
Document number: ​​P1329R0

Date:​​ 2018-11-2
Reply To:

Mihail Mihaylov (​mmihailov@vmware.com​)
Vassil Vassilev (​v.g.vassilev@gmail.com​)

Audience:​​ WG21 Evolution Working Group

On the Coroutines TS

We have familiarized ourselves with the Coroutines TS [1] , and two other proposals - Core
Coroutines [2] and Resumable Expressions [3]. We have also spent time experimenting with the
Coroutine TS in a preexisting production code base. Based on this, our position is that the
Coroutines TS should not be merged into the working draft. We have concerns about the design
of the feature and in our opinion the high demand for the feature should not be a reason to
adopt the design, if a better one is possible. Instead of adopting the Coroutines TS we would
prefer improving the Core Coroutines proposal or exploring other alternatives.

Our concerns about the Coroutines TS fall into three categories – interface, terminology and
performance.

Interface

Our most general concern is that coroutines as proposed in the Coroutines TS are not first class
citizens of the C++ language. In the TS, a coroutine definition essentially defines a factory
function which returns a type-erased handle for it. The actual coroutine has no type, and no
scope. As such, coroutines cannot be used in many ways in which first class types can. They
cannot be allocated with automatic lifetime, including being aggregated into other objects, they
cannot be used for dispatch and in general are not as naturally composable with other elements
of the language as first-class features.

We would favour a design which makes coroutines first class citizens of the language.

A specific concern is that the lifetime of the coroutine frame and the lifetime of the wrapper
object that is created when the coroutine is instantiated are separate. As the promise object is
allocated on the coroutine frame, this makes it harder for programmers to reason about the
lifetime of values and exceptions returned by the coroutine.

We would favour a design where the coroutine frame is a part of the wrapper object (the
coroutine lambda in the case of the Core Coroutines proposal), which would allow programmers

1

mailto:mmihailov@vmware.com
mailto:v.g.vassilev@gmail.com

to reason about the coroutine lifetime through the lifetime of the wrapper and offer experts better
control of the coroutine frames.

Another issue is the policy-based customization. While this approach is very useful in many
cases, in the context of the Coroutines TS over time it has evolved into a big number of
customization points. We believe that it is possible to achieve the same level of customization
by just overriding a small number of operations. Furthermore, the customization points in the
Coroutines TS allow counterintuitive behavior. For example, it’s possible to define a promise
where the co_yield expression will not yield.

We would favour a design which has a smaller and simpler customization interface.

Terminology

We echo the concern already expressed by others about the choice of the co_await keyword.
The coroutine concept was introduced 60 years ago, and has well-established terminology.
Co_await does not follow this terminology and focuses on a specific use case instead of on the
essence of coroutines.

We share the concern regarding the risk of collisions between new keywords and existing
identifiers used in user code. Still, the Coroutines TS proposal suggests adding three of them
with the “co_” prefix. So we presume there is a general acceptance of new keywords starting
with an uncommon prefix. In addition, other TSes seem to have reached consensus on stealing
very popular identifiers.

We would favour a design which employs either the function call syntax or keywords that
include in their spelling the verbs “yield”, “resume” and “suspend”, the way co_yield does.

Performance

We are concerned about the heap allocation of the coroutine frame. Our understanding is that
the motivation for this design choice was to make it possible for suspended coroutines to leave
the scope where they were created including “teleporting” them to other threads.

To address this concern, the Coroutines TS relies heavily on the heap elision optimization. We
are concerned that there will be many use cases where the compiler won’t be able to determine
correctly the lifetime of the coroutine frame, and will be forced to go with the more conservative
estimate and keep the heap allocation.

2

In the context of coroutines we can expect that it will be hard for compilers to detect the
optimization opportunity in cases when coroutines are aggregated into objects, nested within
other coroutines, returned from factory functions, etc. The fact that the coroutine frame could
easily outlive its wrapper object can further complicate the task of the compiler.

Following are some examples of cases when heap elision doesn’t work (with the latest version
of clang in Compiler Explorer at O2) [4].

First, let’s define a simple coroutine wrapper class and two simple coroutines that use it:

#include <memory>

#include <experimental/coroutine>

using​ ​namespace​ ​std​;

template​<​typename​ V> ​class​ ​RawCoroutine​ {
public​:
 ​struct​ ​promise_type​;
 ​using​ handle = ​std​::experimental::coroutine_handle<promise_type>;

 ​struct​ ​promise_type​ {
 V value;

 exception_ptr e;

 ​auto​ ​get_return_object​() {
 ​return​ RawCoroutine{handle::from_promise(*​this​)};
 }

 ​auto​ ​initial_suspend​() {
 ​return​ ​std​::experimental::suspend_always();
 }

 ​auto​ ​final_suspend​() {
 ​return​ ​std​::experimental::suspend_always();
 }

 ​auto​ ​return_value​(V v) {
 value = v;

 ​return​ ​std​::experimental::suspend_never();
 }

 ​void​ ​unhandled_exception​() {
 e = current_exception();

 }

3

 auto​ ​yield_value​(V v) {
 value = v;

 ​return​ ​std​::experimental::suspend_always();
 }

 };

 RawCoroutine(​const​ RawCoroutine&) = ​delete​;

 RawCoroutine(RawCoroutine&& other) : _coro(other._coro) {

 other._coro = ​nullptr​;
 }

 RawCoroutine(handle h) : _coro(h) {}

 ~RawCoroutine() {

 _coro.destroy();

 }

 V ​operator​()() {
 _coro();

 ​if​ (_coro.promise().e)
 rethrow_exception(_coro.promise().e);

 ​else
 ​return​ _coro.promise().value;
 }

 ​bool​ ​done​() {
 ​return​ _coro.done();
 };

private​:
 handle _coro;

};

static​ RawCoroutine<​int​> SimpleRange() {
 ​for​ (​int​ i = 0; i < 10; ++i)
 co_yield i;

 co_return 10;

}

static​ RawCoroutine<​int​> CompositeRange() {
 RawCoroutine<​int​> coro = SimpleRange();

 ​while​ (!coro.done())
 co_yield ​coro​() * 2;

4

 co_return -1;

}

struct​ ​Base​ {
 ​virtual​ ~Base() {}
 ​virtual​ RawCoroutine<​int​> coro() = 0;
};

struct​ ​Derived​ : Base {
 RawCoroutine<​int​> coro() override {
 ​for​ (​int​ i = 0; i < 10; ++i)
 co_yield i;

 co_return 10;

 }

};

Next, let’s look at several examples where we use these coroutines and whether clang will
detect that it can use heap elision.

For a simple scoped coroutine, clang applies heap elision:

int​ ​main​() {
 ​int​ i = 0;

 RawCoroutine<​int​> coro = SimpleRange();

 ​while​ (!coro.done())
 i += coro();

 ​return​ i;
}

But it doesn’t apply it if the coroutine wrapper itself is on the heap:

int​ ​main​() {
 ​int​ i = 0;

 ​auto​ coro = make_unique<RawCoroutine<​int​>>(SimpleRange());
 ​while​ (!coro->done())
 i += (*coro)();

 ​return​ i;
}

5

Similarly, when the coroutine wrapper is itself wrapped in another object, clang elides the
coroutine handle allocation when wrapper object is on the stack:

int​ ​main​() {
 ​int​ i = 0;

 ​struct​ ​Wrapper​ {
 Wrapper() : coro(SimpleRange()) {}

 RawCoroutine<​int​> coro;
 };

 Wrapper wrapper;

 ​while​ (!wrapper.coro.done())
 i += wrapper.coro();

 ​return​ i;
}

But not when it’s on the heap:

int​ ​main​() {
 ​int​ i = 0;

 ​struct​ ​Wrapper​ {
 Wrapper() : coro(SimpleRange()) {}

 RawCoroutine<​int​> coro;
 };

 ​auto​ wrapper = make_unique<Wrapper>();
 ​while​ (!wrapper->coro.done())
 i += wrapper->coro();

 ​return​ i;
}

In the case of a nested coroutine, clang elides the heap allocation of the frame of the outer
coroutine, but not of nested one:

int​ ​main​() {
 ​int​ i = 0;

 RawCoroutine<​int​> coro = CompositeRange();

 ​while​ (!coro.done())
 i += coro();

6

 ​return​ i;
}

The compiler also fails to elide the allocation when the coroutine is virtual:

int​ ​main​() {
 ​int​ i = 0;

 ​unique_ptr​<Base> b = make_unique<Derived>();
 RawCoroutine<​int​> coro = b->coro();

 ​while​ (!coro.done())
 i += coro();

 ​return​ i;
}

The compiler elides the allocation when the coroutine is created by a factory function:

int​ ​main​() {
 ​int​ i = 0;

 ​struct​ ​Factory​ {
 ​static​ RawCoroutine<​int​> Create() { ​return​ SimpleRange(); }
 };

 RawCoroutine<​int​> coro = Factory::Create();
 ​while​ (!coro.done())
 i += coro();

 ​return​ i;
}

But not when the factory function is in another translation unit (or not inlined for some other
reason):

int​ ​main​() {
 ​int​ i = 0;

 ​struct​ ​Factory​ {
 ​// No inline, to simulate another translation unit
 ​static​ RawCoroutine<​int​> Create() __attribute__((noinline)) {
 ​return​ SimpleRange();
 }
 };

7

 RawCoroutine<​int​> coro = Factory::Create();
 ​while​ (!coro.done())
 i += coro();

 ​return​ i;
}

These are just some examples, but we can expect many more scenarios where the coroutine
frame is allocated on the heap, even though the coroutine doesn’t leave the scope where it’s
created.

More importantly, even if the heap elision optimization becomes completely reliable in the
future, it will be hard for developers to predict when it will take place. This will make it hard for
programmers to reason about the performance of their code.

For these reasons, we favour a design which makes it explicit how the coroutine frame is
allocated.

Path forward

The Bulgarian NB is exploring alternative directions and we plan to present a preview of a
proposal at the next meeting in Kona. Still, we feel that by opposing the Coroutines TS, we have
the obligation to present at least a direction for improvement, so we are sharing a very
preliminary view of what we are working on. We would favour a design:

● which makes coroutines first class citizens of the language;
● where the coroutine frame is a part of the wrapper object (the coroutine lambda in the

case of the Core Coroutines proposal), which would allow programmers to reason about
the coroutine lifetime through the lifetime of the wrapper and offer experts better control
of the coroutine frames;

● which has a smaller and simpler customization interface;
● which employs either the function call syntax or keywords that include in their spelling

the verbs “yield”, “resume” and “suspend”, the way co_yield does;
● which makes it explicit how the coroutine frame is allocated.

The core idea in our future proposal is for coroutine definitions to define classes instead of
factory functions. The pseudo code:

std​::coroutine<​int​> Range(​int​ start, ​int​ end) {
 ​for​ (​int​ i = start; i < end - 1; ++i)
 yield(i);

8

 return end;
}

Would declare a class ​Range that derives from ​std​::coroutine<​int​> which has in its memory
layout reserved space for the captures and the coroutine frame and suspension point:

class​ ​Range​ : ​public​ ​std​::coroutine<​int​> {
 coroutine_state<Range> frame; ​// Not visible in
 // the coroutine body

 ​int​ start; ​// Visible in the coroutine body
 ​int​ end; ​// Visible in the coroutine body

public​:
 Range(​int​ start, ​int​ end)
 : coroutine<​int​>(...)
 , start(start)
 , end(end)
 {}

 ​int​ ​operator​()() {
 ​// Transformed function body
 // ...
 }
}

The ​yield(i) statement would be a method of the base class ​std​::coroutine<​int​>​, so it
would be only available in the context of a coroutine and would have a low risk of clashing with
user identifiers. If that is not acceptable, we would opt for keywords like ​co_yield, ​co_suspend
and ​co_return​.

Once defined, the coroutine can be used as any functor object that the programmer could write
by hand:

int​ ​main​() {
 ​// Automatic storage duration.
 Range ​rangeScoped​(0, 10);

 ​int​ i = 0;
 ​while​ (!rangeScoped.done())
 i += rangeScoped();

 ​// Dynamic storage duration.
 ​auto​ rangeDyn = make_unique<Range>(0, 10);

 ​while​ (!ran10geDyn->done())
 i += (*rangeDyn)();

9

 ​// Passing by reference
 Range ​r​(10, 20);
 i += foo(r);

 ​// Aggregation in other classes
 ​struct​ ​Wrapper​ {
 Wrapper(​int​ end) : range(0, end) {}

 Range range;
 };

 ​return​ i;
}

The proposed lowering also allows programmers to create their own coroutine types by deriving
from the base ​std​::coroutine​ type.

This change or a similar one can be applied directly to the Coroutines TS design as well as to
the Core Coroutines proposal. But if accepted, such a change to any of these proposals will
necessarily delay its merging at least until the meeting in Kona. So we would like to take this
time to develop our proposal further, as we are interested in exploring other sides of the
coroutines design too. We intend to work closely with Gor Nishanov and the authors of the Core
Coroutines proposal and we will strongly consider changes to the existing proposals instead of a
completely new one, if possible.

Acknowledgements

The authors would like to thank Anton Stoyanov, Aleksandar Cheshmedjiev, Georgi L Dimitrov,
Hristosko Chaushev, Petko Padevski, Peter Dimov, Stanimir Lukanov and Viktor Kaltchev for
comments on early drafts of this proposal.

Thanks again to all those involved in the Coroutines TS, and particularly Gor Nishanov, for
exploring the coroutines design space and providing a basis for this feedback paper.

References
[1] Coroutines TS, N4760, http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/n4760.pdf
[2] Core Coroutines, P1063R1, http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1063r1.pdf
[3] Resumable expressions, P0114R0,
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0114r0.pdf
[4] ​https://godbolt.org/z/y8nB_u

10

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0114r0.pdf
https://godbolt.org/z/y8nB_u

