3 paragraphs removed completely for
brevity):

If the contract- level mode of a contract-attribute-specifier is absent, it is assumed to be a
contract-level of default. [Note: A default contract-level is expected to be used for those
contracts where the cost of run-time checking is assumed to be small (or at least not expensive)
compared to the cost of executing the function. An audit contract-level is expected to be used for
those contracts where the cost of run-time checking is assumed to be large (or at least significant)
compared to the cost of executing the function. An axiom contract-level is expected to be used for
those contracts that are formal comments and are not evaluated at run-time. —end note]

The violation handler of a program is a function of type “optnoexcept function of (lvalue reference
to const std::contract_violation) returning void”. The violation handler is invoked when the
predicate of a checked contract evaluates to false when the semantic given to a contract indicates
it should be (called a contract violation). There should be no programmatic way of setting or
modifying the violation handler. It is implementation-defined how the violation handler is established
for a program and how the std::contract_violation argument value is set, except as specified
below. If a precondition is violated, the source location of the violation is implementation-defined
[Note: Implementations are encouraged but not required to report the caller site. —end note] If
a postcondition is violated, the source location of the violation is the source location of the function
definition. If an assertion is violated, the source location of the violation is the source location of
the statement to which the assertion is applied.

If a violation handler exits ... (unchanged note on throwing violation handlers and noexcept
functions.)

Every contract will be given a semantic at translation time that is ignore, assume, check_never_-
continue, or check_maybe_continue.

A translation may be performed with an assignment of default and audit to any available semantic
and axiom to any non-runtime-checked semantic. If unspecified, default should be assigned to

5

check_never_continue, audit should be assigned to ignore, and axiom should be assigned to assume.
A contract with a contract-level will be given the semantic assigned to that level. There should
be no programmatic way of setting, modifying, or querying the assignment of semantics to levels.
The translation of a program consisting of translation units with different assignments of levels to
semantics is conditionally-supported.

A contract with an explicit-contract-semantic will be given the named semantic.

A contract having the semantic ignore is not checked and not evaluated. [Note: Note that the
predicate must still be syntactically valid as stated elsewhere.—end note]

A contract having the semantic assume is not checked and not evaluated. It is undefined behavior if
the predicate of such a contract would evaluate to false. [Note: It is not required that the predicate
is actually evaluatable — the predicate may reference (for documentation purposes) functions that
are declared but never actually defined, and the implementation may not evaluate the function and
thus require the definition of those functions —end note]

A contract having the semantic check_never_continue is checked. The predicate is evaluated
and if it returns false the violation handler is invoked. If the violation handler returns normally,
std::terminate will be invoked.

A contract having the semantic check_maybe_continue is checked. The predicate is evaluated and
if it returns false the violation handler is invoked.

6 Disabling Contract Checking Entirely

Part of the primary pedagogical basis of contract checking is that contract checks are not part of a
function’s implementation and should always be considered optional. As a way to keep this rule, we
would add a single build option — contracts mode — which defaults to on but when off causes all
contracts to have the ignore semantic.

This would cause any alternate CCF built on top of explicit semantics to be subject to this same
overriding flag — but in exchange all CCFs that might be created would remain “pure” contract
handling facilities.

6.1 Additional Formal Wording

This feature would need another paragraph added to [dcl.attr.contract.check] to say the following:

A translation may be performed with one of the following contract modes: on or off . If the contract
mode is off then all contracts have the semantic ignore. This takes precedence over all other ways
in which semantics might be given to a contract. If unspecified, the contract mode is on.

6

7 Making All Semantics Available Explicitly

While allowing an explicit check_maybe_continue CCS is imminently useful, once the semantics
are defined it seems pointlessly restrictive to not make them available as well, and the benefits of
doing will lead to long-term results as we get industry-wide experience with more widely applicable
mature CCFs.

Allowing explicit ignore is an obvious extension that would allow staging of new contracts, or total
disabling of questionable contracts without just commenting them out and leaving them susceptible
to code rot.

Allowing explicit assume would open up the whole world of custom optimizations in a completely
opt-in fashion. Any group using a macro like facility to choose semantics would be able to take their
best tested production code and optimize it for exactly what it is doing — treating any contract
violations as undefined behavior — potentially seeing huge performance improvements with minimal
risk (as the contracts in question will have already been run extensively with a checked semantic).

Allowing explicit check_never_continue CCSs would open up the door for people to build alternate
level-like facilities (admittedly using macros). These could provide for arbitrary numbers of roles and
levels as in [P1332R0], or capture the needed workflows associated with other developer intentions
like those discussed in [AKRZEMI1].

All of the macro-based facilities that could sit on top of explicit semantics will bring real, extensive
industry experience to the proposals for the next standard so that language level contracts can
evolve into what people are actually going to use. Though we see macros as the only way to tie
together this feature for now, getting this experience so we can build a more flexible system into the
language later will give us a way to obviate any need for macros for contracts.

7.1 Additional Formal Wording

The wording change to add additional explicit semantics is almost entirely covered by section 5
— Each additional semantic only needs to be added to [lex.name]/2 as an identifier with special
meaning and to the production for explicit-contract-semantic.

8 Conclusion

We believe that rewording in terms of named semantics (section 2), allowing at least check_maybe_continue
as an explicit semantic (section 3) and allowing free assignment of semantics to levels (section 4) are
essential to making use of contracts at scale in the coming years post-C++20 and pre-(C++20)++.

Allowing all of the semantics to be stated explicitly allows those facilities to be more robust and
interact with the builtin CCF significantly more cleanly (by allowing those facilities to choose any
semantic explicitly) and makes the entire feature seem like a complete, well-rounded part of the
language. Our strong recommendation is to also adopt section 7.

7

The contract-mode to control all contracts (with a or with an explicit semantic) keeps the feature
more pedagogically sound — i.e., whether or not contract checking is enabled should — by definition
— have no effect on the meaning (behavior) of correctly written programs. This flag also removes
the ability to write a CCS and know what that statement will do in any build mode, which many
more pragmatic programmers might find desirable. We leave it up to the committee at large to
decide which of these choices is preferred.

9 References

References

[N4727] Richard Smith, Working Draft, Standard for Programming Language C++
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/n4727.pdf

[N3604] John Lakos, Alexei Zakharov, Centralized Defensive-Programming Support for Narrow
Contracts
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3604.pdf

[N4075] John Lakos, Alexei Zakharov, Alexander Beels, Centralized Defensive-Programming Support
for Narrow Contracts (Revision 6)
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4075.pdf

[P0542R5] G. Dos Reis, J. D. Garcia, J. Lakos, A. Meredith, N. Myers, B. Stroustrup, Support for
contract based programming in C++
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0542r5.html

[P1290R0] J. Daniel Garcia, Avoiding undefined behavior in contracts
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1290r0.pdf

[P1332R0] Joshua Berne, Nathan Burgers, Hyman Rosen, John Lakos, Contract Checking in C++:
A (long-term) Road Map
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1332r0.txt

[P1333R0] Joshua Berne, John Lakos, Assigning Concrete Semantics to Contract-Checking Levels
at Compile Time
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1333r0.txt

[P1334R0] Joshua Berne, John Lakos, Specifying Concrete Semantics Directly in Contract-Checking
Statements
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1334r0.txt

[P1335R0] John Lakos, "Avoiding undefined behavior in contracts" [P1290R0] Explained
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1335r0.txt

[AKRZEMI1] Andrzej Krzemieński, Assigning semantics to different Contract Checking Statements
https://github.com/akrzemi1/__sandbox__/blob/master/papers/ccs_roles.md

8

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/n4727.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3604.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4075.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0542r5.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1290r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1332r0.txt
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1333r0.txt
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1334r0.txt
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1335r0.txt
https://github.com/akrzemi1/__sandbox__/blob/master/papers/ccs_roles.md

A Continuing After Violation

It can be quite surprising about how much impact the code after a CCS can have on a contract
itself. Part of the problem is that often CCS predicates explicitly check against the things that are
going to lead to language undefined behavior (UB) if they are violated.

Continuing after a violation then leads control flow directly into that UB. This brings all the scary
voodoo to the table and at best elides your CCS entirely, and more likely brings the nasal demons
to your door.

If the compiler knows the violation handler (i.e. when doing link-time optimization) and knows it
will always return (such as a violation handler that simply calls printf) then UB after the contract
check freely travels back in time to elide the check itself. If the compiler does not know the violation
handler, or cannot determine that it will always return, then the violation handler itself provides a
barrier against that time travel.

[P1332R0] identifies these two different conclusions based on the violation handler as two different
semantics you might want to specify in different situations independently of the actual installed
violation handler or how much the compiler knows about it.

• check_maybe_continue – The compiler is told not to know whether the violation handler
returns normally or not.

• check_always_continue – The compiler is told to treat the violation handler as if it was a
function that does always return.

So if you are trying to debug a program, you’d like to know that when you insert an assertion that
it actually works and isn’t elided by the very bug you were trying to uncover, right? Well when
you’re trying to develop code at your desk, you want to use check_maybe_continue so that you
have the best shot at it’s not being optimized away.

On the other hand, if you are running code in production and you want to add a new check, the
last thing you want to do is crash the system because you optimized some code, and allowed a fatal
bug, that was previously elided to surface. It is precisely those cases where you would deliberately
choose the check_always_continue over the check_maybe_continue if such were available.

A.1 The Scary Case for Check (Maybe Continue)

Consider the following code with any contract semantic for the assert that allows control to
continue after the violation handler is invoked:

int foo(int *p) {
[[assert : p]];
return *p;

}

With link time optimization and a violation handler that just calls printf, this behaves as-if it
were the following code:

9

int foo(int *p) {
if (!p) {

printf("OOPS");
// nothing special here

}
return *p;

}

With nothing other than this code the compiler can know (because printf is a function the compiler
fully understands which will always return normally) that control flow will return the *p regardless
of what the value of p is. This means that p being nullptr would lead to undefined behavior, so
the entire if block can freely be elided, including any logging of the contract violation.

The check_maybe_continue semantic is one solution to this pressing problem. [P1332R0] proposes
that this semantic include a requirement that the compiler never assumes that the violation handler
returns or does not return. This assumption should prevent the knowledge that p is not null at the
return statement from “time traveling” backwards to elide the contract check.

A.2 The Scary Case for Check (Always Continue)

Consider this piece of legacy code, and the poor developer tasked with trying to make it more robust
by adding CCSs to it.

inline void eat_them(T *p)
{

if (!p) { eat_all_kittens(); }
}
inline void save_them(T *p)

//[[expects: p]]
{

p->save_the_kittens();
}
void foo(T *p)
{

eat_them(p);
save_them(p);

}
// somewhere in a far off file that does not inline foo...
void bar()
{

foo(nullptr);
}

With that seemingly innocuous CCS commented out, the same logic that motivated check_maybe_-
continue would elide the check and keep the kittens safe. A brave developer seeking only to make
it safer to keep kittens safe uncommenting the CCS — if it had any semantic that did not allow
continuing to the dereference of p or did not allow the knowledge of p being dereferencable to

10

propagate backwards to the first check — would suddenly force the call to eat_them to not be
elided. The poor caller of bar, previously unaware that their code had any problems (perhaps
because this was all written in the dark, kitten-hating days of the previous century) would now find
themselves with the blood of many cute furry creatures on their hands.

This seems contrived, but who among us has not seem similarly horribly and subtly broken code
moving along without issue until an unrelated change like this is introduced to bring a pile of extra
darkness into the world? This semantic is not for every day use, but in large organizations that want
to introduce contracts into extensive and currently immeasurably broken systems that currently
“work fine” this semantic provides the minimal first step every injected contract can take on its way
to being fully enforced (with check_never_continue or leveraged for optimization with assume.

11

	1 Overview
	2 CCS Semantics
	2.1 Ignore
	2.2 Assume
	2.3 Check (Never Continue)
	2.4 Check (Maybe Continue)

	3 CCS Syntax
	4 Assigning Semantics to Levels (At Build Time)
	5 Formal Wording
	6 Disabling Contract Checking Entirely
	6.1 Additional Formal Wording

	7 Making All Semantics Available Explicitly
	7.1 Additional Formal Wording

	8 Conclusion
	9 References
	A Continuing After Violation
	A.1 The Scary Case for Check (Maybe Continue)
	A.2 The Scary Case for Check (Always Continue)

