
P1407R0

Document Number: P1407R0
Date: 2019-01-17
Reply-to: Scott Schurr: s dot scott dot schurr at gmail dot com
Author: Scott Schurr
Audience: SG12

Tell Programmers About Signed
Integer Overflow Behavior

Abstract: Every C++ implementation knows exactly what it does when signed
integer overflow occurs. If signed integer overflow in C++ were
implementation-defined, rather than undefined, then each implementation
would be obliged to document what it does when a signed integer overflows.
That, in the opinion of the author, would be a Good Thing ®.

A Motivating Example
Imagine you are a programmer with a background in electrical engineering. You are developing
an embedded product on a small team for a small company. You are coding a helper function
that clips on integer overflow. Which of these two implementations do you pick?

You, as a member of the C++ Standards Committee, of course start out by saying, “I would
never write that code.” Yes, but you were asked to have some imagination. If you had to pick
the code that would behave in the expected fashion, you’d pick the code on the right. That’s
because you know that the code on the left contains undefined behavior.

Now, if you please, step back. How did you know that?

!1

std::int32_t
add_100_without_wrap (std::int32_t a)
{
 using namespace std;
 auto const ret = a + 100;
 if ret < a
 return
 numeric_limits<int32_t>::max();
 return ret;
}

std::uint32_t
add_100_without_wrap (std::uint32_t a)
{
 using namespace std;
 auto const ret = a + 100u;
 if ret < a
 return
 numeric_limits<uint32_t>::max();
 return ret;
}

P1407R0

Sources of Information About Signed Integer Overflow
Reflect on how you, personally, learned that in C++ signed integer overflow is undefined
behavior.

Colleagues and Friends
The author hazards to guess that most programmers who find out that signed integer overflow is
undefined behavior in C++ find out from friends or colleagues. That is certainly how the author
found out.

Internet Blogs, Posts, and Videos
Yes, there are quite a number of videos, blogs, and posts about the undefined behavior of signed
integer overflow in C++. But the internet is a big place. Some dedicated video-watching C++
programmers might wander across those by accident. But, honestly, haven’t most of those
dedicated video-watching C++ programmers already heard from a coworker that signed integer
overflow is undefined?

Case in point. There are reasons to believe there are about 4.4 million C++ programmers in the
world today [1]. The most popular CppCon video on undefined behavior that this author has
identified is by Chandler Carruth [2]. Here is a link to where Mr. Carruth talks about signed
integer overflow: https://youtu.be/yG1OZ69H_-o?t=1994. At the time of this writing that
video has 30,366 views.

So that video has informed approximately 0.7% of C++ programmers world wide about the
undefined behavior of unsigned integer overflow. We know nothing about the remaining 99.3%
of C++ programmers.

C++ Books
A common, if somewhat old fashioned, way to learn C++ is by reading C++ books. The author
took an arbitrary survey of C++ books either in his possession, or at the local public library, or
on the shelves at local book stores. The goal was to see how many of them talk about…

• Undefined behavior in general and

• Specifically discuss that signed integer overflow is undefined.

The results are below.

!2

P1407R0

Reading the C++ Standard
We don’t realistically believe most C++ programmers read the standard, do we? But, if one did,
how would they find out that signed integer overflow is undefined? In the C++17 standard
Section 6.9.1 Fundamental types [basic.fundamental] paragraph 4 footnote 49 says, “This
implies that unsigned arithmetic does not overflow …”. But that entire section does not say

Author Title Lists undefined
behavior in the index

Mentions that signed
integer overflow is
undefined

Davis, Stephen R. C++ For Dummies, 7th
Edition

No No

McGrath, Mike C++ Programming in
Easy Steps

No No

Meyers, Scott Effective C++ No No

Meyers, Scott More Effective C++ Yes: pages 10, 21, 35, 163,
167, 173, 275, 281

No

Meyers, Scott Effective C++ Third
Edition

Yes: pages 6, 7, 26, 30, 41,
43, 45, 63, 73, 74, 91, 231,
247

No

Meyers, Scott Effective Modern C++ Yes: page 6 No

Prata, Stephen C++ Primer Plus Sixth
Edition

No No

Rao, Siddhartha Sam’s Teach Yourself C+
+ in One Hour a Day, 7th
Edition

No No

Schildt, Herbert C/C++ Programmer’s
Reference 2nd Edition

No No

Stroustrup, Bjarne The C++ Programming
Language Third Edition

Yes: page 828 No

Stroustrup, Bjarne The C++ Programming
Language Fourth Edition

Yes: page 136 No

Sutter, Herb Exceptional C++ No No

Sutter, Herb More Exceptional C++ No No

Sutter and Alexandrescu C++ Coding Standards Yes: pages 19, 25, 27, 36,
39, 61, 71, 88, 90, 91, 93,
173, 179, 181, 182, 183,
184, 185

No

Yaroshenko, Oleg The Beginner’s Guide to
C++

No No

!3

P1407R0

anything explicitly about whether signed integer overflow is defined or not. The naive reader
might assume that signed integer overflow is not an issue.

There are other places in the C++17 standard that make it clear signed integer overflow is
undefined. This hinges on Section 8 Expressions [expr] paragraph 4:

If during the evaluation of an expression, the result is not mathematically
defined or not in the range of representable values for its type, the behavior is
undefined.

Then there are a few places throughout the standard that mention signed integer overflow having
undefined behavior. These places include:

• Section 8.20 Constant expressions [expr.const] paragraph 2.6

• Section 21.3.4.1 numeric_limits members [numeric.limits.members] paragraph 62.

• Possibly Section 23.16.5 Comparison of ratios [ratio.comparison] paragraph 1.

• Section 23.17.5.8 Suffixes for duration literals [time.duration.literals] paragraph 3.

So, yeah, the information is in the standard. But you need to know how the read the standard in
order to find it. And, the author submits, most of the 4.4 million C++ programmers don’t read
the standard.

In Total
So, truly, the information is available. But the author’s best guess is that the information is
primarily passed through the rumor mill to those few (percentage-wise) who receive it. Once the
information is provided it is easy to confirm using the web. But getting the initial message
through is tenuous.

We, the members of the C++ Standards Committee, have the problem that we are living in our
own echo chamber of C++ experts. The non-experts do not hear everything that we hear.

Signed Integer Overflow Behaviors
Even though signed integer overflow is undefined in the standard, and has been for decades,
signed integer overflow actually occurs in real programs. In order to deterministically generate
code a compiler vendor needs to have a policy for what should happen if signed integer overflow
occurs. To the best of the author’s understanding, there are three different behaviors that C++
compilers/optimizers implement today for signed integer overflow. They are:

• Modulus wrapping. This is what two’s complement hardware typically does (if one
ignores the flags register, which C and C++ do). If one wants to leave no room between

!4

P1407R0

C++ and the hardware [3], then this would be the expected behavior. It is also the
behavior that many people trained in electrical engineering or physics find minimally
surprising. Both clang and gcc provide this behavior with the -fwrapv compiler flag. And,
until 2007 or so, a programmer could generally expect this behavior from their compiler
even though the standard did not guarantee it.

• Trapping. If a signed integer operation overflows, then the program traps, typically with
a diagnostic that helps someone locate the fault. This model seems to be favored by many
mathematicians and computer scientists. The -ftrapv compiler flag, supported by both
clang and gcc, implements this model. Visual Studio also supports arithmetic overflow
checking.

• Can’t happen. Starting somewhere around 2007 [4] this model has been used by some
optimizers that assume code is free of signed integer overflow, presumably due to extensive
testing with the -ftrapv flag. In this mode the optimizer assumes that signed integer
overflow can never happen. So if code, accidentally or intentionally, relies on signed
integer overflow, that code may be elided by the optimizer. Both clang and gcc support this
model today through various compiler optimizer flags.

It is possible that there are other models for signed integer overflow, but it’s unlikely. As noted in
P0907R1 Section 6 [5], there is no known non-two’s complement hardware with a modern C++
compiler.

But the important point here is not a complete list of all behaviors. It is to see that, in every case,
each compiler has a well understood reaction when faced with signed integer overflow. That
behavior may change based on compiler flags, but it remains well understood. In effect, in actual
implementations, signed integer overflow is (in the English, non-C++ Standard, meaning)
implementation-defined.

The Standard Can Encourage Communication
Now that the standard defines signed integers as two’s complement, it would be entirely
reasonable to give signed integer overflow well defined behavior. However such a proposal would
be unlikely to achieve consensus. The standards committee contains many fans of all three of
the behaviors that compilers currently provide for signed integer overflow.

In the author’s opinion the next best thing is to communicate to C++ programmers what
happens when signed integers overflow. By good fortune it turns out that implementation-
defined behavior, as specified by the C++ Standard, provides exactly that. From Section 3.12
[defns.impl.defined] of the C++17 Standard:

!5

P1407R0

implementation-defined behavior

behavior, for a well-formed program construct and correct data, that depends on
the implementation and that each implementation documents

(Emphasis added by the author.)

Implementation-defined Requires Implementation-Documented
So if signed integer overflow became implementation-defined, rather than undefined, each
compiler vendor would be required to document the behavior they exhibit when a signed integer
overflows. Programmers are notorious for not reading documentation unless something goes
wrong. But if something does go wrong the documentation would now be available to help them
figure out what happened.

But Some Implementations Don’t Document Implementation-
defined Behavior
True enough. The poster child for this is Clang [6]. The Intel C++ Compiler doesn’t provide
such documentation either. Visual Studio documents implementation-defined behavior for C [7],
but not for C++. However there are compilers that make an effort to be compliant by
documenting C++ implementation-defined behavior. GCC makes a stab at it [8].

You don’t have to have a big name to do the right thing. The Analog Devices C++ compiler
provides documentation for implementation-defined behavior that puts the big name compilers
to shame [9], albeit that is a 2003 compliant compiler. The Analog Devices documentation
includes 15 pages that describe its C++ implementation-defined behavior. Surely the big-time
compiler vendors can afford to do the same.

The author’s position is that compiler vendors that don’t document their implementation-defined
behavior are both out of compliance and doing their users a disservice. The C++17 Standard
(N4660) indexes 232 items that are implementation-defined. That index includes important but
not always easy to discover items like:

• Alignment,

• Behavior of non-standard attributes, and

• Whether certain kinds of dynamic initialization occur before main or are deferred.

If those go undocumented then users can only discover them experimentally or through hearsay,
either of which may lead to incorrect answers.

!6

P1407R0

Regardless, the standard has already done what it can. It requires compiler vendors to document
their implementation-defined behavior. The standard has no means to enforcement compliance.

Implementation-defined May Be Undefined
There might be some concern that implementation-defined behavior only allows well defined
behavior. If that were the case then the “signed integer overflow can’t happen” model would not
be supported. However there are currently existing examples where implementation-defined
behavior is allowed to lead to undefined behavior.

Check out, for instance, C++17 Standard Section 20.5.5.8 Reentrancy [reentrancy] paragraph
1. “Except where it is explicitly specified in this International Standard, it is implementation-
defined which functions in the C++ standard library may be recursively reentered.” That means
a recursively called standard library function, where the implementation does not support such
reentrancy, results in undefined behavior.

On a similar note, from Section 29.6.9 Low-quality random noise generation [c.math.rand]
paragraph 3: “It is implementation-defined whether the rand function may introduce data races
(20.5.5.6).” Remember, of course, that data races may result in undefined behavior (see Section
4.7.1 Data races [intro.races]).

So it turns out that changing signed integer overflow to be implementation-defined behavior
achieves two goals:

• It allows the implementation to provide whatever behavior is deemed appropriate,
including behaving as though signed integer overflow cannot happen.

• It requires that the implementation document whichever behavior(s) it provides.

The documentation component is specifically what is missing today.

Reactions and Responses
Reaction: Don’t take away my optimization!
Response: With this proposed change the optimization can remain but, if implemented, must
be documented by the compiler vendor.

Reaction: Most signed integer overflow is a programming error.
Response: That’s probably true, but not all of it is. This change simply requires the compiler
vendor to identify the contract that they are supplying for signed integer overflow. Anything
beyond that is between the programmer and their tool vendors.

!7

P1407R0

Reaction: The change is not worth it. It doesn’t fix anything.
Response: It’s true that the improvement is minor; it’s only an improvement in documentation.
However the relative cost is low. No compiler changes are required, only documentation
changes. Documentation is certainly not free. However the required delta imposed in an
implementation’s documentation by this change is probably relatively small.

Reaction: Shouldn’t we just make a new signed integer type?
Response: Possibly, but we don’t have that now and providing it would likely take several
standards cycles. Let’s tell programmers what we’re up to right now. After that we can talk about
a new integer type.

Reaction: But if we make this change UBSan won’t find the error.
Response: UBSan, and similar tools, are not defined by the standard. The UBSan community
will, of course, follow it’s own path. However it is easily imaginable that UBSan and similar tools
could be parameterized to optionally identify specific cases of implementation-defined behavior
should their communities choose to do so. As noted earlier there are pre-existing instances of
implementation-defined behavior, like recursively calling implementation-defined standard
library functions, that lead to undefined behavior. So such a UBSan extension seems within the
realm of possibility.

Reaction: Why signed integer overflow? What about other forms of undefined behavior?
Response: Shall we guess what is the most important data type supplied by the C++ standard
today? A good guess would be std::string. And possibly the second most important data type
is integers, both signed and unsigned. This proposal suggests that we, the C++ Standards
Committee, should make a concerted effort to inform our users about potentially surprising
behavior of common operations (addition, subtraction, and multiplication) on a ubiquitous data
type.

Reaction: We should fix this for real.
Response: True, however the problem is determining the correct fix and arriving at consensus.
That is a worthwhile goal. In the meantime, let’s document what we’ve done so our users have a
ghost of a chance of finding out.

Outline for Proposed Wording Changes
• P1236R0 [10] has proposed wording for Section 6.7.1 [basic.fundamental] that describes

the representation of the signed integer types. In a non-normative note it says, “Overflow
for signed arithmetic yields undefined behavior (7.1 [expr.pre]).” This paragraph would be
the right place to specify that signed arithmetic overflow is implementation-defined.

• Switch all examples of undefined behavior that reference signed integer overflow to instead
reference out-of-range pointer arithmetic.

!8

P1407R0

• Add signed integer arithmetic overflow to the Index of implementation-defined behavior.

Thanks and Gratitude
The author would like to offer thanks to the following people who contributed to (but may or
may not endorse) this paper: Howard Hinnant, J. F. Bastien, Aaron Ballman, and Erich Keane.
All mistakes are the sole property of the author.

References
[1] Anastasia Kazakova. C/C++ facts we learned before going ahead with CLion. URL:
https://blog.jetbrains.com/clion/2015/07/infographics-cpp-facts-before-clion/

[2] Chandler Carruth. Garbage In, Garbage Out: Arguing About Undefined Behavior With
Nasal Demons. CppCon 2016. Discussion of signed integer overflow. URL: https://youtu.be/
yG1OZ69H_-o?t=1994

[3] Stroustrup et al. Direction for ISO C++. P0939R1. Page 4, “Technically, C++ rests on two
pillars: A direct map to hardware (initially from C)…” URL: http://www.open-std.org/jtc1/
sc22/wg21/docs/papers/2018/p0939r1.pdf

[4] assert(int+100 > int) optimized away. Bug 30475, GCC, 2007. URL: http://gcc.gnu.org/
bugzilla/show_bug.cgi?id=30475

[5] JF Bastien. P0907R1 - Signed Integers are Two’s Complement. URL: http://www.open-
std.org/jtc1/sc22/wg21/docs/papers/2018/p0907r1.html

[6] Clang bug 11272 - “document implementation-defined behavior” reported 2011-10-30 by
Richard Smith. URL: https://bugs.llvm.org/show_bug.cgi?id=11272

[7] Microsoft C Implementation Defined Behavior. URL: https://docs.microsoft.com/en-us/
cpp/c-language/implementation-defined-behavior?view=vs-2017

[8] GCC C++ Implementation Defined Behavior. URL: https://gcc.gnu.org/onlinedocs/
gcc-6.4.0/gcc/C_002b_002b-Implementation.html

[9] Analog Devices CrossCore Embedded Studio 2.8.0 C/C++ Compiler Manual for SHARC
Processors. URL: https://www.analog.com/media/en/dsp-documentation/software-manuals/
cces-sharccompiler-manual.pdf pages 2-310 through 2-324

[10] Jens Maurer. P1236R0 - Alternative Wording for P0907R4 Signed Integers Are Two’s
Complement. URL: http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/
p1236r0.html

!9

https://blog.jetbrains.com/clion/2015/07/infographics-cpp-facts-before-clion/
https://youtu.be/yG1OZ69H_-o?t=1994
https://youtu.be/yG1OZ69H_-o?t=1994
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0939r1.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0939r1.pdf
http://gcc.gnu.org/bugzilla/show_bug.cgi?id=30475
http://gcc.gnu.org/bugzilla/show_bug.cgi?id=30475
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0907r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0907r1.html
https://bugs.llvm.org/show_bug.cgi?id=11272
https://docs.microsoft.com/en-us/cpp/c-language/implementation-defined-behavior?view=vs-2017
https://docs.microsoft.com/en-us/cpp/c-language/implementation-defined-behavior?view=vs-2017
https://docs.microsoft.com/en-us/cpp/c-language/implementation-defined-behavior?view=vs-2017
https://gcc.gnu.org/onlinedocs/gcc-6.4.0/gcc/C_002b_002b-Implementation.html
https://gcc.gnu.org/onlinedocs/gcc-6.4.0/gcc/C_002b_002b-Implementation.html
https://www.analog.com/media/en/dsp-documentation/software-manuals/cces-sharccompiler-manual.pdf
https://www.analog.com/media/en/dsp-documentation/software-manuals/cces-sharccompiler-manual.pdf
https://www.analog.com/media/en/dsp-documentation/software-manuals/cces-sharccompiler-manual.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1236r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1236r0.html

