
P1408R0 Stroustrup observer_ptr

1

Doc. No. P1408R0
Date: 2018-01-04

Programming Language C++
Audience LEWG and EWG

Reply to: Bjarne Stroustrup (bs@ms.com)

Abandon observer_ptr
Bjarne Stroustrup

Summary
I propose to drop std::observer_ptr from Working Draft, C++ Extensions for Library Fundamentals,
Version 3. It was adopted from A Proposal for the World’s Dumbest Smart Pointer, v4 in 2014 after a
discussion that was remarkably short for a proposal that aims to change every C++ program in existence.
I find that paper's rationale and discussion of alternatives very brief and rather weak. To quote Walter
Brown from the minutes of the 2013 Urbana-Champaign meeting:

Objective: get rid of bare pointers from user code.

I don't agree with that objective and I don't think it would be feasible to do even if I did agree. That is
not the only view of observer_ptr, though (see "benefits" below) and the minutes may not have caught
Walter's statements accurately. However, that's a view I have heard expressed many times in various
contexts and that makes me wary.

Pointers are really good at pointing to "things" and T* is a really good notation for that, much nicer than
the verbose std::observer_ptr<T>. What pointers are not good at is representing ownership and directly
support safe iteration.

Problems
• We have 50 years of experience with the T* notation - whatever we do will not make T* go

away (in C++ or C). For starters there are billions of lines of code using that notation and 50
years of books, articles, documentation, tutorials, blogs, etc. in current use.

• The conventional T*s notation is far simpler than std::observer_ptr<T>.
• In many code bases, T*s and std::observer_ptr<T>s would co-exist for a long time ("forever").

However, they are not completely interchangeable (e.g., will p=q work? I'll have to look at the
definitions of p and q to know).

• Many uses of T* are in C-style interfaces, using a class, such as std::observer_ptr<T> will cause
compatibility problems and/or ABI breakage.

• Using a template, such as std::observer_ptr<T> will slow down compilation and complicate
some forms of debugging. The use of std::observer_ptr<T> will not slow compilations down

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/n4786.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/n4786.html
http://open-std.org/JTC1/SC22/WG21/docs/papers/2014/n4282.pdf

P1408R0 Stroustrup observer_ptr

2

much compared to T* but it is part of a disturbing trend to add to header files which over the
years have greatly increased the amount of code a compiler must process.

• Most T*s are non-owning, so std::observer_ptr<T> is complicating the common case for the
benefit of a minority case.

• Using std::observer_ptr<T> will slow down unoptimized code.
• Adding std::observer_ptr<T> would be seen as WG21 recommending its use over T* (whether

we want to do that or not) making these problems universal.

This would complicate teaching/explanation and reinforce C++'s reputation for complexity. Students of
all ability want to know how a feature is implemented; explaining std::observer_ptr<T>'s
implementation is far, far harder than explaining T*. Using combinations of T*, std::observer_ptr, and
std::unique_ptr would be necessary, and learning how to do this well is non-trivial (see "Usage
concerns" below).

Benefits
Obviously, observer_ptr offers some benefits (or it would not have been voted in).

• Not all pointers are non-owning, so some way of distinguishing the two uses of pointers is
obviously useful.

• You can't convert an observer_ptr to a void* without a cast. That is sometimes a benefit.
• You can't apply delete to an observer_ptr. Good.
• You can't increment an observer_ptr. That is sometimes a benefit.
• In a transition from a traditional codebase to one using explicit owners there can be a need to

distinguish known non-owners (observers) from yet unexamined pointers.

The question thus becomes "do the benefits outweigh the problems?"

Do we have experience reports?

Usage concerns
We can classify current used of pointers like this:

• Owner; that is, must be deleted
• Non-owner; that is, must not be deleted
• Iterator; that is, can be used with ++ and needs some "end of legal range" information for safe

use; iterators should be non-owning.

Basically, an observer_ptr is a non-owner that is not an iterator. I am very doubtful that's the right point
in the design space.

Consider:

P1408R0 Stroustrup observer_ptr

3

void f1(std::observer_ptr<int>);
void f2(int*);

void g()
{

observer_ptr<int> p{new int};
 int* q = new int;
 f1(p); // OK
 f2(p); // error
 f1(q); // error
 f2(q); // OK
 ++p; // error
 ++q; // OK (as ever)
 p=q; // error

q=p; // error
delete p; // error

 delete p.get(); // OK
 delete q; // OK (as ever)
 delete q.get(); // error (someone got confused)
}

We will have to decide whether functions take observer_ptrs or raw pointers. Also our style of use,
including the use of new, must take into account that observer_ptrs serve only a very limited need.

For ownership, unique_ptr is a good solution, so we would have to deal with combinations of
unique_ptrs, observer_ptrs, and T*s.

For iteration and non-owning references to multiple objects (e.g., arrays), Ranges and spans are (IMO) a
much better solution than a mix of observer_ptrs and raw pointers.

Alternatives
If you need a pointer representing non-ownership, I suggest:

 template<typename T> using observer_ptr = T*;

Until we replace that typename with the appropriate concept this will be the best definition:

• It allows people to mark pointers as non-owning.
• It doesn't create interface problems.
• It interoperates perfectly with T*s.
• The benefits from an observer_ptr class could be had in the form of compiler warnings and

static analysis tools.

However, I don't propose that because that is still "the tail wagging the dog" and doesn't keep the
simplest and most common case simple. What we should do instead is to mark pointers that are owners

P1408R0 Stroustrup observer_ptr

4

as owners. We do that using unique_ptr and shared_ptr except when we need to pass a pointer
through a C-style interface. For that case, I recommend GSL's

 template<typename T> using owner = T;

or the more stl-style

 template<typename T> using owner_ptr = T*;

This minimizes the syntactic clutter, enables humans and tools to recognize the intent, and doesn't
cause interface problems.

Using both an owner and a non-owner (possibly called observer) alias could facilitate a transition as
mentioned in "benefits."

Also, a user who wants to can always use experimental::observer_ptr or equivalent.

	Abandon observer_ptr Bjarne Stroustrup
	Summary
	Problems
	Benefits
	Usage concerns
	Alternatives

